Sample records for integral variable structure

  1. Integrated control-structure design

    NASA Technical Reports Server (NTRS)

    Hunziker, K. Scott; Kraft, Raymond H.; Bossi, Joseph A.

    1991-01-01

    A new approach for the design and control of flexible space structures is described. The approach integrates the structure and controller design processes thereby providing extra opportunities for avoiding some of the disastrous effects of control-structures interaction and for discovering new, unexpected avenues of future structural design. A control formulation based on Boyd's implementation of Youla parameterization is employed. Control design parameters are coupled with structural design variables to produce a set of integrated-design variables which are selected through optimization-based methodology. A performance index reflecting spacecraft mission goals and constraints is formulated and optimized with respect to the integrated design variables. Initial studies have been concerned with achieving mission requirements with a lighter, more flexible space structure. Details of the formulation of the integrated-design approach are presented and results are given from a study involving the integrated redesign of a flexible geostationary platform.

  2. The Integration of Continuous and Discrete Latent Variable Models: Potential Problems and Promising Opportunities

    ERIC Educational Resources Information Center

    Bauer, Daniel J.; Curran, Patrick J.

    2004-01-01

    Structural equation mixture modeling (SEMM) integrates continuous and discrete latent variable models. Drawing on prior research on the relationships between continuous and discrete latent variable models, the authors identify 3 conditions that may lead to the estimation of spurious latent classes in SEMM: misspecification of the structural model,…

  3. Integrated Controls-Structures Design Methodology: Redesign of an Evolutionary Test Structure

    NASA Technical Reports Server (NTRS)

    Maghami, Peiman G.; Gupta, Sandeep; Elliot, Kenny B.; Joshi, Suresh M.

    1997-01-01

    An optimization-based integrated controls-structures design methodology for a class of flexible space structures is described, and the phase-0 Controls-Structures-Integration evolutionary model, a laboratory testbed at NASA Langley, is redesigned using this integrated design methodology. The integrated controls-structures design is posed as a nonlinear programming problem to minimize the control effort required to maintain a specified line-of-sight pointing performance, under persistent white noise disturbance. Static and dynamic dissipative control strategies are employed for feedback control, and parameters of these controllers are considered as the control design variables. Sizes of strut elements in various sections of the CEM are used as the structural design variables. Design guides for the struts are developed and employed in the integrated design process, to ensure that the redesigned structure can be effectively fabricated. The superiority of the integrated design methodology over the conventional design approach is demonstrated analytically by observing a significant reduction in the average control power needed to maintain specified pointing performance with the integrated design approach.

  4. Community structural characteristics and the adoption of fluoridation.

    PubMed Central

    Smith, R A

    1981-01-01

    A study of community structural characteristics associated with fluoridation outcomes was conducted in 47 communities. A three-part outcome distinction was utilized: communities never having publicly considered the fluoridation issue, those rejecting it, and those accepting it. The independent variables reflect the complexity of the community social and economic structure, social integration, and the centralization of authority. Results of mean comparisons show statistically significant differences between the three outcome types on the independent variables. A series of discriminant analyses provides furtheor evidence of how the independent variables are associated with each outcome type. Non-considering communities are shown to be low in complexity, and high in social integration and the centralization of governmental authority. Rejecters are shown to be high in complexity, but low in social integration and centralized authority. Adopters are relatively high on all three sets of variables. Theretical reasoning is provided to support the hypothesis and why these results are expected. The utility of these results and structural explanations in general are discussed, especially for public/environmental health planning and political activities. PMID:7258427

  5. Model reduction in integrated controls-structures design

    NASA Technical Reports Server (NTRS)

    Maghami, Peiman G.

    1993-01-01

    It is the objective of this paper to present a model reduction technique developed for the integrated controls-structures design of flexible structures. Integrated controls-structures design problems are typically posed as nonlinear mathematical programming problems, where the design variables consist of both structural and control parameters. In the solution process, both structural and control design variables are constantly changing; therefore, the dynamic characteristics of the structure are also changing. This presents a problem in obtaining a reduced-order model for active control design and analysis which will be valid for all design points within the design space. In other words, the frequency and number of the significant modes of the structure (modes that should be included) may vary considerably throughout the design process. This is also true as the locations and/or masses of the sensors and actuators change. Moreover, since the number of design evaluations in the integrated design process could easily run into thousands, any feasible order-reduction method should not require model reduction analysis at every design iteration. In this paper a novel and efficient technique for model reduction in the integrated controls-structures design process, which addresses these issues, is presented.

  6. Robust integral variable structure controller and pulse-width pulse-frequency modulated input shaper design for flexible spacecraft with mismatched uncertainty/disturbance.

    PubMed

    Hu, Qinglei

    2007-10-01

    This paper presents a dual-stage control system design method for the flexible spacecraft attitude maneuvering control by use of on-off thrusters and active vibration control by input shaper. In this design approach, attitude control system and vibration suppression were designed separately using lower order model. As a stepping stone, an integral variable structure controller with the assumption of knowing the upper bounds of the mismatched lumped perturbation has been designed which ensures exponential convergence of attitude angle and angular velocity in the presence of bounded uncertainty/disturbances. To reconstruct estimates of the system states for use in a full information variable structure control law, an asymptotic variable structure observer is also employed. In addition, the thruster output is modulated in pulse-width pulse-frequency so that the output profile is similar to the continuous control histories. For actively suppressing the induced vibration, the input shaping technique is used to modify the existing command so that less vibration will be caused by the command itself, which only requires information about the vibration frequency and damping of the closed-loop system. The rationale behind this hybrid control scheme is that the integral variable structure controller can achieve good precision pointing, even in the presence of uncertainties/disturbances, whereas the shaped input attenuator is applied to actively suppress the undesirable vibrations excited by the rapid maneuvers. Simulation results for the spacecraft model show precise attitude control and vibration suppression.

  7. INDICATORS OF ECOSYSTEM INTEGRITY FOR ESTUARIES

    EPA Science Inventory

    Ideal indicators of ecosystem integrity integrate multiple structural and functional attributes of the ecosystem, have temporal and spatial dimensions, express real variability, are standardized with respect to reference conditions, societal goals, or both, and support prediction...

  8. An Overview of Prognosis Health Management Research at Glenn Research Center for Gas Turbine Engine Structures With Special Emphasis on Deformation and Damage Modeling

    NASA Technical Reports Server (NTRS)

    Arnold, Steven M.; Goldberg, Robert K.; Lerch, Bradley A.; Saleeb, Atef F.

    2009-01-01

    Herein a general, multimechanism, physics-based viscoelastoplastic model is presented in the context of an integrated diagnosis and prognosis methodology which is proposed for structural health monitoring, with particular applicability to gas turbine engine structures. In this methodology, diagnostics and prognostics will be linked through state awareness variable(s). Key technologies which comprise the proposed integrated approach include (1) diagnostic/detection methodology, (2) prognosis/lifing methodology, (3) diagnostic/prognosis linkage, (4) experimental validation, and (5) material data information management system. A specific prognosis lifing methodology, experimental characterization and validation and data information management are the focal point of current activities being pursued within this integrated approach. The prognostic lifing methodology is based on an advanced multimechanism viscoelastoplastic model which accounts for both stiffness and/or strength reduction damage variables. Methods to characterize both the reversible and irreversible portions of the model are discussed. Once the multiscale model is validated the intent is to link it to appropriate diagnostic methods to provide a full-featured structural health monitoring system.

  9. An Overview of Prognosis Health Management Research at GRC for Gas Turbine Engine Structures With Special Emphasis on Deformation and Damage Modeling

    NASA Technical Reports Server (NTRS)

    Arnold, Steven M.; Goldberg, Robert K.; Lerch, Bradley A.; Saleeb, Atef F.

    2009-01-01

    Herein a general, multimechanism, physics-based viscoelastoplastic model is presented in the context of an integrated diagnosis and prognosis methodology which is proposed for structural health monitoring, with particular applicability to gas turbine engine structures. In this methodology, diagnostics and prognostics will be linked through state awareness variable(s). Key technologies which comprise the proposed integrated approach include 1) diagnostic/detection methodology, 2) prognosis/lifing methodology, 3) diagnostic/prognosis linkage, 4) experimental validation and 5) material data information management system. A specific prognosis lifing methodology, experimental characterization and validation and data information management are the focal point of current activities being pursued within this integrated approach. The prognostic lifing methodology is based on an advanced multi-mechanism viscoelastoplastic model which accounts for both stiffness and/or strength reduction damage variables. Methods to characterize both the reversible and irreversible portions of the model are discussed. Once the multiscale model is validated the intent is to link it to appropriate diagnostic methods to provide a full-featured structural health monitoring system.

  10. Computer simulation of a single pilot flying a modern high-performance helicopter

    NASA Technical Reports Server (NTRS)

    Zipf, Mark E.; Vogt, William G.; Mickle, Marlin H.; Hoelzeman, Ronald G.; Kai, Fei; Mihaloew, James R.

    1988-01-01

    Presented is a computer simulation of a human response pilot model able to execute operational flight maneuvers and vehicle stabilization of a modern high-performance helicopter. Low-order, single-variable, human response mechanisms, integrated to form a multivariable pilot structure, provide a comprehensive operational control over the vehicle. Evaluations of the integrated pilot were performed by direct insertion into a nonlinear, total-force simulation environment provided by NASA Lewis. Comparisons between the integrated pilot structure and single-variable pilot mechanisms are presented. Static and dynamically alterable configurations of the pilot structure are introduced to simulate pilot activities during vehicle maneuvers. These configurations, in conjunction with higher level, decision-making processes, are considered for use where guidance and navigational procedures, operational mode transfers, and resource sharing are required.

  11. The geometric approach to sets of ordinary differential equations and Hamiltonian dynamics

    NASA Technical Reports Server (NTRS)

    Estabrook, F. B.; Wahlquist, H. D.

    1975-01-01

    The calculus of differential forms is used to discuss the local integration theory of a general set of autonomous first order ordinary differential equations. Geometrically, such a set is a vector field V in the space of dependent variables. Integration consists of seeking associated geometric structures invariant along V: scalar fields, forms, vectors, and integrals over subspaces. It is shown that to any field V can be associated a Hamiltonian structure of forms if, when dealing with an odd number of dependent variables, an arbitrary equation of constraint is also added. Families of integral invariants are an immediate consequence. Poisson brackets are isomorphic to Lie products of associated CT-generating vector fields. Hamilton's variational principle follows from the fact that the maximal regular integral manifolds of a closed set of forms must include the characteristics of the set.

  12. Integrated Controls-Structures Design Methodology for Flexible Spacecraft

    NASA Technical Reports Server (NTRS)

    Maghami, P. G.; Joshi, S. M.; Price, D. B.

    1995-01-01

    This paper proposes an approach for the design of flexible spacecraft, wherein the structural design and the control system design are performed simultaneously. The integrated design problem is posed as an optimization problem in which both the structural parameters and the control system parameters constitute the design variables, which are used to optimize a common objective function, thereby resulting in an optimal overall design. The approach is demonstrated by application to the integrated design of a geostationary platform, and to a ground-based flexible structure experiment. The numerical results obtained indicate that the integrated design approach generally yields spacecraft designs that are substantially superior to the conventional approach, wherein the structural design and control design are performed sequentially.

  13. Can Structural MRI Indices of Cerebral Integrity Track Cognitive Trends in Executive Control Function During Normal Maturation and Adulthood?

    PubMed Central

    Kochunov, Peter; Robin, Don A.; Royall, Don R.; Coyle, Thomas; Lancaster, Jack; Kochunov, Valeria; Schlosser, Anita E.; Fox, Peter T.

    2009-01-01

    We explored the relationship between structural neuroimaging-based indices of cerebral integrity and executive control function (ECF) in two groups of healthy subjects: A maturing group (33 subjects; 19–29 years) and a senescing group (38 adults; 30–90 years). ECF was assessed using the Executive Interview (EXIT) battery. Cortical indices of cerebral integrity included GM thickness, intergyral span, and sulcal span, each measured for five cortical regions per hemisphere. Subcortical indices included fractional anisotropy (FA), measured using track-based-spatial-statistics (TBSS), and the volume of T2-hyperintense WM (HWM). In the maturing group, no significant relationships between neuroanatomical changes and ECF were found; however, there were hints that late-term maturation of cerebral WM influenced variability in ECF. In the senescing group, the decline in ECF corresponded to atrophic changes in cerebral WM (sulcal and intergyral span) primarily in the superior frontal and anterior cingulate regions. A large fraction of the variability in ECF (62%) can be explained by variability in the structural indices from these two regions. PMID:19067326

  14. [The functional state classification and evaluation of the stability level in mental loads based on the factor structure of heart rate variability parameters].

    PubMed

    Mashin, V A; Mashina, M N

    2004-12-01

    In the paper, outcomes of the researches devoted to factor analysis of heart rate variability parameters and definition of the most informative parameters for diagnostics of functional states and an evaluation of level of stability to mental loads, are presented. The factor structure of parameters, which unclude integral level of heart rate variability (1), balance between activity of vagus and brain cortical-limbic systems (2), integrated level of cardiovascular system functioning (3), is substantiated. Factor analysis outcomes have been used for construction of functional state classification, for their differential diagnostics, and for development and check of algorithm for evaluation of the stability level in mental loads.

  15. An optimization-based integrated controls-structures design methodology for flexible space structures

    NASA Technical Reports Server (NTRS)

    Maghami, Peiman G.; Joshi, Suresh M.; Armstrong, Ernest S.

    1993-01-01

    An approach for an optimization-based integrated controls-structures design is presented for a class of flexible spacecraft that require fine attitude pointing and vibration suppression. The integrated design problem is posed in the form of simultaneous optimization of both structural and control design variables. The approach is demonstrated by application to the integrated design of a generic space platform and to a model of a ground-based flexible structure. The numerical results obtained indicate that the integrated design approach can yield spacecraft designs that have substantially superior performance over a conventional design wherein the structural and control designs are performed sequentially. For example, a 40-percent reduction in the pointing error is observed along with a slight reduction in mass, or an almost twofold increase in the controlled performance is indicated with more than a 5-percent reduction in the overall mass of the spacecraft (a reduction of hundreds of kilograms).

  16. A Novel Information-Theoretic Approach for Variable Clustering and Predictive Modeling Using Dirichlet Process Mixtures

    PubMed Central

    Chen, Yun; Yang, Hui

    2016-01-01

    In the era of big data, there are increasing interests on clustering variables for the minimization of data redundancy and the maximization of variable relevancy. Existing clustering methods, however, depend on nontrivial assumptions about the data structure. Note that nonlinear interdependence among variables poses significant challenges on the traditional framework of predictive modeling. In the present work, we reformulate the problem of variable clustering from an information theoretic perspective that does not require the assumption of data structure for the identification of nonlinear interdependence among variables. Specifically, we propose the use of mutual information to characterize and measure nonlinear correlation structures among variables. Further, we develop Dirichlet process (DP) models to cluster variables based on the mutual-information measures among variables. Finally, orthonormalized variables in each cluster are integrated with group elastic-net model to improve the performance of predictive modeling. Both simulation and real-world case studies showed that the proposed methodology not only effectively reveals the nonlinear interdependence structures among variables but also outperforms traditional variable clustering algorithms such as hierarchical clustering. PMID:27966581

  17. A Novel Information-Theoretic Approach for Variable Clustering and Predictive Modeling Using Dirichlet Process Mixtures.

    PubMed

    Chen, Yun; Yang, Hui

    2016-12-14

    In the era of big data, there are increasing interests on clustering variables for the minimization of data redundancy and the maximization of variable relevancy. Existing clustering methods, however, depend on nontrivial assumptions about the data structure. Note that nonlinear interdependence among variables poses significant challenges on the traditional framework of predictive modeling. In the present work, we reformulate the problem of variable clustering from an information theoretic perspective that does not require the assumption of data structure for the identification of nonlinear interdependence among variables. Specifically, we propose the use of mutual information to characterize and measure nonlinear correlation structures among variables. Further, we develop Dirichlet process (DP) models to cluster variables based on the mutual-information measures among variables. Finally, orthonormalized variables in each cluster are integrated with group elastic-net model to improve the performance of predictive modeling. Both simulation and real-world case studies showed that the proposed methodology not only effectively reveals the nonlinear interdependence structures among variables but also outperforms traditional variable clustering algorithms such as hierarchical clustering.

  18. Predicting Social Integration in the Community among College Students

    ERIC Educational Resources Information Center

    Herrero, Juan; Gracia, Enrique

    2004-01-01

    This article aims to examine determinants of social integration in the community among college students. Two-wave panel data from an undergraduate student sample (N = 310) was used to explore the effects of multiple sets of variables (personal, interpersonal, and situational) on social integration in the community. Structural equation analysis…

  19. Integrable nonlinear Schrödinger system on a lattice with three structural elements in the unit cell

    NASA Astrophysics Data System (ADS)

    Vakhnenko, Oleksiy O.

    2018-05-01

    Developing the idea of increasing the number of structural elements in the unit cell of a quasi-one-dimensional lattice as applied to the semi-discrete integrable systems of nonlinear Schrödinger type, we construct the zero-curvature representation for the general integrable nonlinear system on a lattice with three structural elements in the unit cell. The integrability of the obtained general system permits to find explicitly a number of local conservation laws responsible for the main features of system dynamics and in particular for the so-called natural constraints separating the field variables into the basic and the concomitant ones. Thus, considering the reduction to the semi-discrete integrable system of nonlinear Schrödinger type, we revealed the essentially nontrivial impact of concomitant fields on the Poisson structure and on the whole Hamiltonian formulation of system dynamics caused by the nonzero background values of these fields. On the other hand, the zero-curvature representation of a general nonlinear system serves as an indispensable key to the dressing procedure of system integration based upon the Darboux transformation of the auxiliary linear problem and the implicit Bäcklund transformation of field variables. Due to the symmetries inherent to the six-component semi-discrete integrable nonlinear Schrödinger system with attractive-type nonlinearities, the Darboux-Bäcklund dressing scheme is shown to be simplified considerably, giving rise to the appropriately parameterized multi-component soliton solution consisting of six basic and four concomitant components.

  20. Reliability analysis of composite structures

    NASA Technical Reports Server (NTRS)

    Kan, Han-Pin

    1992-01-01

    A probabilistic static stress analysis methodology has been developed to estimate the reliability of a composite structure. Closed form stress analysis methods are the primary analytical tools used in this methodology. These structural mechanics methods are used to identify independent variables whose variations significantly affect the performance of the structure. Once these variables are identified, scatter in their values is evaluated and statistically characterized. The scatter in applied loads and the structural parameters are then fitted to appropriate probabilistic distribution functions. Numerical integration techniques are applied to compute the structural reliability. The predicted reliability accounts for scatter due to variability in material strength, applied load, fabrication and assembly processes. The influence of structural geometry and mode of failure are also considerations in the evaluation. Example problems are given to illustrate various levels of analytical complexity.

  1. Urban slum structure: integrating socioeconomic and land cover data to model slum evolution in Salvador, Brazil.

    PubMed

    Hacker, Kathryn P; Seto, Karen C; Costa, Federico; Corburn, Jason; Reis, Mitermayer G; Ko, Albert I; Diuk-Wasser, Maria A

    2013-10-20

    The expansion of urban slums is a key challenge for public and social policy in the 21st century. The heterogeneous and dynamic nature of slum communities limits the use of rigid slum definitions. A systematic and flexible approach to characterize, delineate and model urban slum structure at an operational resolution is essential to plan, deploy, and monitor interventions at the local and national level. We modeled the multi-dimensional structure of urban slums in the city of Salvador, a city of 3 million inhabitants in Brazil, by integrating census-derived socioeconomic variables and remotely-sensed land cover variables. We assessed the correlation between the two sets of variables using canonical correlation analysis, identified land cover proxies for the socioeconomic variables, and produced an integrated map of deprivation in Salvador at 30 m × 30 m resolution. The canonical analysis identified three significant ordination axes that described the structure of Salvador census tracts according to land cover and socioeconomic features. The first canonical axis captured a gradient from crowded, low-income communities with corrugated roof housing to higher-income communities. The second canonical axis discriminated among socioeconomic variables characterizing the most marginalized census tracts, those without access to sanitation or piped water. The third canonical axis accounted for the least amount of variation, but discriminated between high-income areas with white-painted or tiled roofs from lower-income areas. Our approach captures the socioeconomic and land cover heterogeneity within and between slum settlements and identifies the most marginalized communities in a large, complex urban setting. These findings indicate that changes in the canonical scores for slum areas can be used to track their evolution and to monitor the impact of development programs such as slum upgrading.

  2. Urban slum structure: integrating socioeconomic and land cover data to model slum evolution in Salvador, Brazil

    PubMed Central

    2013-01-01

    Background The expansion of urban slums is a key challenge for public and social policy in the 21st century. The heterogeneous and dynamic nature of slum communities limits the use of rigid slum definitions. A systematic and flexible approach to characterize, delineate and model urban slum structure at an operational resolution is essential to plan, deploy, and monitor interventions at the local and national level. Methods We modeled the multi-dimensional structure of urban slums in the city of Salvador, a city of 3 million inhabitants in Brazil, by integrating census-derived socioeconomic variables and remotely-sensed land cover variables. We assessed the correlation between the two sets of variables using canonical correlation analysis, identified land cover proxies for the socioeconomic variables, and produced an integrated map of deprivation in Salvador at 30 m × 30 m resolution. Results The canonical analysis identified three significant ordination axes that described the structure of Salvador census tracts according to land cover and socioeconomic features. The first canonical axis captured a gradient from crowded, low-income communities with corrugated roof housing to higher-income communities. The second canonical axis discriminated among socioeconomic variables characterizing the most marginalized census tracts, those without access to sanitation or piped water. The third canonical axis accounted for the least amount of variation, but discriminated between high-income areas with white-painted or tiled roofs from lower-income areas. Conclusions Our approach captures the socioeconomic and land cover heterogeneity within and between slum settlements and identifies the most marginalized communities in a large, complex urban setting. These findings indicate that changes in the canonical scores for slum areas can be used to track their evolution and to monitor the impact of development programs such as slum upgrading. PMID:24138776

  3. The brain map of gait variability in aging, cognitive impairment and dementia. A systematic review

    PubMed Central

    Tian, Qu; Chastan, Nathalie; Bair, Woei-Nan; Resnick, Susan M.; Ferrucci, Luigi; Studenski, Stephanie A.

    2017-01-01

    While gait variability may reflect subtle changes due to aging or cognitive impairment (CI), associated brain characteristics remain unclear. We summarize structural and functional neuroimaging findings associated with gait variability in older adults with and without CI and dementia. We identified 17 eligible studies; all were cross-sectional; few examined multiple brain areas. In older adults, temporal gait variability was associated with structural differences in medial areas important for lower limb coordination and balance. Both temporal and spatial gait variability were associated with structural and functional differences in hippocampus and primary sensorimotor cortex and structural differences in anterior cingulate cortex, basal ganglia, association tracts, and posterior thalamic radiation. In CI or dementia, some associations were found in primary motor cortex, hippocampus, prefrontal cortex and basal ganglia. In older adults, gait variability may be associated with areas important for sensorimotor integration and coordination. To comprehend the neural basis of gait variability with aging and CI, longitudinal studies of multiple brain areas are needed. PMID:28115194

  4. Algebraic features of some generalizations of the Lotka-Volterra system

    NASA Astrophysics Data System (ADS)

    Bibik, Yu. V.; Sarancha, D. A.

    2010-10-01

    For generalizations of the Lotka-Volterra system, an integration method is proposed based on the nontrivial algebraic structure of these generalizations. The method makes use of an auxiliary first-order differential equation derived from the phase curve equation with the help of this algebraic structure. Based on this equation, a Hamiltonian approach can be developed and canonical variables (moreover, action-angle variables) can be constructed.

  5. Six-component semi-discrete integrable nonlinear Schrödinger system

    NASA Astrophysics Data System (ADS)

    Vakhnenko, Oleksiy O.

    2018-01-01

    We suggest the six-component integrable nonlinear system on a quasi-one-dimensional lattice. Due to its symmetrical form, the general system permits a number of reductions; one of which treated as the semi-discrete integrable nonlinear Schrödinger system on a lattice with three structural elements in the unit cell is considered in considerable details. Besides six truly independent basic field variables, the system is characterized by four concomitant fields whose background values produce three additional types of inter-site resonant interactions between the basic fields. As a result, the system dynamics becomes associated with the highly nonstandard form of Poisson structure. The elementary Poisson brackets between all field variables are calculated and presented explicitly. The richness of system dynamics is demonstrated on the multi-component soliton solution written in terms of properly parameterized soliton characteristics.

  6. SMART Structures User's Guide - Version 3.0

    NASA Technical Reports Server (NTRS)

    Spangler, Jan L.

    1996-01-01

    Version 3.0 of the Solid Modeling Aerospace Research Tool (SMART Structures) is used to generate structural models for conceptual and preliminary-level aerospace designs. Features include the generation of structural elements for wings and fuselages, the integration of wing and fuselage structural assemblies, and the integration of fuselage and tail structural assemblies. The highly interactive nature of this software allows the structural engineer to move quickly from a geometry that defines a vehicle's external shape to one that has both external components and internal components which may include ribs, spars, longerons, variable depth ringframes, a floor, a keel, and fuel tanks. The geometry that is output is consistent with FEA requirements and includes integrated wing and empennage carry-through and frame attachments. This report provides a comprehensive description of SMART Structures and how to use it.

  7. Development of deployable structures for large space platform systems, part 1

    NASA Technical Reports Server (NTRS)

    Cox, R. L.; Nelson, R. A.

    1982-01-01

    Eight deployable platform design objectives were established: autodeploy/retract; fully integrated utilities; configuration variability; versatile payload and subsystem interfaces; structural and packing efficiency; 1986 technology readiness; minimum EVA/RMS; and Shuttle operational compatibility.

  8. Probabilistic evaluation of fuselage-type composite structures

    NASA Technical Reports Server (NTRS)

    Shiao, Michael C.; Chamis, Christos C.

    1992-01-01

    A methodology is developed to computationally simulate the uncertain behavior of composite structures. The uncertain behavior includes buckling loads, natural frequencies, displacements, stress/strain etc., which are the consequences of the random variation (scatter) of the primitive (independent random) variables in the constituent, ply, laminate and structural levels. This methodology is implemented in the IPACS (Integrated Probabilistic Assessment of Composite Structures) computer code. A fuselage-type composite structure is analyzed to demonstrate the code's capability. The probability distribution functions of the buckling loads, natural frequency, displacement, strain and stress are computed. The sensitivity of each primitive (independent random) variable to a given structural response is also identified from the analyses.

  9. [Stress in Medical Students: A Cross-Sectional Study on the Relevance of Attachment Style and Structural Integration].

    PubMed

    Bugaj, Till Johannes; Müksch, Christine; Ehrenthal, Johannes C; Köhl-Hackert, Nadja; Schauenburg, Henning; Huber, Julia; Schmid, Carolin; Erschens, Rebecca; Junne, Florian; Herzog, Wolfgang; Nikendei, Christoph

    2016-02-01

    From year one of studying medicine an increase of psychological stress is found. The relationship between the occurrence of this stress and attachment patterns or structural personality functions remains unclear. The present study aimed at investigating whether a relationship between the enduring personality variables, attachment style and level of structural integration of the personality, and acute stress experience at the beginning of medical students' studies exists. In this study, all students in the first semester of medicine were invited to participate in a study to identify stress factors via questionnaire (MBI-SS, PSQ, PHQ-9, GAD-7) in the WS 2013/2014. Simultaneously, the predominant attachment style (RQ-2) and structural abilities (OPD-SFK) were evaluated. The study included 293 students (return: 91.3%). Securely attached students experienced significantly less stress than insecurely attached students (p=0.019). Students with a high level of structural integration showed significantly less stress burden (p<0.001) and lower exhaustion- (p<0.001) and cynicism values (p<0.001), while showing a higher experience of self-efficacy (p<0.001). The influence of attachment behavior on stress experience is mediated by the level of the structural integration of the personality. Significant correlations exist between attachment style and the level of structural integration of the personality, and burnout risk as well as stress burden. The level of structural integration of the personality mediates the relationship between the attachment-related "model of self" and stress experience, i. e. a positive "model of self" can have a stress-protective effect when good structural abilities are present. Practical implication: An insecure attachment style and a low level of structural integration may be associated with higher stress experience when transitioning to study. The results suggest that the enduring personality variable attachment style, mediated by the level of structural integration of the personality, leads to higher stress and burnout experience. Affected students could be supported by early preventive measures enabling the sustainable preparation for this transitional period. Longitudinal prospective studies are needed to explore if the assumption is applicable that pre-existing vulnerabilities in school are exacerbated at this transitional stage. © Georg Thieme Verlag KG Stuttgart · New York.

  10. Alternative bi-Hamiltonian structures for WDVV equations of associativity

    NASA Astrophysics Data System (ADS)

    Kalayci, J.; Nutku, Y.

    1998-01-01

    The WDVV equations of associativity in two-dimensional topological field theory are completely integrable third-order Monge-Ampère equations which admit bi-Hamiltonian structure. The time variable plays a distinguished role in the discussion of Hamiltonian structure, whereas in the theory of WDVV equations none of the independent variables merits such a distinction. WDVV equations admit very different alternative Hamiltonian structures under different possible choices of the time variable, but all these various Hamiltonian formulations can be brought together in the framework of the covariant theory of symplectic structure. They can be identified as different components of the covariant Witten-Zuckerman symplectic 2-form current density where a variational formulation of the WDVV equation that leads to the Hamiltonian operator through the Dirac bracket is available.

  11. Regularized Generalized Structured Component Analysis

    ERIC Educational Resources Information Center

    Hwang, Heungsun

    2009-01-01

    Generalized structured component analysis (GSCA) has been proposed as a component-based approach to structural equation modeling. In practice, GSCA may suffer from multi-collinearity, i.e., high correlations among exogenous variables. GSCA has yet no remedy for this problem. Thus, a regularized extension of GSCA is proposed that integrates a ridge…

  12. Socially cooperative choices: An approach to achieving resource sustainability in the coastal zone

    NASA Astrophysics Data System (ADS)

    Crance, Colin; Draper, Dianne

    1996-03-01

    Achieving resource sustainability, particularly in the coastal zone, is complicated by a variety of interdependencies and trade-offs between economic, social, and ecological variables. Although trade-offs between each of these variables are important, this paper emphasizes the social components of resource management. In this regard a distinction is made between individual and cooperative choices. Individual choices frequently are made from a shortterm, self-interested perspective, whereas cooperative choices are made from a long-term, community and resource-sustainability perspective. Typically, when presented with a spectrum of resource management decisions, individuals have a tendency to act in a self-interested manner. Thus, cooperative benefits, such as reduced conflict and improved resource certainty, are not realized. An overview of selected aspects of social dilemma theory suggests that socially cooperative choice outcomes are attainable in coastal zone management by integrating structural and behavioral solutions in resource use decision making. Three barriers to successful integration of structural and behavioral solutions are identified as self-interest, mistrust, and variable perceptions of resource amenities. Examples from coastal zone management indicate that these barriers may be overcome using approaches such as scopereduction, co-management, community education, and local participation. The paper also provides comment on the potential benefits of integrating structural and behavioral solutions in international coastal zone management efforts.

  13. Multidisciplinary design integration system for a supersonic transport aircraft

    NASA Technical Reports Server (NTRS)

    Dovi, A. R.; Wrenn, G. A.; Barthelemy, J.-F. M.; Coen, P. G.; Hall, L. E.

    1992-01-01

    An aircraft preliminary design system which provides the multidisciplinary communications and couplings between several engineering disciplines is described. A primary benefit of this system is to demonstrate advanced technology multidisciplinary design integration methodologies. The current version includes the disciplines of aerodynamics and structures. Contributing engineering disciplines are coupled using the Global Sensitivity Equation approach to influence the global design optimization problem. A high speed civil transport configuration is used for configuration trade studies. Forty four independent design variables are used to control the cross-sectional areas of wing rib and spar caps and the thicknesses of wingskincover panels. A total of 300 stress, strain, buckling and displacement behavioral constraints and minimum gages on the design variables were used to optimize the idealized wing structure. The goal of the designs to resize the wing cover panels and internal structure for minimum mass.

  14. Finite element implementation of state variable-based viscoplasticity models

    NASA Technical Reports Server (NTRS)

    Iskovitz, I.; Chang, T. Y. P.; Saleeb, A. F.

    1991-01-01

    The implementation of state variable-based viscoplasticity models is made in a general purpose finite element code for structural applications of metals deformed at elevated temperatures. Two constitutive models, Walker's and Robinson's models, are studied in conjunction with two implicit integration methods: the trapezoidal rule with Newton-Raphson iterations and an asymptotic integration algorithm. A comparison is made between the two integration methods, and the latter method appears to be computationally more appealing in terms of numerical accuracy and CPU time. However, in order to make the asymptotic algorithm robust, it is necessary to include a self adaptive scheme with subincremental step control and error checking of the Jacobian matrix at the integration points. Three examples are given to illustrate the numerical aspects of the integration methods tested.

  15. Improved finite element methodology for integrated thermal structural analysis

    NASA Technical Reports Server (NTRS)

    Dechaumphai, P.; Thornton, E. A.

    1982-01-01

    An integrated thermal-structural finite element approach for efficient coupling of thermal and structural analysis is presented. New thermal finite elements which yield exact nodal and element temperatures for one dimensional linear steady state heat transfer problems are developed. A nodeless variable formulation is used to establish improved thermal finite elements for one dimensional nonlinear transient and two dimensional linear transient heat transfer problems. The thermal finite elements provide detailed temperature distributions without using additional element nodes and permit a common discretization with lower order congruent structural finite elements. The accuracy of the integrated approach is evaluated by comparisons with analytical solutions and conventional finite element thermal structural analyses for a number of academic and more realistic problems. Results indicate that the approach provides a significant improvement in the accuracy and efficiency of thermal stress analysis for structures with complex temperature distributions.

  16. Estimating integrated variance in the presence of microstructure noise using linear regression

    NASA Astrophysics Data System (ADS)

    Holý, Vladimír

    2017-07-01

    Using financial high-frequency data for estimation of integrated variance of asset prices is beneficial but with increasing number of observations so-called microstructure noise occurs. This noise can significantly bias the realized variance estimator. We propose a method for estimation of the integrated variance robust to microstructure noise as well as for testing the presence of the noise. Our method utilizes linear regression in which realized variances estimated from different data subsamples act as dependent variable while the number of observations act as explanatory variable. We compare proposed estimator with other methods on simulated data for several microstructure noise structures.

  17. Multidisciplinary optimization of a controlled space structure using 150 design variables

    NASA Technical Reports Server (NTRS)

    James, Benjamin B.

    1992-01-01

    A general optimization-based method for the design of large space platforms through integration of the disciplines of structural dynamics and control is presented. The method uses the global sensitivity equations approach and is especially appropriate for preliminary design problems in which the structural and control analyses are tightly coupled. The method is capable of coordinating general purpose structural analysis, multivariable control, and optimization codes, and thus, can be adapted to a variety of controls-structures integrated design projects. The method is used to minimize the total weight of a space platform while maintaining a specified vibration decay rate after slewing maneuvers.

  18. Advanced reliability methods for structural evaluation

    NASA Technical Reports Server (NTRS)

    Wirsching, P. H.; Wu, Y.-T.

    1985-01-01

    Fast probability integration (FPI) methods, which can yield approximate solutions to such general structural reliability problems as the computation of the probabilities of complicated functions of random variables, are known to require one-tenth the computer time of Monte Carlo methods for a probability level of 0.001; lower probabilities yield even more dramatic differences. A strategy is presented in which a computer routine is run k times with selected perturbed values of the variables to obtain k solutions for a response variable Y. An approximating polynomial is fit to the k 'data' sets, and FPI methods are employed for this explicit form.

  19. Interaction between Tropical Atlantic Variability and El Niño-Southern Oscillation.

    NASA Astrophysics Data System (ADS)

    Saravanan, R.; Chang, Ping

    2000-07-01

    The interaction between tropical Atlantic variability and El Niño-Southern Oscillation (ENSO) is investigated using three ensembles of atmospheric general circulation model integrations. The integrations are forced by specifying observed sea surface temperature (SST) variability over a forcing domain. The forcing domain is the global ocean for the first ensemble, limited to the tropical ocean for the second ensemble, and further limited to the tropical Atlantic region for the third ensemble. The ensemble integrations show that extratropical SST anomalies have little impact on tropical variability, but the effect of ENSO is pervasive in the Tropics. Consistent with previous studies, the most significant influence of ENSO is found during the boreal spring season and is associated with an anomalous Walker circulation. Two important aspects of ENSO's influence on tropical Atlantic variability are noted. First, the ENSO signal contributes significantly to the `dipole' correlation structure between tropical Atlantic SST and rainfall in the Nordeste Brazil region. In the absence of the ENSO signal, the correlations are dominated by SST variability in the southern tropical Atlantic, resulting in less of a dipole structure. Second, the remote influence of ENSO also contributes to positive correlations between SST anomalies and downward surface heat flux in the tropical Atlantic during the boreal spring season. However, even when ENSO forcing is absent, the model integrations provide evidence for a positive surface heat flux feedback in the deep Tropics, which is analyzed in a companion study by Chang et al. The analysis of model simulations shows that interannual atmospheric variability in the tropical Pacific-Atlantic system is dominated by the interaction between two distinct sources of tropical heating: (i) an equatorial heat source in the eastern Pacific associated with ENSO and (ii) an off-equatorial heat source associated with SST anomalies near the Caribbean. Modeling this Caribbean heat source accurately could be very important for seasonal forecasting in the Central American-Caribbean region.

  20. Structural and Trajectory Control of Variable Geometry Planetary Entry Systems

    NASA Technical Reports Server (NTRS)

    Quadrelli, Marco; Kwok, Kawai; Pellegrino, Sergio

    2009-01-01

    The results presented in this paper apply to a generic vehicle entering a planetary atmosphere which makes use of a variable geometry change to modulate the heat, drag, and acceleration loads. Two structural concepts for implementing the cone angle variation, namely a segmented shell and a corrugated shell, are presented. A structural analysis of these proposed structural configuration shows that the stress levels are tolerable during entry. The analytic expressions of the longitudinal aerodynamic coefficients are also derived, and guidance laws that track reference heat flux, drag, and aerodynamic acceleration loads are also proposed. These guidance laws have been tested in an integrated simulation environment, and the results indicate that use of variable geometry is feasible to track specific profiles of dynamic load conditions during reentry.

  1. Variable Structure PID Control to Prevent Integrator Windup

    NASA Technical Reports Server (NTRS)

    Hall, C. E.; Hodel, A. S.; Hung, J. Y.

    1999-01-01

    PID controllers are frequently used to control systems requiring zero steady-state error while maintaining requirements for settling time and robustness (gain/phase margins). PID controllers suffer significant loss of performance due to short-term integrator wind-up when used in systems with actuator saturation. We examine several existing and proposed methods for the prevention of integrator wind-up in both continuous and discrete time implementations.

  2. Integration of dynamic, aerodynamic, and structural optimization of helicopter rotor blades

    NASA Technical Reports Server (NTRS)

    Peters, David A.

    1991-01-01

    Summarized here is the first six years of research into the integration of structural, dynamic, and aerodynamic considerations in the design-optimization process for rotor blades. Specifically discussed here is the application of design optimization techniques for helicopter rotor blades. The reduction of vibratory shears and moments at the blade root, aeroelastic stability of the rotor, optimum airframe design, and an efficient procedure for calculating system sensitivities with respect to the design variables used are discussed.

  3. Probabilistic structural analysis methods for improving Space Shuttle engine reliability

    NASA Technical Reports Server (NTRS)

    Boyce, L.

    1989-01-01

    Probabilistic structural analysis methods are particularly useful in the design and analysis of critical structural components and systems that operate in very severe and uncertain environments. These methods have recently found application in space propulsion systems to improve the structural reliability of Space Shuttle Main Engine (SSME) components. A computer program, NESSUS, based on a deterministic finite-element program and a method of probabilistic analysis (fast probability integration) provides probabilistic structural analysis for selected SSME components. While computationally efficient, it considers both correlated and nonnormal random variables as well as an implicit functional relationship between independent and dependent variables. The program is used to determine the response of a nickel-based superalloy SSME turbopump blade. Results include blade tip displacement statistics due to the variability in blade thickness, modulus of elasticity, Poisson's ratio or density. Modulus of elasticity significantly contributed to blade tip variability while Poisson's ratio did not. Thus, a rational method for choosing parameters to be modeled as random is provided.

  4. mvMapper: statistical and geographical data exploration and visualization of multivariate analysis of population structure

    USDA-ARS?s Scientific Manuscript database

    Characterizing population genetic structure across geographic space is a fundamental challenge in population genetics. Multivariate statistical analyses are powerful tools for summarizing genetic variability, but geographic information and accompanying metadata is not always easily integrated into t...

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Hongyi; Li, Yang; Zeng, Danielle

    Process integration and optimization is the key enabler of the Integrated Computational Materials Engineering (ICME) of carbon fiber composites. In this paper, automated workflows are developed for two types of composites: Sheet Molding Compounds (SMC) short fiber composites, and multi-layer unidirectional (UD) composites. For SMC, the proposed workflow integrates material processing simulation, microstructure representation volume element (RVE) models, material property prediction and structure preformation simulation to enable multiscale, multidisciplinary analysis and design. Processing parameters, microstructure parameters and vehicle subframe geometry parameters are defined as the design variables; the stiffness and weight of the structure are defined as the responses. Formore » multi-layer UD structure, this work focuses on the discussion of different design representation methods and their impacts on the optimization performance. Challenges in ICME process integration and optimization are also summarized and highlighted. Two case studies are conducted to demonstrate the integrated process and its application in optimization.« less

  6. Associated and Mediating Variables Related to Job Satisfaction among Professionals from Mental Health Teams.

    PubMed

    Fleury, Marie-Josée; Grenier, Guy; Bamvita, Jean-Marie; Chiocchio, François

    2018-06-01

    Using a structural analysis, this study examines the relationship between job satisfaction among 315 mental health professionals from the province of Quebec (Canada) and a wide range of variables related to provider characteristics, team characteristics, processes, and emergent states, and organizational culture. We used the Job Satisfaction Survey to assess job satisfaction. Our conceptual framework integrated numerous independent variables adapted from the input-mediator-output-input (IMOI) model and the Integrated Team Effectiveness Model (ITEM). The structural equation model predicted 47% of the variance of job satisfaction. Job satisfaction was associated with eight variables: strong team support, participation in the decision-making process, closer collaboration, fewer conflicts among team members, modest knowledge production (team processes), firm affective commitment, multifocal identification (emergent states) and belonging to the nursing profession (provider characteristics). Team climate had an impact on six job satisfaction variables (team support, knowledge production, conflicts, affective commitment, collaboration, and multifocal identification). Results show that team processes and emergent states were mediators between job satisfaction and team climate. To increase job satisfaction among professionals, health managers need to pursue strategies that foster a positive climate within mental health teams.

  7. Proposal of a socio-cognitive-behavioral structural equation model of internalized stigma in people with severe and persistent mental illness.

    PubMed

    Muñoz, Manuel; Sanz, María; Pérez-Santos, Eloísa; Quiroga, María de Los Ángeles

    2011-04-30

    The social stigma of mental illness has received much attention in recent years and its effects on diverse variables such as psychiatric symptoms, social functioning, self-esteem, self-efficacy, quality of life, and social integration are well established. However, internalized stigma in people with severe and persistent mental illness has not received the same attention. The aim of the present work was to study the relationships between the principal variables involved in the functioning of internalized stigma (sociodemographic and clinical variables, social stigma, psychosocial functioning, recovery expectations, empowerment, and discrimination experiences) in a sample of people with severe and persistent mental illness (N=108). The main characteristics of the sample and the differences between groups with high and low internalized stigma were analyzed, a correlation analysis of the variables was performed, and a structural equation model, integrating variables of social, cognitive, and behavioral content, was proposed and tested. The results indicate the relationships among social stigma, discrimination experiences, recovery expectation, and internalized stigma and their role in the psychosocial and behavioral outcomes in schizophrenia spectrum disorders. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  8. Variability of the Structural Coloration in Two Butterfly Species with Different Prezygotic Mating Strategies

    PubMed Central

    Kertész, Krisztián; Bálint, Zsolt; Biró, László Péter

    2016-01-01

    Structural coloration variability was investigated in two Blue butterfly species that are common in Hungary. The males of Polyommatus icarus (Common Blue) and Plebejus argus (Silver-studded Blue) use their blue wing coloration for conspecific recognition. Despite living in the same type of habitat, these two species display differences in prezygotic mating strategy: the males of P. icarus are patrolling, while P. argus males have sedentary behavior. Therefore, the species-specific photonic nanoarchitecture, which is the source of the structural coloration, may have been subjected to different evolutionary effects. Despite the increasing interest in photonic nanoarchitectures of biological origin, there is a lack of studies focused on the biological variability of structural coloration that examine a statistically relevant number of individuals from the same species. To investigate possible structural color variation within the same species in populations separated by large geographical distances, climatic differences, or applied experimental conditions, one has to be able to compare these variations to the normal biological variability within a single population. The structural coloration of the four wings of 25 male individuals (100 samples for each species) was measured and compared using different light-collecting setups: perpendicular and with an integrating sphere. Significant differences were found in the near UV wavelength region that are perceptible by these polyommatine butterflies but are invisible to human observers. The differences are attributed to the differences in the photonic nanoarchitecture in the scales of these butterflies. Differences in the intensity of structural coloration were also observed and were tentatively attributed to the different prezygotic mating strategies of these insects. Despite the optical complexity of the scale covered butterfly wings, for sufficiently large sample batches, the averaged normal incidence measurements and the averaged measurements using an integrating sphere are in agreement. PMID:27832120

  9. Variability of the Structural Coloration in Two Butterfly Species with Different Prezygotic Mating Strategies.

    PubMed

    Piszter, Gábor; Kertész, Krisztián; Bálint, Zsolt; Biró, László Péter

    2016-01-01

    Structural coloration variability was investigated in two Blue butterfly species that are common in Hungary. The males of Polyommatus icarus (Common Blue) and Plebejus argus (Silver-studded Blue) use their blue wing coloration for conspecific recognition. Despite living in the same type of habitat, these two species display differences in prezygotic mating strategy: the males of P. icarus are patrolling, while P. argus males have sedentary behavior. Therefore, the species-specific photonic nanoarchitecture, which is the source of the structural coloration, may have been subjected to different evolutionary effects. Despite the increasing interest in photonic nanoarchitectures of biological origin, there is a lack of studies focused on the biological variability of structural coloration that examine a statistically relevant number of individuals from the same species. To investigate possible structural color variation within the same species in populations separated by large geographical distances, climatic differences, or applied experimental conditions, one has to be able to compare these variations to the normal biological variability within a single population. The structural coloration of the four wings of 25 male individuals (100 samples for each species) was measured and compared using different light-collecting setups: perpendicular and with an integrating sphere. Significant differences were found in the near UV wavelength region that are perceptible by these polyommatine butterflies but are invisible to human observers. The differences are attributed to the differences in the photonic nanoarchitecture in the scales of these butterflies. Differences in the intensity of structural coloration were also observed and were tentatively attributed to the different prezygotic mating strategies of these insects. Despite the optical complexity of the scale covered butterfly wings, for sufficiently large sample batches, the averaged normal incidence measurements and the averaged measurements using an integrating sphere are in agreement.

  10. Relations between mental health team characteristics and work role performance.

    PubMed

    Fleury, Marie-Josée; Grenier, Guy; Bamvita, Jean-Marie; Farand, Lambert

    2017-01-01

    Effective mental health care requires a high performing, interprofessional team. Among 79 mental health teams in Quebec (Canada), this exploratory study aims to 1) determine the association between work role performance and a wide range of variables related to team effectiveness according to the literature, and to 2) using structural equation modelling, assess the covariance between each of these variables as well as the correlation with other exogenous variables. Work role performance was measured with an adapted version of a work role questionnaire. Various independent variables including team manager characteristics, user characteristics, team profiles, clinical activities, organizational culture, network integration strategies and frequency/satisfaction of interactions with other teams or services were analyzed under the structural equation model. The later provided a good fit with the data. Frequent use of standardized procedures and evaluation tools (e.g. screening and assessment tools for mental health disorders) and team manager seniority exerted the most direct effect on work role performance. While network integration strategies had little effect on work role performance, there was a high covariance between this variable and those directly affecting work role performance among mental health teams. The results suggest that the mental healthcare system should apply standardized procedures and evaluation tools and, to a lesser extent, clinical approaches to improve work role performance in mental health teams. Overall, a more systematic implementation of network integration strategies may contribute to improved work role performance in mental health care.

  11. Relations between mental health team characteristics and work role performance

    PubMed Central

    Grenier, Guy; Bamvita, Jean-Marie; Farand, Lambert

    2017-01-01

    Effective mental health care requires a high performing, interprofessional team. Among 79 mental health teams in Quebec (Canada), this exploratory study aims to 1) determine the association between work role performance and a wide range of variables related to team effectiveness according to the literature, and to 2) using structural equation modelling, assess the covariance between each of these variables as well as the correlation with other exogenous variables. Work role performance was measured with an adapted version of a work role questionnaire. Various independent variables including team manager characteristics, user characteristics, team profiles, clinical activities, organizational culture, network integration strategies and frequency/satisfaction of interactions with other teams or services were analyzed under the structural equation model. The later provided a good fit with the data. Frequent use of standardized procedures and evaluation tools (e.g. screening and assessment tools for mental health disorders) and team manager seniority exerted the most direct effect on work role performance. While network integration strategies had little effect on work role performance, there was a high covariance between this variable and those directly affecting work role performance among mental health teams. The results suggest that the mental healthcare system should apply standardized procedures and evaluation tools and, to a lesser extent, clinical approaches to improve work role performance in mental health teams. Overall, a more systematic implementation of network integration strategies may contribute to improved work role performance in mental health care. PMID:28991923

  12. Differential Social Integration among First Generation Greeks in New York: Participation in Religious Institutions.

    ERIC Educational Resources Information Center

    Veglery, Anna

    1988-01-01

    Studies the relationship of educational level and knowledge of English on the differential integration of 71 post-1965 Greek immigrants into the religious structure of the Greek community of New York, New York. Tentatively concludes that socioeconomic status may play a larger role than the variables explored. (FMW)

  13. Delineating ecological regions in marine systems: Integrating physical structure and community composition to inform spatial management in the eastern Bering Sea

    NASA Astrophysics Data System (ADS)

    Baker, Matthew R.; Hollowed, Anne B.

    2014-11-01

    Characterizing spatial structure and delineating meaningful spatial boundaries have useful applications to understanding regional dynamics in marine systems, and are integral to ecosystem approaches to fisheries management. Physical structure and drivers combine with biological responses and interactions to organize marine systems in unique ways at multiple scales. We apply multivariate statistical methods to define spatially coherent ecological units or ecoregions in the eastern Bering Sea. We also illustrate a practical approach to integrate data on species distribution, habitat structure and physical forcing mechanisms to distinguish areas with distinct biogeography as one means to define management units in large marine ecosystems. We use random forests to quantify the relative importance of habitat and environmental variables to the distribution of individual species, and to quantify shifts in multispecies assemblages or community composition along environmental gradients. Threshold shifts in community composition are used to identify regions with distinct physical and biological attributes, and to evaluate the relative importance of predictor variables to determining regional boundaries. Depth, bottom temperature and frontal boundaries were dominant factors delineating distinct biological communities in this system, with a latitudinal divide at approximately 60°N. Our results indicate that distinct climatic periods will shift habitat gradients and that dynamic physical variables such as temperature and stratification are important to understanding temporal stability of ecoregion boundaries. We note distinct distribution patterns among functional guilds and also evidence for resource partitioning among individual species within each guild. By integrating physical and biological data to determine spatial patterns in community composition, we partition ecosystems along ecologically significant gradients. This may provide a basis for defining spatial management units or serve as a baseline index for analyses of structural shifts in the physical environment, species abundance and distribution, and community dynamics over time.

  14. A programing system for research and applications in structural optimization

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, J.; Rogers, J. L., Jr.

    1981-01-01

    The flexibility necessary for such diverse utilizations is achieved by combining, in a modular manner, a state-of-the-art optimization program, a production level structural analysis program, and user supplied and problem dependent interface programs. Standard utility capabilities in modern computer operating systems are used to integrate these programs. This approach results in flexibility of the optimization procedure organization and versatility in the formulation of constraints and design variables. Features shown in numerical examples include: variability of structural layout and overall shape geometry, static strength and stiffness constraints, local buckling failure, and vibration constraints.

  15. Process Integration and Optimization of ICME Carbon Fiber Composites for Vehicle Lightweighting: A Preliminary Development

    DOE PAGES

    Xu, Hongyi; Li, Yang; Zeng, Danielle

    2017-01-02

    Process integration and optimization is the key enabler of the Integrated Computational Materials Engineering (ICME) of carbon fiber composites. In this paper, automated workflows are developed for two types of composites: Sheet Molding Compounds (SMC) short fiber composites, and multi-layer unidirectional (UD) composites. For SMC, the proposed workflow integrates material processing simulation, microstructure representation volume element (RVE) models, material property prediction and structure preformation simulation to enable multiscale, multidisciplinary analysis and design. Processing parameters, microstructure parameters and vehicle subframe geometry parameters are defined as the design variables; the stiffness and weight of the structure are defined as the responses. Formore » multi-layer UD structure, this work focuses on the discussion of different design representation methods and their impacts on the optimization performance. Challenges in ICME process integration and optimization are also summarized and highlighted. Two case studies are conducted to demonstrate the integrated process and its application in optimization.« less

  16. Organizational Structure as a Determinant of Job Burnout.

    PubMed

    Bilal, Atif; Ahmed, Hafiz Mushtaq

    2017-03-01

    This exploratory study determined the impact of organizational structure, particularly participation in decision making, instrumental communication, formalization, integration, and promotional opportunity, on burnout among Pakistani pediatric nurses. Data were collected from pediatric nurses working for Punjab's largest state-run hospital. The findings revealed that participation in decision making, instrumental communication, and promotional opportunity prevented burnout. Formalization contributed to burnout but integration was not related to burnout. Quite interestingly, except for supervisory status, most control variables for this study were not significantly related to emotional burnout. Hence, the hypothesis that organizational structure is a determinant of job burnout was accepted.

  17. Wind turbine power tracking using an improved multimodel quadratic approach.

    PubMed

    Khezami, Nadhira; Benhadj Braiek, Naceur; Guillaud, Xavier

    2010-07-01

    In this paper, an improved multimodel optimal quadratic control structure for variable speed, pitch regulated wind turbines (operating at high wind speeds) is proposed in order to integrate high levels of wind power to actively provide a primary reserve for frequency control. On the basis of the nonlinear model of the studied plant, and taking into account the wind speed fluctuations, and the electrical power variation, a multimodel linear description is derived for the wind turbine, and is used for the synthesis of an optimal control law involving a state feedback, an integral action and an output reference model. This new control structure allows a rapid transition of the wind turbine generated power between different desired set values. This electrical power tracking is ensured with a high-performance behavior for all other state variables: turbine and generator rotational speeds and mechanical shaft torque; and smooth and adequate evolution of the control variables. 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Integrated Control Using the SOFFT Control Structure

    NASA Technical Reports Server (NTRS)

    Halyo, Nesim

    1996-01-01

    The need for integrated/constrained control systems has become clearer as advanced aircraft introduced new coupled subsystems such as new propulsion subsystems with thrust vectoring and new aerodynamic designs. In this study, we develop an integrated control design methodology which accomodates constraints among subsystem variables while using the Stochastic Optimal Feedforward/Feedback Control Technique (SOFFT) thus maintaining all the advantages of the SOFFT approach. The Integrated SOFFT Control methodology uses a centralized feedforward control and a constrained feedback control law. The control thus takes advantage of the known coupling among the subsystems while maintaining the identity of subsystems for validation purposes and the simplicity of the feedback law to understand the system response in complicated nonlinear scenarios. The Variable-Gain Output Feedback Control methodology (including constant gain output feedback) is extended to accommodate equality constraints. A gain computation algorithm is developed. The designer can set the cross-gains between two variables or subsystems to zero or another value and optimize the remaining gains subject to the constraint. An integrated control law is designed for a modified F-15 SMTD aircraft model with coupled airframe and propulsion subsystems using the Integrated SOFFT Control methodology to produce a set of desired flying qualities.

  19. Probabilistic Simulation of Multi-Scale Composite Behavior

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    2012-01-01

    A methodology is developed to computationally assess the non-deterministic composite response at all composite scales (from micro to structural) due to the uncertainties in the constituent (fiber and matrix) properties, in the fabrication process and in structural variables (primitive variables). The methodology is computationally efficient for simulating the probability distributions of composite behavior, such as material properties, laminate and structural responses. Bi-products of the methodology are probabilistic sensitivities of the composite primitive variables. The methodology has been implemented into the computer codes PICAN (Probabilistic Integrated Composite ANalyzer) and IPACS (Integrated Probabilistic Assessment of Composite Structures). The accuracy and efficiency of this methodology are demonstrated by simulating the uncertainties in composite typical laminates and comparing the results with the Monte Carlo simulation method. Available experimental data of composite laminate behavior at all scales fall within the scatters predicted by PICAN. Multi-scaling is extended to simulate probabilistic thermo-mechanical fatigue and to simulate the probabilistic design of a composite redome in order to illustrate its versatility. Results show that probabilistic fatigue can be simulated for different temperature amplitudes and for different cyclic stress magnitudes. Results also show that laminate configurations can be selected to increase the redome reliability by several orders of magnitude without increasing the laminate thickness--a unique feature of structural composites. The old reference denotes that nothing fundamental has been done since that time.

  20. Structure-function covariation with nonfeeding ecological variables influences evolution of feeding specialization in Carnivora

    PubMed Central

    Tseng, Z. Jack; Flynn, John J.

    2018-01-01

    Skull shape convergence is pervasive among vertebrates. Although this is frequently inferred to indicate similar functional underpinnings, neither the specific structure-function linkages nor the selective environments in which the supposed functional adaptations arose are commonly identified and tested. We demonstrate that nonfeeding factors relating to sexual maturity and precipitation-related arboreality also can generate structure-function relationships in the skulls of carnivorans (dogs, cats, seals, and relatives) through covariation with masticatory performance. We estimated measures of masticatory performance related to ecological variables that covary with cranial shape in the mammalian order Carnivora, integrating geometric morphometrics and finite element analyses. Even after accounting for phylogenetic autocorrelation, cranial shapes are significantly correlated to both feeding and nonfeeding ecological variables, and covariation with both variable types generated significant masticatory performance gradients. This suggests that mechanisms of obligate shape covariation with nonfeeding variables can produce performance changes resembling those arising from feeding adaptations in Carnivora. PMID:29441363

  1. The Effect of Feedback Delay and Feedback Type on Perceptual Category Learning: The Limits of Multiple Systems

    ERIC Educational Resources Information Center

    Dunn, John C.; Newell, Ben R.; Kalish, Michael L.

    2012-01-01

    Evidence that learning rule-based (RB) and information-integration (II) category structures can be dissociated across different experimental variables has been used to support the view that such learning is supported by multiple learning systems. Across 4 experiments, we examined the effects of 2 variables, the delay between response and feedback…

  2. Probabilistic-Based Modeling and Simulation Assessment

    DTIC Science & Technology

    2010-06-01

    developed to determine the relative importance of structural components of the vehicle under differnet crash and blast scenarios. With the integration of...the vehicle under different crash and blast scenarios. With the integration of the high fidelity neck and head model, a methodology to calculate the...parameter variability, correlation, and multiple (often competing) failure metrics. Important scenarios include vehicular collisions, blast /fragment

  3. Multifunctional Material Systems for Reconfigurable Antennas in Superconfigurable Structures

    DTIC Science & Technology

    2016-01-05

    reconFig.d states of the antenna. A polarization-reconfigurable substrate-integrated waveguide ( SIW ) cavity-resonator slot antenna has also been...the automation and control. Fig. 36 Polarization-reconfigurable substrate-integrated waveguide ( SIW ) cavity-resonator slot antenna with a...22, 3833–3839, 2012. [3] Analysis of a Variable SIW Resonator Enabled by Dielectric Material Perturbations and Applications, Barrera, J.D. ; Huff

  4. Structural Covariance of the Prefrontal-Amygdala Pathways Associated with Heart Rate Variability.

    PubMed

    Wei, Luqing; Chen, Hong; Wu, Guo-Rong

    2018-01-01

    The neurovisceral integration model has shown a key role of the amygdala in neural circuits underlying heart rate variability (HRV) modulation, and suggested that reciprocal connections from amygdala to brain regions centered on the central autonomic network (CAN) are associated with HRV. To provide neuroanatomical evidence for these theoretical perspectives, the current study used covariance analysis of MRI-based gray matter volume (GMV) to map structural covariance network of the amygdala, and then determined whether the interregional structural correlations related to individual differences in HRV. The results showed that covariance patterns of the amygdala encompassed large portions of cortical (e.g., prefrontal, cingulate, and insula) and subcortical (e.g., striatum, hippocampus, and midbrain) regions, lending evidence from structural covariance analysis to the notion that the amygdala was a pivotal node in neural pathways for HRV modulation. Importantly, participants with higher resting HRV showed increased covariance of amygdala to dorsal medial prefrontal cortex and anterior cingulate cortex (dmPFC/dACC) extending into adjacent medial motor regions [i.e., pre-supplementary motor area (pre-SMA)/SMA], demonstrating structural covariance of the prefrontal-amygdala pathways implicated in HRV, and also implying that resting HRV may reflect the function of neural circuits underlying cognitive regulation of emotion as well as facilitation of adaptive behaviors to emotion. Our results, thus, provide anatomical substrates for the neurovisceral integration model that resting HRV may index an integrative neural network which effectively organizes emotional, cognitive, physiological and behavioral responses in the service of goal-directed behavior and adaptability.

  5. A Structural Examination of Academic Integration, Perceived Stress, Academic Performance, and Goal Commitment from an Elaborated Model of Adult Student Persistence.

    ERIC Educational Resources Information Center

    Sandler, Martin E.

    The effects of selected variables on the academic persistence of adult students were examined in a study of a random sample of 469 adult students aged 24 years or older enrolled in a four-year college. The survey questionnaire, the Adult Student Experiences Survey, collected data regarding 12 endogenous variables and 13 exogenous variables…

  6. Integrative Lifecourse and Genetic Analysis of Military Working Dogs

    DTIC Science & Technology

    2015-12-01

    done as the samples are collected in order to avoid experimental variability and batch effects . Detailed description and discussion of this task...associated loss of power to detect all associations but those of large effect sizes) and latent variables (e.g., population structure – addressed in...processes associated with tissue development and maintenance are thus grouped with external environmental effects . This in turn suggests how those

  7. A recurrence matrix method for the analysis of longitudinal and torsional vibrations in non-uniform multibranch beams with variable boundary conditions

    NASA Technical Reports Server (NTRS)

    Davis, R. B.; Stephens, M. V.

    1974-01-01

    An approximate method for calculating the longitudinal and torsional natural frequencies and associated modal data of a beamlike, variable cross section multibranch structure is presented. The procedure described is the numerical integration of the first order differential equations that characterize the beam element in longitudinal motion and that satisfy the appropriate boundary conditions.

  8. Primary Care and Public Health Services Integration in Brazil’s Unified Health System

    PubMed Central

    Wall, Melanie; Yu, Gary; Penido, Cláudia; Schmidt, Clecy

    2012-01-01

    Objectives. We examined associations between transdisciplinary collaboration, evidence-based practice, and primary care and public health services integration in Brazil’s Family Health Strategy. We aimed to identify practices that facilitate service integration and evidence-based practice. Methods. We collected cross-sectional data from community health workers, nurses, and physicians (n = 262). We used structural equation modeling to assess providers’ service integration and evidence-based practice engagement operationalized as latent factors. Predictors included endorsement of team meetings, access to and consultations with colleagues, familiarity with community, and previous research experience. Results. Providers’ familiarity with community and team meetings positively influenced evidence-based practice engagement and service integration. More experienced providers reported more integration and engagement. Physicians reported less integration than did community health workers. Black providers reported less evidence-based practice engagement than did Pardo (mixed races) providers. After accounting for all variables, evidence-based practice engagement and service integration were moderately correlated. Conclusions. Age and race of providers, transdisciplinary collaboration, and familiarity with the community are significant variables that should inform design and implementation of provider training. Promising practices that facilitate service integration in Brazil may be used in other countries. PMID:22994254

  9. Variable stiffness mechanisms with SMA actuators

    NASA Astrophysics Data System (ADS)

    Siler, Damin J.; Demoret, Kimberly B. J.

    1996-05-01

    Variable stiffness is a new branch of smart structures development with several applications related to aircraft. Previous research indicates that temporarily reducing the stiffness of an airplane wing can decrease control actuator sizing and improve aeroelastic roll performance. Some smart materials like shape memory alloys (SMA) can change their material stiffness properties, but they tend to gain stiffness in their `power on' state. An alternative is to integrate mechanisms into a structure and change stiffness by altering boundary conditions and structural load paths. An innovative concept for an axial strut mechanism was discovered as part of research into variable stiffness. It employs SMA springs (specifically Ni-Ti) in a way that reduces overall stiffness when the SMA springs gain stiffness. A simplified mathematical model for static analysis was developed, and a 70% reduction in stiffness was obtained for a particular selection of springs. The small force capacity of commercially available SMA springs limits the practicality of this concept for large load applications. However, smart material technology is still immature, and future advances may permit development of a heavy-duty, variable stiffness strut that is small and light enough for use in aircraft structures.

  10. Revisiting the TALE repeat.

    PubMed

    Deng, Dong; Yan, Chuangye; Wu, Jianping; Pan, Xiaojing; Yan, Nieng

    2014-04-01

    Transcription activator-like (TAL) effectors specifically bind to double stranded (ds) DNA through a central domain of tandem repeats. Each TAL effector (TALE) repeat comprises 33-35 amino acids and recognizes one specific DNA base through a highly variable residue at a fixed position in the repeat. Structural studies have revealed the molecular basis of DNA recognition by TALE repeats. Examination of the overall structure reveals that the basic building block of TALE protein, namely a helical hairpin, is one-helix shifted from the previously defined TALE motif. Here we wish to suggest a structure-based re-demarcation of the TALE repeat which starts with the residues that bind to the DNA backbone phosphate and concludes with the base-recognition hyper-variable residue. This new numbering system is consistent with the α-solenoid superfamily to which TALE belongs, and reflects the structural integrity of TAL effectors. In addition, it confers integral number of TALE repeats that matches the number of bound DNA bases. We then present fifteen crystal structures of engineered dHax3 variants in complex with target DNA molecules, which elucidate the structural basis for the recognition of bases adenine (A) and guanine (G) by reported or uncharacterized TALE codes. Finally, we analyzed the sequence-structure correlation of the amino acid residues within a TALE repeat. The structural analyses reported here may advance the mechanistic understanding of TALE proteins and facilitate the design of TALEN with improved affinity and specificity.

  11. Diagnosis of extratropical variability in seasonal integrations of the ECMWF model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferranti, L.; Molteni, F.; Brankovic, C.

    1994-06-01

    Properties of the general circulation simulated by the ECMWF model are discussed using a set of seasonal integrations at T63 resolution. For each season, over the period of 5 years, 1986-1990, three integrations initiated on consecutive days were run with prescribed observed sea surface temperature (SST). This paper presents a series of diagnostics of extratropical variability in the model, with particular emphasis on the northern winter. Time-filtered maps of variability indicate that in this season there is insufficient storm track activity penetrating into the Eurasian continent. Related to this the maximum of lower-frequency variability for northern spring are more realistic.more » Blocking is defined objectively in terms of the geostrophic wind at 500 mb. Consistent with the low-frequency transience, in the Euro-Atlantic sector the position of maximum blocking in the model is displaced eastward. The composite structure of blocks over the Pacific is realistic, though their frequency is severely underestimated at all times of year. Shortcomings in the simulated wintertime general circulation were also revealed by studying the projection of 5-day mean fields onto empirical orthogonal functions (EOFs) of the observed flow. The largest differences were apparent for statistics of EOFs of the zonal mean flow. Analysis of weather regime activity, defined from the EOFs, suggested that regimes with positive PNA index were overpopulated, while the negative PNA regimes were underpopulated. A further comparison between observed and modeled low-frequency variance revealed that underestimation of low-frequency variability occurs along the same axes that explain most of the spatial structure of the error in the mean field, suggesting a common dynamical origin for these two aspects of the systematic error. 17 refs., 17 figs., 4 tabs.« less

  12. The social neuroscience and the theory of integrative levels.

    PubMed

    Bello-Morales, Raquel; Delgado-García, José María

    2015-01-01

    The theory of integrative levels provides a general description of the evolution of matter through successive orders of complexity and integration. Along its development, material forms pass through different levels of organization, such as physical, chemical, biological or sociological. The appearance of novel structures and dynamics during this process of development of matter in complex systems has been called emergence. Social neuroscience (SN), an interdisciplinary field that aims to investigate the biological mechanisms that underlie social structures, processes, and behavior and the influences between social and biological levels of organization, has affirmed the necessity for including social context as an essential element to understand the human behavior. To do this, SN proposes a multilevel integrative approach by means of three principles: multiple determinism, nonadditive determinism and reciprocal determinism. These theoretical principles seem to share the basic tenets of the theory of integrative levels but, in this paper, we aim to reveal the differences among both doctrines. First, SN asserts that combination of neural and social variables can produce emergent phenomena that would not be predictable from a neuroscientific or social psychological analysis alone; SN also suggests that to achieve a complete understanding of social structures we should use an integrative analysis that encompasses levels of organization ranging from the genetic level to the social one; finally, SN establishes that there can be mutual influences between biological and social factors in determining behavior, accepting, therefore, a double influence, upward from biology to social level, and downward, from social level to biology. In contrast, following the theory of integrative levels, emergent phenomena are not produced by the combination of variables from two levels, but by the increment of complexity at one level. In addition, the social behavior and structures might be contemplated not as the result of mixing or summing social and biological influences, but as emergent phenomena that should be described with its own laws. Finally, following the integrative levels view, influences upward, from biology to social level, and downward, from social level to biology, might not be equivalent, since the bottom-up processes are emergent and the downward causation (DC) is not.

  13. The social neuroscience and the theory of integrative levels

    PubMed Central

    Bello-Morales, Raquel; Delgado-García, José María

    2015-01-01

    The theory of integrative levels provides a general description of the evolution of matter through successive orders of complexity and integration. Along its development, material forms pass through different levels of organization, such as physical, chemical, biological or sociological. The appearance of novel structures and dynamics during this process of development of matter in complex systems has been called emergence. Social neuroscience (SN), an interdisciplinary field that aims to investigate the biological mechanisms that underlie social structures, processes, and behavior and the influences between social and biological levels of organization, has affirmed the necessity for including social context as an essential element to understand the human behavior. To do this, SN proposes a multilevel integrative approach by means of three principles: multiple determinism, nonadditive determinism and reciprocal determinism. These theoretical principles seem to share the basic tenets of the theory of integrative levels but, in this paper, we aim to reveal the differences among both doctrines. First, SN asserts that combination of neural and social variables can produce emergent phenomena that would not be predictable from a neuroscientific or social psychological analysis alone; SN also suggests that to achieve a complete understanding of social structures we should use an integrative analysis that encompasses levels of organization ranging from the genetic level to the social one; finally, SN establishes that there can be mutual influences between biological and social factors in determining behavior, accepting, therefore, a double influence, upward from biology to social level, and downward, from social level to biology. In contrast, following the theory of integrative levels, emergent phenomena are not produced by the combination of variables from two levels, but by the increment of complexity at one level. In addition, the social behavior and structures might be contemplated not as the result of mixing or summing social and biological influences, but as emergent phenomena that should be described with its own laws. Finally, following the integrative levels view, influences upward, from biology to social level, and downward, from social level to biology, might not be equivalent, since the bottom-up processes are emergent and the downward causation (DC) is not. PMID:26578909

  14. Effects of landscape change on fish assemblage structure in a rapidly growing metropolitan area in North Carolina, USA

    USGS Publications Warehouse

    Kennen, J.G.; Chang, M.; Tracy, B.H.

    2005-01-01

    We evaluated a comprehensive set of natural and land-use attributes that represent the major facets of urban development at fish monitoring sites in the rapidly growing Raleigh-Durham, North Carolina metropolitan area. We used principal component and correlation analysis to obtain a nonredundant subset of variables that extracted most variation in the complete set. With this subset of variables, we assessed the effect of urban growth on fish assemblage structure. We evaluated variation in fish assemblage structure with nonmetric multidimensional scaling (NMDS). We used correlation analysis to identify the most important environmental and landscape variables associated with significant NMDS axes. The second NMDS axis is related to many indices of land-use/land-cover change and habitat. Significant correlations with proportion of largest forest patch to total patch size (r = -0.460, P < 0.01), diversity of patch types (r = 0.554, P < 0.001), and population density (r = 0.385, P < 0.05) helped identify NMDS axis 2 as a disturbance gradient. Positive and negative correlations between the abundance of redbreast sunfish Lepomis auritus and bluehead chub Nocomis leptocephalus, respectively, and NMDS axis 2 also were evident. The North Carolina index of biotic integrity and many of its component metrics were highly correlated with urbanization. These results indicate that aquatic ecosystem integrity would be optimized by a comprehensive integrated management strategy that includes the preservation of landscape function by maximizing the conservation of contiguous tracts of forested lands and vegetative cover in watersheds. ?? 2005 by the American Fisheries Society.

  15. Slice regular functions of several Clifford variables

    NASA Astrophysics Data System (ADS)

    Ghiloni, R.; Perotti, A.

    2012-11-01

    We introduce a class of slice regular functions of several Clifford variables. Our approach to the definition of slice functions is based on the concept of stem functions of several variables and on the introduction on real Clifford algebras of a family of commuting complex structures. The class of slice regular functions include, in particular, the family of (ordered) polynomials in several Clifford variables. We prove some basic properties of slice and slice regular functions and give examples to illustrate this function theory. In particular, we give integral representation formulas for slice regular functions and a Hartogs type extension result.

  16. Variable Permanent Magnet Quadrupole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mihara, T.; Iwashita, Y.; /Kyoto U.

    A permanent magnet quadrupole (PMQ) is one of the candidates for the final focus lens in a linear collider. An over 120 T/m strong variable permanent magnet quadrupole is achieved by the introduction of saturated iron and a 'double ring structure'. A fabricated PMQ achieved 24 T integrated gradient with 20 mm bore diameter, 100 mm magnet diameter and 20 cm pole length. The strength of the PMQ is adjustable in 1.4 T steps, due to its 'double ring structure': the PMQ is split into two nested rings; the outer ring is sliced along the beam line into four partsmore » and is rotated to change the strength. This paper describes the variable PMQ from fabrication to recent adjustments.« less

  17. A Time Integration Algorithm Based on the State Transition Matrix for Structures with Time Varying and Nonlinear Properties

    NASA Technical Reports Server (NTRS)

    Bartels, Robert E.

    2003-01-01

    A variable order method of integrating the structural dynamics equations that is based on the state transition matrix has been developed. The method has been evaluated for linear time variant and nonlinear systems of equations. When the time variation of the system can be modeled exactly by a polynomial it produces nearly exact solutions for a wide range of time step sizes. Solutions of a model nonlinear dynamic response exhibiting chaotic behavior have been computed. Accuracy of the method has been demonstrated by comparison with solutions obtained by established methods.

  18. Nondestructive methods for the structural evaluation of wood floor systems in historic buildings : preliminary results : [abstract

    Treesearch

    Zhiyong Cai; Michael O. Hunt; Robert J. Ross; Lawrence A. Soltis

    1999-01-01

    To date, there is no standard method for evaluating the structural integrity of wood floor systems using nondestructive techniques. Current methods of examination and assessment are often subjective and therefore tend to yield imprecise or variable results. For this reason, estimates of allowable wood floor loads are often conservative. The assignment of conservatively...

  19. Electrostatic adhesion for added functionality of composite structures

    NASA Astrophysics Data System (ADS)

    Heath, Callum J. C.; Bond, Ian P.; Potter, Kevin D.

    2016-02-01

    Electrostatic adhesion can be used as a means of reversible attachment. The incorporation of electrostatic adhesion into fibre reinforced polymer (FRP) composite structures could provide significant value added functionality. Imparting large potential differences (˜2 kV) across electrodes generates an attractive force, thus providing a means of attachment. This could be used as a reversible latching mechanism or as a means of controllable internal connectivity. Varying the connectivity for discrete elements of a substructure of a given design allows for control of internal load paths and moment of area of the cross section. This could facilitate variable stiffness (both in bending and torsion). Using a combination of existing fabrication techniques, functional electrodes have been integrated within a FRP. Copper polyimide thin film laminate material has been both co-cured with carbon fibre reinforced epoxy and bonded to PVC closed cell foam core material to provide a range of structural configurations with integrated electrodes. The ability of such integrated devices to confer variations in global bending stiffness of basic beam structures is investigated. Through the application of 4 kV across integrated electrostatic adhesive devices, a 112% increase in flexural stiffness has been demonstrated for a composite sandwich structure.

  20. The three-dimensional genome organization of Drosophila melanogaster through data integration.

    PubMed

    Li, Qingjiao; Tjong, Harianto; Li, Xiao; Gong, Ke; Zhou, Xianghong Jasmine; Chiolo, Irene; Alber, Frank

    2017-07-31

    Genome structures are dynamic and non-randomly organized in the nucleus of higher eukaryotes. To maximize the accuracy and coverage of three-dimensional genome structural models, it is important to integrate all available sources of experimental information about a genome's organization. It remains a major challenge to integrate such data from various complementary experimental methods. Here, we present an approach for data integration to determine a population of complete three-dimensional genome structures that are statistically consistent with data from both genome-wide chromosome conformation capture (Hi-C) and lamina-DamID experiments. Our structures resolve the genome at the resolution of topological domains, and reproduce simultaneously both sets of experimental data. Importantly, this data deconvolution framework allows for structural heterogeneity between cells, and hence accounts for the expected plasticity of genome structures. As a case study we choose Drosophila melanogaster embryonic cells, for which both data types are available. Our three-dimensional genome structures have strong predictive power for structural features not directly visible in the initial data sets, and reproduce experimental hallmarks of the D. melanogaster genome organization from independent and our own imaging experiments. Also they reveal a number of new insights about genome organization and its functional relevance, including the preferred locations of heterochromatic satellites of different chromosomes, and observations about homologous pairing that cannot be directly observed in the original Hi-C or lamina-DamID data. Our approach allows systematic integration of Hi-C and lamina-DamID data for complete three-dimensional genome structure calculation, while also explicitly considering genome structural variability.

  1. Probability techniques for reliability analysis of composite materials

    NASA Technical Reports Server (NTRS)

    Wetherhold, Robert C.; Ucci, Anthony M.

    1994-01-01

    Traditional design approaches for composite materials have employed deterministic criteria for failure analysis. New approaches are required to predict the reliability of composite structures since strengths and stresses may be random variables. This report will examine and compare methods used to evaluate the reliability of composite laminae. The two types of methods that will be evaluated are fast probability integration (FPI) methods and Monte Carlo methods. In these methods, reliability is formulated as the probability that an explicit function of random variables is less than a given constant. Using failure criteria developed for composite materials, a function of design variables can be generated which defines a 'failure surface' in probability space. A number of methods are available to evaluate the integration over the probability space bounded by this surface; this integration delivers the required reliability. The methods which will be evaluated are: the first order, second moment FPI methods; second order, second moment FPI methods; the simple Monte Carlo; and an advanced Monte Carlo technique which utilizes importance sampling. The methods are compared for accuracy, efficiency, and for the conservativism of the reliability estimation. The methodology involved in determining the sensitivity of the reliability estimate to the design variables (strength distributions) and importance factors is also presented.

  2. EPA ’s ECOLOGICAL MODELS FOR INTEGRATED WATERSHED MANAGEMENT

    EPA Science Inventory

    Aquatic ecological populations and communities are affected by the nature and quality of the water in which they live. Specific factors that affect instream biota include chemical variables, biotic interactions, energy source, flow regime, and habitat structure. As watershed mana...

  3. Kron-Branin modelling of ultra-short pulsed signal microelectrode

    NASA Astrophysics Data System (ADS)

    Xu, Zhifei; Ravelo, Blaise; Liu, Yang; Zhao, Lu; Delaroche, Fabien; Vurpillot, Francois

    2018-06-01

    An uncommon circuit modelling of microelectrode for ultra-short signal propagation is developed. The proposed model is based on the Tensorial Analysis of Network (TAN) using the Kron-Branin (KB) formalism. The systemic graph topology equivalent to the considered structure problem is established by assuming as unknown variables the branch currents. The TAN mathematical solution is determined after the KB characteristic matrix identification. The TAN can integrate various structure physical parameters. As proof of concept, via hole ended microelectrodes implemented on Kapton substrate were designed, fabricated and tested. The 0.1-MHz-to-6-GHz S-parameter KB model, simulation and measurement are in good agreement. In addition, time-domain analyses with nanosecond duration pulse signals were carried out to predict the microelectrode signal integrity. The modelled microstrip electrode is usually integrated in the atom probe tomography. The proposed unfamiliar KB method is particularly beneficial with respect to the computation speed and adaptability to various structures.

  4. Probabilistic Assessment of Fracture Progression in Composite Structures

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Minnetyan, Levon; Mauget, Bertrand; Huang, Dade; Addi, Frank

    1999-01-01

    This report describes methods and corresponding computer codes that are used to evaluate progressive damage and fracture and to perform probabilistic assessment in built-up composite structures. Structural response is assessed probabilistically, during progressive fracture. The effects of design variable uncertainties on structural fracture progression are quantified. The fast probability integrator (FPI) is used to assess the response scatter in the composite structure at damage initiation. The sensitivity of the damage response to design variables is computed. The methods are general purpose and are applicable to stitched and unstitched composites in all types of structures and fracture processes starting from damage initiation to unstable propagation and to global structure collapse. The methods are demonstrated for a polymer matrix composite stiffened panel subjected to pressure. The results indicated that composite constituent properties, fabrication parameters, and respective uncertainties have a significant effect on structural durability and reliability. Design implications with regard to damage progression, damage tolerance, and reliability of composite structures are examined.

  5. Structural Covariance of the Prefrontal-Amygdala Pathways Associated with Heart Rate Variability

    PubMed Central

    Wei, Luqing; Chen, Hong; Wu, Guo-Rong

    2018-01-01

    The neurovisceral integration model has shown a key role of the amygdala in neural circuits underlying heart rate variability (HRV) modulation, and suggested that reciprocal connections from amygdala to brain regions centered on the central autonomic network (CAN) are associated with HRV. To provide neuroanatomical evidence for these theoretical perspectives, the current study used covariance analysis of MRI-based gray matter volume (GMV) to map structural covariance network of the amygdala, and then determined whether the interregional structural correlations related to individual differences in HRV. The results showed that covariance patterns of the amygdala encompassed large portions of cortical (e.g., prefrontal, cingulate, and insula) and subcortical (e.g., striatum, hippocampus, and midbrain) regions, lending evidence from structural covariance analysis to the notion that the amygdala was a pivotal node in neural pathways for HRV modulation. Importantly, participants with higher resting HRV showed increased covariance of amygdala to dorsal medial prefrontal cortex and anterior cingulate cortex (dmPFC/dACC) extending into adjacent medial motor regions [i.e., pre-supplementary motor area (pre-SMA)/SMA], demonstrating structural covariance of the prefrontal-amygdala pathways implicated in HRV, and also implying that resting HRV may reflect the function of neural circuits underlying cognitive regulation of emotion as well as facilitation of adaptive behaviors to emotion. Our results, thus, provide anatomical substrates for the neurovisceral integration model that resting HRV may index an integrative neural network which effectively organizes emotional, cognitive, physiological and behavioral responses in the service of goal-directed behavior and adaptability. PMID:29545744

  6. A new approach to fluid-structure interaction within graphics hardware accelerated smooth particle hydrodynamics considering heterogeneous particle size distribution

    NASA Astrophysics Data System (ADS)

    Eghtesad, Adnan; Knezevic, Marko

    2018-07-01

    A corrective smooth particle method (CSPM) within smooth particle hydrodynamics (SPH) is used to study the deformation of an aircraft structure under high-velocity water-ditching impact load. The CSPM-SPH method features a new approach for the prediction of two-way fluid-structure interaction coupling. Results indicate that the implementation is well suited for modeling the deformation of structures under high-velocity impact into water as evident from the predicted stress and strain localizations in the aircraft structure as well as the integrity of the impacted interfaces, which show no artificial particle penetrations. To reduce the simulation time, a heterogeneous particle size distribution over a complex three-dimensional geometry is used. The variable particle size is achieved from a finite element mesh with variable element size and, as a result, variable nodal (i.e., SPH particle) spacing. To further accelerate the simulations, the SPH code is ported to a graphics processing unit using the OpenACC standard. The implementation and simulation results are described and discussed in this paper.

  7. A new approach to fluid-structure interaction within graphics hardware accelerated smooth particle hydrodynamics considering heterogeneous particle size distribution

    NASA Astrophysics Data System (ADS)

    Eghtesad, Adnan; Knezevic, Marko

    2017-12-01

    A corrective smooth particle method (CSPM) within smooth particle hydrodynamics (SPH) is used to study the deformation of an aircraft structure under high-velocity water-ditching impact load. The CSPM-SPH method features a new approach for the prediction of two-way fluid-structure interaction coupling. Results indicate that the implementation is well suited for modeling the deformation of structures under high-velocity impact into water as evident from the predicted stress and strain localizations in the aircraft structure as well as the integrity of the impacted interfaces, which show no artificial particle penetrations. To reduce the simulation time, a heterogeneous particle size distribution over a complex three-dimensional geometry is used. The variable particle size is achieved from a finite element mesh with variable element size and, as a result, variable nodal (i.e., SPH particle) spacing. To further accelerate the simulations, the SPH code is ported to a graphics processing unit using the OpenACC standard. The implementation and simulation results are described and discussed in this paper.

  8. Variable-Domain Displacement Transfer Functions for Converting Surface Strains into Deflections for Structural Deformed Shape Predictions

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Fleischer, Van Tran

    2015-01-01

    Variable-Domain Displacement Transfer Functions were formulated for shape predictions of complex wing structures, for which surface strain-sensing stations must be properly distributed to avoid jointed junctures, and must be increased in the high strain gradient region. Each embedded beam (depth-wise cross section of structure along a surface strain-sensing line) was discretized into small variable domains. Thus, the surface strain distribution can be described with a piecewise linear or a piecewise nonlinear function. Through discretization, the embedded beam curvature equation can be piece-wisely integrated to obtain the Variable-Domain Displacement Transfer Functions (for each embedded beam), which are expressed in terms of geometrical parameters of the embedded beam and the surface strains along the strain-sensing line. By inputting the surface strain data into the Displacement Transfer Functions, slopes and deflections along each embedded beam can be calculated for mapping out overall structural deformed shapes. A long tapered cantilever tubular beam was chosen for shape prediction analysis. The input surface strains were analytically generated from finite-element analysis. The shape prediction accuracies of the Variable- Domain Displacement Transfer Functions were then determined in light of the finite-element generated slopes and deflections, and were fofound to be comparable to the accuracies of the constant-domain Displacement Transfer Functions

  9. Vital signs monitoring to detect patient deterioration: An integrative literature review.

    PubMed

    Mok, Wen Qi; Wang, Wenru; Liaw, Sok Ying

    2015-05-01

    Vital signs monitoring is an important nursing assessment. Yet, nurses seem to be doing it as part of a routine and often overlooking their significance in detecting patient deterioration. An integrative literature review was conducted to explore factors surrounding ward nursing practice of vital signs monitoring in detecting and reporting deterioration. Twenty papers were included. The structural component of a Nursing Role Effectiveness Model framework, which comprises of patient, nurse and organizational variables, was used to synthesize the review. Patient variables include signs of deterioration displayed by patients which include physical cues and abnormal vital signs. Nursing variables include clinical knowledge, roles and responsibilities, and reporting of deteriorating vital signs. Organizational variables include heavy workload, technology, and observation chart design. This review has highlighted current nursing practice in vital signs monitoring. A myriad of factors were found to surround ward practice of vital signs monitoring in detecting and reporting deterioration. © 2015 Wiley Publishing Asia Pty Ltd.

  10. Langevin dynamics for vector variables driven by multiplicative white noise: A functional formalism

    NASA Astrophysics Data System (ADS)

    Moreno, Miguel Vera; Arenas, Zochil González; Barci, Daniel G.

    2015-04-01

    We discuss general multidimensional stochastic processes driven by a system of Langevin equations with multiplicative white noise. In particular, we address the problem of how time reversal diffusion processes are affected by the variety of conventions available to deal with stochastic integrals. We present a functional formalism to build up the generating functional of correlation functions without any type of discretization of the Langevin equations at any intermediate step. The generating functional is characterized by a functional integration over two sets of commuting variables, as well as Grassmann variables. In this representation, time reversal transformation became a linear transformation in the extended variables, simplifying in this way the complexity introduced by the mixture of prescriptions and the associated calculus rules. The stochastic calculus is codified in our formalism in the structure of the Grassmann algebra. We study some examples such as higher order derivative Langevin equations and the functional representation of the micromagnetic stochastic Landau-Lifshitz-Gilbert equation.

  11. Design, analysis, and testing of the Phase 1 CSI Evolutionary Model erectable truss

    NASA Technical Reports Server (NTRS)

    Gronet, M. J.; Davis, D. A.; Kintis, D. H.; Brillhart, R. D.; Atkins, E. M.

    1992-01-01

    This report addressed the design, analysis, and testing of the erectable truss structure for the Phase 1 CSI Evolutionary Model (CEM) testbed. The Phase 1 CEM testbed is the second testbed to form part of an ongoing program of focused research at NASA/LaRC in the development of Controls-Structures Integration (CSI) technology. The Phase 1 CEM contains the same overall geometry, weight, and sensor locations as the Phase 0 CEM, but is based in an integrated controller and structure design, whereby both structure and controller design variables are sized simultaneously. The Phase 1 CEM design features seven truss sections composed of struts with tailored mass and stiffness properties. A common erectable joint is used and the strut stiffness is tailored by varying the cross-sectional area. To characterize the structure, static tests were conducted on individual struts and 10-bay truss assemblies. Dynamic tests were conducted on 10-bay truss assemblies as well as the fully-assembled CEM truss. The results indicate that the static and dynamic properties of the structure are predictable, well-characterized, and within the performance requirements established during the Phase 1 CEM integrated controller/structure design analysis.

  12. Latent structure modeling underlying theophylline tablet formulations using a Bayesian network based on a self-organizing map clustering.

    PubMed

    Yasuda, Akihito; Onuki, Yoshinori; Obata, Yasuko; Takayama, Kozo

    2015-01-01

    The "quality by design" concept in pharmaceutical formulation development requires the establishment of a science-based rationale and design space. In this article, we integrate thin-plate spline (TPS) interpolation, Kohonen's self-organizing map (SOM) and a Bayesian network (BN) to visualize the latent structure underlying causal factors and pharmaceutical responses. As a model pharmaceutical product, theophylline tablets were prepared using a standard formulation. We measured the tensile strength and disintegration time as response variables and the compressibility, cohesion and dispersibility of the pretableting blend as latent variables. We predicted these variables quantitatively using nonlinear TPS, generated a large amount of data on pretableting blends and tablets and clustered these data into several clusters using a SOM. Our results show that we are able to predict the experimental values of the latent and response variables with a high degree of accuracy and are able to classify the tablet data into several distinct clusters. In addition, to visualize the latent structure between the causal and latent factors and the response variables, we applied a BN method to the SOM clustering results. We found that despite having inserted latent variables between the causal factors and response variables, their relation is equivalent to the results for the SOM clustering, and thus we are able to explain the underlying latent structure. Consequently, this technique provides a better understanding of the relationships between causal factors and pharmaceutical responses in theophylline tablet formulation.

  13. A programing system for research and applications in structural optimization

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, J.; Rogers, J. L., Jr.

    1981-01-01

    The paper describes a computer programming system designed to be used for methodology research as well as applications in structural optimization. The flexibility necessary for such diverse utilizations is achieved by combining, in a modular manner, a state-of-the-art optimization program, a production level structural analysis program, and user supplied and problem dependent interface programs. Standard utility capabilities existing in modern computer operating systems are used to integrate these programs. This approach results in flexibility of the optimization procedure organization and versatility in the formulation of contraints and design variables. Features shown in numerical examples include: (1) variability of structural layout and overall shape geometry, (2) static strength and stiffness constraints, (3) local buckling failure, and (4) vibration constraints. The paper concludes with a review of the further development trends of this programing system.

  14. Endorsement of formal leaders: an integrative model.

    PubMed

    Michener, H A; Lawler, E J

    1975-02-01

    This experiment develops an integrative, path-analytic model for the endorsement accorded formal leaders. The model contains four independent variables reflecting aspects of group structure (i.e., group success-failure, the payoff distribution, the degree of support by others members for the leader, and the vulnerability of the leader). Also included are two intervening variables reflecting perceptual processes (attributed competence and attributed fairness), and one dependent variable endorsement). The results indicate that endorsement is greater when the group's success is high, when the payoff distribution is flat rather than hierarchial, and when the leader is not vulnerable to removal from office. Other support had no significant impact on endorsement. Analyses further demonstrate that the effect of success-failure on endorsement is mediated by attributed competence, while the effect of the payoff distributed is mediated by attributed fairness. These results suggest that moral and task evaluations are distinct bases of endorsement.

  15. Hidden Markov models incorporating fuzzy measures and integrals for protein sequence identification and alignment.

    PubMed

    Bidargaddi, Niranjan P; Chetty, Madhu; Kamruzzaman, Joarder

    2008-06-01

    Profile hidden Markov models (HMMs) based on classical HMMs have been widely applied for protein sequence identification. The formulation of the forward and backward variables in profile HMMs is made under statistical independence assumption of the probability theory. We propose a fuzzy profile HMM to overcome the limitations of that assumption and to achieve an improved alignment for protein sequences belonging to a given family. The proposed model fuzzifies the forward and backward variables by incorporating Sugeno fuzzy measures and Choquet integrals, thus further extends the generalized HMM. Based on the fuzzified forward and backward variables, we propose a fuzzy Baum-Welch parameter estimation algorithm for profiles. The strong correlations and the sequence preference involved in the protein structures make this fuzzy architecture based model as a suitable candidate for building profiles of a given family, since the fuzzy set can handle uncertainties better than classical methods.

  16. Spherical-earth gravity and magnetic anomaly modeling by Gauss-Legendre quadrature integration

    NASA Technical Reports Server (NTRS)

    Von Frese, R. R. B.; Hinze, W. J.; Braile, L. W.; Luca, A. J.

    1981-01-01

    Gauss-Legendre quadrature integration is used to calculate the anomalous potential of gravity and magnetic fields and their spatial derivatives on a spherical earth. The procedure involves representation of the anomalous source as a distribution of equivalent point gravity poles or point magnetic dipoles. The distribution of equivalent point sources is determined directly from the volume limits of the anomalous body. The variable limits of integration for an arbitrarily shaped body are obtained from interpolations performed on a set of body points which approximate the body's surface envelope. The versatility of the method is shown by its ability to treat physical property variations within the source volume as well as variable magnetic fields over the source and observation surface. Examples are provided which illustrate the capabilities of the technique, including a preliminary modeling of potential field signatures for the Mississippi embayment crustal structure at 450 km.

  17. Probabilistic Evaluation of Advanced Ceramic Matrix Composite Structures

    NASA Technical Reports Server (NTRS)

    Abumeri, Galib H.; Chamis, Christos C.

    2003-01-01

    The objective of this report is to summarize the deterministic and probabilistic structural evaluation results of two structures made with advanced ceramic composites (CMC): internally pressurized tube and uniformly loaded flange. The deterministic structural evaluation includes stress, displacement, and buckling analyses. It is carried out using the finite element code MHOST, developed for the 3-D inelastic analysis of structures that are made with advanced materials. The probabilistic evaluation is performed using the integrated probabilistic assessment of composite structures computer code IPACS. The affects of uncertainties in primitive variables related to the material, fabrication process, and loadings on the material property and structural response behavior are quantified. The primitive variables considered are: thermo-mechanical properties of fiber and matrix, fiber and void volume ratios, use temperature, and pressure. The probabilistic structural analysis and probabilistic strength results are used by IPACS to perform reliability and risk evaluation of the two structures. The results will show that the sensitivity information obtained for the two composite structures from the computational simulation can be used to alter the design process to meet desired service requirements. In addition to detailed probabilistic analysis of the two structures, the following were performed specifically on the CMC tube: (1) predicted the failure load and the buckling load, (2) performed coupled non-deterministic multi-disciplinary structural analysis, and (3) demonstrated that probabilistic sensitivities can be used to select a reduced set of design variables for optimization.

  18. Making riverscapes real

    NASA Astrophysics Data System (ADS)

    Carbonneau, Patrice; Fonstad, Mark A.; Marcus, W. Andrew; Dugdale, Stephen J.

    2012-01-01

    The structure and function of rivers have long been characterized either by: (1) qualitative models such as the River Continuum Concept or Serial Discontinuity Concept which paint broad descriptive portraits of how river habitats and communities vary, or (2) quantitative models, such as downstream hydraulic geometry, which rely on a limited number of measurements spread widely throughout a river basin. In contrast, authors such as Fausch et al. (2002) and Wiens (2002) proposed applying existing quantitative, spatially comprehensive ecology and landscape ecology methods to rivers. This new framework for river sciences which preserves variability and spatial relationships is called a riverine landscape or a 'riverscape'. Application of this riverscape concept requires information on the spatial distribution of organism-scale habitats throughout entire river systems. This article examines the ways in which recent technical and methodological developments can allow us to quantitatively implement and realize the riverscape concept. Using 3-cm true color aerial photos and 5-m resolution elevation data from the River Tromie, Scotland, we apply the newly developed Fluvial Information System which integrates a suite of cutting edge, high resolution, remote sensing methods in a spatially explicit framework. This new integrated approach allows for the extraction of primary fluvial variables such as width, depth, particle size, and elevation. From these first-order variables, we derive second-order geomorphic and hydraulic variables including velocity, stream power, Froude number and shear stress. Channel slope can be approximated from available topographic data. Based on these first and second-order variables, we produce riverscape metrics that begin to explore how geomorphic structures may influence river habitats, including connectivity, patchiness of habitat, and habitat distributions. The results show a complex interplay of geomorphic variable and habitat patchiness that is not predicted by existing fluvial theory. Riverscapes, thus, challenge the existing understanding of how rivers structure themselves and will force development of new paradigms.

  19. Optimization techniques for integrating spatial data

    USGS Publications Warehouse

    Herzfeld, U.C.; Merriam, D.F.

    1995-01-01

    Two optimization techniques ta predict a spatial variable from any number of related spatial variables are presented. The applicability of the two different methods for petroleum-resource assessment is tested in a mature oil province of the Midcontinent (USA). The information on petroleum productivity, usually not directly accessible, is related indirectly to geological, geophysical, petrographical, and other observable data. This paper presents two approaches based on construction of a multivariate spatial model from the available data to determine a relationship for prediction. In the first approach, the variables are combined into a spatial model by an algebraic map-comparison/integration technique. Optimal weights for the map comparison function are determined by the Nelder-Mead downhill simplex algorithm in multidimensions. Geologic knowledge is necessary to provide a first guess of weights to start the automatization, because the solution is not unique. In the second approach, active set optimization for linear prediction of the target under positivity constraints is applied. Here, the procedure seems to select one variable from each data type (structure, isopachous, and petrophysical) eliminating data redundancy. Automating the determination of optimum combinations of different variables by applying optimization techniques is a valuable extension of the algebraic map-comparison/integration approach to analyzing spatial data. Because of the capability of handling multivariate data sets and partial retention of geographical information, the approaches can be useful in mineral-resource exploration. ?? 1995 International Association for Mathematical Geology.

  20. 75 FR 45173 - Notice of Issuance of Regulatory Guide

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-02

    ... coolant system for measuring process variables (e.g., pressure, level, and flow). The term ``safety- related'' refers to those structures, systems, and components necessary to ensure (1) the integrity of the... are located in the NRC's Agencywide Documents Access and Management System (ADAMS) under Accession No...

  1. AN INTEGRATED PERSPECTIVE ON THE ASSESSMENT OF TECHNOLOGIES: INTEGRATE-HTA.

    PubMed

    Wahlster, Philip; Brereton, Louise; Burns, Jacob; Hofmann, Björn; Mozygemba, Kati; Oortwijn, Wija; Pfadenhauer, Lisa; Polus, Stephanie; Rehfuess, Eva; Schilling, Imke; van der Wilt, Gert Jan; Gerhardus, Ansgar

    2017-01-01

    Current health technology assessment (HTA) is not well equipped to assess complex technologies as insufficient attention is being paid to the diversity in patient characteristics and preferences, context, and implementation. Strategies to integrate these and several other aspects, such as ethical considerations, in a comprehensive assessment are missing. The aim of the European research project INTEGRATE-HTA was to develop a model for an integrated HTA of complex technologies. A multi-method, four-stage approach guided the development of the INTEGRATE-HTA Model: (i) definition of the different dimensions of information to be integrated, (ii) literature review of existing methods for integration, (iii) adjustment of concepts and methods for assessing distinct aspects of complex technologies in the frame of an integrated process, and (iv) application of the model in a case study and subsequent revisions. The INTEGRATE-HTA Model consists of five steps, each involving stakeholders: (i) definition of the technology and the objective of the HTA; (ii) development of a logic model to provide a structured overview of the technology and the system in which it is embedded; (iii) evidence assessment on effectiveness, economic, ethical, legal, and socio-cultural aspects, taking variability of participants, context, implementation issues, and their interactions into account; (iv) populating the logic model with the data generated in step 3; (v) structured process of decision-making. The INTEGRATE-HTA Model provides a structured process for integrated HTAs of complex technologies. Stakeholder involvement in all steps is essential as a means of ensuring relevance and meaningful interpretation of the evidence.

  2. Integrated multidisciplinary design optimization of rotorcraft

    NASA Technical Reports Server (NTRS)

    Adelman, Howard M.; Mantay, Wayne R.

    1989-01-01

    The NASA/Army research plan for developing the logic elements for helicopter rotor design optimization by integrating appropriate disciplines and accounting for important interactions among the disciplines is discussed. The paper describes the optimization formulation in terms of the objective function, design variables, and constraints. The analysis aspects are discussed, and an initial effort at defining the interdisciplinary coupling is summarized. Results are presented on the achievements made in the rotor aerodynamic performance optimization for minimum hover horsepower, rotor dynamic optimization for vibration reduction, rotor structural optimization for minimum weight, and integrated aerodynamic load/dynamics optimization for minimum vibration and weight.

  3. [Toward a deeper understanding of motivation towards exercise: measurement of integrated regulation in the Spanish context].

    PubMed

    González-Cutre, David; Sicilia, Álvaro; Fernández, Alberto

    2010-11-01

    The purpose of this study was to validate the Behavioural Regulation in Exercise Questionnaire in the Spanish context, including items to measure integrated regulation. Participants were 524 exercisers, mean age 29.59 years. The results revealed acceptable fit indices in the confirmatory factor analysis and good internal consistency (with a Cronbach alpha of .87 for integrated regulation). The diverse subscales also conformed to a simplex pattern and the factor structure was invariant across gender and age. Integrated regulation reflected high temporal stability over a 4-week period (ICC=.90). The criterion validity analysis of integrated regulation indicated that this variable was positively predicted by satisfaction of the needs for competence and autonomy. The results regarding the importance of measuring integrated regulation in exercise are discussed.

  4. Integrated digital flight-control system for the space shuttle orbiter

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The integrated digital flight control system is presented which provides rotational and translational control of the space shuttle orbiter in all phases of flight: from launch ascent through orbit to entry and touchdown, and during powered horizontal flights. The program provides a versatile control system structure while maintaining uniform communications with other programs, sensors, and control effectors by using an executive routine/functional subroutine format. The program reads all external variables at a single point, copies them into its dedicated storage, and then calls the required subroutines in the proper sequence. As a result, the flight control program is largely independent of other programs in the GN&C computer complex and is equally insensitive to the characteristics of the processor configuration. The integrated structure of the control system and the DFCS executive routine which embodies that structure are described along with the input and output. The specific estimation and control algorithms used in the various mission phases are given.

  5. Review of Reliability-Based Design Optimization Approach and Its Integration with Bayesian Method

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangnan

    2018-03-01

    A lot of uncertain factors lie in practical engineering, such as external load environment, material property, geometrical shape, initial condition, boundary condition, etc. Reliability method measures the structural safety condition and determine the optimal design parameter combination based on the probabilistic theory. Reliability-based design optimization (RBDO) is the most commonly used approach to minimize the structural cost or other performance under uncertainty variables which combines the reliability theory and optimization. However, it cannot handle the various incomplete information. The Bayesian approach is utilized to incorporate this kind of incomplete information in its uncertainty quantification. In this paper, the RBDO approach and its integration with Bayesian method are introduced.

  6. Engineering Overview of a Multidisciplinary HSCT Design Framework Using Medium-Fidelity Analysis Codes

    NASA Technical Reports Server (NTRS)

    Weston, R. P.; Green, L. L.; Salas, A. O.; Samareh, J. A.; Townsend, J. C.; Walsh, J. L.

    1999-01-01

    An objective of the HPCC Program at NASA Langley has been to promote the use of advanced computing techniques to more rapidly solve the problem of multidisciplinary optimization of a supersonic transport configuration. As a result, a software system has been designed and is being implemented to integrate a set of existing discipline analysis codes, some of them CPU-intensive, into a distributed computational framework for the design of a High Speed Civil Transport (HSCT) configuration. The proposed paper will describe the engineering aspects of integrating these analysis codes and additional interface codes into an automated design system. The objective of the design problem is to optimize the aircraft weight for given mission conditions, range, and payload requirements, subject to aerodynamic, structural, and performance constraints. The design variables include both thicknesses of structural elements and geometric parameters that define the external aircraft shape. An optimization model has been adopted that uses the multidisciplinary analysis results and the derivatives of the solution with respect to the design variables to formulate a linearized model that provides input to the CONMIN optimization code, which outputs new values for the design variables. The analysis process begins by deriving the updated geometries and grids from the baseline geometries and grids using the new values for the design variables. This free-form deformation approach provides internal FEM (finite element method) grids that are consistent with aerodynamic surface grids. The next step involves using the derived FEM and section properties in a weights process to calculate detailed weights and the center of gravity location for specified flight conditions. The weights process computes the as-built weight, weight distribution, and weight sensitivities for given aircraft configurations at various mass cases. Currently, two mass cases are considered: cruise and gross take-off weight (GTOW). Weights information is obtained from correlations of data from three sources: 1) as-built initial structural and non-structural weights from an existing database, 2) theoretical FEM structural weights and sensitivities from Genesis, and 3) empirical as-built weight increments, non-structural weights, and weight sensitivities from FLOPS. For the aeroelastic analysis, a variable-fidelity aerodynamic analysis has been adopted. This approach uses infrequent CPU-intensive non-linear CFD to calculate a non-linear correction relative to a linear aero calculation for the same aerodynamic surface at an angle of attack that results in the same configuration lift. For efficiency, this nonlinear correction is applied after each subsequent linear aero solution during the iterations between the aerodynamic and structural analyses. Convergence is achieved when the vehicle shape being used for the aerodynamic calculations is consistent with the structural deformations caused by the aerodynamic loads. To make the structural analyses more efficient, a linearized structural deformation model has been adopted, in which a single stiffness matrix can be used to solve for the deformations under all the load conditions. Using the converged aerodynamic loads, a final set of structural analyses are performed to determine the stress distributions and the buckling conditions for constraint calculation. Performance constraints are obtained by running FLOPS using drag polars that are computed using results from non-linear corrections to the linear aero code plus several codes to provide drag increments due to skin friction, wave drag, and other miscellaneous drag contributions. The status of the integration effort will be presented in the proposed paper, and results will be provided that illustrate the degree of accuracy in the linearizations that have been employed.

  7. Industry structures in private dental markets in Finland.

    PubMed

    Widström, E; Mikkola, H

    2012-12-01

    To use industrial organisation and organisational ecology research methods to survey industry structures and performance in the markets for private dental services and the effect of competition. Data on practice characteristics, performance, and perceived competition were collected from full-time private dentists (n = 1,121) using a questionnaire. The response rate was 59.6%. Cluster analysis was used to identify practice type based on service differentiation and process integration variables formulated from the questionnaire. Four strategic groups were identified in the Finnish markets: Solo practices formed one distinct group and group practices were classified into three clusters Integrated practices, Small practices, and Loosely integrated practices. Statistically significant differences were found in performance and perceived competitiveness between the groups. Integrated practices with the highest level of process integration and service differentiation performed better than solo and small practices. Moreover, loosely integrated and small practices outperformed solo practises. Competitive intensity was highest among small practices which had a low level of service differentiation and was above average among solo practises. Private dental care providers that had differentiated their services from public services and that had a high number of integrated service production processes enjoyed higher performance and less competitive pressures than those who had not.

  8. Integrated Force Method Solution to Indeterminate Structural Mechanics Problems

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Hopkins, Dale A.; Halford, Gary R.

    2004-01-01

    Strength of materials problems have been classified into determinate and indeterminate problems. Determinate analysis primarily based on the equilibrium concept is well understood. Solutions of indeterminate problems required additional compatibility conditions, and its comprehension was not exclusive. A solution to indeterminate problem is generated by manipulating the equilibrium concept, either by rewriting in the displacement variables or through the cutting and closing gap technique of the redundant force method. Compatibility improvisation has made analysis cumbersome. The authors have researched and understood the compatibility theory. Solutions can be generated with equal emphasis on the equilibrium and compatibility concepts. This technique is called the Integrated Force Method (IFM). Forces are the primary unknowns of IFM. Displacements are back-calculated from forces. IFM equations are manipulated to obtain the Dual Integrated Force Method (IFMD). Displacement is the primary variable of IFMD and force is back-calculated. The subject is introduced through response variables: force, deformation, displacement; and underlying concepts: equilibrium equation, force deformation relation, deformation displacement relation, and compatibility condition. Mechanical load, temperature variation, and support settling are equally emphasized. The basic theory is discussed. A set of examples illustrate the new concepts. IFM and IFMD based finite element methods are introduced for simple problems.

  9. Differentiating between precursor and control variables when analyzing reasoned action theories.

    PubMed

    Hennessy, Michael; Bleakley, Amy; Fishbein, Martin; Brown, Larry; Diclemente, Ralph; Romer, Daniel; Valois, Robert; Vanable, Peter A; Carey, Michael P; Salazar, Laura

    2010-02-01

    This paper highlights the distinction between precursor and control variables in the context of reasoned action theory. Here the theory is combined with structural equation modeling to demonstrate how age and past sexual behavior should be situated in a reasoned action analysis. A two wave longitudinal survey sample of African-American adolescents is analyzed where the target behavior is having vaginal sex. Results differ when age and past behavior are used as control variables and when they are correctly used as precursors. Because control variables do not appear in any form of reasoned action theory, this approach to including background variables is not correct when analyzing data sets based on the theoretical axioms of the Theory of Reasoned Action, the Theory of Planned Behavior, or the Integrative Model.

  10. Differentiating Between Precursor and Control Variables When Analyzing Reasoned Action Theories

    PubMed Central

    Hennessy, Michael; Bleakley, Amy; Fishbein, Martin; Brown, Larry; DiClemente, Ralph; Romer, Daniel; Valois, Robert; Vanable, Peter A.; Carey, Michael P.; Salazar, Laura

    2010-01-01

    This paper highlights the distinction between precursor and control variables in the context of reasoned action theory. Here the theory is combined with structural equation modeling to demonstrate how age and past sexual behavior should be situated in a reasoned action analysis. A two wave longitudinal survey sample of African-American adolescents is analyzed where the target behavior is having vaginal sex. Results differ when age and past behavior are used as control variables and when they are correctly used as precursors. Because control variables do not appear in any form of reasoned action theory, this approach to including background variables is not correct when analyzing data sets based on the theoretical axioms of the Theory of Reasoned Action, the Theory of Planned Behavior, or the Integrative Model PMID:19370408

  11. Design for cyclic loading endurance of composites

    NASA Technical Reports Server (NTRS)

    Shiao, Michael C.; Murthy, Pappu L. N.; Chamis, Christos C.; Liaw, Leslie D. G.

    1993-01-01

    The application of the computer code IPACS (Integrated Probabilistic Assessment of Composite Structures) to aircraft wing type structures is described. The code performs a complete probabilistic analysis for composites taking into account the uncertainties in geometry, boundary conditions, material properties, laminate lay-ups, and loads. Results of the analysis are presented in terms of cumulative distribution functions (CDF) and probability density function (PDF) of the fatigue life of a wing type composite structure under different hygrothermal environments subjected to the random pressure. The sensitivity of the fatigue life to a number of critical structural/material variables is also computed from the analysis.

  12. Spherical-earth Gravity and Magnetic Anomaly Modeling by Gauss-legendre Quadrature Integration

    NASA Technical Reports Server (NTRS)

    Vonfrese, R. R. B.; Hinze, W. J.; Braile, L. W.; Luca, A. J. (Principal Investigator)

    1981-01-01

    The anomalous potential of gravity and magnetic fields and their spatial derivatives on a spherical Earth for an arbitrary body represented by an equivalent point source distribution of gravity poles or magnetic dipoles were calculated. The distribution of equivalent point sources was determined directly from the coordinate limits of the source volume. Variable integration limits for an arbitrarily shaped body are derived from interpolation of points which approximate the body's surface envelope. The versatility of the method is enhanced by the ability to treat physical property variations within the source volume and to consider variable magnetic fields over the source and observation surface. A number of examples verify and illustrate the capabilities of the technique, including preliminary modeling of potential field signatures for Mississippi embayment crustal structure at satellite elevations.

  13. Virtual Levels and Role Models: N-Level Structural Equations Model of Reciprocal Ratings Data.

    PubMed

    Mehta, Paras D

    2018-01-01

    A general latent variable modeling framework called n-Level Structural Equations Modeling (NL-SEM) for dependent data-structures is introduced. NL-SEM is applicable to a wide range of complex multilevel data-structures (e.g., cross-classified, switching membership, etc.). Reciprocal dyadic ratings obtained in round-robin design involve complex set of dependencies that cannot be modeled within Multilevel Modeling (MLM) or Structural Equations Modeling (SEM) frameworks. The Social Relations Model (SRM) for round robin data is used as an example to illustrate key aspects of the NL-SEM framework. NL-SEM introduces novel constructs such as 'virtual levels' that allows a natural specification of latent variable SRMs. An empirical application of an explanatory SRM for personality using xxM, a software package implementing NL-SEM is presented. Results show that person perceptions are an integral aspect of personality. Methodological implications of NL-SEM for the analyses of an emerging class of contextual- and relational-SEMs are discussed.

  14. Path-integral methods for analyzing the effects of fluctuations in stochastic hybrid neural networks.

    PubMed

    Bressloff, Paul C

    2015-01-01

    We consider applications of path-integral methods to the analysis of a stochastic hybrid model representing a network of synaptically coupled spiking neuronal populations. The state of each local population is described in terms of two stochastic variables, a continuous synaptic variable and a discrete activity variable. The synaptic variables evolve according to piecewise-deterministic dynamics describing, at the population level, synapses driven by spiking activity. The dynamical equations for the synaptic currents are only valid between jumps in spiking activity, and the latter are described by a jump Markov process whose transition rates depend on the synaptic variables. We assume a separation of time scales between fast spiking dynamics with time constant [Formula: see text] and slower synaptic dynamics with time constant τ. This naturally introduces a small positive parameter [Formula: see text], which can be used to develop various asymptotic expansions of the corresponding path-integral representation of the stochastic dynamics. First, we derive a variational principle for maximum-likelihood paths of escape from a metastable state (large deviations in the small noise limit [Formula: see text]). We then show how the path integral provides an efficient method for obtaining a diffusion approximation of the hybrid system for small ϵ. The resulting Langevin equation can be used to analyze the effects of fluctuations within the basin of attraction of a metastable state, that is, ignoring the effects of large deviations. We illustrate this by using the Langevin approximation to analyze the effects of intrinsic noise on pattern formation in a spatially structured hybrid network. In particular, we show how noise enlarges the parameter regime over which patterns occur, in an analogous fashion to PDEs. Finally, we carry out a [Formula: see text]-loop expansion of the path integral, and use this to derive corrections to voltage-based mean-field equations, analogous to the modified activity-based equations generated from a neural master equation.

  15. Characterizing Uncertainty and Variability in PBPK Models ...

    EPA Pesticide Factsheets

    Mode-of-action based risk and safety assessments can rely upon tissue dosimetry estimates in animals and humans obtained from physiologically-based pharmacokinetic (PBPK) modeling. However, risk assessment also increasingly requires characterization of uncertainty and variability; such characterization for PBPK model predictions represents a continuing challenge to both modelers and users. Current practices show significant progress in specifying deterministic biological models and the non-deterministic (often statistical) models, estimating their parameters using diverse data sets from multiple sources, and using them to make predictions and characterize uncertainty and variability. The International Workshop on Uncertainty and Variability in PBPK Models, held Oct 31-Nov 2, 2006, sought to identify the state-of-the-science in this area and recommend priorities for research and changes in practice and implementation. For the short term, these include: (1) multidisciplinary teams to integrate deterministic and non-deterministic/statistical models; (2) broader use of sensitivity analyses, including for structural and global (rather than local) parameter changes; and (3) enhanced transparency and reproducibility through more complete documentation of the model structure(s) and parameter values, the results of sensitivity and other analyses, and supporting, discrepant, or excluded data. Longer-term needs include: (1) theoretic and practical methodological impro

  16. An investigation of dynamic-analysis methods for variable-geometry structures

    NASA Technical Reports Server (NTRS)

    Austin, F.

    1980-01-01

    Selected space structure configurations were reviewed in order to define dynamic analysis problems associated with variable geometry. The dynamics of a beam being constructed from a flexible base and the relocation of the completed beam by rotating the remote manipulator system about the shoulder joint were selected. Equations of motion were formulated in physical coordinates for both of these problems, and FORTRAN programs were developed to generate solutions by numerically integrating the equations. These solutions served as a standard of comparison to gauge the accuracy of approximate solution techniques that were developed and studied. Good control was achieved in both problems. Unstable control system coupling with the system flexibility did not occur. An approximate method was developed for each problem to enable the analyst to investigate variable geometry effects during a short time span using standard fixed geometry programs such as NASTRAN. The average angle and average length techniques are discussed.

  17. Analysis of the control structures for an integrated ethanol processor for proton exchange membrane fuel cell systems

    NASA Astrophysics Data System (ADS)

    Biset, S.; Nieto Deglioumini, L.; Basualdo, M.; Garcia, V. M.; Serra, M.

    The aim of this work is to investigate which would be a good preliminary plantwide control structure for the process of Hydrogen production from bioethanol to be used in a proton exchange membrane (PEM) accounting only steady-state information. The objective is to keep the process under optimal operation point, that is doing energy integration to achieve the maximum efficiency. Ethanol, produced from renewable feedstocks, feeds a fuel processor investigated for steam reforming, followed by high- and low-temperature shift reactors and preferential oxidation, which are coupled to a polymeric fuel cell. Applying steady-state simulation techniques and using thermodynamic models the performance of the complete system with two different control structures have been evaluated for the most typical perturbations. A sensitivity analysis for the key process variables together with the rigorous operability requirements for the fuel cell are taking into account for defining acceptable plantwide control structure. This is the first work showing an alternative control structure applied to this kind of process.

  18. Methods for integrating moderation and mediation: a general analytical framework using moderated path analysis.

    PubMed

    Edwards, Jeffrey R; Lambert, Lisa Schurer

    2007-03-01

    Studies that combine moderation and mediation are prevalent in basic and applied psychology research. Typically, these studies are framed in terms of moderated mediation or mediated moderation, both of which involve similar analytical approaches. Unfortunately, these approaches have important shortcomings that conceal the nature of the moderated and the mediated effects under investigation. This article presents a general analytical framework for combining moderation and mediation that integrates moderated regression analysis and path analysis. This framework clarifies how moderator variables influence the paths that constitute the direct, indirect, and total effects of mediated models. The authors empirically illustrate this framework and give step-by-step instructions for estimation and interpretation. They summarize the advantages of their framework over current approaches, explain how it subsumes moderated mediation and mediated moderation, and describe how it can accommodate additional moderator and mediator variables, curvilinear relationships, and structural equation models with latent variables. (c) 2007 APA, all rights reserved.

  19. Silicon nitride tri-layer vertical Y-junction and 3D couplers with arbitrary splitting ratio for photonic integrated circuits.

    PubMed

    Shang, Kuanping; Pathak, Shibnath; Liu, Guangyao; Feng, Shaoqi; Li, Siwei; Lai, Weicheng; Yoo, S J B

    2017-05-01

    We designed and demonstrated a tri-layer Si3N4/SiO2 photonic integrated circuit capable of vertical interlayer coupling with arbitrary splitting ratios. Based on this multilayer photonic integrated circuit platform with each layer thicknesses of 150 nm, 50 nm, and 150 nm, we designed and simulated the vertical Y-junctions and 3D couplers with arbitrary power splitting ratios between 1:10 and 10:1 and with negligible(< -50 dB) reflection. Based on the design, we fabricated and demonstrated tri-layer vertical Y-junctions with the splitting ratios of 1:1 and 3:2 with excess optical losses of 0.230 dB. Further, we fabricated and demonstrated the 1 × 3 3D couplers with the splitting ratio of 1:1:4 for symmetric structures and variable splitting ratio for asymmetric structures.

  20. Advanced Bridge Capacity and Structural Integrity Assessment Methodology

    DTIC Science & Technology

    2013-03-01

    following major drawbacks to working stress design: • inability to account for variability of loads and resistance • lack of knowledge of the level of...CERL TR-13-3 81 Early inclinometers were simple pendulums or tubes of water with buckets on each end where the difference in water level between to

  1. Integrating User Interface and Personal Innovativeness into the TAM for Mobile Learning in Cyber University

    ERIC Educational Resources Information Center

    Joo, Young Ju; Lee, Hyeon Woo; Ham, Yookyoung

    2014-01-01

    This study aims to add new variables, namely user interface, personal innovativeness, and satisfaction in learning, to Davis's technology acceptance model and also examine whether learners are willing to adopt mobile learning. Thus, this study attempted to explain the structural causal relationships among user interface, personal…

  2. Modeling Achievement in Mathematics: The Role of Learner and Learning Environment Characteristics

    ERIC Educational Resources Information Center

    Nasser-Abu Alhija, Fadia; Amasha, Marcel

    2012-01-01

    This study examined a structural model of mathematics achievement among Druze 8th graders in Israel. The model integrates 2 psychosocial theories: goal theory and social learning theory. Variables in the model included gender, father's and mother's education, classroom mastery and performance goal orientation, mathematics self-efficacy and…

  3. Probabilistic structural analysis methods and applications

    NASA Technical Reports Server (NTRS)

    Cruse, T. A.; Wu, Y.-T.; Dias, B.; Rajagopal, K. R.

    1988-01-01

    An advanced algorithm for simulating the probabilistic distribution of structural responses due to statistical uncertainties in loads, geometry, material properties, and boundary conditions is reported. The method effectively combines an advanced algorithm for calculating probability levels for multivariate problems (fast probability integration) together with a general-purpose finite-element code for stress, vibration, and buckling analysis. Application is made to a space propulsion system turbine blade for which the geometry and material properties are treated as random variables.

  4. Efficient mapping of transgene integration sites and local structural changes in Cre transgenic mice using targeted locus amplification

    PubMed Central

    Cain-Hom, Carol; Splinter, Erik; van Min, Max; Simonis, Marieke; van de Heijning, Monique; Martinez, Maria; Asghari, Vida

    2017-01-01

    Abstract Cre/LoxP technology is widely used in the field of mouse genetics for spatial and/or temporal regulation of gene function. For Cre lines generated via pronuclear microinjection of a Cre transgene construct, the integration site is random and in most cases not known. Integration of a transgene can disrupt an endogenous gene, potentially interfering with interpretation of the phenotype. In addition, knowledge of where the transgene is integrated is important for planning of crosses between animals carrying a conditional allele and a given Cre allele in case the alleles are on the same chromosome. We have used targeted locus amplification (TLA) to efficiently map the transgene location in seven previously published Cre and CreERT2 transgenic lines. In all lines, transgene insertion was associated with structural changes of variable complexity, illustrating the importance of testing for rearrangements around the integration site. In all seven lines the exact integration site and breakpoint sequences were identified. Our methods, data and genotyping assays can be used as a resource for the mouse community and our results illustrate the power of the TLA method to not only efficiently map the integration site of any transgene, but also provide additional information regarding the transgene integration events. PMID:28053125

  5. Lateral orbitofrontal cortex anticipates choices and integrates prior with current information

    PubMed Central

    Nogueira, Ramon; Abolafia, Juan M.; Drugowitsch, Jan; Balaguer-Ballester, Emili; Sanchez-Vives, Maria V.; Moreno-Bote, Rubén

    2017-01-01

    Adaptive behavior requires integrating prior with current information to anticipate upcoming events. Brain structures related to this computation should bring relevant signals from the recent past into the present. Here we report that rats can integrate the most recent prior information with sensory information, thereby improving behavior on a perceptual decision-making task with outcome-dependent past trial history. We find that anticipatory signals in the orbitofrontal cortex about upcoming choice increase over time and are even present before stimulus onset. These neuronal signals also represent the stimulus and relevant second-order combinations of past state variables. The encoding of choice, stimulus and second-order past state variables resides, up to movement onset, in overlapping populations. The neuronal representation of choice before stimulus onset and its build-up once the stimulus is presented suggest that orbitofrontal cortex plays a role in transforming immediate prior and stimulus information into choices using a compact state-space representation. PMID:28337990

  6. On implementation of the extended interior penalty function. [optimum structural design

    NASA Technical Reports Server (NTRS)

    Cassis, J. H.; Schmit, L. A., Jr.

    1976-01-01

    The extended interior penalty function formulation is implemented. A rational method for determining the transition between the interior and extended parts is set forth. The formulation includes a straightforward method for avoiding design points with some negative components, which are physically meaningless in structural analysis. The technique, when extended to problems involving parametric constraints, can facilitate closed form integration of the penalty terms over the most important parts of the parameter interval. The method lends itself well to the use of approximation concepts, such as design variable linking, constraint deletion and Taylor series expansions of response quantities in terms of design variables. Examples demonstrating the algorithm, in the context of planar orthogonal frames subjected to ground motion, are included.

  7. Organizational Context and Capabilities for Integrating Care: A Framework for Improvement.

    PubMed

    Evans, Jenna M; Grudniewicz, Agnes; Baker, G Ross; Wodchis, Walter P

    2016-08-31

    Interventions aimed at integrating care have become widespread in healthcare; however, there is significant variability in their success. Differences in organizational contexts and associated capabilities may be responsible for some of this variability. This study develops and validates a conceptual framework of organizational capabilities for integrating care, identifies which of these capabilities may be most important, and explores the mechanisms by which they influence integrated care efforts. The Context and Capabilities for Integrating Care (CCIC) Framework was developed through a literature review, and revised and validated through interviews with leaders and care providers engaged in integrated care networks in Ontario, Canada. Interviews involved open-ended questions and graphic elicitation. Quantitative content analysis was used to summarize the data. The CCIC Framework consists of eighteen organizational factors in three categories: Basic Structures, People and Values, and Key Processes. The three most important capabilities shaping the capacity of organizations to implement integrated care interventions include Leadership Approach, Clinician Engagement and Leadership, and Readiness for Change. The majority of hypothesized relationships among organizational capabilities involved Readiness for Change and Partnering, emphasizing the complexity, interrelatedness and importance of these two factors to integrated care efforts. Organizational leaders can use the framework to determine readiness to integrate care, develop targeted change management strategies, and select appropriate partners with overlapping or complementary profiles on key capabilities. Researchers may use the results to test and refine the proposed framework, with a focus on the hypothesized relationships among organizational capabilities and between organizational capabilities and performance outcomes.

  8. Stirling Convertor Fasteners Reliability Quantification

    NASA Technical Reports Server (NTRS)

    Shah, Ashwin R.; Korovaichuk, Igor; Kovacevich, Tiodor; Schreiber, Jeffrey G.

    2006-01-01

    Onboard Radioisotope Power Systems (RPS) being developed for NASA s deep-space science and exploration missions require reliable operation for up to 14 years and beyond. Stirling power conversion is a candidate for use in an RPS because it offers a multifold increase in the conversion efficiency of heat to electric power and reduced inventory of radioactive material. Structural fasteners are responsible to maintain structural integrity of the Stirling power convertor, which is critical to ensure reliable performance during the entire mission. Design of fasteners involve variables related to the fabrication, manufacturing, behavior of fasteners and joining parts material, structural geometry of the joining components, size and spacing of fasteners, mission loads, boundary conditions, etc. These variables have inherent uncertainties, which need to be accounted for in the reliability assessment. This paper describes these uncertainties along with a methodology to quantify the reliability, and provides results of the analysis in terms of quantified reliability and sensitivity of Stirling power conversion reliability to the design variables. Quantification of the reliability includes both structural and functional aspects of the joining components. Based on the results, the paper also describes guidelines to improve the reliability and verification testing.

  9. On solitons: the biomolecular nonlinear transmission line models with constant and time variable coefficients

    NASA Astrophysics Data System (ADS)

    Raza, Nauman; Murtaza, Isma Ghulam; Sial, Sultan; Younis, Muhammad

    2018-07-01

    The article studies the dynamics of solitons in electrical microtubule ? model, which describes the propagation of waves in nonlinear dynamical system. Microtubules are not only a passive support of a cell but also they have highly dynamic structures involved in cell motility, intracellular transport and signaling. The underlying model has been considered with constant and variable coefficients of time function. The solitary wave ansatz has been applied successfully to extract these solitons. The corresponding integrability criteria, also known as constraint conditions, naturally emerge from the analysis of these models.

  10. Designing Better Scaffolding in Teaching Complex Systems with Graphical Simulations

    NASA Astrophysics Data System (ADS)

    Li, Na

    Complex systems are an important topic in science education today, but they are usually difficult for secondary-level students to learn. Although graphic simulations have many advantages in teaching complex systems, scaffolding is a critical factor for effective learning. This dissertation study was conducted around two complementary research questions on scaffolding: (1) How can we chunk and sequence learning activities in teaching complex systems? (2) How can we help students make connections among system levels across learning activities (level bridging)? With a sample of 123 seventh-graders, this study employed a 3x2 experimental design that factored sequencing methods (independent variable 1; three levels) with level-bridging scaffolding (independent variable 2; two levels) and compared the effectiveness of each combination. The study measured two dependent variables: (1) knowledge integration (i.e., integrating and connecting content-specific normative concepts and providing coherent scientific explanations); (2) understanding of the deep causal structure (i.e., being able to grasp and transfer the causal knowledge of a complex system). The study used a computer-based simulation environment as the research platform to teach the ideal gas law as a system. The ideal gas law is an emergent chemical system that has three levels: (1) experiential macro level (EM) (e.g., an aerosol can explodes when it is thrown into the fire); (2) abstract macro level (AM) (i.e., the relationships among temperature, pressure and volume); (3) micro level (Mi) (i.e., molecular activity). The sequencing methods of these levels were manipulated by changing the order in which they were delivered with three possibilities: (1) EM-AM-Mi; (2) Mi-AM-EM; (3) AM-Mi-EM. The level-bridging scaffolding variable was manipulated on two aspects: (1) inserting inter-level questions among learning activities; (2) two simulations dynamically linked in the final learning activity. Addressing the first research question, the Experiential macro-Abstract macro-Micro (EM-AM-Mi) sequencing method, following the "concrete to abstract" principle, produced better knowledge integration while the Micro-Abstract macro-Experiential macro (Mi-AM-EM) sequencing method, congruent with the causal direction of the emergent system, produced better understanding of the deep causal structure only when level-bridging scaffolding was provided. The Abstract macro-Micro-Experiential macro (AM-Mi-EM) sequencing method produced worse performance in general, because it did not follow the "concrete to abstract" principle, nor did it align with the causal structure of the emergent system. As to the second research question, the results showed that level-bridging scaffolding was important for both knowledge integration and understanding of the causal structure in learning the ideal gas law system.

  11. Probabilistic and structural reliability analysis of laminated composite structures based on the IPACS code

    NASA Technical Reports Server (NTRS)

    Sobel, Larry; Buttitta, Claudio; Suarez, James

    1993-01-01

    Probabilistic predictions based on the Integrated Probabilistic Assessment of Composite Structures (IPACS) code are presented for the material and structural response of unnotched and notched, 1M6/3501-6 Gr/Ep laminates. Comparisons of predicted and measured modulus and strength distributions are given for unnotched unidirectional, cross-ply, and quasi-isotropic laminates. The predicted modulus distributions were found to correlate well with the test results for all three unnotched laminates. Correlations of strength distributions for the unnotched laminates are judged good for the unidirectional laminate and fair for the cross-ply laminate, whereas the strength correlation for the quasi-isotropic laminate is deficient because IPACS did not yet have a progressive failure capability. The paper also presents probabilistic and structural reliability analysis predictions for the strain concentration factor (SCF) for an open-hole, quasi-isotropic laminate subjected to longitudinal tension. A special procedure was developed to adapt IPACS for the structural reliability analysis. The reliability results show the importance of identifying the most significant random variables upon which the SCF depends, and of having accurate scatter values for these variables.

  12. Extending Structural Analyses of the Rosenberg Self-Esteem Scale to Consider Criterion-Related Validity: Can Composite Self-Esteem Scores Be Good Enough?

    PubMed

    Donnellan, M Brent; Ackerman, Robert A; Brecheen, Courtney

    2016-01-01

    Although the Rosenberg Self-Esteem Scale (RSES) is the most widely used measure of global self-esteem in the literature, there are ongoing disagreements about its factor structure. This methodological debate informs how the measure should be used in substantive research. Using a sample of 1,127 college students, we test the overall fit of previously specified models for the RSES, including a newly proposed bifactor solution (McKay, Boduszek, & Harvey, 2014 ). We extend previous work by evaluating how various latent factors from these structural models are related to a set of criterion variables frequently studied in the self-esteem literature. A strict unidimensional model poorly fit the data, whereas models that accounted for correlations between negatively and positively keyed items tended to fit better. However, global factors from viable structural models had similar levels of association with criterion variables and with the pattern of results obtained with a composite global self-esteem variable calculated from observed scores. Thus, we did not find compelling evidence that different structural models had substantive implications, thereby reducing (but not eliminating) concerns about the integrity of the self-esteem literature based on overall composite scores for the RSES.

  13. Object view in spatial system dynamics: a grassland farming example

    PubMed Central

    Neuwirth, Christian; Hofer, Barbara; Schaumberger, Andreas

    2016-01-01

    Abstract Spatial system dynamics (SSD) models are typically implemented by linking stock variables to raster grids while the use of object representations of human artefacts such as buildings or ownership has been limited. This limitation is addressed by this article, which demonstrates the use of object representations in SSD. The objects are parcels of land that are attributed to grassland farms. The model simulates structural change in agriculture, i.e., change in the size of farms. The aim of the model is to reveal relations between structural change, farmland fragmentation and variable farmland quality. Results show that fragmented farms tend to become consolidated by structural change, whereas consolidated initial conditions result in a significant increase of fragmentation. Consolidation is reinforced by a dynamic land market and high transportation costs. The example demonstrates the capabilities of the object-based approach for integrating object geometries (parcel shapes) and relations between objects (distances between parcels) dynamically in SSD. PMID:28190972

  14. Variables affecting the academic and social integration of nursing students.

    PubMed

    Zeitlin-Ophir, Iris; Melitz, Osnat; Miller, Rina; Podoshin, Pia; Mesh, Gustavo

    2004-07-01

    This study attempted to analyze the variables that influence the academic integration of nursing students. The theoretical model presented by Leigler was adapted to the existing conditions in a school of nursing in northern Israel. The independent variables included the student's background; amount of support received in the course of studies; extent of outside family and social commitments; satisfaction with the school's facilities and services; and level of social integration. The dependent variable was the student's level of academic integration. The findings substantiated four central hypotheses, with the study model explaining approximately 45% of the variance in the dependent variable. Academic integration is influenced by a number of variables, the most prominent of which is the social integration of the student with colleagues and educational staff. Among the background variables, country of origin was found to be significant to both social and academic integration for two main groups in the sample: Israeli-born students (both Jewish and Arab) and immigrant students.

  15. Mapping Migratory Bird Prevalence Using Remote Sensing Data Fusion

    PubMed Central

    Swatantran, Anu; Dubayah, Ralph; Goetz, Scott; Hofton, Michelle; Betts, Matthew G.; Sun, Mindy; Simard, Marc; Holmes, Richard

    2012-01-01

    Background Improved maps of species distributions are important for effective management of wildlife under increasing anthropogenic pressures. Recent advances in lidar and radar remote sensing have shown considerable potential for mapping forest structure and habitat characteristics across landscapes. However, their relative efficacies and integrated use in habitat mapping remain largely unexplored. We evaluated the use of lidar, radar and multispectral remote sensing data in predicting multi-year bird detections or prevalence for 8 migratory songbird species in the unfragmented temperate deciduous forests of New Hampshire, USA. Methodology and Principal Findings A set of 104 predictor variables describing vegetation vertical structure and variability from lidar, phenology from multispectral data and backscatter properties from radar data were derived. We tested the accuracies of these variables in predicting prevalence using Random Forests regression models. All data sets showed more than 30% predictive power with radar models having the lowest and multi-sensor synergy (“fusion”) models having highest accuracies. Fusion explained between 54% and 75% variance in prevalence for all the birds considered. Stem density from discrete return lidar and phenology from multispectral data were among the best predictors. Further analysis revealed different relationships between the remote sensing metrics and bird prevalence. Spatial maps of prevalence were consistent with known habitat preferences for the bird species. Conclusion and Significance Our results highlight the potential of integrating multiple remote sensing data sets using machine-learning methods to improve habitat mapping. Multi-dimensional habitat structure maps such as those generated from this study can significantly advance forest management and ecological research by facilitating fine-scale studies at both stand and landscape level. PMID:22235254

  16. Mapping migratory bird prevalence using remote sensing data fusion.

    PubMed

    Swatantran, Anu; Dubayah, Ralph; Goetz, Scott; Hofton, Michelle; Betts, Matthew G; Sun, Mindy; Simard, Marc; Holmes, Richard

    2012-01-01

    Improved maps of species distributions are important for effective management of wildlife under increasing anthropogenic pressures. Recent advances in lidar and radar remote sensing have shown considerable potential for mapping forest structure and habitat characteristics across landscapes. However, their relative efficacies and integrated use in habitat mapping remain largely unexplored. We evaluated the use of lidar, radar and multispectral remote sensing data in predicting multi-year bird detections or prevalence for 8 migratory songbird species in the unfragmented temperate deciduous forests of New Hampshire, USA. A set of 104 predictor variables describing vegetation vertical structure and variability from lidar, phenology from multispectral data and backscatter properties from radar data were derived. We tested the accuracies of these variables in predicting prevalence using Random Forests regression models. All data sets showed more than 30% predictive power with radar models having the lowest and multi-sensor synergy ("fusion") models having highest accuracies. Fusion explained between 54% and 75% variance in prevalence for all the birds considered. Stem density from discrete return lidar and phenology from multispectral data were among the best predictors. Further analysis revealed different relationships between the remote sensing metrics and bird prevalence. Spatial maps of prevalence were consistent with known habitat preferences for the bird species. Our results highlight the potential of integrating multiple remote sensing data sets using machine-learning methods to improve habitat mapping. Multi-dimensional habitat structure maps such as those generated from this study can significantly advance forest management and ecological research by facilitating fine-scale studies at both stand and landscape level.

  17. Compatibility Conditions of Structural Mechanics

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Coroneos, Rula M.; Hopkins, Dale A.

    1999-01-01

    The theory of elasticity has camouflaged a deficiency in the compatibility formulation since 1860. In structures the ad hoc compatibility conditions through virtual "cuts" and closing "gaps" are not parallel to the strain formulation in elasticity. This deficiency in the compatibility conditions has prevented the development of a direct stress determination method in structures and in elasticity. We have addressed this deficiency and attempted to unify the theory of compatibility. This work has led to the development of the integrated force method for structures and the completed Beltrami-Michell formulation for elasticity. The improved accuracy observed in the solution of numerical examples by the integrated force method can be attributed to the compliance of the compatibility conditions. Using the compatibility conditions allows mapping of variables and facile movement among different structural analysis formulations. This paper reviews and illustrates the requirement of compatibility in structures and in elasticity. It also describes the generation of the conditions and quantifies the benefits of their use. The traditional analysis methods and available solutions (which have been obtained bypassing the missed conditions) should be verified for compliance of the compatibility conditions.

  18. Knowledge modeling tool for evidence-based design.

    PubMed

    Durmisevic, Sanja; Ciftcioglu, Ozer

    2010-01-01

    The aim of this study is to take evidence-based design (EBD) to the next level by activating available knowledge, integrating new knowledge, and combining them for more efficient use by the planning and design community. This article outlines a framework for a performance-based measurement tool that can provide the necessary decision support during the design or evaluation of a healthcare environment by estimating the overall design performance of multiple variables. New knowledge in EBD adds continuously to complexity (the "information explosion"), and it becomes impossible to consider all aspects (design features) at the same time, much less their impact on final building performance. How can existing knowledge and the information explosion in healthcare-specifically the domain of EBD-be rendered manageable? Is it feasible to create a computational model that considers many design features and deals with them in an integrated way, rather than one at a time? The found evidence is structured and readied for computation through a "fuzzification" process. The weights are calculated using an analytical hierarchy process. Actual knowledge modeling is accomplished through a fuzzy neural tree structure. The impact of all inputs on the outcome-in this case, patient recovery-is calculated using sensitivity analysis. Finally, the added value of the model is discussed using a hypothetical case study of a patient room. The proposed model can deal with the complexities of various aspects and the relationships among variables in a coordinated way, allowing existing and new pieces of evidence to be integrated in a knowledge tree structure that facilitates understanding of the effects of various design interventions on overall design performance.

  19. Integrated Digital Flight Control System for the Space Shuttle Orbiter

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The objectives of the integrated digital flight control system (DFCS) is to provide rotational and translational control of the space shuttle orbiter in all phases of flight: from launch ascent through orbit to entry and touchdown, and during powered horizontal flights. The program provides a versatile control system structure while maintaining uniform communications with other programs, sensors, and control effectors by using an executive routine/functional subroutine format. The program reads all external variables at a single point, copies them into its dedicated storage, and then calls the required subroutines in the proper sequence. As a result, the flight control program is largely independent of other programs in the computer complex and is equally insensitive to characteristics of the processor configuration. The integrated structure is described of the control system and the DFCS executive routine which embodies that structure. The input and output, including jet selection are included. Specific estimation and control algorithm are shown for the various mission phases: cruise (including horizontal powered flight), entry, on-orbit, and boost. Attitude maneuver routines that interface with the DFCS are included.

  20. Hamiltonian structure of real Monge - Ampère equations

    NASA Astrophysics Data System (ADS)

    Nutku, Y.

    1996-06-01

    The variational principle for the real homogeneous Monge - Ampère equation in two dimensions is shown to contain three arbitrary functions of four variables. There exist two different specializations of this variational principle where the Lagrangian is degenerate and furthermore contains an arbitrary function of two variables. The Hamiltonian formulation of these degenerate Lagrangian systems requires the use of Dirac's theory of constraints. As in the case of most completely integrable systems the constraints are second class and Dirac brackets directly yield the Hamiltonian operators. Thus the real homogeneous Monge - Ampère equation in two dimensions admits two classes of infinitely many Hamiltonian operators, namely a family of local, as well as another family non-local Hamiltonian operators and symplectic 2-forms which depend on arbitrary functions of two variables. The simplest non-local Hamiltonian operator corresponds to the Kac - Moody algebra of vector fields and functions on the unit circle. Hamiltonian operators that belong to either class are compatible with each other but between classes there is only one compatible pair. In the case of real Monge - Ampère equations with constant right-hand side this compatible pair is the only pair of Hamiltonian operators that survives. Then the complete integrability of all these real Monge - Ampère equations follows by Magri's theorem. Some of the remarkable properties we have obtained for the Hamiltonian structure of the real homogeneous Monge - Ampère equation in two dimensions turn out to be generic to the real homogeneous Monge - Ampère equation and the geodesic flow for the complex homogeneous Monge - Ampère equation in arbitrary number of dimensions. Hence among all integrable nonlinear evolution equations in one space and one time dimension, the real homogeneous Monge - Ampère equation is distinguished as one that retains its character as an integrable system in multiple dimensions.

  1. Finite element analysis and optimization of composite structures

    NASA Technical Reports Server (NTRS)

    Thomsen, Jan

    1990-01-01

    Linearly elastic fiber reinforced composite discs and laminates in plane stress with variable local orientation and concentration of one or two fiber fields embedded in the matrix material, are considered. The thicknesses and the domain of the discs or laminates are assumed to be given, together with prescribed boundary conditions and in-plane loading along the edge. The problem under study consists in determining throughout the structural domain the optimum orientations and concentrations of the fiber fields in such a way as to maximize the integral stiffness of the composite disc or laminate under the seven loading. Minimization of the integral stiffness can also be performed. The optimization is performed subject to a prescribed bound on the total cost or weight of the composite that for given unit cost factors or specific weights determines the amounts of fiber and matrix materials in the structure. Examples are presented.

  2. Advanced composite vertical fin for L-1011 aircraft

    NASA Technical Reports Server (NTRS)

    Jackson, A. C.

    1984-01-01

    The structural box of the L-1011 vertical fin was redesigned using advanced composite materials. The box was fabricated and ground tested to verify the structural integrity. This report summarizes the complete program starting with the design and analysis and proceeds through the process development ancillary test program production readiness verification testing, fabrication of the full-scale fin boxes and the full-scale ground testing. The program showed that advanced composites can economically and effectively be used in the design and fabrication of medium primary structures for commercial aircraft. Static-strength variability was demonstrated to be comparable to metal structures and the long term durability of advanced composite components was demonstrated.

  3. Points of View Analysis Revisited: Fitting Multidimensional Structures to Optimal Distance Components with Cluster Restrictions on the Variables.

    ERIC Educational Resources Information Center

    Meulman, Jacqueline J.; Verboon, Peter

    1993-01-01

    Points of view analysis, as a way to deal with individual differences in multidimensional scaling, was largely supplanted by the weighted Euclidean model. It is argued that the approach deserves new attention, especially as a technique to analyze group differences. A streamlined and integrated process is proposed. (SLD)

  4. Innovation in Evaluating the Impact of Integrated Service-Delivery: The Integra Indexes of HIV and Reproductive Health Integration.

    PubMed

    Mayhew, Susannah H; Ploubidis, George B; Sloggett, Andy; Church, Kathryn; Obure, Carol D; Birdthistle, Isolde; Sweeney, Sedona; Warren, Charlotte E; Watts, Charlotte; Vassall, Anna

    2016-01-01

    The body of knowledge on evaluating complex interventions for integrated healthcare lacks both common definitions of 'integrated service delivery' and standard measures of impact. Using multiple data sources in combination with statistical modelling the aim of this study is to develop a measure of HIV-reproductive health (HIV-RH) service integration that can be used to assess the degree of service integration, and the degree to which integration may have health benefits to clients, or reduce service costs. Data were drawn from the Integra Initiative's client flow (8,263 clients in Swaziland and 25,539 in Kenya) and costing tools implemented between 2008-2012 in 40 clinics providing RH services in Kenya and Swaziland. We used latent variable measurement models to derive dimensions of HIV-RH integration using these data, which quantified the extent and type of integration between HIV and RH services in Kenya and Swaziland. The modelling produced two clear and uncorrelated dimensions of integration at facility level leading to the development of two sub-indexes: a Structural Integration Index (integrated physical and human resource infrastructure) and a Functional Integration Index (integrated delivery of services to clients). The findings highlight the importance of multi-dimensional assessments of integration, suggesting that structural integration is not sufficient to achieve the integrated delivery of care to clients--i.e. "functional integration". These Indexes are an important methodological contribution for evaluating complex multi-service interventions. They help address the need to broaden traditional evaluations of integrated HIV-RH care through the incorporation of a functional integration measure, to avoid misleading conclusions on its 'impact' on health outcomes. This is particularly important for decision-makers seeking to promote integration in resource constrained environments.

  5. The motivations, institutions and organization of university-industry collaborations in the Netherlands.

    PubMed

    Bodas Freitas, Isabel Maria; Verspagen, Bart

    2017-01-01

    This study builds on the economics and organization literatures to explore whether and how institutions and organizational structure complement or substitute each other to create specific spaces of alignment where specific individual actors' motivations co-exist. Focusing on university-industry collaborations, the study examines whether and how different axes of alignment of university and industry motivations are integrated in projects with specific technological objectives and organizational structures, benefitting from the presence of specific institutions designed to facilitate collaboration. Empirically, the study relies on in-depth data on 30 university-industry collaborations in the Netherlands, and provides preliminary evidence that the technological objective and organizational structure of collaboration are malleable variables allowing the integration of both partners' objectives and expectations. Different institutional incentives for university-industry collaboration favor specific axes of alignment of motivations and certain types of collaborative projects' design. Hence, our exploratory results suggest that specific organizational and technological structures tend to prevail in the presence of specific institutions.

  6. Innovation in Evaluating the Impact of Integrated Service-Delivery: The Integra Indexes of HIV and Reproductive Health Integration

    PubMed Central

    Mayhew, Susannah H.; Ploubidis, George B.; Sloggett, Andy; Church, Kathryn; Obure, Carol D.; Birdthistle, Isolde; Sweeney, Sedona; Warren, Charlotte E.; Watts, Charlotte; Vassall, Anna

    2016-01-01

    Background The body of knowledge on evaluating complex interventions for integrated healthcare lacks both common definitions of ‘integrated service delivery’ and standard measures of impact. Using multiple data sources in combination with statistical modelling the aim of this study is to develop a measure of HIV-reproductive health (HIV-RH) service integration that can be used to assess the degree of service integration, and the degree to which integration may have health benefits to clients, or reduce service costs. Methods and Findings Data were drawn from the Integra Initiative’s client flow (8,263 clients in Swaziland and 25,539 in Kenya) and costing tools implemented between 2008–2012 in 40 clinics providing RH services in Kenya and Swaziland. We used latent variable measurement models to derive dimensions of HIV-RH integration using these data, which quantified the extent and type of integration between HIV and RH services in Kenya and Swaziland. The modelling produced two clear and uncorrelated dimensions of integration at facility level leading to the development of two sub-indexes: a Structural Integration Index (integrated physical and human resource infrastructure) and a Functional Integration Index (integrated delivery of services to clients). The findings highlight the importance of multi-dimensional assessments of integration, suggesting that structural integration is not sufficient to achieve the integrated delivery of care to clients—i.e. “functional integration”. Conclusions These Indexes are an important methodological contribution for evaluating complex multi-service interventions. They help address the need to broaden traditional evaluations of integrated HIV-RH care through the incorporation of a functional integration measure, to avoid misleading conclusions on its ‘impact’ on health outcomes. This is particularly important for decision-makers seeking to promote integration in resource constrained environments. PMID:26800517

  7. NASA Systems Engineering Research Consortium: Defining the Path to Elegance in Systems

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.; Farrington, Phillip A.

    2016-01-01

    The NASA Systems Engineering Research Consortium was formed at the end of 2010 to study the approaches to producing elegant systems on a consistent basis. This has been a transformative study looking at the engineering and organizational basis of systems engineering. The consortium has engaged in a variety of research topics to determine the path to elegant systems. In the second year of the consortium, a systems engineering framework emerged which structured the approach to systems engineering and guided our research. This led in the third year to set of systems engineering postulates that the consortium is continuing to refine. The consortium has conducted several research projects that have contributed significantly to the understanding of systems engineering. The consortium has surveyed the application of the NASA 17 systems engineering processes, explored the physics and statistics of systems integration, and considered organizational aspects of systems engineering discipline integration. The systems integration methods have included system exergy analysis, Akaike Information Criteria (AIC), State Variable Analysis, Multidisciplinary Coupling Analysis (MCA), Multidisciplinary Design Optimization (MDO), System Cost Modelling, System Robustness, and Value Modelling. Organizational studies have included the variability of processes in change evaluations, margin management within the organization, information theory of board structures, social categorization of unintended consequences, and initial looks at applying cognitive science to systems engineering. Consortium members have also studied the bidirectional influence of policy and law with systems engineering.

  8. NASA Systems Engineering Research Consortium: Defining the Path to Elegance in Systems

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.; Farrington, Phillip A.

    2016-01-01

    The NASA Systems Engineering Research Consortium was formed at the end of 2010 to study the approaches to producing elegant systems on a consistent basis. This has been a transformative study looking at the engineering and organizational basis of systems engineering. The consortium has engaged in a variety of research topics to determine the path to elegant systems. In the second year of the consortium, a systems engineering framework emerged which structured the approach to systems engineering and guided our research. This led in the third year to set of systems engineering postulates that the consortium is continuing to refine. The consortium has conducted several research projects that have contributed significantly to the understanding of systems engineering. The consortium has surveyed the application of the NASA 17 systems engineering processes, explored the physics and statistics of systems integration, and considered organizational aspects of systems engineering discipline integration. The systems integration methods have included system energy analysis, Akaike Information Criteria (AIC), State Variable Analysis, Multidisciplinary Coupling Analysis (MCA), Multidisciplinary Design Optimization (MDO), System Cost Modeling, System Robustness, and Value Modeling. Organizational studies have included the variability of processes in change evaluations, margin management within the organization, information theory of board structures, social categorization of unintended consequences, and initial looks at applying cognitive science to systems engineering. Consortium members have also studied the bidirectional influence of policy and law with systems engineering.

  9. Evaluation of chromatin integrity of motile bovine spermatozoa capacitated in vitro.

    PubMed

    Reckova, Z; Machatkova, M; Rybar, R; Horakova, J; Hulinska, P; Machal, L

    2008-08-01

    The efficiency of in vitro embryo production is highly variable amongst individual sires in cattle. To eliminate that this variability is not caused by sperm chromatin damage caused by separation or capacitacion, chromatin integrity was evaluated. Seventeen of AI bulls with good NRRs but variable embryo production efficiency were used. For each bull, motile spermatozoa were separated on a Percoll gradient, resuspended in IVF-TALP medium and capacitated with or incubated without heparin for 6 h. Samples before and after separation and after 3-h and 6-h capacitacion or incubation were evaluated by the Sperm Chromatin Structure Assay (SCSA) and the proportion of sperm with intact chromatin structure was calculated. Based on changes in the non-DFI-sperm proportion, the sires were categorized as DNA-unstable (DNA-us), DNA-stable (DNA-s) and DNA-most stable (DNA-ms) bulls (n=3, n=5 and n=9, respectively). In DNA-us bulls, separation produced a significant increase of the mean non-DFI-sperm proportion (p

  10. Structural Optimization in automotive design

    NASA Technical Reports Server (NTRS)

    Bennett, J. A.; Botkin, M. E.

    1984-01-01

    Although mathematical structural optimization has been an active research area for twenty years, there has been relatively little penetration into the design process. Experience indicates that often this is due to the traditional layout-analysis design process. In many cases, optimization efforts have been outgrowths of analysis groups which are themselves appendages to the traditional design process. As a result, optimization is often introduced into the design process too late to have a significant effect because many potential design variables have already been fixed. A series of examples are given to indicate how structural optimization has been effectively integrated into the design process.

  11. Research environments that promote integrity.

    PubMed

    Jeffers, Brenda Recchia; Whittemore, Robin

    2005-01-01

    The body of empirical knowledge about research integrity and the factors that promote research integrity in nursing research environments remains small. To propose an internal control model as an innovative framework for the design and structure of nursing research environments that promote integrity. An internal control model is adapted to illustrate its use for conceptualizing and designing research environments that promote integrity. The internal control model integrates both the organizational elements necessary to promote research integrity and the processes needed to assess research environments. The model provides five interrelated process components within which any number of research integrity variables and processes may be used and studied: internal control environment, risk assessment, internal control activities, monitoring, and information and communication. The components of the proposed research integrity internal control model proposed comprise an integrated conceptualization of the processes that provide reasonable assurance that research integrity will be promoted within the nursing research environment. Schools of nursing can use the model to design, implement, and evaluate systems that promote research integrity. The model process components need further exploration to substantiate the use of the model in nursing research environments.

  12. A multi-process model of self-regulation: influences of mindfulness, integrative self-knowledge and self-control in Iran.

    PubMed

    Ghorbani, Nima; Watson, P J; Farhadi, Mehran; Chen, Zhuo

    2014-04-01

    Self-regulation presumably rests upon multiple processes that include an awareness of ongoing self-experience, enduring self-knowledge and self-control. The present investigation tested this multi-process model using the Five-Facet Mindfulness Questionnaire (FFMQ) and the Integrative Self-Knowledge and Brief Self-Control Scales. Using a sample of 1162 Iranian university students, we confirmed the five-factor structure of the FFMQ in Iran and documented its factorial invariance across males and females. Self-regulatory variables correlated negatively with Perceived Stress, Depression, and Anxiety and positively with Self-Esteem and Satisfaction with Life. Partial mediation effects confirmed that self-regulatory measures ameliorated the disturbing effects of Perceived Stress. Integrative Self-Knowledge and Self-Control interacted to partially mediate the association of Perceived Stress with lower levels of Satisfaction with Life. Integrative Self-Knowledge, alone or in interaction with Self-Control, was the only self-regulation variable to display the expected mediation of Perceived Stress associations with all other measures. Self-Control failed to be implicated in self-regulation only in the mediation of Anxiety. These data confirmed the need to further examine this multi-process model of self-regulation. © 2014 International Union of Psychological Science.

  13. The extraction and integration framework: a two-process account of statistical learning.

    PubMed

    Thiessen, Erik D; Kronstein, Alexandra T; Hufnagle, Daniel G

    2013-07-01

    The term statistical learning in infancy research originally referred to sensitivity to transitional probabilities. Subsequent research has demonstrated that statistical learning contributes to infant development in a wide array of domains. The range of statistical learning phenomena necessitates a broader view of the processes underlying statistical learning. Learners are sensitive to a much wider range of statistical information than the conditional relations indexed by transitional probabilities, including distributional and cue-based statistics. We propose a novel framework that unifies learning about all of these kinds of statistical structure. From our perspective, learning about conditional relations outputs discrete representations (such as words). Integration across these discrete representations yields sensitivity to cues and distributional information. To achieve sensitivity to all of these kinds of statistical structure, our framework combines processes that extract segments of the input with processes that compare across these extracted items. In this framework, the items extracted from the input serve as exemplars in long-term memory. The similarity structure of those exemplars in long-term memory leads to the discovery of cues and categorical structure, which guides subsequent extraction. The extraction and integration framework provides a way to explain sensitivity to both conditional statistical structure (such as transitional probabilities) and distributional statistical structure (such as item frequency and variability), and also a framework for thinking about how these different aspects of statistical learning influence each other. 2013 APA, all rights reserved

  14. Organizational Context and Capabilities for Integrating Care: A Framework for Improvement

    PubMed Central

    Grudniewicz, Agnes; Baker, G. Ross; Wodchis, Walter P.

    2016-01-01

    Background: Interventions aimed at integrating care have become widespread in healthcare; however, there is significant variability in their success. Differences in organizational contexts and associated capabilities may be responsible for some of this variability. Purpose: This study develops and validates a conceptual framework of organizational capabilities for integrating care, identifies which of these capabilities may be most important, and explores the mechanisms by which they influence integrated care efforts. Methods: The Context and Capabilities for Integrating Care (CCIC) Framework was developed through a literature review, and revised and validated through interviews with leaders and care providers engaged in integrated care networks in Ontario, Canada. Interviews involved open-ended questions and graphic elicitation. Quantitative content analysis was used to summarize the data. Results: The CCIC Framework consists of eighteen organizational factors in three categories: Basic Structures, People and Values, and Key Processes. The three most important capabilities shaping the capacity of organizations to implement integrated care interventions include Leadership Approach, Clinician Engagement and Leadership, and Readiness for Change. The majority of hypothesized relationships among organizational capabilities involved Readiness for Change and Partnering, emphasizing the complexity, interrelatedness and importance of these two factors to integrated care efforts. Conclusions: Organizational leaders can use the framework to determine readiness to integrate care, develop targeted change management strategies, and select appropriate partners with overlapping or complementary profiles on key capabilities. Researchers may use the results to test and refine the proposed framework, with a focus on the hypothesized relationships among organizational capabilities and between organizational capabilities and performance outcomes. PMID:28413366

  15. Efficient mapping of transgene integration sites and local structural changes in Cre transgenic mice using targeted locus amplification.

    PubMed

    Cain-Hom, Carol; Splinter, Erik; van Min, Max; Simonis, Marieke; van de Heijning, Monique; Martinez, Maria; Asghari, Vida; Cox, J Colin; Warming, Søren

    2017-05-05

    Cre/LoxP technology is widely used in the field of mouse genetics for spatial and/or temporal regulation of gene function. For Cre lines generated via pronuclear microinjection of a Cre transgene construct, the integration site is random and in most cases not known. Integration of a transgene can disrupt an endogenous gene, potentially interfering with interpretation of the phenotype. In addition, knowledge of where the transgene is integrated is important for planning of crosses between animals carrying a conditional allele and a given Cre allele in case the alleles are on the same chromosome. We have used targeted locus amplification (TLA) to efficiently map the transgene location in seven previously published Cre and CreERT2 transgenic lines. In all lines, transgene insertion was associated with structural changes of variable complexity, illustrating the importance of testing for rearrangements around the integration site. In all seven lines the exact integration site and breakpoint sequences were identified. Our methods, data and genotyping assays can be used as a resource for the mouse community and our results illustrate the power of the TLA method to not only efficiently map the integration site of any transgene, but also provide additional information regarding the transgene integration events. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. Sources of motivation, interpersonal conflict management styles, and leadership effectiveness: a structural model.

    PubMed

    Barbuto, John E; Xu, Ye

    2006-02-01

    126 leaders and 624 employees were sampled to test the relationship between sources of motivation and conflict management styles of leaders and how these variables influence effectiveness of leadership. Five sources of motivation measured by the Motivation Sources Inventory were tested-intrinsic process, instrumental, self-concept external, self-concept internal, and goal internalization. These sources of work motivation were associated with Rahim's modes of interpersonal conflict management-dominating, avoiding, obliging, complying, and integrating-and to perceived leadership effectiveness. A structural equation model tested leaders' conflict management styles and leadership effectiveness based upon different sources of work motivation. The model explained variance for obliging (65%), dominating (79%), avoiding (76%), and compromising (68%), but explained little variance for integrating (7%). The model explained only 28% of the variance in leader effectiveness.

  17. HIV promoter integration site primarily modulates transcriptional burst size rather than frequency.

    PubMed

    Skupsky, Ron; Burnett, John C; Foley, Jonathan E; Schaffer, David V; Arkin, Adam P

    2010-09-30

    Mammalian gene expression patterns, and their variability across populations of cells, are regulated by factors specific to each gene in concert with its surrounding cellular and genomic environment. Lentiviruses such as HIV integrate their genomes into semi-random genomic locations in the cells they infect, and the resulting viral gene expression provides a natural system to dissect the contributions of genomic environment to transcriptional regulation. Previously, we showed that expression heterogeneity and its modulation by specific host factors at HIV integration sites are key determinants of infected-cell fate and a possible source of latent infections. Here, we assess the integration context dependence of expression heterogeneity from diverse single integrations of a HIV-promoter/GFP-reporter cassette in Jurkat T-cells. Systematically fitting a stochastic model of gene expression to our data reveals an underlying transcriptional dynamic, by which multiple transcripts are produced during short, infrequent bursts, that quantitatively accounts for the wide, highly skewed protein expression distributions observed in each of our clonal cell populations. Interestingly, we find that the size of transcriptional bursts is the primary systematic covariate over integration sites, varying from a few to tens of transcripts across integration sites, and correlating well with mean expression. In contrast, burst frequencies are scattered about a typical value of several per cell-division time and demonstrate little correlation with the clonal means. This pattern of modulation generates consistently noisy distributions over the sampled integration positions, with large expression variability relative to the mean maintained even for the most productive integrations, and could contribute to specifying heterogeneous, integration-site-dependent viral production patterns in HIV-infected cells. Genomic environment thus emerges as a significant control parameter for gene expression variation that may contribute to structuring mammalian genomes, as well as be exploited for survival by integrating viruses.

  18. Shade tree spatial structure and pod production explain frosty pod rot intensity in cacao agroforests, Costa Rica.

    PubMed

    Gidoin, Cynthia; Avelino, Jacques; Deheuvels, Olivier; Cilas, Christian; Bieng, Marie Ange Ngo

    2014-03-01

    Vegetation composition and plant spatial structure affect disease intensity through resource and microclimatic variation effects. The aim of this study was to evaluate the independent effect and relative importance of host composition and plant spatial structure variables in explaining disease intensity at the plot scale. For that purpose, frosty pod rot intensity, a disease caused by Moniliophthora roreri on cacao pods, was monitored in 36 cacao agroforests in Costa Rica in order to assess the vegetation composition and spatial structure variables conducive to the disease. Hierarchical partitioning was used to identify the most causal factors. Firstly, pod production, cacao tree density and shade tree spatial structure had significant independent effects on disease intensity. In our case study, the amount of susceptible tissue was the most relevant host composition variable for explaining disease intensity by resource dilution. Indeed, cacao tree density probably affected disease intensity more by the creation of self-shading rather than by host dilution. Lastly, only regularly distributed forest trees, and not aggregated or randomly distributed forest trees, reduced disease intensity in comparison to plots with a low forest tree density. A regular spatial structure is probably crucial to the creation of moderate and uniform shade as recommended for frosty pod rot management. As pod production is an important service expected from these agroforests, shade tree spatial structure may be a lever for integrated management of frosty pod rot in cacao agroforests.

  19. Alterations in White Matter Integrity in Young Adults with Smartphone Dependence

    PubMed Central

    Hu, Yuanming; Long, Xiaojing; Lyu, Hanqing; Zhou, Yangyang; Chen, Jianxiang

    2017-01-01

    Smartphone dependence (SPD) is increasingly regarded as a psychological problem, however, the underlying neural substrates of SPD is still not clear. High resolution magnetic resonance imaging provides a useful tool to help understand and manage the disorder. In this study, a tract-based spatial statistics (TBSS) analysis on diffusion tensor imaging (DTI) was used to measure white matter integrity in young adults with SPD. A total of 49 subjects were recruited and categorized into SPD and control group based on their clinical behavioral tests. To localize regions with abnormal white matter integrity in SPD, the voxel-wise analysis of fractional anisotropy (FA) and mean diffusivity (MD) on the whole brain was performed by TBSS. The correlation between the quantitative variables of brain structures and the behavior measures were performed. Our result demonstrated that SPD had significantly lower white matter integrity than controls in superior longitudinal fasciculus (SLF), superior corona radiata (SCR), internal capsule, external capsule, sagittal stratum, fornix/stria terminalis and midbrain structures. Correlation analysis showed that the observed abnormalities in internal capsule and stria terminalis were correlated with the severity of dependence and behavioral assessments. Our finding facilitated a primary understanding of white matter characteristics in SPD and indicated that the structural deficits might link to behavioral impairments. PMID:29163108

  20. Test plan. GCPS task 7, subtask 7.1: IHM development

    NASA Technical Reports Server (NTRS)

    Greenberg, H. S.

    1994-01-01

    The overall objective of Task 7 is to identify cost-effective life cycle integrated health management (IHM) approaches for a reusable launch vehicle's primary structure. Acceptable IHM approaches must: eliminate and accommodate faults through robust designs, identify optimum inspection/maintenance periods, automate ground and on-board test and check-out, and accommodate and detect structural faults by providing wide and localized area sensor and test coverage as required. These requirements are elements of our targeted primary structure low cost operations approach using airline-like maintenance by exception philosophies. This development plan will follow an evolutionary path paving the way to the ultimate development of flight-quality production, operations, and vehicle systems. This effort will be focused on maturing the recommended sensor technologies required for localized and wide area health monitoring to a technology readiness level (TRL) of 6 and to establish flight ready system design requirements. The following is a brief list of IHM program objectives: design out faults by analyzing material properties, structural geometry, and load and environment variables and identify failure modes and damage tolerance requirements; design in system robustness while meeting performance objectives (weight limitations) of the reusable launch vehicle primary structure; establish structural integrity margins to preclude the need for test and checkout and predict optimum inspection/maintenance periods through life prediction analysis; identify optimum fault protection system concept definitions combining system robustness and integrity margins established above with cost effective health monitoring technologies; and use coupons, panels, and integrated full scale primary structure test articles to identify, evaluate, and characterize the preferred NDE/NDI/IHM sensor technologies that will be a part of the fault protection system.

  1. An entropy-variables-based formulation of residual distribution schemes for non-equilibrium flows

    NASA Astrophysics Data System (ADS)

    Garicano-Mena, Jesús; Lani, Andrea; Degrez, Gérard

    2018-06-01

    In this paper we present an extension of Residual Distribution techniques for the simulation of compressible flows in non-equilibrium conditions. The latter are modeled by means of a state-of-the-art multi-species and two-temperature model. An entropy-based variable transformation that symmetrizes the projected advective Jacobian for such a thermophysical model is introduced. Moreover, the transformed advection Jacobian matrix presents a block diagonal structure, with mass-species and electronic-vibrational energy being completely decoupled from the momentum and total energy sub-system. The advantageous structure of the transformed advective Jacobian can be exploited by contour-integration-based Residual Distribution techniques: established schemes that operate on dense matrices can be substituted by the same scheme operating on the momentum-energy subsystem matrix and repeated application of scalar scheme to the mass-species and electronic-vibrational energy terms. Finally, the performance gain of the symmetrizing-variables formulation is quantified on a selection of representative testcases, ranging from subsonic to hypersonic, in inviscid or viscous conditions.

  2. Autocorrelation structure at rest predicts value correlates of single neurons during reward-guided choice

    PubMed Central

    Cavanagh, Sean E; Wallis, Joni D; Kennerley, Steven W; Hunt, Laurence T

    2016-01-01

    Correlates of value are routinely observed in the prefrontal cortex (PFC) during reward-guided decision making. In previous work (Hunt et al., 2015), we argued that PFC correlates of chosen value are a consequence of varying rates of a dynamical evidence accumulation process. Yet within PFC, there is substantial variability in chosen value correlates across individual neurons. Here we show that this variability is explained by neurons having different temporal receptive fields of integration, indexed by examining neuronal spike rate autocorrelation structure whilst at rest. We find that neurons with protracted resting temporal receptive fields exhibit stronger chosen value correlates during choice. Within orbitofrontal cortex, these neurons also sustain coding of chosen value from choice through the delivery of reward, providing a potential neural mechanism for maintaining predictions and updating stored values during learning. These findings reveal that within PFC, variability in temporal specialisation across neurons predicts involvement in specific decision-making computations. DOI: http://dx.doi.org/10.7554/eLife.18937.001 PMID:27705742

  3. Dimension reduction techniques for the integrative analysis of multi-omics data

    PubMed Central

    Zeleznik, Oana A.; Thallinger, Gerhard G.; Kuster, Bernhard; Gholami, Amin M.

    2016-01-01

    State-of-the-art next-generation sequencing, transcriptomics, proteomics and other high-throughput ‘omics' technologies enable the efficient generation of large experimental data sets. These data may yield unprecedented knowledge about molecular pathways in cells and their role in disease. Dimension reduction approaches have been widely used in exploratory analysis of single omics data sets. This review will focus on dimension reduction approaches for simultaneous exploratory analyses of multiple data sets. These methods extract the linear relationships that best explain the correlated structure across data sets, the variability both within and between variables (or observations) and may highlight data issues such as batch effects or outliers. We explore dimension reduction techniques as one of the emerging approaches for data integration, and how these can be applied to increase our understanding of biological systems in normal physiological function and disease. PMID:26969681

  4. Inversion of magnetotelluric data using integral equation approach with variable sensitivity domain: Application to EarthScope MT data

    NASA Astrophysics Data System (ADS)

    Čuma, Martin; Gribenko, Alexander; Zhdanov, Michael S.

    2017-09-01

    We have developed a multi-level parallel magnetotelluric (MT) integral equation based inversion program which uses variable sensitivity domain. The limited sensitivity of the data, which decreases with increasing frequency, is exploited by a receiver sensitivity domain, which also varies with frequency. We assess the effect of inverting principal impedances, full impedance tensor, and full tensor jointly with magnetovariational data (tipper). We first apply this method to several models and then invert the EarthScope MT data. We recover well the prominent features in the area including resistive structure associated with the Juan de Fuca slab subducting beneath the northwestern United States, the conductive zone of partially melted material above the subducting slab at the Cascade volcanic arc, conductive features in the Great Basin and in the area of Yellowstone associated with the hot spot, and resistive areas to the east corresponding to the older and more stable cratons.

  5. Integrable aspects and rogue wave solution of Sasa-Satsuma equation with variable coefficients in the inhomogeneous fiber

    NASA Astrophysics Data System (ADS)

    Zhang, Yu-Ping; Yu, Lan; Wei, Guang-Mei

    2018-02-01

    Under investigation with symbolic computation in this paper, is a variable-coefficient Sasa-Satsuma equation (SSE) which can describe the ultra short pulses in optical fiber communications and propagation of deep ocean waves. By virtue of the extended Ablowitz-Kaup-Newell-Segur system, Lax pair for the model is directly constructed. Based on the obtained Lax pair, an auto-Bäcklund transformation is provided, then the explicit one-soliton solution is obtained. Meanwhile, an infinite number of conservation laws in explicit recursion forms are derived to indicate its integrability in the Liouville sense. Furthermore, exact explicit rogue wave (RW) solution is presented by use of a Darboux transformation. In addition to the double-peak structure and an analog of the Peregrine soliton, the RW can exhibit graphically an intriguing twisted rogue-wave (TRW) pair that involve four well-defined zero-amplitude points.

  6. An improved genetic algorithm for multidimensional optimization of precedence-constrained production planning and scheduling

    NASA Astrophysics Data System (ADS)

    Dao, Son Duy; Abhary, Kazem; Marian, Romeo

    2017-06-01

    Integration of production planning and scheduling is a class of problems commonly found in manufacturing industry. This class of problems associated with precedence constraint has been previously modeled and optimized by the authors, in which, it requires a multidimensional optimization at the same time: what to make, how many to make, where to make and the order to make. It is a combinatorial, NP-hard problem, for which no polynomial time algorithm is known to produce an optimal result on a random graph. In this paper, the further development of Genetic Algorithm (GA) for this integrated optimization is presented. Because of the dynamic nature of the problem, the size of its solution is variable. To deal with this variability and find an optimal solution to the problem, GA with new features in chromosome encoding, crossover, mutation, selection as well as algorithm structure is developed herein. With the proposed structure, the proposed GA is able to "learn" from its experience. Robustness of the proposed GA is demonstrated by a complex numerical example in which performance of the proposed GA is compared with those of three commercial optimization solvers.

  7. Mean convergence theorems and weak laws of large numbers for weighted sums of random variables under a condition of weighted integrability

    NASA Astrophysics Data System (ADS)

    Ordóñez Cabrera, Manuel; Volodin, Andrei I.

    2005-05-01

    From the classical notion of uniform integrability of a sequence of random variables, a new concept of integrability (called h-integrability) is introduced for an array of random variables, concerning an array of constantsE We prove that this concept is weaker than other previous related notions of integrability, such as Cesàro uniform integrability [Chandra, Sankhya Ser. A 51 (1989) 309-317], uniform integrability concerning the weights [Ordóñez Cabrera, Collect. Math. 45 (1994) 121-132] and Cesàro [alpha]-integrability [Chandra and Goswami, J. Theoret. ProbabE 16 (2003) 655-669]. Under this condition of integrability and appropriate conditions on the array of weights, mean convergence theorems and weak laws of large numbers for weighted sums of an array of random variables are obtained when the random variables are subject to some special kinds of dependence: (a) rowwise pairwise negative dependence, (b) rowwise pairwise non-positive correlation, (c) when the sequence of random variables in every row is [phi]-mixing. Finally, we consider the general weak law of large numbers in the sense of Gut [Statist. Probab. Lett. 14 (1992) 49-52] under this new condition of integrability for a Banach space setting.

  8. Structural Probability Concepts Adapted to Electrical Engineering

    NASA Technical Reports Server (NTRS)

    Steinberg, Eric P.; Chamis, Christos C.

    1994-01-01

    Through the use of equivalent variable analogies, the authors demonstrate how an electrical subsystem can be modeled by an equivalent structural subsystem. This allows the electrical subsystem to be probabilistically analyzed by using available structural reliability computer codes such as NESSUS. With the ability to analyze the electrical subsystem probabilistically, we can evaluate the reliability of systems that include both structural and electrical subsystems. Common examples of such systems are a structural subsystem integrated with a health-monitoring subsystem, and smart structures. Since these systems have electrical subsystems that directly affect the operation of the overall system, probabilistically analyzing them could lead to improved reliability and reduced costs. The direct effect of the electrical subsystem on the structural subsystem is of secondary order and is not considered in the scope of this work.

  9. Role of Smarter Grids in Variable Renewable Resource Integration (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, M.

    2012-07-01

    This presentation discusses the role of smarter grids in variable renewable resource integration and references material from a forthcoming ISGAN issue paper: Smart Grid Contributions to Variable Renewable Resource Integration, co-written by the presenter and currently in review.

  10. Integrated force method versus displacement method for finite element analysis

    NASA Technical Reports Server (NTRS)

    Patnaik, S. N.; Berke, L.; Gallagher, R. H.

    1991-01-01

    A novel formulation termed the integrated force method (IFM) has been developed in recent years for analyzing structures. In this method all the internal forces are taken as independent variables, and the system equilibrium equations (EEs) are integrated with the global compatibility conditions (CCs) to form the governing set of equations. In IFM the CCs are obtained from the strain formulation of St. Venant, and no choices of redundant load systems have to be made, in constrast to the standard force method (SFM). This property of IFM allows the generation of the governing equation to be automated straightforwardly, as it is in the popular stiffness method (SM). In this report IFM and SM are compared relative to the structure of their respective equations, their conditioning, required solution methods, overall computational requirements, and convergence properties as these factors influence the accuracy of the results. Overall, this new version of the force method produces more accurate results than the stiffness method for comparable computational cost.

  11. Integrated force method versus displacement method for finite element analysis

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Berke, Laszlo; Gallagher, Richard H.

    1990-01-01

    A novel formulation termed the integrated force method (IFM) has been developed in recent years for analyzing structures. In this method all the internal forces are taken as independent variables, and the system equilibrium equations (EE's) are integrated with the global compatibility conditions (CC's) to form the governing set of equations. In IFM the CC's are obtained from the strain formulation of St. Venant, and no choices of redundant load systems have to be made, in constrast to the standard force method (SFM). This property of IFM allows the generation of the governing equation to be automated straightforwardly, as it is in the popular stiffness method (SM). In this report IFM and SM are compared relative to the structure of their respective equations, their conditioning, required solution methods, overall computational requirements, and convergence properties as these factors influence the accuracy of the results. Overall, this new version of the force method produces more accurate results than the stiffness method for comparable computational cost.

  12. Integrative analysis of gene expression and copy number alterations using canonical correlation analysis.

    PubMed

    Soneson, Charlotte; Lilljebjörn, Henrik; Fioretos, Thoas; Fontes, Magnus

    2010-04-15

    With the rapid development of new genetic measurement methods, several types of genetic alterations can be quantified in a high-throughput manner. While the initial focus has been on investigating each data set separately, there is an increasing interest in studying the correlation structure between two or more data sets. Multivariate methods based on Canonical Correlation Analysis (CCA) have been proposed for integrating paired genetic data sets. The high dimensionality of microarray data imposes computational difficulties, which have been addressed for instance by studying the covariance structure of the data, or by reducing the number of variables prior to applying the CCA. In this work, we propose a new method for analyzing high-dimensional paired genetic data sets, which mainly emphasizes the correlation structure and still permits efficient application to very large data sets. The method is implemented by translating a regularized CCA to its dual form, where the computational complexity depends mainly on the number of samples instead of the number of variables. The optimal regularization parameters are chosen by cross-validation. We apply the regularized dual CCA, as well as a classical CCA preceded by a dimension-reducing Principal Components Analysis (PCA), to a paired data set of gene expression changes and copy number alterations in leukemia. Using the correlation-maximizing methods, regularized dual CCA and PCA+CCA, we show that without pre-selection of known disease-relevant genes, and without using information about clinical class membership, an exploratory analysis singles out two patient groups, corresponding to well-known leukemia subtypes. Furthermore, the variables showing the highest relevance to the extracted features agree with previous biological knowledge concerning copy number alterations and gene expression changes in these subtypes. Finally, the correlation-maximizing methods are shown to yield results which are more biologically interpretable than those resulting from a covariance-maximizing method, and provide different insight compared to when each variable set is studied separately using PCA. We conclude that regularized dual CCA as well as PCA+CCA are useful methods for exploratory analysis of paired genetic data sets, and can be efficiently implemented also when the number of variables is very large.

  13. [Integration of demographic variables into development plans in the Sahel].

    PubMed

    Wane, H R

    1992-07-01

    A founding principle of the Program of Action of N'Djamena is the interdependence of population and development and the need for development strategies to take demographic factors into account. The concept of integration of population variables into development has evolved since its introduction in the 1974 World Population Plan of Action from a simple description of population size, growth rates, and distribution to a stress on harmonizing population policies and development policies with macroeconomic variables. The essence of the concept is the consideration given by development policies and programs to the interrelations between population, resources, the environment, and development factors. Population variables and goals should ideally be treated as endogenous variables in development planning, but in practice the extreme complexity of such a systematic approach limits its ability to be made operational. Usually the most crucial problems only are included. Integrated planning is composed of explicit or implicit population policies intended to influence demographic variables and of socioeconomic policies intended to adapt to demographic change. In the Sahel, only Senegal, Burkina Faso, and Mali have formal population policies, but around 1980 several countries of the region began to show interest in influencing demographic variables as they did economic variables. Fundamental principles for developing an integration strategy can be applied regardless or whether the plan is based on projections, analysis of interaction of a demographic variable with factors specific to a sector, or a monosectorial or multisectorial demoeconomic planning model. Demographic data is used more frequently in diagnosing problems than in developing projections or formulating objectives. The level of disaggregation of demographic projections and estimates tends to be low, despite the great potential utility of demographic projections in planning. Demographic projections can be useful in analyses of the extent of changes and the implications of alternative scenarios of development planning. The most frequently used demographic variables in development planning have been spatial distribution of the population and mortality. An examination of past development plans in Mali relating to population and nutrition and population and health reveals several inconsistencies between stated goals and strategies intended to achieve them. The incoherence can be explained in part by the absence of a coherent national population policy, the failure to translate the population policy into programs that take into account reciprocal effects of demographic trends and economic perspectives and their social effects, and the absence of disaggregated population projections. An example from Senegal demonstrates the constraints imposed by structural adjustment programs on the entire planning process.

  14. Structural Integrity of an Electron Beam Melted Titanium Alloy.

    PubMed

    Lancaster, Robert; Davies, Gareth; Illsley, Henry; Jeffs, Spencer; Baxter, Gavin

    2016-06-14

    Advanced manufacturing encompasses the wide range of processes that consist of "3D printing" of metallic materials. One such method is Electron Beam Melting (EBM), a modern build technology that offers significant potential for lean manufacture and a capability to produce fully dense near-net shaped components. However, the manufacture of intricate geometries will result in variable thermal cycles and thus a transient microstructure throughout, leading to a highly textured structure. As such, successful implementation of these technologies requires a comprehensive assessment of the relationships of the key process variables, geometries, resultant microstructures and mechanical properties. The nature of this process suggests that it is often difficult to produce representative test specimens necessary to achieve a full mechanical property characterisation. Therefore, the use of small scale test techniques may be exploited, specifically the small punch (SP) test. The SP test offers a capability for sampling miniaturised test specimens from various discrete locations in a thin-walled component, allowing a full characterisation across a complex geometry. This paper provides support in working towards development and validation strategies in order for advanced manufactured components to be safely implemented into future gas turbine applications. This has been achieved by applying the SP test to a series of Ti-6Al-4V variants that have been manufactured through a variety of processing routes including EBM and investigating the structural integrity of each material and how this controls the mechanical response.

  15. Asymptotics of action variables near semi-toric singularities

    NASA Astrophysics Data System (ADS)

    Wacheux, Christophe

    2015-12-01

    The presence of focus-focus singularities in semi-toric integrables Hamiltonian systems is one of the reasons why there cannot exist global Action-Angle coordinates on such systems. At focus-focus critical points, the Liouville-Arnold-Mineur theorem does not apply. In particular, the affine structure of the image of the moment map around has non-trivial monodromy. In this article, we establish that the singular behavior and the multi-valuedness of the Action integrals is given by a complex logarithm. This extends a previous result by San Vũ Ngọc to any dimension. We also calculate the monodromy matrix for these systems.

  16. Integrated programmable photonic filter on the silicon-on-insulator platform.

    PubMed

    Liao, Shasha; Ding, Yunhong; Peucheret, Christophe; Yang, Ting; Dong, Jianji; Zhang, Xinliang

    2014-12-29

    We propose and demonstrate a silicon-on-insulator (SOI) on-chip programmable filter based on a four-tap finite impulse response structure. The photonic filter is programmable thanks to amplitude and phase modulation of each tap controlled by thermal heaters. We further demonstrate the tunability of the filter central wavelength, bandwidth and variable passband shape. The tuning range of the central wavelength is at least 42% of the free spectral range. The bandwidth tuning range is at least half of the free spectral range. Our scheme has distinct advantages of compactness, capability for integrating with electronics.

  17. Integration of prebend optimization in a holistic wind turbine design tool

    NASA Astrophysics Data System (ADS)

    Sartori, L.; Bortolotti, P.; Croce, A.; Bottasso, C. L.

    2016-09-01

    This paper considers the problem of identifying the optimal combination of blade prebend, rotor cone angle and nacelle uptilt, within an integrated aero-structural design environment. Prebend is designed to reach maximum rotor area at rated conditions, while cone and uptilt are computed together with all other design variables to minimize the cost of energy. Constraints are added to the problem formulation in order to translate various design requirements. The proposed optimization approach is applied to a conceptual 10 MW offshore wind turbine, highlighting the benefits of an optimal combination of blade curvature, cone and uptilt angles.

  18. Application of geologic-mathematical 3D modeling for complex structure deposits by the example of Lower- Cretaceous period depositions in Western Ust - Balykh oil field (Khanty-Mansiysk Autonomous District)

    NASA Astrophysics Data System (ADS)

    Perevertailo, T.; Nedolivko, N.; Prisyazhnyuk, O.; Dolgaya, T.

    2015-11-01

    The complex structure of the Lower-Cretaceous formation by the example of the reservoir BC101 in Western Ust - Balykh Oil Field (Khanty-Mansiysk Autonomous District) has been studied. Reservoir range relationships have been identified. 3D geologic- mathematical modeling technique considering the heterogeneity and variability of a natural reservoir structure has been suggested. To improve the deposit geological structure integrity methods of mathematical statistics were applied, which, in its turn, made it possible to obtain equal probability models with similar input data and to consider the formation conditions of reservoir rocks and cap rocks.

  19. A fast collocation method for a variable-coefficient nonlocal diffusion model

    NASA Astrophysics Data System (ADS)

    Wang, Che; Wang, Hong

    2017-02-01

    We develop a fast collocation scheme for a variable-coefficient nonlocal diffusion model, for which a numerical discretization would yield a dense stiffness matrix. The development of the fast method is achieved by carefully handling the variable coefficients appearing inside the singular integral operator and exploiting the structure of the dense stiffness matrix. The resulting fast method reduces the computational work from O (N3) required by a commonly used direct solver to O (Nlog ⁡ N) per iteration and the memory requirement from O (N2) to O (N). Furthermore, the fast method reduces the computational work of assembling the stiffness matrix from O (N2) to O (N). Numerical results are presented to show the utility of the fast method.

  20. Measuring variations in bicultural identity across U.S. ethnic and generational groups: Development and validation of the Bicultural Identity Integration Scale-Version 2 (BIIS-2).

    PubMed

    Huynh, Que-Lam; Benet-Martínez, Verònica; Nguyen, Angela-MinhTu D

    2018-06-14

    Bicultural Identity Integration (BII) is an individual difference construct that captures variations in the experience of biculturalism. Using multiple samples in a series of steps, we refined BII measurement and then tested the construct in a diverse sample of bicultural individuals. Specifically, we wrote new BII items based on qualitative data ( n = 108), examined the quality of the new measure using subject-matter experts ( n = 23) and bicultural individuals ( n = 5), and then collected validation data from bicultural college students ( n = 1049). We used exploratory factor analyses to select items and explore BIIS-2 structure with a random subset of the larger sample ( n = 600), confirmatory factor analyses to show that the factor structure fit the data well ( n = 449), and multigroup confirmatory factor analyses to demonstrate measurement invariance in two ethnic and two generational groups. Results showed that the Bicultural Identity Integration Scale-Version 2 (BIIS-2) yielded reliable and stable scores. The data also revealed interesting and important patterns of associations with theoretically relevant constructs: personality, acculturation, and psychological well-being. Additionally, structural equation models confirmed that in general, personality and acculturation variables influence individuals' experiences with their dual cultural identities, which in turn influence adjustment, but there were interesting and important generational differences in how these variables were related. These findings lend support for the validity of BIIS-2 score interpretations; add to our understanding of the sociocultural, personality, and adjustment correlates of the bicultural experience; and have important implications for understanding the well-being of bicultural individuals. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  1. Sensitivity Analysis of Multidisciplinary Rotorcraft Simulations

    NASA Technical Reports Server (NTRS)

    Wang, Li; Diskin, Boris; Biedron, Robert T.; Nielsen, Eric J.; Bauchau, Olivier A.

    2017-01-01

    A multidisciplinary sensitivity analysis of rotorcraft simulations involving tightly coupled high-fidelity computational fluid dynamics and comprehensive analysis solvers is presented and evaluated. An unstructured sensitivity-enabled Navier-Stokes solver, FUN3D, and a nonlinear flexible multibody dynamics solver, DYMORE, are coupled to predict the aerodynamic loads and structural responses of helicopter rotor blades. A discretely-consistent adjoint-based sensitivity analysis available in FUN3D provides sensitivities arising from unsteady turbulent flows and unstructured dynamic overset meshes, while a complex-variable approach is used to compute DYMORE structural sensitivities with respect to aerodynamic loads. The multidisciplinary sensitivity analysis is conducted through integrating the sensitivity components from each discipline of the coupled system. Numerical results verify accuracy of the FUN3D/DYMORE system by conducting simulations for a benchmark rotorcraft test model and comparing solutions with established analyses and experimental data. Complex-variable implementation of sensitivity analysis of DYMORE and the coupled FUN3D/DYMORE system is verified by comparing with real-valued analysis and sensitivities. Correctness of adjoint formulations for FUN3D/DYMORE interfaces is verified by comparing adjoint-based and complex-variable sensitivities. Finally, sensitivities of the lift and drag functions obtained by complex-variable FUN3D/DYMORE simulations are compared with sensitivities computed by the multidisciplinary sensitivity analysis, which couples adjoint-based flow and grid sensitivities of FUN3D and FUN3D/DYMORE interfaces with complex-variable sensitivities of DYMORE structural responses.

  2. Free-energy landscape, principal component analysis, and structural clustering to identify representative conformations from molecular dynamics simulations: the myoglobin case.

    PubMed

    Papaleo, Elena; Mereghetti, Paolo; Fantucci, Piercarlo; Grandori, Rita; De Gioia, Luca

    2009-01-01

    Several molecular dynamics (MD) simulations were used to sample conformations in the neighborhood of the native structure of holo-myoglobin (holo-Mb), collecting trajectories spanning 0.22 micros at 300 K. Principal component (PCA) and free-energy landscape (FEL) analyses, integrated by cluster analysis, which was performed considering the position and structures of the individual helices of the globin fold, were carried out. The coherence between the different structural clusters and the basins of the FEL, together with the convergence of parameters derived by PCA indicates that an accurate description of the Mb conformational space around the native state was achieved by multiple MD trajectories spanning at least 0.14 micros. The integration of FEL, PCA, and structural clustering was shown to be a very useful approach to gain an overall view of the conformational landscape accessible to a protein and to identify representative protein substates. This method could be also used to investigate the conformational and dynamical properties of Mb apo-, mutant, or delete versions, in which greater conformational variability is expected and, therefore identification of representative substates from the simulations is relevant to disclose structure-function relationship.

  3. IECON '87: Industrial applications of control and simulation; Proceedings of the 1987 International Conference on Industrial Electronics, Control, and Instrumentation, Cambridge, MA, Nov. 3, 4, 1987

    NASA Technical Reports Server (NTRS)

    Hartley, Tom T. (Editor)

    1987-01-01

    Recent advances in control-system design and simulation are discussed in reviews and reports. Among the topics considered are fast algorithms for generating near-optimal binary decision programs, trajectory control of robot manipulators with compensation of load effects via a six-axis force sensor, matrix integrators for real-time simulation, a high-level control language for an autonomous land vehicle, and a practical engineering design method for stable model-reference adaptive systems. Also addressed are the identification and control of flexible-limb robots with unknown loads, adaptive control and robust adaptive control for manipulators with feedforward compensation, adaptive pole-placement controllers with predictive action, variable-structure strategies for motion control, and digital signal-processor-based variable-structure controls.

  4. Some guidelines for structural equation modelling in cognitive neuroscience: the case of Charlton et al.'s study on white matter integrity and cognitive ageing.

    PubMed

    Penke, Lars; Deary, Ian J

    2010-09-01

    Charlton et al. (2008) (Charlton, R.A., Landua, S., Schiavone, F., Barrick, T.R., Clark, C.A., Markus, H.S., Morris, R.G.A., 2008. Structural equation modelling investigation of age-related variance in executive function and DTI-measured white matter change. Neurobiol. Aging 29, 1547-1555) presented a model that suggests a specific age-related effect of white matter integrity on working memory. We illustrate potential pitfalls of structural equation modelling by criticizing their model for (a) its neglect of latent variables, (b) its complexity, (c) its questionable causal assumptions, (d) the use of empirical model reduction, (e) the mix-up of theoretical perspectives, and (f) the failure to compare alternative models. We show that a more parsimonious model, based solely on the well-established general factor of cognitive ability, fits their data at least as well. Importantly, when modelled this way there is no support for a role of white matter integrity in cognitive aging in this sample, indicating that their conclusion is strongly dependent on how the data are analysed. We suggest that evidence from more conclusive study designs is needed. Copyright 2009 Elsevier Inc. All rights reserved.

  5. A probabilistic approach to quantifying spatial patterns of flow regimes and network-scale connectivity

    NASA Astrophysics Data System (ADS)

    Garbin, Silvia; Alessi Celegon, Elisa; Fanton, Pietro; Botter, Gianluca

    2017-04-01

    The temporal variability of river flow regime is a key feature structuring and controlling fluvial ecological communities and ecosystem processes. In particular, streamflow variability induced by climate/landscape heterogeneities or other anthropogenic factors significantly affects the connectivity between streams with notable implication for river fragmentation. Hydrologic connectivity is a fundamental property that guarantees species persistence and ecosystem integrity in riverine systems. In riverine landscapes, most ecological transitions are flow-dependent and the structure of flow regimes may affect ecological functions of endemic biota (i.e., fish spawning or grazing of invertebrate species). Therefore, minimum flow thresholds must be guaranteed to support specific ecosystem services, like fish migration, aquatic biodiversity and habitat suitability. In this contribution, we present a probabilistic approach aiming at a spatially-explicit, quantitative assessment of hydrologic connectivity at the network-scale as derived from river flow variability. Dynamics of daily streamflows are estimated based on catchment-scale climatic and morphological features, integrating a stochastic, physically based approach that accounts for the stochasticity of rainfall with a water balance model and a geomorphic recession flow model. The non-exceedance probability of ecologically meaningful flow thresholds is used to evaluate the fragmentation of individual stream reaches, and the ensuing network-scale connectivity metrics. A multi-dimensional Poisson Process for the stochastic generation of rainfall is used to evaluate the impact of climate signature on reach-scale and catchment-scale connectivity. The analysis shows that streamflow patterns and network-scale connectivity are influenced by the topology of the river network and the spatial variability of climatic properties (rainfall, evapotranspiration). The framework offers a robust basis for the prediction of the impact of land-use/land-cover changes and river regulation on network-scale connectivity.

  6. Effects of biomotor structures on performance of competitive gymnastics elements in elementary school male sixth-graders.

    PubMed

    Delas, Suncica; Zagorac, Nebojsa; Katić, Ratko

    2008-06-01

    In order to identify the biomotor systems that determine performance of competitive gymnastics elements in elementary school male sixth-graders, factor structures of morphological characteristics and basic motor abilities were determined first, followed by relations of the morphological-motor system factors obtained with a set of criterion variables evaluating specific motor skills in competitive gymnastics in 110 male children aged 12 years +/- 3 months. Factor analysis of 17 morphological measures produced three morphological factors: factor of mesoectoendomorphy (general morphological factor) and factor of pronounced endomorphy, i.e. excessive adipose tissue, along with low skeleton longitudinality. Factor analysis of 16 motor variables yielded four motor factors: factor of general motoricity; factor integrating leg flexibility and arm explosiveness; factor juxtaposing body flexibility and repetitive leg strength; and factor predominantly defining leg movement frequency. Three significant canonical correlations, i.e. linear combinations, explained the association between the set of six latent variables of the morphological and basic motor system, and five variables assessing the knowledge in competitive gymnastics. The first canonical linear combination was based on the favorable and predominant impact of the general motor factor (a system integrating leg explosiveness, whole body coordination, relative arm and trunk strength, and arm movement frequency), along with unfavorable effect of morphological factors on the gymnastics elements performance, squat vault and handstand in particular The relation of the second pair of canonical factors pointed to the effects of leg flexibility and arm explosiveness on the cartwheel and backward pullover mount performance, whereas the relation of the third pair of canonical factors showed a favorable impact of the general morphological factor and leg movement frequency regulator on the forward shoulderkip from increase, cartwheel and handstand performance.

  7. The protection motivation theory within the stages of the transtheoretical model - stage-specific interplay of variables and prediction of exercise stage transitions.

    PubMed

    Lippke, Sonia; Plotnikoff, Ronald C

    2009-05-01

    Two different theories of health behaviour have been chosen with the aim of theory integration: a continuous theory (protection motivation theory, PMT) and a stage model (transtheoretical model, TTM). This is the first study to test whether the stages of the TTM moderate the interrelation of PMT-variables and the mediation of motivation, as well as PMT-variables' interactions in predicting stage transitions. Hypotheses were tested regarding (1) mean patterns, stage pair-comparisons and nonlinear trends using ANOVAs; (2) prediction-patterns for the different stage groups employing multi-group structural equation modelling (MSEM) and nested model analyses; and (3) stage transitions using binary logistic regression analyses. Adults (N=1,602) were assessed over a 6 month period on their physical activity stages, PMT-variables and subsequent behaviour. (1) Particular mean differences and nonlinear trends in all test variables were found. (2) The PMT adequately fitted the five stage groups. The MSEM revealed that covariances within threat appraisal and coping appraisal were invariant and all other constrains were stage-specific, i.e. stage was a moderator. Except for self-efficacy, motivation fully mediated the relationship between the social-cognitive variables and behaviour. (3) Predicting stage transitions with the PMT-variables underscored the importance of self-efficacy. Only when threat appraisal and coping appraisal were high, stage movement was more likely in the preparation stage. Results emphasize stage-specific differences of the PMT mechanisms, and hence, support the stage construct. The findings may guide further theory building and research integrating different theoretical approaches.

  8. TOWARD A CONTINGENCY MODEL FOR HOSPITAL-BASED HEALTH TECHNOLOGY ASSESSMENT: EVIDENCE FROM ADHOPHTA PROJECT.

    PubMed

    Cicchetti, Americo; Iacopino, Valentina; Coretti, Silvia; Fiore, Alessandra; Marchetti, Marco; Sampietro-Colom, Laura; Kidholm, Kristian; Wasserfallen, Jean-Blaise; Kahveci, Rabia; Halmesmäki, Esa; Rosenmöller, Magdalene; Wild, Claudia; Kivet, Raul-Allan

    2018-01-01

    Hospital-based health technology assessment (HB-HTA) is becoming increasingly relevant because of its role in managing the introduction and withdrawal of health technologies. The organizational arrangement in which HB-HTA activities are conducted depends on several contextual factors, although the dominant models have several similarities. The aims of this study were to explore, describe, interpret, and explain seven cases of the application of HB-HTA logic and to propose a classification for HB-HTA organizational models which may be beneficial for policy makers and HTA professionals. The study was part of the AdHopHTA Project, granted under the European 7th Framework Research Programme. A case study methodology was applied to analyze seven HB-HTA initiatives in seven countries, with collection of qualitative and quantitative data. Cross-case analysis was performed within the framework of contingent organizational theory. Evidence showed that some organizational or "structural" variables, namely the level of procedure formalization/structuration and the level of integration with other HTA bodies at the national, regional, and provincial levels, predominantly shape the HB-HTA approach, determining a contingency model of HB-HTA. Crossing the two variables, four options have emerged: integrated specialized HTA unit, stand-alone HTA unit, integrated-essential HTA, independent group unit. No one-best-way approach can be used for HTA at the hospital level. Rather, the characteristics of HTA models depend on many contextual factors. Such conceptualization may aid the diffusion of HB-HTA to inform managerial decision making and clinical practice.

  9. Life Predicted in a Probabilistic Design Space for Brittle Materials With Transient Loads

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel N.; Palfi, Tamas; Reh, Stefan

    2005-01-01

    Analytical techniques have progressively become more sophisticated, and now we can consider the probabilistic nature of the entire space of random input variables on the lifetime reliability of brittle structures. This was demonstrated with NASA s CARES/Life (Ceramic Analysis and Reliability Evaluation of Structures/Life) code combined with the commercially available ANSYS/Probabilistic Design System (ANSYS/PDS), a probabilistic analysis tool that is an integral part of the ANSYS finite-element analysis program. ANSYS/PDS allows probabilistic loads, component geometry, and material properties to be considered in the finite-element analysis. CARES/Life predicts the time dependent probability of failure of brittle material structures under generalized thermomechanical loading--such as that found in a turbine engine hot-section. Glenn researchers coupled ANSYS/PDS with CARES/Life to assess the effects of the stochastic variables of component geometry, loading, and material properties on the predicted life of the component for fully transient thermomechanical loading and cyclic loading.

  10. Callous-unemotional traits drive reduced white-matter integrity in youths with conduct problems.

    PubMed

    Breeden, A L; Cardinale, E M; Lozier, L M; VanMeter, J W; Marsh, A A

    2015-10-01

    Callous-unemotional (CU) traits represent a significant risk factor for severe and persistent conduct problems in children and adolescents. Extensive neuroimaging research links CU traits to structural and functional abnormalities in the amygdala and ventromedial prefrontal cortex. In addition, adults with psychopathy (a disorder for which CU traits are a developmental precursor) exhibit reduced integrity in uncinate fasciculus, a white-matter (WM) tract that connects prefrontal and temporal regions. However, research in adolescents has not yet yielded similarly consistent findings. We simultaneously modeled CU traits and externalizing behaviors as continuous traits, while controlling for age and IQ, in order to identify the unique relationship of each variable with WM microstructural integrity, assessed using diffusion tensor imaging. We used tract-based spatial statistics to evaluate fractional anisotropy, an index of WM integrity, in uncinate fasciculus and stria terminalis in 47 youths aged 10-17 years, of whom 26 exhibited conduct problems and varying levels of CU traits. Whereas both CU traits and externalizing behaviors were negatively correlated with WM integrity in bilateral uncinate fasciculus and stria terminalis/fornix, simultaneously modeling both variables revealed that these effects were driven by CU traits; the severity of externalizing behavior was not related to WM integrity after controlling for CU traits. These results indicate that WM abnormalities similar to those observed in adult populations with psychopathy may emerge in late childhood or early adolescence, and may be critical to understanding the social and affective deficits observed in this population.

  11. Assessing mismatches in ecosystem services proficiency across the urban fabric of Porto (Portugal): The influence of structural and socioeconomic variables

    Treesearch

    Marisa S. Graça; João F. Gonçalves; Paulo J.M. Alves; David J. Nowak; Robert Hoehn; Alexis Ellis; Paulo Farinha-Marques; Mario Cunha

    2017-01-01

    According to UN estimates, it is expected that the world population living in cities will exceed 66% in 2050 (United Nations, 2014). The complex and intense interaction of ecological and socioeconomic systems shaping cities has highlighted the need to foster an interdisciplinary approach to urban issues integrating Natural and Social Sciences (Alberti et al., 2003)....

  12. Social networks and self-rated health in two French-speaking Canadian community dwelling populations over 65.

    PubMed

    Zunzunegui, M V; Koné, A; Johri, M; Béland, F; Wolfson, C; Bergman, H

    2004-05-01

    The objective was to evaluate the associations between older persons' health status and their social integration and social networks (family, children, friends and community), in two French-speaking, Canadian community dwelling populations aged 65 years and over, using the conceptual framework proposed by Berkman and Thomas. Data were taken from two 1995 surveys conducted in the city of Moncton (n = 1518) and the Montreal neighbourhood of Hochelaga-Maisonneuve (n = 1500). Social engagement (a cumulative index of social activities), networks consisting of friends, family and children and social support were measured using validated scales. Multiple logistic regressions based on structured inclusion of potentially mediating variables were fitted to estimate the associations between health status and social networks. Self-rated health was better for those with a high level of social integration and a strong network of friends in both locations. In addition, in Hochelaga-Maisonneuve family and children networks were positively associated with good health, though the effect of friend networks was attenuated in the presence of disability, good social support from children was associated with good health. Age, sex and education were included as antecedent variables; smoking, alcohol consumption, exercise, locus of control and depressive symptoms were considered intermediary variables between social networks and health. In conclusion, social networks, integration and support demonstrated unique positive associations with health. The nature of these associations may vary between populations and cultures.

  13. A Curved, Elastostatic Boundary Element for Plane Anisotropic Structures

    NASA Technical Reports Server (NTRS)

    Smeltzer, Stanley S.; Klang, Eric C.

    2001-01-01

    The plane-stress equations of linear elasticity are used in conjunction with those of the boundary element method to develop a novel curved, quadratic boundary element applicable to structures composed of anisotropic materials in a state of plane stress or plane strain. The curved boundary element is developed to solve two-dimensional, elastostatic problems of arbitrary shape, connectivity, and material type. As a result of the anisotropy, complex variables are employed in the fundamental solution derivations for a concentrated unit-magnitude force in an infinite elastic anisotropic medium. Once known, the fundamental solutions are evaluated numerically by using the known displacement and traction boundary values in an integral formulation with Gaussian quadrature. All the integral equations of the boundary element method are evaluated using one of two methods: either regular Gaussian quadrature or a combination of regular and logarithmic Gaussian quadrature. The regular Gaussian quadrature is used to evaluate most of the integrals along the boundary, and the combined scheme is employed for integrals that are singular. Individual element contributions are assembled into the global matrices of the standard boundary element method, manipulated to form a system of linear equations, and the resulting system is solved. The interior displacements and stresses are found through a separate set of auxiliary equations that are derived using an Airy-type stress function in terms of complex variables. The capabilities and accuracy of this method are demonstrated for a laminated-composite plate with a central, elliptical cutout that is subjected to uniform tension along one of the straight edges of the plate. Comparison of the boundary element results for this problem with corresponding results from an analytical model show a difference of less than 1%.

  14. Merits and limitations of optimality criteria method for structural optimization

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Guptill, James D.; Berke, Laszlo

    1993-01-01

    The merits and limitations of the optimality criteria (OC) method for the minimum weight design of structures subjected to multiple load conditions under stress, displacement, and frequency constraints were investigated by examining several numerical examples. The examples were solved utilizing the Optimality Criteria Design Code that was developed for this purpose at NASA Lewis Research Center. This OC code incorporates OC methods available in the literature with generalizations for stress constraints, fully utilized design concepts, and hybrid methods that combine both techniques. Salient features of the code include multiple choices for Lagrange multiplier and design variable update methods, design strategies for several constraint types, variable linking, displacement and integrated force method analyzers, and analytical and numerical sensitivities. The performance of the OC method, on the basis of the examples solved, was found to be satisfactory for problems with few active constraints or with small numbers of design variables. For problems with large numbers of behavior constraints and design variables, the OC method appears to follow a subset of active constraints that can result in a heavier design. The computational efficiency of OC methods appears to be similar to some mathematical programming techniques.

  15. Multi-Lagrangians for integrable systems

    NASA Astrophysics Data System (ADS)

    Nutku, Y.; Pavlov, M. V.

    2002-03-01

    We propose a general scheme to construct multiple Lagrangians for completely integrable nonlinear evolution equations that admit multi-Hamiltonian structure. The recursion operator plays a fundamental role in this construction. We use a conserved quantity higher/lower than the Hamiltonian in the potential part of the new Lagrangian and determine the corresponding kinetic terms by generating the appropriate momentum map. This leads to some remarkable new developments. We show that nonlinear evolutionary systems that admit N-fold first order local Hamiltonian structure can be cast into variational form with 2N-1 Lagrangians which will be local functionals of Clebsch potentials. This number increases to 3N-2 when the Miura transformation is invertible. Furthermore we construct a new Lagrangian for polytropic gas dynamics in 1+1 dimensions which is a free, local functional of the physical field variables, namely density and velocity, thus dispensing with the necessity of introducing Clebsch potentials entirely. This is a consequence of bi-Hamiltonian structure with a compatible pair of first and third order Hamiltonian operators derived from Sheftel's recursion operator.

  16. Integration of Systems with Varying Levels of Autonomy (Integration de Systemes a Niveau d’Autonomie Variable)

    DTIC Science & Technology

    2008-09-01

    SCI-144 Integration of Systems with Varying Levels of Autonomy (Intégration de systèmes à niveau d’autonomie variable) This Report was...prepared by Task Group SCI-144 on “ System -Level Integration of Control plus Automation” and has been sponsored by the Systems Concepts and Integration... Systems with Varying Levels of Autonomy (Intégration de systèmes à niveau d’autonomie variable) This Report was prepared by Task Group SCI-144 on

  17. Integration of Systems with Varying Levels of Autonomy (Integration de systemes a niveau d’autonomie variable)

    DTIC Science & Technology

    2008-09-01

    SCI-144 Integration of Systems with Varying Levels of Autonomy (Intégration de systèmes à niveau d’autonomie variable) This Report was...prepared by Task Group SCI-144 on “ System -Level Integration of Control plus Automation” and has been sponsored by the Systems Concepts and Integration... Systems with Varying Levels of Autonomy (Intégration de systèmes à niveau d’autonomie variable) This Report was prepared by Task Group SCI-144 on

  18. A Framework for Preliminary Design of Aircraft Structures Based on Process Information. Part 1

    NASA Technical Reports Server (NTRS)

    Rais-Rohani, Masoud

    1998-01-01

    This report discusses the general framework and development of a computational tool for preliminary design of aircraft structures based on process information. The described methodology is suitable for multidisciplinary design optimization (MDO) activities associated with integrated product and process development (IPPD). The framework consists of three parts: (1) product and process definitions; (2) engineering synthesis, and (3) optimization. The product and process definitions are part of input information provided by the design team. The backbone of the system is its ability to analyze a given structural design for performance as well as manufacturability and cost assessment. The system uses a database on material systems and manufacturing processes. Based on the identified set of design variables and an objective function, the system is capable of performing optimization subject to manufacturability, cost, and performance constraints. The accuracy of the manufacturability measures and cost models discussed here depend largely on the available data on specific methods of manufacture and assembly and associated labor requirements. As such, our focus in this research has been on the methodology itself and not so much on its accurate implementation in an industrial setting. A three-tier approach is presented for an IPPD-MDO based design of aircraft structures. The variable-complexity cost estimation methodology and an approach for integrating manufacturing cost assessment into design process are also discussed. This report is presented in two parts. In the first part, the design methodology is presented, and the computational design tool is described. In the second part, a prototype model of the preliminary design Tool for Aircraft Structures based on Process Information (TASPI) is described. Part two also contains an example problem that applies the methodology described here for evaluation of six different design concepts for a wing spar.

  19. An adjoint method of sensitivity analysis for residual vibrations of structures subject to impacts

    NASA Astrophysics Data System (ADS)

    Yan, Kun; Cheng, Gengdong

    2018-03-01

    For structures subject to impact loads, the residual vibration reduction is more and more important as the machines become faster and lighter. An efficient sensitivity analysis of residual vibration with respect to structural or operational parameters is indispensable for using a gradient based optimization algorithm, which reduces the residual vibration in either active or passive way. In this paper, an integrated quadratic performance index is used as the measure of the residual vibration, since it globally measures the residual vibration response and its calculation can be simplified greatly with Lyapunov equation. Several sensitivity analysis approaches for performance index were developed based on the assumption that the initial excitations of residual vibration were given and independent of structural design. Since the resulting excitations by the impact load often depend on structural design, this paper aims to propose a new efficient sensitivity analysis method for residual vibration of structures subject to impacts to consider the dependence. The new method is developed by combining two existing methods and using adjoint variable approach. Three numerical examples are carried out and demonstrate the accuracy of the proposed method. The numerical results show that the dependence of initial excitations on structural design variables may strongly affects the accuracy of sensitivities.

  20. Use of an integrated flow model to estimate ecologically relevant hydrologic characteristics at stream biomonitoring sites

    USGS Publications Warehouse

    Kennen, J.G.; Kauffman, L.J.; Ayers, M.A.; Wolock, D.M.; Colarullo, S.J.

    2008-01-01

    We developed an integrated hydroecological model to provide a comprehensive set of hydrologic variables representing five major components of the flow regime at 856 aquatic-invertebrate monitoring sites in New Jersey. The hydroecological model simulates streamflow by routing water that moves overland and through the subsurface from atmospheric delivery to the watershed outlet. Snow accumulation and melt, evapotranspiration, precipitation, withdrawals, discharges, pervious- and impervious-area runoff, and lake storage were accounted for in the water balance. We generated more than 78 flow variables, which describe the frequency, magnitude, duration, rate of change, and timing of flow events. Highly correlated variables were filtered by principal component analysis to obtain a non-redundant subset of variables that explain the majority of the variation in the complete set. This subset of variables was used to evaluate the effect of changes in the flow regime on aquatic-invertebrate assemblage structure at 856 biomonitoring sites. We used non-metric multidimensional scaling (NMS) to evaluate variation in aquatic-invertebrate assemblage structure across a disturbance gradient. We employed multiple linear regression (MLR) analysis to build a series of MLR models that identify the most important environmental and hydrologic variables driving the differences in the aquatic-invertebrate assemblages across the disturbance gradient. The first axis of NMS ordination was significantly related to many hydrologic, habitat, and land-use/land-cover variables, including the average number of annual storms producing runoff, ratio of 25-75% exceedance flow (flashiness), diversity of natural stream substrate, and the percentage of forested land near the stream channel (forest buffer). Modifications in the hydrologic regime as the result of changes in watershed land use appear to promote the retention of highly tolerant aquatic species; in contrast, species that are sensitive to hydrologic instability and other anthropogenic disturbance become much less prevalent. We also found strong relations between an index of invertebrate-assemblage impairment, its component metrics, and the primary disturbance gradient. The process-oriented watershed modeling approach used in this study provides a means to evaluate how natural landscape features interact with anthropogenic factors and assess their effects on flow characteristics and stream ecology. By combining watershed modeling and indirect ordination techniques, we were able to identify components of the hydrologic regime that have a considerable effect on aquatic-assemblage structure and help in developing short- and long-term management measures that mitigate the effects of anthropogenic disturbance in stream systems.

  1. Exploring relationships among social integration, social isolation, self-rated health, and demographics among Latino day laborers.

    PubMed

    Steel, Kenneth C; Fernandez-Esquer, Maria Eugenia; Atkinson, John S; Taylor, Wendell C

    2018-05-01

    Research indicates social integration and social isolation are related to health, and Latino day laborers (LDLs) tend to be socially isolated and, thus, at high risk for adverse health consequences. relationships among social isolation, social integration, self-rated health (SRH), and demographics were examined in a sample of LDLs to contribute to the literature on social networks and health in this and other migrant populations. We analyzed data from 324 LDLs who participated in Proyecto SHILOS (Salud del Hombre Inmigrante Latino), a Houston-based survey of Latino immigrant men's health. Based on the literature, we hypothesized SRH would be (1) positively associated with social integration and (2) negatively associated with social isolation. All proposed measures were first entered into a correlation matrix to identify significant bivariate relationships (p ≤ .05, two-tailed). Associations between variables that were directly correlated with SRH and variables that were, in turn, proximally associated with these variables were then used to develop a structural equation path model of SRH. Individual paths in the model were measured for significance, and goodness of fit was assessed by the model chi-square, the Comparative Fit Index, and the Root Mean Square Error of Approximation. Inconsistent with the first hypothesis, SRH was negatively associated with social integration, as measured by the number of trusted friends. Consistent with the second hypothesis, SRH was negatively associated with social isolation, as measured by needing someone to talk to. More frequent contact with family was also negatively associated with social isolation. Our findings suggest social integration may not always protect and promote health. Therefore, assessing the quality of LDLs' different relationships, not just the quantity, is vital. Future studies should further analyze the effects that social resources have on perceptions of social isolation and health in LDLs and other migrant populations.

  2. Incorporation of varying types of temporal data in a neural network

    NASA Technical Reports Server (NTRS)

    Cohen, M. E.; Hudson, D. L.

    1992-01-01

    Most neural network models do not specifically deal with temporal data. Handling of these variables is complicated by the different uses to which temporal data are put, depending on the application. Even within the same application, temporal variables are often used in a number of different ways. In this paper, types of temporal data are discussed, along with their implications for approximate reasoning. Methods for integrating approximate temporal reasoning into existing neural network structures are presented. These methods are illustrated in a medical application for diagnosis of graft-versus-host disease which requires the use of several types of temporal data.

  3. Optimal Design of Integrated Systems Health Management (ISHM) Systems for improving safety in NASA's Exploration Vehicles: A Two-Level Multidisciplinary Design Approach

    NASA Technical Reports Server (NTRS)

    Tumer, Irem; Mehr, Ali Farhang

    2005-01-01

    In this paper, a two-level multidisciplinary design approach is described to optimize the effectiveness of ISHM s. At the top level, the overall safety of the mission consists of system-level variables, parameters, objectives, and constraints that are shared throughout the system and by all subsystems. Each subsystem level will then comprise of these shared values in addition to subsystem-specific variables, parameters, objectives and constraints. A hierarchical structure will be established to pass up or down shared values between the two levels with system-level and subsystem-level optimization routines.

  4. Modelling Inter-relationships among water, governance, human development variables in developing countries with Bayesian networks.

    NASA Astrophysics Data System (ADS)

    Dondeynaz, C.; Lopez-Puga, J.; Carmona-Moreno, C.

    2012-04-01

    Improving Water and Sanitation Services (WSS), being a complex and interdisciplinary issue, passes through collaboration and coordination of different sectors (environment, health, economic activities, governance, and international cooperation). This inter-dependency has been recognised with the adoption of the "Integrated Water Resources Management" principles that push for the integration of these various dimensions involved in WSS delivery to ensure an efficient and sustainable management. The understanding of these interrelations appears as crucial for decision makers in the water sector in particular in developing countries where WSS still represent an important leverage for livelihood improvement. In this framework, the Joint Research Centre of the European Commission has developed a coherent database (WatSan4Dev database) containing 29 indicators from environmental, socio-economic, governance and financial aid flows data focusing on developing countries (Celine et al, 2011 under publication). The aim of this work is to model the WatSan4Dev dataset using probabilistic models to identify the key variables influencing or being influenced by the water supply and sanitation access levels. Bayesian Network Models are suitable to map the conditional dependencies between variables and also allows ordering variables by level of influence on the dependent variable. Separated models have been built for water supply and for sanitation because of different behaviour. The models are validated if complying with statistical criteria but either with scientific knowledge and literature. A two steps approach has been adopted to build the structure of the model; Bayesian network is first built for each thematic cluster of variables (e.g governance, agricultural pressure, or human development) keeping a detailed level for interpretation later one. A global model is then built based on significant indicators of each cluster being previously modelled. The structure of the relationships between variable are set a priori according to literature and/or experience in the field (expert knowledge). The statistical validation is verified according to error rate of classification, and the significance of the variables. Sensibility analysis has also been performed to characterise the relative influence of every single variable in the model. Once validated, the models allow the estimation of impact of each variable on the behaviour of the water supply or sanitation providing an interesting mean to test scenarios and predict variables behaviours. The choices made, methods and description of the various models, for each cluster as well as the global model for water supply and sanitation will be presented. Key results and interpretation of the relationships depicted by the models will be detailed during the conference.

  5. When Can Information from Ordinal Scale Variables Be Integrated?

    ERIC Educational Resources Information Center

    Kemp, Simon; Grace, Randolph C.

    2010-01-01

    Many theoretical constructs of interest to psychologists are multidimensional and derive from the integration of several input variables. We show that input variables that are measured on ordinal scales cannot be combined to produce a stable weakly ordered output variable that allows trading off the input variables. Instead a partial order is…

  6. Analytic model for a weakly dissipative shallow-water undular bore.

    PubMed

    El, G A; Grimshaw, R H J; Kamchatnov, A M

    2005-09-01

    We use the integrable Kaup-Boussinesq shallow water system, modified by a small viscous term, to model the formation of an undular bore with a steady profile. The description is made in terms of the corresponding integrable Whitham system, also appropriately modified by viscosity. This is derived in Riemann variables using a modified finite-gap integration technique for the Ablowitz-Kaup-Newell-Segur (AKNS) scheme. The Whitham system is then reduced to a simple first-order differential equation which is integrated numerically to obtain an asymptotic profile of the undular bore, with the local oscillatory structure described by the periodic solution of the unperturbed Kaup-Boussinesq system. This solution of the Whitham equations is shown to be consistent with certain jump conditions following directly from conservation laws for the original system. A comparison is made with the recently studied dissipationless case for the same system, where the undular bore is unsteady.

  7. On the wind geometry of the Wolf-Rayet star EZ Canis Majoris

    NASA Technical Reports Server (NTRS)

    Schulte-Ladbeck, R. E.; Nordsieck, K. H.; Taylor, M.; Nook, M. A.; Bjorkman, K. S.; Magalhaes, A. M.; Anderson, C. M.

    1991-01-01

    Recent models of Wolf-Rayet star winds have been tailored to EZ CMa, and make predictions of the envelope structure and location of line-emitting regions. It is discussed how the wind structure of EZ CMa can be probed observationally through electron distribution integrals as measured by spectropolarimetry, and then present, analyze, and interpret a time-dependent spectropolarimetric data set of EZ CMa. The observations further the view of an electron-scattering wind that is axisymmetric, rotating, and expanding, with a variable mass-loss rate being responsible for the quasi-periodic polarimetric variability. It is demonstrated that the emission lines of EZ CMa are partially polarized, indicating that line photons are electron-scattered in the wind. The polarization in N V lambda 4945 and N IV lambda 4058 is observed to be larger than that of He II lambda 4686 and He I lambda 5876, as expected from ionization stratification.

  8. Japanese power electronics inverter technology and its impact on the American air conditioning industry

    NASA Astrophysics Data System (ADS)

    Ushimaru, Kenji

    1990-08-01

    Since 1983, technological advances and market growth of inverter-driven variable-speed heat pumps in Japan have been dramatic. The high level of market penetration was promoted by a combination of political, economic, and trade policies in Japan. A unique environment was created in which the leading domestic industries, microprocessor manufacturing, compressors for air conditioning and refrigerators, and power electronic devices, were able to direct the development and market success of inverter-driven heat pumps. As a result, leading U.S. variable-speed heat pump manufacturers should expect a challenge from the Japanese producers of power devices and microprocessors. Because of the vertically-integrated production structure in Japan, in contrast to the out-sourcing culture of the United States, price competition at the component level (such as inverters, sensors, and controls) may impact the structure of the industry more severely than final product sales.

  9. Forest biomass, canopy structure, and species composition relationships with multipolarization L-band synthetic aperture radar data

    NASA Technical Reports Server (NTRS)

    Sader, Steven A.

    1987-01-01

    The effect of forest biomass, canopy structure, and species composition on L-band synthetic aperature radar data at 44 southern Mississippi bottomland hardwood and pine-hardwood forest sites was investigated. Cross-polarization mean digital values for pine forests were significantly correlated with green weight biomass and stand structure. Multiple linear regression with five forest structure variables provided a better integrated measure of canopy roughness and produced highly significant correlation coefficients for hardwood forests using HV/VV ratio only. Differences in biomass levels and canopy structure, including branching patterns and vertical canopy stratification, were important sources of volume scatter affecting multipolarization radar data. Standardized correction techniques and calibration of aircraft data, in addition to development of canopy models, are recommended for future investigations of forest biomass and structure using synthetic aperture radar.

  10. Help-Seeking Intentions and Behaviors among Mainland Chinese College Students: Integrating the Theory of Planned Behavior and Behavioral Model of Health Services Use

    ERIC Educational Resources Information Center

    Li, Wenjing; Denson, Linley A.; Dorstyn, Diana S.

    2017-01-01

    This study investigated help-seeking intentions and use of mental health services within a sample of 1128 Mainland Chinese college students (630 males and 498 females; mean age = 20.01 years, SD = 1.48). Results of structural equation modeling and logistic regression analysis suggested that social-cognitive variables had significant effects both…

  11. Design, evaluation and test of an electronic, multivariable control for the F100 turbofan engine

    NASA Technical Reports Server (NTRS)

    Skira, C. A.; Dehoff, R. L.; Hall, W. E., Jr.

    1980-01-01

    A digital, multivariable control design procedure for the F100 turbofan engine is described. The controller is based on locally linear synthesis techniques using linear, quadratic regulator design methods. The control structure uses an explicit model reference form with proportional and integral feedback near a nominal trajectory. Modeling issues, design procedures for the control law and the estimation of poorly measured variables are presented.

  12. Representation and visualization of variability in a 3D anatomical atlas using the kidney as an example

    NASA Astrophysics Data System (ADS)

    Hacker, Silke; Handels, Heinz

    2006-03-01

    Computer-based 3D atlases allow an interactive exploration of the human body. However, in most cases such 3D atlases are derived from one single individual, and therefore do not regard the variability of anatomical structures concerning their shape and size. Since the geometric variability across humans plays an important role in many medical applications, our goal is to develop a framework of an anatomical atlas for representation and visualization of the variability of selected anatomical structures. The basis of the project presented is the VOXEL-MAN atlas of inner organs that was created from the Visible Human data set. For modeling anatomical shapes and their variability we utilize "m-reps" which allow a compact representation of anatomical objects on the basis of their skeletons. As an example we used a statistical model of the kidney that is based on 48 different variants. With the integration of a shape description into the VOXEL-MAN atlas it is now possible to query and visualize different shape variations of an organ, e.g. by specifying a person's age or gender. In addition to the representation of individual shape variants, the average shape of a population can be displayed. Besides a surface representation, a volume-based representation of the kidney's shape variants is also possible. It results from the deformation of the reference kidney of the volume-based model using the m-rep shape description. In this way a realistic visualization of the shape variants becomes possible, as well as the visualization of the organ's internal structures.

  13. Structural Integrity of an Electron Beam Melted Titanium Alloy

    PubMed Central

    Lancaster, Robert; Davies, Gareth; Illsley, Henry; Jeffs, Spencer; Baxter, Gavin

    2016-01-01

    Advanced manufacturing encompasses the wide range of processes that consist of “3D printing” of metallic materials. One such method is Electron Beam Melting (EBM), a modern build technology that offers significant potential for lean manufacture and a capability to produce fully dense near-net shaped components. However, the manufacture of intricate geometries will result in variable thermal cycles and thus a transient microstructure throughout, leading to a highly textured structure. As such, successful implementation of these technologies requires a comprehensive assessment of the relationships of the key process variables, geometries, resultant microstructures and mechanical properties. The nature of this process suggests that it is often difficult to produce representative test specimens necessary to achieve a full mechanical property characterisation. Therefore, the use of small scale test techniques may be exploited, specifically the small punch (SP) test. The SP test offers a capability for sampling miniaturised test specimens from various discrete locations in a thin-walled component, allowing a full characterisation across a complex geometry. This paper provides support in working towards development and validation strategies in order for advanced manufactured components to be safely implemented into future gas turbine applications. This has been achieved by applying the SP test to a series of Ti-6Al-4V variants that have been manufactured through a variety of processing routes including EBM and investigating the structural integrity of each material and how this controls the mechanical response. PMID:28773590

  14. Prediction of biological integrity based on environmental similarity--revealing the scale-dependent link between study area and top environmental predictors.

    PubMed

    Bedoya, David; Manolakos, Elias S; Novotny, Vladimir

    2011-03-01

    Indices of Biological integrity (IBI) are considered valid indicators of the overall health of a water body because the biological community is an endpoint within natural systems. However, prediction of biological integrity using information from multi-parameter environmental observations is a challenging problem due to the hierarchical organization of the natural environment, the existence of nonlinear inter-dependencies among variables as well as natural stochasticity and measurement noise. We present a method for predicting the Fish Index of Biological Integrity (IBI) using multiple environmental observations at the state-scale in Ohio. Instream (chemical and physical quality) and offstream parameters (regional and local upstream land uses, stream fragmentation, and point source density and intensity) are used for this purpose. The IBI predictions are obtained using the environmental site-similarity concept and following a simple to implement leave-one-out cross validation approach. An IBI prediction for a sampling site is calculated by averaging the observed IBI scores of observations clustered in the most similar branch of a dendrogram--a hierarchical clustering tree of environmental observations--built using the rest of the observations. The standardized Euclidean distance is used to assess dissimilarity between observations. The constructed predictive model was able to explain 61% of the IBI variability statewide. Stream fragmentation and regional land use explained 60% of the variability; the remaining 1% was explained by instream habitat quality. Metrics related to local land use, water quality, and point source density and intensity did not improve the predictive model at the state-scale. The impact of local environmental conditions was evaluated by comparing local characteristics between well- and mispredicted sites. Significant differences in local land use patterns and upstream fragmentation density explained some of the model's over-predictions. Local land use conditions explained some of the model's IBI under-predictions at the state-scale since none of the variables within this group were included in the best final predictive model. Under-predicted sites also had higher levels of downstream fragmentation. The proposed variables ranking and predictive modeling methodology is very well suited for the analysis of hierarchical environments, such as natural fresh water systems, with many cross-correlated environmental variables. It is computationally efficient, can be fully automated, does not make any pre-conceived assumptions on the variables interdependency structure (such as linearity), and it is able to rank variables in a database and generate IBI predictions using only non-parametric easy to implement hierarchical clustering. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Sleep Variability in Adolescence is Associated with Altered Brain Development

    PubMed Central

    Telzer, Eva H.; Goldenberg, Diane; Fuligni, Andrew J.; Lieberman, Matthew D.; Galvan, Adriana

    2015-01-01

    Despite the known importance of sleep for brain development, and the sharp increase in poor sleep during adolescence, we know relatively little about how sleep impacts the developing brain. We present the first longitudinal study to examine how sleep during adolescence is associated with white matter integrity. We find that greater variability in sleep duration one year prior to a DTI scan is associated with lower white matter integrity above and beyond the effects of sleep duration, and variability in bedtime, whereas sleep variability a few months prior to the scan is not associated with white matter integrity. Thus, variability in sleep duration during adolescence may have long-term impairments on the developing brain. White matter integrity should be increasing during adolescence, and so sleep variability is directly at odds with normative developmental trends. PMID:26093368

  16. Chest Wall Diseases: Respiratory Pathophysiology.

    PubMed

    Tzelepis, George E

    2018-06-01

    The chest wall consists of various structures that function in an integrated fashion to ventilate the lungs. Disorders affecting the bony structures or soft tissues of the chest wall may impose elastic loads by stiffening the chest wall and decreasing respiratory system compliance. These alterations increase the work of breathing and lead to hypoventilation and hypercapnia. Respiratory failure may occur acutely or after a variable period of time. This review focuses on the pathophysiology of respiratory function in specific diseases and disorders of the chest wall, and highlights pathogenic mechanisms of respiratory failure. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Integrated optimization of nonlinear R/C frames with reliability constraints

    NASA Technical Reports Server (NTRS)

    Soeiro, Alfredo; Hoit, Marc

    1989-01-01

    A structural optimization algorithm was researched including global displacements as decision variables. The algorithm was applied to planar reinforced concrete frames with nonlinear material behavior submitted to static loading. The flexural performance of the elements was evaluated as a function of the actual stress-strain diagrams of the materials. Formation of rotational hinges with strain hardening were allowed and the equilibrium constraints were updated accordingly. The adequacy of the frames was guaranteed by imposing as constraints required reliability indices for the members, maximum global displacements for the structure and a maximum system probability of failure.

  18. Structural design optimization with survivability dependent constraints application: Primary wing box of a multi-role fighter

    NASA Technical Reports Server (NTRS)

    Dolvin, Douglas J.

    1992-01-01

    The superior survivability of a multirole fighter is dependent upon balanced integration of technologies for reduced vulnerability and susceptability. The objective is to develop a methodology for structural design optimization with survivability dependent constraints. The design criteria for optimization will be survivability in a tactical laser environment. The following analyses are studied to establish a dependent design relationship between structural weight and survivability: (1) develop a physically linked global design model of survivability variables; and (2) apply conventional constraints to quantify survivability dependent design. It was not possible to develop an exact approach which would include all aspects of survivability dependent design, therefore guidelines are offered for solving similar problems.

  19. Numerical integration of the extended variable generalized Langevin equation with a positive Prony representable memory kernel.

    PubMed

    Baczewski, Andrew D; Bond, Stephen D

    2013-07-28

    Generalized Langevin dynamics (GLD) arise in the modeling of a number of systems, ranging from structured fluids that exhibit a viscoelastic mechanical response, to biological systems, and other media that exhibit anomalous diffusive phenomena. Molecular dynamics (MD) simulations that include GLD in conjunction with external and/or pairwise forces require the development of numerical integrators that are efficient, stable, and have known convergence properties. In this article, we derive a family of extended variable integrators for the Generalized Langevin equation with a positive Prony series memory kernel. Using stability and error analysis, we identify a superlative choice of parameters and implement the corresponding numerical algorithm in the LAMMPS MD software package. Salient features of the algorithm include exact conservation of the first and second moments of the equilibrium velocity distribution in some important cases, stable behavior in the limit of conventional Langevin dynamics, and the use of a convolution-free formalism that obviates the need for explicit storage of the time history of particle velocities. Capability is demonstrated with respect to accuracy in numerous canonical examples, stability in certain limits, and an exemplary application in which the effect of a harmonic confining potential is mapped onto a memory kernel.

  20. Environmental Variability and Plankton Community Dynamics in the English Channel

    NASA Astrophysics Data System (ADS)

    Barton, A.; Gonzalez, F.; Atkinson, A.; Stock, C. A.

    2016-02-01

    Temporal environmental variation plays a key role in shaping plankton community structure and dynamics. In some cases, these ecological changes may be abrupt and long-lived, and constitute a significant change in overall ecosystem structure and function. The "Double Integration Hypothesis", posed recently by Di Lorenzo and Ohman to help explain these complex biophysical linkages, holds that atmospheric variability is filtered first through the ocean surface before secondarily imprinting on plankton communities. In this perspective, physical properties of the surface ocean, such as sea surface temperature (SST), integrate atmospheric white noise, resulting in a time series that is smoother and has more low than high frequency variability (red noise). Secondarily, long-lived zooplankton integrate over oceanographic conditions and further redden the power spectra. We test the generality of this hypothesis with extensive environmental and ecological data from the L4 station in the Western English Channel (1988-present), calculating power spectral slopes from anomaly time series for atmospheric forcing (wind stress and net heat fluxes), surface ocean conditions (SST and macronutrients), and the biomasses of well over 100 phytoplankton and zooplankton taxa. As expected, we find that SST and macronutrient concentrations are redder in character than white noise atmospheric forcing. However, we find that power spectral slopes for phytoplankton and zooplankton are generally not significantly less than found for oceanographic conditions. Moreover, we find a considerable range in power spectral slopes within the phytoplankton and zooplankton, reflecting the diversity of body sizes, traits, life histories, and predator-prey interactions. We interpret these findings using an idealized trait-based model with a single phytoplankton prey and zooplankton predator, configured to capture essential oceanographic properties at the L4 station, and discuss how changes in power spectral slope seen in the L4 time series are linked to predator-prey body size and generation length differences.

  1. Flight Dynamics of Flexible Aircraft with Aeroelastic and Inertial Force Interactions

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.; Tuzcu, Ilhan

    2009-01-01

    This paper presents an integrated flight dynamic modeling method for flexible aircraft that captures coupled physics effects due to inertial forces, aeroelasticity, and propulsive forces that are normally present in flight. The present approach formulates the coupled flight dynamics using a structural dynamic modeling method that describes the elasticity of a flexible, twisted, swept wing using an equivalent beam-rod model. The structural dynamic model allows for three types of wing elastic motion: flapwise bending, chordwise bending, and torsion. Inertial force coupling with the wing elasticity is formulated to account for aircraft acceleration. The structural deflections create an effective aeroelastic angle of attack that affects the rigid-body motion of flexible aircraft. The aeroelastic effect contributes to aerodynamic damping forces that can influence aerodynamic stability. For wing-mounted engines, wing flexibility can cause the propulsive forces and moments to couple with the wing elastic motion. The integrated flight dynamics for a flexible aircraft are formulated by including generalized coordinate variables associated with the aeroelastic-propulsive forces and moments in the standard state-space form for six degree-of-freedom flight dynamics. A computational structural model for a generic transport aircraft has been created. The eigenvalue analysis is performed to compute aeroelastic frequencies and aerodynamic damping. The results will be used to construct an integrated flight dynamic model of a flexible generic transport aircraft.

  2. Integrating Mediators and Moderators in Research Design

    ERIC Educational Resources Information Center

    MacKinnon, David P.

    2011-01-01

    The purpose of this article is to describe mediating variables and moderating variables and provide reasons for integrating them in outcome studies. Separate sections describe examples of moderating and mediating variables and the simplest statistical model for investigating each variable. The strengths and limitations of incorporating mediating…

  3. Integral projection models for finite populations in a stochastic environment.

    PubMed

    Vindenes, Yngvild; Engen, Steinar; Saether, Bernt-Erik

    2011-05-01

    Continuous types of population structure occur when continuous variables such as body size or habitat quality affect the vital parameters of individuals. These structures can give rise to complex population dynamics and interact with environmental conditions. Here we present a model for continuously structured populations with finite size, including both demographic and environmental stochasticity in the dynamics. Using recent methods developed for discrete age-structured models we derive the demographic and environmental variance of the population growth as functions of a continuous state variable. These two parameters, together with the expected population growth rate, are used to define a one-dimensional diffusion approximation of the population dynamics. Thus, a substantial reduction in complexity is achieved as the dynamics of the complex structured model can be described by only three population parameters. We provide methods for numerical calculation of the model parameters and demonstrate the accuracy of the diffusion approximation by computer simulation of specific examples. The general modeling framework makes it possible to analyze and predict future dynamics and extinction risk of populations with various types of structure, and to explore consequences of changes in demography caused by, e.g., climate change or different management decisions. Our results are especially relevant for small populations that are often of conservation concern.

  4. Analyzing the responses of species assemblages to climate change across the Great Basin, USA.

    NASA Astrophysics Data System (ADS)

    Henareh Khalyani, A.; Falkowski, M. J.; Crookston, N.; Yousef, F.

    2016-12-01

    The potential impacts of climate change on the future distribution of tree species in not well understood. Climate driven changes in tree species distribution could cause significant changes in realized species niches, potentially resulting in the loss of ecotonal species as well as the formation on novel assemblages of overlapping tree species. In an effort to gain a better understating of how the geographic distribution of tree species may respond to climate change, we model the potential future distribution of 50 different tree species across 70 million ha in the Great Basin, USA. This is achieved by leveraging a species realized niche model based on non-parametric analysis of species occurrences across climatic, topographic, and edaphic variables. Spatially explicit, high spatial resolution (30 m) climate variables (e.g., precipitation, and minimum, maximum, and mean temperature) and associated climate indices were generated on an annual basis between 1981-2010 by integrating climate station data with digital elevation data (Shuttle Radar Topographic Mission (SRTM) data) in a thin plate spline interpolation algorithm (ANUSPLIN). Bioclimate models of species niches in in the cotemporary period and three following 30 year periods were then generated by integrating the climate variables, soil data, and CMIP 5 general circulation model projections. Our results suggest that local scale contemporary variations in species realized niches across space are influenced by edaphic and topographic variables as well as climatic variables. The local variability in soil properties and topographic variability across space also affect the species responses to climate change through time and potential formation of species assemblages in future. The results presented here in will aid in the development of adaptive forest management techniques aimed at mitigating negative impacts of climate change on forest composition, structure, and function.

  5. On the Improvement of Convergence Performance for Integrated Design of Wind Turbine Blade Using a Vector Dominating Multi-objective Evolution Algorithm

    NASA Astrophysics Data System (ADS)

    Wang, L.; Wang, T. G.; Wu, J. H.; Cheng, G. P.

    2016-09-01

    A novel multi-objective optimization algorithm incorporating evolution strategies and vector mechanisms, referred as VD-MOEA, is proposed and applied in aerodynamic- structural integrated design of wind turbine blade. In the algorithm, a set of uniformly distributed vectors is constructed to guide population in moving forward to the Pareto front rapidly and maintain population diversity with high efficiency. For example, two- and three- objective designs of 1.5MW wind turbine blade are subsequently carried out for the optimization objectives of maximum annual energy production, minimum blade mass, and minimum extreme root thrust. The results show that the Pareto optimal solutions can be obtained in one single simulation run and uniformly distributed in the objective space, maximally maintaining the population diversity. In comparison to conventional evolution algorithms, VD-MOEA displays dramatic improvement of algorithm performance in both convergence and diversity preservation for handling complex problems of multi-variables, multi-objectives and multi-constraints. This provides a reliable high-performance optimization approach for the aerodynamic-structural integrated design of wind turbine blade.

  6. Integration of QSAR and in vitro toxicology.

    PubMed Central

    Barratt, M D

    1998-01-01

    The principles of quantitative structure-activity relationships (QSAR) are based on the premise that the properties of a chemical are implicit in its molecular structure. Therefore, if a mechanistic hypothesis can be proposed linking a group of related chemicals with a particular toxic end point, the hypothesis can be used to define relevant parameters to establish a QSAR. Ways in which QSAR and in vitro toxicology can complement each other in development of alternatives to live animal experiments are described and illustrated by examples from acute toxicological end points. Integration of QSAR and in vitro methods is examined in the context of assessing mechanistic competence and improving the design of in vitro assays and the development of prediction models. The nature of biological variability is explored together with its implications for the selection of sets of chemicals for test development, optimization, and validation. Methods are described to support the use of data from in vivo tests that do not meet today's stringent requirements of acceptability. Integration of QSAR and in vitro methods into strategic approaches for the replacement, reduction, and refinement of the use of animals is described with examples. PMID:9599692

  7. Delay compensation in integrated communication and control systems. I - Conceptual development and analysis

    NASA Technical Reports Server (NTRS)

    Luck, Rogelio; Ray, Asok

    1990-01-01

    A procedure for compensating for the effects of distributed network-induced delays in integrated communication and control systems (ICCS) is proposed. The problem of analyzing systems with time-varying and possibly stochastic delays could be circumvented by use of a deterministic observer which is designed to perform under certain restrictive but realistic assumptions. The proposed delay-compensation algorithm is based on a deterministic state estimator and a linear state-variable-feedback control law. The deterministic observer can be replaced by a stochastic observer without any structural modifications of the delay compensation algorithm. However, if a feedforward-feedback control law is chosen instead of the state-variable feedback control law, the observer must be modified as a conventional nondelayed system would be. Under these circumstances, the delay compensation algorithm would be accordingly changed. The separation principle of the classical Luenberger observer holds true for the proposed delay compensator. The algorithm is suitable for ICCS in advanced aircraft, spacecraft, manufacturing automation, and chemical process applications.

  8. A General Reversible Hereditary Constitutive Model. Part 1; Theoretical Developments

    NASA Technical Reports Server (NTRS)

    Saleeb, A. F.; Arnold, S. M.

    1997-01-01

    Using an internal-variable formalism as a starting point, we describe the viscoelastic extension of a previously-developed viscoplasticity formulation of the complete potential structure type. It is mainly motivated by experimental evidence for the presence of rate/time effects in the so-called quasilinear, reversible, material response range. Several possible generalizations are described, in the general format of hereditary-integral representations for non-equilibrium, stress-type, state variables, both for isotropic as well as anisotropic materials. In particular, thorough discussions are given on the important issues of thermodynamic admissibility requirements for such general descriptions, resulting in a set of explicit mathematical constraints on the associated kernel (relaxation and creep compliance) functions. In addition, a number of explicit, integrated forms are derived, under stress and strain control to facilitate the parametric and qualitative response characteristic studies reported here, as well as to help identify critical factors in the actual experimental characterizations from test data that will be reported in Part II.

  9. Evaluation of Offline Models Used to Simulate Components of the Permafrost Carbon Feedback: Experience from the Permafrost Carbon Network Model Integration Group

    NASA Astrophysics Data System (ADS)

    McGuire, A. D.

    2016-12-01

    The Model Integration Group of the Permafrost Carbon Network (see http://www.permafrostcarbon.org/) has conducted studies to evaluate the sensitivity of offline terrestrial permafrost and carbon models to both historical and projected climate change. These studies indicate that there is a wide range of (1) initial states permafrost extend and carbon stocks simulated by these models and (2) responses of permafrost extent and carbon stocks to both historical and projected climate change. In this study, we synthesize what has been learned about the variability in initial states among models and the driving factors that contribute to variability in the sensitivity of responses. We conclude the talk with a discussion of efforts needed by (1) the modeling community to standardize structural representation of permafrost and carbon dynamics among models that are used to evaluate the permafrost carbon feedback and (2) the modeling and observational communities to jointly develop data sets and methodologies to more effectively benchmark models.

  10. Possible role for fundus autofluorescence as a predictive factor for visual acuity recovery after epiretinal membrane surgery.

    PubMed

    Brito, Pedro N; Gomes, Nuno L; Vieira, Marco P; Faria, Pedro A; Fernandes, Augusto V; Rocha-Sousa, Amândio; Falcão-Reis, Fernando

    2014-02-01

    To study the potential association between fundus autofluorescence, spectral-domain optical coherence tomography, and visual acuity in patients undergoing surgery because of epiretinal membranes. Prospective, interventional case series including 26 patients submitted to vitrectomy because of symptomatic epiretinal membranes. Preoperative evaluation consisted of a complete ophthalmologic examination, autofluorescence, and spectral-domain optical coherence tomography. Studied variables included foveal autofluorescence (fov.AF), photoreceptor inner segment/outer segment (IS/OS) junction line integrity, external limiting membrane integrity, central foveal thickness, and foveal morphology. All examinations were repeated at the first, third, and sixth postoperative months. The main outcome measures were logarithm of minimal angle resolution visual acuity, fov.AF integrity, and IS/OS integrity. All cases showing a continuous IS/OS line had an intact fov.AF, whereas patients with IS/OS disruption could have either an increased area of foveal hypoautofluorescence or an intact fov.AF, with the latter being associated with IS/OS integrity recovery in follow-up spectral-domain optical coherence tomography imaging. The only preoperative variables presenting a significant correlation with final visual acuity were baseline visual acuity (P = 0.047) and fov.AF grade (P = 0.023). Recovery of IS/OS line integrity after surgery, in patients with preoperative IS/OS disruption and normal fov.AF, can be explained by the presence of a functional retinal pigment epithelium-photoreceptor complex, supporting normal photoreceptor activity. Autofluorescence imaging provides a functional component to the study of epiretinal membranes, complementing the structural information obtained with optical coherence tomography.

  11. Patterns of morphological variation in enamel–dentin junction and outer enamel surface of human molars

    PubMed Central

    Morita, Wataru; Yano, Wataru; Nagaoka, Tomohito; Abe, Mikiko; Ohshima, Hayato; Nakatsukasa, Masato

    2014-01-01

    Tooth crown patterning is governed by the growth and folding of the inner enamel epithelium (IEE) and the following enamel deposition forms outer enamel surface (OES). We hypothesized that overall dental crown shape and covariation structure are determined by processes that configurate shape at the enamel–dentine junction (EDJ), the developmental vestige of IEE. This this hypothesis was tested by comparing patterns of morphological variation between EDJ and OES in human permanent maxillary first molar (UM1) and deciduous second molar (um2). Using geometric morphometric methods, we described morphological variation and covariation between EDJ and OES, and evaluated the strength of two components of phenotypic variability, canalization and morphological integration, in addition to the relevant evolutionary flexibility, i.e. the ability to respond to selective pressure. The strength of covariation between EDJ and OES was greater in um2 than in UM1, and the way that multiple traits covary between EDJ and OES was different between these teeth. The variability analyses showed that EDJ had less shape variation and a higher level of morphological integration than OES, which indicated that canalization and morphological integration acted as developmental constraints. These tendencies were greater in UM1 than in um2. On the other hand, EDJ and OES had a comparable level of evolvability in these teeth. Amelogenesis could play a significant role in tooth shape and covariation structure, and its influence was not constant among teeth, which may be responsible for the differences in the rate and/or period of enamel formation. PMID:24689536

  12. Sleep variability in adolescence is associated with altered brain development.

    PubMed

    Telzer, Eva H; Goldenberg, Diane; Fuligni, Andrew J; Lieberman, Matthew D; Gálvan, Adriana

    2015-08-01

    Despite the known importance of sleep for brain development, and the sharp increase in poor sleep during adolescence, we know relatively little about how sleep impacts the developing brain. We present the first longitudinal study to examine how sleep during adolescence is associated with white matter integrity. We find that greater variability in sleep duration one year prior to a DTI scan is associated with lower white matter integrity above and beyond the effects of sleep duration, and variability in bedtime, whereas sleep variability a few months prior to the scan is not associated with white matter integrity. Thus, variability in sleep duration during adolescence may have long-term impairments on the developing brain. White matter integrity should be increasing during adolescence, and so sleep variability is directly at odds with normative developmental trends. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Current integrated cardiothoracic surgery residents: a Thoracic Surgery Residents Association survey.

    PubMed

    Tchantchaleishvili, Vakhtang; LaPar, Damien J; Stephens, Elizabeth H; Berfield, Kathleen S; Odell, David D; DeNino, Walter F

    2015-03-01

    After approval by the Thoracic Surgery Residency Review Committee in 2007, 6-year integrated cardiothoracic surgery (I-6) residency programs have gained in popularity. We sought to assess and objectively quantify the level of satisfaction I-6 residents have with their training and to identify areas of improvement for future curriculum development. A completely anonymous, electronic survey was created by the Thoracic Surgery Residents Association that asked the responders to provide demographic information, specialty interest, and lifestyle priorities, and to rate their experience and satisfaction with I-6 residency. The survey was distributed nationwide to all residents in I-6 programs approved by the Accreditation Council for Graduate Medical Education. Of a total of 88 eligible I-6 residents, 49 completed the survey (55.7%). Career choice satisfaction was high (75.5%), as was overall satisfaction with integrated training (83.7%). The majority (77.6%) were interested in cardiac surgery. Overall, the responders reported sufficient time for life outside of the hospital (57.1%), but experienced conflicts between work obligations and personal life at least sometimes (75.5%). Early exposure to cardiothoracic surgery was reported as the dominant advantage of the I-6 model, whereas variable curriculum structure and unclear expectations along with poor integration with general surgery training ranked highest among perceived disadvantages. Current I-6 residents are largely satisfied with the integrated training model and report a reasonable work/life balance. The focused nature of training is the primary perceived advantage of the integrated pathway. Curriculum variability and poor integration with general surgery training are identified by residents as primary areas of concern. Copyright © 2015 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  14. On the comparison of the strength of morphological integration across morphometric datasets.

    PubMed

    Adams, Dean C; Collyer, Michael L

    2016-11-01

    Evolutionary morphologists frequently wish to understand the extent to which organisms are integrated, and whether the strength of morphological integration among subsets of phenotypic variables differ among taxa or other groups. However, comparisons of the strength of integration across datasets are difficult, in part because the summary measures that characterize these patterns (RV coefficient and r PLS ) are dependent both on sample size and on the number of variables. As a solution to this issue, we propose a standardized test statistic (a z-score) for measuring the degree of morphological integration between sets of variables. The approach is based on a partial least squares analysis of trait covariation, and its permutation-based sampling distribution. Under the null hypothesis of a random association of variables, the method displays a constant expected value and confidence intervals for datasets of differing sample sizes and variable number, thereby providing a consistent measure of integration suitable for comparisons across datasets. A two-sample test is also proposed to statistically determine whether levels of integration differ between datasets, and an empirical example examining cranial shape integration in Mediterranean wall lizards illustrates its use. Some extensions of the procedure are also discussed. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  15. Individual differences and time-varying features of modular brain architecture.

    PubMed

    Liao, Xuhong; Cao, Miao; Xia, Mingrui; He, Yong

    2017-05-15

    Recent studies have suggested that human brain functional networks are topologically organized into functionally specialized but inter-connected modules to facilitate efficient information processing and highly flexible cognitive function. However, these studies have mainly focused on group-level network modularity analyses using "static" functional connectivity approaches. How these extraordinary modular brain structures vary across individuals and spontaneously reconfigure over time remain largely unknown. Here, we employed multiband resting-state functional MRI data (N=105) from the Human Connectome Project and a graph-based modularity analysis to systematically investigate individual variability and dynamic properties in modular brain networks. We showed that the modular structures of brain networks dramatically vary across individuals, with higher modular variability primarily in the association cortex (e.g., fronto-parietal and attention systems) and lower variability in the primary systems. Moreover, brain regions spontaneously changed their module affiliations on a temporal scale of seconds, which cannot be simply attributable to head motion and sampling error. Interestingly, the spatial pattern of intra-subject dynamic modular variability largely overlapped with that of inter-subject modular variability, both of which were highly reproducible across repeated scanning sessions. Finally, the regions with remarkable individual/temporal modular variability were closely associated with network connectors and the number of cognitive components, suggesting a potential contribution to information integration and flexible cognitive function. Collectively, our findings highlight individual modular variability and the notable dynamic characteristics in large-scale brain networks, which enhance our understanding of the neural substrates underlying individual differences in a variety of cognition and behaviors. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. COBRA: A prospective multimodal imaging study of dopamine, brain structure and function, and cognition.

    PubMed

    Nevalainen, N; Riklund, K; Andersson, M; Axelsson, J; Ögren, M; Lövdén, M; Lindenberger, U; Bäckman, L; Nyberg, L

    2015-07-01

    Cognitive decline is a characteristic feature of normal human aging. Previous work has demonstrated marked interindividual variability in onset and rate of decline. Such variability has been linked to factors such as maintenance of functional and structural brain integrity, genetics, and lifestyle. Still, few, if any, studies have combined a longitudinal design with repeated multimodal imaging and a comprehensive assessment of cognition as well as genetic and lifestyle factors. The present paper introduces the Cognition, Brain, and Aging (COBRA) study, in which cognitive performance and brain structure and function are measured in a cohort of 181 older adults aged 64 to 68 years at baseline. Participants will be followed longitudinally over a 10-year period, resulting in a total of three equally spaced measurement occasions. The measurement protocol at each occasion comprises a comprehensive set of behavioral and imaging measures. Cognitive performance is evaluated via computerized testing of working memory, episodic memory, perceptual speed, motor speed, implicit sequence learning, and vocabulary. Brain imaging is performed using positron emission tomography with [(11)C]-raclopride to assess dopamine D2/D3 receptor availability. Structural magnetic resonance imaging (MRI) is used for assessment of white and gray-matter integrity and cerebrovascular perfusion, and functional MRI maps brain activation during rest and active task conditions. Lifestyle descriptives are collected, and blood samples are obtained and stored for future evaluation. Here, we present selected results from the baseline assessment along with a discussion of sample characteristics and methodological considerations that determined the design of the study. This article is part of a Special Issue entitled SI: Memory & Aging. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Association of suicide rates, gun ownership, conservatism and individual suicide risk.

    PubMed

    Kposowa, Augustine J

    2013-09-01

    The purpose of the study was to examine the association of suicide rates, firearm ownership, political conservatism, religious integration at the state level, and individual suicide risk. Social structural and social learning and social integration theories were theoretical frameworks employed. It was hypothesized that higher suicide rates, higher state firearm availability, and state conservatism elevate individual suicide risk. Data were pooled from the Multiple Cause of Death Files. Multilevel logistic regression models were fitted to all deaths occurring in 2000 through 2004 by suicide. The state suicide rate significantly elevated individual suicide risk (AOR = 1.042, CI = 1.037, 1.046). Firearm availability at the state level was associated with significantly higher odds of individual suicide (AOR = 1.004, CI = 1.003, 1.006). State political conservatism elevated the odds of individual suicides (AOR = 1.005, CI = 1.003, 1.007), while church membership at the state level reduced individual odds of suicide (AOR = 0.995, CI = 0.993, 0.996). The results held even after controlling for socioeconomic and demographic variables at the individual level. It was concluded that the observed association between individual suicide odds and national suicide rates, and firearm ownership cannot be discounted. Future research ought to focus on integrating individual level data and contextual variables when testing for the impact of firearm ownership. Support was found for social learning and social integration theories.

  18. Developing models to predict 8th grade students' achievement levels on timss science based on opportunity-to-learn variables

    NASA Astrophysics Data System (ADS)

    Whitford, Melinda M.

    Science educational reforms have placed major emphasis on improving science classroom instruction and it is therefore vital to study opportunity-to-learn (OTL) variables related to student science learning experiences and teacher teaching practices. This study will identify relationships between OTL and student science achievement and will identify OTL predictors of students' attainment at various distinct achievement levels (low/intermediate/high/advanced). Specifically, the study (a) address limitations of previous studies by examining a large number of independent and control variables that may impact students' science achievement and (b) it will test hypotheses of structural relations to how the identified predictors and mediating factors impact on student achievement levels. The study will follow a multi-stage and integrated bottom-up and top-down approach to identify predictors of students' achievement levels on standardized tests using TIMSS 2011 dataset. Data mining or pattern recognition, a bottom-up approach will identify the most prevalent association patterns between different student achievement levels and variables related to student science learning experiences, teacher teaching practices and home and school environments. The second stage is a top-down approach, testing structural equation models of relations between the significant predictors and students' achievement levels according.

  19. Plate and butt-weld stresses beyond elastic limit, material and structural modeling

    NASA Technical Reports Server (NTRS)

    Verderaime, V.

    1991-01-01

    Ultimate safety factors of high performance structures depend on stress behavior beyond the elastic limit, a region not too well understood. An analytical modeling approach was developed to gain fundamental insights into inelastic responses of simple structural elements. Nonlinear material properties were expressed in engineering stresses and strains variables and combined with strength of material stress and strain equations similar to numerical piece-wise linear method. Integrations are continuous which allows for more detailed solutions. Included with interesting results are the classical combined axial tension and bending load model and the strain gauge conversion to stress beyond the elastic limit. Material discontinuity stress factors in butt-welds were derived. This is a working-type document with analytical methods and results applicable to all industries of high reliability structures.

  20. Isogeometric Analysis of Boundary Integral Equations

    DTIC Science & Technology

    2015-04-21

    methods, IgA relies on Non-Uniform Rational B- splines (NURBS) [43, 46], T- splines [55, 53] or subdivision surfaces [21, 48, 51] rather than piece- wise...structural dynamics [25, 26], plates and shells [15, 16, 27, 28, 37, 22, 23], phase-field models [17, 32, 33], and shape optimization [40, 41, 45, 59...polynomials for approximating the geometry and field variables. Thus, by replacing piecewise polynomials with NURBS or T- splines , one can develop

  1. How Green Water Flows structure be a decision indicator for ecological water allocation in arid Ejina Delta, China.

    NASA Astrophysics Data System (ADS)

    Yu, J.; Du, C.; Zhang, Y.; Liu, X.

    2014-12-01

    Green water flows, a key ecohydrological process, dominates the hydrological cycle in arid region. The structure of green water flows reflects the landscape water consumption characteristics and can be easily obtained by means of remote sensing approach. In arid region, limited fresh water and fragile environment resulted in sharp contradictions between economy and natural ecosystem concerning water demands. To rationally allocate economic and ecological water use, to maximize the regional freshwater use efficiency, is the route one must take for sustainable development in arid area. The pursuit of the most necessary ecological protection function and the maximum ecological water use efficiency is the key to ecological water allocation. However, we are short of simple and quick detectable variables or indexes to assess ecological water allocation decision. This paper introduced the green water flows structure as a decision variable, chose Heihe river flow allocation to downstream Ejina Delta for ecological protection as an example, put forward why and how green water flows structure could be used for ecological water allocation decision. The authors expect to provide reference for integrated fresh water resources management practice in arid region.

  2. Kinematic modeling of a double octahedral Variable Geometry Truss (VGT) as an extensible gimbal

    NASA Technical Reports Server (NTRS)

    Williams, Robert L., II

    1994-01-01

    This paper presents the complete forward and inverse kinematics solutions for control of the three degree-of-freedom (DOF) double octahedral variable geometry truss (VGT) module as an extensible gimbal. A VGT is a truss structure partially comprised of linearly actuated members. A VGT can be used as joints in a large, lightweight, high load-bearing manipulator for earth- and space-based remote operations, plus industrial applications. The results have been used to control the NASA VGT hardware as an extensible gimbal, demonstrating the capability of this device to be a joint in a VGT-based manipulator. This work is an integral part of a VGT-based manipulator design, simulation, and control tool.

  3. Structural integration and performance of inter-sectoral public health-related policy networks: An analysis across policy phases.

    PubMed

    Peters, D T J M; Raab, J; Grêaux, K M; Stronks, K; Harting, J

    2017-12-01

    Inter-sectoral policy networks may be effective in addressing environmental determinants of health with interventions. However, contradictory results are reported on relations between structural network characteristics (i.e., composition and integration) and network performance, such as addressing environmental determinants of health. This study examines these relations in different phases of the policy process. A multiple-case study was performed on four public health-related policy networks. Using a snowball method among network actors, overall and sub-networks per policy phase were identified and the policy sector of each actor was assigned. To operationalise the outcome variable, interventions were classified by the proportion of environmental determinants they addressed. In the overall networks, no relation was found between structural network characteristics and network performance. In most effective cases, the policy development sub-networks were characterised by integration with less interrelations between actors (low cohesion), more equally distributed distances between the actors (low closeness centralisation), and horizontal integration in inter-sectoral cliques. The most effective case had non-public health central actors with less connections in all sub-networks. The results suggest that, to address environmental determinants of health, sub-networks should be inter-sectorally composed in the policy development rather than in the intervention development and implementation phases, and that policy development actors should have the opportunity to connect with other actors, without strong direction from a central actor. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Gravity and thermal deformation of large primary mirror in space telescope

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Jiang, Shouwang; Wan, Jinlong; Shu, Rong

    2016-10-01

    The technology of integrating mechanical FEA analysis with optical estimation is essential to simulate the gravity deformation of large main mirror and the thermal deformation such as static or temperature gradient of optical structure. We present the simulation results of FEA analysis, data processing, and image performance. Three kinds of support structure for large primary mirror which have the center holding structure, the edge glue fixation and back support, are designed and compared to get the optimal gravity deformation. Variable mirror materials Zerodur/SiC are chosen and analyzed to obtain the small thermal gradient distortion. The simulation accuracy is dependent on FEA mesh quality, the load definition of structure, the fitting error from discrete data to smooth surface. A main mirror with 1m diameter is designed as an example. The appropriate structure material to match mirror, the central supporting structure, and the key aspects of FEA simulation are optimized for space application.

  5. Hybrid state vector methods for structural dynamic and aeroelastic boundary value problems

    NASA Technical Reports Server (NTRS)

    Lehman, L. L.

    1982-01-01

    A computational technique is developed that is suitable for performing preliminary design aeroelastic and structural dynamic analyses of large aspect ratio lifting surfaces. The method proves to be quite general and can be adapted to solving various two point boundary value problems. The solution method, which is applicable to both fixed and rotating wing configurations, is based upon a formulation of the structural equilibrium equations in terms of a hybrid state vector containing generalized force and displacement variables. A mixed variational formulation is presented that conveniently yields a useful form for these state vector differential equations. Solutions to these equations are obtained by employing an integrating matrix method. The application of an integrating matrix provides a discretization of the differential equations that only requires solutions of standard linear matrix systems. It is demonstrated that matrix partitioning can be used to reduce the order of the required solutions. Results are presented for several example problems in structural dynamics and aeroelasticity to verify the technique and to demonstrate its use. These problems examine various types of loading and boundary conditions and include aeroelastic analyses of lifting surfaces constructed from anisotropic composite materials.

  6. Trends and variability in column-integrated atmospheric water vapor

    NASA Astrophysics Data System (ADS)

    Trenberth, Kevin E.; Fasullo, John; Smith, Lesley

    2005-06-01

    An analysis and evaluation has been performed of global datasets on column-integrated water vapor (precipitable water). For years before 1996, the Ross and Elliott radiosonde dataset is used for validation of European Centre for Medium-range Weather Forecasts (ECMWF) reanalyses ERA-40. Only the special sensor microwave imager (SSM/I) dataset from remote sensing systems (RSS) has credible means, variability and trends for the oceans, but it is available only for the post-1988 period. Major problems are found in the means, variability and trends from 1988 to 2001 for both reanalyses from National Centers for Environmental Prediction (NCEP) and the ERA-40 reanalysis over the oceans, and for the NASA water vapor project (NVAP) dataset more generally. NCEP and ERA-40 values are reasonable over land where constrained by radiosondes. Accordingly, users of these data should take great care in accepting results as real. The problems highlight the need for reprocessing of data, as has been done by RSS, and reanalyses that adequately take account of the changing observing system. Precipitable water variability for 1988 2001 is dominated by the evolution of ENSO and especially the structures that occurred during and following the 1997 98 El Niño event. The evidence from SSM/I for the global ocean suggests that recent trends in precipitable water are generally positive and, for 1988 through 2003, average 0.40±0.09 mm per decade or 1.3±0.3% per decade for the ocean as a whole, where the error bars are 95% confidence intervals. Over the oceans, the precipitable water variability relates very strongly to changes in SSTs, both in terms of spatial structure of trends and temporal variability (with a regression coefficient for 30°N 30°S of 7.8% K-1) and is consistent with the assumption of fairly constant relative humidity. In the tropics, the trends are also influenced by changes in rainfall which, in turn, are closely associated with the mean flow and convergence of moisture by the trade winds. The main region where positive trends are not very evident is over Europe, in spite of large and positive trends over the North Atlantic since 1988. A much longer time series is probably required to obtain stable patterns of trends over the oceans, although the main variability could probably be deduced from past SST and associated precipitation variations.

  7. SVS: data and knowledge integration in computational biology.

    PubMed

    Zycinski, Grzegorz; Barla, Annalisa; Verri, Alessandro

    2011-01-01

    In this paper we present a framework for structured variable selection (SVS). The main concept of the proposed schema is to take a step towards the integration of two different aspects of data mining: database and machine learning perspective. The framework is flexible enough to use not only microarray data, but other high-throughput data of choice (e.g. from mass spectrometry, microarray, next generation sequencing). Moreover, the feature selection phase incorporates prior biological knowledge in a modular way from various repositories and is ready to host different statistical learning techniques. We present a proof of concept of SVS, illustrating some implementation details and describing current results on high-throughput microarray data.

  8. Remarks on non-maximal integral elements of the Cartan plane in jet spaces

    NASA Astrophysics Data System (ADS)

    Bächtold, M.; Moreno, G.

    2014-11-01

    There is a natural filtration on the space of degree-k homogeneous polynomials in n independent variables with coefficients in the algebra of smooth functions on the Grassmannian Gr (n,s), determined by the tautological bundle. In this paper we show that the space of s-dimensional integral elements of a Cartan plane on J(E,n), with dimE=n+m, has an affine bundle structure modeled by the so-obtained bundles over Gr (n,s), and we study a natural distribution associated with it. As an example, we show that a third-order nonlinear PDE of Monge-Ampère type is not contact-equivalent to a quasi-linear one.

  9. Black Holes, Hidden Symmetry and Complete Integrability: Brief Review

    NASA Astrophysics Data System (ADS)

    Frolov, Valeri P.

    This chapter contains a brief review of the remarkable properties of higher dimensional rotating black holes with the spherical topology of the horizon. We demonstrate that these properties are connected with and generated by a special geometrical object, the Principal Conformal Killing-Yano tensor (PCKYT). The most general solution, describing such black holes, Kerr-NUT-ADS metric, admits this structure. Moreover a solution of the Einstein Equations with (or without) a cosmological constant which possesses PCKYT is the Kerr-NUT-ADS metric. This object (PCKYT) is responsible for such remarkable properties of higher dimensional rotating black holes as: (i) complete integrability of geodesic equations and (ii) complete separation of variables of the important field equations.

  10. Integrated tuned vibration absorbers: a theoretical study.

    PubMed

    Gardonio, Paolo; Zilletti, Michele

    2013-11-01

    This article presents a simulation study on two integrated tuned vibration absorbers (TVAs) designed to control the global flexural vibration of lightly damped thin structures subject to broad frequency band disturbances. The first one consists of a single axial switching TVA composed by a seismic mass mounted on variable axial spring and damper elements so that the characteristic damping and natural frequency of the absorber can be switched iteratively to control the resonant response of three flexural modes of the hosting structure. The second one consists of a single three-axes TVA composed by a seismic mass mounted on axial and rotational springs and dampers, which are arranged in such a way that the suspended mass is characterized by uncoupled heave and pitch-rolling vibrations. In this case the three damping and natural frequency parameters of the absorber are tuned separately to control three flexural modes of the hosting structure. The simulation study shows that the proposed single-unit absorbers produce, respectively, 5.3 and 8.7 dB reductions of the global flexural vibration of a rectangular plate between 20 and 120 Hz.

  11. Development of an integrated BEM approach for hot fluid structure interaction

    NASA Technical Reports Server (NTRS)

    Dargush, Gary F.; Banerjee, Prasanta K.; Honkala, Keith A.

    1991-01-01

    The development of a boundary element formulation for the study of hot fluid-structure interaction in earth-to-orbit engine hot section components is described. The initial primary thrust of the program to date was directed quite naturally toward the examination of fluid flow, since boundary element methods for fluids are at a much less developed state. This required the development of integral formulations for both the solid and fluid, and some preliminary infrastructural enhancements to a boundary element code to permit coupling of the fluid-structure problem. Boundary element formulations are implemented in two dimensions for both the solid and the fluid. The solid is modeled as an uncoupled thermoelastic medium under plane strain conditions, while several formulations are investigated for the fluid. For example, both vorticity and primitive variable approaches are implemented for viscous, incompressible flow, and a compressible version is developed. All of the above boundary element implementations are incorporated in a general purpose two-dimensional code. Thus, problems involving intricate geometry, multiple generic modeling regions, and arbitrary boundary conditions are all supported.

  12. Analysis of integrated photovoltaic-thermal systems using solar concentrators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yusoff, M.B.

    1983-01-01

    An integrated photovoltaic-thermal system using solar concentrators utilizes the solar radiation spectrum in the production of electrical and thermal energy. The electrical conversion efficiency of this system decreases with increasing solar cell temperature. Since a high operating temperature is desirable to maximize the quality of thermal output of the planned integrated system, a proper choice of the operating temperature for the unit cell is of vital importance. The analysis predicts performance characteristics of the unit cell by considering the dependence of the heat generation, the heat absorption and the heat transmission on the material properties of the unit cell structure.more » An analytical model has been developed to describe the heat transport phenomena occurring in the unit cell structure. The range of applicability of the one-dimensional and the two-dimensional models, which have closed-form solutions, has been demonstrated. Parametric and design studies point out the requirements for necessary good electrical and thermal performance. A procedure utilizing functional forms of component characteristics in the form of partial coefficients of the dependent variable has been developed to design and operate the integrated system to have a desirable value of the thermal to electrical output ratio both at design and operating modes.« less

  13. A systematic evaluation of expression of HERV-W elements; influence of genomic context, viral structure and orientation

    PubMed Central

    2011-01-01

    Background One member of the W family of human endogenous retroviruses (HERV) appears to have been functionally adopted by the human host. Nevertheless, a highly diversified and regulated transcription from a range of HERV-W elements has been observed in human tissues and cells. Aberrant expression of members of this family has also been associated with human disease such as multiple sclerosis (MS) and schizophrenia. It is not known whether this broad expression of HERV-W elements represents transcriptional leakage or specific transcription initiated from the retroviral promoter in the long terminal repeat (LTR) region. Therefore, potential influences of genomic context, structure and orientation on the expression levels of individual HERV-W elements in normal human tissues were systematically investigated. Results Whereas intronic HERV-W elements with a pseudogene structure exhibited a strong anti-sense orientation bias, intronic elements with a proviral structure and solo LTRs did not. Although a highly variable expression across tissues and elements was observed, systematic effects of context, structure and orientation were also observed. Elements located in intronic regions appeared to be expressed at higher levels than elements located in intergenic regions. Intronic elements with proviral structures were expressed at higher levels than those elements bearing hallmarks of processed pseudogenes or solo LTRs. Relative to their corresponding genes, intronic elements integrated on the sense strand appeared to be transcribed at higher levels than those integrated on the anti-sense strand. Moreover, the expression of proviral elements appeared to be independent from that of their corresponding genes. Conclusions Intronic HERV-W provirus integrations on the sense strand appear to have elicited a weaker negative selection than pseudogene integrations of transcripts from such elements. Our current findings suggest that the previously observed diversified and tissue-specific expression of elements in the HERV-W family is the result of both directed transcription (involving both the LTR and internal sequence) and leaky transcription of HERV-W elements in normal human tissues. PMID:21226900

  14. 3D Rheological Modeling of NW Intraplate Europe, Deciphering Spatial Integrated strength patterns, Mechanical Strong Layering and EET

    NASA Astrophysics Data System (ADS)

    Beekman, F.; Hardebol, N.; Cloetingh, S.; Tesauro, M.

    2006-12-01

    Better understanding of 3D rheological heterogeneity of the European Lithosphere provide the key to tie the recorded intraplate deformation pattern to stress fields transmitted into plate interior from plate boundary forces. The first order strain patterns result from stresses transmitted through the European lithosphere that is marked by a patchwork of high strength variability from inherited structural and compositional heterogeneities and upper mantle thermal perturbations. As the lithospheric rheology depends primarily on its spatial structure, composition and thermal estate, the 3D strength model for the European lithosphere relies on a 3D compositional model that yields the compositional heterogeneities and an iteratively calculated thermal cube using Fouriers law for heat conduction. The accurate appraisal of spatial strength variability results from proper mapping and integration of the geophysical compositional and thermal input parameters. Therefore, much attention has been paid to a proper description of first order structural and tectonic features that facilitate compilation of the compositional and thermal input models. As such, the 3D strength model reflects the thermo-mechanical structure inherited from the Europeans polyphase deformation history. Major 3D spatial mechanical strength variability has been revealed. The East-European and Fennoscandian Craton to the NE exhibit high strength (30-50 1012 N/m) from low mantle temperatures and surface heatflow of 35-60 mW/m2 while central and western Europe reflect a polyphase Phanerozoic thermo- tectonic history. Here, regions with high rigidity are formed primarily by patches of thermally stabilized Variscan Massifs (e.g. Rhenish, Armorican, Bohemian, and Iberian Massif) with low heatflow and lithospheric thickness values (50-65 mW/m2; 110-150 km) yielding strengths of ~15-25 1012 N/m. In contrast, major axis of weakened lithosphere coincides with Cenozoic Rift System (e.g. Upper and Lower Rhine Grabens, Pannonian Basin and Massif Central) attributed to the presence of tomographically imaged plumes. This study has elucidated the memory of the present-days Europeans lithosphere induced by compositional and thermal heterogeneities. The resulting lateral strength variations has a clear signature of the pst lithospheres polyphase deformation and also entails active tectonics, tectonically induced topography and surface processes.

  15. Seismic Response Control Of Structures Using Semi-Active and Passive Variable Stiffness Devices

    NASA Astrophysics Data System (ADS)

    Salem, Mohamed M. A.

    Controllable devices such as Magneto-Rheological Fluid Dampers, Electro-Rheological Dampers, and controllable friction devices have been studied extensively with limited implementation in real structures. Such devices have shown great potential in reducing seismic demands, either as smart base isolation systems, or as smart devices for multistory structures. Although variable stiffness devices can be used for seismic control of structures, the vast majority of research effort has been given to the control of damping. The primary focus of this dissertation is to evaluate the seismic control of structures using semi-active and passive variable stiffness characteristics. Smart base isolation systems employing variable stiffness devices have been studied, and two semi-active control strategies are proposed. The control algorithms were designed to reduce the superstructure and base accelerations of seismically isolated structures subject to near-fault and far-field ground motions. Computational simulations of the proposed control algorithms on the benchmark structure have shown that excessive base displacements associated with the near-fault ground motions may be better mitigated with the use of variable stiffness devices. However, the device properties must be controllable to produce a wide range of stiffness changes for an effective control of the base displacements. The potential of controllable stiffness devices in limiting the base displacement due to near-fault excitation without compromising the performance of conventionally isolated structures, is illustrated. The application of passive variable stiffness devices for seismic response mitigation of multistory structures is also investigated. A stiffening bracing system (SBS) is proposed to replace the conventional bracing systems of braced frames. An optimization process for the SBS parameters has been developed. The main objective of the design process is to maintain a uniform inter-story drift angle over the building's height, which in turn would evenly distribute the seismic demand over the building. This behavior is particularly essential so that any possible damage is not concentrated in a single story. Furthermore, the proposed design ensures that additional damping devices distributed over the building's height work efficiently with their maximum design capacity, leading to a cost efficient design. An integrated and comprehensive design procedure that can be readily adopted by the current seismic design codes is proposed. An equivalent lateral force distribution is developed that shows a good agreement with the response history analyses in terms of seismic performance and demand prediction. This lateral force pattern explicitly accounts for the higher mode effect, the dynamic characteristics of the structure, the supplemental damping, and the site specific seismic hazard. Therefore, the proposed design procedure is considered as a standalone method for the design of SBS equipped buildings.

  16. Integrated Design Analysis and Optimisation of Aircraft Structures (L’Analyse pour la Conception Integree et l’Optimisation des Structures d’Aeronefs)

    DTIC Science & Technology

    1992-02-01

    Division (Code RM) ONERA Office of Aeronautics & Space Technology 29 ave de la Division Leclerc NASA Hq 92320 Chfitillon Washington DC 20546 France United...Vector of thickness variables. V’ = [ t2 ........ tN Vector of thickness changes. AV ’= [rt, 5t2 ......... tNJ TI 7-9 Vector of strain derivatives. F...ds, ds, I d, 1i’,= dt, dr2 ........ dt--N Vector of buckling derivatives. dX d). , dt1 dt2 dtN Then 5F= Vs’i . AV and SX V,’. AV The linearised

  17. Parallel processors and nonlinear structural dynamics algorithms and software

    NASA Technical Reports Server (NTRS)

    Belytschko, Ted; Gilbertsen, Noreen D.; Neal, Mark O.; Plaskacz, Edward J.

    1989-01-01

    The adaptation of a finite element program with explicit time integration to a massively parallel SIMD (single instruction multiple data) computer, the CONNECTION Machine is described. The adaptation required the development of a new algorithm, called the exchange algorithm, in which all nodal variables are allocated to the element with an exchange of nodal forces at each time step. The architectural and C* programming language features of the CONNECTION Machine are also summarized. Various alternate data structures and associated algorithms for nonlinear finite element analysis are discussed and compared. Results are presented which demonstrate that the CONNECTION Machine is capable of outperforming the CRAY XMP/14.

  18. Composite sizing and ply orientation for stiffness requirements using a large finite element structural model

    NASA Technical Reports Server (NTRS)

    Radovcich, N. A.; Gentile, D. P.

    1989-01-01

    A NASTRAN bulk dataset preprocessor was developed to facilitate the integration of filamentary composite laminate properties into composite structural resizing for stiffness requirements. The NASCOMP system generates delta stiffness and delta mass matrices for input to the flutter derivative program. The flutter baseline analysis, derivative calculations, and stiffness and mass matrix updates are controlled by engineer defined processes under an operating system called CBUS. A multi-layered design variable grid system permits high fidelity resizing without excessive computer cost. The NASCOMP system uses ply layup drawings for basic input. The aeroelastic resizing for stiffness capability was used during an actual design exercise.

  19. Algorithm For Optimal Control Of Large Structures

    NASA Technical Reports Server (NTRS)

    Salama, Moktar A.; Garba, John A..; Utku, Senol

    1989-01-01

    Cost of computation appears competitive with other methods. Problem to compute optimal control of forced response of structure with n degrees of freedom identified in terms of smaller number, r, of vibrational modes. Article begins with Hamilton-Jacobi formulation of mechanics and use of quadratic cost functional. Complexity reduced by alternative approach in which quadratic cost functional expressed in terms of control variables only. Leads to iterative solution of second-order time-integral matrix Volterra equation of second kind containing optimal control vector. Cost of algorithm, measured in terms of number of computations required, is of order of, or less than, cost of prior algoritms applied to similar problems.

  20. Rights to food with a human face in the global south.

    PubMed

    Rahim, Aminur

    2011-01-01

    This article seeks to dispel the popular myth surrounding the food crises which precipitated food riots in the global South in 2008. Arguing from a structural and historical perspective, the article suggests that global hunger is a deep-rooted crisis that is embedded in the social and structural variables associated within the nation-state that places a restraint on the self-regulating capacity of nation-states in the South. Internationalizing the food crisis, however, will do more harm to the south’s agricultural transformation and rural development. The article argues for integrated rural development that will increase output growth through an institutional, technological, and marketing strategy.

  1. Characterizing uncertainty and variability in physiologically based pharmacokinetic models: state of the science and needs for research and implementation.

    PubMed

    Barton, Hugh A; Chiu, Weihsueh A; Setzer, R Woodrow; Andersen, Melvin E; Bailer, A John; Bois, Frédéric Y; Dewoskin, Robert S; Hays, Sean; Johanson, Gunnar; Jones, Nancy; Loizou, George; Macphail, Robert C; Portier, Christopher J; Spendiff, Martin; Tan, Yu-Mei

    2007-10-01

    Physiologically based pharmacokinetic (PBPK) models are used in mode-of-action based risk and safety assessments to estimate internal dosimetry in animals and humans. When used in risk assessment, these models can provide a basis for extrapolating between species, doses, and exposure routes or for justifying nondefault values for uncertainty factors. Characterization of uncertainty and variability is increasingly recognized as important for risk assessment; this represents a continuing challenge for both PBPK modelers and users. Current practices show significant progress in specifying deterministic biological models and nondeterministic (often statistical) models, estimating parameters using diverse data sets from multiple sources, using them to make predictions, and characterizing uncertainty and variability of model parameters and predictions. The International Workshop on Uncertainty and Variability in PBPK Models, held 31 Oct-2 Nov 2006, identified the state-of-the-science, needed changes in practice and implementation, and research priorities. For the short term, these include (1) multidisciplinary teams to integrate deterministic and nondeterministic/statistical models; (2) broader use of sensitivity analyses, including for structural and global (rather than local) parameter changes; and (3) enhanced transparency and reproducibility through improved documentation of model structure(s), parameter values, sensitivity and other analyses, and supporting, discrepant, or excluded data. Longer-term needs include (1) theoretical and practical methodological improvements for nondeterministic/statistical modeling; (2) better methods for evaluating alternative model structures; (3) peer-reviewed databases of parameters and covariates, and their distributions; (4) expanded coverage of PBPK models across chemicals with different properties; and (5) training and reference materials, such as cases studies, bibliographies/glossaries, model repositories, and enhanced software. The multidisciplinary dialogue initiated by this Workshop will foster the collaboration, research, data collection, and training necessary to make characterizing uncertainty and variability a standard practice in PBPK modeling and risk assessment.

  2. eClims: An Extensible and Dynamic Integration Framework for Biomedical Information Systems.

    PubMed

    Savonnet, Marinette; Leclercq, Eric; Naubourg, Pierre

    2016-11-01

    Biomedical information systems (BIS) require consideration of three types of variability: data variability induced by new high throughput technologies, schema or model variability induced by large scale studies or new fields of research, and knowledge variability resulting from new discoveries. Beyond data heterogeneity, managing variabilities in the context of BIS requires extensible and dynamic integration process. In this paper, we focus on data and schema variabilities and we propose an integration framework based on ontologies, master data, and semantic annotations. The framework addresses issues related to: 1) collaborative work through a dynamic integration process; 2) variability among studies using an annotation mechanism; and 3) quality control over data and semantic annotations. Our approach relies on two levels of knowledge: BIS-related knowledge is modeled using an application ontology coupled with UML models that allow controlling data completeness and consistency, and domain knowledge is described by a domain ontology, which ensures data coherence. A system build with the eClims framework has been implemented and evaluated in the context of a proteomic platform.

  3. A New Integrated Weighted Model in SNOW-V10: Verification of Categorical Variables

    NASA Astrophysics Data System (ADS)

    Huang, Laura X.; Isaac, George A.; Sheng, Grant

    2014-01-01

    This paper presents the verification results for nowcasts of seven categorical variables from an integrated weighted model (INTW) and the underlying numerical weather prediction (NWP) models. Nowcasting, or short range forecasting (0-6 h), over complex terrain with sufficient accuracy is highly desirable but a very challenging task. A weighting, evaluation, bias correction and integration system (WEBIS) for generating nowcasts by integrating NWP forecasts and high frequency observations was used during the Vancouver 2010 Olympic and Paralympic Winter Games as part of the Science of Nowcasting Olympic Weather for Vancouver 2010 (SNOW-V10) project. Forecast data from Canadian high-resolution deterministic NWP system with three nested grids (at 15-, 2.5- and 1-km horizontal grid-spacing) were selected as background gridded data for generating the integrated nowcasts. Seven forecast variables of temperature, relative humidity, wind speed, wind gust, visibility, ceiling and precipitation rate are treated as categorical variables for verifying the integrated weighted forecasts. By analyzing the verification of forecasts from INTW and the NWP models among 15 sites, the integrated weighted model was found to produce more accurate forecasts for the 7 selected forecast variables, regardless of location. This is based on the multi-categorical Heidke skill scores for the test period 12 February to 21 March 2010.

  4. Review of Variable Generation Integration Charges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Porter, K.; Fink, S.; Buckley, M.

    2013-03-01

    The growth of wind and solar generation in the United States, and the expectation of continued growth of these technologies, dictates that the future power system will be operated in a somewhat different manner because of increased variability and uncertainty. A small number of balancing authorities have attempted to determine an 'integration cost' to account for these changes to their current operating practices. Some balancing authorities directly charge wind and solar generators for integration charges, whereas others add integration charges to projected costs of wind and solar in integrated resource plans or in competitive solicitations for generation. This report reviewsmore » the balancing authorities that have calculated variable generation integration charges and broadly compares and contrasts the methodologies they used to determine their specific integration charges. The report also profiles each balancing authority and how they derived wind and solar integration charges.« less

  5. Retained structural integrity of collagen and elastin within cryopreserved human heart valve tissue as detected by two-photon laser scanning confocal microscopy.

    PubMed

    Gerson, Cindy J; Goldstein, Steven; Heacox, Albert E

    2009-10-01

    Cryopreservation is commonly used for the long-term storage of heart valve allografts. Despite the excellent hemodynamic performance and durability of cryopreserved allografts, reports have questioned whether cryopreservation affects the valvular structural proteins, collagen and elastin. This study uses two-photon laser scanning confocal microscopy (LSCM) to evaluate the effect of cryopreservation on collagen and elastin integrity within the leaflet and conduit of aortic and pulmonary human heart valves. To permit pairwise comparisons of fresh and cryopreserved tissue, test valves were bisected longitudinally with one segment imaged fresh and the other imaged after cryopreservation and brief storage in liquid nitrogen. Collagen was detected by second harmonic generation (SHG) stimulation and elastin by autofluorescence excitation. Qualitative analysis of all resultant images indicated the maintenance of collagen and elastin structure within leaflet and conduit post-cryopreservation. Analysis of the optimized percent laser transmission (OPLT) required for full dynamic range imaging of collagen and elastin showed that OPLT observations were highly variable among both fresh and cryopreserved samples. Changes in donor-specific average OPLT in response to cryopreservation exhibited no consistent directional trend. The donor-aggregated results predominantly showed no statistically significant change in collagen and elastin average OPLT due to cryopreservation. Since OPLT has an inverse relationship with structural signal intensity, these results indicate that there was largely no statistical difference in collagen and elastin signal strength between fresh and cryopreserved tissue. Overall, this study indicates that the conventional cryopreservation of human heart valve allografts does not detrimentally affect their collagen and elastin structural integrity.

  6. Computational Fluid Dynamics Modeling of a Supersonic Nozzle and Integration into a Variable Cycle Engine Model

    NASA Technical Reports Server (NTRS)

    Connolly, Joseph W.; Friedlander, David; Kopasakis, George

    2015-01-01

    This paper covers the development of an integrated nonlinear dynamic simulation for a variable cycle turbofan engine and nozzle that can be integrated with an overall vehicle Aero-Propulso-Servo-Elastic (APSE) model. A previously developed variable cycle turbofan engine model is used for this study and is enhanced here to include variable guide vanes allowing for operation across the supersonic flight regime. The primary focus of this study is to improve the fidelity of the model's thrust response by replacing the simple choked flow equation convergent-divergent nozzle model with a MacCormack method based quasi-1D model. The dynamic response of the nozzle model using the MacCormack method is verified by comparing it against a model of the nozzle using the conservation element/solution element method. A methodology is also presented for the integration of the MacCormack nozzle model with the variable cycle engine.

  7. Computational Fluid Dynamics Modeling of a Supersonic Nozzle and Integration into a Variable Cycle Engine Model

    NASA Technical Reports Server (NTRS)

    Connolly, Joseph W.; Friedlander, David; Kopasakis, George

    2014-01-01

    This paper covers the development of an integrated nonlinear dynamic simulation for a variable cycle turbofan engine and nozzle that can be integrated with an overall vehicle Aero-Propulso-Servo-Elastic (APSE) model. A previously developed variable cycle turbofan engine model is used for this study and is enhanced here to include variable guide vanes allowing for operation across the supersonic flight regime. The primary focus of this study is to improve the fidelity of the model's thrust response by replacing the simple choked flow equation convergent-divergent nozzle model with a MacCormack method based quasi-1D model. The dynamic response of the nozzle model using the MacCormack method is verified by comparing it against a model of the nozzle using the conservation element/solution element method. A methodology is also presented for the integration of the MacCormack nozzle model with the variable cycle engine.

  8. NESSUS/NASTRAN Interface

    NASA Technical Reports Server (NTRS)

    Millwater, Harry; Riha, David

    1996-01-01

    The NESSUS and NASTRAN computer codes were successfully integrated. The enhanced NESSUS code will use NASTRAN for the structural Analysis and NESSUS for the probabilistic analysis. Any quantities in the NASTRAN bulk data input can be random variables. Any NASTRAN result that is written to the output2 file can be returned to NESSUS as the finite element result. The interfacing between NESSUS and NASTRAN is handled automatically by NESSUS. NESSUS and NASTRAN can be run on different machines using the remote host option.

  9. Effective field theory dimensional regularization

    NASA Astrophysics Data System (ADS)

    Lehmann, Dirk; Prézeau, Gary

    2002-01-01

    A Lorentz-covariant regularization scheme for effective field theories with an arbitrary number of propagating heavy and light particles is given. This regularization scheme leaves the low-energy analytic structure of Greens functions intact and preserves all the symmetries of the underlying Lagrangian. The power divergences of regularized loop integrals are controlled by the low-energy kinematic variables. Simple diagrammatic rules are derived for the regularization of arbitrary one-loop graphs and the generalization to higher loops is discussed.

  10. SAINT: A combined simulation language for modeling man-machine systems

    NASA Technical Reports Server (NTRS)

    Seifert, D. J.

    1979-01-01

    SAINT (Systems Analysis of Integrated Networks of Tasks) is a network modeling and simulation technique for design and analysis of complex man machine systems. SAINT provides the conceptual framework for representing systems that consist of discrete task elements, continuous state variables, and interactions between them. It also provides a mechanism for combining human performance models and dynamic system behaviors in a single modeling structure. The SAINT technique is described and applications of the SAINT are discussed.

  11. Transient IP Structures Associated with Short-Period Variations in the Solar Energetic Particle and Galactic Cosmic Ray Flux

    NASA Astrophysics Data System (ADS)

    Mulligan, T.; Blake, J.; Spence, H. E.; Jordan, A. P.; Quenby, J. J.; Shaul, D.

    2006-12-01

    Short-period variations in the integral SEP ( > 10 MeV) and GCR fluence ( > 100 MeV), often observed in neutron monitor data have also been seen by the High Sensitivity Telescope (HIST) aboard the Polar Spacecraft. Although HIST was designed to measure radiation-belt electrons, it makes clean measurements of the integral SEP and GCR fluence when Polar is outside the radiation belts. These measurements show variability on a variety of timescales including 0.1~mHz - 1~mHz. We examine these variations from Polar and compare them with IMF and plasma solar wind conditions at L1 using ACE data. We find coherent short-term variability occurs when Earth is in close proximity to the HCS and when Earth is either inside an ICME or when an ICME has just transited the Earth. Also, when a flux rope ICME signature is present, the rope axis is nearly parallel to the radial direction and the HCS. The launch of STEREO will enable detailed 3-D analyses of such solar wind disturbances along spatial scales on the same order of typical SEP and GCR proton gyroradii, which are needed to elucidate the mechanism behind this short-period variability.

  12. Integrating Variable Renewable Energy - Russia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    To foster sustainable, low-emission development, many countries are establishing ambitious renewable energy targets for their electricity supply. Because solar and wind tend to be more variable and uncertain than conventional sources, meeting these targets will involve changes to power system planning and operations. Grid integration is the practice of developing efficient ways to deliver variable renewable energy (VRE) to the grid. Good integration methods maximize the cost-effectiveness of incorporating VRE into the power system while maintaining or increasing system stability and reliability. When considering grid integration, policy makers, regulators, and system operators consider a variety of issues, which can bemore » organized into four broad topics: New Renewable Energy Generation, New Transmission, Increased System Flexibility, Planning for a High RE Future. This is a Russian-language translation of Integrating Variable Renewable Energy into the Grid: Key Issues, Greening the Grid, originally published in English in May 2015.« less

  13. Integrating Variable Renewable Energy into the Grid: Key Issues, Greening the Grid (Spanish Version)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    This is the Spanish version of 'Greening the Grid - Integrating Variable Renewable Energy into the Grid: Key Issues'. To foster sustainable, low-emission development, many countries are establishing ambitious renewable energy targets for their electricity supply. Because solar and wind tend to be more variable and uncertain than conventional sources, meeting these targets will involve changes to power system planning and operations. Grid integration is the practice of developing efficient ways to deliver variable renewable energy (VRE) to the grid. Good integration methods maximize the cost-effectiveness of incorporating VRE into the power system while maintaining or increasing system stability andmore » reliability. When considering grid integration, policy makers, regulators, and system operators consider a variety of issues, which can be organized into four broad topics: New Renewable Energy Generation, New Transmission, Increased System Flexibility, and Planning for a High RE Future.« less

  14. Integrative Motivation: Changes during a Year-Long Intermediate-Level Language Course

    ERIC Educational Resources Information Center

    Gardner, R. C.; Masgoret, A. M.; Tennant, J.; Mihic, L.

    2004-01-01

    The socioeducational model of second language acquisition postulates that language learning is a dynamic process in which affective variables influence language achievement and achievement and experiences in language learning can influence some affective variables. Five classes of variable are emphasized: integrativeness, attitudes toward the…

  15. Estimation method of state-of-charge for lithium-ion battery used in hybrid electric vehicles based on variable structure extended kalman filter

    NASA Astrophysics Data System (ADS)

    Sun, Yong; Ma, Zilin; Tang, Gongyou; Chen, Zheng; Zhang, Nong

    2016-07-01

    Since the main power source of hybrid electric vehicle(HEV) is supplied by the power battery, the predicted performance of power battery, especially the state-of-charge(SOC) estimation has attracted great attention in the area of HEV. However, the value of SOC estimation could not be greatly precise so that the running performance of HEV is greatly affected. A variable structure extended kalman filter(VSEKF)-based estimation method, which could be used to analyze the SOC of lithium-ion battery in the fixed driving condition, is presented. First, the general lower-order battery equivalent circuit model(GLM), which includes column accumulation model, open circuit voltage model and the SOC output model, is established, and the off-line and online model parameters are calculated with hybrid pulse power characteristics(HPPC) test data. Next, a VSEKF estimation method of SOC, which integrates the ampere-hour(Ah) integration method and the extended Kalman filter(EKF) method, is executed with different adaptive weighting coefficients, which are determined according to the different values of open-circuit voltage obtained in the corresponding charging or discharging processes. According to the experimental analysis, the faster convergence speed and more accurate simulating results could be obtained using the VSEKF method in the running performance of HEV. The error rate of SOC estimation with the VSEKF method is focused in the range of 5% to 10% comparing with the range of 20% to 30% using the EKF method and the Ah integration method. In Summary, the accuracy of the SOC estimation in the lithium-ion battery cell and the pack of lithium-ion battery system, which is obtained utilizing the VSEKF method has been significantly improved comparing with the Ah integration method and the EKF method. The VSEKF method utilizing in the SOC estimation in the lithium-ion pack of HEV can be widely used in practical driving conditions.

  16. Efficient evaluation of the material response of tissues reinforced by statistically oriented fibres

    NASA Astrophysics Data System (ADS)

    Hashlamoun, Kotaybah; Grillo, Alfio; Federico, Salvatore

    2016-10-01

    For several classes of soft biological tissues, modelling complexity is in part due to the arrangement of the collagen fibres. In general, the arrangement of the fibres can be described by defining, at each point in the tissue, the structure tensor (i.e. the tensor product of the unit vector of the local fibre arrangement by itself) and a probability distribution of orientation. In this approach, assuming that the fibres do not interact with each other, the overall contribution of the collagen fibres to a given mechanical property of the tissue can be estimated by means of an averaging integral of the constitutive function describing the mechanical property at study over the set of all possible directions in space. Except for the particular case of fibre constitutive functions that are polynomial in the transversely isotropic invariants of the deformation, the averaging integral cannot be evaluated directly, in a single calculation because, in general, the integrand depends both on deformation and on fibre orientation in a non-separable way. The problem is thus, in a sense, analogous to that of solving the integral of a function of two variables, which cannot be split up into the product of two functions, each depending only on one of the variables. Although numerical schemes can be used to evaluate the integral at each deformation increment, this is computationally expensive. With the purpose of containing computational costs, this work proposes approximation methods that are based on the direct integrability of polynomial functions and that do not require the step-by-step evaluation of the averaging integrals. Three different methods are proposed: (a) a Taylor expansion of the fibre constitutive function in the transversely isotropic invariants of the deformation; (b) a Taylor expansion of the fibre constitutive function in the structure tensor; (c) for the case of a fibre constitutive function having a polynomial argument, an approximation in which the directional average of the constitutive function is replaced by the constitutive function evaluated at the directional average of the argument. Each of the proposed methods approximates the averaged constitutive function in such a way that it is multiplicatively decomposed into the product of a function of the deformation only and a function of the structure tensors only. In order to assess the accuracy of these methods, we evaluate the constitutive functions of the elastic potential and the Cauchy stress, for a biaxial test, under different conditions, i.e. different fibre distributions and different ratios of the nominal strains in the two directions. The results are then compared against those obtained for an averaging method available in the literature, as well as against the integration made at each increment of deformation.

  17. A reduced-form approach for representing the impacts of wind and solar PV deployment on the structure and operation of the electricity system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Nils; Strubegger, Manfred; McPherson, Madeleine

    In many climate change mitigation scenarios, integrated assessment models of the energy and climate systems rely heavily on renewable energy technologies with variable and uncertain generation, such as wind and solar PV, to achieve substantial decarbonization of the electricity sector. However, these models often include very little temporal resolution and thus have difficulty in representing the integration costs that arise from mismatches between electricity supply and demand. The global integrated assessment model, MESSAGE, has been updated to explicitly model the trade-offs between variable renewable energy (VRE) deployment and its impacts on the electricity system, including the implications for electricity curtailment,more » backup capacity, and system flexibility. These impacts have been parameterized using a reduced-form approach, which allows VRE integration impacts to be quantified on a regional basis. In addition, thermoelectric technologies were updated to include two modes of operation, baseload and flexible, to better account for the cost, efficiency, and availability penalties associated with flexible operation. In this paper, the modeling approach used in MESSAGE is explained and the implications for VRE deployment in mitigation scenarios are assessed. Three important stylized facts associated with integrating high VRE shares are successfully reproduced by our modeling approach: (1) the significant reduction in the utilization of non-VRE power plants; (2) the diminishing role for traditional baseload generators, such as nuclear and coal, and the transition to more flexible technologies; and (3) the importance of electricity storage and hydrogen electrolysis in facilitating the deployment of VRE.« less

  18. Research on the Integration of Bionic Geometry Modeling and Simulation of Robot Foot Based on Characteristic Curve

    NASA Astrophysics Data System (ADS)

    He, G.; Zhu, H.; Xu, J.; Gao, K.; Zhu, D.

    2017-09-01

    The bionic research of shape is an important aspect of the research on bionic robot, and its implementation cannot be separated from the shape modeling and numerical simulation of the bionic object, which is tedious and time-consuming. In order to improve the efficiency of shape bionic design, the feet of animals living in soft soil and swamp environment are taken as bionic objects, and characteristic skeleton curve, section curve, joint rotation variable, position and other parameters are used to describe the shape and position information of bionic object’s sole, toes and flipper. The geometry modeling of the bionic object is established by using the parameterization of characteristic curves and variables. Based on this, the integration framework of parametric modeling and finite element modeling, dynamic analysis and post-processing of sinking process in soil is proposed in this paper. The examples of bionic ostrich foot and bionic duck foot are also given. The parametric modeling and integration technique can achieve rapid improved design based on bionic object, and it can also greatly improve the efficiency and quality of robot foot bionic design, and has important practical significance to improve the level of bionic design of robot foot’s shape and structure.

  19. An open-chain imaginary-time path-integral sampling approach to the calculation of approximate symmetrized quantum time correlation functions.

    PubMed

    Cendagorta, Joseph R; Bačić, Zlatko; Tuckerman, Mark E

    2018-03-14

    We introduce a scheme for approximating quantum time correlation functions numerically within the Feynman path integral formulation. Starting with the symmetrized version of the correlation function expressed as a discretized path integral, we introduce a change of integration variables often used in the derivation of trajectory-based semiclassical methods. In particular, we transform to sum and difference variables between forward and backward complex-time propagation paths. Once the transformation is performed, the potential energy is expanded in powers of the difference variables, which allows us to perform the integrals over these variables analytically. The manner in which this procedure is carried out results in an open-chain path integral (in the remaining sum variables) with a modified potential that is evaluated using imaginary-time path-integral sampling rather than requiring the generation of a large ensemble of trajectories. Consequently, any number of path integral sampling schemes can be employed to compute the remaining path integral, including Monte Carlo, path-integral molecular dynamics, or enhanced path-integral molecular dynamics. We believe that this approach constitutes a different perspective in semiclassical-type approximations to quantum time correlation functions. Importantly, we argue that our approximation can be systematically improved within a cumulant expansion formalism. We test this approximation on a set of one-dimensional problems that are commonly used to benchmark approximate quantum dynamical schemes. We show that the method is at least as accurate as the popular ring-polymer molecular dynamics technique and linearized semiclassical initial value representation for correlation functions of linear operators in most of these examples and improves the accuracy of correlation functions of nonlinear operators.

  20. An open-chain imaginary-time path-integral sampling approach to the calculation of approximate symmetrized quantum time correlation functions

    NASA Astrophysics Data System (ADS)

    Cendagorta, Joseph R.; Bačić, Zlatko; Tuckerman, Mark E.

    2018-03-01

    We introduce a scheme for approximating quantum time correlation functions numerically within the Feynman path integral formulation. Starting with the symmetrized version of the correlation function expressed as a discretized path integral, we introduce a change of integration variables often used in the derivation of trajectory-based semiclassical methods. In particular, we transform to sum and difference variables between forward and backward complex-time propagation paths. Once the transformation is performed, the potential energy is expanded in powers of the difference variables, which allows us to perform the integrals over these variables analytically. The manner in which this procedure is carried out results in an open-chain path integral (in the remaining sum variables) with a modified potential that is evaluated using imaginary-time path-integral sampling rather than requiring the generation of a large ensemble of trajectories. Consequently, any number of path integral sampling schemes can be employed to compute the remaining path integral, including Monte Carlo, path-integral molecular dynamics, or enhanced path-integral molecular dynamics. We believe that this approach constitutes a different perspective in semiclassical-type approximations to quantum time correlation functions. Importantly, we argue that our approximation can be systematically improved within a cumulant expansion formalism. We test this approximation on a set of one-dimensional problems that are commonly used to benchmark approximate quantum dynamical schemes. We show that the method is at least as accurate as the popular ring-polymer molecular dynamics technique and linearized semiclassical initial value representation for correlation functions of linear operators in most of these examples and improves the accuracy of correlation functions of nonlinear operators.

  1. [Incentive for Regional Risk Selection in the German Risk Structure Compensation Scheme].

    PubMed

    Wende, Danny

    2017-10-01

    The introduction of the new law GKV-FQWG strengthens the competition between statutory health insurance. If incentives for risk selection exist, they may force a battle for cheap customers. This study aims to document and discuss incentives for regional risk selection in the German risk structure compensation scheme. Identify regional autocorrelation with Moran's l on financial parameters of the risk structure compensation schema. Incentives for regional risk selection do indeed exist. The risk structure compensation schema reduces 91% of the effect and helps to reduce risk selection. Nevertheless, a connection between regional situation and competition could be shown (correlation: 69.5%). Only the integration of regional control variables into the risk compensation eliminates regional autocorrelation. The actual risk structure compensation is leading to regional inequalities and as a consequence to risk selection and distortion in competition. © Georg Thieme Verlag KG Stuttgart · New York.

  2. Effective use of surface-water management to control saltwater intrusion

    NASA Astrophysics Data System (ADS)

    Hughes, J. D.; White, J.

    2012-12-01

    The Biscayne aquifer in southeast Florida is susceptible to saltwater intrusion and inundation from rising sea-level as a result of high groundwater withdrawal rates and low topographic relief. Groundwater levels in the Biscayne aquifer are managed by an extensive canal system that is designed to control flooding, supply recharge to municipal well fields, and control saltwater intrusion. We present results from an integrated surface-water/groundwater model of a portion of the Biscayne aquifer to evaluate the ability of the existing managed surface-water control network to control saltwater intrusion. Surface-water stage and flow are simulated using a hydrodynamic model that solves the diffusive-wave approximation of the depth-integrated shallow surface-water equations. Variable-density groundwater flow and fluid density are solved using the Oberbeck--Boussinesq approximation of the three-dimensional variable-density groundwater flow equation and a sharp interface approximation, respectively. The surface-water and variable-density groundwater domains are implicitly coupled during each Picard iteration. The Biscayne aquifer is discretized into a multi-layer model having a 500-m square horizontal grid spacing. All primary and secondary surface-water features in the active model domain are discretized into segments using the 500-m square horizontal grid. A 15-year period of time is simulated and the model includes 66 operable surface-water control structures, 127 municipal production wells, and spatially-distributed daily internal and external hydrologic stresses. Numerical results indicate that the existing surface-water system can be effectively used in many locations to control saltwater intrusion in the Biscayne aquifer resulting from increases in groundwater withdrawals or sea-level rise expected to occur over the next 25 years. In other locations, numerical results indicate surface-water control structures and/or operations may need to be modified to control saltwater intrusion.

  3. Directional semivariogram analysis to identify and rank controls on the spatial variability of fracture networks

    NASA Astrophysics Data System (ADS)

    Hanke, John R.; Fischer, Mark P.; Pollyea, Ryan M.

    2018-03-01

    In this study, the directional semivariogram is deployed to investigate the spatial variability of map-scale fracture network attributes in the Paradox Basin, Utah. The relative variability ratio (R) is introduced as the ratio of integrated anisotropic semivariogram models, and R is shown to be an effective metric for quantifying the magnitude of spatial variability for any two azimuthal directions. R is applied to a GIS-based data set comprising roughly 1200 fractures, in an area which is bounded by a map-scale anticline and a km-scale normal fault. This analysis reveals that proximity to the fault strongly influences the magnitude of spatial variability for both fracture intensity and intersection density within 1-2 km. Additionally, there is significant anisotropy in the spatial variability, which is correlated with trends of the anticline and fault. The direction of minimum spatial correlation is normal to the fault at proximal distances, and gradually rotates and becomes subparallel to the fold axis over the same 1-2 km distance away from the fault. We interpret these changes to reflect varying scales of influence of the fault and the fold on fracture network development: the fault locally influences the magnitude and variability of fracture network attributes, whereas the fold sets the background level and structure of directional variability.

  4. Multivariate normal maximum likelihood with both ordinal and continuous variables, and data missing at random.

    PubMed

    Pritikin, Joshua N; Brick, Timothy R; Neale, Michael C

    2018-04-01

    A novel method for the maximum likelihood estimation of structural equation models (SEM) with both ordinal and continuous indicators is introduced using a flexible multivariate probit model for the ordinal indicators. A full information approach ensures unbiased estimates for data missing at random. Exceeding the capability of prior methods, up to 13 ordinal variables can be included before integration time increases beyond 1 s per row. The method relies on the axiom of conditional probability to split apart the distribution of continuous and ordinal variables. Due to the symmetry of the axiom, two similar methods are available. A simulation study provides evidence that the two similar approaches offer equal accuracy. A further simulation is used to develop a heuristic to automatically select the most computationally efficient approach. Joint ordinal continuous SEM is implemented in OpenMx, free and open-source software.

  5. Probabilistic Structural Analysis Methods (PSAM) for select space propulsion system components

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The fourth year of technical developments on the Numerical Evaluation of Stochastic Structures Under Stress (NESSUS) system for Probabilistic Structural Analysis Methods is summarized. The effort focused on the continued expansion of the Probabilistic Finite Element Method (PFEM) code, the implementation of the Probabilistic Boundary Element Method (PBEM), and the implementation of the Probabilistic Approximate Methods (PAppM) code. The principal focus for the PFEM code is the addition of a multilevel structural dynamics capability. The strategy includes probabilistic loads, treatment of material, geometry uncertainty, and full probabilistic variables. Enhancements are included for the Fast Probability Integration (FPI) algorithms and the addition of Monte Carlo simulation as an alternate. Work on the expert system and boundary element developments continues. The enhanced capability in the computer codes is validated by applications to a turbine blade and to an oxidizer duct.

  6. Representing nested semantic information in a linear string of text using XML.

    PubMed

    Krauthammer, Michael; Johnson, Stephen B; Hripcsak, George; Campbell, David A; Friedman, Carol

    2002-01-01

    XML has been widely adopted as an important data interchange language. The structure of XML enables sharing of data elements with variable degrees of nesting as long as the elements are grouped in a strict tree-like fashion. This requirement potentially restricts the usefulness of XML for marking up written text, which often includes features that do not properly nest within other features. We encountered this problem while marking up medical text with structured semantic information from a Natural Language Processor. Traditional approaches to this problem separate the structured information from the actual text mark up. This paper introduces an alternative solution, which tightly integrates the semantic structure with the text. The resulting XML markup preserves the linearity of the medical texts and can therefore be easily expanded with additional types of information.

  7. Representing nested semantic information in a linear string of text using XML.

    PubMed Central

    Krauthammer, Michael; Johnson, Stephen B.; Hripcsak, George; Campbell, David A.; Friedman, Carol

    2002-01-01

    XML has been widely adopted as an important data interchange language. The structure of XML enables sharing of data elements with variable degrees of nesting as long as the elements are grouped in a strict tree-like fashion. This requirement potentially restricts the usefulness of XML for marking up written text, which often includes features that do not properly nest within other features. We encountered this problem while marking up medical text with structured semantic information from a Natural Language Processor. Traditional approaches to this problem separate the structured information from the actual text mark up. This paper introduces an alternative solution, which tightly integrates the semantic structure with the text. The resulting XML markup preserves the linearity of the medical texts and can therefore be easily expanded with additional types of information. PMID:12463856

  8. Structure of the conversion laws in quantum integrable spin chains with short range interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grabowski, M.P.; Mathieu, P.

    1995-11-01

    The authors present a detailed analysis of the structure of the conservation laws in quantum integrable chains of the XYZ-type and in the Hubbard model. The essential tool for the former class of models is the boost operator, which provides a recursive way of calculating the integrals of motion. With its help, they establish the general form of the XYZ conserved charges in terms of simple polynomials in spin variables and derive recursion relations for the relative coefficients of these polynomials. Although these relations are difficult to solve in general, a subset of the coefficients can be determined. Moreover, formore » two submodels of the XYZ chain, namely the XXX and XY cases, all the charges can be calculated in closed form. Using this approach, the authors rederive the known expressions for the XY charges in a novel way. For the XXX case. a simple description of conserved charges is found in terms of a Catalan tree. This construction is generalized for the su(M) invariant integrable chain. They also investigate the circumstances permitting the existence of a recursive (ladder) operator in general quantum integrable systems. They indicate that a quantum ladder operator can be traced back to the presence of a Hamiltonian mastersymmetry of degree one in the classical continuous version of the model. In this way, quantum chains endowed with a recursive structure can be identified from the properties of their classical relatives. The authors also show that in the quantum continuous limits of the XYZ model, the ladder property of the boost operator disappears. For the Hubbard model they demonstrate the nonexistence of a ladder operator. Nevertheless, the general structure of the conserved charges is indicated, and the expression for the terms linear in the model`s free parameter for all charges is derived in closed form. 62 refs., 4 figs.« less

  9. High dimensional model representation method for fuzzy structural dynamics

    NASA Astrophysics Data System (ADS)

    Adhikari, S.; Chowdhury, R.; Friswell, M. I.

    2011-03-01

    Uncertainty propagation in multi-parameter complex structures possess significant computational challenges. This paper investigates the possibility of using the High Dimensional Model Representation (HDMR) approach when uncertain system parameters are modeled using fuzzy variables. In particular, the application of HDMR is proposed for fuzzy finite element analysis of linear dynamical systems. The HDMR expansion is an efficient formulation for high-dimensional mapping in complex systems if the higher order variable correlations are weak, thereby permitting the input-output relationship behavior to be captured by the terms of low-order. The computational effort to determine the expansion functions using the α-cut method scales polynomically with the number of variables rather than exponentially. This logic is based on the fundamental assumption underlying the HDMR representation that only low-order correlations among the input variables are likely to have significant impacts upon the outputs for most high-dimensional complex systems. The proposed method is first illustrated for multi-parameter nonlinear mathematical test functions with fuzzy variables. The method is then integrated with a commercial finite element software (ADINA). Modal analysis of a simplified aircraft wing with fuzzy parameters has been used to illustrate the generality of the proposed approach. In the numerical examples, triangular membership functions have been used and the results have been validated against direct Monte Carlo simulations. It is shown that using the proposed HDMR approach, the number of finite element function calls can be reduced without significantly compromising the accuracy.

  10. Why do policies change? Institutions, interests, ideas and networks in three cases of policy reform

    PubMed Central

    Shearer, Jessica C; Abelson, Julia; Kouyaté, Bocar; Lavis, John N; Walt, Gill

    2016-01-01

    Abstract Policy researchers have used various categories of variables to explain why policies change, including those related to institutions, interests and ideas. Recent research has paid growing attention to the role of policy networks—the actors involved in policy-making, their relationships with each other, and the structure formed by those relationships—in policy reform across settings and issues; however, this literature has largely ignored the theoretical integration of networks with other policy theories, including the ‘3Is’ of institutions, interests and ideas. This article proposes a conceptual framework integrating these variables and tests it on three cases of policy change in Burkina Faso, addressing the need for theoretical integration with networks as well as the broader aim of theory-driven health policy analysis research in low- and middle-income countries. We use historical process tracing, a type of comparative case study, to interpret and compare documents and in-depth interview data within and between cases. We found that while network changes were indeed associated with policy reform, this relationship was mediated by one or more of institutions, interests and ideas. In a context of high donor dependency, new donor rules affected the composition and structure of actors in the networks, which enabled the entry and dissemination of new ideas and shifts in the overall balance of interest power ultimately leading to policy change. The case of strategic networking occurred in only one case, by civil society actors, suggesting that network change is rarely the spark that initiates the process towards policy change. This analysis highlights the important role of changes in institutions and ideas to drive policymaking, but hints that network change is a necessary intermediate step in these processes. PMID:27233927

  11. Ground-based telescope pointing and tracking optimization using a neural controller.

    PubMed

    Mancini, D; Brescia, M; Schipani, P

    2003-01-01

    Neural network models (NN) have emerged as important components for applications of adaptive control theories. Their basic generalization capability, based on acquired knowledge, together with execution rapidity and correlation ability between input stimula, are basic attributes to consider NN as an extremely powerful tool for on-line control of complex systems. By a control system point of view, not only accuracy and speed, but also, in some cases, a high level of adaptation capability is required in order to match all working phases of the whole system during its lifetime. This is particularly remarkable for a new generation ground-based telescope control system. Infact, strong changes in terms of system speed and instantaneous position error tolerance are necessary, especially in case of trajectory disturb induced by wind shake. The classical control scheme adopted in such a system is based on the proportional integral (PI) filter, already applied and implemented on a large amount of new generation telescopes, considered as a standard in this technological environment. In this paper we introduce the concept of a new approach, the neural variable structure proportional integral, (NVSPI), related to the implementation of a standard multi layer perceptron network in new generation ground-based Alt-Az telescope control systems. Its main purpose is to improve adaptive capability of the Variable structure proportional integral model, an already innovative control scheme recently introduced by authors [Proc SPIE (1997)], based on a modified version of classical PI control model, in terms of flexibility and accuracy of the dynamic response range also in presence of wind noise effects. The realization of a powerful well tested and validated telescope model simulation system allowed the possibility to directly compare performances of the two control schemes on simulated tracking trajectories, revealing extremely encouraging results in terms of NVSPI control robustness and reliability.

  12. Kernel-PCA data integration with enhanced interpretability

    PubMed Central

    2014-01-01

    Background Nowadays, combining the different sources of information to improve the biological knowledge available is a challenge in bioinformatics. One of the most powerful methods for integrating heterogeneous data types are kernel-based methods. Kernel-based data integration approaches consist of two basic steps: firstly the right kernel is chosen for each data set; secondly the kernels from the different data sources are combined to give a complete representation of the available data for a given statistical task. Results We analyze the integration of data from several sources of information using kernel PCA, from the point of view of reducing dimensionality. Moreover, we improve the interpretability of kernel PCA by adding to the plot the representation of the input variables that belong to any dataset. In particular, for each input variable or linear combination of input variables, we can represent the direction of maximum growth locally, which allows us to identify those samples with higher/lower values of the variables analyzed. Conclusions The integration of different datasets and the simultaneous representation of samples and variables together give us a better understanding of biological knowledge. PMID:25032747

  13. Time-Integral Correlations of Multiple Variables With the Relativistic-Electron Flux at Geosynchronous Orbit: The Strong Roles of Substorm-Injected Electrons and the Ion Plasma Sheet

    NASA Astrophysics Data System (ADS)

    Borovsky, Joseph E.

    2017-12-01

    Time-integral correlations are examined between the geosynchronous relativistic electron flux index Fe1.2 and 31 variables of the solar wind and magnetosphere. An "evolutionary algorithm" is used to maximize correlations. Time integrations (into the past) of the variables are found to be superior to time-lagged variables for maximizing correlations with the radiation belt. Physical arguments are given as to why. Dominant correlations are found for the substorm-injected electron flux at geosynchronous orbit and for the pressure of the ion plasma sheet. Different sets of variables are constructed and correlated with Fe1.2: some sets maximize the correlations, and some sets are based on purely solar wind variables. Examining known physical mechanisms that act on the radiation belt, sets of correlations are constructed (1) using magnetospheric variables that control those physical mechanisms and (2) using the solar wind variables that control those magnetospheric variables. Fe1.2-increasing intervals are correlated separately from Fe1.2-decreasing intervals, and the introduction of autoregression into the time-integral correlations is explored. A great impediment to discerning physical cause and effect from the correlations is the fact that all solar wind variables are intercorrelated and carry much of the same information about the time sequence of the solar wind that drives the time sequence of the magnetosphere.

  14. Some new retarded nonlinear Volterra-Fredholm type integral inequalities with maxima in two variables and their applications.

    PubMed

    Xu, Run; Ma, Xiangting

    2017-01-01

    In this paper, we establish some new retarded nonlinear Volterra-Fredholm type integral inequalities with maxima in two independent variables, and we present the applications to research the boundedness of solutions to retarded nonlinear Volterra-Fredholm type integral equations.

  15. Variations in the structural and functional diversity of zooplankton over vertical and horizontal environmental gradients en route to the Arctic Ocean through the Fram Strait.

    PubMed

    Gluchowska, Marta; Trudnowska, Emilia; Goszczko, Ilona; Kubiszyn, Anna Maria; Blachowiak-Samolyk, Katarzyna; Walczowski, Waldemar; Kwasniewski, Slawomir

    2017-01-01

    A multi-scale approach was used to evaluate which spatial gradient of environmental variability is the most important in structuring zooplankton diversity in the West Spitsbergen Current (WSC). The WSC is the main conveyor of warm and biologically rich Atlantic water to the Arctic Ocean through the Fram Strait. The data set included 85 stratified vertical zooplankton samples (obtained from depths up to 1000 metres) covering two latitudinal sections (76°30'N and 79°N) located across the multi-path WSC system. The results indicate that the most important environmental variables shaping the zooplankton structural and functional diversity and standing stock variability are those associated with depth, whereas variables acting in the horizontal dimension are of lesser importance. Multivariate analysis of the zooplankton assemblages, together with different univariate descriptors of zooplankton diversity, clearly illustrated the segregation of zooplankton taxa in the vertical plane. The epipelagic zone (upper 200 m) hosted plentiful, Oithona similis-dominated assemblages with a high proportion of filter-feeding zooplankton. Although total zooplankton abundance declined in the mesopelagic zone (200-1000 m), zooplankton assemblages in that zone were more diverse and more evenly distributed, with high contributions from both herbivorous and carnivorous taxa. The vertical distribution of integrated biomass (mg DW m-2) indicated that the total zooplankton biomass in the epipelagic and mesopelagic zones was comparable. Environmental gradients acting in the horizontal plane, such as the ones associated with different ice cover and timing of the spring bloom, were reflected in the latitudinal variability in protist community structure and probably caused differences in succession in the zooplankton community. High abundances of Calanus finmarchicus in the WSC core branch suggest the existence of mechanisms advantageous for higher productivity or/and responsible for physical concentration of zooplankton. Our results indicate that regional hydrography plays a primary role in shaping zooplankton variability in the WSC on the way to the Arctic Ocean, with additional effects caused by biological factors related to seasonality in pelagic ecosystem development, resulting in regional differences in food availability or biological production between the continental slope and the deep ocean regions.

  16. Characterization of the spatial variability of channel morphology

    USGS Publications Warehouse

    Moody, J.A.; Troutman, B.M.

    2002-01-01

    The spatial variability of two fundamental morphological variables is investigated for rivers having a wide range of discharge (five orders of magnitude). The variables, water-surface width and average depth, were measured at 58 to 888 equally spaced cross-sections in channel links (river reaches between major tributaries). These measurements provide data to characterize the two-dimensional structure of a channel link which is the fundamental unit of a channel network. The morphological variables have nearly log-normal probability distributions. A general relation was determined which relates the means of the log-transformed variables to the logarithm of discharge similar to previously published downstream hydraulic geometry relations. The spatial variability of the variables is described by two properties: (1) the coefficient of variation which was nearly constant (0.13-0.42) over a wide range of discharge; and (2) the integral length scale in the downstream direction which was approximately equal to one to two mean channel widths. The joint probability distribution of the morphological variables in the downstream direction was modelled as a first-order, bivariate autoregressive process. This model accounted for up to 76 per cent of the total variance. The two-dimensional morphological variables can be scaled such that the channel width-depth process is independent of discharge. The scaling properties will be valuable to modellers of both basin and channel dynamics. Published in 2002 John Wiley and Sons, Ltd.

  17. Thought-action fusion: a comprehensive analysis using structural equation modeling.

    PubMed

    Marino, Teresa L; Lunt, Rachael A; Negy, Charles

    2008-07-01

    Thought-action fusion (TAF), the phenomenon whereby one has difficulty separating cognitions from corresponding behaviors, has implications in a wide variety of disturbances, including eating disorders, obsessive-compulsive disorder, generalized anxiety disorder, and panic disorder. Numerous constructs believed to contribute to the etiology or maintenance of TAF have been identified in the literature, but to date, no study has empirically integrated these findings into a comprehensive model. In this study, we examined simultaneously an array of variables thought to be related to TAF, and subsequently developed a model that elucidates the role of those variables that seem most involved in this phenomenon using a structural equation modeling approach. Results indicated that religiosity, as predicted by ethnic identity, was a significant predictor of TAF. Additionally, the relation between ethnic identity and TAF was partially mediated by an inflated sense of responsibility. Both TAF and obsessive-compulsive symptoms were found to be significant predictors of engagement in neutralization activities. Clinical and theoretical implications are discussed.

  18. Syntactic Awareness and Arithmetic Word Problem Solving in Children With and Without Learning Disabilities.

    PubMed

    Peake, Christian; Jiménez, Juan E; Rodríguez, Cristina; Bisschop, Elaine; Villarroel, Rebeca

    2015-01-01

    Arithmetic word problem (AWP) solving is a highly demanding task for children with learning disabilities (LD) since verbal and mathematical information have to be integrated. This study examines specifically how syntactic awareness (SA), the ability to manage the grammatical structures of language, affects AWP solving. Three groups of children in elementary education were formed: children with arithmetic learning disabilities (ALD), children with reading learning disabilities (RLD), and children with comorbid arithmetic and reading learning disabilities (ARLD). Mediation analysis confirmed that SA was a mediator variable for both groups of children with reading disabilities when solving AWPs, but not for children in the ALD group. All groups performed below the control group in the problem solving task. When SA was controlled for, semantic structure and position of the unknown set were variables that affected both groups with ALD. Specifically, children with ALD only were more affected by the place of the unknown set. © Hammill Institute on Disabilities 2014.

  19. General approach and scope. [rotor blade design optimization

    NASA Technical Reports Server (NTRS)

    Adelman, Howard M.; Mantay, Wayne R.

    1989-01-01

    This paper describes a joint activity involving NASA and Army researchers at the NASA Langley Research Center to develop optimization procedures aimed at improving the rotor blade design process by integrating appropriate disciplines and accounting for all of the important interactions among the disciplines. The disciplines involved include rotor aerodynamics, rotor dynamics, rotor structures, airframe dynamics, and acoustics. The work is focused on combining these five key disciplines in an optimization procedure capable of designing a rotor system to satisfy multidisciplinary design requirements. Fundamental to the plan is a three-phased approach. In phase 1, the disciplines of blade dynamics, blade aerodynamics, and blade structure will be closely coupled, while acoustics and airframe dynamics will be decoupled and be accounted for as effective constraints on the design for the first three disciplines. In phase 2, acoustics is to be integrated with the first three disciplines. Finally, in phase 3, airframe dynamics will be fully integrated with the other four disciplines. This paper deals with details of the phase 1 approach and includes details of the optimization formulation, design variables, constraints, and objective function, as well as details of discipline interactions, analysis methods, and methods for validating the procedure.

  20. Object-Oriented Multi-Disciplinary Design, Analysis, and Optimization Tool

    NASA Technical Reports Server (NTRS)

    Pak, Chan-gi

    2011-01-01

    An Object-Oriented Optimization (O3) tool was developed that leverages existing tools and practices, and allows the easy integration and adoption of new state-of-the-art software. At the heart of the O3 tool is the Central Executive Module (CEM), which can integrate disparate software packages in a cross platform network environment so as to quickly perform optimization and design tasks in a cohesive, streamlined manner. This object-oriented framework can integrate the analysis codes for multiple disciplines instead of relying on one code to perform the analysis for all disciplines. The CEM was written in FORTRAN and the script commands for each performance index were submitted through the use of the FORTRAN Call System command. In this CEM, the user chooses an optimization methodology, defines objective and constraint functions from performance indices, and provides starting and side constraints for continuous as well as discrete design variables. The structural analysis modules such as computations of the structural weight, stress, deflection, buckling, and flutter and divergence speeds have been developed and incorporated into the O3 tool to build an object-oriented Multidisciplinary Design, Analysis, and Optimization (MDAO) tool.

  1. An Assessment of Research Gaps Related to Deep Water Wellbore Integrity

    NASA Astrophysics Data System (ADS)

    Tkach, M. K.; Radonjic, M.; Kutchko, B. G.

    2017-12-01

    In order for a deep-water wellbore to uphold its integrity under high pressure - high temperature conditions, the wellbore must possess complete zonal isolation while surrounded in an extreme environment. Highly variable temperature and pressure ranges, shallow flow zones, as well as potentially corrosive fluids and gasses all present unique challenges to the job of the cement which maintains that zonal isolation. As such, alternative options to mainstream choices often present themselves as attractive avenues of discovery. As it is of utmost importance to maintain structural integrity under HPHT conditions, cement slurries are pumped downhole to provide zonal isolation and structural support to offshore wells. The wellbore system potentially faces a variety of temperature and pressure fluctuations from the immediate onset. These fluctuations may affect the hydration properties of the cement. It is also important to consider the chemical interactions that the cement may have at the rock-cement interface where potential degradation or annulus gaps may occur further risking a decrease in zonal isolation. This presentation intends to review some of the important issues regarding zonal isolation in HPHT conditions and to highlight critical knowledge gaps in order to generate important research questions.

  2. Effects of land use intensification on fish assemblages in Mediterranean climate streams.

    PubMed

    Matono, P; Sousa, D; Ilhéu, M

    2013-11-01

    Southern Portugal is experiencing a rapid change in land use due to the spread of intensive farming systems, namely olive production systems, which can cause strong negative environmental impacts and affect the ecological integrity of aquatic ecosystems. This study aimed to identify the main environmental disturbances related with olive grove intensification on Mediterranean-climate streams in southern Portugal, and to evaluate their effects on fish assemblage structure and integrity. Twenty-six stream sites within the direct influence of traditional, intensive, and hyper-intensive olive groves were sampled. Human-induced disturbances were analyzed along the olive grove intensity gradient. The integrity of fish assemblages was evaluated by comparison with an independent set of least disturbed reference sites, considering metrics and guilds, based on multivariate analyses. Along the gradient of olive grove intensification, the study observed overall increases in human disturbance variables and physicochemical parameters, especially organic/nutrient enrichment, sediment load, and riparian degradation. Animal load measured the impact of livestock production. This variable showed an opposite pattern, since traditional olive groves are often combined with high livestock production and are used as grazing pasture by the cattle, unlike more intensive olive groves. Stream sites influenced by olive groves were dominated by non-native and tolerant fish species, while reference sites presented higher fish richness, density and were mainly occupied by native and intolerant species. Fish assemblage structure in olive grove sites was significantly different from the reference set, although significant differences between olive grove types were not observed. Bray-Curtis similarities between olive grove sites and references showed a decreasing trend in fish assemblage integrity along the olive grove intensification gradient. Olive production, even in traditional groves, led to multiple in-stream disturbances, whose cumulative effects promoted the loss of biota integrity. The impacts of low intensity traditional olive groves on aquatic ecosystems can be much greater when they are coupled with livestock production. This paper recommends best practices to reduce negative impacts of olive production on streams, contributing to guide policy decision-makers in agricultural and water management.

  3. Contact Hamiltonian systems and complete integrability

    NASA Astrophysics Data System (ADS)

    Visinescu, Mihai

    2017-12-01

    We summarize recent results on the integrability of Hamiltonian systems on contact manifolds. We explain how to extend the classical formulation of action-angle variables to contact integrable systems. Using the Jacobi brackets defined on contact manifolds, we discuss the commutativity of first integrals for contact Hamiltonian systems and present the construction of generalized contact action-angle variables. We illustrate the integrability in the contact geometry on the five-dimensional Sasaki-Einstein spaces T1,1 and Yp,q.

  4. Multi-format all-optical processing based on a large-scale, hybridly integrated photonic circuit.

    PubMed

    Bougioukos, M; Kouloumentas, Ch; Spyropoulou, M; Giannoulis, G; Kalavrouziotis, D; Maziotis, A; Bakopoulos, P; Harmon, R; Rogers, D; Harrison, J; Poustie, A; Maxwell, G; Avramopoulos, H

    2011-06-06

    We investigate through numerical studies and experiments the performance of a large scale, silica-on-silicon photonic integrated circuit for multi-format regeneration and wavelength-conversion. The circuit encompasses a monolithically integrated array of four SOAs inside two parallel Mach-Zehnder structures, four delay interferometers and a large number of silica waveguides and couplers. Exploiting phase-incoherent techniques, the circuit is capable of processing OOK signals at variable bit rates, DPSK signals at 22 or 44 Gb/s and DQPSK signals at 44 Gbaud. Simulation studies reveal the wavelength-conversion potential of the circuit with enhanced regenerative capabilities for OOK and DPSK modulation formats and acceptable quality degradation for DQPSK format. Regeneration of 22 Gb/s OOK signals with amplified spontaneous emission (ASE) noise and DPSK data signals degraded with amplitude, phase and ASE noise is experimentally validated demonstrating a power penalty improvement up to 1.5 dB.

  5. Monolithic microwave integrated circuits for sensors, radar, and communications systems; Proceedings of the Meeting, Orlando, FL, Apr. 2-4, 1991

    NASA Technical Reports Server (NTRS)

    Leonard, Regis F. (Editor); Bhasin, Kul B. (Editor)

    1991-01-01

    Consideration is given to MMICs for airborne phased arrays, monolithic GaAs integrated circuit millimeter wave imaging sensors, accurate design of multiport low-noise MMICs up to 20 GHz, an ultralinear low-noise amplifier technology for space communications, variable-gain MMIC module for space applications, a high-efficiency dual-band power amplifier for radar applications, a high-density circuit approach for low-cost MMIC circuits, coplanar SIMMWIC circuits, recent advances in monolithic phased arrays, and system-level integrated circuit development for phased-array antenna applications. Consideration is also given to performance enhancement in future communications satellites with MMIC technology insertion, application of Ka-band MMIC technology for an Orbiter/ACTS communications experiment, a space-based millimeter wave debris tracking radar, low-noise high-yield octave-band feedback amplifiers to 20 GHz, quasi-optical MESFET VCOs, and a high-dynamic-range mixer using novel balun structure.

  6. Multiscale Analysis of Nanocomposites and Their Use in Structural Level Applications

    NASA Astrophysics Data System (ADS)

    Hasan, Zeaid

    This research focuses on the benefits of using nanocomposites in aerospace structural components to prevent or delay the onset of unique composite failure modes, such as delamination. Analytical, numerical, and experimental analyses were conducted to provide a comprehensive understanding of how carbon nanotubes (CNTs) can provide additional structural integrity when they are used in specific hot spots within a structure. A multiscale approach was implemented to determine the mechanical and thermal properties of the nanocomposites, which were used in detailed finite element models (FEMs) to analyze interlaminar failures in T and Hat section stringers. The delamination that first occurs between the tow filler and the bondline between the stringer and skin was of particular interest. Both locations are considered to be hot spots in such structural components, and failures tend to initiate from these areas. In this research, nanocomposite use was investigated as an alternative to traditional methods of suppressing delamination. The stringer was analyzed under different loading conditions and assuming different structural defects. Initial damage, defined as the first drop in the load displacement curve was considered to be a useful variable to compare the different behaviors in this study and was detected via the virtual crack closure technique (VCCT) implemented in the FE analysis. Experiments were conducted to test T section skin/stringer specimens under pull-off loading, replicating those used in composite panels as stiffeners. Two types of designs were considered: one using pure epoxy to fill the tow region and another that used nanocomposite with 5 wt. % CNTs. The response variable in the tests was the initial damage. Detailed analyses were conducted using FEMs to correlate with the experimental data. The correlation between both the experiment and model was satisfactory. Finally, the effects of thermal cure and temperature variation on nanocomposite structure behavior were studied, and both variables were determined to influence the nanocomposite structure performance.

  7. The role of discharge variation in scaling of drainage area and food chain length in rivers

    USGS Publications Warehouse

    Sabo, John L.; Finlay, Jacques C.; Kennedy, Theodore A.; Post, David M.

    2010-01-01

    Food chain length (FCL) is a fundamental component of food web structure. Studies in a variety of ecosystems suggest that FCL is determined by energy supply, environmental stability, and/or ecosystem size, but the nature of the relationship between environmental stability and FCL, and the mechanism linking ecosystem size to FCL, remain unclear. Here we show that FCL increases with drainage area and decreases with hydrologic variability and intermittency across 36 North American rivers. Our analysis further suggests that hydrologic variability is the mechanism underlying the correlation between ecosystem size and FCL in rivers. Ecosystem size lengthens river food chains by integrating and attenuating discharge variation through stream networks, thereby enhancing environmental stability in larger river systems.

  8. The role of discharge variation in scaling of drainage area and food chain length in rivers.

    PubMed

    Sabo, John L; Finlay, Jacques C; Kennedy, Theodore; Post, David M

    2010-11-12

    Food chain length (FCL) is a fundamental component of food web structure. Studies in a variety of ecosystems suggest that FCL is determined by energy supply, environmental stability, and/or ecosystem size, but the nature of the relationship between environmental stability and FCL, and the mechanism linking ecosystem size to FCL, remain unclear. Here we show that FCL increases with drainage area and decreases with hydrologic variability and intermittency across 36 North American rivers. Our analysis further suggests that hydrologic variability is the mechanism underlying the correlation between ecosystem size and FCL in rivers. Ecosystem size lengthens river food chains by integrating and attenuating discharge variation through stream networks, thereby enhancing environmental stability in larger river systems.

  9. Soil Moisture or Groundwater?

    NASA Astrophysics Data System (ADS)

    Swenson, S. C.; Lawrence, D. M.

    2017-12-01

    Partitioning the vertically integrated water storage variations estimated from GRACE satellite data into the components of which it is comprised requires independent information. Land surface models, which simulate the transfer and storage of moisture and energy at the land surface, are often used to estimate water storage variability of snow, surface water, and soil moisture. To obtain an estimate of changes in groundwater, the estimates of these storage components are removed from GRACE data. Biases in the modeled water storage components are therefore present in the residual groundwater estimate. In this study, we examine how soil moisture variability, estimated using the Community Land Model (CLM), depends on the vertical structure of the model. We then explore the implications of this uncertainty in the context of estimating groundwater variations using GRACE data.

  10. A new axi-symmetric element for thin walled structures

    NASA Astrophysics Data System (ADS)

    Cardoso, Rui P. R.; Yoon, Jeong Whan; Dick, Robert E.

    2010-03-01

    A new axi-symmetric finite element for thin walled structures is presented in this work. It uses the solid-shell element’s concept with only a single element and multiple integration points along the thickness direction. The cross-section of the element is composed of four nodes with two degrees of freedom each. The proposed formulation overcomes many locking pathologies including transverse shear locking, Poisson’s locking and volumetric locking. For transverse shear locking, the formulation uses the selective reduced integration technique, for Poisson’s locking it uses the enhanced assumed strain (EAS) method with only one enhancing variable. The B-bar approach is used to eliminate the isochoric deformations in the hourglass field while the EAS method is used to alleviate the volumetric locking in the constant part of the deformation tensor. Several examples are shown to demonstrate the performance and accuracy of the proposed element with special focus on the numerical simulations for the beverage can industry.

  11. Routing channels in VLSI layout

    NASA Astrophysics Data System (ADS)

    Cai, Hong

    A number of algorithms for the automatic routing of interconnections in Very Large Scale Integration (VLSI) building-block layouts are presented. Algorithms for the topological definition of channels, the global routing and the geometrical definition of channels are presented. In contrast to traditional approaches the definition and ordering of the channels is done after the global routing. This approach has the advantage that global routing information can be taken into account to select the optimal channel structure. A polynomial algorithm for the channel definition and ordering problem is presented. The existence of a conflict-free channel structure is guaranteed by enforcing a sliceable placement. Algorithms for finding the shortest connection path are described. A separate algorithm is developed for the power net routing, because the two power nets must be planarly routed with variable wire width. An integrated placement and routing system for generating building-block layout is briefly described. Some experimental results and design experiences in using the system are also presented. Very good results are obtained.

  12. Tailored optical vector fields for ultrashort-pulse laser induced complex surface plasmon structuring.

    PubMed

    Ouyang, J; Perrie, W; Allegre, O J; Heil, T; Jin, Y; Fearon, E; Eckford, D; Edwardson, S P; Dearden, G

    2015-05-18

    Precise tailoring of optical vector beams is demonstrated, shaping their focal electric fields and used to create complex laser micro-patterning on a metal surface. A Spatial Light Modulator (SLM) and a micro-structured S-waveplate were integrated with a picosecond laser system and employed to structure the vector fields into radial and azimuthal polarizations with and without a vortex phase wavefront as well as superposition states. Imprinting Laser Induced Periodic Surface Structures (LIPSS) elucidates the detailed vector fields around the focal region. In addition to clear azimuthal and radial plasmon surface structures, unique, variable logarithmic spiral micro-structures with a pitch Λ ∼1μm, not observed previously, were imprinted on the surface, confirming unambiguously the complex 2D focal electric fields. We show clearly also how the Orbital Angular Momentum(OAM) associated with a helical wavefront induces rotation of vector fields along the optic axis of a focusing lens and confirmed by the observed surface micro-structures.

  13. Noncommutative Differential Geometry of Generalized Weyl Algebras

    NASA Astrophysics Data System (ADS)

    Brzeziński, Tomasz

    2016-06-01

    Elements of noncommutative differential geometry of Z-graded generalized Weyl algebras A(p;q) over the ring of polynomials in two variables and their zero-degree subalgebras B(p;q), which themselves are generalized Weyl algebras over the ring of polynomials in one variable, are discussed. In particular, three classes of skew derivations of A(p;q) are constructed, and three-dimensional first-order differential calculi induced by these derivations are described. The associated integrals are computed and it is shown that the dimension of the integral space coincides with the order of the defining polynomial p(z). It is proven that the restriction of these first-order differential calculi to the calculi on B(p;q) is isomorphic to the direct sum of degree 2 and degree -2 components of A(p;q). A Dirac operator for B(p;q) is constructed from a (strong) connection with respect to this differential calculus on the (free) spinor bimodule defined as the direct sum of degree 1 and degree -1 components of A(p;q). The real structure of KO-dimension two for this Dirac operator is also described.

  14. G-DYN Multibody Dynamics Engine

    NASA Technical Reports Server (NTRS)

    Acikmese, Behcet; Blackmore, James C.; Broderick, Daniel

    2011-01-01

    G-DYN is a multi-body dynamic simulation software engine that automatically assembles and integrates equations of motion for arbitrarily connected multibody dynamic systems. The algorithm behind G-DYN is based on a primal-dual formulation of the dynamics that captures the position and velocity vectors (primal variables) of each body and the interaction forces (dual variables) between bodies, which are particularly useful for control and estimation analysis and synthesis. It also takes full advantage of the spare matrix structure resulting from the system dynamics to numerically integrate the equations of motion efficiently. Furthermore, the dynamic model for each body can easily be replaced without re-deriving the overall equations of motion, and the assembly of the equations of motion is done automatically. G-DYN proved an essential software tool in the simulation of spacecraft systems used for small celestial body surface sampling, specifically in simulating touch-and-go (TAG) maneuvers of a robotic sampling system from a comet and asteroid. It is used extensively in validating mission concepts for small body sample return, such as Comet Odyssey and Galahad New Frontiers proposals.

  15. Multilevel integrated flood management aproach

    NASA Astrophysics Data System (ADS)

    Brilly, Mitja; Rusjan, Simon

    2013-04-01

    The optimal solution for complex flood management is integrated approach. Word »integration« used very often when we try to put something together, but should distinguish full multiple integrated approach of integration by parts when we put together and analyse only two variables. In doing so, we lost complexity of the phenomenon. Otherwise if we try to put together all variables we should take so much effort and time and we never finish the job properly. Solution is in multiple integration captures the essential factors, which are different on a case-by-case (Brilly, 2000). Physical planning is one of most important activity in which flood management should be integrated. The physical planning is crucial for vulnerability and its future development and on other hand our structural measures must be incorporate in space and will very often dominated in. The best solution is if space development derived on same time with development of structural measures. There are good examples with such approach (Vienna, Belgrade, Zagreb, and Ljubljana). Problems stared when we try incorporating flood management in already urbanised area or we would like to decrease risk to some lower level. Looking to practice we learn that middle Ages practices were much better than to day. There is also »disaster by design« when hazard increased as consequence of upstream development or in stream construction or remediation. In such situation we have risk on areas well protected in the past. Good preparation is essential for integration otherwise we just lost time what is essential for decision making and development. We should develop clear picture about physical characteristics of phenomena and possible solutions. We should develop not only the flood maps; we should know how fast phenomena could develop, in hour, day or more. Do we need to analyse ground water - surface water relations, we would like to protected area that was later flooded by ground water. Do we need to take care about sediment transport, phenomenon close related to floods - could the river bad bottom increase or decrease for some meters or river completely rearrange morphology - how then inundated area will look like. Hazard of floods should be presented properly, with maps, uncertainty and trends related to natural and anthropogenic impacts. We should look time back, how our river look in past centuries and what are water management plans for future. Which activities are on the river? There are good practice in flood protection, hydropower development and physical planning (Vienna, Sava River).

  16. Ceramic component reliability with the restructured NASA/CARES computer program

    NASA Technical Reports Server (NTRS)

    Powers, Lynn M.; Starlinger, Alois; Gyekenyesi, John P.

    1992-01-01

    The Ceramics Analysis and Reliability Evaluation of Structures (CARES) integrated design program on statistical fast fracture reliability and monolithic ceramic components is enhanced to include the use of a neutral data base, two-dimensional modeling, and variable problem size. The data base allows for the efficient transfer of element stresses, temperatures, and volumes/areas from the finite element output to the reliability analysis program. Elements are divided to insure a direct correspondence between the subelements and the Gaussian integration points. Two-dimensional modeling is accomplished by assessing the volume flaw reliability with shell elements. To demonstrate the improvements in the algorithm, example problems are selected from a round-robin conducted by WELFEP (WEakest Link failure probability prediction by Finite Element Postprocessors).

  17. Integrated multidisciplinary optimization of rotorcraft: A plan for development

    NASA Technical Reports Server (NTRS)

    Adelman, Howard M. (Editor); Mantay, Wayne R. (Editor)

    1989-01-01

    This paper describes a joint NASA/Army initiative at the Langley Research Center to develop optimization procedures aimed at improving the rotor blade design process by integrating appropriate disciplines and accounting for important interactions among the disciplines. The paper describes the optimization formulation in terms of the objective function, design variables, and constraints. Additionally, some of the analysis aspects are discussed, validation strategies are described, and an initial attempt at defining the interdisciplinary couplings is summarized. At this writing, significant progress has been made, principally in the areas of single discipline optimization. Accomplishments are described in areas of rotor aerodynamic performance optimization for minimum hover horsepower, rotor dynamic optimization for vibration reduction, and rotor structural optimization for minimum weight.

  18. On Reductions of the Hirota-Miwa Equation

    NASA Astrophysics Data System (ADS)

    Hone, Andrew N. W.; Kouloukas, Theodoros E.; Ward, Chloe

    2017-07-01

    The Hirota-Miwa equation (also known as the discrete KP equation, or the octahedron recurrence) is a bilinear partial difference equation in three independent variables. It is integrable in the sense that it arises as the compatibility condition of a linear system (Lax pair). The Hirota-Miwa equation has infinitely many reductions of plane wave type (including a quadratic exponential gauge transformation), defined by a triple of integers or half-integers, which produce bilinear ordinary difference equations of Somos/Gale-Robinson type. Here it is explained how to obtain Lax pairs and presymplectic structures for these reductions, in order to demonstrate Liouville integrability of some associated maps, certain of which are related to reductions of discrete Toda and discrete KdV equations.

  19. Component-specific modeling. [jet engine hot section components

    NASA Technical Reports Server (NTRS)

    Mcknight, R. L.; Maffeo, R. J.; Tipton, M. T.; Weber, G.

    1992-01-01

    Accomplishments are described for a 3 year program to develop methodology for component-specific modeling of aircraft hot section components (turbine blades, turbine vanes, and burner liners). These accomplishments include: (1) engine thermodynamic and mission models, (2) geometry model generators, (3) remeshing, (4) specialty three-dimensional inelastic structural analysis, (5) computationally efficient solvers, (6) adaptive solution strategies, (7) engine performance parameters/component response variables decomposition and synthesis, (8) integrated software architecture and development, and (9) validation cases for software developed.

  20. Quiet Clean Short-haul Experimental Engine (QCSEE) Under-The-Wing (UTW) composite nacelle subsystem test report. [to verify strength of selected composite materials

    NASA Technical Reports Server (NTRS)

    Stotler, C. L., Jr.; Johnston, E. A.; Freeman, D. S.

    1977-01-01

    The element and subcomponent testing conducted to verify the under the wing composite nacelle design is reported. This composite nacelle consists of an inlet, outer cowl doors, inner cowl doors, and a variable fan nozzle. The element tests provided the mechanical properties used in the nacelle design. The subcomponent tests verified that the critical panel and joint areas of the nacelle had adequate structural integrity.

  1. Investigating Variables Predicting Turkish Pre-service Teachers' Integration of ICT into Teaching Practices

    ERIC Educational Resources Information Center

    Aslan, Aydin; Zhu, Chang

    2017-01-01

    Pre-service teachers need to acquire information and communications technology (ICT) competency in order to integrate ICT into their teaching practices. This research was conducted to investigate to what extent ICT-related variables--such as perceived ICT competence, perceived competence in ICT integration, attitudes toward ICT, anxiety around ICT…

  2. 78 FR 72878 - Integration of Variable Energy Resources; Notice Of Filing Procedures for Order No. 764...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-04

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. RM10-11-000] Integration of Variable Energy Resources; Notice Of Filing Procedures for Order No. 764 Electronic Compliance Filings Take notice of the following filing procedures with respect to compliance obligations in Integration of...

  3. Relationships between lines of evidence of pollution in estuarine areas: Linking contaminant levels with biomarker responses in mussels and with structure of macroinvertebrate benthic communities.

    PubMed

    De Los Ríos, A; Echavarri-Erasun, B; Lacorte, S; Sánchez-Ávila, J; De Jonge, M; Blust, R; Orbea, A; Juanes, J A; Cajaraville, M P

    2016-10-01

    Data obtained in a pollution survey performed in estuarine areas were integrated using multivariate statistics. The sites selected for the study were areas affected by treated and untreated urban discharges, harbours or industrial activities as well as reference sites. Mussels were transplanted to each site and after different times of exposure, samples of water, sediments and mussels were collected. Biomarkers were analysed on mussels after 3 and 21 days of transplant whereas concentrations of contaminants were measured in water, sediments and mussels after 21 days of transplant. The structure of macroinvertebrate benthic communities was studied in sediment samples. Studied variables were organised into 5 datasets, each one constituting a line of evidence (LOE): contaminants in water, contaminants in sediments, contaminants accumulated by transplanted mussels, biomarkers in transplanted mussels and changes in the structure of macroinvertebrate benthic communities of each sampling site. Principal Component Analysis (PCA) identified the variables of each LOE best explaining variability among sites. In order to know how LOEs relate to each other, Pearson's correlations were performed. Contaminants in sediments were not correlated with the rest of LOEs. Contaminants in water were significantly correlated with contaminants and biomarkers in mussels and with structure of macroinvertebrate benthic communities. Similarly, significant correlations were found between contaminants and biomarkers in mussels and between biomarkers in mussels and structure of macroinvertebrate benthic communities. In conclusion, biomarker responses give relevant information on pollution in estuarine areas and provide a link between chemical and ecological statuses of water bodies in the context of the Water Framework Directive. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Influence factors and forecast of carbon emission in China: structure adjustment for emission peak

    NASA Astrophysics Data System (ADS)

    Wang, B.; Cui, C. Q.; Li, Z. P.

    2018-02-01

    This paper introduced Principal Component Analysis and Multivariate Linear Regression Model to verify long-term balance relationships between Carbon Emissions and the impact factors. The integrated model of improved PCA and multivariate regression analysis model is attainable to figure out the pattern of carbon emission sources. Main empirical results indicate that among all selected variables, the role of energy consumption scale was largest. GDP and Population follow and also have significant impacts on carbon emission. Industrialization rate and fossil fuel proportion, which is the indicator of reflecting the economic structure and energy structure, have a higher importance than the factor of urbanization rate and the dweller consumption level of urban areas. In this way, some suggestions are put forward for government to achieve the peak of carbon emissions.

  5. Nonlinear dynamic systems identification using recurrent interval type-2 TSK fuzzy neural network - A novel structure.

    PubMed

    El-Nagar, Ahmad M

    2018-01-01

    In this study, a novel structure of a recurrent interval type-2 Takagi-Sugeno-Kang (TSK) fuzzy neural network (FNN) is introduced for nonlinear dynamic and time-varying systems identification. It combines the type-2 fuzzy sets (T2FSs) and a recurrent FNN to avoid the data uncertainties. The fuzzy firing strengths in the proposed structure are returned to the network input as internal variables. The interval type-2 fuzzy sets (IT2FSs) is used to describe the antecedent part for each rule while the consequent part is a TSK-type, which is a linear function of the internal variables and the external inputs with interval weights. All the type-2 fuzzy rules for the proposed RIT2TSKFNN are learned on-line based on structure and parameter learning, which are performed using the type-2 fuzzy clustering. The antecedent and consequent parameters of the proposed RIT2TSKFNN are updated based on the Lyapunov function to achieve network stability. The obtained results indicate that our proposed network has a small root mean square error (RMSE) and a small integral of square error (ISE) with a small number of rules and a small computation time compared with other type-2 FNNs. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  6. How livestock and flooding mediate the ecological integrity of working forests in Amazon River floodplains.

    PubMed

    Lucas, Christine M; Sheikh, Pervaze; Gagnon, Paul R; Mcgrath, David G

    2016-01-01

    The contribution of working forests to tropical conservation and development depends upon the maintenance of ecological integrity under ongoing land use. Assessment of ecological integrity requires an understanding of the structure, composition, and function and major drivers that govern their variability. Working forests in tropical river floodplains provide many goods and services, yet the data on the ecological processes that sustain these services is scant. In flooded forests of riverside Amazonian communities, we established 46 0.1-ha plots varying in flood duration, use by cattle and water buffalo, and time since agricultural abandonment (30-90 yr). We monitored three aspects of ecological integrity (stand structure, species composition, and dynamics of trees and seedlings) to evaluate the impacts of different trajectories of livestock activity (alleviation, stasis, and intensification) over nine years. Negative effects of livestock intensification were solely evident in the forest understory, and plots alleviated from past heavy disturbance increased in seedling density but had higher abundance of thorny species than plots maintaining low activity. Stand structure, dynamics, and tree species composition were strongly influenced by the natural pulse of seasonal floods, such that the defining characteristics of integrity were dependent upon flood duration (3-200 d). Forests with prolonged floods ≥ 140 d had not only lower species richness but also lower rates of recruitment and species turnover relative to forests with short floods <70 d. Overall, the combined effects of livestock intensification and prolonged flooding hindered forest regeneration, but overall forest integrity was largely related to the hydrological regime and age. Given this disjunction between factors mediating canopy and understory integrity, we present a subset of metrics for regeneration and recruitment to distinguish forest condition by livestock trajectory. Although our study design includes confounded factors that preclude a definitive assessment of the major drivers of ecological change, we provide much-needed data on the regrowth of a critical but poorly studied ecosystem. In addition to its emphasis on the dynamics of tropical wetland forests undergoing anthropogenic and environmental change, our case study is an important example for how to assess of ecological integrity in working forests of tropical ecosystems.

  7. Probabilistic Simulation of Progressive Fracture in Bolted-Joint Composite Laminates

    NASA Technical Reports Server (NTRS)

    Minnetyan, L.; Singhal, S. N.; Chamis, C. C.

    1996-01-01

    This report describes computational methods to probabilistically simulate fracture in bolted composite structures. An innovative approach that is independent of stress intensity factors and fracture toughness was used to simulate progressive fracture. The effect of design variable uncertainties on structural damage was also quantified. A fast probability integrator assessed the scatter in the composite structure response before and after damage. Then the sensitivity of the response to design variables was computed. General-purpose methods, which are applicable to bolted joints in all types of structures and in all fracture processes-from damage initiation to unstable propagation and global structure collapse-were used. These methods were demonstrated for a bolted joint of a polymer matrix composite panel under edge loads. The effects of the fabrication process were included in the simulation of damage in the bolted panel. Results showed that the most effective way to reduce end displacement at fracture is to control both the load and the ply thickness. The cumulative probability for longitudinal stress in all plies was most sensitive to the load; in the 0 deg. plies it was very sensitive to ply thickness. The cumulative probability for transverse stress was most sensitive to the matrix coefficient of thermal expansion. In addition, fiber volume ratio and fiber transverse modulus both contributed significantly to the cumulative probability for the transverse stresses in all the plies.

  8. Integrative analysis of transcriptomic and metabolomic data via sparse canonical correlation analysis with incorporation of biological information.

    PubMed

    Safo, Sandra E; Li, Shuzhao; Long, Qi

    2018-03-01

    Integrative analysis of high dimensional omics data is becoming increasingly popular. At the same time, incorporating known functional relationships among variables in analysis of omics data has been shown to help elucidate underlying mechanisms for complex diseases. In this article, our goal is to assess association between transcriptomic and metabolomic data from a Predictive Health Institute (PHI) study that includes healthy adults at a high risk of developing cardiovascular diseases. Adopting a strategy that is both data-driven and knowledge-based, we develop statistical methods for sparse canonical correlation analysis (CCA) with incorporation of known biological information. Our proposed methods use prior network structural information among genes and among metabolites to guide selection of relevant genes and metabolites in sparse CCA, providing insight on the molecular underpinning of cardiovascular disease. Our simulations demonstrate that the structured sparse CCA methods outperform several existing sparse CCA methods in selecting relevant genes and metabolites when structural information is informative and are robust to mis-specified structural information. Our analysis of the PHI study reveals that a number of gene and metabolic pathways including some known to be associated with cardiovascular diseases are enriched in the set of genes and metabolites selected by our proposed approach. © 2017, The International Biometric Society.

  9. [Integral health provision by two Catalonian health providing entities (Spain)].

    PubMed

    Henao-Martínez, Diana; Vázquez-Navarrete, María L; Vargas-Lorenzo, Ingrid; Coderch-Lassaletta, Jordi; Llopart-López, Josep R

    2008-01-01

    Health policies aimed at promoting collaboration amongst providers have led to different initiatives, amongst them integrated healthcare delivery systems (IDS); these have been analysed mainly in the USA but hardly so in Colombia or Spain . This article thus analyses the experience of two IDS in Catalonia for identifying elements for improvement. This was a case-study carried out via individual semi-structured interviews and analysing documents. Two IDS were selected; a sample of documents and reports providing information on analysis variables were selected for each case. Content was analysed via mixed categories and segmentation by cases and topics. Both IDS are health-care providing organisations presenting backward vertical integration, having total internal service production and virtual integration of ownership. BSA is funded by providing services whilst SSIBE relies on shareholding via capitation pilot test. Both have closely coordinated multiple managing bodies and have defined overall strategies orientated towards coordination and efficiency; they differ regarding implementation time. BSA has a divisional structure and SSIBE a functional one, organised by transversal areas. Clinical coordination is based on standardising processes and abilities, having few mechanisms for mutual adaptation and disparity in the number of instruments implemented. Both organisations presented enabling and hindering factors for clinical coordination which would need changes in internal and external components in order to improve overall efficiency and health care continuity.

  10. Integrating motion, illumination, and structure in video sequences with applications in illumination-invariant tracking.

    PubMed

    Xu, Yilei; Roy-Chowdhury, Amit K

    2007-05-01

    In this paper, we present a theory for combining the effects of motion, illumination, 3D structure, albedo, and camera parameters in a sequence of images obtained by a perspective camera. We show that the set of all Lambertian reflectance functions of a moving object, at any position, illuminated by arbitrarily distant light sources, lies "close" to a bilinear subspace consisting of nine illumination variables and six motion variables. This result implies that, given an arbitrary video sequence, it is possible to recover the 3D structure, motion, and illumination conditions simultaneously using the bilinear subspace formulation. The derivation builds upon existing work on linear subspace representations of reflectance by generalizing it to moving objects. Lighting can change slowly or suddenly, locally or globally, and can originate from a combination of point and extended sources. We experimentally compare the results of our theory with ground truth data and also provide results on real data by using video sequences of a 3D face and the entire human body with various combinations of motion and illumination directions. We also show results of our theory in estimating 3D motion and illumination model parameters from a video sequence.

  11. Variable input observer for structural health monitoring of high-rate systems

    NASA Astrophysics Data System (ADS)

    Hong, Jonathan; Laflamme, Simon; Cao, Liang; Dodson, Jacob

    2017-02-01

    The development of high-rate structural health monitoring methods is intended to provide damage detection on timescales of 10 µs -10ms where speed of detection is critical to maintain structural integrity. Here, a novel Variable Input Observer (VIO) coupled with an adaptive observer is proposed as a potential solution for complex high-rate problems. The VIO is designed to adapt its input space based on real-time identification of the system's essential dynamics. By selecting appropriate time-delayed coordinates defined by both a time delay and an embedding dimension, the proper input space is chosen which allows more accurate estimations of the current state and a reduction of the convergence rate. The optimal time-delay is estimated based on mutual information, and the embedding dimension is based on false nearest neighbors. A simulation of the VIO is conducted on a two degree-of-freedom system with simulated damage. Results are compared with an adaptive Luenberger observer, a fixed time-delay observer, and a Kalman Filter. Under its preliminary design, the VIO converges significantly faster than the Luenberger and fixed observer. It performed similarly to the Kalman Filter in terms of convergence, but with greater accuracy.

  12. Predator-guided sampling reveals biotic structure in the bathypelagic.

    PubMed

    Benoit-Bird, Kelly J; Southall, Brandon L; Moline, Mark A

    2016-02-24

    We targeted a habitat used differentially by deep-diving, air-breathing predators to empirically sample their prey's distributions off southern California. Fine-scale measurements of the spatial variability of potential prey animals from the surface to 1,200 m were obtained using conventional fisheries echosounders aboard a surface ship and uniquely integrated into a deep-diving autonomous vehicle. Significant spatial variability in the size, composition, total biomass, and spatial organization of biota was evident over all spatial scales examined and was consistent with the general distribution patterns of foraging Cuvier's beaked whales (Ziphius cavirostris) observed in separate studies. Striking differences found in prey characteristics between regions at depth, however, did not reflect differences observed in surface layers. These differences in deep pelagic structure horizontally and relative to surface structure, absent clear physical differences, change our long-held views of this habitat as uniform. The revelation that animals deep in the water column are so spatially heterogeneous at scales from 10 m to 50 km critically affects our understanding of the processes driving predator-prey interactions, energy transfer, biogeochemical cycling, and other ecological processes in the deep sea, and the connections between the productive surface mixed layer and the deep-water column. © 2016 The Author(s).

  13. Moisture structure of tropical cloud systems as inferred from SSM/I

    NASA Technical Reports Server (NTRS)

    Robertson, Franklin R.

    1989-01-01

    The structure of tropical cloud systems was examined using data obtained by the Special Sensor Microwave/Imager on vertically-integrated vapor, ice, and liquid water (including precipitable water) in a cloud cluster associated with a Pacific easterly wave. The cloud cluster provided a sample of the varying signatures of bulk microphysical processes in organized tropical convection. Composition techniques were used to interpret this variability and its significance in terms of the response of convection to its thermodynamic environment. The relative intensities of the ice and liquid-water signatures should provide insight on the relative contribution of stratiform vs convective rain and the characteristics of the water budgets of mesoscale convective systems.

  14. Aeroelastic modeling of rotor blades with spanwise variable elastic axis offset: Classic issues revisited and new formulations

    NASA Technical Reports Server (NTRS)

    Bielawa, Richard L.

    1988-01-01

    In response to a systematic methodology assessment program directed to the aeroelastic stability of hingeless helicopter rotor blades, improved basic aeroelastic reformulations and new formulations relating to structural sweep were achieved. Correlational results are presented showing the substantially improved performance of the G400 aeroelastic analysis incorporating these new formulations. The formulations pertain partly to sundry solutions to classic problem areas, relating to dynamic inflow with vortex-ring state operation and basic blade kinematics, but mostly to improved physical modeling of elastic axis offset (structural sweep) in the presence of nonlinear structural twist. Specific issues addressed are an alternate modeling of the delta EI torsional excitation due to compound bending using a force integration approach, and the detailed kinematic representation of an elastically deflected point mass of a beam with both structural sweep and nonlinear twist.

  15. A Superstrong Adjustable Permanent Magnet for the Final Focus Quadrupole in a Linear Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mihara, T.

    A super strong permanent magnet quadrupole (PMQ) was fabricated and tested. It has an integrated strength of 28.5T with overall length of 10 cm and a 7mm bore radius. The final focus quadrupole of a linear collider needs a variable focal length. This can be obtained by slicing the magnet into pieces along the beamline direction and rotating these slices. But this technique may lead to movement of the magnetic center and introduction of a skew quadrupole component when the strength is varied. A ''double ring structure'' can ease these effects. A second prototype PMQ, containing thermal compensation materials andmore » with a double ring structure, has been fabricated. Worm gear is selected as the mechanical rotating scheme because the double ring structure needs a large torque to rotate magnets. The structure of the second prototype PMQ is shown.« less

  16. Probabilistic Analysis of Large-Scale Composite Structures Using the IPACS Code

    NASA Technical Reports Server (NTRS)

    Lemonds, Jeffrey; Kumar, Virendra

    1995-01-01

    An investigation was performed to ascertain the feasibility of using IPACS (Integrated Probabilistic Assessment of Composite Structures) for probabilistic analysis of a composite fan blade, the development of which is being pursued by various industries for the next generation of aircraft engines. A model representative of the class of fan blades used in the GE90 engine has been chosen as the structural component to be analyzed with IPACS. In this study, typical uncertainties are assumed in the level, and structural responses for ply stresses and frequencies are evaluated in the form of cumulative probability density functions. Because of the geometric complexity of the blade, the number of plies varies from several hundred at the root to about a hundred at the tip. This represents a extremely complex composites application for the IPACS code. A sensitivity study with respect to various random variables is also performed.

  17. Collagens--structure, function, and biosynthesis.

    PubMed

    Gelse, K; Pöschl, E; Aigner, T

    2003-11-28

    The extracellular matrix represents a complex alloy of variable members of diverse protein families defining structural integrity and various physiological functions. The most abundant family is the collagens with more than 20 different collagen types identified so far. Collagens are centrally involved in the formation of fibrillar and microfibrillar networks of the extracellular matrix, basement membranes as well as other structures of the extracellular matrix. This review focuses on the distribution and function of various collagen types in different tissues. It introduces their basic structural subunits and points out major steps in the biosynthesis and supramolecular processing of fibrillar collagens as prototypical members of this protein family. A final outlook indicates the importance of different collagen types not only for the understanding of collagen-related diseases, but also as a basis for the therapeutical use of members of this protein family discussed in other chapters of this issue.

  18. Elastic Green’s Function in Anisotropic Bimaterials Considering Interfacial Elasticity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Juan, Pierre -Alexandre; Dingreville, Remi

    Here, the two-dimensional elastic Green’s function is calculated for a general anisotropic elastic bimaterial containing a line dislocation and a concentrated force while accounting for the interfacial structure by means of a generalized interfacial elasticity paradigm. The introduction of the interface elasticity model gives rise to boundary conditions that are effectively equivalent to those of a weakly bounded interface. The equations of elastic equilibrium are solved by complex variable techniques and the method of analytical continuation. The solution is decomposed into the sum of the Green’s function corresponding to the perfectly bonded interface and a perturbation term corresponding to themore » complex coupling nature between the interface structure and a line dislocation/concentrated force. Such construct can be implemented into the boundary integral equations and the boundary element method for analysis of nano-layered structures and epitaxial systems where the interface structure plays an important role.« less

  19. Elastic Green’s Function in Anisotropic Bimaterials Considering Interfacial Elasticity

    DOE PAGES

    Juan, Pierre -Alexandre; Dingreville, Remi

    2017-09-13

    Here, the two-dimensional elastic Green’s function is calculated for a general anisotropic elastic bimaterial containing a line dislocation and a concentrated force while accounting for the interfacial structure by means of a generalized interfacial elasticity paradigm. The introduction of the interface elasticity model gives rise to boundary conditions that are effectively equivalent to those of a weakly bounded interface. The equations of elastic equilibrium are solved by complex variable techniques and the method of analytical continuation. The solution is decomposed into the sum of the Green’s function corresponding to the perfectly bonded interface and a perturbation term corresponding to themore » complex coupling nature between the interface structure and a line dislocation/concentrated force. Such construct can be implemented into the boundary integral equations and the boundary element method for analysis of nano-layered structures and epitaxial systems where the interface structure plays an important role.« less

  20. Stress-corrosion cracking in metals

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Criteria and recommended practices for preventing stress-corrosion cracking from impairing the structural integrity and flightworthiness of space vehicles are presented. The important variables affecting stress-corrosion cracking are considered to be the environment, including time and temperature; metal composition, and structure; and sustained tensile stress. For designing spacecraft structures that are free of stress-corrosion cracking for the service life of the vehicle the following rules apply: (1) identification and control of the environments to which the structure will be exposed during construction, storage, transportation, and use; (2) selection of alloy compositions and tempers which are resistant to stress-corrosion cracking in the identified environment; (3) control of fabrication and other processes which may introduce residual tensile stresses or damage the material; (4) limitation of the combined residual and applied tensile stresses to below the threshold stress level for the onset of cracking throughout the service life of the vehicle; and (5) establishment of a thorough inspection program.

  1. HIV Education and Welfare Services in Primary Care: An Empirical Model of Integration in Brazil’s Unified Health System

    PubMed Central

    Rahman, Rahbel; Pinto, Rogério M.; Wall, Melanie M.

    2017-01-01

    Integration of health education and welfare services in primary care systems is a key strategy to solve the multiple determinants of chronic diseases, such as Human Immunodeficiency Virus Infection and Acquired Immune Deficiency Syndrome (HIV/AIDS). However, there is a scarcity of conceptual models from which to build integration strategies. We provide a model based on cross-sectional data from 168 Community Health Agents, 62 nurses, and 32 physicians in two municipalities in Brazil’s Unified Health System (UHS). The outcome, service integration, comprised HIV education, community activities (e.g., health walks and workshops), and documentation services (e.g., obtainment of working papers and birth certificates). Predictors included individual factors (provider confidence, knowledge/skills, perseverance, efficacy); job characteristics (interprofessional collaboration, work-autonomy, decision-making autonomy, skill variety); and organizational factors (work conditions and work resources). Structural equation modeling was used to identify factors associated with service integration. Knowledge and skills, skill variety, confidence, and perseverance predicted greater integration of HIV education alongside community activities and documentation services. Job characteristics and organizational factors did not predict integration. Our study offers an explanatory model that can be adapted to examine other variables that may influence integration of different services in global primary healthcare systems. Findings suggest that practitioner trainings to improve integration should focus on cognitive constructs—confidence, perseverance, knowledge, and skills. PMID:28335444

  2. HIV Education and Welfare Services in Primary Care: An Empirical Model of Integration in Brazil's Unified Health System.

    PubMed

    Rahman, Rahbel; Pinto, Rogério M; Wall, Melanie M

    2017-03-14

    Integration of health education and welfare services in primary care systems is a key strategy to solve the multiple determinants of chronic diseases, such as Human Immunodeficiency Virus Infection and Acquired Immune Deficiency Syndrome (HIV/AIDS). However, there is a scarcity of conceptual models from which to build integration strategies. We provide a model based on cross-sectional data from 168 Community Health Agents, 62 nurses, and 32 physicians in two municipalities in Brazil's Unified Health System (UHS). The outcome, service integration, comprised HIV education, community activities (e.g., health walks and workshops), and documentation services (e.g., obtainment of working papers and birth certificates). Predictors included individual factors (provider confidence, knowledge/skills, perseverance, efficacy); job characteristics (interprofessional collaboration, work-autonomy, decision-making autonomy, skill variety); and organizational factors (work conditions and work resources). Structural equation modeling was used to identify factors associated with service integration. Knowledge and skills, skill variety, confidence, and perseverance predicted greater integration of HIV education alongside community activities and documentation services. Job characteristics and organizational factors did not predict integration. Our study offers an explanatory model that can be adapted to examine other variables that may influence integration of different services in global primary healthcare systems. Findings suggest that practitioner trainings to improve integration should focus on cognitive constructs-confidence, perseverance, knowledge, and skills.

  3. High resolution simulations of a variable HH jet

    NASA Astrophysics Data System (ADS)

    Raga, A. C.; de Colle, F.; Kajdič, P.; Esquivel, A.; Cantó, J.

    2007-04-01

    Context: In many papers, the flows in Herbig-Haro (HH) jets have been modeled as collimated outflows with a time-dependent ejection. In particular, a supersonic variability of the ejection velocity leads to the production of "internal working surfaces" which (for appropriate forms of the time-variability) can produce emitting knots that resemble the chains of knots observed along HH jets. Aims: In this paper, we present axisymmetric simulations of an "internal working surface" in a radiative jet (produced by an ejection velocity variability). We concentrate on a given parameter set (i.e., on a jet with a constante ejection density, and a sinusoidal velocity variability with a 20 yr period and a 40 km s-1 half-amplitude), and carry out a study of the behaviour of the solution for increasing numerical resolutions. Methods: In our simulations, we solve the gasdynamic equations together with a 17-species atomic/ionic network, and we are therefore able to compute emission coefficients for different emission lines. Results: We compute 3 adaptive grid simulations, with 20, 163 and 1310 grid points (at the highest grid resolution) across the initial jet radius. From these simulations we see that successively more complex structures are obtained for increasing numerical resolutions. Such an effect is seen in the stratifications of the flow variables as well as in the predicted emission line intensity maps. Conclusions: .We find that while the detailed structure of an internal working surface depends on resolution, the predicted emission line luminosities (integrated over the volume of the working surface) are surprisingly stable. This is definitely good news for the future computation of predictions from radiative jet models for carrying out comparisons with observations of HH objects.

  4. Cortical Contribution to Linear, Non-linear and Frequency Components of Motor Variability Control during Standing.

    PubMed

    König Ignasiak, Niklas; Habermacher, Lars; Taylor, William R; Singh, Navrag B

    2017-01-01

    Motor variability is an inherent feature of all human movements and reflects the quality of functional task performance. Depending on the requirements of the motor task, the human sensory-motor system is thought to be able to flexibly govern the appropriate level of variability. However, it remains unclear which neurophysiological structures are responsible for the control of motor variability. In this study, we tested the contribution of cortical cognitive resources on the control of motor variability (in this case postural sway) using a dual-task paradigm and furthermore observed potential changes in control strategy by evaluating Ia-afferent integration (H-reflex). Twenty healthy subjects were instructed to stand relaxed on a force plate with eyes open and closed, as well as while trying to minimize sway magnitude and performing a "subtracting-sevens" cognitive task. In total 25 linear and non-linear parameters were used to evaluate postural sway, which were combined using a Principal Components procedure. Neurophysiological response of Ia-afferent reflex loop was quantified using the Hoffman reflex. In order to assess the contribution of the H-reflex on the sway outcome in the different standing conditions multiple mixed-model ANCOVAs were performed. The results suggest that subjects were unable to further minimize their sway, despite actively focusing to do so. The dual-task had a destabilizing effect on PS, which could partly (by 4%) be counter-balanced by increasing reliance on Ia-afferent information. The effect of the dual-task was larger than the protective mechanism of increasing Ia-afferent information. We, therefore, conclude that cortical structures, as compared to peripheral reflex loops, play a dominant role in the control of motor variability.

  5. Unravelling the architecture of functional variability in wild populations of Polygonum viviparum L

    PubMed Central

    Boucher, Florian C.; Thuiller, Wilfried; Arnoldi, Cindy; Albert, Cécile H.; Lavergne, Sébastien

    2014-01-01

    SUMMARY Functional variability (FV) of populations can be decomposed into three main features: the individual variability of multiple traits, the strength of correlations between those traits and the main direction of these correlations, the latter two being known as ‘phenotypic integration’. Evolutionary biology has long recognized that FV in natural populations is key to determining potential evolutionary responses, but this topic has been little studied in functional ecology. Here we focus on the arctico-alpine perennial plant species Polygonum viviparum L.. We used a comprehensive sampling of seven functional traits in 29 wild populations covering the whole environmental niche of the species. The niche of the species was captured by a temperature gradient, which separated alpine stressful habitats from species-rich, competitive sub-alpine ones. We seeked to assess the relative roles of abiotic stress and biotic interactions in shaping different aspects of functional variation within and among populations, that is, the multi-trait variability, the strength of correlations between traits, and the main directions of functional trade-offs. Populations with the highest extent of functional variability were found in the warm end of the gradient whereas populations exhibiting the strongest degree of phenotypic integration were located in sites with intermediate temperatures. This could reveal both the importance of environmental filtering and population demography in structuring FV. Interestingly, we found that the main axes of multivariate functional variation were radically different within and across population. Although the proximate causes of FV structure remain uncertain, our study presents a robust methodology for the quantitative study of functional variability in connection with species’ niches. It also opens up new perspectives for the conceptual merging of intraspecific functional patterns with community ecology. PMID:24790285

  6. The Effect of Dietary Adaption on Cranial Morphological Integration in Capuchins (Order Primates, Genus Cebus)

    PubMed Central

    Makedonska, Jana; Wright, Barth W.; Strait, David S.

    2012-01-01

    A fundamental challenge of morphology is to identify the underlying evolutionary and developmental mechanisms leading to correlated phenotypic characters. Patterns and magnitudes of morphological integration and their association with environmental variables are essential for understanding the evolution of complex phenotypes, yet the nature of the relevant selective pressures remains poorly understood. In this study, the adaptive significance of morphological integration was evaluated through the association between feeding mechanics, ingestive behavior and craniofacial variation. Five capuchin species were examined, Cebus apella sensu stricto, Cebus libidinosus, Cebus nigritus, Cebus olivaceus and Cebus albifrons. Twenty three-dimensional landmarks were chosen to sample facial regions experiencing high strains during feeding, characteristics affecting muscular mechanical advantage and basicranial regions. Integration structure and magnitude between and within the oral and zygomatic subunits, between and within blocks maximizing modularity and within the face, the basicranium and the cranium were examined using partial-least squares, eigenvalue variance, integration indices compared inter-specifically at a common level of sampled population variance and cluster analyses. Results are consistent with previous findings reporting a relative constancy of facial and cranial correlation patterns across mammals, while covariance magnitudes vary. Results further suggest that food material properties structure integration among functionally-linked facial elements and possibly integration between the face and the basicranium. Hard-object-feeding capuchins, especially C.apella s.s., whose faces experience particularly high biomechanical loads are characterized by higher facial and cranial integration especially compared to C.albifrons, likely because morphotypes compromising feeding performance are selected against in species relying on obdurate fallback foods. This is the first study to report a link between food material properties and facial and cranial integration. Furthermore, results do not identify the consistent presence of cranial modules yielding support to suggestions that despite the distinct embryological imprints of its elements the cranium of placental mammals is not characterized by a modular architecture. PMID:23110039

  7. Foot Type Biomechanics Part 1: Structure and Function of the Asymptomatic Foot

    PubMed Central

    Hillstrom, Howard J.; Song, Jinsup; Kraszewski, Andrew P.; Hafer, Jocelyn F.; Mootanah, Rajshree; Dufour, Alyssa B.; PT, Betty (Shingpui) Chow; Deland, Jonathan T.

    2012-01-01

    Background Differences in foot structure are thought to be associated with differences in foot function during movement. Many foot pathologies are of a biomechanical nature and often associated with foot type. Fundamental to the understanding of foot pathomechanics is the question: do different foot types have distinctly different structure and function? Aim To determine if objective measures of foot structure and function differ between planus, rectus and cavus foot types in asymptomatic individuals. Methods Sixty-one asymptomatic healthy adults between 18 and 77 years old, that had the same foot type bilaterally (44 planus feet, 54 rectus feet, and 24 cavus feet), were recruited. Structural and functional measurements were taken using custom equipment, an emed-x plantar pressure measuring device, a GaitMatII gait pattern measurement system, and a goniometer. Generalized Estimation Equation modeling was employed to determine if each dependent variable of foot structure and function was significantly different across foot type while accounting for potential dependencies between sides. Post hoc testing was performed to assess pairwise comparisons. Results Several measures of foot structure (malleolar valgus index and arch height index) were significantly different between foot types. Gait pattern parameters were invariant across foot types. Peak pressure, maximum force, pressure-time-integral, force-time-integral and contact area were significantly different in several medial forefoot and arch locations between foot types. Planus feet exhibited significantly different center of pressure excursion indices compared to rectus and cavus feet. Conclusions Planus, rectus and cavus feet exhibited significantly different measures of foot structure and function. PMID:23107625

  8. Foot type biomechanics part 1: structure and function of the asymptomatic foot.

    PubMed

    Hillstrom, Howard J; Song, Jinsup; Kraszewski, Andrew P; Hafer, Jocelyn F; Mootanah, Rajshree; Dufour, Alyssa B; Chow, Betty Shingpui; Deland, Jonathan T

    2013-03-01

    Differences in foot structure are thought to be associated with differences in foot function during movement. Many foot pathologies are of a biomechanical nature and often associated with foot type. Fundamental to the understanding of foot pathomechanics is the question: do different foot types have distinctly different structure and function? To determine if objective measures of foot structure and function differ between planus, rectus and cavus foot types in asymptomatic individuals. Sixty-one asymptomatic healthy adults between 18 and 77 years old, that had the same foot type bilaterally (44 planus feet, 54 rectus feet, and 24 cavus feet), were recruited. Structural and functional measurements were taken using custom equipment, an emed-x plantar pressure measuring device, a GaitMat II gait pattern measurement system, and a goniometer. Generalized Estimation Equation modeling was employed to determine if each dependent variable of foot structure and function was significantly different across foot type while accounting for potential dependencies between sides. Post hoc testing was performed to assess pair wise comparisons. Several measures of foot structure (malleolar valgus index and arch height index) were significantly different between foot types. Gait pattern parameters were invariant across foot types. Peak pressure, maximum force, pressure-time-integral, force-time-integral and contact area were significantly different in several medial forefoot and arch locations between foot types. Planus feet exhibited significantly different center of pressure excursion indices compared to rectus and cavus feet. Planus, rectus and cavus feet exhibited significantly different measures of foot structure and function. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. An Integrative Framework for Bayesian Variable Selection with Informative Priors for Identifying Genes and Pathways

    PubMed Central

    Ander, Bradley P.; Zhang, Xiaoshuai; Xue, Fuzhong; Sharp, Frank R.; Yang, Xiaowei

    2013-01-01

    The discovery of genetic or genomic markers plays a central role in the development of personalized medicine. A notable challenge exists when dealing with the high dimensionality of the data sets, as thousands of genes or millions of genetic variants are collected on a relatively small number of subjects. Traditional gene-wise selection methods using univariate analyses face difficulty to incorporate correlational, structural, or functional structures amongst the molecular measures. For microarray gene expression data, we first summarize solutions in dealing with ‘large p, small n’ problems, and then propose an integrative Bayesian variable selection (iBVS) framework for simultaneously identifying causal or marker genes and regulatory pathways. A novel partial least squares (PLS) g-prior for iBVS is developed to allow the incorporation of prior knowledge on gene-gene interactions or functional relationships. From the point view of systems biology, iBVS enables user to directly target the joint effects of multiple genes and pathways in a hierarchical modeling diagram to predict disease status or phenotype. The estimated posterior selection probabilities offer probabilitic and biological interpretations. Both simulated data and a set of microarray data in predicting stroke status are used in validating the performance of iBVS in a Probit model with binary outcomes. iBVS offers a general framework for effective discovery of various molecular biomarkers by combining data-based statistics and knowledge-based priors. Guidelines on making posterior inferences, determining Bayesian significance levels, and improving computational efficiencies are also discussed. PMID:23844055

  10. An integrative framework for Bayesian variable selection with informative priors for identifying genes and pathways.

    PubMed

    Peng, Bin; Zhu, Dianwen; Ander, Bradley P; Zhang, Xiaoshuai; Xue, Fuzhong; Sharp, Frank R; Yang, Xiaowei

    2013-01-01

    The discovery of genetic or genomic markers plays a central role in the development of personalized medicine. A notable challenge exists when dealing with the high dimensionality of the data sets, as thousands of genes or millions of genetic variants are collected on a relatively small number of subjects. Traditional gene-wise selection methods using univariate analyses face difficulty to incorporate correlational, structural, or functional structures amongst the molecular measures. For microarray gene expression data, we first summarize solutions in dealing with 'large p, small n' problems, and then propose an integrative Bayesian variable selection (iBVS) framework for simultaneously identifying causal or marker genes and regulatory pathways. A novel partial least squares (PLS) g-prior for iBVS is developed to allow the incorporation of prior knowledge on gene-gene interactions or functional relationships. From the point view of systems biology, iBVS enables user to directly target the joint effects of multiple genes and pathways in a hierarchical modeling diagram to predict disease status or phenotype. The estimated posterior selection probabilities offer probabilitic and biological interpretations. Both simulated data and a set of microarray data in predicting stroke status are used in validating the performance of iBVS in a Probit model with binary outcomes. iBVS offers a general framework for effective discovery of various molecular biomarkers by combining data-based statistics and knowledge-based priors. Guidelines on making posterior inferences, determining Bayesian significance levels, and improving computational efficiencies are also discussed.

  11. Use of structured decision making to identify monitoring variables and management priorities for salt marsh ecosystems

    USGS Publications Warehouse

    Neckles, Hilary A.; Lyons, James E.; Guntenspergen, Glenn R.; Shriver, W. Gregory; Adamowicz, Susan C.

    2015-01-01

    Most salt marshes in the USA have been degraded by human activities, and coastal managers are faced with complex choices among possible actions to restore or enhance ecosystem integrity. We applied structured decision making (SDM) to guide selection of monitoring variables and management priorities for salt marshes within the National Wildlife Refuge System in the northeastern USA. In general, SDM is a systematic process for decomposing a decision into its essential elements. We first engaged stakeholders in clarifying regional salt marsh decision problems, defining objectives and attributes to evaluate whether objectives are achieved, and developing a pool of alternative management actions for achieving objectives. Through this process, we identified salt marsh attributes that were applicable to monitoring National Wildlife Refuges on a regional scale and that targeted management needs. We then analyzed management decisions within three salt marsh units at Prime Hook National Wildlife Refuge, coastal Delaware, as a case example of prioritizing management alternatives. Values for salt marsh attributes were estimated from 2 years of baseline monitoring data and expert opinion. We used linear value modeling to aggregate multiple attributes into a single performance score for each alternative, constrained optimization to identify alternatives that maximized total management benefits subject to refuge-wide cost constraints, and used graphical analysis to identify the optimal set of alternatives for the refuge. SDM offers an efficient, transparent approach for integrating monitoring into management practice and improving the quality of management decisions.

  12. The control of the controller: molecular mechanisms for robust perfect adaptation and temperature compensation.

    PubMed

    Ni, Xiao Yu; Drengstig, Tormod; Ruoff, Peter

    2009-09-02

    Organisms have the property to adapt to a changing environment and keep certain components within a cell regulated at the same level (homeostasis). "Perfect adaptation" describes an organism's response to an external stepwise perturbation by regulating some of its variables/components precisely to their original preperturbation values. Numerous examples of perfect adaptation/homeostasis have been found, as for example, in bacterial chemotaxis, photoreceptor responses, MAP kinase activities, or in metal-ion homeostasis. Two concepts have evolved to explain how perfect adaptation may be understood: In one approach (robust perfect adaptation), the adaptation is a network property, which is mostly, but not entirely, independent of rate constant values; in the other approach (nonrobust perfect adaptation), a fine-tuning of rate constant values is needed. Here we identify two classes of robust molecular homeostatic mechanisms, which compensate for environmental variations in a controlled variable's inflow or outflow fluxes, and allow for the presence of robust temperature compensation. These two classes of homeostatic mechanisms arise due to the fact that concentrations must have positive values. We show that the concept of integral control (or integral feedback), which leads to robust homeostasis, is associated with a control species that has to work under zero-order flux conditions and does not necessarily require the presence of a physico-chemical feedback structure. There are interesting links between the two identified classes of homeostatic mechanisms and molecular mechanisms found in mammalian iron and calcium homeostasis, indicating that homeostatic mechanisms may underlie similar molecular control structures.

  13. Modeling and Simulation of Variable Mass, Flexible Structures

    NASA Technical Reports Server (NTRS)

    Tobbe, Patrick A.; Matras, Alex L.; Wilson, Heath E.

    2009-01-01

    The advent of the new Ares I launch vehicle has highlighted the need for advanced dynamic analysis tools for variable mass, flexible structures. This system is composed of interconnected flexible stages or components undergoing rapid mass depletion through the consumption of solid or liquid propellant. In addition to large rigid body configuration changes, the system simultaneously experiences elastic deformations. In most applications, the elastic deformations are compatible with linear strain-displacement relationships and are typically modeled using the assumed modes technique. The deformation of the system is approximated through the linear combination of the products of spatial shape functions and generalized time coordinates. Spatial shape functions are traditionally composed of normal mode shapes of the system or even constraint modes and static deformations derived from finite element models of the system. Equations of motion for systems undergoing coupled large rigid body motion and elastic deformation have previously been derived through a number of techniques [1]. However, in these derivations, the mode shapes or spatial shape functions of the system components were considered constant. But with the Ares I vehicle, the structural characteristics of the system are changing with the mass of the system. Previous approaches to solving this problem involve periodic updates to the spatial shape functions or interpolation between shape functions based on system mass or elapsed mission time. These solutions often introduce misleading or even unstable numerical transients into the system. Plus, interpolation on a shape function is not intuitive. This paper presents an approach in which the shape functions are held constant and operate on the changing mass and stiffness matrices of the vehicle components. Each vehicle stage or component finite element model is broken into dry structure and propellant models. A library of propellant models is used to describe the distribution of mass in the fuel tank or Solid Rocket Booster (SRB) case for various propellant levels. Based on the mass consumed by the liquid engine or SRB, the appropriate propellant model is coupled with the dry structure model for the stage. Then using vehicle configuration data, the integrated vehicle model is assembled and operated on by the constant system shape functions. The system mode shapes and frequencies can then be computed from the resulting generalized mass and stiffness matrices for that mass configuration. The rigid body mass properties of the vehicle are derived from the integrated vehicle model. The coupling terms between the vehicle rigid body motion and elastic deformation are also updated from the constant system shape functions and the integrated vehicle model. This approach was first used to analyze variable mass spinning beams and then prototyped into a generic dynamics simulation engine. The resulting code was tested against Crew Launch Vehicle (CLV-)class problems worked in the TREETOPS simulation package and by Wilson [2]. The Ares I System Integration Laboratory (SIL) is currently being developed at the Marshall Space Flight Center (MSFC) to test vehicle avionics hardware and software in a hardware-in-the-loop (HWIL) environment and certify that the integrated system is prepared for flight. The Ares I SIL utilizes the Ares Real-Time Environment for Modeling, Integration, and Simulation (ARTEMIS) tool to simulate the launch vehicle and stimulate avionics hardware. Due to the presence of vehicle control system filters and the thrust oscillation suppression system, which are tuned to the structural characteristics of the vehicle, ARTEMIS must incorporate accurate structural models of the Ares I launch vehicle. The ARTEMIS core dynamics simulation models the highly coupled nature of the vehicle flexible body dynamics, propellant slosh, and vehicle nozzle inertia effects combined with mass and flexible body properties that vary significant with time during the flight. All forces that act on the vehicle during flight must be simulated, including deflected engine thrust force, spatially distributed aerodynamic forces, gravity, and reaction control jet thrust forces. These forces are used to excite an integrated flexible vehicle, slosh, and nozzle dynamics model for the vehicle stack that simulates large rigid body translations and rotations along with small elastic deformations. Highly effective matrix math operations on a distributed, threaded high-performance simulation node allow ARTEMIS to retain up to 30 modes of flex for real-time simulation. Stage elements that separate from the stack during flight are propagated as independent rigid six degrees of freedom (6DOF) bodies. This paper will present the formulation of the resulting equations of motion, solutions to example problems, and describe the resulting dynamics simulation engine within ARTEMIS.

  14. Application of fuzzy set theory for integral assessment of agricultural products quality

    NASA Astrophysics Data System (ADS)

    Derkanosova, N. M.; Ponomareva, I. N.; Shurshikova, G. V.; Vasilenko, O. A.

    2018-05-01

    The methodology of integrated assessment of quality and safety of agricultural products, approbated by the example of indicators of wheat grain in relation to the provision of consumer properties of bakery products, was developed. Determination of the level of quality of the raw ingredients will allow direct using of agricultural raw materials for food production, taking into account ongoing technology, types of products, and, respectively, rational use of resource potential of the agricultural sector. The mathematical tool of the proposed method is a fuzzy set theory. The fuzzy classifier to evaluate the properties of the grain is formed. The set of six indicators normalized by the national standard is determined; values are ordered and represented by linguistic variables with a trapeziform membership function; the rules for calculation of membership functions are presented. Specific criteria values for individual indicators in shaping the quality of the finished products are considered. For one of the samples of wheat grain values of membership; functions of the linguistic variable "level" for all indicators and the linguistic variable "level of quality" were calculated. It is established that the studied sample of grain obtains the 2 (average) level of quality. Accordingly, it can be recommended for the production of bakery products with higher requirements for the structural-mechanical properties bakery and puff pastry products hearth bread and flour confectionery products of the group of hard dough cookies and crackers

  15. Systematic review of the neural basis of social cognition in patients with mood disorders.

    PubMed

    Cusi, Andrée M; Nazarov, Anthony; Holshausen, Katherine; Macqueen, Glenda M; McKinnon, Margaret C

    2012-05-01

    This review integrates neuroimaging studies of 2 domains of social cognition--emotion comprehension and theory of mind (ToM)--in patients with major depressive disorder and bipolar disorder. The influence of key clinical and method variables on patterns of neural activation during social cognitive processing is also examined. Studies were identified using PsycINFO and PubMed (January 1967 to May 2011). The search terms were "fMRI," "emotion comprehension," "emotion perception," "affect comprehension," "affect perception," "facial expression," "prosody," "theory of mind," "mentalizing" and "empathy" in combination with "major depressive disorder," "bipolar disorder," "major depression," "unipolar depression," "clinical depression" and "mania." Taken together, neuroimaging studies of social cognition in patients with mood disorders reveal enhanced activation in limbic and emotion-related structures and attenuated activity within frontal regions associated with emotion regulation and higher cognitive functions. These results reveal an overall lack of inhibition by higher-order cognitive structures on limbic and emotion-related structures during social cognitive processing in patients with mood disorders. Critically, key variables, including illness burden, symptom severity, comorbidity, medication status and cognitive load may moderate this pattern of neural activation. Studies that did not include control tasks or a comparator group were included in this review. Further work is needed to examine the contribution of key moderator variables and to further elucidate the neural networks underlying altered social cognition in patients with mood disorders. The neural networks under lying higher-order social cognitive processes, including empathy, remain unexplored in patients with mood disorders.

  16. Attributing runoff changes to climate variability and human activities: uncertainty analysis using four monthly water balance models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Shuai; Xiong, Lihua; Li, Hong-Yi

    2015-05-26

    Hydrological simulations to delineate the impacts of climate variability and human activities are subjected to uncertainties related to both parameter and structure of the hydrological models. To analyze the impact of these uncertainties on the model performance and to yield more reliable simulation results, a global calibration and multimodel combination method that integrates the Shuffled Complex Evolution Metropolis (SCEM) and Bayesian Model Averaging (BMA) of four monthly water balance models was proposed. The method was applied to the Weihe River Basin (WRB), the largest tributary of the Yellow River, to determine the contribution of climate variability and human activities tomore » runoff changes. The change point, which was used to determine the baseline period (1956-1990) and human-impacted period (1991-2009), was derived using both cumulative curve and Pettitt’s test. Results show that the combination method from SCEM provides more skillful deterministic predictions than the best calibrated individual model, resulting in the smallest uncertainty interval of runoff changes attributed to climate variability and human activities. This combination methodology provides a practical and flexible tool for attribution of runoff changes to climate variability and human activities by hydrological models.« less

  17. Integrative Exploratory Analysis of Two or More Genomic Datasets.

    PubMed

    Meng, Chen; Culhane, Aedin

    2016-01-01

    Exploratory analysis is an essential step in the analysis of high throughput data. Multivariate approaches such as correspondence analysis (CA), principal component analysis, and multidimensional scaling are widely used in the exploratory analysis of single dataset. Modern biological studies often assay multiple types of biological molecules (e.g., mRNA, protein, phosphoproteins) on a same set of biological samples, thereby creating multiple different types of omics data or multiassay data. Integrative exploratory analysis of these multiple omics data is required to leverage the potential of multiple omics studies. In this chapter, we describe the application of co-inertia analysis (CIA; for analyzing two datasets) and multiple co-inertia analysis (MCIA; for three or more datasets) to address this problem. These methods are powerful yet simple multivariate approaches that represent samples using a lower number of variables, allowing a more easily identification of the correlated structure in and between multiple high dimensional datasets. Graphical representations can be employed to this purpose. In addition, the methods simultaneously project samples and variables (genes, proteins) onto the same lower dimensional space, so the most variant variables from each dataset can be selected and associated with samples, which can be further used to facilitate biological interpretation and pathway analysis. We applied CIA to explore the concordance between mRNA and protein expression in a panel of 60 tumor cell lines from the National Cancer Institute. In the same 60 cell lines, we used MCIA to perform a cross-platform comparison of mRNA gene expression profiles obtained on four different microarray platforms. Last, as an example of integrative analysis of multiassay or multi-omics data we analyzed transcriptomic, proteomic, and phosphoproteomic data from pluripotent (iPS) and embryonic stem (ES) cell lines.

  18. Differential effects of two types of formative assessment in predicting performance of first-year medical students.

    PubMed

    Krasne, Sally; Wimmers, Paul F; Relan, Anju; Drake, Thomas A

    2006-05-01

    Formative assessments are systematically designed instructional interventions to assess and provide feedback on students' strengths and weaknesses in the course of teaching and learning. Despite their known benefits to student attitudes and learning, medical school curricula have been slow to integrate such assessments into the curriculum. This study investigates how performance on two different modes of formative assessment relate to each other and to performance on summative assessments in an integrated, medical-school environment. Two types of formative assessment were administered to 146 first-year medical students each week over 8 weeks: a timed, closed-book component to assess factual recall and image recognition, and an un-timed, open-book component to assess higher order reasoning including the ability to identify and access appropriate resources and to integrate and apply knowledge. Analogous summative assessments were administered in the ninth week. Models relating formative and summative assessment performance were tested using Structural Equation Modeling. Two latent variables underlying achievement on formative and summative assessments could be identified; a "formative-assessment factor" and a "summative-assessment factor," with the former predicting the latter. A latent variable underlying achievement on open-book formative assessments was highly predictive of achievement on both open- and closed-book summative assessments, whereas a latent variable underlying closed-book assessments only predicted performance on the closed-book summative assessment. Formative assessments can be used as effective predictive tools of summative performance in medical school. Open-book, un-timed assessments of higher order processes appeared to be better predictors of overall summative performance than closed-book, timed assessments of factual recall and image recognition.

  19. Integrating and analyzing medical and environmental data using ETL and Business Intelligence tools.

    PubMed

    Villar, Alejandro; Zarrabeitia, María T; Fdez-Arroyabe, Pablo; Santurtún, Ana

    2018-06-01

    Processing data that originates from different sources (such as environmental and medical data) can prove to be a difficult task, due to the heterogeneity of variables, storage systems, and file formats that can be used. Moreover, once the amount of data reaches a certain threshold, conventional mining methods (based on spreadsheets or statistical software) become cumbersome or even impossible to apply. Data Extract, Transform, and Load (ETL) solutions provide a framework to normalize and integrate heterogeneous data into a local data store. Additionally, the application of Online Analytical Processing (OLAP), a set of Business Intelligence (BI) methodologies and practices for multidimensional data analysis, can be an invaluable tool for its examination and mining. In this article, we describe a solution based on an ETL + OLAP tandem used for the on-the-fly analysis of tens of millions of individual medical, meteorological, and air quality observations from 16 provinces in Spain provided by 20 different national and regional entities in a diverse array for file types and formats, with the intention of evaluating the effect of several environmental variables on human health in future studies. Our work shows how a sizable amount of data, spread across a wide range of file formats and structures, and originating from a number of different sources belonging to various business domains, can be integrated in a single system that researchers can use for global data analysis and mining.

  20. Integrating and analyzing medical and environmental data using ETL and Business Intelligence tools

    NASA Astrophysics Data System (ADS)

    Villar, Alejandro; Zarrabeitia, María T.; Fdez-Arroyabe, Pablo; Santurtún, Ana

    2018-03-01

    Processing data that originates from different sources (such as environmental and medical data) can prove to be a difficult task, due to the heterogeneity of variables, storage systems, and file formats that can be used. Moreover, once the amount of data reaches a certain threshold, conventional mining methods (based on spreadsheets or statistical software) become cumbersome or even impossible to apply. Data Extract, Transform, and Load (ETL) solutions provide a framework to normalize and integrate heterogeneous data into a local data store. Additionally, the application of Online Analytical Processing (OLAP), a set of Business Intelligence (BI) methodologies and practices for multidimensional data analysis, can be an invaluable tool for its examination and mining. In this article, we describe a solution based on an ETL + OLAP tandem used for the on-the-fly analysis of tens of millions of individual medical, meteorological, and air quality observations from 16 provinces in Spain provided by 20 different national and regional entities in a diverse array for file types and formats, with the intention of evaluating the effect of several environmental variables on human health in future studies. Our work shows how a sizable amount of data, spread across a wide range of file formats and structures, and originating from a number of different sources belonging to various business domains, can be integrated in a single system that researchers can use for global data analysis and mining.

  1. Integrating and analyzing medical and environmental data using ETL and Business Intelligence tools

    NASA Astrophysics Data System (ADS)

    Villar, Alejandro; Zarrabeitia, María T.; Fdez-Arroyabe, Pablo; Santurtún, Ana

    2018-06-01

    Processing data that originates from different sources (such as environmental and medical data) can prove to be a difficult task, due to the heterogeneity of variables, storage systems, and file formats that can be used. Moreover, once the amount of data reaches a certain threshold, conventional mining methods (based on spreadsheets or statistical software) become cumbersome or even impossible to apply. Data Extract, Transform, and Load (ETL) solutions provide a framework to normalize and integrate heterogeneous data into a local data store. Additionally, the application of Online Analytical Processing (OLAP), a set of Business Intelligence (BI) methodologies and practices for multidimensional data analysis, can be an invaluable tool for its examination and mining. In this article, we describe a solution based on an ETL + OLAP tandem used for the on-the-fly analysis of tens of millions of individual medical, meteorological, and air quality observations from 16 provinces in Spain provided by 20 different national and regional entities in a diverse array for file types and formats, with the intention of evaluating the effect of several environmental variables on human health in future studies. Our work shows how a sizable amount of data, spread across a wide range of file formats and structures, and originating from a number of different sources belonging to various business domains, can be integrated in a single system that researchers can use for global data analysis and mining.

  2. Recent Variability Observations of Solar System Giant Planets: Fresh Context for Understanding Exoplanet and Brown Dwarf Weather

    NASA Technical Reports Server (NTRS)

    Marley, Mark Scott

    2016-01-01

    Over the past several years a number of high cadence photometric observations of solar system giant planets have been acquired by various platforms. Such observations are of interest as they provide points of comparison to the already expansive set of brown dwarf variability observations and the small, but growing, set of exoplanet variability observations. By measuring how rapidly the integrated light from solar system giant planets can evolve, variability observations of substellar objects that are unlikely to ever be resolved can be placed in a fuller context. Examples of brown dwarf variability observations include extensive work from the ground (e.g., Radigen et al. 2014), Spitzer (e.g., Metchev et al. 2015), Kepler (Gizis et al. 2015), and HST (Yang et al. 2015).Variability has been measured on the planetary mass companion to the brown dwarf 2MASS 1207b (Zhou et al. 2016) and further searches are planned in thermal emission for the known directly imaged planets with ground based telescopes (Apai et al. 2016) and in reflected light with future space based telescopes. Recent solar system variability observations include Kepler monitoring of Neptune (Simon et al. 2016) and Uranus, Spitzer observations of Neptune (Stauffer et al. 2016), and Cassini observations of Jupiter (West et al. in prep). The Cassini observations are of particular interest as they measured the variability of Jupiter at a phase angle of approximately 60 deg, comparable to the viewing geometry expected for space based direct imaging of cool extrasolar Jupiters in reflected light. These solar system analog observations capture many of the characteristics seen in brown dwarf variability, including large amplitudes and rapid light curve evolution on timescales as short as a few rotation periods. Simon et al. (2016) attribute such variations at Neptune to a combination of large scale, stable cloud structures along with smaller, more rapidly varying, cloud patches. The observed brown dwarf and exoplanet variability may well arise from comparable cloud structures. In my presentation I will compare and contrast the nature of the variability observed for the various solar system and other substelar objects and present a wish list for future observations.

  3. Recent Variability Observations of Solar System Giant Planets: Fresh Context for Understanding Exoplanet and Brown Dwarf Weather

    NASA Astrophysics Data System (ADS)

    Marley, Mark S.; Kepler Giant Planet Variability Team, Spitzer Ice Giant Variability Team

    2016-10-01

    Over the past several years a number of of high cadence photometric observations of solar system giant planets have been acquired by various platforms. Such observations are of interest as they provide points of comparison to the already expansive set of brown dwarf variability observations and the small, but growing, set of exoplanet variability observations. By measuring how rapidly the integrated light from solar system giant planets can evolve, variability observations of substellar objects that are unlikely to ever be resolved can be placed in a fuller context. Examples of brown dwarf variability observations include extensive work from the ground (e.g., Radigan et al. 2014), Spitzer (e.g., Metchev et al. 2015), Kepler (Gizis et al. 2015), and HST (Yang et al. 2015). Variability has been measured on the planetary mass companion to the brown dwarf 2MASS 1207b (Zhou et al. 2016) and further searches are planned in thermal emission for the known directly imaged planets with ground based telescopes (Apai et al. 2016) and in reflected light with future space based telescopes. Recent solar system variability observations include Kepler monitoring of Neptune (Simon et al. 2016) and Uranus, Spitzer observations of Neptune (Stauffer et al. 2016), and Cassini observations of Jupiter (West et al. in prep). The Cassini observations are of particular interest as they measured the variability of Jupiter at a phase angle of ˜60○, comparable to the viewing geometry expected for space based direct imaging of cool extrasolar Jupiters in reflected light. These solar system analog observations capture many of the characteristics seen in brown dwarf variability, including large amplitudes and rapid light curve evolution on timescales as short as a few rotation periods. Simon et al. (2016) attribute such variations at Neptune to a combination of large scale, stable cloud structures along with smaller, more rapidly varying, cloud patches. The observed brown dwarf and exoplanet variability may well arise from comparable cloud structures. In my presentation I will compare and contrast the nature of the variability observed for the various solar system and other substellar objects and present a wish list for future observations.

  4. Integrating High Levels of Variable Renewable Energy into Electric Power Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kroposki, Benjamin D.

    As more variable renewable energy is integrated into electric power systems, there are a range of challenges and solutions to accommodating very high penetration levels. This presentation highlights some of the recent research in this area.

  5. Post-cracking characteristics of high performance fiber reinforced cementitious composites

    NASA Astrophysics Data System (ADS)

    Suwannakarn, Supat W.

    The application of high performance fiber reinforced cement composites (HPFRCC) in structural systems depends primarily on the material's tensile response, which is a direct function of fiber and matrix characteristics, the bond between them, and the fiber content or volume fraction. The objective of this dissertation is to evaluate and model the post-cracking behavior of HPFRCC. In particular, it focused on the influential parameters controlling tensile behavior and the variability associated with them. The key parameters considered include: the stress and strain at first cracking, the stress and strain at maximum post-cracking, the shape of the stress-strain or stress-elongation response, the multiple cracking process, the shape of the resistance curve after crack localization, the energy associated with the multiple cracking process, and the stress versus crack opening response of a single crack. Both steel fibers and polymeric fibers, perceived to have the greatest potential for current commercial applications, are considered. The main variables covered include fiber type (Torex, Hooked, PVA, and Spectra) and fiber volume fraction (ranging from 0.75% to 2.0%). An extensive experimental program is carried out using direct tensile tests and stress-versus crack opening displacement tests on notched tensile prisms. The key experimental results were analysed and modeled using simple prediction equations which, combined with a composite mechanics approach, allowed for predicting schematic simplified stress-strain and stress-displacement response curves for use in structural modeling. The experimental data show that specimens reinforced with Torex fibers performs best, follows by Hooked and Spectra fibers, then PVA fibers. Significant variability in key parameters was observed througout suggesting that variability must be studied further. The new information obtained can be used as input for material models for finite element analysis and can provide greater confidence in using the HPFRC composites in structural applications. It also provides a good foundation to integrate these composites in conventional structural analysis and design.

  6. Teachers' Perceptions about the Barriers and Catalysts for Effective Practices with ICT in Primary Schools

    NASA Astrophysics Data System (ADS)

    Dakich, Eva

    This paper presents perceptions of four primary school teachers from two Victorian government primary schools about the barriers and catalyst for effective practices with ICT. Findings of the semi-structured qualitative interviews confirm results of previous studies indicating that access to reliable infrastructure, adequate technical support, and time pressures are still considered to be some of the most significant barriers to successful ICT integration in public schools. Teacher interviews however also reveal that the challenges of integrating ICT in teaching and learning can be counterbalanced by a number of variables, which include: owning a laptop, having access to ongoing professional learning, sharing effective practices, drawing on student expertise and being supported by a whole-school approach to teaching and learning with ICT.

  7. Structure of the OsSERK2 leucine-rich repeat extracellular domain.

    PubMed

    McAndrew, Ryan; Pruitt, Rory N; Kamita, Shizuo G; Pereira, Jose Henrique; Majumdar, Dipali; Hammock, Bruce D; Adams, Paul D; Ronald, Pamela C

    2014-11-01

    Somatic embryogenesis receptor kinases (SERKs) are leucine-rich repeat (LRR)-containing integral membrane receptors that are involved in the regulation of development and immune responses in plants. It has recently been shown that rice SERK2 (OsSERK2) is essential for XA21-mediated resistance to the pathogen Xanthomonas oryzae pv. oryzae. OsSERK2 is also required for the BRI1-mediated, FLS2-mediated and EFR-mediated responses to brassinosteroids, flagellin and elongation factor Tu (EF-Tu), respectively. Here, crystal structures of the LRR domains of OsSERK2 and a D128N OsSERK2 mutant, expressed as hagfish variable lymphocyte receptor (VLR) fusions, are reported. These structures suggest that the aspartate mutation does not generate any significant conformational change in the protein, but instead leads to an altered interaction with partner receptors.

  8. How to Integrate Variable Power Source into a Power Grid

    NASA Astrophysics Data System (ADS)

    Asano, Hiroshi

    This paper discusses how to integrate variable power source such as wind power and photovoltaic generation into a power grid. The intermittent renewable generation is expected to penetrate for less carbon intensive power supply system, but it causes voltage control problem in the distribution system, and supply-demand imbalance problem in a whole power system. Cooperative control of customers' energy storage equipment such as water heater with storage tank for reducing inverse power flow from the roof-top PV system, the operation technique using a battery system and the solar radiation forecast for stabilizing output of variable generation, smart charging of plug-in hybrid electric vehicles for load frequency control (LFC), and other methods to integrate variable power source with improving social benefits are surveyed.

  9. Marine fish community structure and habitat associations on the Canadian Beaufort shelf and slope

    NASA Astrophysics Data System (ADS)

    Majewski, Andrew R.; Atchison, Sheila; MacPhee, Shannon; Eert, Jane; Niemi, Andrea; Michel, Christine; Reist, James D.

    2017-03-01

    Marine fishes in the Canadian Beaufort Sea have complex interactions with habitats and prey, and occupy a pivotal position in the food web by transferring energy between lower- and upper-trophic levels, and also within and among habitats (e.g., benthic-pelagic coupling). The distributions, habitat associations, and community structure of most Beaufort Sea marine fishes, however, are unknown thus precluding effective regulatory management of emerging offshore industries in the region (e.g., hydrocarbon development, shipping, and fisheries). Between 2012 and 2014, Fisheries and Oceans Canada conducted the first baseline survey of offshore marine fishes, their habitats, and ecological relationships in the Canadian Beaufort Sea. Benthic trawling was conducted at 45 stations spanning 18-1001 m depths across shelf and slope habitats. Physical oceanographic variables (depth, salinity, temperature, oxygen), biological variables (benthic chlorophyll and integrated water-column chlorophyll) and sediment composition (grain size) were assessed as potential explanatory variables for fish community structure using a non-parametric statistical approach. Selected stations were re-sampled in 2013 and 2014 for a preliminary assessment of inter-annual variability in the fish community. Four distinct fish assemblages were delineated on the Canadian Beaufort Shelf and slope: 1) Nearshore-shelf: <50 m depth, 2) Offshore-shelf: >50 and ≤200 m depths, 3) Upper-slope: ≥200 and ≤500 m depths, and 4) Lower-slope: ≥500 m depths. Depth was the environmental variable that best explained fish community structure, and each species assemblage was spatially associated with distinct aspects of the vertical water mass profile. Significant differences in the fish community from east to west were not detected, and the species composition of the assemblages on the Canadian Beaufort Shelf have not changed substantially over the past decade. This community analysis provides a framework for testing hypotheses regarding the trophic dynamics and ecosystem roles of Beaufort Sea marine fishes, including biological linkages (i.e., fish movements and trophic interactions) among offshore habitats. Understanding regional-scale habitat associations will also provide context to identify potentially unique and/or sensitive habitats and fish community characteristics, thus aiding identification of ecologically and biologically significant areas, and to inform conservation efforts.

  10. The effects of gravity level during directional solidification on the microstructure of hypermonotectic Al-In-Sn alloys

    NASA Technical Reports Server (NTRS)

    Curreri, P. A.; Kaukler, W. F.

    1986-01-01

    Five hypermonotectic Al-In-Sn compositions were directionally solidified in a Bridgman-type furnace at normal gravity and during aircraft low-gravity maneuvers. The tendency of the Al-30In alloy to form an indium-rich band at the start of unidirectional growth (SUG) made it difficult to study the integration of L sub 2 into the solidification interface. Hypermonotectic compositions closer to monotectic slightly hypermonotectic caused only a partial band on L sub 2 to form at SUG and allowed the study of such variables as gravity, composition, and monotectic dome height on integration of excess L sub 2 into the solid plus L sub 2 interface. It was found that formation of aligned composite structures for the Al-In-Sn system is not only a function of G and R but also of the degree to which the composition varies from monotectic. Most of the aligned fibrous structures formed from hypermonotectic Al-In-Sn had spacings that were of the order of irregular fibrous structures reported for on monotectic Al-In-Sn. The spacings for the large fibers and aligned globules found for ground and low-gravity processed Al-In-18-Sn-22, respectively, were significantly larger than the others measured and were of the order expected for cell spacings under the growth conditions utilized. It was found that the integration into the solidification front of excess L sub 2 in low gravity was a function of the Sn composition of the alloy.

  11. Heliospheric Transient Structures Associated with Short-Period Variations in the GCR Flux

    NASA Astrophysics Data System (ADS)

    Mulligan, T.; Blake, J.B.; Shaul, D.; Quenby, J.

    Short-period variations in the integral GCR fluence ( > 100 MeV) often observed in neutron monitor data have also been seen by the High Sensitivity Telescope (HIST) aboard the Polar spacecraft. Although HIST was designed to measure radiation-belt electrons, it makes clean measurements of the integral GCR fluence when Polar is outside the radiation belts. These measurements show GCR variability on a variety of timescales including 0.1 mHz - 1 mHz. On August 20, 2006 a Forbush decrease observed at Polar was also seen at the INTEGRAL spacecraft. Data from Polar HIST and from INTEGRAL’s Ge detector saturation rate (GEDSAT), which also measures the GCR background with a threshold of ~200 MeV, show similar, coherent, short-period GCR variations at two very different locations within the Earth’s magnetosphere. Comparing these variations from Polar and INTEGRAL to solar wind magnetic field and plasma conditions at the L1 Libration point sunward of the Earth reveal this coherency occurs when Earth is in close proximity to and inside a flux rope interplanetary CME (ICME). Inversion of the ICME magnetic field results in a flux rope axial orientation nearly parallel to the radial direction. This orientation is consistent with a grazing passage of the ICME with the Earth. New measurements from STEREO will enable detailed 3-D analyses of such solar wind disturbances along spatial scales on the same order of typical SEP and GCR proton gyroradii, which are needed to help determine the mechanism behind this short-period variability.

  12. Mathematical Methods for Physics and Engineering Third Edition Paperback Set

    NASA Astrophysics Data System (ADS)

    Riley, Ken F.; Hobson, Mike P.; Bence, Stephen J.

    2006-06-01

    Prefaces; 1. Preliminary algebra; 2. Preliminary calculus; 3. Complex numbers and hyperbolic functions; 4. Series and limits; 5. Partial differentiation; 6. Multiple integrals; 7. Vector algebra; 8. Matrices and vector spaces; 9. Normal modes; 10. Vector calculus; 11. Line, surface and volume integrals; 12. Fourier series; 13. Integral transforms; 14. First-order ordinary differential equations; 15. Higher-order ordinary differential equations; 16. Series solutions of ordinary differential equations; 17. Eigenfunction methods for differential equations; 18. Special functions; 19. Quantum operators; 20. Partial differential equations: general and particular; 21. Partial differential equations: separation of variables; 22. Calculus of variations; 23. Integral equations; 24. Complex variables; 25. Application of complex variables; 26. Tensors; 27. Numerical methods; 28. Group theory; 29. Representation theory; 30. Probability; 31. Statistics; Index.

  13. Automated model integration at source code level: An approach for implementing models into the NASA Land Information System

    NASA Astrophysics Data System (ADS)

    Wang, S.; Peters-Lidard, C. D.; Mocko, D. M.; Kumar, S.; Nearing, G. S.; Arsenault, K. R.; Geiger, J. V.

    2014-12-01

    Model integration bridges the data flow between modeling frameworks and models. However, models usually do not fit directly into a particular modeling environment, if not designed for it. An example includes implementing different types of models into the NASA Land Information System (LIS), a software framework for land-surface modeling and data assimilation. Model implementation requires scientific knowledge and software expertise and may take a developer months to learn LIS and model software structure. Debugging and testing of the model implementation is also time-consuming due to not fully understanding LIS or the model. This time spent is costly for research and operational projects. To address this issue, an approach has been developed to automate model integration into LIS. With this in mind, a general model interface was designed to retrieve forcing inputs, parameters, and state variables needed by the model and to provide as state variables and outputs to LIS. Every model can be wrapped to comply with the interface, usually with a FORTRAN 90 subroutine. Development efforts need only knowledge of the model and basic programming skills. With such wrappers, the logic is the same for implementing all models. Code templates defined for this general model interface could be re-used with any specific model. Therefore, the model implementation can be done automatically. An automated model implementation toolkit was developed with Microsoft Excel and its built-in VBA language. It allows model specifications in three worksheets and contains FORTRAN 90 code templates in VBA programs. According to the model specification, the toolkit generates data structures and procedures within FORTRAN modules and subroutines, which transfer data between LIS and the model wrapper. Model implementation is standardized, and about 80 - 90% of the development load is reduced. In this presentation, the automated model implementation approach is described along with LIS programming interfaces, the general model interface and five case studies, including a regression model, Noah-MP, FASST, SAC-HTET/SNOW-17, and FLake. These different models vary in complexity with software structure. Also, we will describe how these complexities were overcome through using this approach and results of model benchmarks within LIS.

  14. Integrated Risk Research. Case of Study: Motozintla, Chiapas, Mexico

    NASA Astrophysics Data System (ADS)

    Novelo-Casanova, D. A.; Jaimes, M.

    2015-12-01

    This integrated risk research include the analysis of all components of individual constituents of risk such hazard identification, hazard exposure, and vulnerability. We determined risk to natural hazards in the community of Motozintla located in southern Mexico in the state of Chiapas (15.37ºN, 92.25ºW. Due to its geographical and geological location, this community is continuously exposed mainly to earthquakes, landslides and floods. We developed integrated studies and analysis of seismic zonation, landslides and flood susceptibility using standard methodologies. Vulnerability was quantified from data collected from local families interviews considering five social variables: characteristics of housing construction, availability of basic public services, family economic conditions, existing community plans for disaster preparedness, and risk perception. Local families surveyed were randomly selected considering a sample statistically significant. Our results were spatially represented using a Geographical Information System (GIS). Structural vulnerability curves were generated for typical housing constructions. Our integrated risk analysis demonstrates that the community of Motozintla has a high level of structural and socio-economical risk to floods and earthquakes. More than half of the population does not know any existing Civil Protection Plan and perceive that they are in high risk to landslides and floods. Although the community is located in a high seismic risk zone, most of the local people believe that cannot be impacted by a large earthquake. These natural and social conditions indicate that the community of Motozintla has a very high level of risk to natural hazards. This research will support local decision makers in developing an integrated comprehensive natural hazards mitigation and prevention program.

  15. Integrating brain, behavior, and phylogeny to understand the evolution of sensory systems in birds

    PubMed Central

    Wylie, Douglas R.; Gutiérrez-Ibáñez, Cristian; Iwaniuk, Andrew N.

    2015-01-01

    The comparative anatomy of sensory systems has played a major role in developing theories and principles central to evolutionary neuroscience. This includes the central tenet of many comparative studies, the principle of proper mass, which states that the size of a neural structure reflects its processing capacity. The size of structures within the sensory system is not, however, the only salient variable in sensory evolution. Further, the evolution of the brain and behavior are intimately tied to phylogenetic history, requiring studies to integrate neuroanatomy with behavior and phylogeny to gain a more holistic view of brain evolution. Birds have proven to be a useful group for these studies because of widespread interest in their phylogenetic relationships and a wealth of information on the functional organization of most of their sensory pathways. In this review, we examine the principle of proper mass in relation differences in the sensory capabilities among birds. We discuss how neuroanatomy, behavior, and phylogeny can be integrated to understand the evolution of sensory systems in birds providing evidence from visual, auditory, and somatosensory systems. We also consider the concept of a “trade-off,” whereby one sensory system (or subpathway within a sensory system), may be expanded in size, at the expense of others, which are reduced in size. PMID:26321905

  16. Lifelong Bilingualism Contributes to Cognitive Reserve against White Matter Integrity Declines in Aging

    PubMed Central

    Gold, Brian T.; Johnson, Nathan F.; Powell, David K.

    2013-01-01

    Recent evidence suggests that lifelong bilingualism may contribute to cognitive reserve (CR) in normal aging. However, there is currently no neuroimaging evidence to suggest that lifelong bilinguals can retain normal cognitive functioning in the face of age-related neurodegeneration. Here we explored this issue by comparing white matter (WM) integrity and gray matter (GM) volumetric patterns of older adult lifelong bilinguals (N = 20) and monolinguals (N = 20). The groups were matched on a range of relevant cognitive test scores and on the established CR variables of education, socioeconomic status and intelligence. Participants underwent high-resolution structural imaging for assessment of GM volume and diffusion tensor imaging (DTI) for assessment of WM integrity. Results indicated significantly lower microstructural integrity in the bilingual group in several WM tracts. In particular, compared to their monolingual peers, the bilingual group showed lower fractional anisotropy and/or higher radial diffusivity in the inferior longitudinal fasciculus/inferior fronto-occipital fasciculus bilaterally, the fornix, and multiple portions of the corpus callosum. There were no group differences in GM volume. Our results suggest that lifelong bilingualism contributes to CR against WM integrity declines in aging. PMID:24103400

  17. Integration of Spectral Reflectance across the Plumage: Implications for Mating Patterns

    PubMed Central

    Laczi, Miklós; Török, János; Rosivall, Balázs; Hegyi, Gergely

    2011-01-01

    Background In complex sexual signaling systems such as plumage color, developmental or genetic links may occur among seemingly distinct traits. However, the interrelations of such traits and the functional significance of their integration rarely have been examined. Methodology/Principal Findings We investigated the parallel variation of two reflectance descriptors (brightness and UV chroma) across depigmented and melanized plumage areas of collared flycatchers (Ficedula albicollis), and the possible role of integrated color signals in mate acquisition. We found moderate integration in brightness and UV chroma across the plumage, with similar correlation structures in the two sexes despite the strong sexual dichromatism. Patterns of parallel color change across the plumage were largely unrelated to ornamental white patch sizes, but they all showed strong assortative mating between the sexes. Comparing different types of assortative mating patterns for individual spectral variables suggested a distinct role for plumage-level color axes in mate acquisition. Conclusions/Significance Our results indicate that the plumage-level, parallel variation of coloration might play a role in mate acquisition. This study underlines the importance of considering potential developmental and functional integration among apparently different ornaments in studies of sexual selection. PMID:21853088

  18. Nonmonotonic spatial structure of interneuronal correlations in prefrontal microcircuits

    PubMed Central

    Safavi, Shervin; Dwarakanath, Abhilash; Kapoor, Vishal; Werner, Joachim; Hatsopoulos, Nicholas G.; Logothetis, Nikos K.; Panagiotaropoulos, Theofanis I.

    2018-01-01

    Correlated fluctuations of single neuron discharges, on a mesoscopic scale, decrease as a function of lateral distance in early sensory cortices, reflecting a rapid spatial decay of lateral connection probability and excitation. However, spatial periodicities in horizontal connectivity and associational input as well as an enhanced probability of lateral excitatory connections in the association cortex could theoretically result in nonmonotonic correlation structures. Here, we show such a spatially nonmonotonic correlation structure, characterized by significantly positive long-range correlations, in the inferior convexity of the macaque prefrontal cortex. This functional connectivity kernel was more pronounced during wakefulness than anesthesia and could be largely attributed to the spatial pattern of correlated variability between functionally similar neurons during structured visual stimulation. These results suggest that the spatial decay of lateral functional connectivity is not a common organizational principle of neocortical microcircuits. A nonmonotonic correlation structure could reflect a critical topological feature of prefrontal microcircuits, facilitating their role in integrative processes. PMID:29588415

  19. Kinetics of the LOV domain of ZEITLUPE determine its circadian function in Arabidopsis

    PubMed Central

    Pudasaini, Ashutosh; Shim, Jae Sung; Song, Young Hun; Shi, Hua; Kiba, Takatoshi; Somers, David E; Imaizumi, Takato; Zoltowski, Brian D

    2017-01-01

    A LOV (Light, Oxygen, or Voltage) domain containing blue-light photoreceptor ZEITLUPE (ZTL) directs circadian timing by degrading clock proteins in plants. Functions hinge upon allosteric differences coupled to the ZTL photocycle; however, structural and kinetic information was unavailable. Herein, we tune the ZTL photocycle over two orders of magnitude. These variants reveal that ZTL complexes with targets independent of light, but dictates enhanced protein degradation in the dark. In vivo experiments definitively show photocycle kinetics dictate the rate of clock component degradation, thereby impacting circadian period. Structural studies demonstrate that photocycle dependent activation of ZTL depends on an unusual dark-state conformation of ZTL. Crystal structures of ZTL LOV domain confirm delineation of structural and kinetic mechanisms and identify an evolutionarily selected allosteric hinge differentiating modes of PAS/LOV signal transduction. The combined biochemical, genetic and structural studies provide new mechanisms indicating how PAS/LOV proteins integrate environmental variables in complex networks. DOI: http://dx.doi.org/10.7554/eLife.21646.001 PMID:28244872

  20. Student Solution Manual for Essential Mathematical Methods for the Physical Sciences

    NASA Astrophysics Data System (ADS)

    Riley, K. F.; Hobson, M. P.

    2011-02-01

    1. Matrices and vector spaces; 2. Vector calculus; 3. Line, surface and volume integrals; 4. Fourier series; 5. Integral transforms; 6. Higher-order ODEs; 7. Series solutions of ODEs; 8. Eigenfunction methods; 9. Special functions; 10. Partial differential equations; 11. Solution methods for PDEs; 12. Calculus of variations; 13. Integral equations; 14. Complex variables; 15. Applications of complex variables; 16. Probability; 17. Statistics.

  1. Essential Mathematical Methods for the Physical Sciences

    NASA Astrophysics Data System (ADS)

    Riley, K. F.; Hobson, M. P.

    2011-02-01

    1. Matrices and vector spaces; 2. Vector calculus; 3. Line, surface and volume integrals; 4. Fourier series; 5. Integral transforms; 6. Higher-order ODEs; 7. Series solutions of ODEs; 8. Eigenfunction methods; 9. Special functions; 10. Partial differential equations; 11. Solution methods for PDEs; 12. Calculus of variations; 13. Integral equations; 14. Complex variables; 15. Applications of complex variables; 16. Probability; 17. Statistics; Appendices; Index.

  2. Broadening our View of the MOC using Satellite Altimetry and Two Moored Arrays in the Atlantic: MOVE 16N and RAPID 26N

    NASA Astrophysics Data System (ADS)

    Duchez, A.; Frajka-Williams, E.; Lankhorst, M. J.; Koelling, J.; Send, U.

    2016-02-01

    The Atlantic meridional overturning circulation (MOC) carries heat northwards in the top 1000m of the Atlantic, with a deep, cold return flow below. Climate simulations predict a slowing of the AMOC in the coming years, while present day observations from boundary arrays demonstrate substantial variability on weekly- to interannual timescales. Using simultaneous observations from the MOVE 16N and RAPID 26N arrays in the Atlantic, we investigate transport and property variability. On long timescales, the tendencies in deep densities are similar between the two latitudes (towards lighter water in the west), resulting in a change in the thermal wind balance across the Atlantic. This tendency is punctuated by a more abrupt change in late 2009 at 26N and 7 months later at 16N. In situ arrays such as RAPID 26N and MOVE 16N provide detailed depth structure of transport variability, but are necessarily limited to individual latitudes. Using satellite altimetry, we show that the sea surface height (SSH) anomalies in the western half of the Atlantic covary with in situ transport estimates on interannual timescales. We use satellite altimetry to extend estimates of depth-integrated ocean transports back in time to 1993, then investigate how the spatial pattern of SSH variability broadens our view of Atlantic MOC structure beyond individual latitudes. This analysis investigates two decade+ long time series of ocean transports, and complements the findings with satellite observations.

  3. Ultra compact spectrometer using linear variable filters

    NASA Astrophysics Data System (ADS)

    Dami, M.; De Vidi, R.; Aroldi, G.; Belli, F.; Chicarella, L.; Piegari, A.; Sytchkova, A.; Bulir, J.; Lemarquis, F.; Lequime, M.; Abel Tibérini, L.; Harnisch, B.

    2017-11-01

    The Linearly Variable Filters (LVF) are complex optical devices that, integrated in a CCD, can realize a "single chip spectrometer". In the framework of an ESA Study, a team of industries and institutes led by SELEX-Galileo explored the design principles and manufacturing techniques, realizing and characterizing LVF samples based both on All-Dielectric (AD) and Metal-Dielectric (MD) Coating Structures in the VNIR and SWIR spectral ranges. In particular the achieved performances on spectral gradient, transmission bandwidth and Spectral Attenuation (SA) are presented and critically discussed. Potential improvements will be highlighted. In addition the results of a feasibility study of a SWIR Linear Variable Filter are presented with the comparison of design prediction and measured performances. Finally criticalities related to the filter-CCD packaging are discussed. The main achievements reached during these activities have been: - to evaluate by design, manufacturing and test of LVF samples the achievable performances compared with target requirements; - to evaluate the reliability of the projects by analyzing their repeatability; - to define suitable measurement methodologies

  4. Variable solar irradiance as a plausible agent for multidecadal variations in the Arctic-wide surface air temperature record of the past 130 years

    NASA Astrophysics Data System (ADS)

    Soon, Willie W.-H.

    2005-08-01

    This letter offers new evidence motivating a more serious consideration of the potential Arctic temperature responses as a consequence of the decadal, multidecadal and longer-term persistent forcing by the ever-changing solar irradiance both in terms of total solar irradiance (TSI, i.e., integrated over all wavelengths) and the related UV irradiance. The support for such a solar modulator can be minimally derived from the large (>75%) explained variance for the decadally-smoothed Arctic surface air temperatures (SATs) by TSI and from the time-frequency structures of the TSI and Arctic SAT variability as examined by wavelet analyses. The reconstructed Arctic SAT time series based on the inverse wavelet transform, which includes decadal (5-15 years) and multidecadal (40-80 years) variations and a longer-term trend, contains nonstationary but persistent features that are highly correlated with the Sun's intrinsic magnetic variability especially on multidecadal time scales.

  5. Evaluation of UK Integrated Care Pilots: research protocol

    PubMed Central

    Ling, Tom; Bardsley, Martin; Adams, John; Lewis, Richard; Roland, Martin

    2010-01-01

    Background In response to concerns that the needs of the aging population for well-integrated care were increasing, the English National Health Service (NHS) appointed 16 Integrated Care Pilots following a national competition. The pilots have a range of aims including development of new organisational structures to support integration, changes in staff roles, reducing unscheduled emergency hospital admissions, reduced length of hospital stay, increasing patient satisfaction, and reducing cost. This paper describes the evaluation of the initiative which has been commissioned. Study design and data collection methods A mixed methods approach has been adopted including interviews with staff and patients, non-participant observation of meetings, structured written feedback from sites, questionnaires to patients and staff, and analysis of routinely collected hospital utilisation data for patients/service users. The qualitative analysis aims to identify the approaches taken to integration by the sites, the benefits which result, the context in which benefits have resulted, and the mechanisms by which they occur. Methods of analysis The quantitative analysis adopts a ‘difference in differences’ approach comparing health care utilisation before and after the intervention with risk-matched controls. The qualitative data analysis adopts a ‘theory of change’ approach in which we triangulate data from the quantitative analysis with qualitative data in order to describe causal effects (what happens when an independent variable changes) and causal mechanisms (what connects causes to their effects). An economic analysis will identify what incremental resources are required to make integration succeed and how they can be combined efficiently to produce better outcomes for patients. Conclusion This evaluation will produce a portfolio of evidence aimed at strengthening the evidence base for integrated care, and in particular identifying the context in which interventions are likely to be effective. These data will support a series of evaluation judgements aimed at reducing uncertainties about the role of integrated care in improving the efficient and effective delivery of healthcare. PMID:20922068

  6. Evaluation of UK Integrated Care Pilots: research protocol.

    PubMed

    Ling, Tom; Bardsley, Martin; Adams, John; Lewis, Richard; Roland, Martin

    2010-09-27

    In response to concerns that the needs of the aging population for well-integrated care were increasing, the English National Health Service (NHS) appointed 16 Integrated Care Pilots following a national competition. The pilots have a range of aims including development of new organisational structures to support integration, changes in staff roles, reducing unscheduled emergency hospital admissions, reduced length of hospital stay, increasing patient satisfaction, and reducing cost. This paper describes the evaluation of the initiative which has been commissioned. A mixed methods approach has been adopted including interviews with staff and patients, non-participant observation of meetings, structured written feedback from sites, questionnaires to patients and staff, and analysis of routinely collected hospital utilisation data for patients/service users. The qualitative analysis aims to identify the approaches taken to integration by the sites, the benefits which result, the context in which benefits have resulted, and the mechanisms by which they occur. The quantitative analysis adopts a 'difference in differences' approach comparing health care utilisation before and after the intervention with risk-matched controls. The qualitative data analysis adopts a 'theory of change' approach in which we triangulate data from the quantitative analysis with qualitative data in order to describe causal effects (what happens when an independent variable changes) and causal mechanisms (what connects causes to their effects). An economic analysis will identify what incremental resources are required to make integration succeed and how they can be combined efficiently to produce better outcomes for patients. This evaluation will produce a portfolio of evidence aimed at strengthening the evidence base for integrated care, and in particular identifying the context in which interventions are likely to be effective. These data will support a series of evaluation judgements aimed at reducing uncertainties about the role of integrated care in improving the efficient and effective delivery of healthcare.

  7. Research for Improved Health: Variability and Impact of Structural Characteristics in Federally Funded Community Engaged Research

    PubMed Central

    Pearson, Cythina R.; Duran, Bonnie; Oetzel, John; Margarati, Maya; Villegas, Malia; Lucero, Julie; Wallerstein, Nina

    2016-01-01

    Background Although there is strong scientific, policy, and community support for community-engaged research (CEnR)—including community-based participatory research (CBPR)—the science of CEnR is still developing. Objective To describe structural differences in federally funded CEnR projects by type of research (i.e., descriptive, intervention, or dissemination/policy change) and race/ethnicity of the population served. Methods We identified 333 federally funded projects in 2009 that potentially involved CEnR, 294 principal investigators/project directors (PI/PD) were eligible to participate in a key informant (KI) survey from late 2011 to early 2012 that asked about partnership structure (68% response rate). Results The National Institute on Minority Health & Health Disparities (19.1%), National Cancer Institute (NCI; 13.3%), and the Centers for Disease Control and Prevention (CDC; 12.6%) funded the most CEnR projects. Most were intervention projects (66.0%). Projects serving American Indian or Alaskan Native (AIAN) populations (compared with other community of color or multiple-race/unspecified) were likely to be descriptive projects (p < .01), receive less funding (p < .05), and have higher rates of written partnership agreements (p < .05), research integrity training (p < .05), approval of publications (p < .01), and data ownership (p < .01). AIAN-serving projects also reported similar rates of research productivity and greater levels of resource sharing compared with those serving multiple-race/unspecified groups. Conclusions There is clear variability in the structure of CEnR projects with future research needed to determine the impact of this variability on partnering processes and outcomes. In addition, projects in AIAN communities receive lower levels of funding yet still have comparable research productivity to those projects in other racial/ethnic communities. PMID:25981421

  8. Essays on measurement and evaluation of demand side management programs in the electricity industry, and impacts of firm strategy on stock price in the biotechnology industry

    NASA Astrophysics Data System (ADS)

    Bandres Motola, Miguel A.

    Essay one estimates changes in small business customer energy consumption (kWh) patterns resulting from a seasonally differentiated pricing structure. Econometric analysis leverages cross-sectional time series data across the entire population of affected customers, from 2007 through the present. Observations include: monthly energy usage (kWh), relevant customer segmentations, local daily temperature, energy price, and region-specific economic conditions, among other variables. The study identifies the determinants of responsiveness to seasonal price differentiation. In addition, estimated energy consumption changes occurring during the 2010 summer season are reported for the average customer and in aggregate grouped by relevant customer segments, climate zone, and total customer base. Essay two develops an econometric modeling methodology to evaluate load impacts for short duration demand response events. The study analyzes time series data from a season of direct load control program tests aimed at integrating demand response into the wholesale electricity market. I have combined "fuzzy logic" with binary variables to create "fuzzy indicator variables" that allow for measurement of short duration events while using industry standard model specifications. Typically, binary variables for every hour are applied in load impact analysis of programs dispatched in hourly intervals. As programs evolve towards integration with the wholesale market, event durations become irregular and often occur for periods of only a few minutes. This methodology is innovative in that it conserves the degrees of freedom in the model while allowing for analysis of high frequency data using fixed effects. Essay three examines the effects of strategies, intangibles, and FDA news on the stocks of young biopharmaceutical firms. An event study methodology is used to explore those effects. This study investigates 20,839 announcements from 1990 to 2005. Announcements on drug development, alliances, publications, presentations, and FDA approval have a positive effect on the short-term performance of young biopharmaceutical firms. Announcements on goals not met, FDA drug approval denied, and changes in structural organizations have a negative effect on the short-term performance of young biopharmaceutical firms.

  9. The Winds of B Supergiants

    NASA Technical Reports Server (NTRS)

    Massa, Derck; West, D. (Technical Monitor)

    2002-01-01

    We present the most suitable data sets available in the International Ultraviolet Explorer (IUE) archive for the study of time-dependent stellar winds in early B supergiants. The UV line profile variability in 11 B0 to B3 stars is analyzed, compared and discussed, based on 16 separate data sets comprising over 600 homogeneously reduced high-resolution spectrograms. The targets include 'normal' stars with moderate rotation rates and examples of rapid rotators. A gallery of grey-scale images (dynamic spectra) is presented, which demonstrates the richness and range of wind variability and highlights different structures in the winds of these stars. This work emphasizes the suitability of B supergiants for wind studies, under-pinned by the fact that they exhibit unsaturated wind lines for a wide range of ionization. The wind activity of B supergiants is substantial and has highly varied characteristics. The variability evident in individual stars is classified and described in terms of discrete absorption components, spontaneous absorption, bowed structures, recurrence, and ionization variability and stratification. Similar structures can occur in stars of different fundamental parameters but also different structures may occur in the same star at a given epoch. We discuss the physical phenomena that may be associated with the spectral signatures, and highlight the challenges that these phenomena present to theoretical studies of time-dependent outflows in massive stars. In addition, SEI line-synthesis modelling of the UV wind lines is used to provide further information about the state of the winds in our program stars. Typically the range, implied by the line profile variability, in the product of mass-loss rate and ion fraction (M qi) is a factor of approximately 1.5, when integrated between 0.2 and 0.9 v infinity; it it can however be several times larger over localized velocity regions. At a given effective temperature the mean relative ion ratios can differ by a factor of 5. The general excess in predicted (forward-scattered) emission in the low velocity regime is discussed in turns of structured outflows. Mean ion fractions are estimated over the B0 to B1 spectral classes, and trends in the ionic ratios as a function of wind velocity are described. The low values obtained for the ion fractions of UV resonance lines may reflect the role of clumping in the wind.

  10. The Winds of B Supergiants

    NASA Technical Reports Server (NTRS)

    Massa, D.; Oliversen, R. (Technical Monitor)

    2002-01-01

    We present the most suitable data sets available in the International Ultraviolet Explorer (IUE) archive for the study of time-dependent stellar winds in early B supergiants. The UV line profile variability in 11 B0 to B3 stars is analyzed, compared and discussed, based on 16 separate data sets comprising over 600 homogeneously reduced high-resolution spectrograms. The targets include 'normal' stars with moderate rotation rates and examples of rapid rotators. A gallery of grey-scale images (dynamic spectra) is presented, which demonstrates the richness and range of wind variability and highlights different structures in the winds of these stars. This work emphasises the suitability of B supergiants for wind studies, under-pinned by the fact that they exhibit unsaturated wind lines for a wide range of ionization. The wind activity of B supergiants is substantial and has highly varied characteristics. The variability evident in individual stars is classified and described in terms of discrete absorption components, spontaneous absorption, bowed structures, recurrence, and ionization variability and stratification. Similar structures can occur in stars of different fundamental parameters, but also different structures may occur in the same star at a given epoch. We discuss the physical phenomena that may be associated with the spectral signatures, and highlight the challenges that these phenomena present to theoretical studies of time-dependent outflows in massive stars. In addition, SEI line-synthesis modelling of the UV wind lines is used to provide further information about the state of the winds in our program stars. Typically the range, implied by the line profile variability, in the product of mass-loss rate and ion fraction (M (dot) q(sub i)) is a factor of approximately 1.5, when integrated between 0.2 and 0.9 v infinity; it can however be several times larger over localized velocity regions. At a given effective temperature the mean relative ion ratios can differ by a factor of 5. The general excess in predicted (forward-scattered) emission in the low velocity regime is discussed in terms of structured outflows. Mean ion fractions are estimated over the B0 to B1 spectral classes, and trends in the ionic ratios as a function of wind velocity are described. The low values obtained for the ion fractions of UV resonance lines may reflect the role of clumping in the wind.

  11. Influence of airfoil geometry on delta wing leading-edge vortices and vortex-induced aerodynamics at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Byrd, James E.; Wesselmann, Gary F.

    1992-01-01

    An assessment of the influence of airfoil geometry on delta wing leading edge vortex flow and vortex induced aerodynamics at supersonic speeds is discussed. A series of delta wing wind tunnel models were tested over a Mach number range from 1.7 to 2.0. The model geometric variables included leading edge sweep and airfoil shape. Surface pressure data, vapor screen, and oil flow photograph data were taken to evaluate the complex structure of the vortices and shocks on the family of wings tested. The data show that airfoil shape has a significant impact on the wing upper surface flow structure and pressure distribution, but has a minimal impact on the integrated upper surface pressure increments.

  12. NPSS Multidisciplinary Integration and Analysis

    NASA Technical Reports Server (NTRS)

    Hall, Edward J.; Rasche, Joseph; Simons, Todd A.; Hoyniak, Daniel

    2006-01-01

    The objective of this task was to enhance the capability of the Numerical Propulsion System Simulation (NPSS) by expanding its reach into the high-fidelity multidisciplinary analysis area. This task investigated numerical techniques to convert between cold static to hot running geometry of compressor blades. Numerical calculations of blade deformations were iteratively done with high fidelity flow simulations together with high fidelity structural analysis of the compressor blade. The flow simulations were performed with the Advanced Ducted Propfan Analysis (ADPAC) code, while structural analyses were performed with the ANSYS code. High fidelity analyses were used to evaluate the effects on performance of: variations in tip clearance, uncertainty in manufacturing tolerance, variable inlet guide vane scheduling, and the effects of rotational speed on the hot running geometry of the compressor blades.

  13. A computerized symbolic integration technique for development of triangular and quadrilateral composite shallow-shell finite elements

    NASA Technical Reports Server (NTRS)

    Anderson, C. M.; Noor, A. K.

    1975-01-01

    Computerized symbolic integration was used in conjunction with group-theoretic techniques to obtain analytic expressions for the stiffness, geometric stiffness, consistent mass, and consistent load matrices of composite shallow shell structural elements. The elements are shear flexible and have variable curvature. A stiffness (displacement) formulation was used with the fundamental unknowns consisting of both the displacement and rotation components of the reference surface of the shell. The triangular elements have six and ten nodes; the quadrilateral elements have four and eight nodes and can have internal degrees of freedom associated with displacement modes which vanish along the edges of the element (bubble modes). The stiffness, geometric stiffness, consistent mass, and consistent load coefficients are expressed as linear combinations of integrals (over the element domain) whose integrands are products of shape functions and their derivatives. The evaluation of the elemental matrices is divided into two separate problems - determination of the coefficients in the linear combination and evaluation of the integrals. The integrals are performed symbolically by using the symbolic-and-algebraic-manipulation language MACSYMA. The efficiency of using symbolic integration in the element development is demonstrated by comparing the number of floating-point arithmetic operations required in this approach with those required by a commonly used numerical quadrature technique.

  14. Physical constraints on biological integral control design for homeostasis and sensory adaptation.

    PubMed

    Ang, Jordan; McMillen, David R

    2013-01-22

    Synthetic biology includes an effort to use design-based approaches to create novel controllers, biological systems aimed at regulating the output of other biological processes. The design of such controllers can be guided by results from control theory, including the strategy of integral feedback control, which is central to regulation, sensory adaptation, and long-term robustness. Realization of integral control in a synthetic network is an attractive prospect, but the nature of biochemical networks can make the implementation of even basic control structures challenging. Here we present a study of the general challenges and important constraints that will arise in efforts to engineer biological integral feedback controllers or to analyze existing natural systems. Constraints arise from the need to identify target output values that the combined process-plus-controller system can reach, and to ensure that the controller implements a good approximation of integral feedback control. These constraints depend on mild assumptions about the shape of input-output relationships in the biological components, and thus will apply to a variety of biochemical systems. We summarize our results as a set of variable constraints intended to provide guidance for the design or analysis of a working biological integral feedback controller. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  15. Measuring horizontal integration among health care providers in the community: an examination of a collaborative process within a palliative care network.

    PubMed

    Bainbridge, Daryl; Brazil, Kevin; Krueger, Paul; Ploeg, Jenny; Taniguchi, Alan; Darnay, Julie

    2015-05-01

    In many countries formal or informal palliative care networks (PCNs) have evolved to better integrate community-based services for individuals with a life-limiting illness. We conducted a cross-sectional survey using a customized tool to determine the perceptions of the processes of palliative care delivery reflective of horizontal integration from the perspective of nurses, physicians and allied health professionals working in a PCN, as well as to assess the utility of this tool. The process elements examined were part of a conceptual framework for evaluating integration of a system of care and centred on interprofessional collaboration. We used the Index of Interdisciplinary Collaboration (IIC) as a basis of measurement. The 86 respondents (85% response rate) placed high value on working collaboratively and most reported being part of an interprofessional team. The survey tool showed utility in identifying strengths and gaps in integration across the network and in detecting variability in some factors according to respondent agency affiliation and profession. Specifically, support for interprofessional communication and evaluative activities were viewed as insufficient. Impediments to these aspects of horizontal integration may be reflective of workload constraints, differences in agency operations or an absence of key structural features.

  16. Knowledge representation of rock plastic deformation

    NASA Astrophysics Data System (ADS)

    Davarpanah, Armita; Babaie, Hassan

    2017-04-01

    The first iteration of the Rock Plastic Deformation (RPD) ontology models the semantics of the dynamic physical and chemical processes and mechanisms that occur during the deformation of the generally inhomogeneous polycrystalline rocks. The ontology represents the knowledge about the production, reconfiguration, displacement, and consumption of the structural components that participate in these processes. It also formalizes the properties that are known by the structural geology and metamorphic petrology communities to hold between the instances of the spatial components and the dynamic processes, the state and system variables, the empirical flow laws that relate the variables, and the laboratory testing conditions and procedures. The modeling of some of the complex physio-chemical, mathematical, and informational concepts and relations of the RPD ontology is based on the class and property structure of some well-established top-level ontologies. The flexible and extensible design of the initial version of the RPD ontology allows it to develop into a model that more fully represents the knowledge of plastic deformation of rocks under different spatial and temporal scales in the laboratory and in solid Earth. The ontology will be used to annotate the datasets related to the microstructures and physical-chemical processes that involve them. This will help the autonomous and globally distributed communities of experimental structural geologists and metamorphic petrologists to coherently and uniformly distribute, discover, access, share, and use their data through automated reasoning and enhanced data integration and software interoperability.

  17. A methodology for analysing lateral coupled behavior of high speed railway vehicles and structures

    NASA Astrophysics Data System (ADS)

    Antolín, P.; Goicolea, J. M.; Astiz, M. A.; Alonso, A.

    2010-06-01

    Continuous increment of the speed of high speed trains entails the increment of kinetic energy of the trains. The main goal of this article is to study the coupled lateral behavior of vehicle-structure systems for high speed trains. Non linear finite element methods are used for structures whereas multibody dynamics methods are employed for vehicles. Special attention must be paid when dealing with contact rolling constraints for coupling bridge decks and train wheels. The dynamic models must include mixed variables (displacements and creepages). Additionally special attention must be paid to the contact algorithms adequate to wheel-rail contact. The coupled vehicle-structure system is studied in a implicit dynamic framework. Due to the presence of very different systems (trains and bridges), different frequencies are involved in the problem leading to stiff systems. Regarding to contact methods, a main branch is studied in normal contact between train wheels and bridge decks: penalty method. According to tangential contact FastSim algorithm solves the tangential contact at each time step solving a differential equation involving relative displacements and creepage variables. Integration for computing the total forces in the contact ellipse domain is performed for each train wheel and each solver iteration. Coupling between trains and bridges requires a special treatment according to the kinetic constraints imposed in the wheel-rail pair and the load transmission. A numerical example is performed.

  18. Molecular markers for genetic diversity, gene flow and genetic population structure of freshwater mussel species.

    PubMed

    Choupina, A B; Martins, I M

    2014-08-01

    Freshwater mussel species are in global decline. Anthropogenic changes of river channels and the decrease of autochthonous fish population, the natural hosts of mussels larval stages (glochidia), are the main causes. Therefore, the conservation of mussel species depends not only on habitat conservation, but also on the availability of the fish host. In Portugal, information concerning most of the mussel species is remarkably scarce. One of the most known species, Unio pictorum is also in decline however, in the basins of the rivers Tua and Sabor (Northeast of Portugal), there is some indication of relatively large populations. The aforementioned rivers can be extremely important for this species conservation not only in Portugal, but also in the remaining Iberian Peninsula. Thus, it is important to obtain data concerning Unio pictorum bioecology (distribution, habitat requirements, population structure, genetic variability, reproductive cycle and recruitment rates), as well as the genetic variability and structure of the population. Concomitantly, information concerning fish population structure, the importance of the different fish species as "glochidia" hosts and their appropriate density to allow effective mussel recruitment, will also be assessed. The achieved data is crucial to obtain information to develop effective management measures in order to promote the conservation of this bivalve species, the conservation of autochthonous fish populations, and consequently the integrity of the river habitats.

  19. The Rhizosphere Bacterial Microbiota of Vitis vinifera cv. Pinot Noir in an Integrated Pest Management Vineyard.

    PubMed

    Novello, Giorgia; Gamalero, Elisa; Bona, Elisa; Boatti, Lara; Mignone, Flavio; Massa, Nadia; Cesaro, Patrizia; Lingua, Guido; Berta, Graziella

    2017-01-01

    Microorganisms associated with Vitis vinifera (grapevine) can affect its growth, health and grape quality. The aim of this study was to unravel the biodiversity of the bacterial rhizosphere microbiota of grapevine in an integrated pest management vineyard located in Piedmont, Italy. Comparison between the microbial community structure in the bulk and rhizosphere soil (variable: space) were performed. Moreover, the possible shifts of the bulk and rhizosphere soil microbiota according to two phenological stages such as flowering and early fruit development (variable: time) were characterized. The grapevine microbiota was identified using metagenomics and next-generation sequencing. Biodiversity was higher in the rhizosphere than in the bulk soil, independent of the phenological stage. Actinobacteria were the dominant class with frequencies ≥ 50% in all the soil samples, followed by Proteobacteria, Gemmatimonadetes, and Bacteroidetes. While Actinobacteria and Proteobacteria are well-known as being dominant in soil, this is the first time the presence of Gemmatimonadetes has been observed in vineyard soils. Gaiella was the dominant genus of Actinobacteria in all the samples. Finally, the microbiota associated with grapevine differed from the bulk soil microbiota and these variations were independent of the phenological stage of the plant.

  20. INTEGRAL Long-Term Monitoring of the Supergiant Fast X-Ray Transient XTE J1739-302

    NASA Technical Reports Server (NTRS)

    Blay, P.; Martinez-Nunez, S.; Negueruela, I.; Pottschmidt, K.; Smith, D. M.; Torrejon, J. M.; Reig, P.; Kretschmar, P.; Kreykenbohm, I.

    2008-01-01

    Context. In the past few years, a new class of High Mass X-Ray Binaries (HMXRB) has been claimed to exist, the Supergiant Fast X-ray Transients (SFXT). These are X-ray binary systems with a compact companion orbiting a supergiant star which show very short and bright outbursts in a series of activity periods overimposed on longer quiescent periods. Only very recently the first attempts to model the behaviour of these sources have been published, some of them within the framework of accretion from clumpy stellar winds. Aims. Our goal is to analyze the properties of XTE J1739-302/IGR J17391-3021 within the context of the clumpy structure of the supergiant wind. Methods. We have used INTEGRAL and RXTE/PCA observations in order to obtain broad band (1 - 200 keV) spectra and light curves of XTE J1739-302 and investigate its X-ray spectrum and temporal variability. Results. We have found that XTE J1739-302 follows a much more complex behaviour than expected. Far from presenting a regular variability pattern, XTE J1739-302 shows periods of high, intermediate, and low flaring activity.

  1. Risky riding behavior on two wheels: the role of cognitive, social, and personality variables among young adolescents.

    PubMed

    Falco, Alessandra; Piccirelli, Alessandra; Girardi, Damiano; Dal Corso, Laura; De Carlo, Nicola A

    2013-09-01

    The main objective of this study was to analyze and estimate the relations between risky riding behaviors and some personality and sociocognitive variables through structural equation modeling. We focused on two-wheel riding behavior among a sample of 1,028 Italian adolescents at their first driving experience. The main findings confirmed the role of personality in influencing riding behavior directly as well as indirectly through risk perception. In particular, risk perception was a significant mediator between personality, social norm, and riding behavior. The significant relations that emerged in the general sample were further confirmed in the two specific sub-samples of males and females. In terms of social marketing and educational communication, it may consequently be advisable to proceed in an integrated and coordinated manner at both the cognitive and social level, taking into account some "dispositions to risk" related to personality. The integrated and coordinated action on different levels--cognitive, social, and personality--may therefore allow more effective and significant results in reducing those risky riding behaviors that often underlie young two-wheel riders' higher involvement in traffic accidents. Copyright © 2013 National Safety Council and Elsevier Ltd. All rights reserved.

  2. AMCC casting development. Volume 1: Executive Summary

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Advanced Combustion Chamber Casting (AMCC) has been a technically challenging part due to its size, configuration, and alloy type. The height and weight of the wax pattern assembly necessitated the development of a hollow gating system to ensure structural integrity of the shell throughout the investment process. The complexity in the jacket area of the casting required the development of an innovative casting technology that PCC has termed 'TGC' or Thermal Gradient Control. This method, of setting up thermal gradients in the casting during solidification, represents a significant process improvement for PCC and has been successfully implemented on other programs. Metallurgical integrity of the final four castings was very good. Only the areas of the parts that utilized 'TGC Shape & Location System #2' showed any significant areas of microshrinkage when evaluated by non-destructive tests. Alumina oxides detected by FPI on the 'float' surfaces (top sid surfaces of the casting during solidification) of the part were almost entirely less than the acceptance criteria of .032 inches in diameter. Destructive chem mill of the castings was required to determine the effect of the process variables used during the processing of these last four parts (with the exception of the 'Shape & Location of TGC' variable).

  3. Soil microbial community successional patterns during forest ecosystem restoration.

    PubMed

    Banning, Natasha C; Gleeson, Deirdre B; Grigg, Andrew H; Grant, Carl D; Andersen, Gary L; Brodie, Eoin L; Murphy, D V

    2011-09-01

    Soil microbial community characterization is increasingly being used to determine the responses of soils to stress and disturbances and to assess ecosystem sustainability. However, there is little experimental evidence to indicate that predictable patterns in microbial community structure or composition occur during secondary succession or ecosystem restoration. This study utilized a chronosequence of developing jarrah (Eucalyptus marginata) forest ecosystems, rehabilitated after bauxite mining (up to 18 years old), to examine changes in soil bacterial and fungal community structures (by automated ribosomal intergenic spacer analysis [ARISA]) and changes in specific soil bacterial phyla by 16S rRNA gene microarray analysis. This study demonstrated that mining in these ecosystems significantly altered soil bacterial and fungal community structures. The hypothesis that the soil microbial community structures would become more similar to those of the surrounding nonmined forest with rehabilitation age was broadly supported by shifts in the bacterial but not the fungal community. Microarray analysis enabled the identification of clear successional trends in the bacterial community at the phylum level and supported the finding of an increase in similarity to nonmined forest soil with rehabilitation age. Changes in soil microbial community structure were significantly related to the size of the microbial biomass as well as numerous edaphic variables (including pH and C, N, and P nutrient concentrations). These findings suggest that soil bacterial community dynamics follow a pattern in developing ecosystems that may be predictable and can be conceptualized as providing an integrated assessment of numerous edaphic variables.

  4. Soil Microbial Community Successional Patterns during Forest Ecosystem Restoration ▿†

    PubMed Central

    Banning, Natasha C.; Gleeson, Deirdre B.; Grigg, Andrew H.; Grant, Carl D.; Andersen, Gary L.; Brodie, Eoin L.; Murphy, D. V.

    2011-01-01

    Soil microbial community characterization is increasingly being used to determine the responses of soils to stress and disturbances and to assess ecosystem sustainability. However, there is little experimental evidence to indicate that predictable patterns in microbial community structure or composition occur during secondary succession or ecosystem restoration. This study utilized a chronosequence of developing jarrah (Eucalyptus marginata) forest ecosystems, rehabilitated after bauxite mining (up to 18 years old), to examine changes in soil bacterial and fungal community structures (by automated ribosomal intergenic spacer analysis [ARISA]) and changes in specific soil bacterial phyla by 16S rRNA gene microarray analysis. This study demonstrated that mining in these ecosystems significantly altered soil bacterial and fungal community structures. The hypothesis that the soil microbial community structures would become more similar to those of the surrounding nonmined forest with rehabilitation age was broadly supported by shifts in the bacterial but not the fungal community. Microarray analysis enabled the identification of clear successional trends in the bacterial community at the phylum level and supported the finding of an increase in similarity to nonmined forest soil with rehabilitation age. Changes in soil microbial community structure were significantly related to the size of the microbial biomass as well as numerous edaphic variables (including pH and C, N, and P nutrient concentrations). These findings suggest that soil bacterial community dynamics follow a pattern in developing ecosystems that may be predictable and can be conceptualized as providing an integrated assessment of numerous edaphic variables. PMID:21724890

  5. Environmental Variables Explain Genetic Structure in a Beetle-Associated Nematode

    PubMed Central

    McGaughran, Angela; Morgan, Katy; Sommer, Ralf J.

    2014-01-01

    The distribution of a species is a complex expression of its ecological and evolutionary history and integrating population genetic, environmental, and ecological data can provide new insights into the effects of the environment on the population structure of species. Previous work demonstrated strong patterns of genetic differentiation in natural populations of the hermaphroditic nematode Pristionchus pacificus in its La Réunion Island habitat, but gave no clear understanding of the role of the environment in structuring this variation. Here, we present what is to our knowledge the first study to statistically evaluate the role of the environment in shaping the structure and distribution of nematode populations. We test the hypothesis that genetic structure in P. pacificus is influenced by environmental variables, by combining population genetic analyses of microsatellite data from 18 populations and 370 strains, with multivariate statistics on environmental data, and species distribution modelling. We assess and quantify the relative importance of environmental factors (geographic distance, altitude, temperature, precipitation, and beetle host) on genetic variation among populations. Despite the fact that geographic populations of P. pacificus comprise vast genetic diversity sourced from multiple ancestral lineages, we find strong evidence for local associations between environment and genetic variation. Further, we show that significantly more genetic variation in P. pacificus populations is explained by environmental variation than by geographic distances. This supports a strong role for environmental heterogeneity vs. genetic drift in the divergence of populations, which we suggest may be influenced by adaptive forces. PMID:24498073

  6. Integrated controls-structures design methodology development for a class of flexible spacecraft

    NASA Technical Reports Server (NTRS)

    Maghami, P. G.; Joshi, S. M.; Walz, J. E.; Armstrong, E. S.

    1990-01-01

    Future utilization of space will require large space structures in low-Earth and geostationary orbits. Example missions include: Earth observation systems, personal communication systems, space science missions, space processing facilities, etc., requiring large antennas, platforms, and solar arrays. The dimensions of such structures will range from a few meters to possibly hundreds of meters. For reducing the cost of construction, launching, and operating (e.g., energy required for reboosting and control), it will be necessary to make the structure as light as possible. However, reducing structural mass tends to increase the flexibility which would make it more difficult to control with the specified precision in attitude and shape. Therefore, there is a need to develop a methodology for designing space structures which are optimal with respect to both structural design and control design. In the current spacecraft design practice, it is customary to first perform the structural design and then the controller design. However, the structural design and the control design problems are substantially coupled and must be considered concurrently in order to obtain a truly optimal spacecraft design. For example, let C denote the set of the 'control' design variables (e.g., controller gains), and L the set of the 'structural' design variables (e.g., member sizes). If a structural member thickness is changed, the dynamics would change which would then change the control law and the actuator mass. That would, in turn, change the structural model. Thus, the sets C and L depend on each other. Future space structures can be roughly divided into four mission classes. Class 1 missions include flexible spacecraft with no articulated appendages which require fine attitude pointing and vibration suppression (e.g., large space antennas). Class 2 missions consist of flexible spacecraft with articulated multiple payloads, where the requirement is to fine-point the spacecraft and each individual payload while suppressing the elastic motion. Class 3 missions include rapid slewing of spacecraft without appendages, while Class 4 missions include general nonlinear motion of a flexible spacecraft with articulated appendages and robot arms. Class 1 and 2 missions represent linear mathematical modeling and control system design problems (except for actuator and sensor nonlinearities), while Class 3 and 4 missions represent nonlinear problems. The development of an integrated controls/structures design approach for Class 1 missions is addressed. The performance for these missions is usually specified in terms of (1) root mean square (RMS) pointing errors at different locations on the structure, and (2) the rate of decay of the transient response. Both of these performance measures include the contributions of rigid as well as elastic motion.

  7. Towards an Aero-Propulso-Servo-Elasticity Analysis of a Commercial Supersonic Transport

    NASA Technical Reports Server (NTRS)

    Connolly, Joseph W.; Kopasakis, George; Chwalowski, Pawel; Sanetrik, Mark D.; Carlson, Jan-Renee; Silva, Walt A.; McNamara, Jack

    2016-01-01

    This paper covers the development of an aero-propulso-servo-elastic (APSE) model using computational fluid dynamics (CFD) and linear structural deformations. The APSE model provides the integration of the following two previously developed nonlinear dynamic simulations: a variable cycle turbofan engine and an elastic supersonic commercial transport vehicle. The primary focus of this study is to provide a means to include relevant dynamics of a turbomachinery propulsion system into the aeroelastic studies conducted during a vehicle design, which have historically neglected propulsion effects. A high fidelity CFD tool is used here for the integration platform. The elastic vehicle neglecting the propulsion system serves as a comparison of traditional approaches to the APSE results. An overview of the methodology is presented for integrating the propulsion system and elastic vehicle. Static aeroelastic analysis comparisons between the traditional and developed APSE models for a wing tip detection indicate that the propulsion system impact on the vehicle elastic response could increase the detection by approximately ten percent.

  8. Integration of photovoltaic units into electric utility grids: experiment information requirements and selected issues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-09-01

    A number of investigations, including those conducted by The Aerospace Corporation and other contractors, have led to the recognition of technical, economic, and institutional issues relating to the interface between solar electric technologies and electric utility systems. These issues derive from three attributes of solar electric power concepts, including (1) the variability and unpredictability of the solar resources, (2) the dispersed nature of those resources which suggests the feasible deployment of small dispersed power units, and (3) a high initial capital cost coupled with relatively low operating costs. It is imperative that these integration issues be pursued in parallel withmore » the development of each technology if the nation's electric utility systems are to effectively utilize these technologies in the near to intermediate term. Analyses of three of these issues are presented: utility information requirements, generation mix and production cost impacts, and rate structures in the context of photovoltaic units integrated into the utility system. (WHK)« less

  9. Optimisation study of a vehicle bumper subsystem with fuzzy parameters

    NASA Astrophysics Data System (ADS)

    Farkas, L.; Moens, D.; Donders, S.; Vandepitte, D.

    2012-10-01

    This paper deals with the design and optimisation for crashworthiness of a vehicle bumper subsystem, which is a key scenario for vehicle component design. The automotive manufacturers and suppliers have to find optimal design solutions for such subsystems that comply with the conflicting requirements of the regulatory bodies regarding functional performance (safety and repairability) and regarding the environmental impact (mass). For the bumper design challenge, an integrated methodology for multi-attribute design engineering of mechanical structures is set up. The integrated process captures the various tasks that are usually performed manually, this way facilitating the automated design iterations for optimisation. Subsequently, an optimisation process is applied that takes the effect of parametric uncertainties into account, such that the system level of failure possibility is acceptable. This optimisation process is referred to as possibility-based design optimisation and integrates the fuzzy FE analysis applied for the uncertainty treatment in crash simulations. This process is the counterpart of the reliability-based design optimisation used in a probabilistic context with statistically defined parameters (variabilities).

  10. Status of integrated multidisciplinary rotorcraft optimization research at the Langley Research Center

    NASA Technical Reports Server (NTRS)

    Mantay, Wayne R.; Adelman, Howard M.

    1990-01-01

    This paper describes a joint NASA/Army research activity at the Langley Research Center to develop optimization procedures aimed at improving the rotor blade design process by integrating appropriate disciplines and accounting for important interactions among the disciplines. The activity is being guided by a Steering Committee made up of key NASA and Army researchers and managers. The paper describes the optimization formulation in terms of the objective function, design variables, and constraints. The analysis aspects are discussed, and the interdisciplinary interactions are defined in terms of the information that must be transferred among disciplinary analyses as well as the trade-offs between disciplines in determining the details of the design. At this writing, some significant progress has been made. Results given in the paper represent accomplishments in rotor aerodynamic performance optimization for minimum horsepower, rotor dynamic optimization for vibration reduction, approximate analysis of frequencies and mode shapes, rotor structural optimization for minimum weight, and integrated aerodynamic load/dynamics optimization for minimum vibration and weight.

  11. Deformed oscillator algebra approach of some quantum superintegrable Lissajous systems on the sphere and of their rational extensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marquette, Ian, E-mail: i.marquette@uq.edu.au; Quesne, Christiane, E-mail: cquesne@ulb.ac.be

    2015-06-15

    We extend the construction of 2D superintegrable Hamiltonians with separation of variables in spherical coordinates using combinations of shift, ladder, and supercharge operators to models involving rational extensions of the two-parameter Lissajous systems on the sphere. These new families of superintegrable systems with integrals of arbitrary order are connected with Jacobi exceptional orthogonal polynomials of type I (or II) and supersymmetric quantum mechanics. Moreover, we present an algebraic derivation of the degenerate energy spectrum for the one- and two-parameter Lissajous systems and the rationally extended models. These results are based on finitely generated polynomial algebras, Casimir operators, realizations as deformedmore » oscillator algebras, and finite-dimensional unitary representations. Such results have only been established so far for 2D superintegrable systems separable in Cartesian coordinates, which are related to a class of polynomial algebras that display a simpler structure. We also point out how the structure function of these deformed oscillator algebras is directly related with the generalized Heisenberg algebras spanned by the nonpolynomial integrals.« less

  12. FDR Soil Moisture Sensor for Environmental Testing and Evaluation

    NASA Astrophysics Data System (ADS)

    Linmao, Ye; longqin, Xue; guangzhou, Zhang; haibo, Chen; likuai, Shi; zhigang, Wu; gouhe, Yu; yanbin, Wang; sujun, Niu; Jin, Ye; Qi, Jin

    To test the affect of environmental stresses on a adaptability of soil moisture capacitance sensor(FDR) a number of stresses were induced including vibrational shock as well as temperature and humidity through the use of a CH-I constant humidity chamber with variable temperature. A Vibrational platform was used to exam the resistance and structural integrity of the sensor after vibrations simulating the process of using, transporting and handling the sensor. A Impactive trial platform was used to test the resistance and structural integrity of the sensor after enduring repeated mechanical shocks. An CH-I constant humidity chamber with high-low temperature was used to test the adaptability of sensor in different environments with high temperature, low temperature and constant humidity. Otherwise, scope of magnetic force line of sensor was also tested in this paper. Test show:the capacitance type soil moisture sensor spread a feeling machine to bear heat, high wet and low temperature, at bear impact and vibration experiment in pass an examination, is a kind of environment to adapt to ability very strong instrument;Spread a feeling machine moreover electric field strength function radius scope 7 cms.

  13. Midsagittal brain variation and MRI shape analysis of the precuneus in adult individuals.

    PubMed

    Bruner, Emiliano; Rangel de Lázaro, Gizéh; de la Cuétara, José Manuel; Martín-Loeches, Manuel; Colom, Roberto; Jacobs, Heidi I L

    2014-04-01

    Recent analyses indicate that the precuneus is one of the main centres of integration in terms of functional and structural processes within the human brain. This neuroanatomical element is formed by different subregions, involved in visuo-spatial integration, memory and self-awareness. We analysed the midsagittal brain shape in a sample of adult humans (n = 90) to evidence the patterns of variability and geometrical organization of this area. Interestingly, the major brain covariance pattern within adult humans is strictly associated with the relative proportions of the precuneus. Its morphology displays a marked individual variation, both in terms of geometry (mostly in its longitudinal dimensions) and anatomy (patterns of convolution). No patent differences are evident between males and females, and the allometric effect of size is minimal. However, in terms of morphology, the precuneus does not represent an individual module, being influenced by different neighbouring structures. Taking into consideration the apparent involvement of the precuneus in higher-order human brain functions and evolution, its wide variation further stresses the important role of these deep parietal areas in modern neuroanatomical organization. © 2014 Anatomical Society.

  14. Entropy-Based Analysis and Bioinformatics-Inspired Integration of Global Economic Information Transfer

    PubMed Central

    An, Sungbae; Kwon, Young-Kyun; Yoon, Sungroh

    2013-01-01

    The assessment of information transfer in the global economic network helps to understand the current environment and the outlook of an economy. Most approaches on global networks extract information transfer based mainly on a single variable. This paper establishes an entirely new bioinformatics-inspired approach to integrating information transfer derived from multiple variables and develops an international economic network accordingly. In the proposed methodology, we first construct the transfer entropies (TEs) between various intra- and inter-country pairs of economic time series variables, test their significances, and then use a weighted sum approach to aggregate information captured in each TE. Through a simulation study, the new method is shown to deliver better information integration compared to existing integration methods in that it can be applied even when intra-country variables are correlated. Empirical investigation with the real world data reveals that Western countries are more influential in the global economic network and that Japan has become less influential following the Asian currency crisis. PMID:23300959

  15. Entropy-based analysis and bioinformatics-inspired integration of global economic information transfer.

    PubMed

    Kim, Jinkyu; Kim, Gunn; An, Sungbae; Kwon, Young-Kyun; Yoon, Sungroh

    2013-01-01

    The assessment of information transfer in the global economic network helps to understand the current environment and the outlook of an economy. Most approaches on global networks extract information transfer based mainly on a single variable. This paper establishes an entirely new bioinformatics-inspired approach to integrating information transfer derived from multiple variables and develops an international economic network accordingly. In the proposed methodology, we first construct the transfer entropies (TEs) between various intra- and inter-country pairs of economic time series variables, test their significances, and then use a weighted sum approach to aggregate information captured in each TE. Through a simulation study, the new method is shown to deliver better information integration compared to existing integration methods in that it can be applied even when intra-country variables are correlated. Empirical investigation with the real world data reveals that Western countries are more influential in the global economic network and that Japan has become less influential following the Asian currency crisis.

  16. A new measure based on degree distribution that links information theory and network graph analysis

    PubMed Central

    2012-01-01

    Background Detailed connection maps of human and nonhuman brains are being generated with new technologies, and graph metrics have been instrumental in understanding the general organizational features of these structures. Neural networks appear to have small world properties: they have clustered regions, while maintaining integrative features such as short average pathlengths. Results We captured the structural characteristics of clustered networks with short average pathlengths through our own variable, System Difference (SD), which is computationally simple and calculable for larger graph systems. SD is a Jaccardian measure generated by averaging all of the differences in the connection patterns between any two nodes of a system. We calculated SD over large random samples of matrices and found that high SD matrices have a low average pathlength and a larger number of clustered structures. SD is a measure of degree distribution with high SD matrices maximizing entropic properties. Phi (Φ), an information theory metric that assesses a system’s capacity to integrate information, correlated well with SD - with SD explaining over 90% of the variance in systems above 11 nodes (tested for 4 to 13 nodes). However, newer versions of Φ do not correlate well with the SD metric. Conclusions The new network measure, SD, provides a link between high entropic structures and degree distributions as related to small world properties. PMID:22726594

  17. Radio and submillimetre observations of wind structure in zeta Puppis

    NASA Astrophysics Data System (ADS)

    Blomme, R.; van de Steene, G. C.; Prinja, R. K.; Runacres, M. C.; Clark, J. S.

    2003-09-01

    We present radio and submillimetre observations of the O4I(n)f star zeta Pup, and discuss structure in the outer region of its wind ( ~ 10-100 R_*). The properties of bremsstrahlung, the dominant emission process at these wavelengths, make it sensitive to structure and allow us to study how the amount of structure changes in the wind by comparing the fluxes at different wavelengths. Possible forms of structure at these distances include Corotating Interaction Regions (CIRs), stochastic clumping, a disk or a polar enhancement. As the CIRs are azimuthally asymmetric, they should result in variability at submillimetre or radio wavelengths. To look for this variability, we acquired 3.6 and 6 cm observations with the Australia Telescope Compact Array (ATCA), covering about two rotational periods of the star. We supplemented these with archive observations from the NRAO Very Large Array (VLA), which cover a much longer time scale. We did not find variability at more than the +/-20% level. The long integration time does allow an accurate determination of the fluxes at 3.6 and 6 cm. Converting these fluxes into a mass loss rate, we find dot {M} = 3.5 x 10-6 Msun/yr. This value confirms the significant discrepancy with the mass loss rate derived from the Hα profile, making zeta Pup an exception to the usually good agreement between the Hα and radio mass loss rates. To study the run of structure as a function of distance, we supplemented the ATCA data by observing zeta Pup at 850 mu m with the James Clerk Maxwell Telescope (JCMT) and at 20 cm with the VLA. A smooth wind model shows that the millimetre fluxes are too high compared to the radio fluxes. While recombination of helium in the outer wind cannot be discounted as an explanation, the wealth of evidence for structure strongly suggests this as the explanation for the discrepancy. Model calculations show that the structure needs to be present in the inner ~ 70 R_* of the wind, but that it decays significantly, or maybe even disappears, beyond that radius.

  18. Student Solution Manual for Mathematical Methods for Physics and Engineering Third Edition

    NASA Astrophysics Data System (ADS)

    Riley, K. F.; Hobson, M. P.

    2006-03-01

    Preface; 1. Preliminary algebra; 2. Preliminary calculus; 3. Complex numbers and hyperbolic functions; 4. Series and limits; 5. Partial differentiation; 6. Multiple integrals; 7. Vector algebra; 8. Matrices and vector spaces; 9. Normal modes; 10. Vector calculus; 11. Line, surface and volume integrals; 12. Fourier series; 13. Integral transforms; 14. First-order ordinary differential equations; 15. Higher-order ordinary differential equations; 16. Series solutions of ordinary differential equations; 17. Eigenfunction methods for differential equations; 18. Special functions; 19. Quantum operators; 20. Partial differential equations: general and particular; 21. Partial differential equations: separation of variables; 22. Calculus of variations; 23. Integral equations; 24. Complex variables; 25. Application of complex variables; 26. Tensors; 27. Numerical methods; 28. Group theory; 29. Representation theory; 30. Probability; 31. Statistics.

  19. The Minimum M3-M4 Loop Length of Neurotransmitter-activated Pentameric Receptors Is Critical for the Structural Integrity of Cytoplasmic Portals*

    PubMed Central

    Baptista-Hon, Daniel T.; Deeb, Tarek Z.; Lambert, Jeremy J.; Peters, John A.; Hales, Tim G.

    2013-01-01

    The 5-HT3A receptor homology model, based on the partial structure of the nicotinic acetylcholine receptor from Torpedo marmorata, reveals an asymmetric ion channel with five portals framed by adjacent helical amphipathic (HA) stretches within the 114-residue loop between the M3 and M4 membrane-spanning domains. The positive charge of Arg-436, located within the HA stretch, is a rate-limiting determinant of single channel conductance (γ). Further analysis reveals that positive charge and volume of residue 436 are determinants of 5-HT3A receptor inward rectification, exposing an additional role for portals. A structurally unresolved stretch of 85 residues constitutes the bulk of the M3-M4 loop, leaving a >45-Å gap in the model between M3 and the HA stretch. There are no additional structural data for this loop, which is vestigial in bacterial pentameric ligand-gated ion channels and was largely removed for crystallization of the Caenorhabditis elegans glutamate-activated pentameric ligand-gated ion channels. We created 5-HT3A subunit loop truncation mutants, in which sequences framing the putative portals were retained, to determine the minimum number of residues required to maintain their functional integrity. Truncation to between 90 and 75 amino acids produced 5-HT3A receptors with unaltered rectification. Truncation to 70 residues abolished rectification and increased γ. These findings reveal a critical M3-M4 loop length required for functions attributable to cytoplasmic portals. Examination of all 44 subunits of the human neurotransmitter-activated Cys-loop receptors reveals that, despite considerable variability in their sequences and lengths, all M3-M4 loops exceed 70 residues, suggesting a fundamental requirement for portal integrity. PMID:23740249

  20. The neural language systems that support healthy aging: Integrating function, structure, and behavior

    PubMed Central

    Diaz, Michele T.; Rizio, Avery A.; Zhuang, Jie

    2016-01-01

    Although healthy aging is generally characterized by declines in both brain structure and function, there is variability in the extent to which these changes result in observable cognitive decline. Specific to language, age-related differences in language production are observed more frequently than in language comprehension, although both are associated with increased right prefrontal cortex activation in older adults. The current paper explores these differences in the language system, integrating them with theories of behavioral and neural cognitive aging. Overall, data indicate that frontal reorganization of the dorsal language stream in older adults benefits task performance during comprehension, but not always during production. We interpret these results in the CRUNCH framework (compensation-related utilization of neural circuits hypothesis), which suggests that differences in task and process difficulty may underlie older adults’ ability to successfully adapt. That is, older adults may be able to neurally adapt to less difficult tasks (i.e., comprehension), but fail to do so successfully as difficulty increases (i.e., production). We hypothesize greater age-related differences in aspects of language that rely more heavily on the dorsal language stream (e.g., syntax and production) and that recruit general cognitive resources that rely on frontal regions (e.g., executive function, working memory, inhibition). Moreover, there should be a relative sparing of tasks that rely predominantly on ventral stream regions. These results are both consistent with patterns of age-related structural decline and retention and with varying levels of difficulty across comprehension and production. This neurocognitive framework for understanding age-related differences in the language system centers on the interaction between prefrontal cortex activation, structural integrity, and task difficulty. PMID:28210287

  1. Statistical Analyses for Probabilistic Assessments of the Reactor Pressure Vessel Structural Integrity: Building a Master Curve on an Extract of the 'Euro' Fracture Toughness Dataset, Controlling Statistical Uncertainty for Both Mono-Temperature and multi-temperature tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Josse, Florent; Lefebvre, Yannick; Todeschini, Patrick

    2006-07-01

    Assessing the structural integrity of a nuclear Reactor Pressure Vessel (RPV) subjected to pressurized-thermal-shock (PTS) transients is extremely important to safety. In addition to conventional deterministic calculations to confirm RPV integrity, Electricite de France (EDF) carries out probabilistic analyses. Probabilistic analyses are interesting because some key variables, albeit conventionally taken at conservative values, can be modeled more accurately through statistical variability. One variable which significantly affects RPV structural integrity assessment is cleavage fracture initiation toughness. The reference fracture toughness method currently in use at EDF is the RCCM and ASME Code lower-bound K{sub IC} based on the indexing parameter RT{submore » NDT}. However, in order to quantify the toughness scatter for probabilistic analyses, the master curve method is being analyzed at present. Furthermore, the master curve method is a direct means of evaluating fracture toughness based on K{sub JC} data. In the framework of the master curve investigation undertaken by EDF, this article deals with the following two statistical items: building a master curve from an extract of a fracture toughness dataset (from the European project 'Unified Reference Fracture Toughness Design curves for RPV Steels') and controlling statistical uncertainty for both mono-temperature and multi-temperature tests. Concerning the first point, master curve temperature dependence is empirical in nature. To determine the 'original' master curve, Wallin postulated that a unified description of fracture toughness temperature dependence for ferritic steels is possible, and used a large number of data corresponding to nuclear-grade pressure vessel steels and welds. Our working hypothesis is that some ferritic steels may behave in slightly different ways. Therefore we focused exclusively on the basic french reactor vessel metal of types A508 Class 3 and A 533 grade B Class 1, taking the sampling level and direction into account as well as the test specimen type. As for the second point, the emphasis is placed on the uncertainties in applying the master curve approach. For a toughness dataset based on different specimens of a single product, application of the master curve methodology requires the statistical estimation of one parameter: the reference temperature T{sub 0}. Because of the limited number of specimens, estimation of this temperature is uncertain. The ASTM standard provides a rough evaluation of this statistical uncertainty through an approximate confidence interval. In this paper, a thorough study is carried out to build more meaningful confidence intervals (for both mono-temperature and multi-temperature tests). These results ensure better control over uncertainty, and allow rigorous analysis of the impact of its influencing factors: the number of specimens and the temperatures at which they have been tested. (authors)« less

  2. Random forest regression modelling for forest aboveground biomass estimation using RISAT-1 PolSAR and terrestrial LiDAR data

    NASA Astrophysics Data System (ADS)

    Mangla, Rohit; Kumar, Shashi; Nandy, Subrata

    2016-05-01

    SAR and LiDAR remote sensing have already shown the potential of active sensors for forest parameter retrieval. SAR sensor in its fully polarimetric mode has an advantage to retrieve scattering property of different component of forest structure and LiDAR has the capability to measure structural information with very high accuracy. This study was focused on retrieval of forest aboveground biomass (AGB) using Terrestrial Laser Scanner (TLS) based point clouds and scattering property of forest vegetation obtained from decomposition modelling of RISAT-1 fully polarimetric SAR data. TLS data was acquired for 14 plots of Timli forest range, Uttarakhand, India. The forest area is dominated by Sal trees and random sampling with plot size of 0.1 ha (31.62m*31.62m) was adopted for TLS and field data collection. RISAT-1 data was processed to retrieve SAR data based variables and TLS point clouds based 3D imaging was done to retrieve LiDAR based variables. Surface scattering, double-bounce scattering, volume scattering, helix and wire scattering were the SAR based variables retrieved from polarimetric decomposition. Tree heights and stem diameters were used as LiDAR based variables retrieved from single tree vertical height and least square circle fit methods respectively. All the variables obtained for forest plots were used as an input in a machine learning based Random Forest Regression Model, which was developed in this study for forest AGB estimation. Modelled output for forest AGB showed reliable accuracy (RMSE = 27.68 t/ha) and a good coefficient of determination (0.63) was obtained through the linear regression between modelled AGB and field-estimated AGB. The sensitivity analysis showed that the model was more sensitive for the major contributed variables (stem diameter and volume scattering) and these variables were measured from two different remote sensing techniques. This study strongly recommends the integration of SAR and LiDAR data for forest AGB estimation.

  3. Psychotherapy integration under scrutiny: investigating the impact of integrating emotion-focused components into a CBT-based approach: a study protocol of a randomized controlled trial.

    PubMed

    Babl, Anna; Grosse Holtforth, Martin; Heer, Sara; Lin, Mu; Stähli, Annabarbara; Holstein, Dominique; Belz, Martina; Egenolf, Yvonne; Frischknecht, Eveline; Ramseyer, Fabian; Regli, Daniel; Schmied, Emma; Flückiger, Christoph; Brodbeck, Jeannette; Berger, Thomas; Caspar, Franz

    2016-11-24

    This currently recruiting randomized controlled trial investigates the effects of integrating components of Emotion-Focused Therapy (EFT) into Psychological Therapy (PT), an integrative form of cognitive-behavioral therapy in a manner that is directly mirroring common integrative practice in the sense of assimilative integration. Aims of the study are to understand how both, an existing therapy approach as well as the elements to be integrated, are affected by the integration and to clarify the role of emotional processing as a mediator of therapy outcome. A total of 130 adults with a diagnosed unipolar depressive, anxiety or adjustment disorder (seeking treatment at a psychotherapy outpatient clinic) are randomized to either treatment as usual (PT) with integrated emotion-focused components (TAU + EFT) or PT (TAU). Primary outcome variables are psychopathology and symptom severity at the end of therapy and at follow up; secondary outcome variables are interpersonal problems, psychological wellbeing, quality of life, attainment of individual therapy goals, and emotional competency. Furthermore, process variables such as the quality of the therapeutic relationship are studied as well as aptitude-treatment interactions. Variables are assessed at baseline, after 8 and 16 sessions, at the end of therapy, after 25 ± 3 sessions, and at 6, 12 and 36 month follow-up. Underlying mechanisms of change are investigated. Statistical analyses will be conducted using the appropriate multilevel approaches, mainly two-level regression and growth analysis. The results of this study will indicate whether the integration of emotion-focused elements into treatment as usual increases the effectiveness of Psychological Therapy. If advantages are found, which may be limited to particular variables or subgroups of patients, recommendations for a systematic integration, and caveats if also disadvantages are detected, can be formulated. On a more abstract level, a cognitive behavioral (represented by PT) and humanistic/experiential (represented by EFT) approach will be integrated. It must be emphasized that mimicking common practice in the development and continued education of psychotherapists, EFT is not integrated as a whole, but only elements of EFT that are considered particularly important, and can be trained in an 8-day training plus supervision of therapies. ClinicalTrials.gov, NCT02822443 , 22 June 2016, retrospectively registered.

  4. DNA methylation at hepatitis B viral integrants is associated with methylation at flanking human genomic sequences

    PubMed Central

    Watanabe, Yoshiyuki; Yamamoto, Hiroyuki; Oikawa, Ritsuko; Toyota, Minoru; Yamamoto, Masakazu; Kokudo, Norihiro; Tanaka, Shinji; Arii, Shigeki; Yotsuyanagi, Hiroshi; Koike, Kazuhiko; Itoh, Fumio

    2015-01-01

    Integration of DNA viruses into the human genome plays an important role in various types of tumors, including hepatitis B virus (HBV)–related hepatocellular carcinoma. However, the molecular details and clinical impact of HBV integration on either human or HBV epigenomes are unknown. Here, we show that methylation of the integrated HBV DNA is related to the methylation status of the flanking human genome. We developed a next-generation sequencing-based method for structural methylation analysis of integrated viral genomes (denoted G-NaVI). This method is a novel approach that enables enrichment of viral fragments for sequencing using unique baits based on the sequence of the HBV genome. We detected integrated HBV sequences in the genome of the PLC/PRF/5 cell line and found variable levels of methylation within the integrated HBV genomes. Allele-specific methylation analysis revealed that the HBV genome often became significantly methylated when integrated into highly methylated host sites. After integration into unmethylated human genome regions such as promoters, however, the HBV DNA remains unmethylated and may eventually play an important role in tumorigenesis. The observed dynamic changes in DNA methylation of the host and viral genomes may functionally affect the biological behavior of HBV. These findings may impact public health given that millions of people worldwide are carriers of HBV. We also believe our assay will be a powerful tool to increase our understanding of the various types of DNA virus-associated tumorigenesis. PMID:25653310

  5. Depth-enhanced integral imaging display system with electrically variable image planes using polymer-dispersed liquid-crystal layers.

    PubMed

    Kim, Yunhee; Choi, Heejin; Kim, Joohwan; Cho, Seong-Woo; Kim, Youngmin; Park, Gilbae; Lee, Byoungho

    2007-06-20

    A depth-enhanced three-dimensional integral imaging system with electrically variable image planes is proposed. For implementing the variable image planes, polymer-dispersed liquid-crystal (PDLC) films and a projector are adopted as a new display system in the integral imaging. Since the transparencies of PDLC films are electrically controllable, we can make each film diffuse the projected light successively with a different depth from the lens array. As a result, the proposed method enables control of the location of image planes electrically and enhances the depth. The principle of the proposed method is described, and experimental results are also presented.

  6. Morphometry of Left Frontal and Temporal Poles Predicts Analogical Reasoning Abilities.

    PubMed

    Aichelburg, Clarisse; Urbanski, Marika; Thiebaut de Schotten, Michel; Humbert, Frederic; Levy, Richard; Volle, Emmanuelle

    2016-03-01

    Analogical reasoning is critical for making inferences and adapting to novelty. It can be studied experimentally using tasks that require creating similarities between situations or concepts, i.e., when their constituent elements share a similar organization or structure. Brain correlates of analogical reasoning have mostly been explored using functional imaging that has highlighted the involvement of the left rostrolateral prefrontal cortex (rlPFC) in healthy subjects. However, whether inter-individual variability in analogical reasoning ability in a healthy adult population is related to differences in brain architecture is unknown. We investigated this question by employing linear regression models of performance in analogy tasks and voxel-based morphometry in 54 healthy subjects. Our results revealed that the ability to reason by analogy was associated with structural variability in the left rlPFC and the anterior part of the inferolateral temporal cortex. Tractography of diffusion-weighted images suggested that these 2 regions have a different set of connections but may exchange information via the arcuate fasciculus. These results suggest that enhanced integrative and semantic abilities supported by structural variation in these areas (or their connectivity) may lead to more efficient analogical reasoning. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. Evaluation of different inertial control methods for variable-speed wind turbines simulated by fatigue, aerodynamic, structures and turbulence (FAST)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiao; Gao, Wenzhong; Scholbrock, Andrew

    To mitigate the degraded power system inertia and undesirable primary frequency response caused by large-scale wind power integration, the frequency support capabilities of variable-speed wind turbines is studied in this work. This is made possible by controlled inertial response, which is demonstrated on a research turbine - controls advanced research turbine, 3-bladed (CART3). Two distinct inertial control (IC) methods are analysed in terms of their impacts on the grids and the response of the turbine itself. The released kinetic energy in the IC methods are determined by the frequency measurement or shaped active power reference in the turbine speed-power plane.more » The wind turbine model is based on the high-fidelity turbine simulator fatigue, aerodynamic, structures and turbulence, which constitutes the aggregated wind power plant model with the simplified power converter model. The IC methods are implemented over the baseline CART3 controller, evaluated in the modified 9-bus and 14-bus testing power grids considering different wind speeds and different wind power penetration levels. The simulation results provide various insights on designing such kinds of ICs. The authors calculate the short-term dynamic equivalent loads and give a discussion about the turbine structural loadings related to the inertial response.« less

  8. Modelling forest canopy height by integrating airborne LiDAR samples with satellite Radar and multispectral imagery

    NASA Astrophysics Data System (ADS)

    García, Mariano; Saatchi, Sassan; Ustin, Susan; Balzter, Heiko

    2018-04-01

    Spatially-explicit information on forest structure is paramount to estimating aboveground carbon stocks for designing sustainable forest management strategies and mitigating greenhouse gas emissions from deforestation and forest degradation. LiDAR measurements provide samples of forest structure that must be integrated with satellite imagery to predict and to map landscape scale variations of forest structure. Here we evaluate the capability of existing satellite synthetic aperture radar (SAR) with multispectral data to estimate forest canopy height over five study sites across two biomes in North America, namely temperate broadleaf and mixed forests and temperate coniferous forests. Pixel size affected the modelling results, with an improvement in model performance as pixel resolution coarsened from 25 m to 100 m. Likewise, the sample size was an important factor in the uncertainty of height prediction using the Support Vector Machine modelling approach. Larger sample size yielded better results but the improvement stabilised when the sample size reached approximately 10% of the study area. We also evaluated the impact of surface moisture (soil and vegetation moisture) on the modelling approach. Whereas the impact of surface moisture had a moderate effect on the proportion of the variance explained by the model (up to 14%), its impact was more evident in the bias of the models with bias reaching values up to 4 m. Averaging the incidence angle corrected radar backscatter coefficient (γ°) reduced the impact of surface moisture on the models and improved their performance at all study sites, with R2 ranging between 0.61 and 0.82, RMSE between 2.02 and 5.64 and bias between 0.02 and -0.06, respectively, at 100 m spatial resolution. An evaluation of the relative importance of the variables in the model performance showed that for the study sites located within the temperate broadleaf and mixed forests biome ALOS-PALSAR HV polarised backscatter was the most important variable, with Landsat Tasselled Cap Transformation components barely contributing to the models for two of the study sites whereas it had a significant contribution at the third one. Over the temperate conifer forests, Landsat Tasselled Cap variables contributed more than the ALOS-PALSAR HV band to predict the landscape height variability. In all cases, incorporation of multispectral data improved the retrieval of forest canopy height and reduced the estimation uncertainty for tall forests. Finally, we concluded that models trained at one study site had higher uncertainty when applied to other sites, but a model developed from multiple sites performed equally to site-specific models to predict forest canopy height. This result suggest that a biome level model developed from several study sites can be used as a reliable estimator of biome-level forest structure from existing satellite imagery.

  9. Publications | Energy Systems Integration Facility | NREL

    Science.gov Websites

    100% Renewable Grid: Operating Electric Power Systems with Extremely High Levels of Variable Renewable timeline. Feeder Voltage Regulation with High-Penetration PV Using Advanced Inverters and a Distribution Integrating High Levels of Variable Renewable Energy into Electric Power Systems, Journal of Modern Power

  10. Predictive model of complexity in early palliative care: a cohort of advanced cancer patients (PALCOM study).

    PubMed

    Tuca, Albert; Gómez-Martínez, Mónica; Prat, Aleix

    2018-01-01

    Model of early palliative care (PC) integrated in oncology is based on shared care from the diagnosis to the end of life and is mainly focused on patients with greater complexity. However, there is no definition or tools to evaluate PC complexity. The objectives of the study were to identify the factors influencing level determination of complexity, propose predictive models, and build a complexity scale of PC. We performed a prospective, observational, multicenter study in a cohort of advanced cancer patients with an estimated prognosis ≤ 6 months. An ad hoc structured evaluation including socio-demographic and clinical data, symptom burden, functional and cognitive status, psychosocial problems, and existential-ethic dilemmas was recorded systematically. According to this multidimensional evaluation, investigator classified patients as high, medium, or low palliative complexity, associated to need of basic or specialized PC. Logistic regression was used to identify the variables influencing determination of level of PC complexity and explore predictive models. We included 324 patients; 41% were classified as having high PC complexity and 42.9% as medium, both levels being associated with specialized PC. Variables influencing determination of PC complexity were as follows: high symptom burden (OR 3.19 95%CI: 1.72-6.17), difficult pain (OR 2.81 95%CI:1.64-4.9), functional status (OR 0.99 95%CI:0.98-0.9), and social-ethical existential risk factors (OR 3.11 95%CI:1.73-5.77). Logistic analysis of variables allowed construct a complexity model and structured scales (PALCOM 1 and 2) with high predictive value (AUC ROC 76%). This study provides a new model and tools to assess complexity in palliative care, which may be very useful to manage referral to specialized PC services, and agree intensity of their intervention in a model of early-shared care integrated in oncology.

  11. Protecting children from myopia: a PMT perspective for improving health marketing communications.

    PubMed

    Lwin, May O; Saw, Seang-Mei

    2007-01-01

    This research examined the predictive utility of the protection motivation theory (PMT) model for myopia prevention amongst children. An integrative model for myopia prevention behavior of parents was first developed in the context of theory and survey instruments then refined using information gathered from two focus groups. Empirical data then was collected from parents of primary school children in Singapore, a country with one of the highest rates of myopia in the world, and analyzed using structural equation modeling (SEM). Our findings revealed that coping appraisal variables were more significantly associated with protection motivation, relative to threat appraisal variables. In particular, perceived self-efficacy was the strongest predictor of parental intention to enforce good visual health behaviors, while perceived severity was relatively weak. Health marketing communications and public policy implications are discussed.

  12. Interannual variability of the global net radiation balance and its consequence on global energy transport

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Sohn, B. J.

    1990-01-01

    Global cloudiness and radiation budget data from Nimbus 6 and 7 are used to investigate the role of cloud and surface radiative forcing and elements of the earth's general circulation. Although globally integrated cloud forcing is nearly zero, there are large regional imbalances and well regulated processes in the shortwave and longwave spectrum that control the meridional gradient structure of the net radiation balance and the factors modulating the east-west oriented North Africa-western Pacific energy transport dipole. The analysis demonstrates that clouds play a dual role in both the shortwave and longwave spectra in terms of tropical and midlatitude east-west gradients. The key result is that cloud forcing, although not always the principle regulator of interannual variability of the global climate, serves to reinforce the basic three-cell meridional circulation.

  13. Alleviating tropical Atlantic sector biases in the Kiel climate model by enhancing horizontal and vertical atmosphere model resolution: climatology and interannual variability

    NASA Astrophysics Data System (ADS)

    Harlaß, Jan; Latif, Mojib; Park, Wonsun

    2018-04-01

    We investigate the quality of simulating tropical Atlantic (TA) sector climatology and interannual variability in integrations of the Kiel climate model (KCM) with varying atmosphere model resolution. The ocean model resolution is kept fixed. A reasonable simulation of TA sector annual-mean climate, seasonal cycle and interannual variability can only be achieved at sufficiently high horizontal and vertical atmospheric resolution. Two major reasons for the improvements are identified. First, the western equatorial Atlantic westerly surface wind bias in spring can be largely eliminated, which is explained by a better representation of meridional and especially vertical zonal momentum transport. The enhanced atmospheric circulation along the equator in turn greatly improves the thermal structure of the upper equatorial Atlantic with much reduced warm sea surface temperature (SST) biases. Second, the coastline in the southeastern TA and steep orography are better resolved at high resolution, which improves wind structure and in turn reduces warm SST biases in the Benguela upwelling region. The strongly diminished wind and SST biases at high atmosphere model resolution allow for a more realistic latitudinal position of the intertropical convergence zone. Resulting stronger cross-equatorial winds, in conjunction with a shallower thermocline, enable a rapid cold tongue development in the eastern TA in boreal spring. This enables simulation of realistic interannual SST variability and its seasonal phase locking in the KCM, which primarily is the result of a stronger thermocline feedback. Our findings suggest that enhanced atmospheric resolution, both vertical and horizontal, could be a key to achieving more realistic simulation of TA climatology and interannual variability in climate models.

  14. The Association between Tax Structure and Cigarette Price Variability: Findings from the International Tobacco Control Policy Evaluation (ITC) Project

    PubMed Central

    Shang, Ce; Chaloupka, Frank J.; Fong, Geoffrey T; Thompson, Mary; O’Connor, Richard J

    2015-01-01

    Background Recent studies have shown that more opportunities exist for tax avoidance when cigarette excise tax structure departs from a uniform specific structure. However, the association between tax structure and cigarette price variability has not been thoroughly studied in the existing literature. Objective To examine how cigarette tax structure is associated with price variability. The variability of self-reported prices is measured using the ratios of differences between higher and lower prices to the median price such as the IQR-to-median ratio. Methods We used survey data taken from the International Tobacco Control Policy Evaluation (ITC) Project in 17 countries to conduct the analysis. Cigarette prices were derived using individual purchase information and aggregated to price variability measures for each surveyed country and wave. The effect of tax structures on price variability was estimated using Generalised Estimating Equations after adjusting for year and country attributes. Findings Our study provides empirical evidence of a relationship between tax structure and cigarette price variability. We find that, compared to the specific uniform tax structure, mixed uniform and tiered (specific, ad valorem or mixed) structures are associated with greater price variability (p≤0.01). Moreover, while a greater share of the specific component in total excise taxes is associated with lower price variability (p≤0.05), a tiered tax structure is associated with greater price variability (p≤0.01). The results suggest that a uniform and specific tax structure is the most effective tax structure for reducing tobacco consumption and prevalence by limiting price variability and decreasing opportunities for tax avoidance. PMID:25855641

  15. Why do policies change? Institutions, interests, ideas and networks in three cases of policy reform.

    PubMed

    Shearer, Jessica C; Abelson, Julia; Kouyaté, Bocar; Lavis, John N; Walt, Gill

    2016-11-01

    Policy researchers have used various categories of variables to explain why policies change, including those related to institutions, interests and ideas. Recent research has paid growing attention to the role of policy networks-the actors involved in policy-making, their relationships with each other, and the structure formed by those relationships-in policy reform across settings and issues; however, this literature has largely ignored the theoretical integration of networks with other policy theories, including the '3Is' of institutions, interests and ideas. This article proposes a conceptual framework integrating these variables and tests it on three cases of policy change in Burkina Faso, addressing the need for theoretical integration with networks as well as the broader aim of theory-driven health policy analysis research in low- and middle-income countries. We use historical process tracing, a type of comparative case study, to interpret and compare documents and in-depth interview data within and between cases. We found that while network changes were indeed associated with policy reform, this relationship was mediated by one or more of institutions, interests and ideas. In a context of high donor dependency, new donor rules affected the composition and structure of actors in the networks, which enabled the entry and dissemination of new ideas and shifts in the overall balance of interest power ultimately leading to policy change. The case of strategic networking occurred in only one case, by civil society actors, suggesting that network change is rarely the spark that initiates the process towards policy change. This analysis highlights the important role of changes in institutions and ideas to drive policymaking, but hints that network change is a necessary intermediate step in these processes. © The Author 2016. Published by Oxford University Press in association with The London School of Hygiene and Tropical Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Solfatara volcano subsurface imaging: two different approaches to process and interpret multi-variate data sets

    NASA Astrophysics Data System (ADS)

    Bernardinetti, Stefano; Bruno, Pier Paolo; Lavoué, François; Gresse, Marceau; Vandemeulebrouck, Jean; Revil, André

    2017-04-01

    The need to reduce model uncertainty and produce a more reliable geophysical imaging and interpretations is nowadays a fundamental task required to geophysics techniques applied in complex environments such as Solfatara Volcano. The use of independent geophysical methods allows to obtain many information on the subsurface due to the different sensitivities of the data towards parameters such as compressional and shearing wave velocities, bulk electrical conductivity, or density. The joint processing of these multiple physical properties can lead to a very detailed characterization of the subsurface and therefore enhance our imaging and our interpretation. In this work, we develop two different processing approaches based on reflection seismology and seismic P-wave tomography on one hand, and electrical data acquired over the same line, on the other hand. From these data, we obtain an image-guided electrical resistivity tomography and a post processing integration of tomographic results. The image-guided electrical resistivity tomography is obtained by regularizing the inversion of the electrical data with structural constraints extracted from a migrated seismic section using image processing tools. This approach enables to focus the reconstruction of electrical resistivity anomalies along the features visible in the seismic section, and acts as a guide for interpretation in terms of subsurface structures and processes. To integrate co-registrated P-wave velocity and electrical resistivity values, we apply a data mining tool, the k-means algorithm, to individuate relationships between the two set of variables. This algorithm permits to individuate different clusters with the objective to minimize the sum of squared Euclidean distances within each cluster and maximize it between clusters for the multivariate data set. We obtain a partitioning of the multivariate data set in a finite number of well-correlated clusters, representative of the optimum clustering of our geophysical variables (P-wave velocities and electrical resistivities). The result is an integrated tomography that shows a finite number of homogeneous geophysical facies, and therefore permits to highlight the main geological features of the subsurface.

  17. Balancing Area Coordination: Efficiently Integrating Renewable Energy Into the Grid, Greening the Grid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katz, Jessica; Denholm, Paul; Cochran, Jaquelin

    2015-06-01

    Greening the Grid provides technical assistance to energy system planners, regulators, and grid operators to overcome challenges associated with integrating variable renewable energy into the grid. Coordinating balancing area operation can promote more cost and resource efficient integration of variable renewable energy, such as wind and solar, into power systems. This efficiency is achieved by sharing or coordinating balancing resources and operating reserves across larger geographic boundaries.

  18. Development of a new fertility prediction model for stallion semen, including flow cytometry.

    PubMed

    Barrier Battut, I; Kempfer, A; Becker, J; Lebailly, L; Camugli, S; Chevrier, L

    2016-09-01

    Several laboratories routinely use flow cytometry to evaluate stallion semen quality. However, objective and practical tools for the on-field interpretation of data concerning fertilizing potential are scarce. A panel of nine tests, evaluating a large number of compartments or functions of the spermatozoa: motility, morphology, viability, mitochondrial activity, oxidation level, acrosome integrity, DNA integrity, "organization" of the plasma membrane, and hypoosmotic resistance, was applied to a population of 43 stallions, 33 of which showing widely differing fertilities (19%-84% pregnancy rate per cycle [PRC]). Analyses were performed either within 2 hours after semen collection or after 24-hour storage at 4 °C in INRA96 extender, on three to six ejaculates for each stallion. The aim was to provide data on the distribution of values among said population, showing within-stallion and between-stallion variability, and to determine whether appropriate combinations of tests could evaluate the fertilizing potential of each stallion. Within-stallion repeatability, defined as intrastallion correlation (r = between-stallion variance/total variance) ranged between 0.29 and 0.84 for "conventional" variables (viability, morphology, and motility), and between 0.15 and 0.81 for "cytometric" variables. Those data suggested that analyzing six ejaculates would be adequate to characterize a stallion. For most variables, except those related to DNA integrity and some motility variables, results differed significantly between immediately performed analyses and analyses performed after 24 hours at 4 °C. Two "best-fit" combinations of variables were determined. Factorial discriminant analysis using a first combination of seven variables, including the polarization of mitochondria, acrosome integrity, DNA integrity, and hypoosmotic resistance, permitted exact determination of the fertility group for each stallion: fertile, that is, PRC higher than 55%; intermediate, that is, 45% < PRC less than 55%; or subfertile, that is, PRC less than 45%. Linear regression using another combination of 20 variables, including motility, viability, oxidation level, acrosome integrity, DNA integrity, and hypoosmotic resistance, accounted for 94.2% of the variability regarding fertility and was used to calculate a prediction of the PRC with a mean standard deviation of 3.1. The difference between the observed fertility and the calculated value ranged from -4.2 to 5.0. In conclusion, this study enabled to determine a new protocol for the evaluation of stallion semen, combining microscopical observation, computer-assisted motility analysis and flow cytometry, and providing a high level of fertility prediction. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. The association of mid-to late-life systemic inflammation with white matter structure in older adults: The Atherosclerosis Risk in Communities Study.

    PubMed

    Walker, Keenan A; Windham, B Gwen; Power, Melinda C; Hoogeveen, Ron C; Folsom, Aaron R; Ballantyne, Christie M; Knopman, David S; Selvin, Elizabeth; Jack, Clifford R; Gottesman, Rebecca F

    2018-08-01

    We examined whether the pattern of middle- to late-life systemic inflammation was associated with white matter (WM) structural abnormalities in older adults. A total of 1532 participants (age = 76.5; standard deviations = 5.4) underwent 3T brain magnetic resonance imaging to quantify white matter hyperintensity volume and whole-brain WM microstructural integrity (fractional anisotropy, mean diffusivity). High-sensitivity C-reactive protein (CRP), a marker of systemic inflammation, was measured at 3 visits (21 and 14 years before, and concurrent with, neuroimaging). Participants were categorized into 1 of 6 groups based on their 21-year pattern of low (<3 mg/L) versus elevated (≥3 mg/L) CRP. Compared to the group with low CRP at all 3 visits, the group that transitioned from low to elevated CRP during midlife demonstrated greatest white matter hyperintensity volume and poorest WM microstructural integrity, after adjusting for demographic variables and cardiovascular risk factors. Participants with high CRP at all visits also demonstrated greater WM structural abnormalities, but only after accounting for differential attrition. These results suggest that increasing and persistent inflammation in the decades spanning middle-to late-life may promote WM disease in older adults. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. George E. Pake Prize Lecture: CMOS Technology Roadmap: Is Scaling Ending?

    NASA Astrophysics Data System (ADS)

    Chen, Tze-Chiang (T. C.)

    The development of silicon technology has been based on the principle of physics and driven by the system needs. Traditionally, the system needs have been satisfied by the increase in transistor density and performance, as suggested by Moore's Law and guided by ''Dennard CMOS scaling theory''. As the silicon industry moves towards the 14nm node and beyond, three of the most important challenges facing Moore's Law and continued CMOS scaling are the growing standby power dissipation, the increasing variability in device characteristics and the ever increasing manufacturing cost. Actually, the first two factors are the embodiments of CMOS approaching atomistic and quantum-mechanical physics boundaries. Industry directions for addressing these challenges are also developing along three primary approaches: Extending silicon scaling through innovations in materials and device structure, expanding the level of integration through three-dimensional structures comprised of through-silicon-vias holes and chip stacking in order to enhance functionality and parallelism and exploring post-silicon CMOS innovation with new nano-devices based on distinctly different principles of physics, new materials and new processes such as spintronics, carbon nanotubes and nanowires. Hence, the infusion of new materials, innovative integration and novel device structures will continue to extend CMOS technology scaling for at least another decade.

  1. A Practical Probabilistic Graphical Modeling Tool for Weighing ...

    EPA Pesticide Factsheets

    Past weight-of-evidence frameworks for adverse ecological effects have provided soft-scoring procedures for judgments based on the quality and measured attributes of evidence. Here, we provide a flexible probabilistic structure for weighing and integrating lines of evidence for ecological risk determinations. Probabilistic approaches can provide both a quantitative weighing of lines of evidence and methods for evaluating risk and uncertainty. The current modeling structure wasdeveloped for propagating uncertainties in measured endpoints and their influence on the plausibility of adverse effects. To illustrate the approach, we apply the model framework to the sediment quality triad using example lines of evidence for sediment chemistry measurements, bioassay results, and in situ infauna diversity of benthic communities using a simplified hypothetical case study. We then combine the three lines evidence and evaluate sensitivity to the input parameters, and show how uncertainties are propagated and how additional information can be incorporated to rapidly update the probability of impacts. The developed network model can be expanded to accommodate additional lines of evidence, variables and states of importance, and different types of uncertainties in the lines of evidence including spatial and temporal as well as measurement errors. We provide a flexible Bayesian network structure for weighing and integrating lines of evidence for ecological risk determinations

  2. Material orientation design of planar structures with prescribed anisotropy classes. Study of rhombic systems

    NASA Astrophysics Data System (ADS)

    Czubacki, Radosław

    2018-01-01

    The paper deals with the minimum compliance problem of 2D structures made of a non-homogeneous elastic material. In the first part of the paper a comparison between solutions of Free Material Design (FMD), Cubic Material Design (CMD) and Isotropic Material Design (IMD) is shown for a simply supported plate in a shape of a deep beam, subjected to a concentrated in-plane force at its upper face. The isoperimetric condition fixes the value of the cost of the design expressed as the integral of the trace of the Hooke tensor. In the second part of the paper the material design approaches are extended to rhombic system in 2D. For the rhombic system the material properties of the structures are set, the design variables being the trajectories of anisotropy directions which in 2D are described by one parameter. In the Orthotropic Orientation Design (OOD) no isoperimetric condition is used.

  3. Beam-column joint shear prediction using hybridized deep learning neural network with genetic algorithm

    NASA Astrophysics Data System (ADS)

    Mundher Yaseen, Zaher; Abdulmohsin Afan, Haitham; Tran, Minh-Tung

    2018-04-01

    Scientifically evidenced that beam-column joints are a critical point in the reinforced concrete (RC) structure under the fluctuation loads effects. In this novel hybrid data-intelligence model developed to predict the joint shear behavior of exterior beam-column structure frame. The hybrid data-intelligence model is called genetic algorithm integrated with deep learning neural network model (GA-DLNN). The genetic algorithm is used as prior modelling phase for the input approximation whereas the DLNN predictive model is used for the prediction phase. To demonstrate this structural problem, experimental data is collected from the literature that defined the dimensional and specimens’ properties. The attained findings evidenced the efficitveness of the hybrid GA-DLNN in modelling beam-column joint shear problem. In addition, the accurate prediction achived with less input variables owing to the feasibility of the evolutionary phase.

  4. Theoretical model for VITA-educed coherent structures in the wall region of a turbulent boundary layer

    NASA Technical Reports Server (NTRS)

    Landahl, Marten T.

    1988-01-01

    Experiments on wall-bounded shear flows (channel flows and boundary layers) have indicated that the turbulence in the region close to the wall exhibits a characteristic intermittently formed pattern of coherent structures. For a quantitative study of coherent structures it is necessary to make use of conditional sampling. One particularly successful sampling technique is the Variable Integration Time Averaging technique (VITA) first explored by Blackwelder and Kaplan (1976). In this, an event is assumed to occur when the short time variance exceeds a certain threshold multiple of the mean square signal. The analysis presented removes some assumptions in the earlier models in that the effects of pressure and viscosity are taken into account in an approximation based on the assumption that the near-wall structures are highly elongated in the streamwise direction. The appropriateness of this is suggested by the observations but is also self consistent with the results of the model which show that the streamwise dimension of the structure grows with time, so that the approximation should improve with the age of the structure.

  5. A three-dimensional analysis on the role of atmospheric waves in the climatology and interannual variability of stratospheric final warming in the Southern Hemisphere

    NASA Astrophysics Data System (ADS)

    Hirano, Soichiro; Kohma, Masashi; Sato, Kaoru

    2016-07-01

    Stratospheric final warming (SFW) in the Southern Hemisphere is examined in terms of their interannual variability and climatology using reanalysis data from January 1979 to March 2014. First, it is shown from a two-dimensional transformed Eulerian mean (TEM) analysis that a time-integrated vertical component of Eliassen-Palm flux during the spring is significantly related with SFW date. To clarify the role of residual mean flow in the interannual variability of the SFW date, SFWs are categorized into early and late groups according to the SFW date and their differences are examined. Significant difference in potential temperature tendency is observed in the middle and lower stratosphere in early October. Their structure in the meridional cross section accords well with that of vertical potential temperature advection by the residual mean flow. Difference in heating rate by shortwave radiation is minor. These results suggest that the adiabatic heating associated with the residual mean flow largely affects polar stratospheric temperature during austral spring and SFW date. The analysis is extended to investigate the longitudinal structure by using a three-dimensional (3-D) TEM theory. The significant difference in potential temperature tendency is mainly observed around the Weddell Sea at 10 hPa. Next, climatological 3-D structure of a vertical component of the residual mean flow in association with SFW is examined in terms of the effect on the troposphere. The results suggest that a downward residual mean flow from the stratosphere penetrates into underlying troposphere over East Antarctica and partly influences tropospheric temperature there.

  6. An integrated optimum design approach for high speed prop rotors

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Aditi; Mccarthy, Thomas R.

    1995-01-01

    The objective is to develop an optimization procedure for high-speed and civil tilt-rotors by coupling all of the necessary disciplines within a closed-loop optimization procedure. Both simplified and comprehensive analysis codes are used for the aerodynamic analyses. The structural properties are calculated using in-house developed algorithms for both isotropic and composite box beam sections. There are four major objectives of this study. (1) Aerodynamic optimization: The effects of blade aerodynamic characteristics on cruise and hover performance of prop-rotor aircraft are investigated using the classical blade element momentum approach with corrections for the high lift capability of rotors/propellers. (2) Coupled aerodynamic/structures optimization: A multilevel hybrid optimization technique is developed for the design of prop-rotor aircraft. The design problem is decomposed into a level for improved aerodynamics with continuous design variables and a level with discrete variables to investigate composite tailoring. The aerodynamic analysis is based on that developed in objective 1 and the structural analysis is performed using an in-house code which models a composite box beam. The results are compared to both a reference rotor and the optimum rotor found in the purely aerodynamic formulation. (3) Multipoint optimization: The multilevel optimization procedure of objective 2 is extended to a multipoint design problem. Hover, cruise, and take-off are the three flight conditions simultaneously maximized. (4) Coupled rotor/wing optimization: Using the comprehensive rotary wing code CAMRAD, an optimization procedure is developed for the coupled rotor/wing performance in high speed tilt-rotor aircraft. The developed procedure contains design variables which define the rotor and wing planforms.

  7. Probabilistic Structural Analysis Methods (PSAM) for select space propulsion system components

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This annual report summarizes the work completed during the third year of technical effort on the referenced contract. Principal developments continue to focus on the Probabilistic Finite Element Method (PFEM) which has been under development for three years. Essentially all of the linear capabilities within the PFEM code are in place. Major progress in the application or verifications phase was achieved. An EXPERT module architecture was designed and partially implemented. EXPERT is a user interface module which incorporates an expert system shell for the implementation of a rule-based interface utilizing the experience and expertise of the user community. The Fast Probability Integration (FPI) Algorithm continues to demonstrate outstanding performance characteristics for the integration of probability density functions for multiple variables. Additionally, an enhanced Monte Carlo simulation algorithm was developed and demonstrated for a variety of numerical strategies.

  8. Social Cognitive Predictors of Pre-Service Teachers' Technology Integration Performance

    ERIC Educational Resources Information Center

    Perkmen, Serkan; Pamuk, Sonmez

    2011-01-01

    The main objective of the study was to examine interrelationships among social cognitive variables (self-efficacy, outcome expectations, and performance goals) and their role in predicting pre-service teachers' technology integration performance. Although researchers have examined the role of these variables in the teacher-education context, the…

  9. Integration of aerial imaging and variable-rate technology for site-specific aerial herbicide application

    USDA-ARS?s Scientific Manuscript database

    As remote sensing and variable rate technology are becoming more available for aerial applicators, practical methodologies on effective integration of these technologies are needed for site-specific aerial applications of crop production and protection materials. The objectives of this study were to...

  10. CHARACTERIZATION OF DATA VARIABILITY AND UNCERTAINTY: HEALTH EFFECTS ASSESSMENTS IN THE INTEGRATED RISK INFORMATION SYSTEM (IRIS)

    EPA Science Inventory

    In response to a Congressional directive contained in HR 106-379 regarding EPA's appropriations for FY2000, EPA has undertaken an evaluation of the characterization of data variability and uncertainty in its Integrated Risk Information System (IRIS) health effects information dat...

  11. An evaluation of the relative quality of dike pools for benthic macroinvertebrates in the Lower Missouri River, USA

    USGS Publications Warehouse

    Poulton, B.C.; Allert, A.L.

    2012-01-01

    A habitat-based aquatic macroinvertebrate study was initiated in the Lower Missouri River to evaluate relative quality and biological condition of dike pool habitats. Water-quality and sediment-quality parameters and macroinvertebrate assemblage structure were measured from depositional substrates at 18 sites. Sediment porewater was analysed for ammonia, sulphide, pH and oxidation-reduction potential. Whole sediments were analysed for particle-size distribution, organic carbon and contaminants. Field water-quality parameters were measured at subsurface and at the sediment-water interface. Pool area adjacent and downstream from each dike was estimated from aerial photography. Macroinvertebrate biotic condition scores were determined by integrating the following indicator response metrics: % of Ephemeroptera (mayflies), % of Oligochaeta worms, Shannon Diversity Index and total taxa richness. Regression models were developed for predicting macroinvertebrate scores based on individual water-quality and sediment-quality variables and a water/sediment-quality score that integrated all variables. Macroinvertebrate scores generated significant determination coefficients with dike pool area (R2=0.56), oxidation–reduction potential (R2=0.81) and water/sediment-quality score (R2=0.71). Dissolved oxygen saturation, oxidation-reduction potential and total ammonia in sediment porewater were most important in explaining variation in macroinvertebrate scores. The best two-variable regression models included dike pool size + the water/sediment-quality score (R2=0.84) and dike pool size + oxidation-reduction potential (R2=0.93). Results indicate that dike pool size and chemistry of sediments and overlying water can be used to evaluate dike pool quality and identify environmental conditions necessary for optimizing diversity and productivity of important aquatic macroinvertebrates. A combination of these variables could be utilized for measuring the success of habitat enhancement activities currently being implemented in this system.

  12. Contrasting analytical and data-driven frameworks for radiogenomic modeling of normal tissue toxicities in prostate cancer.

    PubMed

    Coates, James; Jeyaseelan, Asha K; Ybarra, Norma; David, Marc; Faria, Sergio; Souhami, Luis; Cury, Fabio; Duclos, Marie; El Naqa, Issam

    2015-04-01

    We explore analytical and data-driven approaches to investigate the integration of genetic variations (single nucleotide polymorphisms [SNPs] and copy number variations [CNVs]) with dosimetric and clinical variables in modeling radiation-induced rectal bleeding (RB) and erectile dysfunction (ED) in prostate cancer patients. Sixty-two patients who underwent curative hypofractionated radiotherapy (66 Gy in 22 fractions) between 2002 and 2010 were retrospectively genotyped for CNV and SNP rs5489 in the xrcc1 DNA repair gene. Fifty-four patients had full dosimetric profiles. Two parallel modeling approaches were compared to assess the risk of severe RB (Grade⩾3) and ED (Grade⩾1); Maximum likelihood estimated generalized Lyman-Kutcher-Burman (LKB) and logistic regression. Statistical resampling based on cross-validation was used to evaluate model predictive power and generalizability to unseen data. Integration of biological variables xrcc1 CNV and SNP improved the fit of the RB and ED analytical and data-driven models. Cross-validation of the generalized LKB models yielded increases in classification performance of 27.4% for RB and 14.6% for ED when xrcc1 CNV and SNP were included, respectively. Biological variables added to logistic regression modeling improved classification performance over standard dosimetric models by 33.5% for RB and 21.2% for ED models. As a proof-of-concept, we demonstrated that the combination of genetic and dosimetric variables can provide significant improvement in NTCP prediction using analytical and data-driven approaches. The improvement in prediction performance was more pronounced in the data driven approaches. Moreover, we have shown that CNVs, in addition to SNPs, may be useful structural genetic variants in predicting radiation toxicities. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Health behavior change in advance care planning: an agent-based model.

    PubMed

    Ernecoff, Natalie C; Keane, Christopher R; Albert, Steven M

    2016-02-29

    A practical and ethical challenge in advance care planning research is controlling and intervening on human behavior. Additionally, observing dynamic changes in advance care planning (ACP) behavior proves difficult, though tracking changes over time is important for intervention development. Agent-based modeling (ABM) allows researchers to integrate complex behavioral data about advance care planning behaviors and thought processes into a controlled environment that is more easily alterable and observable. Literature to date has not addressed how best to motivate individuals, increase facilitators and reduce barriers associated with ACP. We aimed to build an ABM that applies the Transtheoretical Model of behavior change to ACP as a health behavior and accurately reflects: 1) the rates at which individuals complete the process, 2) how individuals respond to barriers, facilitators, and behavioral variables, and 3) the interactions between these variables. We developed a dynamic ABM of the ACP decision making process based on the stages of change posited by the Transtheoretical Model. We integrated barriers, facilitators, and other behavioral variables that agents encounter as they move through the process. We successfully incorporated ACP barriers, facilitators, and other behavioral variables into our ABM, forming a plausible representation of ACP behavior and decision-making. The resulting distributions across the stages of change replicated those found in the literature, with approximately half of participants in the action-maintenance stage in both the model and the literature. Our ABM is a useful method for representing dynamic social and experiential influences on the ACP decision making process. This model suggests structural interventions, e.g. increasing access to ACP materials in primary care clinics, in addition to improved methods of data collection for behavioral studies, e.g. incorporating longitudinal data to capture behavioral dynamics.

  14. Genetic and environmental integration of the hawkmoth pollination syndrome in Ruellia humilis (Acanthaceae).

    PubMed

    Heywood, John S; Michalski, Joseph S; McCann, Braden K; Russo, Amber D; Andres, Kara J; Hall, Allison R; Middleton, Tessa C

    2017-05-01

    The serial homology of floral structures has made it difficult to assess the relative contributions of selection and constraint to floral integration. The interpretation of floral integration may also be clouded by the tacit, but largely untested, assumption that genetic and environmental perturbations affect trait correlations in similar ways. In this study, estimates of both the genetic and environmental correlations between components of the hawkmoth pollination syndrome are presented for chasmogamous flowers of Ruellia humilis , including two levels of control for serial homology. A greenhouse population for quantitative genetic analysis was generated by a partial diallel cross between field-collected plants. An average of 634 chasmogamous flowers were measured for each of eight floral traits that contribute to the hawkmoth syndrome. Genetic correlations (across parents) and environmental correlations (across replicate flowers) were estimated by restricted maximum likelihood. Stigma height, anther height and floral tube length were very tightly integrated in their responses to both genetic and environmental perturbations. The inclusion of floral disc width as a control for serial homology suggests this integration is an adaptive response to correlational selection imposed by pollinators. In contrast, integration of non-homologous traits was low. Furthermore, when comparisons between the dimensions of serially homologous structures were excluded, the genetic and environmental correlation matrices showed little congruence. The results suggest that hawkmoths have imposed strong correlational selection on floral traits involved in the deposition and removal of pollen, and that this is a consequence of stabilizing selection on the relative positions of stigmas and anthers in the face of substantial flower size variation. Low integration of other floral traits, and conflicting patterns of genetic and environmental correlations among these traits, suggest weak or no correlational selection within the range of variability expressed within a population. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  15. Sparse representation based biomarker selection for schizophrenia with integrated analysis of fMRI and SNPs.

    PubMed

    Cao, Hongbao; Duan, Junbo; Lin, Dongdong; Shugart, Yin Yao; Calhoun, Vince; Wang, Yu-Ping

    2014-11-15

    Integrative analysis of multiple data types can take advantage of their complementary information and therefore may provide higher power to identify potential biomarkers that would be missed using individual data analysis. Due to different natures of diverse data modality, data integration is challenging. Here we address the data integration problem by developing a generalized sparse model (GSM) using weighting factors to integrate multi-modality data for biomarker selection. As an example, we applied the GSM model to a joint analysis of two types of schizophrenia data sets: 759,075 SNPs and 153,594 functional magnetic resonance imaging (fMRI) voxels in 208 subjects (92 cases/116 controls). To solve this small-sample-large-variable problem, we developed a novel sparse representation based variable selection (SRVS) algorithm, with the primary aim to identify biomarkers associated with schizophrenia. To validate the effectiveness of the selected variables, we performed multivariate classification followed by a ten-fold cross validation. We compared our proposed SRVS algorithm with an earlier sparse model based variable selection algorithm for integrated analysis. In addition, we compared with the traditional statistics method for uni-variant data analysis (Chi-squared test for SNP data and ANOVA for fMRI data). Results showed that our proposed SRVS method can identify novel biomarkers that show stronger capability in distinguishing schizophrenia patients from healthy controls. Moreover, better classification ratios were achieved using biomarkers from both types of data, suggesting the importance of integrative analysis. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. EXPLICIT SYMPLECTIC-LIKE INTEGRATORS WITH MIDPOINT PERMUTATIONS FOR SPINNING COMPACT BINARIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Junjie; Wu, Xin; Huang, Guoqing

    2017-01-01

    We refine the recently developed fourth-order extended phase space explicit symplectic-like methods for inseparable Hamiltonians using Yoshida’s triple product combined with a midpoint permuted map. The midpoint between the original variables and their corresponding extended variables at every integration step is readjusted as the initial values of the original variables and their corresponding extended ones at the next step integration. The triple-product construction is apparently superior to the composition of two triple products in computational efficiency. Above all, the new midpoint permutations are more effective in restraining the equality of the original variables and their corresponding extended ones at each integration step thanmore » the existing sequent permutations of momenta and coordinates. As a result, our new construction shares the benefit of implicit symplectic integrators in the conservation of the second post-Newtonian Hamiltonian of spinning compact binaries. Especially for the chaotic case, it can work well, but the existing sequent permuted algorithm cannot. When dissipative effects from the gravitational radiation reaction are included, the new symplectic-like method has a secular drift in the energy error of the dissipative system for the orbits that are regular in the absence of radiation, as an implicit symplectic integrator does. In spite of this, it is superior to the same-order implicit symplectic integrator in accuracy and efficiency. The new method is particularly useful in discussing the long-term evolution of inseparable Hamiltonian problems.« less

  17. Optimal information networks: Application for data-driven integrated health in populations

    PubMed Central

    Servadio, Joseph L.; Convertino, Matteo

    2018-01-01

    Development of composite indicators for integrated health in populations typically relies on a priori assumptions rather than model-free, data-driven evidence. Traditional variable selection processes tend not to consider relatedness and redundancy among variables, instead considering only individual correlations. In addition, a unified method for assessing integrated health statuses of populations is lacking, making systematic comparison among populations impossible. We propose the use of maximum entropy networks (MENets) that use transfer entropy to assess interrelatedness among selected variables considered for inclusion in a composite indicator. We also define optimal information networks (OINs) that are scale-invariant MENets, which use the information in constructed networks for optimal decision-making. Health outcome data from multiple cities in the United States are applied to this method to create a systemic health indicator, representing integrated health in a city. PMID:29423440

  18. Structure of adeno-associated virus-2 in complex with neutralizing monoclonal antibody A20

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCraw, Dustin M.; O'Donnell, Jason K.; Taylor, Kenneth A.

    2012-09-15

    The use of adeno-associated virus (AAV) as a gene therapy vector is limited by the host neutralizing immune response. The cryo-electron microscopy (EM) structure at 8.5 A resolution is determined for a complex of AAV-2 with the Fab' fragment of monoclonal antibody (MAb) A20, the most extensively characterized AAV MAb. The binding footprint is determined through fitting the cryo-EM reconstruction with a homology model following sequencing of the variable domain, and provides a structural basis for integrating diverse prior epitope mappings. The footprint extends from the previously implicated plateau to the side of the spike, and into the conserved canyon,more » covering a larger area than anticipated. Comparison with structures of binding and non-binding serotypes indicates that recognition depends on a combination of subtle serotype-specific features. Separation of the neutralizing epitope from the heparan sulfate cell attachment site encourages attempts to develop immune-resistant vectors that can still bind to target cells.« less

  19. The effects of hormones and physical exercise on hippocampal structural plasticity.

    PubMed

    Triviño-Paredes, Juan; Patten, Anna R; Gil-Mohapel, Joana; Christie, Brian R

    2016-04-01

    The hippocampus plays an integral role in certain aspects of cognition. Hippocampal structural plasticity and in particular adult hippocampal neurogenesis can be influenced by several intrinsic and extrinsic factors. Here we review how hormones (i.e., intrinsic modulators) and physical exercise (i.e., an extrinsic modulator) can differentially modulate hippocampal plasticity in general and adult hippocampal neurogenesis in particular. Specifically, we provide an overview of the effects of sex hormones, stress hormones, and metabolic hormones on hippocampal structural plasticity and adult hippocampal neurogenesis. In addition, we also discuss how physical exercise modulates these forms of hippocampal plasticity, giving particular emphasis on how this modulation can be affected by variables such as exercise regime, duration, and intensity. Understanding the neurobiological mechanisms underlying the modulation of hippocampal structural plasticity by intrinsic and extrinsic factors will impact the design of new therapeutic approaches aimed at restoring hippocampal plasticity following brain injury or neurodegeneration. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Inner and outer segment junction (IS/OS line) integrity in ocular Behçet's disease.

    PubMed

    Yüksel, Harun; Türkcü, Fatih M; Sahin, Muhammed; Cinar, Yasin; Cingü, Abdullah K; Ozkurt, Zeynep; Sahin, Alparslan; Ari, Seyhmus; Caça, Ihsan

    2014-08-01

    In this study, we examined the spectral domain optical coherence tomography (OCT) findings of ocular Behçet's disease (OB) in patients with inactive uveitis. Specifically, we analyzed the inner and outer segment junction (IS/OS line) integrity and the effect of disturbed IS/OS line integrity on visual acuity. Patient files and OCT images of OB patients who had been followed-up between January and June of the year 2013 at the Dicle University Eye Clinic were evaluated retrospectively. Sixty-six eyes of 39 patients were included the study. OCT examination of the patients with inactive OB revealed that approximately 25% of the patients had disturbed IS/OS and external limiting membrane (EML) line integrity, lower visual acuity (VA), and lower macular thickness than others. Linear regression analysis revealed that macular thickness was not an independent variable for VA. In contrast, the IS/OS line integrity was an independent variable for VA in inactive OB patients. In this study, we showed that the IS/OS line integrity was an independent variable for VA in inactive OB patients. Further prospective studies are needed to evaluate the integrity of the IS/OS line in OB patients.

  1. The association between tax structure and cigarette price variability: findings from the ITC Project.

    PubMed

    Shang, Ce; Chaloupka, Frank J; Fong, Geoffrey T; Thompson, Mary; O'Connor, Richard J

    2015-07-01

    Recent studies have shown that more opportunities exist for tax avoidance when cigarette excise tax structure departs from a uniform specific structure. However, the association between tax structure and cigarette price variability has not been thoroughly studied in the existing literature. To examine how cigarette tax structure is associated with price variability. The variability of self-reported prices is measured using the ratios of differences between higher and lower prices to the median price such as the IQR-to-median ratio. We used survey data taken from the International Tobacco Control Policy Evaluation (ITC) Project in 17 countries to conduct the analysis. Cigarette prices were derived using individual purchase information and aggregated to price variability measures for each surveyed country and wave. The effect of tax structures on price variability was estimated using Generalised Estimating Equations after adjusting for year and country attributes. Our study provides empirical evidence of a relationship between tax structure and cigarette price variability. We find that, compared to the specific uniform tax structure, mixed uniform and tiered (specific, ad valorem or mixed) structures are associated with greater price variability (p≤0.01). Moreover, while a greater share of the specific component in total excise taxes is associated with lower price variability (p≤0.05), a tiered tax structure is associated with greater price variability (p≤0.01). The results suggest that a uniform and specific tax structure is the most effective tax structure for reducing tobacco consumption and prevalence by limiting price variability and decreasing opportunities for tax avoidance. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  2. A Conceptual Model of Natural and Anthropogenic Drivers and Their Influence on the Prince William Sound, Alaska, Ecosystem

    PubMed Central

    Harwell, Mark A.; Gentile, John H.; Cummins, Kenneth W.; Highsmith, Raymond C.; Hilborn, Ray; McRoy, C. Peter; Parrish, Julia; Weingartner, Thomas

    2010-01-01

    Prince William Sound (PWS) is a semi-enclosed fjord estuary on the coast of Alaska adjoining the northern Gulf of Alaska (GOA). PWS is highly productive and diverse, with primary productivity strongly coupled to nutrient dynamics driven by variability in the climate and oceanography of the GOA and North Pacific Ocean. The pelagic and nearshore primary productivity supports a complex and diverse trophic structure, including large populations of forage and large fish that support many species of marine birds and mammals. High intra-annual, inter-annual, and interdecadal variability in climatic and oceanographic processes as drives high variability in the biological populations. A risk-based conceptual ecosystem model (CEM) is presented describing the natural processes, anthropogenic drivers, and resultant stressors that affect PWS, including stressors caused by the Great Alaska Earthquake of 1964 and the Exxon Valdez oil spill of 1989. A trophodynamic model incorporating PWS valued ecosystem components is integrated into the CEM. By representing the relative strengths of driver/stressors/effects, the CEM graphically demonstrates the fundamental dynamics of the PWS ecosystem, the natural forces that control the ecological condition of the Sound, and the relative contribution of natural processes and human activities to the health of the ecosystem. The CEM illustrates the dominance of natural processes in shaping the structure and functioning of the GOA and PWS ecosystems. PMID:20862192

  3. Spatial multi-scale variability of soil nutrients in relation to environmental factors in a typical agricultural region, eastern China.

    PubMed

    Liu, Yang; Lv, Jianshu; Zhang, Bing; Bi, Jun

    2013-04-15

    Identifying the sources of spatial variability and deficiency risk of soil nutrients is a crucial issue for soil and agriculture management. A total of 1247 topsoil samples (0-20 cm) were collected at the nodes of a 2×2 km grid in Rizhao City and the contents of soil organic carbon (OC), total nitrogen (TN), and total phosphorus (TP) were determined. Factorial kriging analysis (FKA), stepwise multiple regression, and indicator kriging (IK) were appled to investigate the scale dependent correlations among soil nutrients, identify the sources of spatial variability at each spatial scale, and delineate the potential risk of soil nutrient deficiency. Linear model of co-regionalization (LMC) fitting indicated that the presence of multi-scale variation was comprised of nugget effect, an exponential structure with a range of 12 km (local scale), and a spherical structure with a range of 84 km (regional scale). The short-range variation of OC and TN was mainly dominated by land use types, and TP was controlled by terrain. At long-range scale, spatial variation of OC, TN, and TP was dominated by parent material. Indicator kriging maps depicted the probability of soil nutrient deficiency compared with the background values in eastern Shandong province. The high deficiency risk area of all nutrient integration was mainly located in eastern and northwestern parts. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Analyzing the User Behavior toward Electronic Commerce Stimuli.

    PubMed

    Lorenzo-Romero, Carlota; Alarcón-Del-Amo, María-Del-Carmen; Gómez-Borja, Miguel-Ángel

    2016-01-01

    Based on the Stimulus-Organism-Response paradigm this research analyzes the main differences between the effects of two types of web technologies: Verbal web technology (i.e., navigational structure as utilitarian stimulus) versus non-verbal web technology (music and presentation of products as hedonic stimuli). Specific webmosphere stimuli have not been examined yet as separate variables and their impact on internal and behavioral responses seems unknown. Therefore, the objective of this research consists in analyzing the impact of these web technologies -which constitute the web atmosphere or webmosphere of a website- on shopping human behavior (i.e., users' internal states -affective, cognitive, and satisfaction- and behavioral responses - approach responses, and real shopping outcomes-) within the retail online store created by computer, taking into account some mediator variables (i.e., involvement, atmospheric responsiveness, and perceived risk). A 2 ("free" versus "hierarchical" navigational structure) × 2 ("on" versus "off" music) × 2 ("moving" versus "static" images) between-subjects computer experimental design is used to test empirically this research. In addition, an integrated methodology was developed allowing the simulation, tracking and recording of virtual user behavior within an online shopping environment. As main conclusion, this study suggests that the positive responses of online consumers might increase when they are allowed to freely navigate the online stores and their experience is enriched by animate gifts and music background. The effect caused by mediator variables modifies relatively the final shopping human behavior.

  5. A Conceptual Model of Natural and Anthropogenic Drivers and Their Influence on the Prince William Sound, Alaska, Ecosystem.

    PubMed

    Harwell, Mark A; Gentile, John H; Cummins, Kenneth W; Highsmith, Raymond C; Hilborn, Ray; McRoy, C Peter; Parrish, Julia; Weingartner, Thomas

    2010-07-01

    Prince William Sound (PWS) is a semi-enclosed fjord estuary on the coast of Alaska adjoining the northern Gulf of Alaska (GOA). PWS is highly productive and diverse, with primary productivity strongly coupled to nutrient dynamics driven by variability in the climate and oceanography of the GOA and North Pacific Ocean. The pelagic and nearshore primary productivity supports a complex and diverse trophic structure, including large populations of forage and large fish that support many species of marine birds and mammals. High intra-annual, inter-annual, and interdecadal variability in climatic and oceanographic processes as drives high variability in the biological populations. A risk-based conceptual ecosystem model (CEM) is presented describing the natural processes, anthropogenic drivers, and resultant stressors that affect PWS, including stressors caused by the Great Alaska Earthquake of 1964 and the Exxon Valdez oil spill of 1989. A trophodynamic model incorporating PWS valued ecosystem components is integrated into the CEM. By representing the relative strengths of driver/stressors/effects, the CEM graphically demonstrates the fundamental dynamics of the PWS ecosystem, the natural forces that control the ecological condition of the Sound, and the relative contribution of natural processes and human activities to the health of the ecosystem. The CEM illustrates the dominance of natural processes in shaping the structure and functioning of the GOA and PWS ecosystems.

  6. Reliability and relative weighting of visual and nonvisual information for perceiving direction of self-motion during walking

    PubMed Central

    Saunders, Jeffrey A.

    2014-01-01

    Direction of self-motion during walking is indicated by multiple cues, including optic flow, nonvisual sensory cues, and motor prediction. I measured the reliability of perceived heading from visual and nonvisual cues during walking, and whether cues are weighted in an optimal manner. I used a heading alignment task to measure perceived heading during walking. Observers walked toward a target in a virtual environment with and without global optic flow. The target was simulated to be infinitely far away, so that it did not provide direct feedback about direction of self-motion. Variability in heading direction was low even without optic flow, with average RMS error of 2.4°. Global optic flow reduced variability to 1.9°–2.1°, depending on the structure of the environment. The small amount of variance reduction was consistent with optimal use of visual information. The relative contribution of visual and nonvisual information was also measured using cue conflict conditions. Optic flow specified a conflicting heading direction (±5°), and bias in walking direction was used to infer relative weighting. Visual feedback influenced heading direction by 16%–34% depending on scene structure, with more effect with dense motion parallax. The weighting of visual feedback was close to the predictions of an optimal integration model given the observed variability measures. PMID:24648194

  7. An integrated risk and vulnerability assessment framework for climate change and malaria transmission in East Africa.

    PubMed

    Onyango, Esther Achieng; Sahin, Oz; Awiti, Alex; Chu, Cordia; Mackey, Brendan

    2016-11-11

    Malaria is one of the key research concerns in climate change-health relationships. Numerous risk assessments and modelling studies provide evidence that the transmission range of malaria will expand with rising temperatures, adversely impacting on vulnerable communities in the East African highlands. While there exist multiple lines of evidence for the influence of climate change on malaria transmission, there is insufficient understanding of the complex and interdependent factors that determine the risk and vulnerability of human populations at the community level. Moreover, existing studies have had limited focus on the nature of the impacts on vulnerable communities or how well they are prepared to cope. In order to address these gaps, a systems approach was used to present an integrated risk and vulnerability assessment framework for studies of community level risk and vulnerability to malaria due to climate change. Drawing upon published literature on existing frameworks, a systems approach was applied to characterize the factors influencing the interactions between climate change and malaria transmission. This involved structural analysis to determine influential, relay, dependent and autonomous variables in order to construct a detailed causal loop conceptual model that illustrates the relationships among key variables. An integrated assessment framework that considers indicators of both biophysical and social vulnerability was proposed based on the conceptual model. A major conclusion was that this integrated assessment framework can be implemented using Bayesian Belief Networks, and applied at a community level using both quantitative and qualitative methods with stakeholder engagement. The approach enables a robust assessment of community level risk and vulnerability to malaria, along with contextually relevant and targeted adaptation strategies for dealing with malaria transmission that incorporate both scientific and community perspectives.

  8. Performance of active vibration control technology: the ACTEX flight experiments

    NASA Astrophysics Data System (ADS)

    Nye, T. W.; Manning, R. A.; Qassim, K.

    1999-12-01

    This paper discusses the development and results of two intelligent structures space-flight experiments, each of which could affect architecture designs of future spacecraft. The first, the advanced controls technology experiment I (ACTEX I), is a variable stiffness tripod structure riding as a secondary payload on a classified spacecraft. It has been operating well past its expected life since becoming operational in 1996. Over 60 on-orbit experiments have been run on the ACTEX I flight experiment. These experiments form the basis for in-space controller design problems and for concluding lifetime/reliability data on the active control components. Transfer functions taken during the life of ACTEX I have shown consistent predictability and stability in structural behavior, including consistency with those measurements taken on the ground prior to a three year storage period and the launch event. ACTEX I can change its modal characteristics by employing its dynamic change mechanism that varies preloads in portions of its structure. Active control experiments have demonstrated maximum vibration reductions of 29 dB and 16 dB in the first two variable modes of the system, while operating over a remarkable on-orbit temperature range of -80 °C to 129 °C. The second experiment, ACTEX II, was successfully designed, ground-tested, and integrated on an experimental Department of Defense satellite prior to its loss during a launch vehicle failure in 1995. ACTEX II also had variable modal behavior by virtue of a two-axis gimbal and added challenges of structural flexibility by being a large deployable appendage. Although the loss of ACTEX II did not provide space environment experience, ground testing resulted in space qualifying the hardware and demonstrated 21 dB, 14 dB, and 8 dB reductions in amplitude of the first three primary structural modes. ACTEX II could use either active and/or passive techniques to affect vibration suppression. Both experiments trailblazed spacecraft bus smart structures by developing over 20 new technologies. As pathfinders, experience was gained in the implications of space system analyses, verification tests, and for ways to leverage this technology to meet new satellite performance requirements.

  9. Interactions Between Mineral Surfaces, Substrates, Enzymes, and Microbes Result in Hysteretic Temperature Sensitivities and Microbial Carbon Use Efficiencies and Weaker Predicted Carbon-Climate Feedbacks

    NASA Astrophysics Data System (ADS)

    Riley, W. J.; Tang, J.

    2014-12-01

    We hypothesize that the large observed variability in decomposition temperature sensitivity and carbon use efficiency arises from interactions between temperature, microbial biogeochemistry, and mineral surface sorptive reactions. To test this hypothesis, we developed a numerical model that integrates the Dynamic Energy Budget concept for microbial physiology, microbial trait-based community structure and competition, process-specific thermodynamically ­­based temperature sensitivity, a non-linear mineral sorption isotherm, and enzyme dynamics. We show, because mineral surfaces interact with substrates, enzymes, and microbes, both temperature sensitivity and microbial carbon use efficiency are hysteretic and highly variable. Further, by mimicking the traditional approach to interpreting soil incubation observations, we demonstrate that the conventional labile and recalcitrant substrate characterization for temperature sensitivity is flawed. In a 4 K temperature perturbation experiment, our fully dynamic model predicted more variable but weaker carbon-climate feedbacks than did the static temperature sensitivity and carbon use efficiency model when forced with yearly, daily, and hourly variable temperatures. These results imply that current earth system models likely over-estimate the response of soil carbon stocks to global warming.

  10. Discovering Cepheid and RR Lyrae Stars: Pan-STARRS Science Archive @ STScI and Robotically Controlled Telescopes

    NASA Astrophysics Data System (ADS)

    Johnson, Elizabeth; Strolger, Louis-Gregory; Engle, Scott G.; Anderson, Richard I.; Rest, Armin; Calamida, Annalisa; Dosovitz Fox, Ori; Laney, David

    2017-01-01

    Cepheid and RR Lyrae stars are an integral part of the cosmic distance ladder and are also useful for studying galactic structure and stellar ages. This project aims to greatly expand the number of known periodic variables in our galaxy by identifying candidates in the PanSTARRS-1 3pi catalog, and carrying out systematically targeted characterization with robotically controlled telescopes. Candidate targets are selected from available detection tables based on color and variability indices and are then fully vetted using robotic telescopes: the RCT 1.3 meter (Kitt Peak National Observatory) and RATIR 1.5 meter (Mexico). Here we present work to develop a full, semi-automated prescription for candidate selection, targeted follow-up photometry, cataloging, and classification, which allows the review of approximately 25 variable candidates every two weeks. We make comparisons of our sample selection and purity from a similar study based on Pan-STARRS data (Hernitschek et al. 2016), as well as candidates identified in Gaia DR1. The goal, through continued observation and analysis, is to identify at least 10,000 new variables, hundreds of which will be new Cepheid and RR Lyrae stars.

  11. Preparation and Characterization of Biofunctionalized Inorganic Substrates.

    PubMed

    Dugger, Jason W; Webb, Lauren J

    2015-09-29

    Integrating the function of biological molecules into traditional inorganic materials and substrates couples biologically relevant function to synthetic devices and generates new materials and capabilities by combining biological and inorganic functions. At this so-called "bio/abio interface," basic biological functions such as ligand binding and catalysis can be co-opted to detect analytes with exceptional sensitivity or to generate useful molecules with chiral specificity under entirely benign reaction conditions. Proteins function in dynamic, complex, and crowded environments (the living cell) and are therefore appropriate for integrating into multistep, multiscale, multimaterial devices such as integrated circuits and heterogeneous catalysts. However, the goal of reproducing the highly specific activities of biomolecules in the perturbed chemical and electrostatic environment at an inorganic interface while maintaining their native conformations is challenging to achieve. Moreover, characterizing protein structure and function at a surface is often difficult, particularly if one wishes to compare the activity of the protein to that of the dilute, aqueous solution phase. Our laboratory has developed a general strategy to address this challenge by taking advantage of the structural and chemical properties of alkanethiol self-assembled monolayers (SAMs) on gold surfaces that are functionalized with covalently tethered peptides. These surface-bound peptides then act as the chemical recognition element for a target protein, generating a biomimetic surface in which protein orientation, structure, density, and function are controlled and variable. Herein we discuss current research and future directions related to generating a chemically tunable biofunctionalization strategy that has potential to successfully incorporate the highly specialized functions of proteins onto inorganic substrates.

  12. Measuring healthcare integration: Operationalization of a framework for a systems evaluation of palliative care structures, processes, and outcomes.

    PubMed

    Bainbridge, Daryl; Brazil, Kevin; Ploeg, Jenny; Krueger, Paul; Taniguchi, Alan

    2016-06-01

    Healthcare integration is a priority in many countries, yet there remains little direction on how to systematically evaluate this construct to inform further development. The examination of community-based palliative care networks provides an ideal opportunity for the advancement of integration measures, in consideration of how fundamental provider cohesion is to effective care at end of life. This article presents a variable-oriented analysis from a theory-based case study of a palliative care network to help bridge the knowledge gap in integration measurement. Data from a mixed-methods case study were mapped to a conceptual framework for evaluating integrated palliative care and a visual array depicting the extent of key factors in the represented palliative care network was formulated. The study included data from 21 palliative care network administrators, 86 healthcare professionals, and 111 family caregivers, all from an established palliative care network in Ontario, Canada. The framework used to guide this research proved useful in assessing qualities of integration and functioning in the palliative care network. The resulting visual array of elements illustrates that while this network performed relatively well at the multiple levels considered, room for improvement exists, particularly in terms of interventions that could facilitate the sharing of information. This study, along with the other evaluative examples mentioned, represents important initial attempts at empirically and comprehensively examining network-integrated palliative care and healthcare integration in general. © The Author(s) 2016.

  13. Integrating high levels of variable renewable energy into electric power systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kroposki, Benjamin

    As more variable renewable energy (VRE) such as wind and solar are integrated into electric power systems, technical challenges arise from the need to maintain the balance between load and generation at all timescales. This paper examines the challenges with integrating ultra-high levels of VRE into electric power system, reviews a range of solutions to these challenges, and provides a description of several examples of ultra-high VRE systems that are in operation today.

  14. Integrating high levels of variable renewable energy into electric power systems

    DOE PAGES

    Kroposki, Benjamin

    2017-11-17

    As more variable renewable energy (VRE) such as wind and solar are integrated into electric power systems, technical challenges arise from the need to maintain the balance between load and generation at all timescales. This paper examines the challenges with integrating ultra-high levels of VRE into electric power system, reviews a range of solutions to these challenges, and provides a description of several examples of ultra-high VRE systems that are in operation today.

  15. Hypnosis, suggestion, and suggestibility: an integrative model.

    PubMed

    Lynn, Steven Jay; Laurence, Jean-Roch; Kirsch, Irving

    2015-01-01

    This article elucidates an integrative model of hypnosis that integrates social, cultural, cognitive, and neurophysiological variables at play both in and out of hypnosis and considers their dynamic interaction as determinants of the multifaceted experience of hypnosis. The roles of these variables are examined in the induction and suggestion stages of hypnosis, including how they are related to the experience of involuntariness, one of the hallmarks of hypnosis. It is suggested that studies of the modification of hypnotic suggestibility; cognitive flexibility; response sets and expectancies; the default-mode network; and the search for the neurophysiological correlates of hypnosis, more broadly, in conjunction with research on social psychological variables, hold much promise to further understanding of hypnosis.

  16. When to trust our learners? Clinical teachers' perceptions of decision variables in the entrustment process.

    PubMed

    Duijn, Chantal C M A; Welink, Lisanne S; Bok, Harold G J; Ten Cate, Olle T J

    2018-06-01

    Clinical training programs increasingly use entrustable professional activities (EPAs) as focus of assessment. However, questions remain about which information should ground decisions to trust learners. This qualitative study aimed to identify decision variables in the workplace that clinical teachers find relevant in the elaboration of the entrustment decision processes. The findings can substantiate entrustment decision-making in the clinical workplace. Focus groups were conducted with medical and veterinary clinical teachers, using the structured consensus method of the Nominal Group Technique to generate decision variables. A ranking was made based on a relevance score assigned by the clinical teachers to the different decision variables. Field notes, audio recordings and flip chart lists were analyzed and subsequently translated and, as a form of axial coding, merged into one list, combining the decision variables that were similar in their meaning. A list of 11 and 17 decision variables were acknowledged as relevant by the medical and veterinary teacher groups, respectively. The focus groups yielded 21 unique decision variables that were considered relevant to inform readiness to perform a clinical task on a designated level of supervision. The decision variables consisted of skills, generic qualities, characteristics, previous performance or other information. We were able to group the decision variables into five categories: ability, humility, integrity, reliability and adequate exposure. To entrust a learner to perform a task at a specific level of supervision, a supervisor needs information to support such a judgement. This trust cannot be credited on a single case at a single moment of assessment, but requires different variables and multiple sources of information. This study provides an overview of decision variables giving evidence to justify the multifactorial process of making an entrustment decision.

  17. Lithologic Effects on Landscape Response to Base Level Changes: A Modeling Study in the Context of the Eastern Jura Mountains, Switzerland

    NASA Astrophysics Data System (ADS)

    Yanites, Brian J.; Becker, Jens K.; Madritsch, Herfried; Schnellmann, Michael; Ehlers, Todd A.

    2017-11-01

    Landscape evolution is a product of the forces that drive geomorphic processes (e.g., tectonics and climate) and the resistance to those processes. The underlying lithology and structural setting in many landscapes set the resistance to erosion. This study uses a modified version of the Channel-Hillslope Integrated Landscape Development (CHILD) landscape evolution model to determine the effect of a spatially and temporally changing erodibility in a terrain with a complex base level history. Specifically, our focus is to quantify how the effects of variable lithology influence transient base level signals. We set up a series of numerical landscape evolution models with increasing levels of complexity based on the lithologic variability and base level history of the Jura Mountains of northern Switzerland. The models are consistent with lithology (and therewith erodibility) playing an important role in the transient evolution of the landscape. The results show that the erosion rate history at a location depends on the rock uplift and base level history, the range of erodibilities of the different lithologies, and the history of the surface geology downstream from the analyzed location. Near the model boundary, the history of erosion is dominated by the base level history. The transient wave of incision, however, is quite variable in the different model runs and depends on the geometric structure of lithology used. It is thus important to constrain the spatiotemporal erodibility patterns downstream of any given point of interest to understand the evolution of a landscape subject to variable base level in a quantitative framework.

  18. Hard diffraction in the QCD dipole picture

    NASA Astrophysics Data System (ADS)

    Bialas, A.; Peschanski, R.

    1996-02-01

    Using the QCD dipole picture of the BFKL pomeron, the gluon contribution to the cross-section for single diffractive dissociation in deep-inelastic high-energy scattering is calculated. The resulting contribution to the proton diffractive structure function integrated over t is given in terms of relevant variables, xP, Q2, and β = {x Bj}/{x P}. It factorizes into an explicit x P-dependent Hard Pomeron flux factor and structure function. The lux factor is found to have substantial logarithmic corrections which may account for the recent measurements of the Pomeron intercept in this process. The triple Pomeron coupling is shown to be strongly enhanced by the resummation of leading logs. The obtained pattern of scaling violation at small β is similar to that for F2 at small xBj.

  19. ICT Integration of Turkish Teachers: An Analysis within TPACK-Practical Model

    ERIC Educational Resources Information Center

    Ay, Yusuf; Karadag, Engin; Acat, M. Bahaddin

    2016-01-01

    The aim of the study is to analyze Information and Communication Technologies (ICT) integration of Turkish teachers using various variables within the context of Technological Pedagogical Content Knowledge (TPACK). These variables were indicated as the gender of teachers, the implementation status of FATIH project at their schools, school types…

  20. Integrating Cost as an Independent Variable Analysis with Evolutionary Acquisition - A Multiattribute Design Evaluation Approach

    DTIC Science & Technology

    2003-03-01

    within the Automated Cost Estimating Integrated Tools ( ACEIT ) software suite (version 5.x). With this capability, one can set cost targets or time...not allow the user to vary more than one decision variable. This limitation of the ACEIT approach thus hinders a holistic view when attempting to

  1. Grid Integration and the Carrying Capacity of the U.S. Grid to Incorporate Variable Renewable Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cochran, Jaquelin; Denholm, Paul; Speer, Bethany

    2015-04-23

    In the United States and elsewhere, renewable energy (RE) generation supplies an increasingly large percentage of annual demand, including nine U.S. states where wind comprised over 10% of in-state generation in 2013. This white paper summarizes the challenges to integrating increasing amounts of variable RE, identifies emerging practices in power system planning and operation that can facilitate grid integration, and proposes a unifying concept—economic carrying capacity—that can provide a framework for evaluating actions to accommodate higher penetrations of RE. There is growing recognition that while technical challenges to variable RE integration are real, they can generally be addressed via amore » variety of solutions that vary in implementation cost. As a result, limits to RE penetration are primarily economic, driven by factors that include transmission and the flexibility of the power grid to balance supply and demand. This limit can be expressed as economic carrying capacity, or the point at which variable RE is no longer economically competitive or desirable to the system or society.« less

  2. Plant Water Content is the Best Predictor of Drought-induced Mortality

    NASA Astrophysics Data System (ADS)

    Sapes, G.; Roskilly, B.; Dobrowski, S.; Sala, A.

    2017-12-01

    Predicting drought-induced forest mortality remains extremely challenging. Recent research has shown that both plant hydraulics and stored non-structural carbohydrates (NSC) interact during drought-induced mortality. The strong interaction between these two variables and the fact that they are both difficult to measure render drought-induced plant mortality extremely difficult to monitor and predict. A variable that is easier to measure and that integrates hydraulic transport and carbohydrate dynamics may, therefore, improve our ability to monitor and predict mortality. Here, we tested whether plant water content is such an integrator variable and, therefore, a better predictor of mortality under drought. We subjected 250 two-year-old ponderosa pine seedlings to drought until they died in a greenhouse experiment. Periodically during the dry down, we measured percent loss of hydraulic conductivity (PLC), NSC concentration (starch and soluble sugars), and tissue volumetric water content (VWC) in roots, stems and leaves. At each measurement time, a separate set of seedlings were re-watered to estimate the probability of mortality at the population level. Linear models were used to explore whether PLC and NSC were linked to VWC and to determine which of the three variables predicted mortality the best. As expected, plants lost hydraulic conductivity in stems and roots during the dry down. Starch concentrations also decreased in all organs as the drought proceeded. In contrast, soluble sugars increased in stems and roots, consistent with the conversion of stored NSCs into osmotically active compounds. Models containing both PLC and NSC concentrations as predictors of VWC were highly significant in all organs and at the whole plant level, indicating that water content is influenced by both PLC and NSCs. PLC, NSC, and VWC explained mortality across organs and at the whole plant level, but VWC was the best predictor (R2 = 0.99). Our results indicate that plant water content integrates plant hydraulics and carbohydrate availability, two factors commonly interacting and difficult to tease apart. An important advantage of water content is that it is very easy to measure across scales, from leaves to entire ecosystems through remote sensing.

  3. Economic analysis for transmission operation and planning

    NASA Astrophysics Data System (ADS)

    Zhou, Qun

    2011-12-01

    Restructuring of the electric power industry has caused dramatic changes in the use of transmission system. The increasing congestion conditions as well as the necessity of integrating renewable energy introduce new challenges and uncertainties to transmission operation and planning. Accurate short-term congestion forecasting facilitates market traders in bidding and trading activities. Cost sharing and recovery issue is a major impediment for long-term transmission investment to integrate renewable energy. In this research, a new short-term forecasting algorithm is proposed for predicting congestion, LMPs, and other power system variables based on the concept of system patterns. The advantage of this algorithm relative to standard statistical forecasting methods is that structural aspects underlying power market operations are exploited to reduce the forecasting error. The advantage relative to previously proposed structural forecasting methods is that data requirements are substantially reduced. Forecasting results based on a NYISO case study demonstrate the feasibility and accuracy of the proposed algorithm. Moreover, a negotiation methodology is developed to guide transmission investment for integrating renewable energy. Built on Nash Bargaining theory, the negotiation of investment plans and payment rate can proceed between renewable generation and transmission companies for cost sharing and recovery. The proposed approach is applied to Garver's six bus system. The numerical results demonstrate fairness and efficiency of the approach, and hence can be used as guidelines for renewable energy investors. The results also shed light on policy-making of renewable energy subsidies.

  4. Network analysis of Bogotá's Ciclovía Recreativa, a self-organized multisectorial community program to promote physical activity in a middle-income country.

    PubMed

    Meisel, Jose D; Sarmiento, Olga L; Montes, Felipe; Martinez, Edwin O; Lemoine, Pablo D; Valdivia, Juan A; Brownson, Ross C; Zarama, Roberto

    2014-01-01

    Conduct a social network analysis of the health and non-health related organizations that participate in Bogotá's Ciclovía Recreativa (Ciclovía). Cross-sectional study. Ciclovía is a multisectoral community-based mass program in which streets are temporarily closed to motorized transport, allowing exclusive access to individuals for leisure activities and physical activity. Twenty-five organizations that participate in the Ciclovía. Seven variables were examined by using network analytic methods: relationship, link attributes (integration, contact, and importance), and node attributes (leadership, years in the program, and the sector of the organization). The network analytic methods were based on a visual descriptive analysis and an exponential random graph model. Analysis shows that the most central organizations in the network were outside of the Health sector and include Sports and Recreation, Government, and Security sectors. The organizations work in clusters formed by organizations of different sectors. Organization importance and structural predictors were positively related to integration, while the number of years working with Ciclovía was negatively associated with integration. Ciclovía is a network whose structure emerged as a self-organized complex system. Ciclovía of Bogotá is an example of a program with public health potential formed by organizations of multiple sectors with Sports and Recreation as the most central.

  5. On-chip continuous-variable quantum entanglement

    NASA Astrophysics Data System (ADS)

    Masada, Genta; Furusawa, Akira

    2016-09-01

    Entanglement is an essential feature of quantum theory and the core of the majority of quantum information science and technologies. Quantum computing is one of the most important fruits of quantum entanglement and requires not only a bipartite entangled state but also more complicated multipartite entanglement. In previous experimental works to demonstrate various entanglement-based quantum information processing, light has been extensively used. Experiments utilizing such a complicated state need highly complex optical circuits to propagate optical beams and a high level of spatial interference between different light beams to generate quantum entanglement or to efficiently perform balanced homodyne measurement. Current experiments have been performed in conventional free-space optics with large numbers of optical components and a relatively large-sized optical setup. Therefore, they are limited in stability and scalability. Integrated photonics offer new tools and additional capabilities for manipulating light in quantum information technology. Owing to integrated waveguide circuits, it is possible to stabilize and miniaturize complex optical circuits and achieve high interference of light beams. The integrated circuits have been firstly developed for discrete-variable systems and then applied to continuous-variable systems. In this article, we review the currently developed scheme for generation and verification of continuous-variable quantum entanglement such as Einstein-Podolsky-Rosen beams using a photonic chip where waveguide circuits are integrated. This includes balanced homodyne measurement of a squeezed state of light. As a simple example, we also review an experiment for generating discrete-variable quantum entanglement using integrated waveguide circuits.

  6. Subwavelength grating enabled on-chip ultra-compact optical true time delay line

    PubMed Central

    Wang, Junjia; Ashrafi, Reza; Adams, Rhys; Glesk, Ivan; Gasulla, Ivana; Capmany, José; Chen, Lawrence R.

    2016-01-01

    An optical true time delay line (OTTDL) is a basic photonic building block that enables many microwave photonic and optical processing operations. The conventional design for an integrated OTTDL that is based on spatial diversity uses a length-variable waveguide array to create the optical time delays, which can introduce complexities in the integrated circuit design. Here we report the first ever demonstration of an integrated index-variable OTTDL that exploits spatial diversity in an equal length waveguide array. The approach uses subwavelength grating waveguides in silicon-on-insulator (SOI), which enables the realization of OTTDLs having a simple geometry and that occupy a compact chip area. Moreover, compared to conventional wavelength-variable delay lines with a few THz operation bandwidth, our index-variable OTTDL has an extremely broad operation bandwidth practically exceeding several tens of THz, which supports operation for various input optical signals with broad ranges of central wavelength and bandwidth. PMID:27457024

  7. Subwavelength grating enabled on-chip ultra-compact optical true time delay line.

    PubMed

    Wang, Junjia; Ashrafi, Reza; Adams, Rhys; Glesk, Ivan; Gasulla, Ivana; Capmany, José; Chen, Lawrence R

    2016-07-26

    An optical true time delay line (OTTDL) is a basic photonic building block that enables many microwave photonic and optical processing operations. The conventional design for an integrated OTTDL that is based on spatial diversity uses a length-variable waveguide array to create the optical time delays, which can introduce complexities in the integrated circuit design. Here we report the first ever demonstration of an integrated index-variable OTTDL that exploits spatial diversity in an equal length waveguide array. The approach uses subwavelength grating waveguides in silicon-on-insulator (SOI), which enables the realization of OTTDLs having a simple geometry and that occupy a compact chip area. Moreover, compared to conventional wavelength-variable delay lines with a few THz operation bandwidth, our index-variable OTTDL has an extremely broad operation bandwidth practically exceeding several tens of THz, which supports operation for various input optical signals with broad ranges of central wavelength and bandwidth.

  8. Importance of the cutoff value in the quadratic adaptive integrate-and-fire model.

    PubMed

    Touboul, Jonathan

    2009-08-01

    The quadratic adaptive integrate-and-fire model (Izhikevich, 2003 , 2007 ) is able to reproduce various firing patterns of cortical neurons and is widely used in large-scale simulations of neural networks. This model describes the dynamics of the membrane potential by a differential equation that is quadratic in the voltage, coupled to a second equation for adaptation. Integration is stopped during the rise phase of a spike at a voltage cutoff value V(c) or when it blows up. Subsequently the membrane potential is reset, and the adaptation variable is increased by a fixed amount. We show in this note that in the absence of a cutoff value, not only the voltage but also the adaptation variable diverges in finite time during spike generation in the quadratic model. The divergence of the adaptation variable makes the system very sensitive to the cutoff: changing V(c) can dramatically alter the spike patterns. Furthermore, from a computational viewpoint, the divergence of the adaptation variable implies that the time steps for numerical simulation need to be small and adaptive. However, divergence of the adaptation variable does not occur for the quartic model (Touboul, 2008 ) and the adaptive exponential integrate-and-fire model (Brette & Gerstner, 2005 ). Hence, these models are robust to changes in the cutoff value.

  9. An adolescent weight-loss program integrating family variables reduces energy intake.

    PubMed

    Kitzman-Ulrich, Heather; Hampson, Robert; Wilson, Dawn K; Presnell, Katherine; Brown, Alan; O'Boyle, Mary

    2009-03-01

    Family variables such as cohesion and nurturance have been associated with adolescent weight-related health behaviors. Integrating family variables that improve family functioning into traditional weight-loss programs can provide health-related benefits. The current study evaluated a family-based psychoeducational and behavioral skill-building weight-loss program for adolescent girls that integrated Family Systems and Social Cognitive Theories. Forty-two overweight (> or = 95th percentile) female adolescent participants and parents participated in a 16-week randomized controlled trial comparing three groups: multifamily therapy plus psychoeducation (n=15), psychoeducation-only (n=16), or wait list (control; n=11) group. Body mass index, energy intake, and family measures were assessed at baseline and posttreatment. Adolescents in the psychoeducation-only group demonstrated a greater decrease in energy intake compared to the multifamily therapy plus psychoeducation and control groups (P<0.01). Positive changes in family nurturance were associated with lower levels of adolescent energy intake (P<0.05). No significant effects were found for body mass index. Results provide preliminary support for a psychoeducational program that integrates family variables to reduce energy intake in overweight adolescent girls. Results indicate that nurturance can be an important family variable to target in future adolescent weight-loss and dietary programs.

  10. Societal integration and age-standardized suicide rates in 21 developed countries, 1955-1989.

    PubMed

    Fernquist, R M; Cutright, P

    1998-01-01

    Gender-specific age-standardized suicide rates for 21 developed countries over seven 5-year periods (1955-59...1985-89) form the two dependent variables. Durkheim's theory of societal integration is the framework used to generate the independent variables, although several recent theories are also examined. The results from a MGLS multiple regression analysis of both male and female rates provide overwhelming support for a multidimensional theory of societal integration and suicide, as first suggested by Durkheim.

  11. Physiological gain leads to high ISI variability in a simple model of a cortical regular spiking cell.

    PubMed

    Troyer, T W; Miller, K D

    1997-07-01

    To understand the interspike interval (ISI) variability displayed by visual cortical neurons (Softky & Koch, 1993), it is critical to examine the dynamics of their neuronal integration, as well as the variability in their synaptic input current. Most previous models have focused on the latter factor. We match a simple integrate-and-fire model to the experimentally measured integrative properties of cortical regular spiking cells (McCormick, Connors, Lighthall, & Prince, 1985). After setting RC parameters, the post-spike voltage reset is set to match experimental measurements of neuronal gain (obtained from in vitro plots of firing frequency versus injected current). Examination of the resulting model leads to an intuitive picture of neuronal integration that unifies the seemingly contradictory 1/square root of N and random walk pictures that have previously been proposed. When ISIs are dominated by postspike recovery, 1/square root of N arguments hold and spiking is regular; after the "memory" of the last spike becomes negligible, spike threshold crossing is caused by input variance around a steady state and spiking is Poisson. In integrate-and-fire neurons matched to cortical cell physiology, steady-state behavior is predominant, and ISIs are highly variable at all physiological firing rates and for a wide range of inhibitory and excitatory inputs.

  12. Regularization of the Perturbed Spatial Restricted Three-Body Problem by L-Transformations

    NASA Astrophysics Data System (ADS)

    Poleshchikov, S. M.

    2018-03-01

    Equations of motion for the perturbed circular restricted three-body problem have been regularized in canonical variables in a moving coordinate system. Two different L-matrices of the fourth order are used in the regularization. Conditions for generalized symplecticity of the constructed transform have been checked. In the unperturbed case, the regular equations have a polynomial structure. The regular equations have been numerically integrated using the Runge-Kutta-Fehlberg method. The results of numerical experiments are given for the Earth-Moon system parameters taking into account the perturbation of the Sun for different L-matrices.

  13. Fractional State Feedback Control of Undamped and Viscoelastically-Damped Structures

    DTIC Science & Technology

    1990-03-01

    and apply the inverse transform to Eq (99) then 0 DaO zt z In t (n -a ) (1)te = r(n-as+) n=O Eq (101) is the fractional derivative of a complex...s)] 2 ( [F(s)] es t d (110) the inverse transform of Eq (109) may be expressed as 40 D a e t ] =13 e at.. s z do t L 7-ZJ 27i = iW 1-i j and Eq...Il) can be evaluated using the residue theorem from the calculus of complex variables. The closed contour of integration for the inverse transform , in

  14. Model-free distributed learning

    NASA Technical Reports Server (NTRS)

    Dembo, Amir; Kailath, Thomas

    1990-01-01

    Model-free learning for synchronous and asynchronous quasi-static networks is presented. The network weights are continuously perturbed, while the time-varying performance index is measured and correlated with the perturbation signals; the correlation output determines the changes in the weights. The perturbation may be either via noise sources or orthogonal signals. The invariance to detailed network structure mitigates large variability between supposedly identical networks as well as implementation defects. This local, regular, and completely distributed mechanism requires no central control and involves only a few global signals. Thus it allows for integrated on-chip learning in large analog and optical networks.

  15. A Novel Multiscale Physics Based Progressive Failure Methodology for Laminated Composite Structures

    NASA Technical Reports Server (NTRS)

    Pineda, Evan J.; Waas, Anthony M.; Bednarcyk, Brett A.; Collier, Craig S.; Yarrington, Phillip W.

    2008-01-01

    A variable fidelity, multiscale, physics based finite element procedure for predicting progressive damage and failure of laminated continuous fiber reinforced composites is introduced. At every integration point in a finite element model, progressive damage is accounted for at the lamina-level using thermodynamically based Schapery Theory. Separate failure criteria are applied at either the global-scale or the microscale in two different FEM models. A micromechanics model, the Generalized Method of Cells, is used to evaluate failure criteria at the micro-level. The stress-strain behavior and observed failure mechanisms are compared with experimental results for both models.

  16. Effects of Vegetation Structure on the Location of Lion Kill Sites in African Thicket.

    PubMed

    Davies, Andrew B; Tambling, Craig J; Kerley, Graham I H; Asner, Gregory P

    2016-01-01

    Predator-prey relationships are integral to ecosystem stability and functioning. These relationships are, however, difficult to maintain in protected areas where large predators are increasingly being reintroduced and confined. Where predators make kills has a profound influence on their role in ecosystems, but the relative importance of environmental variables in determining kill sites, and how these might vary across ecosystems is poorly known. We investigated kill sites for lions in South Africa's thicket biome, testing the importance of vegetation structure for kill site locations compared to other environmental variables. Kill sites were located over four years using GPS telemetry and compared to non-kill sites that had been occupied by lions, as well as to random sites within lion ranges. Measurements of 3D vegetation structure obtained from Light Detection and Ranging (LiDAR) were used to calculate the visible area (viewshed) around each site and, along with wind and moonlight data, used to compare kill sites between lion sexes, prey species and prey sexes. Viewshed area was the most important predictor of kill sites (sites in dense vegetation were twice as likely to be kill sites compared to open areas), followed by wind speed and, less so, moonlight. Kill sites for different prey species varied with vegetation structure, and male prey were killed when wind speeds were higher compared to female prey of the same species. Our results demonstrate that vegetation structure is an important component of predator-prey interactions, with varying effects across ecosystems. Such differences require consideration in terms of the ecological roles performed by predators, and in predator and prey conservation.

  17. Measurement of the Ecological Integrity of Cerrado Streams Using Biological Metrics and the Index of Habitat Integrity

    PubMed Central

    dos Reis, Deusiano Florêncio; Salazar, Ayala Eduardo; Machado, Mayana Mendes Dias; Couceiro, Sheyla Regina Marques; de Morais, Paula Benevides

    2017-01-01

    Generally, aquatic communities reflect the effects of anthropogenic changes such as deforestation or organic pollution. The Cerrado stands among the most threatened ecosystems by human activities in Brazil. In order to evaluate the ecological integrity of the streams in a preserved watershed in the Northern Cerrado biome corresponding to a mosaic of ecosystems in transition to the Amazonia biome in Brazil, biological metrics related to diversity, structure, and sensitivity of aquatic macroinvertebrates were calculated. Sampling included collections along stretches of 200 m of nine streams and measurements of abiotic variables (temperature, electrical conductivity, pH, total dissolved solids, dissolved oxygen, and discharge) and the Index of Habitat Integrity (HII). The values of the abiotic variables and the HII indicated that most of the streams have good ecological integrity, due to high oxygen levels and low concentrations of dissolved solids and electric conductivity. Two streams showed altered HII scores mainly related to small dams for recreational and domestic use, use of Cerrado natural pasture for cattle raising, and spot deforestation in bathing areas. However, this finding is not reflected in the biological metrics that were used. Considering all nine streams, only two showed satisfactory ecological quality (measured by Biological Monitoring Working Party (BMWP), total richness, and EPT (Ephemeroptera, Plecoptera, and Trichoptera) richness), only one of which had a low HII score. These results indicate that punctual measures of abiotic parameters do not reveal the long-term impacts of anthropic activities in these streams, including related fire management of pasture that annually alters the vegetation matrix and may act as a disturbance for the macroinvertebrate communities. Due to this, biomonitoring of low order streams in Cerrado ecosystems of the Northern Central Brazil by different biotic metrics and also physical attributes of the riparian zone such as HII is recommended for the monitoring and control of anthropic impacts on aquatic communities. PMID:28085090

  18. Measurement of the Ecological Integrity of Cerrado Streams Using Biological Metrics and the Index of Habitat Integrity.

    PubMed

    Reis, Deusiano Florêncio Dos; Salazar, Ayala Eduardo; Machado, Mayana Mendes Dias; Couceiro, Sheyla Regina Marques; Morais, Paula Benevides de

    2017-01-12

    Generally, aquatic communities reflect the effects of anthropogenic changes such as deforestation or organic pollution. The Cerrado stands among the most threatened ecosystems by human activities in Brazil. In order to evaluate the ecological integrity of the streams in a preserved watershed in the Northern Cerrado biome corresponding to a mosaic of ecosystems in transition to the Amazonia biome in Brazil, biological metrics related to diversity, structure, and sensitivity of aquatic macroinvertebrates were calculated. Sampling included collections along stretches of 200 m of nine streams and measurements of abiotic variables (temperature, electrical conductivity, pH, total dissolved solids, dissolved oxygen, and discharge) and the Index of Habitat Integrity (HII). The values of the abiotic variables and the HII indicated that most of the streams have good ecological integrity, due to high oxygen levels and low concentrations of dissolved solids and electric conductivity. Two streams showed altered HII scores mainly related to small dams for recreational and domestic use, use of Cerrado natural pasture for cattle raising, and spot deforestation in bathing areas. However, this finding is not reflected in the biological metrics that were used. Considering all nine streams, only two showed satisfactory ecological quality (measured by Biological Monitoring Working Party (BMWP), total richness, and EPT (Ephemeroptera, Plecoptera, and Trichoptera) richness), only one of which had a low HII score. These results indicate that punctual measures of abiotic parameters do not reveal the long-term impacts of anthropic activities in these streams, including related fire management of pasture that annually alters the vegetation matrix and may act as a disturbance for the macroinvertebrate communities. Due to this, biomonitoring of low order streams in Cerrado ecosystems of the Northern Central Brazil by different biotic metrics and also physical attributes of the riparian zone such as HII is recommended for the monitoring and control of anthropic impacts on aquatic communities.

  19. Variable-Complexity Multidisciplinary Optimization on Parallel Computers

    NASA Technical Reports Server (NTRS)

    Grossman, Bernard; Mason, William H.; Watson, Layne T.; Haftka, Raphael T.

    1998-01-01

    This report covers work conducted under grant NAG1-1562 for the NASA High Performance Computing and Communications Program (HPCCP) from December 7, 1993, to December 31, 1997. The objective of the research was to develop new multidisciplinary design optimization (MDO) techniques which exploit parallel computing to reduce the computational burden of aircraft MDO. The design of the High-Speed Civil Transport (HSCT) air-craft was selected as a test case to demonstrate the utility of our MDO methods. The three major tasks of this research grant included: development of parallel multipoint approximation methods for the aerodynamic design of the HSCT, use of parallel multipoint approximation methods for structural optimization of the HSCT, mathematical and algorithmic development including support in the integration of parallel computation for items (1) and (2). These tasks have been accomplished with the development of a response surface methodology that incorporates multi-fidelity models. For the aerodynamic design we were able to optimize with up to 20 design variables using hundreds of expensive Euler analyses together with thousands of inexpensive linear theory simulations. We have thereby demonstrated the application of CFD to a large aerodynamic design problem. For the predicting structural weight we were able to combine hundreds of structural optimizations of refined finite element models with thousands of optimizations based on coarse models. Computations have been carried out on the Intel Paragon with up to 128 nodes. The parallel computation allowed us to perform combined aerodynamic-structural optimization using state of the art models of a complex aircraft configurations.

  20. Design and Control of Compliant Tensegrity Robots Through Simulation and Hardware Validation

    NASA Technical Reports Server (NTRS)

    Caluwaerts, Ken; Despraz, Jeremie; Iscen, Atil; Sabelhaus, Andrew P.; Bruce, Jonathan; Schrauwen, Benjamin; Sunspiral, Vytas

    2014-01-01

    To better understand the role of tensegrity structures in biological systems and their application to robotics, the Dynamic Tensegrity Robotics Lab at NASA Ames Research Center has developed and validated two different software environments for the analysis, simulation, and design of tensegrity robots. These tools, along with new control methodologies and the modular hardware components developed to validate them, are presented as a system for the design of actuated tensegrity structures. As evidenced from their appearance in many biological systems, tensegrity ("tensile-integrity") structures have unique physical properties which make them ideal for interaction with uncertain environments. Yet these characteristics, such as variable structural compliance, and global multi-path load distribution through the tension network, make design and control of bio-inspired tensegrity robots extremely challenging. This work presents the progress in using these two tools in tackling the design and control challenges. The results of this analysis includes multiple novel control approaches for mobility and terrain interaction of spherical tensegrity structures. The current hardware prototype of a six-bar tensegrity, code-named ReCTeR, is presented in the context of this validation.

Top