Science.gov

Sample records for integrally stiffened structure

  1. Fracture Testing of Integral Stiffened Structure

    NASA Technical Reports Server (NTRS)

    Newman, John A.; Smith, Stephen W.; Piascik, Robert S.; Dawicke, David S.; Johnston, William M.; Willard, Scott A.

    2008-01-01

    Laboratory testing was conducted to evaluate safety concerns for integrally-stiffened tanks that were found to have developed cracks during pressurization testing. Cracks occurred at fastener holes where additional stiffeners were attached to the integrally-stiffened tank structure. Tests were conducted to obtain material properties and to reproduce the crack morphologies that were observed in service to help determine if the tanks are safe for operation. Reproducing the cracking modes observed during pressurization testing required a complex loading state involving both a tensile load in the integrally-stiffened structure and a pin-load at a fastener hole.

  2. Crack Turning in Integrally Stiffened Aircraft Structures

    NASA Technical Reports Server (NTRS)

    Pettit, Richard Glen

    2000-01-01

    Current emphasis in the aircraft industry toward reducing manufacturing cost has created a renewed interest in integrally stiffened structures. Crack turning has been identified as an approach to improve the damage tolerance and fail-safety of this class of structures. A desired behavior is for skin cracks to turn before reaching a stiffener, instead of growing straight through. A crack in a pressurized fuselage encounters high T-stress as it nears the stiffener--a condition favorable to crack turning. Also, the tear resistance of aluminum alloys typically varies with crack orientation, a form of anisotropy that can influence the crack path. The present work addresses these issues with a study of crack turning in two-dimensions, including the effects of both T-stress and fracture anisotropy. Both effects are shown to have relation to the process zone size, an interaction that is central to this study. Following an introduction to the problem, the T-stress effect is studied for a slightly curved semi-infinite crack with a cohesive process zone, yielding a closed form expression for the future crack path in an infinite medium. For a given initial crack tip curvature and tensile T-stress, the crack path instability is found to increase with process zone size. Fracture orthotropy is treated using a simple function to interpolate between the two principal fracture resistance values in two-dimensions. An extension to three-dimensions interpolates between the six principal values of fracture resistance. Also discussed is the transition between mode I and mode II fracture in metals. For isotropic materials, there is evidence that the crack seeks out a direction of either local symmetry (pure mode I) or local asymmetry (pure mode II) growth. For orthotropic materials the favored states are not pure modal, and have mode mixity that is a function of crack orientation.

  3. Integrated Composite Stiffener Structure (ICoSS) Concept for Planetary Entry Vehicles

    NASA Technical Reports Server (NTRS)

    Kellas, Sotiris

    2016-01-01

    Results from the design, manufacturing, and testing of a lightweight Integrated Composite Stiffened Structure (ICoSS) concept, intended for multi-mission planetary entry vehicles are presented. Tests from both component and full-scale tests for a typical Earth Entry Vehicle forward shell manufactured using the ICoSS concept are presented and advantages of the concept for the particular application of passive Earth Entry Vehicles over other structural concepts are discussed.

  4. Shearing Effectiveness of Integral Stiffening

    NASA Technical Reports Server (NTRS)

    Crawford, Robert F; Libove, Charles

    1955-01-01

    Values of coefficients for defining the effectiveness of integral stiffeners in resisting shear deformations of the plate of which they are an integral part are presented for a variety of proportions of rectangular stiffeners with circular fillets. Formulas are given in which these coefficients may be employed to calculate the elastic constants associated with the twisting and shearing of integrally stiffened plates. The size of fillet radius is shown to contribute appreciably to the degree of penetration of the stresses from the skin into the stiffener.

  5. Structure-Property Correlations in Al-Li Alloy Integrally Stiffened Extrusions

    NASA Technical Reports Server (NTRS)

    Hales, Stephen J.; Hafley, Robert A.

    2001-01-01

    The objective of this investigation was to establish the relationship between mechanical property anisotropy, microstructure and crystallographic texture in integrally 'T'-stiffened extruded panels fabricated from the Al-Li alloys 2195, 2098 and 2096. In-plane properties were measured as a function of orientation at two locations in the panels, namely mid-way between (Skin), and directly beneath (Base), the integral 'T' stiffeners. The 2195 extrusion exhibited the best combination of strength and toughness, but was the most anisotropic. The 2098 extrusion exhibited lower strength and comparable toughness, but was more isotropic than 2195. The 2096 extrusion exhibited the lowest strength and poor toughness, but was the most isotropic. All three alloys exhibited highly elongated grain structures and similar location-dependent variations in grain morphology. The textural characteristics comprised a beta + <100> fiber texture, similar to rolled product, in the Skin regions and alpha <111> + <100> fiber texture, comparable to axisymmetric extruded product, in the Base regions. In an attempt to quantitatively correlate texture with yield strength anisotropy, the original 'full constraint' Taylor model and a variant of the 'relaxed constraint' model, explored by Wert et al., were applied to the data. A comparison of the results revealed that the Wert model was consistently more accurate than the Taylor model.

  6. Distortion and Residual Stress Control in Integrally Stiffened Structure Produced by Direct Metal Deposition

    NASA Technical Reports Server (NTRS)

    Lin, Shih-Yung; Hoffman, Eric K.; Domack, Marcia S.

    2007-01-01

    2-D thermo-mechanical model developed to characterize distortion and residual stresses in integral structure produced by DMD. Demonstrated as a tool to guide experimental development of DMD fabrication process for aero structures. Distortion and residual stresses are local to deposit. Most distortion develops during deposition of the first few layers; Little change in distortion or residual stresses after fifth deposit layer Most of distortion is localized just beneath the build. Thicker build plates and the use of build lands results in greatest decrease in levels of distortion. Pre-straining shown to reduce distortion. Difficult to implement, particularly for complex stiffener arrays. Clamp position has complex effect on distortion and stresses. Overall distortion reduced with decreasing clamp clearance. Larger clamp clearances induce bending. Use of pre-heat and active cooling show minor influence on panel distortion. Generate changes in thermal gradients in the build plate.

  7. Integral Airframe Structures (IAS): Validated Feasibility Study of Integrally Stiffened Metallic Fuselage Panels for Reducing Manufacturing Costs

    NASA Technical Reports Server (NTRS)

    Munroe, J.; Wilkins, K.; Gruber, M.; Domack, Marcia S. (Technical Monitor)

    2000-01-01

    The Integral Airframe Structures (IAS) program investigated the feasibility of using "integrally stiffened" construction for commercial transport fuselage structure. The objective of the program was to demonstrate structural performance and weight equal to current "built-up" structure with lower manufacturing cost. Testing evaluated mechanical properties, structural details, joint performance, repair, static compression, and two-bay crack residual strength panels. Alloys evaluated included 7050-T7451 plate, 7050-T74511 extrusion, 6013-T6511x extrusion, and 7475-T7351 plate. Structural performance was evaluated with a large 7475-T7351 pressure test that included the arrest of a two-bay longitudinal crack, and a measure of residual strength for a two-bay crack centered on a broken frame. Analysis predictions for the two-bay longitudinal crack panel correlated well with the test results. Analysis activity conducted by the IAS team strongly indicates that current analysis tools predict integral structural behavior as accurately as built-up structure. The cost study results indicated that, compared to built-up fabrication methods, high-speed machining structure from aluminum plate would yield a recurring cost savings of 61%. Part count dropped from 78 individual parts on a baseline panel to just 7 parts for machined IAS structure.

  8. Production Principles and Technological Development of Novel Woven Spacer Preforms and Integrated Stiffener Structures

    NASA Astrophysics Data System (ADS)

    Torun, Ahmet R.; Mountasir, Adil; Hoffmann, Gerald; Cherif, Chokri

    2013-06-01

    3D textile preforms offer a high potential to increase mechanical properties of composites and/or decrease manufacturing costs. Within the scope of this study, production principles were developed for complex spacer preforms and integrated stiffeners. These principles were applied through technological further development of the well-known face-to-face and terry weaving techniques. Various woven preforms were produced with Glass fibre/Polypropylene (GF/PP) Commingled yarns, however, the technology is suitable for any type of reinforcement yarns. U-shaped woven spacer preform was consolidated into a sandwich composite component for lightweight applications.

  9. Fabricating Structural Stiffeners By Superplastic Forming

    NASA Technical Reports Server (NTRS)

    Bales, Thomas T.; Shinn, Joseph M., Jr.; Hales, Stephen J.; James, William F.

    1994-01-01

    Superplastic forming (SPF) of aluminum alloys effective technique for making strong, lightweight structural components conforming to close dimensional tolerances. Technique applied in experimental fabrication of prototypes of stiffening ribs for cylindrical tanks. When making structural panel, stiffening ribs spot-welded to metal skin. Use of discrete eliminates machining waste, and use of SPF. Cost of fabrication reduced.

  10. Structural response of bead-stiffened thermoplastic shear webs

    NASA Technical Reports Server (NTRS)

    Rouse, Marshall

    1991-01-01

    The results of an experimental and analytical study of the structural response and failure characteristics of selected bead-stiffened thermoplastic shear-webs are presented. Results are given for specimens with one stiffeneer, with two stiffeners, and different stiffener geometries. Selected analytical results that were obtained with the Computational Structural Mechanics (CSM) Testbed computer code are presented. Analytical results that describe normal and transverse shear stress are also presented.

  11. Multidisciplinary Optimization and Damage Tolerance of Stiffened Structures

    NASA Astrophysics Data System (ADS)

    Jrad, Mohamed

    THE structural optimization of a cantilever aircraft wing with curvilinear spars and ribs and stiffeners is described. For the optimization of a complex wing, a common strategy is to divide the optimization procedure into two subsystems: the global wing optimization which optimizes the geometry of spars, ribs and wing skins; and the local panel optimization which optimizes the design variables of local panels bordered by spars and ribs. The stiffeners are placed on the local panels to increase the stiffness and buckling resistance. During the local panel optimization, the stress information is taken from the global model as a displacement boundary condition on the panel edges using the so-called "Global-Local Approach". Particle swarm optimization is used in the integration of global/local optimization to optimize the SpaRibs. Parallel computing approach has been developed in the Python programming language to reduce the CPU time. The license cycle-check method and memory self-adjustment method are two approaches that have been applied in the parallel framework in order to optimize the use of the resources by reducing the license and memory limitations and making the code robust. The integrated global-local optimization approach has been applied to subsonic NASA common research model (CRM) wing, which proves the methodology's application scaling with medium fidelity FEM analysis. The structural weight of the wing has been reduced by 42% and the parallel implementation allowed a reduction in the CPU time by 89%. The aforementioned Global-Local Approach is investigated and applied to a composite panel with crack at its center. Because of composite laminates' heterogeneity, an accurate analysis of these requires very high time and storage space. A possible alternative to reduce the computational complexity is the global-local analysis which involves an approximate analysis of the whole structure followed by a detailed analysis of a significantly smaller region of

  12. Structural Efficiency of Stitched Rod-Stiffened Composite Panels with Stiffener Crippling

    NASA Technical Reports Server (NTRS)

    Jegley, Dawn C.; Velicki, Alexander; Hansen, Daniel A.

    2008-01-01

    The structural efficiency of rod-stiffened stitched specimens is evaluated to determine their weight saving potential if the stiffeners were allowed to buckle at less than or equal to design ultimate load. Analytical and experimental results from rod-stiffened and blade-stiffened single-stiffener specimens are presented. In both cases, skin and flanges were stitched together through-the-thickness prior to curing. No mechanical fasteners were used for the assembly. Specimens were loaded to failure in axial compression. Failure modes are discussed. Finite element and experimental results agree for the response of the structures. For some specimen configurations, improved structural efficiency can be obtained by allowing stiffeners to buckle at design limit load rather than requiring that buckling not occur prior to design ultimate load. In addition, through-the-thickness stitching can change the failure mechanism by suppressing delamination between skin and flange. A parametric study is presented herein which describes the possible weight savings with this approach.

  13. Cross-stiffened continuous fiber structures

    NASA Technical Reports Server (NTRS)

    Ewen, John R.; Suarez, Jim A.

    1993-01-01

    Under NASA's Novel Composites for Wing and Fuselage Applications (NCWFA) program, Contract NAS1-18784, Grumman is evaluating the structural efficiency of graphite/epoxy cross-stiffened panel elements fabricated using innovative textile preforms and cost effective Resin Transfer Molding (RTM) and Resin Film Infusion (RFI) processes. Two three-dimensional woven preform assembly concepts have been defined for application to a representative window belt design typically found in a commercial transport airframe. The 3D woven architecture for each of these concepts is different; one is vertically woven in the plane of the window belt geometry and the other is loom woven in a compressed state similar to an unfolded eggcrate. The feasibility of both designs has been demonstrated in the fabrication of small test element assemblies. These elements and the final window belt assemblies will be structurally tested, and results compared.

  14. Flexible neural interfaces with integrated stiffening shank

    DOEpatents

    Tooker, Angela C.; Felix, Sarah H.; Pannu, Satinderpall S.; Shah, Kedar G.; Sheth, Heeral; Tolosa, Vanessa

    2016-07-26

    A neural interface includes a first dielectric material having at least one first opening for a first electrical conducting material, a first electrical conducting material in the first opening, and at least one first interconnection trace electrical conducting material connected to the first electrical conducting material. A stiffening shank material is located adjacent the first dielectric material, the first electrical conducting material, and the first interconnection trace electrical conducting material.

  15. Structural and acoustic response of a finite stiffened submarine hull

    NASA Astrophysics Data System (ADS)

    Wang, Xian-zhong; Jiang, Chen-ban; Xu, Rui-yang

    2016-12-01

    After borrowing the idea of precise integration method, a precise integration transfer matrix method (PITMM) is proposed by modifying traditional transfer matrix method. The submarine hull can be modeled as joined conicalcylindrical-spherical shells. By considering the effect of the ring-stiffeners, the field transfer matrixes of shells of revolution are obtained accurately by PITMM. After assembling the field transfer matrixes into an entire matrix, the dynamic model is established to solve the dynamic responses of the joined shell. By describing the sound pressure in fluid by modified wave superposition method (MWSM) and collocating points along the meridian line of the joined shell, finally the structural and acoustic responses of a finite stiffened submarine hull can be predicted by coupled PITMM and MWSM. The effectiveness of the present method has been verified by comparing the structural and acoustic responses of the spherical shell with existing results. Furthermore, the effects of the model truncation, stiffness and thickness on the structural and acoustic responses of the submarine hull are studied.

  16. Suspension Bridge Structural Systems: Cable Suspension & Anchorage; Warren Stiffening ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Suspension Bridge Structural Systems: Cable Suspension & Anchorage; Warren Stiffening Truss; Upper & Lower Decks; Assembled System - San Francisco Oakland Bay Bridge, Spanning San Francisco Bay, San Francisco, San Francisco County, CA

  17. Shock transmission in coupled beams and rib stiffened structures

    NASA Technical Reports Server (NTRS)

    Pope, L. D.; Manning, J. E.; Scharton, T. D.

    1971-01-01

    Shock transmission in a simple coupled beam structure and in a ring-stringer stiffened cylinder is investigated experimentally and analytically using wave transmission and statistical energy analysis concepts. The use of the response spectrum to characterize the excitation provided to a simple beam by a force pulse is studied. Analysis of the transmission of a dilatation wave in a periodically stiffened plate indicates that the stiffeners are fairly transparent to the wave, but some of the dilatational energy is scattered into bending at each support.

  18. Residual Strength Characterization of a Curved Integrally-Stiffened Panel

    NASA Technical Reports Server (NTRS)

    Seshadri, B. R.; Tiwari, S. N.

    2004-01-01

    Over the years, Finite-element fracture simulation methodology has been very well established at NASA Langley to predict the residual strength of damaged aircraft structures. This methodology has been experimentally verified at NASA Langley for structures ranging from laboratory coupons up to full-scale built-up structural components with single and multiple-site damage cracking. The methodology uses the critical crack-tip-opening-angle (CTOA) fracture criterion to characterize the fracture behavior of the material. The CTOA fracture criterion assumes that stable crack growth occurs when the crack-tip angle reaches a constant critical value. The use of the CTOA criterion requires an elastic-plastic, finite-element analysis. The critical CTOA value is determined by simulating fracture behavior in laboratory specimens, such as a compact specimen, to obtain the angle that best fits the observed test behavior. The critical CTOA value appears to be independent of loading, crack length, and in-plane dimensions. However, it is a function of material thickness and local crack-front constraint. Modeling the local constraint requires either a three-dimensional analysis or a two-dimensional analysis with an approximation to account for the constraint effects. In recent times as the aircraft industry is leaning towards monolithic structures with the intension of reducing part count and manufacturing cost, there has been a consistent effort at NASA Langley to extend critical CTOA based numerical methodology in the analysis of integrally-stiffened panels. In this regard, a series of fracture tests were conducted on curved aluminum-alloy integrally-stiffened panels. These curved panels were subjected to uniaxial tension and pressure loading. During the test, applied load-crack extension, out-of-plane displacements and local deformations around the crack tip region were measured. Compact and middle-crack tension specimens were tested to determine the critical angle (psi(sub c

  19. Design and Analysis of a Stiffened Composite Structure Repair Concept

    NASA Technical Reports Server (NTRS)

    Przekop, Adam

    2011-01-01

    A design and analysis of a repair concept applicable to a stiffened thin-skin composite panel based on the Pultruded Rod Stitched Efficient Unitized Structure is presented. Since the repair concept is a bolted repair using metal components, it can easily be applied in the operational environment. Initial analyses are aimed at validating the finite element modeling approach by comparing with available test data. Once confidence in the analysis approach is established several repair configurations are explored and the most efficient one presented. Repairs involving damage to the top of the stiffener alone are considered in addition to repairs involving a damaged stiffener, flange and underlying skin. High fidelity finite element modeling techniques such as mesh-independent definition of compliant fasteners, elastic-plastic metallic material properties and geometrically nonlinear analysis are utilized in the effort. The results of the analysis are presented and factors influencing the design are assessed and discussed.

  20. Fatigue evaluation of composite-reinforced, integrally stiffened metal panels

    NASA Technical Reports Server (NTRS)

    Dumesnil, C. E.

    1973-01-01

    The fatigue behavior of composite-reinforced, integrally stiffened metal panels was investigated in combined metal and composite materials subjected to fatigue loading. The systems investigated were aluminum-graphite/epoxy, and aluminum-S glass/epoxy. It was found that the composite material would support the total load at limit stress after the metal had completely failed, and the weight of the composite-metal system would be equal to that of an all metal system which would carry the same total load at limit stress.

  1. Reliability of stiffened structural panels: Two examples

    NASA Technical Reports Server (NTRS)

    Stroud, W. Jefferson; Davis, D. Dale, Jr.; Maring, Lise D.; Krishnamurthy, Thiagaraja; Elishakoff, Isaac

    1992-01-01

    The reliability of two graphite-epoxy stiffened panels that contain uncertainties is examined. For one panel, the effect of an overall bow-type initial imperfection is studied. The size of the bow is assumed to be a random variable. The failure mode is buckling. The benefits of quality control are explored by using truncated distributions. For the other panel, the effect of uncertainties in a strain-based failure criterion is studied. The allowable strains are assumed to be random variables. A geometrically nonlinear analysis is used to calculate a detailed strain distribution near an elliptical access hole in a wing panel that was tested to failure. Calculated strains are used to predict failure. Results are compared with the experimental failure load of the panel.

  2. Reliability of stiffened structural panels: Two examples

    NASA Astrophysics Data System (ADS)

    Stroud, W. Jefferson; Davis, D. Dale, Jr.; Maring, Lise D.; Krishnamurthy, Thiagaraja; Elishakoff, Isaac

    1992-12-01

    The reliability of two graphite-epoxy stiffened panels that contain uncertainties is examined. For one panel, the effect of an overall bow-type initial imperfection is studied. The size of the bow is assumed to be a random variable. The failure mode is buckling. The benefits of quality control are explored by using truncated distributions. For the other panel, the effect of uncertainties in a strain-based failure criterion is studied. The allowable strains are assumed to be random variables. A geometrically nonlinear analysis is used to calculate a detailed strain distribution near an elliptical access hole in a wing panel that was tested to failure. Calculated strains are used to predict failure. Results are compared with the experimental failure load of the panel.

  3. Modeling, analysis and optimization of cylindrical stiffened panels for reusable launch vehicle structures

    NASA Astrophysics Data System (ADS)

    Venkataraman, Satchithanandam

    The design of reusable launch vehicles is driven by the need for minimum weight structures. Preliminary design of reusable launch vehicles requires many optimizations to select among competing structural concepts. Accurate models and analysis methods are required for such structural optimizations. Model, analysis, and optimization complexities have to be compromised to meet constraints on design cycle time and computational resources. Stiffened panels used in reusable launch vehicle tanks exhibit complex buckling failure modes. Using detailed finite element models for buckling analysis is too expensive for optimization. Many approximate models and analysis methods have been developed for design of stiffened panels. This dissertation investigates the use of approximate models and analysis methods implemented in PANDA2 software for preliminary design of stiffened panels. PANDA2 is also used for a trade study to compare weight efficiencies of stiffened panel concepts for a liquid hydrogen tank of a reusable launch vehicle. Optimum weights of stiffened panels are obtained for different materials, constructions and stiffener geometry. The study investigates the influence of modeling and analysis choices in PANDA2 on optimum designs. Complex structures usually require finite element analysis models to capture the details of their response. Design of complex structures must account for failure modes that are both global and local in nature. Often, different analysis models or computer programs are employed to calculate global and local structural response. Integration of different analysis programs is cumbersome and computationally expensive. Response surface approximation provides a global polynomial approximation that filters numerical noise present in discretized analysis models. The computational costs are transferred from optimization to development of approximate models. Using this process, the analyst can create structural response models that can be used by

  4. Dynamic response and acoustic fatigue of stiffened composite structure

    NASA Technical Reports Server (NTRS)

    Soovere, J.

    1984-01-01

    The results of acoustic fatigue and dynamic response tests performed on L-1011 graphite-epoxy (GrE) aileron and panel components are reported. The aileron featured glass microballoons between the GrE skins. Tests yielded random fatigue data from double and single cantilever coupons and modal data from impedance hammer and loudspeaker impulses. Numerical and sample test data were obtained on combined acoustic and shear loads, acoustic and thermal loads, random fatigue and damping of the integrally stiffened and secondary bonded panels. The fatigue data indicate a fatigue life beyond 10 million cycles. The acoustic data suggested that noise transmission could be enhanced in the integrally stiffened panels, which were more acoustic-fatigue resistant than were the secondary bonded panels.

  5. Structural Efficiency of Stitched Composite Panels with Stiffener Crippling

    NASA Technical Reports Server (NTRS)

    Jegley, Dawn C.

    2002-01-01

    The structural efficiency of blade-stiffened stitched specimens is compared to determine their weight saving potential if blades were allowed to buckle at less than or equal to design ultimate load. Analytical and experimental results from four configurations of crippling specimens are presented. Specimen skin and blades were held together with through-the-thickness stitches prior to curing. No mechanical fasteners were used for the assembly. Tests were conducted with and without low-speed impact damage. Failure modes are discussed. Finite element and experimental results agree for the response of the structures. For some specimen configurations, improved structural efficiency can be obtained by allowing stiffeners to buckle at design limit load rather than requiring that buckling not occur prior to design ultimate load. A parametric study is presented herein which describes the possible weight savings with this approach.

  6. Instrumentation of integrally stiffened composite panel with fiber Bragg grating sensors for vibration measurements

    NASA Astrophysics Data System (ADS)

    Oman, Kyle; Van Hoe, Bram; Aly, Karim; Peters, Kara; Van Steenberge, Geert; Stan, Nikola; Schultz, Stephen

    2015-08-01

    We evaluate the performance of fiber Bragg grating (FBG) sensors for the measurement of dynamic strains in complex composite structures. The particular structure used in this study is an integrally stiffened composite panel for which the stiffeners and skin are fabricated in a single layup and cure process. Surface-mounted FBG sensors are bonded to the panels after curing, whereas embedded FBG sensors are successfully incorporated during the fabrication process. A finite element model was also constructed of the stiffened panel. The panels were subjected to repeated impacts and the post-impact vibration response of the panel was measured through the FBG sensor responses. Little change to the global response of the panel was observed after the repeated impacts, through the dynamic response of the surface-mounted FBGs. Pulsed phase thermography and micro-computer-tomography imaging of the panel confirmed that the damage was localized near the impact locations, producing negligible changes to the global response of the panel. All of the embedded FBG sensors survived the fabrication and multiple impacts; however, as these were embedded close to the neutral axis of the panel, they were not very sensitive to the vibration modes. Excitation of the panel near the first natural frequency did produce a measurable response in the FBG sensors, confirming their functionality.

  7. Design, Optimization, and Evaluation of Integrally-Stiffened Al-2139 Panel with Curved Stiffeners

    NASA Technical Reports Server (NTRS)

    Havens, David; Shiyekar, Sandeep; Norris, Ashley; Bird, R. Keith; Kapania, Rakesh K.; Olliffe, Robert

    2011-01-01

    A curvilinear stiffened panel was designed, manufactured, and tested in the Combined Load Test Fixture at NASA Langley Research Center. The panel is representative of a large wing engine pylon rib and was optimized for minimum mass subjected to three combined load cases. The optimization included constraints on web buckling, material yielding, crippling or local stiffener failure, and damage tolerance using a new analysis tool named EBF3PanelOpt. Testing was performed for the critical combined compression-shear loading configuration. The panel was loaded beyond initial buckling, and strains and out-of-plane displacements were extracted from a total of 20 strain gages and 6 linear variable displacement transducers. The VIC-3D system was utilized to obtain full field displacements/strains in the stiffened side of the panel. The experimental data were compared with the strains and out-of-plane deflections from a high fidelity nonlinear finite element analysis. The experimental data were also compared with linear elastic finite element results of the panel/test-fixture assembly. Overall, the panel buckled very near to the predicted load in the web regions.

  8. Design and evaluation of a foam-filled hat-stiffened panel concept for aircraft primary structural applications

    NASA Technical Reports Server (NTRS)

    Ambur, Damodar R.

    1995-01-01

    A structurally efficient hat-stiffened panel concept that utilizes a structural foam as stiffener core has been designed for aircraft primary structural applications. This stiffener concept utilizes a manufacturing process that can be adapted readily to grid-stiffened structural configurations which possess inherent damage tolerance characteristics due to their multiplicity of load paths. The foam-filled hat-stiffener concept in a prismatically stiffened panel configuration is more efficient than most other stiffened panel configurations in a load range that is typical for both fuselage and wing structures. The prismatically stiffened panel concept investigated here has been designed using AS4/3502 preimpregnated tape and Rohacell foam core and evaluated for its buckling and postbuckling behavior with and without low-speed impact damage. The results from single-stiffener and multi-stiffener specimens suggest that this structural concept responds to loading as anticipated and has good damage tolerance characteristics.

  9. Validated Feasibility Study of Integrally Stiffened Metallic Fuselage Panels for Reducing Manufacturing Costs

    NASA Technical Reports Server (NTRS)

    Pettit, R. G.; Wang, J. J.; Toh, C.

    2000-01-01

    The continual need to reduce airframe cost and the emergence of high speed machining and other manufacturing technologies has brought about a renewed interest in large-scale integral structures for aircraft applications. Applications have been inhibited, however, because of the need to demonstrate damage tolerance, and by cost and manufacturing risks associated with the size and complexity of the parts. The Integral Airframe Structures (IAS) Program identified a feasible integrally stiffened fuselage concept and evaluated performance and manufacturing cost compared to conventional designs. An integral skin/stiffener concept was produced both by plate hog-out and near-net extrusion. Alloys evaluated included 7050-T7451 plate, 7050-T74511 extrusion, 6013-T6511 extrusion, and 7475-T7351 plate. Mechanical properties, structural details, and joint performance were evaluated as well as repair, static compression, and two-bay crack residual strength panels. Crack turning behavior was characterized through panel tests and improved methods for predicting crack turning were developed. Manufacturing cost was evaluated using COSTRAN. A hybrid design, made from high-speed machined extruded frames that are mechanically fastened to high-speed machined plate skin/stringer panels, was identified as the most cost-effective manufacturing solution. Recurring labor and material costs of the hybrid design are up to 61 percent less than the current technology baseline.

  10. Design, Optimization and Evaluation of Integrally Stiffened Al 7050 Panel with Curved Stiffeners

    NASA Technical Reports Server (NTRS)

    Slemp, Wesley C. H.; Bird, R. Keith; Kapania, Rakesh K.; Havens, David; Norris, Ashley; Olliffe, Robert

    2011-01-01

    A curvilinear stiffened panel was designed, manufactured, and tested in the Combined Load Test Fixture at NASA Langley Research Center. The panel was optimized for minimum mass subjected to constraints on buckling load, yielding, and crippling or local stiffener failure using a new analysis tool named EBF3PanelOpt. The panel was designed for a combined compression-shear loading configuration that is a realistic load case for a typical aircraft wing panel. The panel was loaded beyond buckling and strains and out-of-plane displacements were measured. The experimental data were compared with the strains and out-of-plane deflections from a high fidelity nonlinear finite element analysis and linear elastic finite element analysis of the panel/test-fixture assembly. The numerical results indicated that the panel buckled at the linearly elastic buckling eigenvalue predicted for the panel/test-fixture assembly. The experimental strains prior to buckling compared well with both the linear and nonlinear finite element model.

  11. Transmission loss of orthogonally rib-stiffened double-panel structures with cavity absorption.

    PubMed

    Xin, F X; Lu, T J

    2011-04-01

    The transmission loss of sound through infinite orthogonally rib-stiffened double-panel structures having cavity-filling fibrous sound absorptive materials is theoretically investigated. The propagation of sound across the fibrous material is characterized using an equivalent fluid model, and the motions of the rib-stiffeners are described by including all possible vibrations, i.e., flexural displacements, bending, and torsional rotations. The effects of fluid-structure coupling are account for by enforcing velocity continuity conditions at fluid-panel interfaces. By taking full advantage of the periodic nature of the double-panel, the space-harmonic approach and virtual work principle are applied to solve the sets of resultant governing equations, which are eventually truncated as a finite system of simultaneous algebraic equations and numerically solved insofar as the solution converges. To validate the proposed model, a comparison between the present model predictions and existing numerical and experimental results for a simplified version of the double-panel structure is carried out, with overall agreement achieved. The model is subsequently employed to explore the influence of the fluid-structure coupling between fluid in the cavity and the two panels on sound transmission across the orthogonally rib-stiffened double-panel structure. Obtained results demonstrate that this fluid-structure coupling affects significantly sound transmission loss (STL) at low frequencies and cannot be ignored when the rib-stiffeners are sparsely distributed. As a highlight of this research, an integrated optimal algorithm toward lightweight, high-stiffness and superior sound insulation capability is proposed, based on which a preliminary optimal design of the double-panel structure is performed.

  12. Experiments on stiffened conical shell structures using cast epoxy models

    NASA Technical Reports Server (NTRS)

    Williams, J. G.; Davis, R. C.

    1973-01-01

    Description of a casting technique for fabricating high-quality plastic structural models, and review of results regarding the use of such specimens to parametrically study the effect of base ring stiffness on the critical buckling pressure of a ring-stiffened conical shell. The fabrication technique involves machining a metal mold to the desired configuration and vacuum-drawing the plastic material into the mold. A room-temperature curing translucent thermoset epoxy was the casting material selected. A shell of revolution computer program which employs a nonlinear axisymmetric prebuckling strain field to obtain a bifurcation buckling solution was used to guide the selection of congifurations tested. The shell experimentally exhibited asymmetric collapse behavior, and the ultimate load was considerably higher than the analytical bifurcation prediction. The asymmetric buckling mode shape, however, initially appeared at a pressure near the analysis bifurcation solution.

  13. Structural Performance of a Compressively Loaded Foam-Core Hat-Stiffened Textile Composite Panel

    NASA Technical Reports Server (NTRS)

    Ambur, Damodar R.; Dexter, Benson H.

    1996-01-01

    A structurally efficient hat-stiffened panel concept that utilizes a structural foam as a stiffener core material has been designed and developed for aircraft primary structural applications. This stiffener concept is fabricated from textile composite material forms with a resin transfer molding process. This foam-filled hat-stiffener concept is structurally more efficient than most other prismatically stiffened panel configurations in a load range that is typical for both fuselage and wing structures. The panel design is based on woven/stitched and braided graphite-fiber textile preforms, an epoxy resin system, and Rohacell foam core. The structural response of this panel design was evaluated for its buckling and postbuckling behavior with and without low-speed impact damage. The results from single-stiffener and multi-stiffener specimen tests suggest that this structural concept responds to loading as anticipated and has excellent damage tolerance characteristics compared to a similar panel design made from preimpregnated graphite-epoxy tape material.

  14. Design and evaluation of a foam-filled hat-stiffened panel concept for aircraft primary structural applications

    NASA Technical Reports Server (NTRS)

    Ambur, Damodar R.

    1993-01-01

    Geodesically stiffened structures are very efficient in carrying combined bending, torsion, and pressure loading that is typical of primary aircraft structures. They are also very damage tolerant since there are multiple load paths available to redistribute loads compared to prismatically stiffened structures. Geodesically stiffened structures utilize continuous filament composite materials which make them amenable to automated manufacturing processes to reduce cost. The current practice for geodesically stiffened structures is to use a solid blade construction for the stiffener. This stiffener configuration is not an efficient concept and there is a need to identify other stiffener configurations that are more efficient but utilize the same manufacturing process as the solid blade. This paper describes a foam-filled stiffener cross section that is more efficient than a solid-blade stiffener in the load range corresponding to primary aircraft structures. A prismatic hat-stiffener panel design is then selected for structural evaluation in uni-axial compression with and without impact damage. Experimental results for both single stiffener specimens and multi-stiffener panel specimens are presented. Finite element analysis results are presented that predict the buckling and postbuckling response of the test specimens. Analytical results for both the element and panel specimens are compared with experimental results.

  15. Finite element thermal-structural analyses of a cable-stiffened orbiting antenna

    NASA Technical Reports Server (NTRS)

    Thornton, E. A.; Dechaumphai, P.; Pandey, A. K.

    1985-01-01

    Finite element thermal-structural analyses of a cable-stiffened orbiting antenna are presented. The determination of prestresses in the antenna is described first. Heating and thermal analyses for orbiting space structures are then discussed briefly. Structural deformations and stresses are presented for three finite element structural analysis approaches: (1) small deflections, (2) stress-stiffening, and (3) large deflections. The accuracy of the three analysis approaches is evaluated for the orbiting antenna at different prestress levels.

  16. Effect of stiffness characteristics on the response of composite grid-stiffened structures

    NASA Technical Reports Server (NTRS)

    Ambur, Damodar R.; Rehfield, Lawrence W.

    1991-01-01

    A study of the effect of stiffness discontinuities and structural parameters on the response of continuous-filament grid-stiffened flat panels is presented. The buckling load degradation due to manufacturing-introduced stiffener discontinuities associated with a filament cut-and-add approach at the stiffener intersections is investigated. The degradation of buckling resistance in isogrid flat panels subjected to uni-axial compression and combined axial compression and shear loading conditions and induced damage is quantified using FEM. The combined loading case is the most critical one. Nonsolid stiffener cross sections, such as a foam-filled blade or hat with a 0-deg dominant cap, result in grid-stiffened structures that are structurally very efficient for wing and fuselage applications. The results of a study of the ability of grid-stiffened structural concepts to enhance the effective Poisson's ratio of a panel are presented. Grid-stiffened concepts create a highly effective Poisson's ratio, which can produce large camber deformations for certain elastic tailoring applications.

  17. Application of Ultrasonic Phased Array Technology to the Detection of Defect in Composite Stiffened-structures

    NASA Astrophysics Data System (ADS)

    Zhou, Yuan-Qi; Zhan, Li-Hua

    2016-05-01

    Composite stiffened-structure consists of the skin and stringer has been widely used in aircraft fuselage and wings. The main purpose of the article is to detect the composite material reinforced structure accurately and explore the relationship between defect formation and structural elements or curing process. Based on ultrasonic phased array inspection technology, the regularity of defects in the manufacture of composite materials are obtained, the correlation model between actual defects and nondestructive testing are established. The article find that the forming quality of deltoid area in T-stiffened structure is obviously improved by pre-curing, the defects of hat-stiffened structure are affected by the mandrel. The results show that the ultrasonic phased array inspection technology can be an effectively way for the detection of composite stiffened-structures, which become an important means to control the defects of composite and improve the quality of the product.

  18. Impact of arterial stiffening on left ventricular structure.

    PubMed

    Roman, M J; Ganau, A; Saba, P S; Pini, R; Pickering, T G; Devereux, R B

    2000-10-01

    Aging of the vasculature results in arterial stiffening and an increase in systolic and pulse pressures. Although pressure load is a stimulus for left ventricular hypertrophy, the extent to which vascular stiffening per se, independent of blood pressure, influences left ventricular structure is uncertain. Two hundred seventy-six subjects (79 normotensive and 197 otherwise healthy hypertensive individuals) underwent echocardiography to assess left ventricular structure. Arterial stiffness was estimated by the pressure-independent stiffness index, beta, and the pressure-dependent elastic modulus derived from simultaneous carotid ultrasound and applanation tonometry. Systemic arterial compliance (the inverse of stiffness) was estimated by the arterial compliance index. In multivariate analysis, beta was related to age (P<0.001) and smoking history (P<0.01) but not mean pressure, whereas elastic modulus was related to age and mean pressure (both P<0.001). The arterial compliance index was only related to age. Whereas systolic and diastolic pressures and the elastic modulus were positively associated with left ventricular mass (all P<0.001), primarily because of increases in wall thicknesses, beta and the arterial compliance index bore no relation to left ventricular mass. beta was inversely related to chamber diameter and directly related to left ventricular relative wall thickness, the ratio of wall thickness to chamber radius. Younger and older hypertensive subjects had comparable left ventricular mass, despite higher systolic and pulse pressures in the older group, whereas older hypertensives had higher mean relative wall thickness, associated with a significant increase in arterial stiffness (beta, 7.06 versus 5.17; elastic modulus, 595 versus 437 dyne/cm(2) x10(-6)) and reduction in the arterial compliance index (0.87 versus 1.05 mL/mm Hg per square meter) (all P<0.001). Thus, the extent to which arterial stiffness relates to left ventricular hypertrophy is

  19. Lamb wave interaction at debondings due to impact damage in complex stiffened CFRP structures

    NASA Astrophysics Data System (ADS)

    Eckstein, B.; Moix Bonet, M.; Bach, M.; Fritzen, C.-P.

    2017-04-01

    The increasing usage of Carbon Fiber Reinforced Plastics (CFRP) for primary aerospace structures involves dealing with the principal susceptibility of composite laminates to impact loads as well as the occurrence of barely visible impact damages. One special case among the variety of impact sources is the so called blunt impact, which may cause primarily damage to the internal structure. Thus, the assessment of debonding of stiffening elements in CFRP structures poses an attractive application case for Structural Health Monitoring by Guided Ultrasonic Waves. Wave propagation phenomena at impact damages as well as the utilized signal processing to extract a damage related feature (i.e. damage index) contribute to the sensitivity and thus to the reliability of SHM systems. This work is based on data from the EU-funded project SARISTU, where a generic CFRP door surrounding fuselage panel with an integrated sensor network has been built and tested by introducing a large number of impact damages. Wave interaction of stringer debondings of different size and morphology in omega-stringer stiffened structures are examined to highlight the factors contributing to the sensitivity. Common damage indicator formulations for use with imaging algorithms, such as the Reconstruction Algorithm for the Probabilistic Inspection of Damage (RAPID), are applied on data from various damage cases. Furthermore, the difference in detectability of debondings and delaminations as well as the implications on imaging algorithms are examined.

  20. Finite element thermal-structural analysis of cable-stiffened space structues

    NASA Technical Reports Server (NTRS)

    Thornton, E. A.; Dechaumphai, P.; Pandey, A. K.

    1984-01-01

    Finite element thermal-structural analyses of large, cable-stiffened space structures are presented. A computational scheme for the calculation of prestresses in the cable-stiffened structures is also described. The determination of thermal loads on orbiting space structures due to environment heating is discussed briefly. Three finite element structural analysis techniques are presented for the analysis of prestressed structures. Linear, stress stiffening, and large displacement analysis techniques were investigated. These three techniques were employed for analysis of prestressed cable structures at different prestress levels. The analyses produced similar results at small prestress, but at higher prestress, differences between the results became significant. For the cable-stiffened structures studied, the linear analysis technique may not provide acceptable results. The stress stiffening analysis technique may yield results of acceptable accuracy depending upon the level of prestress. The large displacement analysis technique produced accurate results over a wide range of prestress and is recommended as a general analysis technique for thermal-structural analysis of cable-stiffened space structures.

  1. Design, Optimization, and Evaluation of A1-2139 Compression Panel with Integral T-Stiffeners

    NASA Technical Reports Server (NTRS)

    Mulani, Sameer B.; Havens, David; Norris, Ashley; Bird, R. Keith; Kapania, Rakesh K.; Olliffe, Robert

    2012-01-01

    A T-stiffened panel was designed and optimized for minimum mass subjected to constraints on buckling load, yielding, and crippling or local stiffener failure using a new analysis and design tool named EBF3PanelOpt. The panel was designed for a compression loading configuration, a realistic load case for a typical aircraft skin-stiffened panel. The panel was integrally machined from 2139 aluminum alloy plate and was tested in compression. The panel was loaded beyond buckling and strains and out-of-plane displacements were extracted from 36 strain gages and one linear variable displacement transducer. A digital photogrammetric system was used to obtain full field displacements and strains on the smooth (unstiffened) side of the panel. The experimental data were compared with the strains and out-of-plane deflections from a high-fidelity nonlinear finite element analysis.

  2. Aircraft interior noise models - Sidewall trim, stiffened structures, and cabin acoustics with floor partition

    NASA Technical Reports Server (NTRS)

    Pope, L. D.; Wilby, E. G.; Willis, C. M.; Mayes, W. H.

    1983-01-01

    As part of the continuing development of an aircraft interior noise prediction model, in which a discrete modal representation and power flow analysis are used, theoretical results are considered for inclusion of sidewall trim, stiffened structures, and cabin acoustics with floor partition. For validation purposes, predictions of the noise reductions for three test articles (a bare ring-stringer stiffened cylinder, an unstiffened cylinder with floor and insulation, and a ring-stringer stiffened cylinder with floor and sidewall trim) are compared with measurements.

  3. Buckling analysis for axially compressed flat plates, structural sections, and stiffened plates reinforced with laminated composites

    NASA Technical Reports Server (NTRS)

    Viswanathan, A. V.; Soong, T.; Miller, R. E., Jr.

    1971-01-01

    A classical buckling analysis is developed for stiffened, flat plates composed of a series of linked plate and beam elements. Plates are idealized as multilayered orthotropic elements. Structural beads and lips are idealized as beams. The loaded edges of the stiffened plate are simply-supported and the conditions at the unloaded edges can be prescribed arbitrarily. The plate and beam elements are matched along their common junctions for displacement continuity and force equilibrium in an exact manner. Offsets between elements are considered in the analysis. Buckling under uniaxial compressive load for plates, sections, and stiffened plates is investigated. Buckling loads are the lowest of all possible general and local failure modes, and the mode shape is used to determine whether buckling is a local or general instability. Numerical correlations with existing analysis and test data for plates, sections, and stiffened plates including boron-reinforced structures are discussed. In general correlations are reasonably good.

  4. Buckling analysis for structural sections and stiffened plates reinforced with laminated composites.

    NASA Technical Reports Server (NTRS)

    Viswanathan, A. V.; Soong, T.-C.; Miller, R. E., Jr.

    1972-01-01

    A classical buckling analysis is developed for stiffened, flat plates composed of a series of linked flat plate and beam elements. Plates are idealized as multilayered orthotropic elements; structural beads and lips are idealized as beams. The loaded edges of the stiffened plate are simply supported and the conditions at the unloaded edges can be prescribed arbitrarily. The plate and beam elements are matched along their common junctions for displacement continuity and force equilibrium in an exact manner. Offsets between elements are considered in the analysis. Buckling under uniaxial compressive load for plates, sections and stiffened plates is investigated. Buckling loads are found as the lowest of all possible general and local failure modes and the mode shape is used to determine whether buckling is a local or general instability. Numerical correlations with existing analysis and test data for plates, sections and stiffened plates including boron-reinforced structures are discussed. In general, correlations are reasonably good.

  5. Evaluation of Braided Stiffener Concepts for Transport Aircraft Wing Structure Applications

    NASA Technical Reports Server (NTRS)

    Deaton, Jerry W.; Dexter, H. Benson (Editor); Markus, Alan; Rohwer, Kim

    1995-01-01

    Braided composite materials have potential for application in aircraft structures. Stiffeners, wing spars, floor beams, and fuselage frames are examples where braided composites could find application if cost effective processing and damage requirements are met. Braiding is an automated process for obtaining near-net shape preforms for fabrication of components for structural applications. Previous test results on braided composite materials obtained at NASA Langley indicate that damage tolerance requirements can be met for some applications. In addition, the braiding industry is taking steps to increase the material through-put to be more competitive with other preform fabrication processes. Data are presented on the compressive behavior of three braided stiffener preform fabric constructions as determined from individual stiffener crippling test and three stiffener wide panel tests. Stiffener and panel fabrication are described and compression data presented for specimens tested with and without impact damage. In addition, data are also presented on the compressive behavior of the stitched stiffener preform construction currently being used by McDonnell Douglas Aerospace in the NASA ACT wing development program.

  6. A Location Method Using Sensor Arrays for Continuous Gas Leakage in Integrally Stiffened Plates Based on the Acoustic Characteristics of the Stiffener

    PubMed Central

    Bian, Xu; Li, Yibo; Feng, Hao; Wang, Jiaqiang; Qi, Lei; Jin, Shijiu

    2015-01-01

    This paper proposes a continuous leakage location method based on the ultrasonic array sensor, which is specific to continuous gas leakage in a pressure container with an integral stiffener. This method collects the ultrasonic signals generated from the leakage hole through the piezoelectric ultrasonic sensor array, and analyzes the space-time correlation of every collected signal in the array. Meanwhile, it combines with the method of frequency compensation and superposition in time domain (SITD), based on the acoustic characteristics of the stiffener, to obtain a high-accuracy location result on the stiffener wall. According to the experimental results, the method successfully solves the orientation problem concerning continuous ultrasonic signals generated from leakage sources, and acquires high accuracy location information on the leakage source using a combination of multiple sets of orienting results. The mean value of location absolute error is 13.51 mm on the one-square-meter plate with an integral stiffener (4 mm width; 20 mm height; 197 mm spacing), and the maximum location absolute error is generally within a ±25 mm interval. PMID:26404316

  7. Applying a Stitched, Rod-Stiffened Concept to Heavily Loaded Structure

    NASA Technical Reports Server (NTRS)

    Jegley, Dawn C.

    2013-01-01

    NASA and the Boeing Company have worked to develop new low-cost, light-weight composite structures for aircraft. A stitched carbon-epoxy material system was developed to reduce the weight and cost of transport aircraft wing structure, first in the NASA Advanced Composites Technology (ACT) program in the 1990's and now in the Environmentally Responsible Aviation (ERA) Project. By stitching through the thickness of a dry carbon fiber material prior to cure, the labor associated with panel fabrication and assembly can be significantly reduced and the need for mechanical fasteners is almost eliminated. Stitching provides the benefit of reducing or eliminating delaminations, including those between stiffener flanges and skin. Stitching also reduces part count, and therefore, cost of the structure. The stitched panel concept used in the ACT program in the 1990's used simple blade-stiffeners as stringers, caps and clips. Today, the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept is being developed for application to advanced vehicle configurations. PRSEUS provides additional weight savings through the use of a stiffener with a thin web and a unidirectional carbon rod at the top of the web which provides structurally efficient stiffening. A comparison between the blade-stiffened structure and PRSEUS is presented focusing on highly loaded structure and demonstrating improved weight reduction.

  8. Active vibration control of ring-stiffened cylindrical shell structure using macro fiber composite actuators.

    PubMed

    Sohn, Jung Woo; Jeon, Juncheol; Choi, Seung-Bok

    2014-10-01

    Vibration control performance of the ring-stiffened cylindrical shell structure is experimentally evaluated in this work. In order to achieve high control performance, advanced flexible piezoelectric actuator whose commercial name is Macro-Fiber Composite (MFC) is adapted to the shell structure. Governing equation is derived by finite element method and dynamic characteristics are investigated from the modal analysis results. Ring-stiffened cylindrical shell structure is then manufactured and modal test is conducted to verify modal analysis results. An optimal controller is designed and experimentally realized to the proposed shell structure system. Vibration control performance is experimentally evaluated in time domain and verified by simulated control results.

  9. Analysis for stresses and buckling of heated composite stiffened panels and other structures, phase 3

    NASA Technical Reports Server (NTRS)

    Viswanathan, A. V.; Tamekuni, M.

    1973-01-01

    Analytical methods based on linear theory are presented for predicting the thermal stresses in and the buckling of heated structures with arbitrary uniform cross section. The structure is idealized as an assemblage of laminated plate-strip elements, curved and planar, and beam elements. Uniaxially stiffened plates and shells of arbitrary cross section are typical examples. For the buckling analysis the structure or selected elements may be subjected to mechanical loads, in additional to thermal loads, in any desired combination of inplane transverse load and axial compression load. The analysis is also applicable to stiffened structures under inplane loads varying through the cross section, as in stiffened shells under bending. The buckling analysis is general and covers all modes of instability. The analysis has been applied to a limited number of problems and the results are presented. These while showing the validity and the applicability of the method do not reflect its full capability.

  10. Numerical Comparison of Active Acoustic and Structural Noise Control in a Stiffened Double Wall Cylinder

    NASA Technical Reports Server (NTRS)

    Grosveld, Ferdinand W.

    1996-01-01

    The active acoustic and structural noise control characteristics of a double wall cylinder with and without ring stiffeners were numerically evaluated. An exterior monopole was assumed to acoustically excite the outside of the double wall cylinder at an acoustic cavity resonance frequency. Structural modal vibration properties of the inner and outer shells were analyzed by post-processing the results from a finite element analysis. A boundary element approach was used to calculate the acoustic cavity response and the coupled structural-acoustic interaction. In the frequency region of interest, below 500 Hz, all structural resonant modes were found to be acoustically slow and the nonresonant modal response to be dominant. Active sound transmission control was achieved by control forces applied to the inner or outer shell, or acoustic control monopoles placed just outside the inner or outer shell. A least mean square technique was used to minimize the interior sound pressures at the nodes of a data recovery mesh. Results showed that single acoustic control monopoles placed just outside the inner or outer shells resulted in better sound transmission control than six distributed point forces applied to either one of the shells. Adding stiffeners to the double wall structure constrained the modal vibrations of the shells, making the double wall stiffer with associated higher modal frequencies. Active noise control obtained for the stiffened double wall configurations was less than for the unstiffened cylinder. In all cases, the acoustic control monopoles controlled the sound transmission into the interior better than the structural control forces.

  11. Numerical investigations of free edge effects in integrally stiffened layered composite panels

    NASA Astrophysics Data System (ADS)

    Skrna-Jakl, I.; Rammerstorfer, F. G.

    A linear finite element analysis is conducted to examine the free edge stresses and the displacement behavior of an integrally stiffened layered composite panel loaded under uniform inplane tension. Symmetric (+Phi, -Phi, 0, -Phi, +Phi) graphite-epoxy laminates with various fiber orientations in the off-axis plies are considered. The quadratic stress criterion, the Tsai-Wu criterion and the Mises equivalent stresses are used to determine a risk parameter for onset of delamination, first ply failure and matrix cracking in the neat resin. The results of the analysis show that the interlaminar stresses at the +Phi/-Phi and -Phi/0 interfaces increase rapidly in the skin-stringer transition. This behavior is observed at the free edge as well as at some distance from it. The magnitude of the interlaminar stresses in the skin-stringer transition is strongly influenced by the fiber orientations of the off-axis plies. In addition, the overall displacements depend on the magnitude of the off-axis ply angle. It is found that for Phi less than 30 deg the deformations of the stiffener section are dominated by bending, whereas for Phi in the range of 45 to 75 deg the deformations are dominated by torsion. The failure analysis shows that ply and matrix failure tend to occur prior to delamination for the considered configurations.

  12. Analytical and experimental study of structurally efficient composite hat-stiffened panels loaded in axial compression

    NASA Technical Reports Server (NTRS)

    Williams, J. G.; Mikulus, M. M., Jr.

    1976-01-01

    Structural efficiency studies were made to determine the weight saving potential of graphite/epoxy composite structures for compression panel applications. Minimum weight hat-stiffened and open corrugation configurations were synthesized using a nonlinear mathematical programming technique. Selected configurations were built and tested to study local and Euler buckling characteristics. Test results for 23 panels critical in local buckling and six panels critical in Euler buckling are compared with analytical results obtained using the BUCLASP-2 branched plate buckling program. A weight efficiency comparison is made between composite and aluminum compression panels using metal test data generated by the NACA. Theoretical studies indicate that potential weight savings of up to 50% are possible for composite hat-stiffened panels when compared with similar aluminum designs. Weight savings of 32% to 42% were experimentally achieved. Experience suggests that most of the theoretical weight saving potential is available if design deficiencies are eliminated and strict fabrication control is exercised.

  13. Physical mechanisms of active control of sound transmission through rib stiffened double-panel structure

    NASA Astrophysics Data System (ADS)

    Ma, Xiyue; Chen, Kean; Ding, Shaohu; Yu, Haoxin

    2016-06-01

    This paper presents an analytical investigation on physical mechanisms of actively controlling sound transmission through a rib stiffened double-panel structure using point source in the cavity. The combined modal expansion and vibro-acoustic coupling methods are applied to establish the theoretical model of such active structure. Under the condition of minimizing radiated power of the radiating ribbed plate, the physical mechanisms are interpreted in detail from the point of view of modal couplings similar as that used in existed literatures. Results obtained demonstrate that the rule of sound energy transmission and the physical mechanisms for the rib stiffened double-panel structure are all changed, and affected by the coupling effects of the rib when compared with the analytical results obtained for unribbed double-panel case. By taking the coupling effects of the rib into considerations, the cavity modal suppression and rearrangement mechanisms obtained in existed investigations are modified and supplemented for the ribbed plate case, which gives a clear interpretation for the physical nature involved in the active rib stiffened double-panel structure.

  14. A numerical method for the stress analysis of stiffened-shell structures under nonuniform temperature distributions

    NASA Technical Reports Server (NTRS)

    Heldenfels, Richard R

    1951-01-01

    A numerical method is presented for the stress analysis of stiffened-shell structures of arbitrary cross section under nonuniform temperature distributions. The method is based on a previously published procedure that is extended to include temperature effects and multicell construction. The application of the method to practical problems is discussed and an illustrative analysis is presented of a two-cell box beam under the combined action of vertical loads and a nonuniform temperature distribution.

  15. Vibro-Acoustic Modulation Based Damage Identification in a Composite Skin-Stiffener Structure

    NASA Technical Reports Server (NTRS)

    Ooijevaar, T. H.; Loendersloot, R.; Rogge, M. D.; Akkerman, R.; Tinga, T.

    2014-01-01

    The vibro-acoustic modulation method is applied to a composite skin-stiffener structure to investigate the possibilities to utilize this method for damage identification in terms of detection, localisation and damage quantification. The research comprises a theoretical part and an experimental part. An impact load is applied to the skin-stiffener structure, resulting in a delamination underneath the stiffener. The structure is interrogated with a low frequency pump excitation and a high frequency carrier excitation. The analysis of the response in a frequency band around the carrier frequency is employed to assess the damage identification capabilities and to gain a better understanding of the modulations occurring and the underlying physical phenomena. Though vibro-acoustic is shown to be a sensitive method for damage identification, the complexity of the damage, combined with a high modal density, complicate the understanding of the relation between the physical phenomena and the modulations occurring. more research is recommended to reveal the physics behind the observations.

  16. Fractal Stiffening

    NASA Technical Reports Server (NTRS)

    Harper, David William (Inventor)

    2017-01-01

    A structural support having fractal-stiffening and method of fabricating the support is presented where an optimized location of at least three nodes is predetermined prior to fabricating the structural support where a first set of webs is formed on one side of the support and joined to the nodes to form a first pocket region. A second set of webs is formed within the first pocket region forming a second pocket region where the height of the first set of webs extending orthogonally from the side of the support is greater than the second set of webs extending orthogonally from the support.

  17. Structural analysis and sizing of stiffened, metal matrix composite panels for hypersonic vehicles

    NASA Technical Reports Server (NTRS)

    Collier, Craig S.

    1992-01-01

    The present method for strength and stability analyses of stiffened, fiber-reinforced composite panels to be used in hypersonic vehicle structures is of great generality, and can be linked with planar finite-element analysis (FEA). Nonlinear temperature and load-dependent material data for each laminate are used to 'build-up' the stiffened panel's membrane, bending, and membrane-bending coupling stiffness terms, as well as thermal coefficients. The resulting, FEA-solved thermomechanical forces and moments are used to calculate strain at any location in the panel; this allows an effective ply-by-ply orthotropic strength analysis to be conducted, together with orthotropic instability checks for each laminated segment of the cross-section.

  18. Damage tolerance of a geodesically stiffened advanced composite structural concept for aircraft structural applications

    NASA Technical Reports Server (NTRS)

    Rouse, Marshall; Ambur, Damodar R.

    1992-01-01

    This paper describes the features of a geodesically stiffened panel concept that was designed for a fuselage application with a combined axial compression loading of 3,000 lb/in. and a shear loading of 600 lb/in. Specimens representative of this panel concept were tested in uniaxial compression both with and without low-speed impact damage to study the buckling and postbuckling response of the structure. Experimental results that describe the stiffness and failure characteristics of undamaged and impacted damage specimens are presented. A finite element analysis model that captures the principal details of the specimens was developed and used to predict the panel response. Analytical results on panel end-shortening are compared with the experimental results. Analytical results that describe panel end-shortening, out-of-plane displacement and stress resultants are presented.

  19. Validated Feasibility Study of Integrally Stiffened Metallic Fuselage Panels for Reducing Manufacturing Costs: Cost Assessment of Manufacturing/Design Concepts

    NASA Technical Reports Server (NTRS)

    Metschan, S.

    2000-01-01

    The objective of the Integral Airframe Structures (IAS) program was to demonstrate, for an integrally stiffened structural concept, performance and weight equal to "built-up" structure with lower manufacturing cost. This report presents results of the cost assessment for several design configuration/manufacturing method combinations. The attributes of various cost analysis models were evaluated and COSTRAN selected for this study. A process/design cost evaluation matrix was developed based on material, forming, machining, and assembly of structural sub-elements and assembled structure. A hybrid design, made from high-speed machined extruded frames that are mechanically fastened to high-speed machined plate skin/stringer panels, was identified as the most cost-effective manufacturing solution. Recurring labor and material costs of the hybrid design are up to 61 percent less than the current built-up technology baseline. This would correspond to a total cost reduction of $1.7 million per ship set for a 777-sized airplane. However, there are important outstanding issues with regard to the cost of capacity of high technology machinery, and the ability to cost-effectively provide surface finish acceptable to the commercial aircraft industry. The projected high raw material cost of large extrusions also played an important role in the trade-off between plate and extruded concepts.

  20. Abrasion behavior of aluminum and composite skin coupons, stiffened skins and stiffened panels representative of transport airplane structures

    NASA Technical Reports Server (NTRS)

    Jackson, K. E.

    1985-01-01

    A three-phase investigation was conducted to compare the friction and wear response of aluminum and graphite-epoxy composite materials when subjected to loading conditions similar to those experienced by the skin panels on the underside of a transport airplane during an emergency belly landing on a runway surface. The first phase involved a laboratory test which used a standard belt sander to provide the sliding abrasive surface. Small skin-coupon test specimens were abraded over a range of pressures and velocities to determine the effects of these variables on the coefficient of friction and wear rate. The second phase involved abrading I-beam stiffened skins on actual runway surface over the same range of pressures and velocities used in the first phase. In the third phase, large stiffened panels which most closely resembled transport fuelage skin construction were abraded on a runway surface. This report presents results from each phase of the investigation and shows comparisons between the friction and wear behavior of the aluminum and graphite-epoxy composite materials.

  1. Unitized Stiffened Composite Textile Panels: Manufacturing, Characterization, Experiments, and Analysis

    NASA Astrophysics Data System (ADS)

    Kosztowny, Cyrus Joseph Robert

    Use of carbon fiber textiles in complex manufacturing methods creates new implementations of structural components by increasing performance, lowering manufacturing costs, and making composites overall more attractive across industry. Advantages of textile composites include high area output, ease of handling during the manufacturing process, lower production costs per material used resulting from automation, and provide post-manufacturing assembly mainstreaming because significantly more complex geometries such as stiffened shell structures can be manufactured with fewer pieces. One significant challenge with using stiffened composite structures is stiffener separation under compression. Axial compression loading conditions have frequently observed catastrophic structural failure due to stiffeners separating from the shell skin. Characterizing stiffener separation behavior is often costly computationally and experimentally. The objectives of this research are to demonstrate unitized stiffened textile composite panels can be manufactured to produce quality test specimens, that existing characterization techniques applied to state-of-the-art high-performance composites provide valuable information in modeling such structures, that the unitized structure concept successfully removes stiffener separation as a primary structural failure mode, and that modeling textile material failure modes are sufficient to accurately capture postbuckling and final failure responses of the stiffened structures. The stiffened panels in this study have taken the integrally stiffened concept to an extent such that the stiffeners and skin are manufactured at the same time, as one single piece, and from the same composite textile layers. Stiffener separation is shown to be removed as a primary structural failure mode for unitized stiffened composite textile panels loaded under axial compression well into the postbuckling regime. Instead of stiffener separation, a material damaging and

  2. Handbook of structural stability part VI : strength of stiffened curved plates and shells

    NASA Technical Reports Server (NTRS)

    Becker, Herbert

    1958-01-01

    A comprehensive review of failure of stiffened curved plates and shells is presented. Panel instability in stiffened curved plates and general instability of stiffened cylinders are discussed. The loadings considered for the plates are axial, shear, and the combination of the two. For the cylinders, bending, external pressure, torsion, transverse shear, and combinations of these loads are considered. When possible, test data and theory were correlated. General instability in stiffened cylinders was investigated. For bending and torsion loads, test data and theory were correlated. For external pressure several existing theories were compared. As a result of this investigation a unified theoretical approach to analysis of general instability in stiffened cylinders was developed. (author)

  3. Analytical and experimental study of structurally efficient composite hat-stiffened panels loaded in axial compression

    NASA Technical Reports Server (NTRS)

    Williams, J. G.; Mikulas, M. M., Jr.

    1975-01-01

    Structural efficiency studies were made to determine the weight-saving potential of graphite/epoxy composite structures for compression panel applications. Minimum-weight hat-stiffened and open-corrugation configurations were synthesized using a nonlinear mathematical programing technique. Selected configurations were built and tested to study local and Euler buckling characteristics. Test results for 23 panels critical in local buckling and six panels critical in Euler buckling are compared with analytical results obtained using the BUCLASP-2 branched plate buckling program. A weight efficiency comparison is made between composite and aluminum compression panels using metal test data generated by the NACA. Theoretical studies indicate that potential weight savings of up to 50% are possible for composite hat-stiffened panels when compared with similar aluminum designs. Weight savings of 32% to 42% were experimentally achieved. Experience to date suggests that most of the theoretical weight-saving potential is available if design deficiencies are eliminated and strict fabrication control is exercised.

  4. Analytical and experimental study of structurally efficient composite hat-stiffened panels loaded in axial compression

    NASA Technical Reports Server (NTRS)

    Williams, J. G.; Mikulas, M. M., Jr.

    1975-01-01

    Structural efficiency studies were made to determine the weight-saving potential of graphite/epoxy composite structures for compression panel applications. Minimum-weight hat-stiffened and open-corrugation configurations were synthesized using a nonlinear mathematical programing technique. Selected configurations were built and tested to study local and Euler buckling characteristics. Test results for 23 panels critical in local buckling and six panels critical in Euler buckling are compared with analytical results obtained using the BUCLASP-2 branched plate buckling program. A weight efficiency comparison is made between composite and aluminum compression panels using metal test data generated by the NACA. Theoretical studies indicate that potential weight savings of up to 50% are possible for composite hat-stiffened panels when compared with similar aluminum designs. Weight savings of 32% to 42% were experimentally achieved. Experience to date suggests that most of the theoretical weight-saving potential is available if design deficiencies are eliminated and strict fabrication control is exercised.

  5. Handbook of structural stability part V : compressive strength of flat stiffened panels

    NASA Technical Reports Server (NTRS)

    Gerard, George

    1957-01-01

    A generalized crippling analysis for short monolithic panels with formed or extruded stiffeners is presented. Methods are presented for determining if riveted panels act in a monolithic manner and for determining the strength of those which do not. The failure modes of intermediate-length and long stiffened panels are discussed and methods given for estimating column strength. Theory and test data on optimum stiffened panels are presented and the various factors of importance in box types of construction are considered.

  6. Nonlinear Dynamic Behavior of Impact Damage in a Composite Skin-Stiffener Structure

    NASA Technical Reports Server (NTRS)

    Ooijevaar, T. H.; Rogge, M. D.; Loendersloot, R.; Warnet, L.; Akkerman, R.; deBoer, A.

    2013-01-01

    One of the key issues in composite structures for aircraft applications is the early identification of damage. Often, service induced damage does not involve visible plastic deformation, but internal matrix related damage, like delaminations. A wide range of technologies, comprising global vibration and local wave propagation methods can be employed for health monitoring purposes. Traditional low frequency modal analysis based methods are linear methods. The effectiveness of these methods is often limited since they rely on a stationary and linear approximation of the system. The nonlinear interaction between a low frequency wave field and a local impact induced skin-stiffener failure is experimentally demonstrated in this paper. The different mechanisms that are responsible for the nonlinearities (opening, closing and contact) of the distorted harmonic waveforms are separated with the help of phase portraits. A basic analytical model is employed to support the observations.

  7. Loss Factor Estimation Using the Impulse Response Decay Method on a Stiffened Structure

    NASA Technical Reports Server (NTRS)

    Cabell, Randolph; Schiller, Noah; Allen, Albert; Moeller, Mark

    2009-01-01

    High-frequency vibroacoustic modeling is typically performed using energy-based techniques such as Statistical Energy Analysis (SEA). Energy models require an estimate of the internal damping loss factor. Unfortunately, the loss factor is difficult to estimate analytically, and experimental methods such as the power injection method can require extensive measurements over the structure of interest. This paper discusses the implications of estimating damping loss factors using the impulse response decay method (IRDM) from a limited set of response measurements. An automated procedure for implementing IRDM is described and then evaluated using data from a finite element model of a stiffened, curved panel. Estimated loss factors are compared with loss factors computed using a power injection method and a manual curve fit. The paper discusses the sensitivity of the IRDM loss factor estimates to damping of connected subsystems and the number and location of points in the measurement ensemble.

  8. A substructuring approach for modeling the acoustic scattering from stiffened submerged shells coupled to non-axisymmetric internal structures.

    PubMed

    Meyer, Valentin; Maxit, Laurent; Audoly, Christian

    2016-09-01

    The scattered pressure from a stiffened axisymmetric submerged shell impinged by acoustic plane waves has been investigated experimentally, analytically and through numerical models. In the case where the shell is periodically stiffened, it is shown that helical, Bragg, and Bloch-Floquet waves can propagate. The influence of non-axisymmetric internal frames on these scattering phenomena is nevertheless not well known, as it can considerably increase the computational cost. To overcome this issue, the condensed transfer function (CTF) method, which has been developed to couple subsystems along linear junctions in the case of a mechanical excitation, is extended to acoustical excitations. It consists in approximating transfer functions on the junctions and deducing the behavior of the coupled system using the superposition principle and the continuity equations at the junctions. In particular, the CTF method can be used to couple a dedicated model of an axisymmetric stiffened submerged shell with non-axisymmetric internal structures modeled by the finite element method. Incident plane waves are introduced in the formulation and far-field reradiated pressure is estimated. An application consisting of a stiffened shell with curved plates connecting the ribs is considered. Supplementary Bloch-Floquet trajectories are observed in the frequency-angle spectrum and are explained using a simplified interference model.

  9. A Damage Tolerance Comparison of Composite Hat-Stiffened and Honeycomb Sandwich Structure for Launch Vehicle Interstage Applications

    NASA Technical Reports Server (NTRS)

    Nettles, A. T.

    2011-01-01

    In this study, a direct comparison of the compression-after-impact (CAI) strength of impact-damaged, hat-stiffened and honeycomb sandwich structure for launch vehicle use was made. The specimens used consisted of small substructure designed to carry a line load of approx..3,000 lb/in. Damage was inflicted upon the specimens via drop weight impact. Infrared thermography was used to examine the extent of planar damage in the specimens. The specimens were prepared for compression testing to obtain residual compression strength versus damage severity curves. Results show that when weight of the structure is factored in, both types of structure had about the same CAI strength for a given damage level. The main difference was that the hat-stiffened specimens exhibited a multiphase failure whereas the honeycomb sandwich structure failed catastrophically.

  10. Nonlinear dynamic behavior of an impact damaged composite skin-stiffener structure

    NASA Astrophysics Data System (ADS)

    Ooijevaar, T. H.; Rogge, M. D.; Loendersloot, R.; Warnet, L. L.; Akkerman, R.; Tinga, T.

    2015-09-01

    One of the key issues in composite structures for aircraft applications is the early identification of damage. Often, service induced damage does not involve visible plastic deformation, but internal matrix related damage. A wide range of technologies, comprising global vibration and local wave propagation methods, can be employed for health monitoring purposes. Traditional modal analysis based methods are linear methods. The effectiveness of these methods is sometimes limited since they rely on a stationary and linear description of the system. The nonlinear interaction between a low frequency wave field and a local impact induced damage in a composite skin-stiffener structure is experimentally demonstrated in this work. The different mechanisms linked to the distorted waveforms are separated with the help of phase portraits. The harmonic waveform distortions are concentrated at the damaged region and increased for higher excitation amplitudes. It is shown that linear damage identification methods are feasible for low excitation amplitudes, but that the presence of nonlinear dynamic effects cannot remain silent for higher amplitudes. Analyzing the damage induced nonlinear effects can provide useful information about the current state of the structure.

  11. Resin Flow of an Advanced Grid-Stiffened Composite Structure in the Co-Curing Process

    NASA Astrophysics Data System (ADS)

    Huang, Qizhong; Ren, Mingfa; Chen, Haoran

    2013-06-01

    The soft-mold aided co-curing process which cures the skin part and ribs part simultaneously was introduced for reducing the cost of advanced grid-stiffened composite structure (AGS). The co-curing process for a typical AGS, preformed by the prepreg AS4/3501-6, was simulated by a finite element program incorporated with the user-subroutines `thermo-chemical' module and the `chemical-flow' module. The variations of temperature, cure degree, resin pressure and fiber volume fraction of the AGS were predicted. It shows that the uniform distributions of temperature, cure degree and viscosity in the AGS would be disturbed by the unique geometrical pattern of AGS. There is an alternation in distribution of resin pressure at the interface between ribs and skin, and the duration time of resin flow is sensitive to the thickness of the AGS. To obtain a desired AGS, the process parameters of the co-curing process should be determined by the geometry of an AGS and the kinds of resin.

  12. Enzyme Induced Stiffening of Nanoparticle-Hydrogel Composites with Structural Color.

    PubMed

    Ayyub, Omar B; Kofinas, Peter

    2015-08-25

    The passive monitoring of biological environments by soft materials has a variety of nanobiotechnology applications; however, invoking distinct transitions in geometric, mechanical or optical properties remains a prevalent design challenge. We demonstrate here that close-packed nanoparticle-hydrogel composites can progress through a substantial shift in such properties by the use of a chemical-to-physical cross-link transition mediated by the catalytic activity of different proteases. Catalytic cleavage of the original hydrogel network structure initiates the self-assembled formation of a secondary, physically cross-linked network, causing a 1200% increase in storage modulus. Furthermore, this unique mechanism can be fabricated as a 3D photonic crystal with broad (∼240 nm), visible responses to the targeted enzymes. Moreover, the material provided threshold responses, requiring a certain extent of proteolytic activity before the transition occurred. This allowed for the fabrication of Boolean logic gates (OR and AND), which responded to a specific assortment of proteases. Ultimately, this mechanism enables the design of stimuli-responsive hydrogels, which can proceed through a secondary network formation, after an energetic barrier has been breached. Protease responsive hydrogel nanocomposites, described here, could offer avenues in degradation-stiffening and collapsing materials for a variety of biomaterial applications.

  13. Effect of bow-type initial imperfection on reliability of minimum-weight, stiffened structural panels

    NASA Technical Reports Server (NTRS)

    Stroud, W. Jefferson; Krishnamurthy, Thiagaraja; Sykes, Nancy P.; Elishakoff, Isaac

    1993-01-01

    Computations were performed to determine the effect of an overall bow-type imperfection on the reliability of structural panels under combined compression and shear loadings. A panel's reliability is the probability that it will perform the intended function - in this case, carry a given load without buckling or exceeding in-plane strain allowables. For a panel loaded in compression, a small initial bow can cause large bending stresses that reduce both the buckling load and the load at which strain allowables are exceeded; hence, the bow reduces the reliability of the panel. In this report, analytical studies on two stiffened panels quantified that effect. The bow is in the shape of a half-sine wave along the length of the panel. The size e of the bow at panel midlength is taken to be the single random variable. Several probability density distributions for e are examined to determine the sensitivity of the reliability to details of the bow statistics. In addition, the effects of quality control are explored with truncated distributions.

  14. Analysis of a hybrid balanced laminate as a structural material for thick composite beams with axial stiffeners

    SciTech Connect

    Modak, Partha; Hossain, M. Jamil Ahmed, S. Reaz

    2016-07-12

    An accurate stress analysis has been carried out to investigate the suitability of a hybrid balanced laminate as a structural material for thick composite beams with axial stiffeners. Three different balanced laminates composed of dissimilar ply material as well as fiber orientations are considered for a thick beam on simple supports with stiffened lateral ends. A displacement potential based elasticity approach is used to obtain the numerical solution of the corresponding elastic fields. The overall laminate stresses as well as individual ply stresses are analysed mainly in the perspective of laminate hybridization. Both the fiber material and ply angle of individual laminas are found to play dominant roles in defining the design stresses of the present composite beam.

  15. Force-driven evolution of mesoscale structure in engineered 3D microtissues and the modulation of tissue stiffening

    PubMed Central

    Zhao, Ruogang; Chen, Christopher S.; Reich, Daniel H.

    2014-01-01

    The complex structures of tissues determine their mechanical strength. In engineered tissues formed through self-assembly in a mold, artificially imposed boundary constraints have been found to induce anisotropic clustering of the cells and the extracellular matrix in local regions. To understand how such tissue remodeling at the intermediate length-scale (mesoscale) affects tissue stiffening, we used a novel microtissue mechanical testing system to manipulate the remodeling of the tissue structures and to measure the subsequent changes in tissue stiffness. Microtissues were formed through cell driven self-assembly of collagen matrix in arrays of micro-patterned wells, each containing two flexible micropillars that measured the microtissues’ contractile forces and also their elastic moduli via magnetic actuation. We manipulated tissue remodeling by inducing myofibroblast differentiation with TGF-β1, by varying the micropillar spring constants or by blocking cell contractility with blebbistatin and collagen cross-linking with BAPN. We showed that increased anisotropic compaction of the collagen matrix, caused by increased micropillar spring constant or elevated cell contraction force, contributed to tissue stiffening. Conversely, collagen matrix and tissue stiffness were not affected by inhibition of cell-generated contraction forces.. Together, these measurements showed that mesoscale tissue remodeling is an important middle step linking tissue compaction forces and tissue stiffening. PMID:24630092

  16. Innovative Manufacturing of Launch Vehicle Structures - Integrally Stiffened Cylinder Process

    NASA Technical Reports Server (NTRS)

    Wagner, John; Domack, Marcia; Tayon, Wesley; Bird, Richard K.

    2017-01-01

    Reducing launch costs is essential to ensuring the success of NASA's visions for planetary exploration and earth science, economical support of the International Space Station, and competitiveness of the U.S. commercial launch industry. Reducing launch vehicle manufacturing cost supports NASA's budget and technology development priorities.

  17. Strain stiffening in synthetic and biopolymer networks.

    PubMed

    Erk, Kendra A; Henderson, Kevin J; Shull, Kenneth R

    2010-05-10

    Strain-stiffening behavior common to biopolymer networks is difficult to reproduce in synthetic networks. Physically associating synthetic polymer networks can be an exception to this rule and can demonstrate strain-stiffening behavior at relatively low values of strain. Here, the stiffening behavior of model elastic networks of physically associating triblock copolymers is characterized by shear rheometry. Experiments demonstrate a clear correlation between network structure and strain-stiffening behavior. Stiffening is accurately captured by a constitutive model with a single fitting parameter related to the midblock length. The same model is also effective for describing the stiffening of actin, collagen, and other biopolymer networks. Our synthetic polymer networks could be useful model systems for biological materials due to (1) the observed similarity in strain-stiffening behavior, which can be quantified and related to network structure, and (2) the tunable structure of the physically associating network, which can be manipulated to yield a desired response.

  18. Structural Damage Identification in Stiffened Plate Fatigue Specimens Using Piezoelectric Active Sensing

    DTIC Science & Technology

    2011-09-01

    welded. The base plate and bulkhead material consist of 3/8 and 1/4 inch thick 5083-H116 aluminum, while the stiffeners are made of extruded 6061 - T6...and weld repair on crack propagation behaviour in aluminium alloy 5083 plates,” Materials & Design, 23(2):201-208. 8. Raghavan, A. and C. E. S

  19. Structural evaluation of curved stiffened composite panels fabricated using a THERM-Xsm process

    NASA Technical Reports Server (NTRS)

    Kassapoglou, Christos; Dinicola, Albert J.; Chou, Jack C.; Deaton, Jerry W.

    1991-01-01

    The use of composites in aircraft structures is often limited by material and manufacturing costs which, for some designs and applications, are prohibitively high. To increase the frequency of application of composites in primary airframe components alternative manufacturing processes are sought that reduce cost and/or enhance structural efficiency. One alternative process involves the use of THERM-Xsm as the pressure transfer medium during autoclave curing. THERM-Xsm, a silicon-based flow able polymer which behaves like a liquid under autoclave presssure, transmits quasi-hydrostatic pressure to all contacting surfaces of the part to be cured. Once the autoclave pressure is relieved, THERM-Xsm reverts back to the powdery solid state and can be reused many times. The THERM-Xsm process to be evaluated is depicted and consists of (1) enclosing the tool and part to be cured by a set of frames that create a box, (2) pouring THERM-Xsm powder onto the part and filling the box, and (3) placing a vacuum bag over the box assembly. In this program, a separating non-porous film (Teflon) was placed between the part to be cured and THERM-Xsm powder to avoid any contamination. The use of THERM-Xsm has two significant advantages over conventional manufacturing procedures. First, it eliminates complicated hard tooling since it guarantees uniform pressure transfer and thus, good compaction at complex structural details (such as frame-stiffener intersections and corners). Second, it greatly simplifies vacuum bagging, since once the part to be cured is covered by THERM-Xsm powder, the vacuum bag need only conform to a relatively flat shape reducing significantly the number of pleats required. A program is on-going at Sikorsky Aircraft to evaluate the structural performance of complex composite fuselage structures made with this THERM-Xsm process and to quantify the impact of THERM-Xsm on manufacturing labor hours and cost. The program involves fuselage panel optimization analysis, a

  20. Damage Tolerance of Integral Structure in Rotorcraft

    NASA Technical Reports Server (NTRS)

    Forth, Scott C.; Urban, Michael R.

    2003-01-01

    The rotorcraft industry has rapidly implemented integral structures into aircraft to benefit from the weight and cost advantages over traditionally riveted structure. The cost to manufacture an integral structure, where the entire component is machined from a single plate of material, is about one-fifth that of a riveted structure. Furthermore, the integral structure can weigh only one-half that of a riveted structure through optimal design of stiffening structure and part reduction. Finally, inspection and repair of damage in the field can be less costly than riveted structure. There are no rivet heads to inspect under, reducing inspection time, and damage can be removed or patched readily without altering the primary structure, reducing replacement or repair costs. In this paper, the authors will investigate the damage tolerance implications of fielding an integral structure manufactured from thick plate aluminum.

  1. Stripe-PZT Sensor-Based Baseline-Free Crack Diagnosis in a Structure with a Welded Stiffener

    PubMed Central

    An, Yun-Kyu; Shen, Zhiqi; Wu, Zhishen

    2016-01-01

    This paper proposes a stripe-PZT sensor-based baseline-free crack diagnosis technique in the heat affected zone (HAZ) of a structure with a welded stiffener. The proposed technique enables one to identify and localize a crack in the HAZ using only current data measured using a stripe-PZT sensor. The use of the stripe-PZT sensor makes it possible to significantly improve the applicability to real structures and minimize man-made errors associated with the installation process by embedding multiple piezoelectric sensors onto a printed circuit board. Moreover, a new frequency-wavenumber analysis-based baseline-free crack diagnosis algorithm minimizes false alarms caused by environmental variations by avoiding simple comparison with the baseline data accumulated from the pristine condition of a target structure. The proposed technique is numerically as well as experimentally validated using a plate-like structure with a welded stiffener, reveling that it successfully identifies and localizes a crack in HAZ. PMID:27649200

  2. Advanced grid-stiffened composite shells for applications in heavy-lift helicopter rotor blade spars

    NASA Astrophysics Data System (ADS)

    Narayanan Nampy, Sreenivas

    Modern rotor blades are constructed using composite materials to exploit their superior structural performance compared to metals. Helicopter rotor blade spars are conventionally designed as monocoque structures. Blades of the proposed Heavy Lift Helicopter are envisioned to be as heavy as 800 lbs when designed using the monocoque spar design. A new and innovative design is proposed to replace the conventional spar designs with light weight grid-stiffened composite shell. Composite stiffened shells have been known to provide excellent strength to weight ratio and damage tolerance with an excellent potential to reduce weight. Conventional stringer--rib stiffened construction is not suitable for rotor blade spars since they are limited in generating high torsion stiffness that is required for aeroelastic stability of the rotor. As a result, off-axis (helical) stiffeners must be provided. This is a new design space where innovative modeling techniques are needed. The structural behavior of grid-stiffened structures under axial, bending, and torsion loads, typically experienced by rotor blades need to be accurately predicted. The overall objective of the present research is to develop and integrate the necessary design analysis tools to conduct a feasibility study in employing grid-stiffened shells for heavy-lift rotor blade spars. Upon evaluating the limitations in state-of-the-art analytical models in predicting the axial, bending, and torsion stiffness coefficients of grid and grid-stiffened structures, a new analytical model was developed. The new analytical model based on the smeared stiffness approach was developed employing the stiffness matrices of the constituent members of the grid structure such as an arch, helical, or straight beam representing circumferential, helical, and longitudinal stiffeners. This analysis has the capability to model various stiffening configurations such as angle-grid, ortho-grid, and general-grid. Analyses were performed using an

  3. Structural Stability of a Stiffened Aluminum Fuselage Panel Subjected to Combined Mechanical and Internal Pressure Loads

    NASA Technical Reports Server (NTRS)

    Rouse, Marshall; Young, Richard D.; Gehrki, Ralph R.

    2003-01-01

    Results from an experimental and analytical study of a curved stiffened aluminum panel subjected to combined mechanical and internal pressure loads are presented. The panel loading conditions were simulated using a D-box test fixture. Analytical buckling load results calculated from a finite element analysis are presented and compared to experimental results. Buckling results presented indicate that the buckling load of the fuselage panel is significantly influenced by internal pressure loading. The experimental results suggest that the stress distribution is uniform in the panel prior to buckling. Nonlinear finite element analysis results correlates well with experimental results up to buckling.

  4. Buckling of open-section bead-stiffened composite panels

    NASA Astrophysics Data System (ADS)

    Laananen, D. H.; Renze, S. P.

    Stiffened panels are structures that can be designed to efficiently support inplane compression, bending, and shear loads. Although the stiffeners are usually discrete elements which are fastened or bonded to a flat or continuously curved plate, manufacturing methods such as thermoforming allow integral formation of the stiffeners in a panel. Such a configuration offers potential advantages in terms of a reduced number of parts and manufacturing operations. For thermoplastic composite panels stiffened by integrally formed open-section beads, the effects of bead spacing and bend cross-section geometry on the initiation of buckling under uniaxial compression and uniform shear loading were investigated. Finite elements results for a range of stiffened panel sizes and bead geometries are presented and compared with approximate closed-form solutions based on an effective flat plate size. Experimental verification of analytical predictions for one of the shear panels and one of the compression panels is described. Compensation of the forming tool to reduce the degree of initial curvature of the panels was found to be necessary.

  5. Optimal Design of Grid-Stiffened Panels and Shells With Variable Curvature

    NASA Technical Reports Server (NTRS)

    Ambur, Damodar R.; Jaunky, Navin

    2001-01-01

    A design strategy for optimal design of composite grid-stiffened structures with variable curvature subjected to global and local buckling constraints is developed using a discrete optimizer. An improved smeared stiffener theory is used for the global buckling analysis. Local buckling of skin segments is assessed using a Rayleigh-Ritz method that accounts for material anisotropy and transverse shear flexibility. The local buckling of stiffener segments is also assessed. Design variables are the axial and transverse stiffener spacing, stiffener height and thickness, skin laminate, and stiffening configuration. Stiffening configuration is herein defined as a design variable that indicates the combination of axial, transverse and diagonal stiffeners in the stiffened panel. The design optimization process is adapted to identify the lightest-weight stiffening configuration and stiffener spacing for grid-stiffened composite panels given the overall panel dimensions. in-plane design loads, material properties. and boundary conditions of the grid-stiffened panel or shell.

  6. Optimal Design of Grid-Stiffened Panels and Shells With Variable Curvature

    NASA Technical Reports Server (NTRS)

    Ambur, Damodar R.; Jaunky, Navin

    2001-01-01

    A design strategy for optimal design of composite grid-stiffened structures with variable curvature subjected to global and local buckling constraints is developed using a discrete optimizer. An improved smeared stiffener theory is used for the global buckling analysis. Local buckling of skin segments is assessed using a Rayleigh-Ritz method that accounts for material anisotropy and transverse shear flexibility. The local buckling of stiffener segments is also assessed. Design variables are the axial and transverse stiffener spacing, stiffener height and thickness, skin laminate, and stiffening configuration. Stiffening configuration is herein defined as a design variable that indicates the combination of axial, transverse and diagonal stiffeners in the stiffened panel. The design optimization process is adapted to identify the lightest-weight stiffening configuration and stiffener spacing for grid-stiffened composite panels given the overall panel dimensions. in-plane design loads, material properties. and boundary conditions of the grid-stiffened panel or shell.

  7. Design, testing, and damage tolerance study of bonded stiffened composite wing cover panels

    NASA Technical Reports Server (NTRS)

    Madan, Ram C.; Sutton, Jason O.

    1988-01-01

    Results are presented from the application of damage tolerance criteria for composite panels to multistringer composite wing cover panels developed under NASA's Composite Transport Wing Technology Development contract. This conceptual wing design integrated aeroelastic stiffness constraints with an enhanced damage tolerance material system, in order to yield optimized producibility and structural performance. Damage tolerance was demonstrated in a test program using full-sized cover panel subcomponents; panel skins were impacted at midbay between stiffeners, directly over a stiffener, and over the stiffener flange edge. None of the impacts produced visible damage. NASTRAN analyses were performed to simulate NDI-detected invisible damage.

  8. Micro-Raman study on the softening and stiffening of phonons in rutile titanium dioxide film: Competing effects of structural defects, crystallite size, and lattice strain

    SciTech Connect

    Gautam, Subodh K.; Singh, Fouran Sulania, I.; Kulriya, P. K.; Singh, R. G.; Pippel, E.

    2014-04-14

    Softening and stiffening of phonons in rutile titanium dioxide films are investigated by in situ micro-Raman studies during energetic ion irradiation. The in situ study minimized other possible mechanisms of phonon dynamics. Initial softening and broadening of Raman shift are attributed to the phonon confinement by structural defects and loss of stoichiometry. The stiffening of A{sub 1g} mode is ascribed to large distortion of TiO{sub 6} octahedra under the influence of lattice strain in the (110) plane, which gives rise to lengthening of equatorial Ti-O bond and shortening of apical Ti-O bond. The shortening of apical Ti-O bond induces stiffening of A{sub 1g} mode in the framework of the bond-order-length-strength correlation mechanism.

  9. Formulas for the elastic constants of plates with integral waffle-like stiffening

    NASA Technical Reports Server (NTRS)

    Dow, Norris R; Libove, Charles; Hubka, Ralph E

    1954-01-01

    Formulas are derived for the fifteen elastic constants associated with bending, stretching, twisting, and shearing of plates with closely spaced integral ribbing in a variety of configurations and proportions. In the derivation the plates are considered, conceptually, as more uniform orthotropic plates somewhat on the order of plywood. The constants, which include the effectiveness of the ribs for resisting deformations other than bending and stretching in their longitudinal directions, are defined in terms of four coefficients, and theoretical and experimental methods for the evaluation of these coefficients are discussed. Four of the more important elastic constants are predicted by these formulas and are compared with test results. Good correlation is obtained. (author)

  10. Structural basis for biologically relevant mechanical stiffening of a virus capsid by cavity-creating or spacefilling mutations.

    PubMed

    Guerra, Pablo; Valbuena, Alejandro; Querol-Audí, Jordi; Silva, Cristina; Castellanos, Milagros; Rodríguez-Huete, Alicia; Garriga, Damià; Mateu, Mauricio G; Verdaguer, Nuria

    2017-06-22

    Recent studies reveal that the mechanical properties of virus particles may have been shaped by evolution to facilitate virus survival. Manipulation of the mechanical behavior of virus capsids is leading to a better understanding of viral infection, and to the development of virus-based nanoparticles with improved mechanical properties for nanotechnological applications. In the minute virus of mice (MVM), deleterious mutations around capsid pores involved in infection-related translocation events invariably increased local mechanical stiffness and interfered with pore-associated dynamics. To provide atomic-resolution insights into biologically relevant changes in virus capsid mechanics, we have determined by X-ray crystallography the structural effects of deleterious, mechanically stiffening mutations around the capsid pores. Data show that the cavity-creating N170A mutation at the pore wall does not induce any dramatic structural change around the pores, but instead generates subtle rearrangements that propagate throughout the capsid, resulting in a more compact, less flexible structure. Analysis of the spacefilling L172W mutation revealed the same relationship between increased stiffness and compacted capsid structure. Implications for understanding connections between virus mechanics, structure, dynamics and infectivity, and for engineering modified virus-based nanoparticles, are discussed.

  11. Analytical comparison of three stiffened panel concepts

    NASA Technical Reports Server (NTRS)

    Maloney, Jill M.; Wu, K. Chauncey; Robinson, James C.

    1995-01-01

    Three stiffened panel concepts are evaluated to find optimized designs for integral stiffeners in the barrels of Reusable Launch Vehicle fuel tanks. The three panel concepts considered are a T-stiffened panel, a panel with one blade stiffener centered between each pair of T-stiffeners, and a panel with two blade stiffeners equally spaced between each pair of T-stiffeners. The panels are optimized using PASCO for a range of compressive loads, and the computed areal weight for each panel is used to compare the concepts and predict tank weights. The areal weight of the T-stiffened panel with one blade is up to seven-percent lower than the other panel concepts. Two tank construction methods are compared for a representative tank design with three barrels. In the first method, 45-degree circumferential sections of a barrel are each designed to carry the same maximum load in the barrel. In the second method, each barrel section is designed for the maximum load in that section. Representative tanks designed with the first method are over 250 lb heavier than tanks designed using the second method. Optimized panel designs and areal weights are also computed for variation of the nominal panel length and skin thickness.

  12. Synthesis of stiffened conical shells.

    NASA Technical Reports Server (NTRS)

    Thornton, W. A.

    1972-01-01

    The development of a method to effect the automated minimum weight design of ring and stringer stiffened shells is presented. Membrane theory is used for the shell prebuckling analysis. The buckling analysis is based upon an arbitrary shell of revolution computer program. The structural analysis includes both buckling and yielding modes of failure. The synthesis involves the coupling of an exterior penalty function with a method for the unconstrained minimization of a function comprised of a sum of squares. Results of the application of the method to the design of the Viking Aeroshell cone are presented. The least weight Viking Aeroshell appears to be an all magnesium shell with ring stiffeners of hollow circular cross section. Because the method incorporates a general shell of revolution buckling analysis, it can be readily modified and applied to the design of any axisymmetrically loaded uniformly stiffened shell of revolution for which a membrane prebuckling solution exists.

  13. Predicting welding distortion in a panel structure with longitudinal stiffeners using inherent deformations obtained by inverse analysis method.

    PubMed

    Liang, Wei; Murakawa, Hidekazu

    2014-01-01

    Welding-induced deformation not only negatively affects dimension accuracy but also degrades the performance of product. If welding deformation can be accurately predicted beforehand, the predictions will be helpful for finding effective methods to improve manufacturing accuracy. Till now, there are two kinds of finite element method (FEM) which can be used to simulate welding deformation. One is the thermal elastic plastic FEM and the other is elastic FEM based on inherent strain theory. The former only can be used to calculate welding deformation for small or medium scale welded structures due to the limitation of computing speed. On the other hand, the latter is an effective method to estimate the total welding distortion for large and complex welded structures even though it neglects the detailed welding process. When the elastic FEM is used to calculate the welding-induced deformation for a large structure, the inherent deformations in each typical joint should be obtained beforehand. In this paper, a new method based on inverse analysis was proposed to obtain the inherent deformations for weld joints. Through introducing the inherent deformations obtained by the proposed method into the elastic FEM based on inherent strain theory, we predicted the welding deformation of a panel structure with two longitudinal stiffeners. In addition, experiments were carried out to verify the simulation results.

  14. Predicting Welding Distortion in a Panel Structure with Longitudinal Stiffeners Using Inherent Deformations Obtained by Inverse Analysis Method

    PubMed Central

    Liang, Wei; Murakawa, Hidekazu

    2014-01-01

    Welding-induced deformation not only negatively affects dimension accuracy but also degrades the performance of product. If welding deformation can be accurately predicted beforehand, the predictions will be helpful for finding effective methods to improve manufacturing accuracy. Till now, there are two kinds of finite element method (FEM) which can be used to simulate welding deformation. One is the thermal elastic plastic FEM and the other is elastic FEM based on inherent strain theory. The former only can be used to calculate welding deformation for small or medium scale welded structures due to the limitation of computing speed. On the other hand, the latter is an effective method to estimate the total welding distortion for large and complex welded structures even though it neglects the detailed welding process. When the elastic FEM is used to calculate the welding-induced deformation for a large structure, the inherent deformations in each typical joint should be obtained beforehand. In this paper, a new method based on inverse analysis was proposed to obtain the inherent deformations for weld joints. Through introducing the inherent deformations obtained by the proposed method into the elastic FEM based on inherent strain theory, we predicted the welding deformation of a panel structure with two longitudinal stiffeners. In addition, experiments were carried out to verify the simulation results. PMID:25276856

  15. Unified procedure for the nonlinear finite-element analysis of concrete structures based on a new model for tension stiffening

    SciTech Connect

    Ojdrovic, N.P.

    1988-01-01

    A unified procedure for the analysis of reinforced, partially prestressed, and prestressed concrete frames was formulated. Reinforced concrete is treated as a special case of prestressed concrete with zero prestressing force. A large variety of structures can be analyzed, from simple reinforced concrete beams, to reinforced or prestressed concrete frames, to structures whose various parts are made of different materials. Pretensioning and posttensioning with bonded and unbonded tendons are considered. The finite-element method based on the displacement formulation is used to solve the system of nonlinear equilibrium equations. Geometric and material nonlinearities are considered. Large displacements are accounted for using an updated Lagrangian formulation. The nonlinear behavior of concrete in compression is modeled using the Hognestad's parabola. Reinforcing steel is modeled as an elastic-perfectly plastic materials. To account for tension stiffening, a new model for the stress-strain relationship for concrete in tension is proposed. Results obtained in the numerical analyses show good agreement with experiments, although the proposed stress-strain model is based on only one concrete parameter, compressive strength.

  16. BUCLASP 3: A computer program for stresses and buckling of heated composite stiffened panels and other structures, user's manual

    NASA Technical Reports Server (NTRS)

    Tripp, L. L.; Tamekuni, M.; Viswanathan, A. V.

    1973-01-01

    The use of the computer program BUCLASP3 is described. The code is intended for thermal stress and instability analyses of structures such as unidirectionally stiffened panels. There are two types of instability analyses that can be effected by PAINT; (1) thermal buckling, and (2) buckling due to a specified inplane biaxial loading. Any structure that has a constant cross section in one direction, that may be idealized as an assemblage of beam elements and laminated flat and curved plate strip-elements can be analyzed. The two parallel ends of the panel must be simply supported, whereas arbitrary elastic boundary conditions may be imposed along any one or both external longitudinal side. Any variation in the temperature rise (from ambient) through the cross section of a panel is considered in the analyses but it must be assumed that in the longitudinal direction the temperature field is constant. Load distributions for the externally applied inplane biaxial loads are similar in nature to the permissible temperature field.

  17. Progressive Damage and Fracture of Unstiffened and Stiffened Composite Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Minnetyan, Levon; Gotsis, Pascal K.; Chamis, Christos C.

    1997-01-01

    Structural durability and damage tolerance characteristics of pressurized graphite/epoxy laminated thin composite cylinders are investigated via computational simulation. Both unstiffened and integral hoop stiffened cylinders are considered. A computer code is utilized for the simulation of composite structural degradation under loading. Damage initiation, growth, accumulation, and propagation to structural fracture are included in the simulation. The increase of burst pressure due to hoop stiffening is quantified. Results demonstrate the significance of the type and size of local defects on the structural durability of pressurized composite cylindrical shells.

  18. Graphite/epoxy composite stiffened panel fabrication development

    NASA Technical Reports Server (NTRS)

    Palmer, R. J.

    1984-01-01

    This report describes the manufacturing development procedures used to fabricate a series of carbon/epoxy panels with integrally molded stiffeners. Panel size was started at 6 inches by 18 inches and one stiffener and increased to 30 inches by 60 inches and six integral stiffeners. Stiffener concepts were optimized for minimum weight (or mass) to carry stress levels from 1500 lbs/inch to 25,000 lbs/inch compression load. Designs were created and manufactured with a stiffener configuration of integrally molded hat, J, I, sine wave I, solid blade, and honeycomb blade shapes. Successful and unsuccessful detail methods of tooling, lay-up methods, and bagging methods are documented. Recommendations are made for the best state-of-the-art manufacturing technique developed for type of stiffener construction.

  19. Matrix stiffening promotes a tumor vasculature phenotype

    PubMed Central

    Bordeleau, Francois; Mason, Brooke N.; Lollis, Emmanuel Macklin; Mazzola, Michael; Zanotelli, Matthew R.; Somasegar, Sahana; Califano, Joseph P.; Montague, Christine; LaValley, Danielle J.; Huynh, John; Mencia-Trinchant, Nuria; Negrón Abril, Yashira L.; Hassane, Duane C.; Bonassar, Lawrence J.; Butcher, Jonathan T.; Weiss, Robert S.; Reinhart-King, Cynthia A.

    2017-01-01

    Tumor microvasculature tends to be malformed, more permeable, and more tortuous than vessels in healthy tissue, effects that have been largely attributed to up-regulated VEGF expression. However, tumor tissue tends to stiffen during solid tumor progression, and tissue stiffness is known to alter cell behaviors including proliferation, migration, and cell–cell adhesion, which are all requisite for angiogenesis. Using in vitro, in vivo, and ex ovo models, we investigated the effects of matrix stiffness on vessel growth and integrity during angiogenesis. Our data indicate that angiogenic outgrowth, invasion, and neovessel branching increase with matrix cross-linking. These effects are caused by increased matrix stiffness independent of matrix density, because increased matrix density results in decreased angiogenesis. Notably, matrix stiffness up-regulates matrix metalloproteinase (MMP) activity, and inhibiting MMPs significantly reduces angiogenic outgrowth in stiffer cross-linked gels. To investigate the functional significance of altered endothelial cell behavior in response to matrix stiffness, we measured endothelial cell barrier function on substrates mimicking the stiffness of healthy and tumor tissue. Our data indicate that barrier function is impaired and the localization of vascular endothelial cadherin is altered as function of matrix stiffness. These results demonstrate that matrix stiffness, separately from matrix density, can alter vascular growth and integrity, mimicking the changes that exist in tumor vasculature. These data suggest that therapeutically targeting tumor stiffness or the endothelial cell response to tumor stiffening may help restore vessel structure, minimize metastasis, and aid in drug delivery. PMID:28034921

  20. Key techniques and applications of adaptive growth method for stiffener layout design of plates and shells

    NASA Astrophysics Data System (ADS)

    Ding, Xiaohong; Ji, Xuerong; Ma, Man; Hou, Jianyun

    2013-11-01

    The application of the adaptive growth method is limited because several key techniques during the design process need manual intervention of designers. Key techniques of the method including the ground structure construction and seed selection are studied, so as to make it possible to improve the effectiveness and applicability of the adaptive growth method in stiffener layout design optimization of plates and shells. Three schemes of ground structures, which are comprised by different shell elements and beam elements, are proposed. It is found that the main stiffener layouts resulted from different ground structures are almost the same, but the ground structure comprised by 8-nodes shell elements and both 3-nodes and 2-nodes beam elements can result in clearest stiffener layout, and has good adaptability and low computational cost. An automatic seed selection approach is proposed, which is based on such selection rules that the seeds should be positioned on where the structural strain energy is great for the minimum compliance problem, and satisfy the dispersancy requirement. The adaptive growth method with the suggested key techniques is integrated into an ANSYS-based program, which provides a design tool for the stiffener layout design optimization of plates and shells. Typical design examples, including plate and shell structures to achieve minimum compliance and maximum bulking stability are illustrated. In addition, as a practical mechanical structural design example, the stiffener layout of an inlet structure for a large-scale electrostatic precipitator is also demonstrated. The design results show that the adaptive growth method integrated with the suggested key techniques can effectively and flexibly deal with stiffener layout design problem for plates and shells with complex geometrical shape and loading conditions to achieve various design objectives, thus it provides a new solution method for engineering structural topology design optimization.

  1. Elastic buckling analysis for composite stiffened panels and other structures subjected to biaxial inplane loads

    NASA Technical Reports Server (NTRS)

    Viswanathan, A. V.; Tamekuni, M.

    1973-01-01

    An exact linear analysis method is presented for predicting buckling of structures with arbitrary uniform cross section. The structure is idealized as an assemblage of laminated plate-strip elements, curved and planar, and beam elements. Element edges normal to the longitudinal axes are assumed to be simply supported. Arbitrary boundary conditions may be specified on any external longitudinal edge of plate-strip elements. The structure or selected elements may be loaded in any desired combination of inplane transverse compression or tension side load and axial compression load. The analysis simultaneously considers all possible modes of instability and is applicable for the buckling of laminated composite structures. Numerical results correlate well with the results of previous analysis methods.

  2. Dynamic buckling of stiffened plates subjected to explosion impact loads

    NASA Astrophysics Data System (ADS)

    Wang, J.; Guo, J.; Yao, X. L.; Zhang, A. M.

    2017-01-01

    The dynamic buckling characteristics and criteria of a ship's structural stiffened plate subjected to underwater explosion impact loads are investigated in this study. Using the structural deformations observed in the experiments of underwater explosions against a plated grillage model, the mode shapes of the dynamic buckling were obtained. Through the construction of a computational model of stiffened plates subjected to an underwater explosion shock wave, the impact load was theoretically calculated and transformed into a rectangular pulse. According to the different response patterns of stiffened plates under different impact loads, a dynamic buckling criterion for the stiffened plates subjected to an explosion shock wave was proposed. Additionally, the static buckling phenomenon in the stiffened plates was analysed based on the minimum excess principle. In combination with the dynamic buckling criterion, the effects of various stiffening configurations on the dynamic and static buckling loads are discussed. The calculation results show that when the equivalent rectangular pulse is 2-3 times that of the static buckling load, the responses of the stiffened plates under the original shock load and the equivalent rectangular pulse are virtually identical. The impact load amplitude is the primary influencing factor in the dynamic buckling of stiffened plates subjected to underwater explosive impact loads. The stiffened plate aspect ratio has a substantial influence on the dynamic load factor. The analytical method and results are presented, which can be used to design stiffened optimum hull structures to enhance the dynamic load carrying capacity to withstand underwater shock damage.

  3. Analytical Study of Transmission of Load from Skin to Stiffeners and Rings of Pressurized Cabin Structure

    DTIC Science & Technology

    1945-10-01

    34 (reference1 2),f %•$ ~o.f. •tt>&e same .tjjpe of all-metal structure as the Lockheed, circular in section, with alumi- num- alloy rings, partition...in- the belt ’frame« - 񔅐 psi versus 6660 calculated; longitudinal s&i’n ’-- 477𔃺’ psi"• versus- D&SO calculated-; and eircumf V/-en-t’ial

  4. Some computational tools for the analysis of through cracks in stiffened fuselage shells

    NASA Astrophysics Data System (ADS)

    Rankin, C. C.; Brogan, F. A.; Riks, E.

    1992-10-01

    A method for computing the energy release rate for cracks of varying length in a typical stiffened metallic fuselage under general loading conditions is presented. Reliable analytical methods that predict the structural integrity and residual strength of aircraft fuselage structures containing cracks are needed to help to understand the behavior of pressurized stiffened shells with damage, to determine the safe life of such a shell. The models used in the simulation are derived from an extensive analysis of a fuselage barrel section subjected to operational flight loads. Energy release rates are computed as a function of the length of the crack, its location, and the crack propagation mode.

  5. Experimental study on behavior of GFRP stiffened panels under compression

    NASA Astrophysics Data System (ADS)

    Kankeri, Pradeep; Ganesh Mahidhar, P. K.; Prakash, S. Suriya; Ramji, M.

    2015-03-01

    Glass Fiber Reinforced Polymer (GFRP) materials are extensively used in the aerospace and marine industries because of their high strength and stiffness to weight ratio and excellent corrosion resistance. Stiffened panels are commonly used in aircraft wing and fuselage parts. The present study focuses on the behavior of composite stiffened panels under compressive loading. With the introduction of stiffeners to unstiffened composite plates, the structural stiffness of the panel increases resulting in higher strength and stiffness. Studies in the past have shown that the critical structural failure mode under compressive loading of a stiffened composite panel is by local buckling. The present study attempts to evaluate the mechanical behavior of composite stiffened panels under compression using blade stiffener configuration and in particular on the behavior of the skin- stiffener interface through experimental testing. A novel test fixture is developed for experimental testing of GFRP stiffened panels. A non-contact whole field strain analysis technique called digital image correlation (DIC) is used for capturing the strain and damage mechanisms. Blade stiffeners increased the strength, stiffness and reduced the out-of plane displacement at failure. The failure of both the unstiffened and stiffened panels was through local buckling rather than through material failure. DIC was able to capture the strain localization and buckling failure modes.

  6. Effect of Buckling Modes on the Fatigue Life and Damage Tolerance of Stiffened Structures

    NASA Technical Reports Server (NTRS)

    Davila, Carlos G.; Bisagni, Chiara; Rose, Cheryl A.

    2015-01-01

    The postbuckling response and the collapse of composite specimens with a co-cured hat stringer are investigated experimentally and numerically. These specimens are designed to evaluate the postbuckling response and the effect of an embedded defect on the collapse load and the mode of failure. Tests performed using controlled conditions and detailed instrumentation demonstrate that the damage tolerance, fatigue life, and collapse loads are closely tied with the mode of the postbuckling deformation, which can be different between two nominally identical specimens. Modes that tend to open skin/stringer defects are the most damaging to the structure. However, skin/stringer bond defects can also propagate under shearing modes. In the proposed paper, the effects of initial shape imperfections on the postbuckling modes and the interaction between different postbuckling deformations and the propagation of skin/stringer bond defects under quasi-static or fatigue loads will be examined.

  7. Functionally Distinct Tendons From Elastin Haploinsufficient Mice Exhibit Mild Stiffening and Tendon-Specific Structural Alteration.

    PubMed

    Eekhoff, Jeremy D; Fang, Fei; Kahan, Lindsey G; Espinosa, Gabriela; Cocciolone, Austin J; Wagenseil, Jessica E; Mecham, Robert P; Lake, Spencer P

    2017-11-01

    Elastic fibers are present in low quantities in tendon, where they are located both within fascicles near tenocytes and more broadly in the interfascicular matrix (IFM). While elastic fibers have long been known to be significant in the mechanics of elastin-rich tissue (i.e., vasculature, skin, lungs), recent studies have suggested a mechanical role for elastic fibers in tendons that is dependent on specific tendon function. However, the exact contribution of elastin to properties of different types of tendons (e.g., positional, energy-storing) remains unknown. Therefore, this study purposed to evaluate the role of elastin in the mechanical properties and collagen alignment of functionally distinct supraspinatus tendons (SSTs) and Achilles tendons (ATs) from elastin haploinsufficient (HET) and wild type (WT) mice. Despite the significant decrease in elastin in HET tendons, a slight increase in linear stiffness of both tendons was the only significant mechanical effect of elastin haploinsufficiency. Additionally, there were significant changes in collagen nanostructure and subtle alteration to collagen alignment in the AT but not the SST. Hence, elastin may play only a minor role in tendon mechanical properties. Alternatively, larger changes to tendon mechanics may have been mitigated by developmental compensation of HET tendons and/or the role of elastic fibers may be less prominent in smaller mouse tendons compared to the larger bovine and human tendons evaluated in previous studies. Further research will be necessary to fully elucidate the influence of various elastic fiber components on structure-function relationships in functionally distinct tendons.

  8. Analysis of Composite Panel-Stiffener Debonding Using a Shell/3D Modeling Technique

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald; Ratcliffe, James; Minguet, Pierre J.

    2007-01-01

    Interlaminar fracture mechanics has proven useful for characterizing the onset of delaminations in composites and has been used successfully primarily to investigate onset in fracture toughness specimens and laboratory size coupon type specimens. Future acceptance of the methodology by industry and certification authorities, however, requires the successful demonstration of the methodology on the structural level. For this purpose, a panel was selected that is reinforced with stiffeners. Shear loading causes the panel to buckle, and the resulting out-of-plane deformations initiate skin/stiffener separation at the location of an embedded defect. A small section of the stiffener foot, web and noodle as well as the panel skin in the vicinity of the delamination front were modeled with a local 3D solid model. Across the width of the stiffener foot, the mixedmode strain energy release rates were calculated using the virtual crack closure technique. A failure index was calculated by correlating the results with a mixed-mode failure criterion of the graphite/epoxy material. Computed failure indices were compared to corresponding results where the entire web was modeled with shell elements and only a small section of the stiffener foot and panel were modeled locally with solid elements. Including the stiffener web in the local 3D solid model increased the computed failure index. Further including the noodle and transition radius in the local 3D solid model changed the local distribution across the width. The magnitude of the failure index decreased with increasing transition radius and noodle area. For the transition radii modeled, the material properties used for the noodle area had a negligible effect on the results. The results of this study are intended to be used as a guide for conducting finite element and fracture mechanics analyses of delamination and debonding in complex structures such as integrally stiffened panels.

  9. Progressive Fracture of Laminated Fiber-Reinforced Composite Stiffened Plate Under Pressure

    NASA Technical Reports Server (NTRS)

    Gotsis, Pascalis K.; Abdi, Frank; Chamis, Christos C.; Tsouros, Konstantinos

    2007-01-01

    S-Glass/epoxy laminated fiber-reinforced composite stiffened plate structure with laminate configuration (0/90)5 was simulated to investigate damage and fracture progression, under uniform pressure. For comparison reasons a simple plate was examined, in addition with the stiffened plate. An integrated computer code was used for the simulation. The damage initiation began with matrix failure in tension, continuous with damage and/or fracture progression as a result of additional matrix failure and fiber fracture and followed by additional interply delamination. Fracture through the thickness began when the damage accumulation was 90%. After that stage, the cracks propagate rapidly and the structures collapse. The collapse load for the simple plate is 21.57 MPa (3120 psi) and for the stiffened plate 25.24 MPa (3660 psi).

  10. Numerical analysis of stiffened shells of revolution. Volume 2: Users' manual for STAR-02S - shell theory automated for rotational structures - 2 (statics), digital computer program

    NASA Technical Reports Server (NTRS)

    Svalbonas, V.

    1973-01-01

    A procedure for the structural analysis of stiffened shells of revolution is presented. A digital computer program based on the Love-Reissner first order shell theory was developed. The computer program can analyze orthotropic thin shells of revolution, subjected to unsymmetric distributed loading or concentrated line loads, as well as thermal strains. The geometrical shapes of the shells which may be analyzed are described. The shell wall cross section can be a sheet, sandwich, or reinforced sheet or sandwich. General stiffness input options are also available.

  11. Experimental behavior of graphite-epoxy Y-stiffened specimens loaded in compression

    NASA Technical Reports Server (NTRS)

    Sydow, P. Daniel; Shuart, Mark J.

    1992-01-01

    An experimental investigation of the behavior of graphite-epoxy Y-stiffened specimens loaded in compression is presented. Experimental results are presented for element specimens with a single stiffener and for panel specimens with three stiffeners. Response and failure characteristics of the specimens are described. Effects of impact damage on structural response for both specimen configurations are also presented. Experimental results indicate that impact location may significantly affect the residual strength of the Y-stiffened specimens. The failure results indicate that the critical failure mode is buckling of the stiffener webs for Y-stiffened element specimens and buckling of the stiffener webs and other stiffener blades for the Y-stiffened panel specimens.

  12. Stiffening of the ACES deployable space boom

    NASA Technical Reports Server (NTRS)

    Sidwell, Vince

    1994-01-01

    The purpose of this design project was to design an active planar stiffening device for the existing ACES (Acoustic Containerless Experiment System) structure. the ACES structure was modeled using simple beam theory. Various concepts were generated about how the stiffening device should be configured in order to perform at an optimum level. The optimum configuration was selected to be a single set of spreaders located approximately 63% of the distance down the beam. Actuation was to be provided by a DC electric motor. From the test results, the design group was able to draw conclusions and make recommendations about the utility of further research into this area.

  13. Analytical prediction of the interior noise for cylindrical models of aircraft fuselages for prescribed exterior noise fields. Phase 2: Models for sidewall trim, stiffened structures and cabin acoustics with floor partition

    NASA Technical Reports Server (NTRS)

    Pope, L. D.; Wilby, E. G.

    1982-01-01

    An airplane interior noise prediction model is developed to determine the important parameters associated with sound transmission into the interiors of airplanes, and to identify apropriate noise control methods. Models for stiffened structures, and cabin acoustics with floor partition are developed. Validation studies are undertaken using three test articles: a ring stringer stiffened cylinder, an unstiffened cylinder with floor partition, and ring stringer stiffened cylinder with floor partition and sidewall trim. The noise reductions of the three test articles are computed using the heoretical models and compared to measured values. A statistical analysis of the comparison data indicates that there is no bias in the predictions although a substantial random error exists so that a discrepancy of more than five or six dB can be expected for about one out of three predictions.

  14. Structure Damage Simulations Accounting for Inertial Effects and Impact and Optimization of Grid-Stiffened Non-Circular Shells

    NASA Technical Reports Server (NTRS)

    Mei, Chuh; Jaunky, Navin

    1999-01-01

    The goal of this research project is to develop modelling and analysis strategy for the penetration of aluminium plates impacted by titanium impactors. Finite element analysis is used to study the penetration of aluminium plates impacted by titanium impactors in order to study the effect of such uncontained engine debris impacts on aircraft-like skin panels. LS-DYNA3D) is used in the simulations to model the impactor, test fixture frame and target barrier plate. The effects of mesh refinement, contact modeling, and impactor initial velocity and orientation were studied. The research project also includes development of a design tool for optimum design of grid-stiffened non-circular shells or panels subjected to buckling.

  15. A cracked sheet stiffened by several partially debonded intact or broken stringers. [reinforcement (structures) and structural stability of metal sheets

    NASA Technical Reports Server (NTRS)

    Arin, K.

    1975-01-01

    The effect of several stringers on the stress intensity factors at the tips of a crack is considered. The stringers which were continuously attached to the plate and placed perpendicular to the crack may be partially debonded due to high stress concentrations. Since the stringers may even break under excessive loading conditions, both intact and broken stringers are considered to investigate the effect of rupture. The continuity of displacements along the bond lines leads to an integral equation which is solved to give the shear stress distribution in the adhesive and the stress intensity factors at the crack tips.

  16. Integrated support structure

    NASA Technical Reports Server (NTRS)

    Bruneau, Stephen D.; Campbell, John T.; Struven, Christopher A.

    1990-01-01

    This Major Qualifying Project is part of the Advanced Space Design Program at WPI. The goal is to design a support structure for a NASA GetAway Special experimental canister. The payload integration, weight, volume, and structural integrity of the canister as specified by NASA guidelines were studied. The end result is a complete set of design drawings with interface drawings and data to specify the design and leave a base on which the next group can concentrate.

  17. Buckling mode localization in elastic plates due to misplacement in the stiffener location

    NASA Technical Reports Server (NTRS)

    Elishakoff, I.; Li, Y. W.; Starnes, J. H., Jr.

    1998-01-01

    This paper deals with the buckling of the stiffened plate under uni-axial compression. The direct integration of the governing differential equation is performed and the exact solution to the problem is obtained. As examples, a square plate with single stiffener, and a stiffened three-span, continuous plate are investigated, with special attention given to the influence of stiffener misplacement on the buckling load and mode shape of the plate. It is found that a small misplacement of the stiffeners from the nominal configuration may change the buckling mode from a global one to a highly localized one.

  18. Buckling mode localization in elastic plates due to misplacement in the stiffener location

    NASA Technical Reports Server (NTRS)

    Elishakoff, I.; Li, Y. W.; Starnes, J. H., Jr.

    1998-01-01

    This paper deals with the buckling of the stiffened plate under uni-axial compression. The direct integration of the governing differential equation is performed and the exact solution to the problem is obtained. As examples, a square plate with single stiffener, and a stiffened three-span, continuous plate are investigated, with special attention given to the influence of stiffener misplacement on the buckling load and mode shape of the plate. It is found that a small misplacement of the stiffeners from the nominal configuration may change the buckling mode from a global one to a highly localized one.

  19. Optimal design of geodesically stiffened composite cylindrical shells

    NASA Technical Reports Server (NTRS)

    Gendron, G.; Gurdal, Z.

    1992-01-01

    An optimization system based on general-purpose finite element code CSM Testbed and optimization program ADS is described. The system can be used to obtain minimum-mass designs of composite shell structures with complex stiffening arrangements. Ply thicknesses, ply orientations, and stiffener heights can be used as design variables. Buckling, displacement, and material failure constraints can be imposed on the design. The system is used to conduct a preliminary design study of geodesically stiffened shells. For comparison purposes, optimal designs of unstiffened shells, and ring and longitudinal stringer stiffened shells are also studied. Trends in the design of geodesically stiffened shells are identified. Features that enhance the capabilities and efficiency of the design system are described.

  20. Ultra-responsive soft matter from strain-stiffening hydrogels.

    PubMed

    Jaspers, Maarten; Dennison, Matthew; Mabesoone, Mathijs F J; MacKintosh, Frederick C; Rowan, Alan E; Kouwer, Paul H J

    2014-12-16

    The stiffness of hydrogels is crucial for their application. Nature's hydrogels become stiffer as they are strained. This stiffness is not constant but increases when the gel is strained. This stiffening is used, for instance, by cells that actively strain their environment to modulate their function. When optimized, such strain-stiffening materials become extremely sensitive and very responsive to stress. Strain stiffening, however, is unexplored in synthetic gels since the structural design parameters are unknown. Here we uncover how readily tuneable parameters such as concentration, temperature and polymer length impact the stiffening behaviour. Our work also reveals the marginal point, a well-described but never observed, critical point in the gelation process. Around this point, we observe a transition from a low-viscous liquid to an elastic gel upon applying minute stresses. Our experimental work in combination with network theory yields universal design principles for future strain-stiffening materials.

  1. POSTOP: Postbuckled open-stiffener optimum panels, user's manual

    NASA Technical Reports Server (NTRS)

    Biggers, S. B.; Dickson, J. N.

    1984-01-01

    The computer program POSTOP developed to serve as an aid in the analysis and sizing of stiffened composite panels that may be loaded in the postbuckling regime, is intended for the preliminary design of metal or composite panels with open-section stiffeners, subjected to multiple combined biaxial compression (or tension), shear and normal pressure load cases. Longitudinal compression, however, is assumed to be the dominant loading. Temperature, initial bow eccentricity and load eccentricity effects are included. The panel geometry is assumed to be repetitive over several bays in the longitudinal (stiffener) direction as well as in the transverse direction. Analytical routines are included to compute panel stiffnesses, strains, local and panel buckling loads, and skin/stiffener interface stresses. The resulting program is applicable to stiffened panels as commonly used in fuselage, wing, or empennage structures. The capabilities and limitations of the code are described. Instructions required to use the program and several example problems are included.

  2. Ultra-responsive soft matter from strain-stiffening hydrogels

    PubMed Central

    Jaspers, Maarten; Dennison, Matthew; Mabesoone, Mathijs F. J.; MacKintosh, Frederick C.; Rowan, Alan E.; Kouwer, Paul H. J.

    2014-01-01

    The stiffness of hydrogels is crucial for their application. Nature’s hydrogels become stiffer as they are strained. This stiffness is not constant but increases when the gel is strained. This stiffening is used, for instance, by cells that actively strain their environment to modulate their function. When optimized, such strain-stiffening materials become extremely sensitive and very responsive to stress. Strain stiffening, however, is unexplored in synthetic gels since the structural design parameters are unknown. Here we uncover how readily tuneable parameters such as concentration, temperature and polymer length impact the stiffening behaviour. Our work also reveals the marginal point, a well-described but never observed, critical point in the gelation process. Around this point, we observe a transition from a low-viscous liquid to an elastic gel upon applying minute stresses. Our experimental work in combination with network theory yields universal design principles for future strain-stiffening materials. PMID:25510333

  3. Ultra-responsive soft matter from strain-stiffening hydrogels

    NASA Astrophysics Data System (ADS)

    Jaspers, Maarten; Dennison, Matthew; Mabesoone, Mathijs F. J.; Mackintosh, Frederick C.; Rowan, Alan E.; Kouwer, Paul H. J.

    2014-12-01

    The stiffness of hydrogels is crucial for their application. Nature’s hydrogels become stiffer as they are strained. This stiffness is not constant but increases when the gel is strained. This stiffening is used, for instance, by cells that actively strain their environment to modulate their function. When optimized, such strain-stiffening materials become extremely sensitive and very responsive to stress. Strain stiffening, however, is unexplored in synthetic gels since the structural design parameters are unknown. Here we uncover how readily tuneable parameters such as concentration, temperature and polymer length impact the stiffening behaviour. Our work also reveals the marginal point, a well-described but never observed, critical point in the gelation process. Around this point, we observe a transition from a low-viscous liquid to an elastic gel upon applying minute stresses. Our experimental work in combination with network theory yields universal design principles for future strain-stiffening materials.

  4. Integrated structural health monitoring.

    SciTech Connect

    Farrar, C. R.

    2001-01-01

    Structural health monitoring is the implementation of a damage detection strategy for aerospace, civil and mechanical engineering infrastructure. Typical damage experienced by this infrastructure might be the development of fatigue cracks, degradation of structural connections, or bearing wear in rotating machinery. The goal of the research effort reported herein is to develop a robust and cost-effective structural health monitoring solution by integrating and extending technologies from various engineering and information technology disciplines. It is the authors opinion that all structural health monitoring systems must be application specific. Therefore, a specific application, monitoring welded moment resisting steel frame connections in structures subjected to seismic excitation, is described along with the motivation for choosing this application. The structural health monitoring solution for this application will integrate structural dynamics, wireless data acquisition, local actuation, micro-electromechanical systems (MEMS) technology, and statistical pattern recognition algorithms. The proposed system is based on an assessment of the deficiencies associated with many current structural health monitoring technologies including past efforts by the authors. This paper provides an example of the integrated approach to structural health monitoring being undertaken at Los Alamos National Laboratory and summarizes progress to date on various aspects of the technology development.

  5. Integrated structural health monitoring

    NASA Astrophysics Data System (ADS)

    Farrar, Charles R.; Sohn, Hoon; Fugate, Michael L.; Czarnecki, Jerry J.

    2001-07-01

    Structural health monitoring is the implementation of a damage detection strategy for aerospace, civil and mechanical engineering infrastructure. Typical damage experienced by this infrastructure might be the development of fatigue cracks, degradation of structural connections, or bearing wear in rotating machinery. The goal of the research effort reported herein is to develop a robust and cost-effective structural health monitoring solution by integrating and extending technologies from various engineering and information technology disciplines. It is the author's opinion that all structural health monitoring systems must be application specific. Therefore, a specific application, monitoring welded moment resisting steel frame connections in structures subjected to seismic excitation, is described along with the motivation for choosing this application. The structural health monitoring solution for this application will integrate structural dynamics, wireless data acquisition, local actuation, micro-electromechanical systems (MEMS) technology, and statistical pattern recognition algorithms. The proposed system is based on an assessment of the deficiencies associated with many current structural health monitoring technologies including past efforts by the authors. This paper provides an example of the integrated approach to structural health monitoring being undertaken at Los Alamos National Laboratory and summarizes progress to date on various aspects of the technology development.

  6. Effects of Buckling Knockdown Factor, Internal Pressure and Material on the Design of Stiffened Cylinders

    NASA Technical Reports Server (NTRS)

    Lovejoy, Andrew E.; Hilburger, Mark W.; Chunchu, Prasad B.

    2010-01-01

    A design study was conducted to investigate the effect shell buckling knockdown factor (SBKF), internal pressure and aluminum alloy material selection on the structural weight of stiffened cylindrical shells. Two structural optimization codes were used for the design study to determine the optimum minimum-weight design for a series of design cases, and included an in-house developed genetic algorithm (GA) code and PANDA2. Each design case specified a unique set of geometry, material, knockdown factor combinations and loads. The resulting designs were examined and compared to determine the effects of SBKF, internal pressure and material selection on the acreage design weight and controlling failure mode. This design study shows that use of less conservative SBKF values, including internal pressure, and proper selection of material alloy can result in significant weight savings for stiffened cylinders. In particular, buckling-critical cylinders with integrally machined stiffener construction can benefit from the use of thicker plate material that enables taller stiffeners, even when the stiffness, strength and density properties of these materials appear to be inferior.

  7. Prediction of flow induced sound and vibration of periodically stiffened plates.

    PubMed

    Maxit, Laurent; Denis, Vivien

    2013-01-01

    Stiffened structures excited by the turbulent boundary layer (TBL) occur very frequently in engineering applications; for instance, in the wings of airplanes or the pressure hulls of submarines. To improve knowledge of the interaction between stiffened structures and TBL, this paper deals with the modeling of infinite periodically stiffened plates excited by TBL. The mathematical formulation of the problem is well-established in the literature. The originality of the present work relies on the use of a wavenumber-point reciprocity technique for evaluating the response of the plate to convected harmonic pressure waves. It follows a methodology for estimating the vibro-acoustic response of the plate excited by the TBL from the wall pressure spectrum and its displacements in the wavenumber space due to point excitations located at the receiving positions. The computing process can be reduced to the numerical integration of an analytical expression in the case of a periodically stiffened plate. An application to a naval test case highlights the effect of Bloch-Floquet waves on the vibrations of the plate and its radiated pressure in the fluid.

  8. Structural model integrity

    NASA Technical Reports Server (NTRS)

    Wallerstein, D. V.; Lahey, R. S.; Haggenmacher, G. W.

    1977-01-01

    Many of the practical aspects and problems of ensuring the integrity of a structural model are discussed, as well as the steps which have been taken in the NASTRAN system to assure that these checks can be routinely performed. Model integrity as used applies not only to the structural model but also to the loads applied to the model. Emphasis is also placed on the fact that when dealing with substructure analysis, all of the checking procedures discussed should be applied at the lowest level of substructure prior to any coupling.

  9. Structural model integrity

    NASA Technical Reports Server (NTRS)

    Wallerstein, D. V.; Lahey, R. S.; Haggenmacher, G. W.

    1977-01-01

    Many of the practical aspects and problems of ensuring the integrity of a structural model are discussed, as well as the steps which have been taken in the NASTRAN system to assure that these checks can be routinely performed. Model integrity as used applies not only to the structural model but also to the loads applied to the model. Emphasis is also placed on the fact that when dealing with substructure analysis, all of the checking procedures discussed should be applied at the lowest level of substructure prior to any coupling.

  10. Unexpected strain-stiffening in crystalline solids.

    PubMed

    Jiang, Chao; Srinivasan, Srivilliputhur G

    2013-04-18

    Strain-stiffening--an increase in material stiffness at large strains--is a vital mechanism by which many soft biological materials thwart excessive deformation to protect tissue integrity. Understanding the fundamental science of strain-stiffening and incorporating this concept into the design of metals and ceramics for advanced applications is an attractive prospect. Using cementite (Fe3C) and aluminium borocarbide (Al3BC3) as prototypes, here we show via quantum-mechanical calculations that strain-stiffening also occurs, surprisingly, in simple inorganic crystalline solids and confers exceptionally high strengths to these two solids, which have anomalously low resistance to deformation near equilibrium. For Fe3C and Al3BC3, their ideal shear strength to shear modulus ratios attain remarkably high values of 1.14 and 1.34 along the (010)[001] and slip systems, respectively. These values are more than seven times larger than the original Frenkel value of 1/2π (refs 4, 5) and are the highest yet reported for crystalline solids. The extraordinary stiffening of Fe3C arises from the strain-induced reversible 'cross-linking' between weakly coupled edge- and corner-sharing Fe6C slabs. This new bond formation creates a strong, three-dimensional covalent bond network that resists large shear deformation. Unlike Fe3C, no new bond forms in Al3BC3 but stiffening still occurs because strong repulsion between Al and B in a compressed Al-B bond unsettles the existing covalent bond network. These discoveries challenge the conventional wisdom that large shear modulus is a reliable predictor of hardness and strength of materials, and provide new lessons for materials selection and design.

  11. Skin-stiffener interface stresses in composite stiffened panels

    NASA Technical Reports Server (NTRS)

    Wang, J. T. S.; Biggers, S. B.

    1984-01-01

    A model and solution method for determining the normal and shear stresses in the interface between the skin and the stiffener attached flange were developed. An efficient, analytical solution procedure was developed and incorporated in a sizing code for stiffened panels. The analysis procedure described provides a means to study the effects of material and geometric design parameters on the interface stresses. These stresses include the normal stress, and the shear stresses in both the longitudinal and the transverse directions. The tendency toward skin/stiffener separation may therefore be minimized by choosing appropriate values for the design variables. The most important design variables include the relative bending stiffnesses of the skin and stiffener attached flange, the bending stiffness of the stiffener web, and the flange width. The longitudinal compressive loads in the flange and skin have significant effects on the interface stresses.

  12. Design and analysis of a stiffened composite fuselage panel

    NASA Technical Reports Server (NTRS)

    Dickson, J. N.; Biggers, S. B.

    1980-01-01

    The design and analysis of stiffened composite panel that is representative of the fuselage structure of existing wide bodied aircraft is discussed. The panel is a minimum weight design, based on the current level of technology and realistic loads and criteria. Several different stiffener configurations were investigated in the optimization process. The final configuration is an all graphite/epoxy J-stiffened design in which the skin between adjacent stiffeners is permitted to buckle under design loads. Fail safe concepts typically employed in metallic fuselage structure have been incorporated in the design. A conservative approach has been used with regard to structural details such as skin/frame and stringer/frame attachments and other areas where sufficient design data was not available.

  13. Design and Analysis of a Stiffened Composite Fuselage Panel

    NASA Technical Reports Server (NTRS)

    Dickson, J. N.; Biggers, S. B.

    1980-01-01

    A stiffened composite panel has been designed that is representative of the fuselage structure of existing wide bodied aircraft. The panel is a minimum weight design, based on the current level of technology and realistic loads and criteria. Several different stiffener configurations were investigated in the optimization process. The final configuration is an all graphite epoxy J-stiffened design in which the skin between adjacent stiffeners is permitted to buckle under design loads. Fail-safe concepts typically employed in metallic fuselage structure have been incorporated in the design. A conservative approach has been used with regard to structural details such as skin frame and stringer frame attachments and other areas where sufficient design data was not available.

  14. Progressive Fracture of Laminated Composite Stiffened Plate

    NASA Technical Reports Server (NTRS)

    Gotsis, Pascalis K.; Chamis, Christos C.; David, Kostantinos; Abdi, Frank

    2007-01-01

    Laminated fiber-reinforced composite stiffened plate with [0/90/plus or minus 45]s plies made of S-Glass/epoxy are evaluated via computational simulation to study damage and fracture progression. The loads are pressure and temperature which varies from 21 to 65.5 C (case I) and from 143.3 to 21 C (case II). An integrated computer code is used for the simulation of the damage progression. Results show that damage initiation begins at low load level, with matrix cracking at the 0 deg. (bottom and top) plies, fiber fracture at the bottom (0 deg.) ply and interply delamination at the top (0 deg. ) ply. Increasing the applied pressure, the damage growth is expended resulting in fracture through the thickness of the structure. At this stage, 90 percent of the plies damage at applied pressure 15.306 MPa for the case I and 15.036 MPa for the case II. After this stage the cracks propagate rapidly and the structure collapses.

  15. Tests on Stiffened Circular Cylinders

    NASA Technical Reports Server (NTRS)

    Holt, Marshall

    1941-01-01

    Compressive tests were made of two series of stiffened circular cylindrical shells under axial load. All the shells were 16 inches in diameter by 24 inches in length and were made of aluminum-alloy sheet curved to the proper radius and welded with one longitudinal weld. The ratios of diameter to thickness of shell wall in the two series of specimens were 258 and 572. Strains were measured with Huggenberger tensometers at a number of gage lines on the stiffeners and shell. The results of these tests indicate that a spacing of circumferential stiffeners equal to 0.67 times the radius is too great to strengthen the shell wall appreciably. The results are not inclusive enough to show the optimum in stiffeners. Plain cylinders without stiffeners developed ultimate strengths approximately half as great as the buckling strengths computed by the equation resulting from the classical theory and slightly greater than those computed by Donnell's large deflection theory.

  16. Some computational tools for the analysis of through cracks in stiffened fuselage shells

    NASA Astrophysics Data System (ADS)

    Rankin, C. C.; Brogan, F. A.; Riks, E.

    1993-12-01

    Reliable analytical methods that predict the structural integrity and residual strength of aircraft fuselage structures containing cracks are needed to help to understand the behavior of pressurized stiffened shells with damage, so that it becomes possible to determine the safe life of such a shell. Of special importance is the ability to determine under what conditions local failure, once initiated, will propagate. In this paper we shall present a reliable and efficient method for computing the energy release rate for cracks of varying length in a typical stiffened metallic fuselage under general loading conditions. The models used in the simulation are derived from an extensive analysis of a fuselage barrel section subjected to operational flight loads. Energy release rates are computed as a function of the length of the crack, its location, and the crack propagation mode.

  17. Fatigue flaw growth behavior in stiffened and unstiffened panels loaded in biaxial tension

    NASA Technical Reports Server (NTRS)

    Beck, E. J.

    1973-01-01

    The effect was investigated of biaxial loading on the flaw growth rate of 2219-T87 aluminum alloy that would be typical of Space Shuttle cryogenic tankage design. The stress distribution and stress concentration factors for several integrally stiffened panels under various loading conditions were obtained. The flaw growth behavior of both stiffened and unstiffened panels under biaxial loading conditions was determined. The effect of a complex stress state was studied by introducing flaws in fillet areas of biaxially loaded stiffened panels.

  18. Integral Textile Ceramic Structures

    NASA Astrophysics Data System (ADS)

    Marshall, David B.; Cox, Brian N.

    2008-08-01

    A new paradigm for ceramic composite structural components enables functionality in heat exchange, transpiration, detailed shape, and thermal strain management that significantly exceeds the prior art. The paradigm is based on the use of three-dimensional fiber reinforcement that is tailored to the specific shape, stress, and thermal requirements of a structural application and therefore generally requires innovative textile methods for each realization. Key features include the attainment of thin skins (less than 1 mm) that are nevertheless structurally robust, transpiration holes formed without cutting fibers, double curvature, compliant integral attachment to other structures that avoids thermal stress buildup, and microcomposite ceramic matrices that minimize spalling and allow the formation of smooth surfaces. All these features can be combined into structures of very varied gross shape and function, using a wide range of materials such as all-oxide systems and SiC and carbon fibers in SiC matrices. Illustrations are drawn from rocket nozzles, thermal protection systems, and gas turbine engines. The new design challenges that arise for such material/structure systems are being met by specialized computational modeling that departs significantly in the representation of materials behavior from that used in conventional finite element methods.

  19. Natural stiffening increases flaw tolerance of biological fibers

    NASA Astrophysics Data System (ADS)

    Giesa, Tristan; Pugno, Nicola M.; Buehler, Markus J.

    2012-10-01

    Many fibers in biomaterials such as tendon, elastin, or silk feature a nonlinear stiffening behavior of the stress-strain relationship, where the rigidity of the material increases severely as the material is being stretched. Here we show that such nonlinear stiffening is beneficial for a fiber's ability to withstand cracks, leading to a flaw tolerant state in which stress concentrations around cracks are diminished. Our findings, established by molecular mechanics and the derivation of a theoretical scaling law, explain experimentally observed fiber sizes in a range of biomaterials and point to the importance of nonlinear stiffening to enhance their fracture properties. Our study suggests that nonlinear stiffening provides a mechanism by which nanoscale mechanical properties can be scaled up, providing a means towards bioinspired fibrous material and structural design.

  20. Structural Integrity Testing Method for PRSEUS Rod-Wrap Stringer Design

    NASA Technical Reports Server (NTRS)

    Wang, John T.; Grenoble, Ray W.; Pickell, Robert D.

    2012-01-01

    NASA Langley Research Center and The Boeing Company are developing an innovative composite structural concept, called PRSEUS, for the flat center section of a future environmentally friendly hybrid wing body (HWB) aircraft. The PRSEUS (Pultruded Rod Stitched Efficient Unitized Structure) concept uses dry textile preforms for the skins, frames, and stiffener webs. The highly loaded stiffeners are made from precured unidirectional carbon/epoxy rods and dry fiber preforms. The rods are wrapped with the dry fiber preforms and a resin infusion process is used to form the rod-wrap stiffeners. The structural integrity of the rod-wrap interface is critical for maintaining the panel s high strength and bending rigidity. No standard testing method exists for testing the strength of the rod-wrap bondline. Recently, Boeing proposed a rod push-out testing method and conducted some preliminary tests using this method. This paper details an analytical study of the rod-wrap bondline. The rod-wrap interface is modeled as a cohesive zone for studying the initiation and growth of interfacial debonding during push-out testing. Based on the correlations of analysis results and Boeing s test data, the adequacy of the rod-wrap testing method is evaluated, and potential approaches for improvement of the test method are proposed.

  1. Strain-rate stiffening of cortical bone: observations and implications from nanoindentation experiments

    NASA Astrophysics Data System (ADS)

    Maruyama, Noriko; Shibata, Yo; Wurihan, Affb; Swain, Michael V.; Kataoka, Yu; Takiguchi, Yuichi; Yamada, Atsushi; Maki, Koutaro; Miyazaki, Takashi

    2014-11-01

    While bone mineralization is considered to be responsible for its stiffness, bone durability partially associated with the time-dependent viscoelasticity of matrix proteins is still poorly elucidated. Here we demonstrate a novel mechanism of highly mineralized bone durability almost independent of inherent viscoelastic behaviour along with a protocol for measuring the mechanical properties of mineralized tissues. Strain-rate nanoindentation tests showed substantial stiffening of the highly mineralized calvarial bone, whereas large creep or stress relaxation was observed during constant load or displacement tests, respectively. Based on the lower viscoelasticity of the highly mineralized structure, such large time-dependent response appears to be associated with nanoscale dimensional recovery, rather than viscoelastic behaviour, implying the inverse namely strain-rate dependent dilatant behaviour. This dilatant expansion increased the indenter penetration resistance into the surface, enhancing instantaneous stiffness. The associated stiffening and higher effective elastic modulus were highly strain-rate dependent and more readily observed in more highly mineralized tissues such as the calvarial bone. Such strain-rate stiffening and consequent dimensional recovery may be vital responses of bone tissues against excessive deformation to maintain tissue integrity.While bone mineralization is considered to be responsible for its stiffness, bone durability partially associated with the time-dependent viscoelasticity of matrix proteins is still poorly elucidated. Here we demonstrate a novel mechanism of highly mineralized bone durability almost independent of inherent viscoelastic behaviour along with a protocol for measuring the mechanical properties of mineralized tissues. Strain-rate nanoindentation tests showed substantial stiffening of the highly mineralized calvarial bone, whereas large creep or stress relaxation was observed during constant load or displacement

  2. Reliability of the ultimate strength of ship stiffened panel subjected to random corrosion degradation

    NASA Astrophysics Data System (ADS)

    Feng, Guo-qing; Hu, Bing-nan; Ren, Hui-long

    2017-03-01

    Attentions have been increasingly paid to the influence of the corrosion on the ultimate strength of ship structures. In consideration of the random characteristics of the corrosion of ship structures, the method for the ultimate strength analysis of the ship stiffened panel structure subjected to random corrosion degradation is presented. According to the measured corrosion data of the bulk carriers, the distribution characteristics of the corrosion data for the stiffened panel on the midship deck are analyzed, and a random corrosion model is established. The ultimate strength of the corroded stiffened panel is calculated by the nonlinear finite element analysis. The statistical descriptions of the ultimate strength of the corroded stiffened panel are defined through the Monte Carlo simulations. A formula is proposed on the ultimate strength reduction of the stiffened panel as a function of the corrosion volume. The reliability analysis of the ultimate strength of the corroded deck stiffened panel is performed. It shows that both the corrosion data of the deck stiffened panel and the ultimate strength of the random corroded deck stiffened panel follow the log-normal distribution. The ultimate stress ratio of the stiffened panel is inversely proportional to the corrosion volume ratio.

  3. Airway wall stiffening increases peak wall shear stress: a fluid-structure interaction study in rigid and compliant airways.

    PubMed

    Xia, Guohua; Tawhai, Merryn H; Hoffman, Eric A; Lin, Ching-Long

    2010-05-01

    The airflow characteristics in a computed tomography (CT) based human airway bifurcation model with rigid and compliant walls are investigated numerically. An in-house three-dimensional (3D) fluid-structure interaction (FSI) method is applied to simulate the flow at different Reynolds numbers and airway wall stiffness. As the Reynolds number increases, the airway wall deformation increases and the secondary flow becomes more prominent. It is found that the peak wall shear stress on the rigid airway wall can be five times stronger than that on the compliant airway wall. When adding tethering forces to the model, we find that these forces, which produce larger airway deformation than without tethering, lead to more skewed velocity profiles in the lower branches and further reduced wall shear stresses via a larger airway lumen. This implies that pathologic changes in the lung such as fibrosis or remodeling of the airway wall-both of which can serve to restrain airway wall motion-have the potential to increase wall shear stress and thus can form a positive feed-back loop for the development of altered flow profiles and airway remodeling. These observations are particularly interesting as we try to understand flow and structural changes seen in, for instance, asthma, emphysema, cystic fibrosis, and interstitial lung disease.

  4. Airway Wall Stiffening Increases Peak Wall Shear Stress: A Fluid-structure Interaction Study in Rigid and Compliant Airways

    PubMed Central

    Xia, Guohua; Tawhai, Merryn H.; Hoffman, Eric A.; Lin, Ching-Long

    2011-01-01

    The airflow characteristics in a computed tomography (CT) based human airway bifurcation model with rigid and compliant walls are investigated numerically. An in-house three-dimensional (3D) fluid-structure interaction method is applied to simulate the flow at different Reynolds numbers and airway wall stiffness. As the Reynolds number increases, the airway wall deformation increases and the secondary flow becomes more prominent. It is found that the peak wall shear stress on the rigid airway wall can be five times stronger than that on the compliant airway wall. When adding tethering forces to the model, we find that these forces, which produce larger airway deformation than without tethering, lead to more skewed velocity profiles in the lower branches and further reduced wall shear stresses via a larger airway lumen. This implies that pathologic changes in the lung such as fibrosis or remodeling of the airway wall - both of which can serve to restrain airway wall motion - have the potential to increase wall shear stress and thus can form a positive feed-back loop for the development of altered flow profiles and airway remodeling. These observations are particularly interesting as we try to understand flow and structural changes seen in, for instance, asthma, emphysema, cystic fibrosis, and interstitial lung disease. PMID:20162357

  5. Minimum stiffness criteria for ring frame stiffeners of space launch vehicles

    NASA Astrophysics Data System (ADS)

    Friedrich, Linus; Schröder, Kai-Uwe

    2016-12-01

    Frame stringer-stiffened shell structures show high load carrying capacity in conjunction with low structural mass and are for this reason frequently used as primary structures of aerospace applications. Due to the great number of design variables, deriving suitable stiffening configurations is a demanding task and needs to be realized using efficient analysis methods. The structural design of ring frame stringer-stiffened shells can be subdivided into two steps. One, the design of a shell section between two ring frames. Two, the structural design of the ring frames such that a general instability mode is avoided. For sizing stringer-stiffened shell sections, several methods were recently developed, but existing ring frame sizing methods are mainly based on empirical relations or on smeared models. These methods do not mandatorily lead to reliable designs and in some cases the lightweight design potential of stiffened shell structures can thus not be exploited. In this paper, the explicit physical behaviour of ring frame stiffeners of space launch vehicles at the onset of panel instability is described using mechanical substitute models. Ring frame stiffeners of a stiffened shell structure are sized applying existing methods and the method suggested in this paper. To verify the suggested method and to demonstrate its potential, geometrically non-linear finite element analyses are performed using detailed finite element models.

  6. Structural testing of the technology integration box beam

    NASA Technical Reports Server (NTRS)

    Griffin, C. F.

    1992-01-01

    A full scale section of a transport aircraft wing box was designed, analyzed, fabricated, and tested. The wing box section, which was called the technology integration box beam, contained blade stiffened covers and T-stiffened channel spars constructed using graphite-epoxy materials. Covers, spars, and the aluminum ribs were assembled using mechanical fasteners. The box beam was statically tested for several loading conditions to verify the stiffness and strength characteristics of the composite wing design. Failure of the box beam occurred at 125 pct. of design limit load during the combined unbending and torsion ultimate design load test. It appears that the failure initiated at a stiffener runout location in the upper cover which resulted in rupture of the upper cover and portions of both spars.

  7. Structural testing of the technology integration box beam

    NASA Technical Reports Server (NTRS)

    Griffin, C. F.

    1992-01-01

    A full-scale section of a transport aircraft wing box was designed, analyzed, fabricated, and tested. The wing box section, which was called the technology integration box beam, contained blade stiffened covers and T-stiffened channel spars constructed using graphite/epoxy materials. Covers, spars, and the aluminum ribs were assembled using mechanical fasteners. The box beam was statically tested for several loading conditions to verify the stiffness and strength characteristics of the composite wing design. Failure of the box beam occurred at 125 percent of design limit load during the combined upbending and torsion ultimate design load test. It appears that the failure initiated at a stiffener runout location in the upper cover which resulted in rupture of the upper cover and portions of both spars.

  8. Vibro-acoustic analysis of coupled spherical-cylindrical-spherical shells stiffened by ring and stringer reinforcements

    NASA Astrophysics Data System (ADS)

    Qu, Yegao; Hua, Hongxing; Meng, Guang

    2015-10-01

    A semi-analytical method is developed to predict the vibration and acoustic responses of submerged coupled spherical-cylindrical-spherical shells stiffened by circumferential rings and longitudinal stringers. The structural model of the coupled stiffened shell is formulated using a modified variational method combined with a multi-segment partitioning technique, whereas a spectral Kirchhoff-Helmholtz integral formulation is employed to model the exterior fluid. The stiffened rings and stringers, which may be few or many in number, non-uniform or uniform in size, and non-uniformly or uniformly spaced, are treated as discrete elements. The displacement and sound pressure variables are expanded in the form of a double mixed series using Fourier series and Chebyshev orthogonal polynomials. This provides a flexible way for the present method to account for the individual contributions of circumferential wave modes to the vibration and acoustic responses of coupled stiffened shells in an analytical manner. The application of the method is illustrated with several numerical examples, and comparisons are made with available solutions obtained from the coupled finite element/boundary element method. The contributions of different circumferential wave modes to the vibration responses, sound power and the directivity of radiated sound pressure for coupled shells bounded by light or heavy fluid are examined. Effects of the rings and stringers on the vibration and acoustic responses of the coupled shells are investigated.

  9. Aeroelastic Wingbox Stiffener Topology Optimization

    NASA Technical Reports Server (NTRS)

    Stanford, Bret K.

    2017-01-01

    This work considers an aeroelastic wingbox model seeded with run-out blade stiffeners along the skins. Topology optimization is conducted within the shell webs of the stiffeners, in order to add cutouts and holes for mass reduction. This optimization is done with a global-local approach in order to moderate the computational cost: aeroelastic loads are computed at the wing-level, but the topology and sizing optimization is conducted at the panel-level. Each panel is optimized separately under stress, buckling, and adjacency constraints, and periodically reassembled to update the trimmed aeroelastic loads. The resulting topology is baselined against a design with standard full-depth solid stiffener blades, and found to weigh 7.43% less.

  10. Finite Element Analysis of Geodesically Stiffened Cylindrical Composite Shells Using a Layerwise Theory

    NASA Technical Reports Server (NTRS)

    Gerhard, Craig Steven; Gurdal, Zafer; Kapania, Rakesh K.

    1996-01-01

    Layerwise finite element analyses of geodesically stiffened cylindrical shells are presented. The layerwise laminate theory of Reddy (LWTR) is developed and adapted to circular cylindrical shells. The Ritz variational method is used to develop an analytical approach for studying the buckling of simply supported geodesically stiffened shells with discrete stiffeners. This method utilizes a Lagrange multiplier technique to attach the stiffeners to the shell. The development of the layerwise shells couples a one-dimensional finite element through the thickness with a Navier solution that satisfies the boundary conditions. The buckling results from the Ritz discrete analytical method are compared with smeared buckling results and with NASA Testbed finite element results. The development of layerwise shell and beam finite elements is presented and these elements are used to perform the displacement field, stress, and first-ply failure analyses. The layerwise shell elements are used to model the shell skin and the layerwise beam elements are used to model the stiffeners. This arrangement allows the beam stiffeners to be assembled directly into the global stiffness matrix. A series of analytical studies are made to compare the response of geodesically stiffened shells as a function of loading, shell geometry, shell radii, shell laminate thickness, stiffener height, and geometric nonlinearity. Comparisons of the structural response of geodesically stiffened shells, axial and ring stiffened shells, and unstiffened shells are provided. In addition, interlaminar stress results near the stiffener intersection are presented. First-ply failure analyses for geodesically stiffened shells utilizing the Tsai-Wu failure criterion are presented for a few selected cases.

  11. A Study of the Compressive Strength of Stiffened Plywood Panels

    NASA Technical Reports Server (NTRS)

    Lundquist, Eugene E.; Kotanchik, Joseph N.; Zender, George W.

    1942-01-01

    The results of compression tests on 44 stiffened plywood panels are presented and correlated in groups for the three types of failure observed: column failure, failure by separation of plywood from stiffener, and crushing failure. The expanded program of military aircraft construction has made it necessary to seek substitute materials that can be used in aircraft in place of aluminum alloys. Wood is one of these substitute materials. The development of synthetic resins as bonding and impregnating agents has resulted in the production of plywood which is being used in stressed-skin structures for aircraft. The use of plywood in such structures necessitates that tests be performed. to determine allowable stress values for use in design, This report presents a preliminary analysis of the results of compression tests on 44 stiffened plywood panels made by the Universal Moulded Products Corporation. The tests were made in a testing machine of 1,200,000 pounds capacity in the NACA structures research laboratory.

  12. Integrated control-structure design

    NASA Technical Reports Server (NTRS)

    Hunziker, K. Scott; Kraft, Raymond H.; Bossi, Joseph A.

    1991-01-01

    A new approach for the design and control of flexible space structures is described. The approach integrates the structure and controller design processes thereby providing extra opportunities for avoiding some of the disastrous effects of control-structures interaction and for discovering new, unexpected avenues of future structural design. A control formulation based on Boyd's implementation of Youla parameterization is employed. Control design parameters are coupled with structural design variables to produce a set of integrated-design variables which are selected through optimization-based methodology. A performance index reflecting spacecraft mission goals and constraints is formulated and optimized with respect to the integrated design variables. Initial studies have been concerned with achieving mission requirements with a lighter, more flexible space structure. Details of the formulation of the integrated-design approach are presented and results are given from a study involving the integrated redesign of a flexible geostationary platform.

  13. Optimal design of geodesically stiffened composite cylindrical shells

    NASA Technical Reports Server (NTRS)

    Gendron, G.; Guerdal, Z.

    1992-01-01

    An optimization system based on the finite element code Computations Structural Mechanics (CSM) Testbed and the optimization program, Automated Design Synthesis (ADS), is described. The optimization system can be used to obtain minimum-weight designs of composite stiffened structures. Ply thickness, ply orientations, and stiffener heights can be used as design variables. Buckling, displacement, and material failure constraints can be imposed on the design. The system is used to conduct a design study of geodesically stiffened shells. For comparison purposes, optimal designs of unstiffened shells and shells stiffened by rings and stingers are also obtained. Trends in the design of geodesically stiffened shells are identified. An approach to include local stress concentrations during the design optimization process is then presented. The method is based on a global/local analysis technique. It employs spline interpolation functions to determine displacements and rotations from a global model which are used as 'boundary conditions' for the local model. The organization of the strategy in the context of an optimization process is described. The method is validated with an example.

  14. Buckling and postbuckling of isogrid-stiffened fiber-composite laminate shells: Analyses and experiments

    SciTech Connect

    Wang, S.S.; Srinivasan, S.; Su, K.B.; Dunham, M.G.

    1994-12-31

    Recent advances in fiber-composites manufacturing and structural efficiency requirements have led to the consideration of large isogrid-stiffened fiber-composite laminate shells for various aeronautical and space structural applications. Very little information, if any, on buckling and postbuckling of these grid-stiffened shells is currently available in the literature. In this paper, a combined analytical and experimental study is reported on the buckling and postbuckling behavior of these filament-wound fiber-composite laminate shells constructed with continuous-filament isogrid stiffeners made of the same composite material system. Solutions from linear bifurcation and geometric nonlinear postbuckling analyses have been obtained for stiffened composite shells, monocoque shells and isogrid stiffeners. Experiments have been conducted in parallel to the analyses, and buckling loads and postbuckling deformation characteristics have been studied for these structures.

  15. Nonlinear flutter analysis of stiffened composite panels in supersonic flow

    NASA Astrophysics Data System (ADS)

    Yuan, Kaihua; Qiu, Zhiping

    2010-02-01

    The flutter instability of stiffened composite panels subjected to aerodynamic forces in the supersonic flow is investigated. Based on Hamilton’s principle, the aeroelastic model of the composite panel is established by using the von Karman large deflection plate theory, piston theory aerodynamics and the quasi-steady thermal stress theory. Then, using the finite element method along with Bogner-Fox-Schmit elements and three-dimensional beam elements, the nonlinear equations of motion are derived. The effect of stiffening scheme on the flutter critical dynamic pressure is demonstrated through the numerical example, and the nonlinear flutter characteristics of stiffened composite panels are also analyzed in the time domain. This will lay the foundation for design of panel structures employed in aerospace vehicles.

  16. Reliability and structural integrity

    NASA Technical Reports Server (NTRS)

    Davidson, J. R.

    1976-01-01

    An analytic model is developed to calculate the reliability of a structure after it is inspected for cracks. The model accounts for the growth of undiscovered cracks between inspections and their effect upon the reliability after subsequent inspections. The model is based upon a differential form of Bayes' Theorem for reliability, and upon fracture mechanics for crack growth.

  17. Structural integrity of fuselage panels with multisite damage

    NASA Astrophysics Data System (ADS)

    Park, Jai H.; Singh, Ripudaman; Pyo, Chang R.; Atluris, Satya N.

    1995-05-01

    Structural integrity assessment of aging flight vehicles is extremely important to ensure their economic and safe operation. A two-step analytical approach, developed to estimate the residual strength of pressurized fuselage stiffened shell panels with multi-bay fatigue cracking is presented in this article. Conventional finite element analysis of the damaged multibay panel is first carried out to obtain the load flow pattern through it. The Schwartz-Neumann alternating method is then applied to the fuselage skin with multiple site damage, to obtain stresses and the relevant crack tip parameters that govern the onset of fracture. Fracture mechanics as well as net section yield criteria are used to evaluate the static residual strength. The presence of holes with or without multisite damage ahead of a dominant crack is found to significantly degrade the capacity of the fuselage shell panels to sustain static internal pressure. An elastic-plastic alternating method is newly developed and applied to evaluate the residual strength of flat panels with multiple cracks. The computational methodologies presented herein are marked improvements to the present state-of-the-art, and are extremely efficient, both from engineering manpower as well as computational costs point of view. Once verified, they can very well complement the experimental requirements, reducing the cost of structural integrity assessment programs.

  18. Finite Element Model Development For Aircraft Fuselage Structures

    NASA Technical Reports Server (NTRS)

    Buehrle, Ralph D.; Fleming, Gary A.; Pappa, Richard S.; Grosveld, Ferdinand W.

    2000-01-01

    The ability to extend the valid frequency range for finite element based structural dynamic predictions using detailed models of the structural components and attachment interfaces is examined for several stiffened aircraft fuselage structures. This extended dynamic prediction capability is needed for the integration of mid-frequency noise control technology. Beam, plate and solid element models of the stiffener components are evaluated. Attachment models between the stiffener and panel skin range from a line along the rivets of the physical structure to a constraint over the entire contact surface. The finite element models are validated using experimental modal analysis results.

  19. Stiffened Composite Fuselage Barrel Optimization

    NASA Astrophysics Data System (ADS)

    Movva, R. G.; Mittal, A.; Agrawal, K.; Upadhyay, C. S.

    2012-07-01

    In a typical commercial transport aircraft, Stiffened skin panels and frames contribute around 40% of the fuselage weight. In the current study a stiffened composite fuselage skin panel optimization engine is developed for optimization of the layups of composite panels and stringers using Genetic Algorithm (GA). The skin and stringers of the fuselage section are optimized for the strength and the stability requirements. The selection of the GA parameters considered for the optimization is arrived by performing case studies on selected problems. The optimization engine facilitates in carrying out trade studies for selection of the optimum ply layup and material combination for the configuration being analyzed. The optimization process is applied on a sample model and the results are presented.

  20. Structural integrity in aircraft.

    NASA Technical Reports Server (NTRS)

    Hardrath, H. F.

    1973-01-01

    The paper reviews briefly the current design philosophies for achieving long, efficient, and reliable service in aircraft structures. The strengths and weaknesses of these design philosophies and their demonstrated records of success are discussed. The state of the art has not been developed to the point where designing can be done without major test inspection and maintenance programs. A broad program of research is proposed through which a viable computerized design scheme will be provided during the next decade. The program will organize and correlate existing knowledge on fatigue and fracture behavior, identify gaps in this knowledge, and guide specific research to upgrade design capabilities.

  1. Structurally integrated steel solar collector

    DOEpatents

    Moore, S.W.

    1975-06-03

    Herein is disclosed a flate plate solar heat collector unit. The solar collector is integrated as a structural unit so that the collector also functions as the building roof. The functions of efficient heat collection, liquid coolant flow passages, roof structural support, and building insulation are combined into one unit.

  2. Structurally integrated steel solar collector

    DOEpatents

    Moore, Stanley W.

    1977-03-08

    Herein is disclosed a flat plate solar heat collector unit. The solar collector is integrated as a structural unit so that the collector also functions as the building roof. The functions of efficient heat collection, liquid coolant flow passages, roof structural support and building insulation are combined into one unit.

  3. Integrative structure modeling with IMP.

    PubMed

    Webb, Benjamin; Viswanath, Shruthi; Bonomi, Massimiliano; Pellarin, Riccardo; Greenberg, Charles H; Saltzberg, Daniel; Sali, Andrej

    2017-09-28

    Building models of a biological system that are consistent with the myriad data available is one of the key challenges in biology. Modeling the structure and dynamics of macromolecular assemblies, for example, can give insights into how biological systems work, evolved, might be controlled, and even designed. Integrative structure modeling casts the building of structural models as a computational optimization problem, for which information about the assembly is encoded into a scoring function that evaluates candidate models. Here, we describe our open source software suite for integrative structure modeling, Integrative Modeling Platform (IMP) (https://integrativemodeling.org), and demonstrate its use. This article is protected by copyright. All rights reserved. © 2017 The Protein Society.

  4. Investigations on Buckling Behaviour of Laminated Curved Composite Stiffened Panels

    NASA Astrophysics Data System (ADS)

    Kumar, N. Jeevan; Babu, P. Ramesh; Pandu, Ratnakar

    2014-04-01

    In Industrial applications structural efficiency is primary concern, this brings about the need of strong and lightweight materials. Due to their high specific strength, fibre reinforced polymers find wide application in these areas. Panels made of composite materials are widely used in aerospace structures, automobile, civil, marine and biomedical industries because of their good mechanical properties, impact resistance, excellent damage tolerance and also low fabrication cost. In this Paper, buckling and post-buckling analysis was performed on composite stiffened panel to obtain the critical load and modes of failures, with different parameters like ply-orientation, different composite materials, and stiffeners and by changing the number of stiffeners was derived. To analyze the post buckling behaviour of composite stiffened panels the nonlinear finite element analysis is employed and substantial investigations are undertaken using finite element (FE) model. Effect of critical parameters on buckling behaviour is studied and parametric studies were conducted with analytical tool to understand the structural behaviour in the post buckling range.

  5. Strength reliability analysis of stiffened cylindrical shells considering failure correlation

    NASA Astrophysics Data System (ADS)

    Bai, Xu; Sun, Liping; Qin, Wei; Lv, Yongkun

    2014-03-01

    The stiffened cylindrical shell is commonly used for the pressure hull of submersibles and the legs of offshore platforms. There are various failure modes because of uncertainty with the structural size and material properties, uncertainty of the calculation model and machining errors. Correlations among failure modes must be considered with the structural reliability of stiffened cylindrical shells. However, the traditional method cannot consider the correlations effectively. The aim of this study is to present a method of reliability analysis for stiffened cylindrical shells which considers the correlations among failure modes. Firstly, the joint failure probability calculation formula of two related failure modes is derived through use of the 2D joint probability density function. Secondly, the full probability formula of the tandem structural system is given with consideration to the correlations among failure modes. At last, the accuracy of the system reliability calculation is verified through use of the Monte Carlo simulation. Result of the analysis shows the failure probability of stiffened cylindrical shells can be gained through adding the failure probability of each mode.

  6. Optimum design of geodesically stiffened composite plates

    NASA Technical Reports Server (NTRS)

    Guerdal, Zafer; Phillips, John L.

    1988-01-01

    With the goal of tailorability in mind, the in-plane stiffness characteristics of a particular grid stiffened plate configuration under axial and shear loads have been studied. The contribution of the skin to the stiffener network and the resultant skin/rib interaction is analyzed. For the given plate geometry and loads, it is shown that an optimum configuration does exist. To achieve optimally designed practical plate configurations, buckling constraints need to be included in the design. Due to the complex geometry and loading of the plates, a simplified local buckling analysis of isolated stiffeners and triangular skin elements between the stiffeners is considered. Development of a stiffener buckling analysis represent stiffeners as shear deformable plate elements is presented.

  7. Effects of Stiffening and Mechanical Load on Thermal Buckling of Stiffened Cylindrical Shells

    NASA Technical Reports Server (NTRS)

    Johnson, Theodore F.; Card, Michael F.

    1995-01-01

    A study of thermal buckling of stiffened cylindrical shells with the proportions of a preliminary supersonic transport fuselage design (1970) is presented. The buckling analysis is performed using an axisymmetric shell-of-revolution code, BOSOR4. The effects of combined mechanical (axial loading) and thermal loading (heated skins) are investigated. Results indicate that the location of longitudinal eccentric stiffening has a very large effect on the thermal buckling strength of longitudinally stiffened shells, and on longitudinally stiffened shells with rings.

  8. Experiences with integral microelectronics on smart structures for space

    NASA Astrophysics Data System (ADS)

    Nye, Ted; Casteel, Scott; Navarro, Sergio A.; Kraml, Bob

    1995-05-01

    One feature of a smart structure implies that some computational and signal processing capability can be performed at a local level, perhaps integral to the controlled structure. This requires electronics with a minimal mechanical influence regarding structural stiffening, heat dissipation, weight, and electrical interface connectivity. The Advanced Controls Technology Experiment II (ACTEX II) space-flight experiments implemented such a local control electronics scheme by utilizing composite smart members with integral processing electronics. These microelectronics, tested to MIL-STD-883B levels, were fabricated with conventional thick film on ceramic multichip module techniques. Kovar housings and aluminum-kapton multilayer insulation was used to protect against harsh space radiation and thermal environments. Development and acceptance testing showed the electronics design was extremely robust, operating in vacuum and at temperature range with minimal gain variations occurring just above room temperatures. Four electronics modules, used for the flight hardware configuration, were connected by a RS-485 2 Mbit per second serial data bus. The data bus was controlled by Actel field programmable gate arrays arranged in a single master, four slave configuration. An Intel 80C196KD microprocessor was chosen as the digital compensator in each controller. It was used to apply a series of selectable biquad filters, implemented via Delta Transforms. Instability in any compensator was expected to appear as large amplitude oscillations in the deployed structure. Thus, over-vibration detection circuitry with automatic output isolation was incorporated into the design. This was not used however, since during experiment integration and test, intentionally induced compensator instabilities resulted in benign mechanical oscillation symptoms. Not too surprisingly, it was determined that instabilities were most detectable by large temperature increases in the electronics, typically

  9. Multi-objective optimization of ring stiffened cylindrical shells using a genetic algorithm

    NASA Astrophysics Data System (ADS)

    Bagheri, M.; Jafari, A. A.; Sadeghifar, M.

    2011-01-01

    In this paper, the genetic algorithm (GA) method is used for the multi-objective optimization of ring stiffened cylindrical shells. The objective functions seek the maximum fundamental frequency and minimum structural weight of the shell subjected to four constraints including the fundamental frequency, the structural weight, the axial buckling load, and the radial buckling load. The optimization process contains six design variables including the shell thickness, the number of stiffeners, the width and height of stiffeners, the stiffeners eccentricity distribution order, and the stiffeners spacing distribution order. The real coding scheme is used for representing the solution string, while the generation number-based adaptive penalty function is applied for penalizing infeasible solutions. In analytical solution, the Ritz method is applied and the stiffeners are treated as discrete elements. Some examples of simply supported cylindrical shells with nonuniform eccentricity distribution and nonuniform rings spacing distribution are provided to demonstrate the optimality of the solution obtained by the GA technique. The effects of objective weighting coefficients and bounding values of the design variables on the optimum solution are studied for various cases. The results show that the optimal solution can vary with the weighting coefficients significantly. It is also found that extreme reduction and augmentation in turn in the structural weight and fundamental frequency can be simultaneously achieved by selecting suitable stiffeners' geometrical parameters and distributions. Furthermore, the bounding values of the design variables have great effects on the optimum results.

  10. Crash energy absorbing composite sub-floor structure

    NASA Technical Reports Server (NTRS)

    Farley, G. L.

    1986-01-01

    Static crushing tests were conducted on four different beam concepts; honeycomb sandwich, sine-wave and two integrally stiffened designs. The sine-wave beams, depending upon specimen geometry, has the highest energy absorption potential of the four concepts evaluated. All beam designs produced a progressive crushing mode similar to tube specimens. The energy absorption capability of sine-wave beam specimens were predictable from results of circular cross section tubes. A comparison of energy absorption capability was made between integrally stiffened beams fabricated from graphite/epoxy, Kevlar-49/epoxy and aluminum. The energy absorption capability of the graphite/epoxy integrally stiffened beams exceeded both the Kevlar-49/epoxy and aluminum integrally stiffened beams. The energy absorption potential of composite structures is between five and ten times that of comparable metallic structure.

  11. Compressive Behavior of 3D Woven Composite Stiffened Panels: Experimental and Numerical Study

    NASA Astrophysics Data System (ADS)

    Zhou, Guangming; Pan, Ruqin; Li, Chao; Cai, Deng'an; Wang, Xiaopei

    2016-10-01

    The structural behavior and damage propagation of 3D woven composite stiffened panels with different woven patterns under axial-compression are here investigated. The panel is 2.5D interlock woven composites (2.5DIWC), while the straight-stiffeners are 3D woven orthogonal composites (3DWOC). They are coupled together with the Z-fibers from the stiffener passing straight thought the thickness of the panel. A "T-shape" model, in which the fiber bundle structure and resin matrix are drawn out to simulate the real situation of the connection area, is established to predict elastic constants and strength of the connection region. Based on Hashin failure criterion, a progressive damage model is carried out to simulate the compressive behavior of the stiffened panel. The 3D woven composite stiffened panels are manufactured using RTM process and then tested. A good agreement between experimental results and numerical predicted values for the compressive failure load is obtained. From initial damage to final collapse, the panel and stiffeners will not separate each other in the connection region. The main failure mode of 3D woven composite stiffened panels is compressive failure of fiber near the loading end corner.

  12. Compressive Behavior of 3D Woven Composite Stiffened Panels: Experimental and Numerical Study

    NASA Astrophysics Data System (ADS)

    Zhou, Guangming; Pan, Ruqin; Li, Chao; Cai, Deng'an; Wang, Xiaopei

    2017-08-01

    The structural behavior and damage propagation of 3D woven composite stiffened panels with different woven patterns under axial-compression are here investigated. The panel is 2.5D interlock woven composites (2.5DIWC), while the straight-stiffeners are 3D woven orthogonal composites (3DWOC). They are coupled together with the Z-fibers from the stiffener passing straight thought the thickness of the panel. A "T-shape" model, in which the fiber bundle structure and resin matrix are drawn out to simulate the real situation of the connection area, is established to predict elastic constants and strength of the connection region. Based on Hashin failure criterion, a progressive damage model is carried out to simulate the compressive behavior of the stiffened panel. The 3D woven composite stiffened panels are manufactured using RTM process and then tested. A good agreement between experimental results and numerical predicted values for the compressive failure load is obtained. From initial damage to final collapse, the panel and stiffeners will not separate each other in the connection region. The main failure mode of 3D woven composite stiffened panels is compressive failure of fiber near the loading end corner.

  13. Vibroacoustic Response Data of Stiffened Panels and Cylinders

    NASA Technical Reports Server (NTRS)

    Cabell, Randolph; Klos, Jake; Buehrle, Ralph; Schiller, Noah

    2008-01-01

    NASA has collected vibroacoustic response data on a variety of complex, aerospace structures to support research into numerical modeling of such structures. This data is being made available to the modeling community to promote the development and validation of analysis methods for these types of structures. Existing data from two structures is described, as well as plans for a data set from a third structure. The first structure is a 1.22 m by 1.22 m stiffened aluminum panel, typical of a commercial aircraft sidewall section. The second is an enclosed, stiffened aluminum cylinder, approximately 3.66 m long and 1.22 m in diameter, constructed to resemble a small aircraft fuselage with no windows and a periodic structure. The third structure is a filament-wound composite cylinder with composite stiffeners. Numerous combinations of excitation and response variables were measured on the structures, including: shaker excitation; diffuse acoustic field; velocity response from a laser vibrometer; intensity scans; and point acceleration.

  14. Stiffener bond line monitoring using ultrasonic shear guided waves

    NASA Astrophysics Data System (ADS)

    Fan, Z.; Castaings, M.; Lowe, M. J. S.; Fromme, P.; Biateau, C.

    2012-05-01

    Adhesively bonded stiffeners are employed in aerospace applications to increase structural stiffness. The potential of shear guided wave modes for the verification of adhesion and bond line thickness in difficult to access regions has been investigated. The properties of guided wave modes propagating along a T-shaped stiffener bonded to an aluminium plate were calculated using the Semi-Analytical Finite Element (SAFE) method. Shear modes were identified as well suited with energy concentrated at the stiffener and bond line, limiting energy radiation into the plate and thus achieving increased inspection length. The influence of bond line properties and thickness was investigated from SAFE and 3D Finite Element calculations and a significant influence of the epoxy shear (Coulomb) modulus on the phase velocity found. Experiments were conducted during the curing of an epoxy adhesive, bonding a stiffener to the plate with bond strength and stiffness increasing over time. The excited shear mode was measured using a laser interferometer. The measured phase velocity changed significantly during curing. The frequency dependency matches well with the SAFE calculations for a variation of the Coulomb's modulus of the adhesive layer. The potential of the shear guided wave mode for bond line inspection and monitoring has been shown.

  15. Can a continuous mineral foam explain the stiffening of aged bone tissue? A micromechanical approach to mineral fusion in musculoskeletal tissues.

    PubMed

    Penta, R; Raum, K; Grimal, Q; Schrof, S; Gerisch, A

    2016-05-19

    Recent experimental data revealed a stiffening of aged cortical bone tissue, which could not be explained by common multiscale elastic material models. We explain this data by incorporating the role of mineral fusion via a new hierarchical modeling approach exploiting the asymptotic (periodic) homogenization (AH) technique for three-dimensional linear elastic composites. We quantify for the first time the stiffening that is obtained by considering a fused mineral structure in a softer matrix in comparison with a composite having non-fused cubic mineral inclusions. We integrate the AH approach in the Eshelby-based hierarchical mineralized turkey leg tendon model (Tiburtius et al 2014 Biomech. Mechanobiol. 13 1003-23), which can be considered as a base for musculoskeletal mineralized tissue modeling. We model the finest scale compartments, i.e. the extrafibrillar space and the mineralized collagen fibril, by replacing the self-consistent scheme with our AH approach. This way, we perform a parametric analysis at increasing mineral volume fraction, by varying the amount of mineral that is fusing in the axial and transverse tissue directions in both compartments. Our effective stiffness results are in good agreement with those reported for aged human radius and support the argument that the axial stiffening in aged bone tissue is caused by the formation of a continuous mineral foam. Moreover, the proposed theoretical and computational approach supports the design of biomimetic materials which require an overall composite stiffening without increasing the amount of the reinforcing material.

  16. Postbuckling and failure characteristics of stiffened graphite-epoxy shear webs

    NASA Technical Reports Server (NTRS)

    Rouse, Marshall

    1987-01-01

    Results are presented from an experimental study of the postbuckling response and failure characteristics of flat, stiffened graphite-epoxy shear webs in which attention was given to the influence of stiffener attachment concepts, circular holes, and low speed impact damage on postbuckling performance. The laminate specimens chosen for testing are typical of those employed for transport aircraft primary structures. Test results show that low speed impact damage midway between stiffeners initiated specimen failure; the strength of an impact-damaged specimen was less than that of the corresponding control specimen.

  17. Compressive Behavior of Frame-Stiffened Composite Panels

    NASA Technical Reports Server (NTRS)

    Yovanof, Nicolette P.; Jegley, Dawn C.

    2011-01-01

    New technologies are being developed under NASA's Environmentally Responsible Aviation (ERA) Program aimed at reducing fuel burn and emissions in large commercial aircraft. A Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept is being developed which offers advantages over traditional metallic structure. In this concept a stitched carbon-epoxy material system is employed with the potential for reducing the weight and cost of transport aircraft structure by eliminating fasteners and producing a more damage tolerant design. In addition, by adding unidirectional carbon rods to the top of stiffeners and minimizing the interference between the sandwich frames and the rod-stiffened stringers, the panel becomes more structurally efficient. This document describes the results of experimentation on a PRSEUS panel in which the frames are loaded in unidirectional compression beyond the local buckling of the skin of a Hybrid Wing Body (HWB) aircraft. A comparison with analytical predictions and the relationship between these test results and the global aircraft design is presented.

  18. Post-Buckling and Ultimate Strength Analysis of Stiffened Composite Panel Base on Progressive Damage

    NASA Astrophysics Data System (ADS)

    Zhang, Guofan; Sun, Xiasheng; Sun, Zhonglei

    Stiffened composite panel is the typical thin wall structure applied in aerospace industry, and its main failure mode is buckling subjected to compressive loading. In this paper, the development of an analysis approach using Finite Element Method on post-buckling behavior of stiffened composite structures under compression was presented. Then, the numerical results of stiffened panel are obtained by FE simulations. A thorough comparison were accomplished by comparing the load carrying capacity and key position strains of the specimen with test. The comparison indicates that the FEM results which adopted developed methodology could meet the demand of engineering application in predicting the post-buckling behavior of intact stiffened structures in aircraft design stage.

  19. Stability and dynamic analysis of a slender column with curved longitudinal stiffeners

    NASA Technical Reports Server (NTRS)

    Lake, Mark S.

    1989-01-01

    The results of a stability design study are presented for a slender column with curved longitudinal stiffeners for large space structure applications. Linear stability analyses are performed using a link-plate representation of the stiffeners to determine stiffener local buckling stresses. Results from a set of parametric analyses are used to determine an approximate explicit expression for stiffener local buckling in terms of its geometric parameters. This expression along with other equations governing column stability and mass are assembled into a determinate system describing minimum mass stiffened column design. An iterative solution is determined to solve this system and a computer program incorporating this routine is presented. Example design problems are presented which verify the solution accuracy and illustrate the implementation of the solution routine. Also, observations are made which lead to a greatly simplified first iteration design equation relating the percent increase in column mass to the percent increase in column buckling load. From this, generalizations are drawn as to the mass savings offered by the stiffened column concept. Finally, the percent increase in fundamental column vibration frequency due to the addition of deployable stiffeners is studied.

  20. Acoustic Emission of Large PRSEUS Structures (Pultruded Rod Stitched Efficient Unitized Structure)

    NASA Technical Reports Server (NTRS)

    Horne, Michael R.; Juarez, Peter D.

    2016-01-01

    In the role of structural health monitoring (SHM), Acoustic Emission (AE) analysis is being investigated as an effective method for tracking damage development in large composite structures under load. Structures made using Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) for damage tolerant, light, and economical airframe construction are being pursued by The Boeing Company and NASA under the Environmentally Responsible Aircraft initiative (ERA). The failure tests of two PRSEUS substructures based on the Boeing Hybrid Wing Body fuselage concept were conducted during third quarter 2011 and second quarter 2015. One fundamental concern of these tests was determining the effectiveness of the stitched integral stiffeners to inhibit damage progression. By design, severe degradation of load carrying capability should not occur prior to Design Ultimate Load (DUL). While minor damage prior to DUL was anticipated, the integral stitching should not fail since this would allow a stiffener-skin delamination to progress rapidly and alter the transfer of load into the stiffeners. In addition, the stiffeners should not fracture because they are fundamental to structural integrity. Getting the best information from each AE sensor is a primary consideration because a sparse network of sensors is implemented. Sensitivity to stiffener-contiguous degradation is supported by sensors near the stiffeners, which increases the coverage per sensor via AE waveguide actions. Some sensors are located near potentially critical areas or "critical zones" as identified by numerical analyses. The approach is compared with the damage progression monitored by other techniques (e.g. ultrasonic C-scan).

  1. Nanocomposites for Enhanced Structural Integrity

    DTIC Science & Technology

    2007-09-11

    developing methods to optimally functionalize these nanoreinforcements. A coupling agent methacryloxy propyl trimethoxy silane (MPS) was found to be...102 Nanocomposites for Enhanced Structural Integrity AFOSR bn0)2-1-0414 H. Thomas Hahn Mechanical & Aerospace Engineering Department University of...nanocomposite. A coupling agent methacryloxy propyl trimethoxy silane (MPS) was found to be effective for the SiC nanocomposite. As for the graphite

  2. Integrative Structural Biomechanical Concepts of Ankylosing Spondylitis

    PubMed Central

    Masi, Alfonse T.; Nair, Kalyani; Andonian, Brian J.; Prus, Kristina M.; Kelly, Joseph; Sanchez, Jose R.; Henderson, Jacqueline

    2011-01-01

    Ankylosing spondylitis (AS) is not fully explained by inflammatory processes. Clinical, epidemiological, genetic, and course of disease features indicate additional host-related risk processes and predispositions. Collectively, the pattern of predisposition to onset in adolescent and young adult ages, male preponderance, and widely varied severity of AS is unique among rheumatic diseases. However, this pattern could reflect biomechanical and structural differences between the sexes, naturally occurring musculoskeletal changes over life cycles, and a population polymorphism. During juvenile development, the body is more flexible and weaker than during adolescent maturation and young adulthood, when strengthening and stiffening considerably increase. During middle and later ages, the musculoskeletal system again weakens. The novel concept of an innate axial myofascial hypertonicity reflects basic mechanobiological principles in human function, tissue reactivity, and pathology. However, these processes have been little studied and require critical testing. The proposed physical mechanisms likely interact with recognized immunobiological pathways. The structural biomechanical processes and tissue reactions might possibly precede initiation of other AS-related pathways. Research in the combined structural mechanobiology and immunobiology processes promises to improve understanding of the initiation and perpetuation of AS than prevailing concepts. The combined processes might better explain characteristic enthesopathic and inflammatory processes in AS. PMID:22216409

  3. Optimization of a corrugated stiffened composite panel under uniaxial compression

    NASA Technical Reports Server (NTRS)

    Agarwal, B. L.; Sobel, L. H.

    1973-01-01

    An approach of structural optimization has been used to optimize the weight of a simply supported, corrugated hat stiffened composite panel under uniaxial compression. The approach consists of the employment of nonlinear mathematical programming techniques to reach an optimum solution. Some simplifying assumptions are made in the stress analysis to obtain faster convergence to an optimum solution. With these simplifying assumptions the number of unknown design parameters is reduced to twelve.

  4. Superplastic forming/weld-brazing of titanium skin-stiffened compression panels

    NASA Technical Reports Server (NTRS)

    Royster, D. M.; Bales, T. T.; Wiant, H. R.

    1982-01-01

    A study was conducted to exploit the processing advantages of superplastic forming and weld-brazing for the fabrication of titanium skin-stiffened structural components. Small titanium compression panels were fabricated and tested at room temperature. Stiffeners having configurations of a conventional hat shape, beaded shaped web, ribbed shaped web, or stepped shaped web were investigated. The data from the panel tests included load-shortening curves, local buckling strengths, and failure loads. Experimental buckling loads were compared with buckling loads calculated using a finite-element analysis. The superplastic formed/weld-brazed panels having complex shaped stiffeners developed from 20 to 58 percent higher local buckling strengths than panels with conventionally shaped stiffeners.

  5. Assuring structural integrity in Army systems

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The object of this study was to recommend possible improvements in the manner in which structural integrity of Army systems is assured. The elements of a structural integrity program are described, and relevant practices used in various industries and government organizations are reviewed. Some case histories of Army weapon systems are examined. The mandatory imposition of a structural integrity program patterned after the Air Force Aircraft Structural Integrity Program is recommended and the benefits of such an action are identified.

  6. Smearing technique for vibration analysis of simply supported cross-stiffened and doubly curved thin rectangular shells.

    PubMed

    Luan, Yu; Ohlrich, Mogens; Jacobsen, Finn

    2011-02-01

    Plates stiffened with ribs can be modeled as equivalent homogeneous isotropic or orthotropic plates. Modeling such an equivalent smeared plate numerically, say, with the finite element method requires far less computer resources than modeling the complete stiffened plate. This may be important when a number of stiffened plates are combined in a complicated assembly composed of many plate panels. However, whereas the equivalent smeared plate technique is well established and recently improved for flat panels, there is no similar established technique for doubly curved stiffened shells. In this paper the improved smeared plate technique is combined with the equation of motion for a doubly curved thin rectangular shell, and a solution is offered for using the smearing technique for stiffened shell structures. The developed prediction technique is validated by comparing natural frequencies and mode shapes as well as forced responses from simulations based on the smeared theory with results from experiments with a doubly curved cross-stiffened shell. Moreover, natural frequencies of cross-stiffened panels determined by finite element simulations that include the exact cross-sectional geometries of panels with cross-stiffeners are compared with predictions based on the smeared theory for a range of different panel curvatures. Good agreement is found.

  7. Multilevel Optimization Framework for Hierarchical Stiffened Shells Accelerated by Adaptive Equivalent Strategy

    NASA Astrophysics Data System (ADS)

    Wang, Bo; Tian, Kuo; Zhao, Haixin; Hao, Peng; Zhu, Tianyu; Zhang, Ke; Ma, Yunlong

    2016-09-01

    In order to improve the post-buckling optimization efficiency of hierarchical stiffened shells, a multilevel optimization framework accelerated by adaptive equivalent strategy is presented in this paper. Firstly, the Numerical-based Smeared Stiffener Method (NSSM) for hierarchical stiffened shells is derived by means of the numerical implementation of asymptotic homogenization (NIAH) method. Based on the NSSM, a reasonable adaptive equivalent strategy for hierarchical stiffened shells is developed from the concept of hierarchy reduction. Its core idea is to self-adaptively decide which hierarchy of the structure should be equivalent according to the critical buckling mode rapidly predicted by NSSM. Compared with the detailed model, the high prediction accuracy and efficiency of the proposed model is highlighted. On the basis of this adaptive equivalent model, a multilevel optimization framework is then established by decomposing the complex entire optimization process into major-stiffener-level and minor-stiffener-level sub-optimizations, during which Fixed Point Iteration (FPI) is employed to accelerate convergence. Finally, the illustrative examples of the multilevel framework is carried out to demonstrate its efficiency and effectiveness to search for the global optimum result by contrast with the single-level optimization method. Remarkably, the high efficiency and flexibility of the adaptive equivalent strategy is indicated by compared with the single equivalent strategy.

  8. Multilevel Optimization Framework for Hierarchical Stiffened Shells Accelerated by Adaptive Equivalent Strategy

    NASA Astrophysics Data System (ADS)

    Wang, Bo; Tian, Kuo; Zhao, Haixin; Hao, Peng; Zhu, Tianyu; Zhang, Ke; Ma, Yunlong

    2017-06-01

    In order to improve the post-buckling optimization efficiency of hierarchical stiffened shells, a multilevel optimization framework accelerated by adaptive equivalent strategy is presented in this paper. Firstly, the Numerical-based Smeared Stiffener Method (NSSM) for hierarchical stiffened shells is derived by means of the numerical implementation of asymptotic homogenization (NIAH) method. Based on the NSSM, a reasonable adaptive equivalent strategy for hierarchical stiffened shells is developed from the concept of hierarchy reduction. Its core idea is to self-adaptively decide which hierarchy of the structure should be equivalent according to the critical buckling mode rapidly predicted by NSSM. Compared with the detailed model, the high prediction accuracy and efficiency of the proposed model is highlighted. On the basis of this adaptive equivalent model, a multilevel optimization framework is then established by decomposing the complex entire optimization process into major-stiffener-level and minor-stiffener-level sub-optimizations, during which Fixed Point Iteration (FPI) is employed to accelerate convergence. Finally, the illustrative examples of the multilevel framework is carried out to demonstrate its efficiency and effectiveness to search for the global optimum result by contrast with the single-level optimization method. Remarkably, the high efficiency and flexibility of the adaptive equivalent strategy is indicated by compared with the single equivalent strategy.

  9. Stiffening solids with liquid inclusions

    NASA Astrophysics Data System (ADS)

    Style, Robert W.; Boltyanskiy, Rostislav; Allen, Benjamin; Jensen, Katharine E.; Foote, Henry P.; Wettlaufer, John S.; Dufresne, Eric R.

    2015-01-01

    From bone and wood to concrete and carbon fibre, composites are ubiquitous natural and synthetic materials. Eshelby’s inclusion theory describes how macroscopic stress fields couple to isolated microscopic inclusions, allowing prediction of a composite’s bulk mechanical properties from a knowledge of its microstructure. It has been extended to describe a wide variety of phenomena from solid fracture to cell adhesion. Here, we show experimentally and theoretically that Eshelby’s theory breaks down for small liquid inclusions in a soft solid. In this limit, an isolated droplet’s deformation is strongly size-dependent, with the smallest droplets mimicking the behaviour of solid inclusions. Furthermore, in opposition to the predictions of conventional composite theory, we find that finite concentrations of small liquid inclusions enhance the stiffness of soft solids. A straightforward extension of Eshelby’s theory, accounting for the surface tension of the solid-liquid interface, explains our experimental observations. The counterintuitive stiffening of solids by fluid inclusions is expected whenever inclusion radii are smaller than an elastocapillary length, given by the ratio of the surface tension to Young’s modulus of the solid matrix. These results suggest that surface tension can be a simple and effective mechanism to cloak the far-field elastic signature of inclusions.

  10. Fracture Analysis of the FAA/NASA Wide Stiffened Panels

    NASA Technical Reports Server (NTRS)

    Seshadri, B. R.; Newman, J. C., Jr.; Dawicke, D. S.; Young, R. D.

    1998-01-01

    This paper presents the fracture analyses conducted on the FAA/NASA stiffened and unstiffened panels using the STAGS (STructural Analysis of General Shells) code with the critical crack-tip-opening angle (CTOA) fracture criterion. The STAGS code with the "plane-strain" core option was used in all analyses. Previous analyses of wide, flat panels have shown that the high-constraint conditions around a crack front, like plane strain, has to be modeled in order for the critical CTOA fracture criterion to predict wide panel failures from small laboratory tests. In the present study, the critical CTOA value was determined from a wide (unstiffened) panel with anti-buckling guides. The plane-strain core size was estimated from previous fracture analyses and was equal to about the sheet thickness. Rivet flexibility and stiffener failure was based on methods and criteria, like that currently used in industry. STAGS and the CTOA criterion were used to predict load-against-crack extension for the wide panels with a single crack and multiple-site damage cracking at many adjacent rivet holes. Analyses were able to predict stable crack growth and residual strength with a few percent (5%) of stiffened panel tests results but over predicted the buckling failure load on a unstiffened panel with a single crack by 10%.

  11. Sizing-stiffened composite panels loaded in the postbuckling range

    NASA Technical Reports Server (NTRS)

    Biggers, S. B.; Dickson, J. N.

    1984-01-01

    Stiffened panels are widely used in aircraft structures such as wing covers, fuselages, control surfaces, spar webs, bulkheads, and floors. The detailed sizing of minimum-weight stiffened panels involves many considerations. Use of composite materials introduces additional complexities. Many potential modes of failure exist. Analyses for these modes are often not trivial, especially for those involving large out-of-plane displacements. Accurate analyses of all potential failure modes are essential. Numerous practical constraints arise from manufacturing/cost considerations and from damage tolerance, durability, and stiffness requirements. The number of design variables can be large when lamina thicknesses and stacking sequence are being optimized. A significant burden is placed on the sizing code due to the complex analyses, practical constraints, and number of design variables. On the other hand, sizing weight-efficient panels without the aid of an automated procedure is almost out of the question. The sizing code postbuckled Open-Stiffener Optimum Panels (POSTOP) has been developed to aid in the design of minimum-weight panels subject to the considerations mentioned above. Developed for postbuckled composite panels, POSTOP may be used for buckling resistant panels and metallic panels as well. The COPES/CONMIN optimizer is used in POSTOP although other options such as those in the ADS system could be substituted with relative ease. The basic elements of POSTOP are shown. Some of these elements and usage of the program are described.

  12. Post Buckling Progressive Failure Analysis of Composite Laminated Stiffened Panels

    NASA Astrophysics Data System (ADS)

    Anyfantis, Konstantinos N.; Tsouvalis, Nicholas G.

    2012-06-01

    The present work deals with the numerical prediction of the post buckling progressive and final failure response of stiffened composite panels based on structural nonlinear finite element methods. For this purpose, a progressive failure model (PFM) is developed and applied to predict the behaviour of an experimentally tested blade-stiffened panel found in the literature. Failure initiation and propagation is calculated, owing to the accumulation of the intralaminar failure modes induced in fibre reinforced composite materials. Hashin failure criteria have been employed in order to address the fiber and matrix failure modes in compression and tension. On the other hand, the Tsai-Wu failure criterion has been utilized for addressing shear failure. Failure detection is followed with the introduction of corresponding material degradation rules depending on the individual failure mechanisms. Failure initiation and failure propagation as well as the post buckling ultimate attained load have been numerically evaluated. Final failure behaviour of the simulated stiffened panel is due to sudden global failure, as concluded from comparisons between numerical and experimental results being in good agreement.

  13. Progressive Failure Analysis of Composite Stiffened Panels

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Yarrington, Phillip W.; Collier, Craig S.; Arnold, Steven M.

    2006-01-01

    A new progressive failure analysis capability for stiffened composite panels has been developed based on the combination of the HyperSizer stiffened panel design/analysis/optimization software with the Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC). MAC/GMC discretizes a composite material s microstructure into a number of subvolumes and solves for the stress and strain state in each while providing the homogenized composite properties as well. As a result, local failure criteria may be employed to predict local subvolume failure and the effects of these local failures on the overall composite response. When combined with HyperSizer, MAC/GMC is employed to represent the ply level composite material response within the laminates that constitute a stiffened panel. The effects of local subvolume failures can then be tracked as loading on the stiffened panel progresses. Sample progressive failure results are presented at both the composite laminate and the composite stiffened panel levels. Deformation and failure model predictions are compared with experimental data from the World Wide Failure Exercise for AS4/3501-6 graphite/epoxy laminates.

  14. Influence of an asymmetric ring on the modeling of an orthogonally stiffened cylindrical shell

    NASA Technical Reports Server (NTRS)

    Rastogi, Naveen; Johnson, Eric R.

    1994-01-01

    Structural models are examined for the influence of a ring with an asymmetrical cross section on the linear elastic response of an orthogonally stiffened cylindrical shell subjected to internal pressure. The first structural model employs classical theory for the shell and stiffeners. The second model employs transverse shear deformation theories for the shell and stringer and classical theory for the ring. Closed-end pressure vessel effects are included. Interacting line load intensities are computed in the stiffener-to-skin joints for an example problem having the dimensions of the fuselage of a large transport aircraft. Classical structural theory is found to exaggerate the asymmetric response compared to the transverse shear deformation theory.

  15. Design and testing of thermal-expansion-molded graphite-epoxy hat-stiffened sandwich panels

    NASA Technical Reports Server (NTRS)

    Jegley, Dawn C.

    1989-01-01

    Minimum weight configurations for two types of graphite-epoxy hat-stiffened compression-loaded panels fabricated by the thermal-expansion-molding (TEM) manufacturing process were evaluated analytically and experimentally for designs with load index Nx/L values ranging from 100 to 800. The two types of panels contain graphite-epoxy face sheets with a foam core and hat stiffeners which are either open or filled with foam. Constraints on the extensional and shear stiffnesses are imposed on the design so that the panels will satisfy typical constraints for aircraft wing structures. Optimal structurally efficient TEM panels are compared to commercially available aluminum aircraft structures. Predicted load-strain relationships agree well with experimental results. Significant impact damage to the unstiffened face sheet and foam core does not noticeably reduce the load carrying ability of the panels, but damage to the stiffened face sheet reduces the failure load by 20 percent compared to unimpacted panels.

  16. A new technique and application for nonlinear acoustic fatigue of stiffened composite panels

    NASA Astrophysics Data System (ADS)

    Ferman, M. A.; Jacobs, J. H.

    A new solution for the prediction of nonlinear acoustic fatigue of aircraft panels is presented, emphasizing both bidirectionally and unidirectionally stiffened panels. The response of integrally stiffened panels has been studied and a prediction methodology for nonlinear bay response and its relation to overall panel response for unimodal systems is developed. Test results indicate the accuracy for composite and metal panels, utilizing both literature and in-house data. Comparison with other prediction methods indicate that significantly more accurate results are achieved by this approach.

  17. Impact Analysis of Embedded Delamination Location in Hybrid Curved Laminated Composite Stiffened Panel

    NASA Astrophysics Data System (ADS)

    Naini, Jeevan Kumar; P, Ramesh Babu

    2016-08-01

    Modern, aero structures are predominantly of curved construction characterized by a skin and stiffeners. The latest generation of large passenger aircraft also uses mostly composite material in their primary structure and there is trend towards the utilization of bonding of subcomponents. The presence of delamination is a major problem in composite laminated panels and so, it is of great concern to both the academic and aeronautical industrial worlds Indeed delamination can strongly affect the material strength and, sometimes, can cause their breaking up in service. A Pre-damaged configuration is loaded to study the delamination location and mode for delamination initiation and propagation. A parametric study is conducted to investigate the effect of the location of the delamination propagation when delamination is embedded inbetween plies of the skin-stiffener interface, with the cases i) delamination located at front and inbetween plies of the skin-stiffener interface ii) delamination located in middle and inbetween plies of the skin-stiffener interface iii) delamination located at the end and inbetween plies of the skin- stiffener interface. Further the influence of the location of the delamination on load carrying capacity of the panel is investigated. The effect of location of debonds on crack growth and collapse behavior is analyzed using analysis tool. An analysis tool is applied that includes an approach for predicting interlaminar damage initiation and interlaminar damage growth as well as in-plane damage mechanisms to predict the design of defect free panel.

  18. Large deflection elastic-plastic dynamic response of stiffened shells of revolution

    NASA Technical Reports Server (NTRS)

    Stricklin, J. A.; Haisler, W. E.; Von Riesemann, W. A.

    1974-01-01

    This paper presents the formulation and check-out problems for a computer code DYNAPLAS, which analyzes the large deflection elastic-plastic dynamic response of stiffened shells of revolution. The formulation for spacial discretization is by the finite element method with finite differences being used for the evaluation of the pseudo forces due to material and geometric nonlinearities. Time integration is by the Houbolt method or central differences. The stiffeners may be due to concentrated or distributed eccentric rings and spring supports at arbitrary angles around the circumference of the elements. Check-out problems include the comparison of solutions from DYNAPLAS with experimental and other computer solutions for rings and conical and cylindrical shells. A hypothetical submarine including stiffeners and missile tube is studied under a combination of hydrostatic and dynamically applied asymmetrical pressure loadings.

  19. Large deflection elastic-plastic dynamic response of stiffened shells of revolution

    NASA Technical Reports Server (NTRS)

    Stricklin, J. A.; Haisler, W. E.; Von Riesemann, W. A.

    1974-01-01

    This paper presents the formulation and check-out problems for a computer code DYNAPLAS, which analyzes the large deflection elastic-plastic dynamic response of stiffened shells of revolution. The formulation for spacial discretization is by the finite element method with finite differences being used for the evaluation of the pseudo forces due to material and geometric nonlinearities. Time integration is by the Houbolt method or central differences. The stiffeners may be due to concentrated or distributed eccentric rings and spring supports at arbitrary angles around the circumference of the elements. Check-out problems include the comparison of solutions from DYNAPLAS with experimental and other computer solutions for rings and conical and cylindrical shells. A hypothetical submarine including stiffeners and missile tube is studied under a combination of hydrostatic and dynamically applied asymmetrical pressure loadings.

  20. Large deflection elastic-plastic dynamic response of stiffened shells of revolution

    NASA Technical Reports Server (NTRS)

    Stricklin, J. A.; Haisler, W. E.; Vonriesemann, W. A.; Leick, R. D.; Hunsaker, B.; Saczalski, K. J.

    1972-01-01

    The formulation and check out porblems for a computer code DYNAPLAS, which analyzes the large deflection elastic-plastic dynamic response of stiffened shells of revolution, are presented. The formulation for special discretization is by the finite element method with finite differences being used for the evaluation of the pseudo forces due to material and geometric nonlinearities. Time integration is by the Houbolt method. The stiffeners may be due to concentrated or distributed eccentric rings and spring supports at arbitrary angles around the circumference of the elements. Check out porblems include the comparison of solutions from DYNAPLAS with experimental and other computer solutions for rings, conical and cylindrical shells and a curved panel. A hypothetical submarine including stiffeners and missile tube is studied under a combination of hydrostatic and dynamically applied asymmetrical pressure loadings.

  1. 49 CFR 179.400-9 - Stiffening rings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...-9 Stiffening rings. (a) If stiffening rings are used in designing the cylindrical portion of the.... (c) Where a stiffening ring is used that consists of a closed section having two webs attached to the outer jacket, the jacket plate between the webs may be included up to the limit of twice the value of “W...

  2. Structural Integrity in Measures of Self Concept.

    ERIC Educational Resources Information Center

    Stenner, A. Jackson; Katzenmeyer, W.G.

    Structural integrity of a measure is defined in terms of its replicability, constancy, invariance, and stability. Work completed in the development and validation of the Self Observation Scales (SOS) Primary Level (Stenner and Katzenmeyer, 1973) serves to illustrate one method of establishing structural integrity. The name of each scale of the SOS…

  3. Comparison of Curvilinear Stiffeners and Tow Steered Composites for Aeroelastic Tailoring of Transports

    NASA Technical Reports Server (NTRS)

    Stanford, Bret K.; Jutte, Christine V.

    2016-01-01

    A series of aeroelastic optimization problems are solved on a high aspect ratio wingbox of the Common Research Model, in an effort to minimize structural mass under coupled stress, buckling, and flutter constraints. Two technologies are of particular interest: tow steered composite laminate skins and curvilinear stiffeners. Both methods are found to afford feasible reductions in mass over their non-curvilinear structural counterparts, through both distinct and shared mechanisms for passively controlling aeroelastic performance. Some degree of diminishing returns are seen when curvilinear stiffeners and curvilinear fiber tow paths are used simultaneously.

  4. Numerical analysis of stiffened shells of revolution. Volume 4: Engineer's program manual for STARS-2S shell theory automated for rotational structures - 2 (statics) digital computer program

    NASA Technical Reports Server (NTRS)

    Svalbonas, V.; Ogilvie, P.

    1973-01-01

    The engineering programming information for the digital computer program for analyzing shell structures is presented. The program is designed to permit small changes such as altering the geometry or a table size to fit the specific requirements. Each major subroutine is discussed and the following subjects are included: (1) subroutine description, (2) pertinent engineering symbols and the FORTRAN coded counterparts, (3) subroutine flow chart, and (4) subroutine FORTRAN listing.

  5. Calculation of skin-stiffener interface stresses in stiffened composite panels

    NASA Technical Reports Server (NTRS)

    Cohen, David; Hyer, Michael W.

    1987-01-01

    A method for computing the skin-stiffener interface stresses in stiffened composite panels is developed. Both geometrically linear and nonlinear analyses are considered. Particular attention is given to the flange termination region where stresses are expected to exhibit unbounded characteristics. The method is based on a finite-element analysis and an elasticity solution. The finite-element analysis is standard, while the elasticity solution is based on an eigenvalue expansion of the stress functions. The eigenvalue expansion is assumed to be valid in the local flange termination region and is coupled with the finite-element analysis using collocation of stresses on the local region boundaries. Accuracy and convergence of the local elasticity solution are assessed using a geometrically linear analysis. Using this analysis procedure, the influence of geometric nonlinearities and stiffener parameters on the skin-stiffener interface stresses is evaluated.

  6. Altitude compensating ablative stiffening band for rocket motor nozzles

    NASA Astrophysics Data System (ADS)

    Brown, J. Lynn; McIntire, Vaughn W., Jr.; Clontz, Leslie A.; Peckham, Richard J.; Dixon, Alan B. C.; West, James C.

    1993-03-01

    A rocket motor nozzle with an ablative internal structural member which provides rigidity to the rocket motor both prior to and during motor operation is described. The rocket motor nozzle of the present invention includes an outer shell which converges to a throat and then diverges to form an entrance. An ablative stiffening band, secured to the inner surface of the nozzle and extending from the aft portion of the nozzle to the throat, is contoured to allow the exhaust gases to flow smoothly through a central longitudinal opening in the band.

  7. Stiffened yeast telomerase RNA supports RNP function in vitro and in vivo.

    PubMed

    Lebo, Kevin J; Zappulla, David C

    2012-09-01

    The 1157-nt Saccharomyces cerevisiae telomerase RNA, TLC1, in addition to providing a 16-nt template region for reverse transcription, has been proposed to act as a scaffold for protein subunits. Although accessory subunits of the telomerase ribonucleoprotein (RNP) complex function even when their binding sites are relocated on the yeast telomerase RNA, the physical nature of the RNA scaffold has not been directly analyzed. Here we explore the structure-function organization of the yeast telomerase RNP by extensively stiffening the three long arms of TLC1, which connect essential and important accessory protein subunits Ku, Est1, and Sm(7), to its central catalytic hub. This 956-nt triple-stiff-arm TLC1 (TSA-T) reconstitutes active telomerase with TERT (Est2) in vitro. Furthermore, TSA-T functions in vivo, even maintaining longer telomeres than TLC1 on a per RNA basis. We also tested functional contributions of each stiffened arm within TSA-T and found that the stiffened Est1 and Ku arms contribute to telomere lengthening, while stiffening the terminal arm reduces telomere length and telomerase RNA abundance. The fact that yeast telomerase tolerates significant stiffening of its RNA subunit in vivo advances our understanding of the architectural and functional organization of this RNP and, more broadly, our conception of the world of lncRNPs.

  8. POSTOP: Postbuckled open-stiffener optimum panels-theory and capability

    NASA Technical Reports Server (NTRS)

    Dickson, J. N.; Biggers, S. B.

    1984-01-01

    The computer program POSTOP was developed to serve as an aid in the analysis and sizing of stiffened composite panels that are loaded in the postbuckling regime. A comprehensive set of analysis routines was coupled to a widely used optimization program to produce this sizing code. POSTOP is intended for the preliminary design of metal or composite panels with open-section stiffeners, subjected to multiple combined biaxial compression (or tension), shear and normal pressure load cases. Longitudinal compression, however, is assumed to be the dominant loading. Temperature, initial bow eccentricity and load eccentricity effects are included. The panel geometry is assumed to be repetitive over several bays in the longitudinal (stiffener) direction as well as in the transverse direction. Analytical routines are included to compute panel stiffnesses, strains, local and panel buckling loads, and skin/stiffener interface stresses. The resulting program is applicable to stiffened panels as commonly used in fuselage, wing, or empennage structures. The analysis procedures and rationale for the assumptions used therein are described in detail.

  9. Reversible Stiffening Transition in β-Hairpin Hydrogels Induced by Ion Complexation

    PubMed Central

    Ozbas, Bulent; Rajagopal, Karthikan; Haines-Butterick, Lisa; Schneider, Joel P.; Pochan, Darrin J.

    2009-01-01

    We have previously shown that properly designed lysine and valine-rich peptides undergo a random coil to β-hairpin transition followed by intermolecular self-assembly into a fibrillar hydrogel network only after the peptide solutions are heated above the intramolecular folding transition temperature. Here we report that these hydrogels also undergo a stiffening transition as they are cooled below a critical temperature only when boric acid is used to buffer the peptide solution. This stiffening transition is characterized by rheology, dynamic light scattering, and small angle neutron scattering. Rheological measurements show that the stiffening transition causes an increase in the hydrogel storage modulus (G′) by as much as 1 order of magnitude and is completely reversible on subsequently raising the temperature. Although this reversible transition exhibits rheological properties that are similar to polyol/borax solutions, the underlying mechanism does not involve hydroxyl–borate complexation. The stiffening transition is mainly caused by the interactions between lysine and boric acid/borate anion and is not driven by the changes in the secondary structure of the β-hairpin peptide. Addition of glucose to boric acid and peptide solution disrupts the stiffening transition due to competitive glucose–borate complexation. PMID:18044866

  10. Optimized bio-inspired stiffening design for an engine nacelle.

    PubMed

    Lazo, Neil; Vodenitcharova, Tania; Hoffman, Mark

    2015-11-04

    Structural efficiency is a common engineering goal in which an ideal solution provides a structure with optimized performance at minimized weight, with consideration of material mechanical properties, structural geometry, and manufacturability. This study aims to address this goal in developing high performance lightweight, stiff mechanical components by creating an optimized design from a biologically-inspired template. The approach is implemented on the optimization of rib stiffeners along an aircraft engine nacelle. The helical and angled arrangements of cellulose fibres in plants were chosen as the bio-inspired template. Optimization of total displacement and weight was carried out using a genetic algorithm (GA) coupled with finite element analysis. Iterations showed a gradual convergence in normalized fitness. Displacement was given higher emphasis in optimization, thus the GA optimization tended towards individual designs with weights near the mass constraint. Dominant features of the resulting designs were helical ribs with rectangular cross-sections having large height-to-width ratio. Displacement reduction was at 73% as compared to an unreinforced nacelle, and is attributed to the geometric features and layout of the stiffeners, while mass is maintained within the constraint.

  11. Fabrication and evaluation of cold/formed/weldbrazed beta-titanium skin-stiffened compression panels

    NASA Technical Reports Server (NTRS)

    Royster, D. M.; Bales, T. T.; Davis, R. C.; Wiant, H. R.

    1983-01-01

    The room temperature and elevated temperature buckling behavior of cold formed beta titanium hat shaped stiffeners joined by weld brazing to alpha-beta titanium skins was determined. A preliminary set of single stiffener compression panels were used to develop a data base for material and panel properties. These panels were tested at room temperature and 316 C (600 F). A final set of multistiffener compression panels were fabricated for room temperature tests by the process developed in making the single stiffener panels. The overall geometrical dimensions for the multistiffener panels were determined by the structural sizing computer code PASCO. The data presented from the panel tests include load shortening curves, local buckling strengths, and failure loads. Experimental buckling loads are compared with the buckling loads predicted by the PASCO code. Material property data obtained from tests of ASTM standard dogbone specimens are also presented.

  12. Finite Element Analysis of Adaptive-Stiffening and Shape-Control SMA Hybrid Composites

    NASA Technical Reports Server (NTRS)

    Gao, Xiujie; Burton, Deborah; Turner, Travis L.; Brinson, Catherine

    2005-01-01

    Shape memory alloy hybrid composites with adaptive-stiffening or morphing functions are simulated using finite element analysis. The composite structure is a laminated fiber-polymer composite beam with embedded SMA ribbons at various positions with respect to the neutral axis of the beam. Adaptive stiffening or morphing is activated via selective resistance heating of the SMA ribbons or uniform thermal loads on the beam. The thermomechanical behavior of these composites was simulated in ABAQUS using user-defined SMA elements. The examples demonstrate the usefulness of the methods for the design and simulation of SMA hybrid composites. Keywords: shape memory alloys, Nitinol, ABAQUS, finite element analysis, post-buckling control, shape control, deflection control, adaptive stiffening, morphing, constitutive modeling, user element

  13. ISPAN (Interactive Stiffened Panel Analysis): A tool for quick concept evaluation and design trade studies

    NASA Technical Reports Server (NTRS)

    Hairr, John W.; Dorris, William J.; Ingram, J. Edward; Shah, Bharat M.

    1993-01-01

    Interactive Stiffened Panel Analysis (ISPAN) modules, written in FORTRAN, were developed to provide an easy to use tool for creating finite element models of composite material stiffened panels. The modules allow the user to interactively construct, solve and post-process finite element models of four general types of structural panel configurations using only the panel dimensions and properties as input data. Linear, buckling and post-buckling solution capability is provided. This interactive input allows rapid model generation and solution by non finite element users. The results of a parametric study of a blade stiffened panel are presented to demonstrate the usefulness of the ISPAN modules. Also, a non-linear analysis of a test panel was conducted and the results compared to measured data and previous correlation analysis.

  14. The vibroacoustic response and sound absorption performance of multilayer, microperforated rib-stiffened plates

    NASA Astrophysics Data System (ADS)

    Zhou, Haian; Wang, Xiaoming; Wu, Huayong; Meng, Jianbing

    2017-04-01

    The vibroacoustic response and sound absorption performance of a structure composed of multilayer plates and one rigid back wall are theoretically analyzed. In this structure, all plates are two-dimensional, microperforated, and periodically rib-stiffened. To investigate such a structural system, semianalytical models of one-layer and multilayer plate structures considering the vibration effects are first developed. Then approaches of the space harmonic method and Fourier transforms are applied to a one-layer plate, and finally the cascade connection method is utilized for a multilayer plate structure. Based on fundamental acoustic formulas, the vibroacoustic responses of microperforated stiffened plates are expressed as functions of a series of harmonic amplitudes of plate displacement, which are then solved by employing the numerical truncation method. Applying the inverse Fourier transform, wave propagation, and linear addition properties, the equations of the sound pressures and absorption coefficients for the one-layer and multilayer stiffened plates in physical space are finally derived. Using numerical examples, the effects of the most important physical parameters—for example, the perforation ratio of the plate, sound incident angles, and periodical rib spacing—on sound absorption performance are examined. Numerical results indicate that the sound absorption performance of the studied structure is effectively enhanced by the flexural vibration of the plate in water. Finally, the proposed approaches are validated by comparing the results of stiffened plates of the present work with solutions from previous studies.

  15. Determination of the Fracture Parameters in a Stiffened Composite Panel

    NASA Technical Reports Server (NTRS)

    Lin, Chung-Yi

    2000-01-01

    A modified J-integral, namely the equivalent domain integral, is derived for a three-dimensional anisotropic cracked solid to evaluate the stress intensity factor along the crack front using the finite element method. Based on the equivalent domain integral method with auxiliary fields, an interaction integral is also derived to extract the second fracture parameter, the T-stress, from the finite element results. The auxiliary fields are the two-dimensional plane strain solutions of monoclinic materials with the plane of symmetry at x(sub 3) = 0 under point loads applied at the crack tip. These solutions are expressed in a compact form based on the Stroh formalism. Both integrals can be implemented into a single numerical procedure to determine the distributions of stress intensity factor and T-stress components, T11, T13, and thus T33, along a three-dimensional crack front. The effects of plate thickness and crack length on the variation of the stress intensity factor and T-stresses through the thickness are investigated in detail for through-thickness center-cracked plates (isotropic and orthotropic) and orthotropic stiffened panels under pure mode-I loading conditions. For all the cases studied, T11 remains negative. For plates with the same dimensions, a larger size of crack yields larger magnitude of the normalized stress intensity factor and normalized T-stresses. The results in orthotropic stiffened panels exhibit an opposite trend in general. As expected, for the thicker panels, the fracture parameters evaluated through the thickness, except the region near the free surfaces, approach two-dimensional plane strain solutions. In summary, the numerical methods presented in this research demonstrate their high computational effectiveness and good numerical accuracy in extracting these fracture parameters from the finite element results in three-dimensional cracked solids.

  16. Noise-reduction measurements of stiffened and unstiffened cylindrical models of an airplane fuselage

    NASA Technical Reports Server (NTRS)

    Willis, C. M.; Mayes, W. H.

    1984-01-01

    Noise-reduction measurements are presented for a stiffened and an unstiffened model of an airplane fuselage. The cylindrical models were tested in a reverberant-field noise environment over a frequency range from 20 Hz to 6 kHz. An unstiffened metal fuselage provided more noise reduction than a fuselage having the same sidewall weight divided between skin and stiffening stringers and ring frames. The addition of acoustic insulation to the models tended to smooth out the interior-noise spectrum by reducing or masking the noise associated with the structural response at some of the resonant frequencies.

  17. Influence of Impact Damage on Carbon-Epoxy Stiffener Crippling

    NASA Technical Reports Server (NTRS)

    Jegley, Dawn C.

    2010-01-01

    NASA, the Air Force Research Laboratory and The Boeing Company have worked to develop new low-cost, light-weight composite structures for aircraft. A Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept has been developed which offers advantages over traditional metallic structure. In this concept a stitched carbon-epoxy material system has been developed with the potential for reducing the weight and cost of transport aircraft structure by eliminating fasteners, thereby reducing part count and labor. By adding unidirectional carbon rods to the top of stiffeners, the panel becomes more structurally efficient. This combination produces a more damage tolerant design. This document describes the results of experimentation on PRSEUS specimens loaded in unidirectional compression subjected to impact damage and loaded in fatigue and to failure. A comparison with analytical predictions for pristine and damaged specimens is included.

  18. Experimental Behavior of Fatigued Single Stiffener PRSEUS Specimens

    NASA Technical Reports Server (NTRS)

    Jegley, Dawn C.

    2009-01-01

    NASA, the Air Force Research Laboratory and The Boeing Company have worked to develop new low-cost, light-weight composite structures for aircraft. A Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept has been developed which offers advantages over traditional metallic structure. In this concept a stitched carbon-epoxy material system has been developed with the potential for reducing the weight and cost of transport aircraft structure by eliminating fasteners, thereby reducing part count and labor. By adding unidirectional carbon rods to the top of stiffeners, the panel becomes more structurally efficient. This combination produces a more damage tolerant design. This document describes the results of experimentation on PRSEUS specimens loaded in unidirectional compression in fatigue and to failure.

  19. Plated lamination structures for integrated magnetic devices

    SciTech Connect

    Webb, Bucknell C.

    2014-06-17

    Semiconductor integrated magnetic devices such as inductors, transformers, etc., having laminated magnetic-insulator stack structures are provided, wherein the laminated magnetic-insulator stack structures are formed using electroplating techniques. For example, an integrated laminated magnetic device includes a multilayer stack structure having alternating magnetic and insulating layers formed on a substrate, wherein each magnetic layer in the multilayer stack structure is separated from another magnetic layer in the multilayer stack structure by an insulating layer, and a local shorting structure to electrically connect each magnetic layer in the multilayer stack structure to an underlying magnetic layer in the multilayer stack structure to facilitate electroplating of the magnetic layers using an underlying conductive layer (magnetic or seed layer) in the stack as an electrical cathode/anode for each electroplated magnetic layer in the stack structure.

  20. Load transfer in the stiffener-to-skin joints of a pressurized fuselage

    NASA Technical Reports Server (NTRS)

    Johnson, Eric R.; Rastogi, Naveen

    1995-01-01

    Structural analyses are developed to determine the linear elastic and the geometrically nonlinear elastic response of an internally pressurized, orthogonally stiffened, composite material cylindrical shell. The configuration is a long circular cylindrical shell stiffened on the inside by a regular arrangement of identical stringers and identical rings. Periodicity permits the analysis of a unit cell model consisting of a portion of the shell wall centered over one stringer-ring joint. The stringer-ring-shell joint is modeled in an idealized manner; the stiffeners are mathematically permitted to pass through one another without contact, but do interact indirectly through their mutual contact with the shell at the joint. Discrete beams models of the stiffeners include a stringer with a symmetrical cross section and a ring with either a symmetrical or an asymmetrical open section. Mathematical formulations presented for the linear response include the effect of transverse shear deformations and the effect of warping of the ring's cross section due to torsion. These effects are important when the ring has an asymmetrical cross section because the loss of symmetry in the problem results in torsion and out-of-plane bending of the ring, and a concomitant rotation of the joint at the stiffener intersection about the circumferential axis. Data from a composite material crown panel typical of a large transport fuselage structure are used for two numerical examples. Although the inclusion of geometric nonlinearity reduces the 'pillowing' of the shell, it is found that bending is localized to a narrow region near the stiffener. Including warping deformation of the ring into the analysis changes the sense of the joint rotation. Transverse shear deformation models result in increased joint flexibility.

  1. Structure Learning in Bayesian Sensorimotor Integration

    PubMed Central

    Genewein, Tim; Hez, Eduard; Razzaghpanah, Zeynab; Braun, Daniel A.

    2015-01-01

    Previous studies have shown that sensorimotor processing can often be described by Bayesian learning, in particular the integration of prior and feedback information depending on its degree of reliability. Here we test the hypothesis that the integration process itself can be tuned to the statistical structure of the environment. We exposed human participants to a reaching task in a three-dimensional virtual reality environment where we could displace the visual feedback of their hand position in a two dimensional plane. When introducing statistical structure between the two dimensions of the displacement, we found that over the course of several days participants adapted their feedback integration process in order to exploit this structure for performance improvement. In control experiments we found that this adaptation process critically depended on performance feedback and could not be induced by verbal instructions. Our results suggest that structural learning is an important meta-learning component of Bayesian sensorimotor integration. PMID:26305797

  2. Structural Integrity of Intelligent Materials and Structures

    DTIC Science & Technology

    1994-02-17

    Memory Actuators ," J. Sound and Vibr., Vol. 140, pp. 437-456, 1990.I 7. Jackson, C.M. et al., ൿ- Nitinol - The Alloy with a Memory:3 Its Physical...55W0 Standard Foam 298 (Rev 2869) P..*Cb.d by ANSI S.13 239- 290,102 -- 2Q-•.m* 4 0388; IMSNVV, INC. Approved f or publ iC rel685O 3 P.O. Box 865...Douglas Aircraft, Grumman, and other companies have resulted in the development of shape memory actuators for the3 control of space structures, the

  3. Test Structures For Bumpy Integrated Circuits

    NASA Technical Reports Server (NTRS)

    Buehler, Martin G.; Sayah, Hoshyar R.

    1989-01-01

    Cross-bridge resistors added to comb and serpentine patterns. Improved combination of test structures built into integrated circuit used to evaluate design rules, fabrication processes, and quality of interconnections. Consist of meshing serpentines and combs, and cross bridge. Structures used to make electrical measurements revealing defects in design or fabrication. Combination of test structures includes three comb arrays, two serpentine arrays, and cross bridge. Made of aluminum or polycrystalline silicon, depending on material in integrated-circuit layers evaluated. Aluminum combs and serpentine arrays deposited over steps made by polycrystalline silicon and diffusion layers, while polycrystalline silicon versions of these structures used to cross over steps made by thick oxide layer.

  4. Integrated flow field (IFF) structure

    NASA Technical Reports Server (NTRS)

    Pien, Shyhing M. (Inventor); Warshay, Marvin (Inventor)

    2012-01-01

    The present disclosure relates in part to a flow field structure comprising a hydrophilic part and a hydrophobic part communicably attached to each other via a connecting interface. The present disclosure further relates to electrochemical cells comprising the aforementioned flow fields.

  5. Reversible Thermal Stiffening in Polymer Nanocomposites.

    PubMed

    Senses, Erkan; Isherwood, Andrew; Akcora, Pinar

    2015-07-15

    Miscible polymer blends with different glass transition temperatures (Tg) are known to create confined interphases between glassy and mobile chains. Here, we show that nanoparticles adsorbed with a high-Tg polymer, poly(methyl methacrylate), and dispersed in a low-Tg matrix polymer, poly(ethylene oxide), exhibit a liquid-to-solid transition at temperatures above Tg's of both polymers. The mechanical adaptivity of nanocomposites to temperature underlies the existence of dynamically asymmetric bound layers on nanoparticles and more importantly reveals their impact on macroscopic mechanical response of composites. The unusual reversible stiffening behavior sets these materials apart from conventional polymer composites that soften upon heating. The presented stiffening mechanism in polymer nanocomposites can be used in applications for flexible electronics or mechanically induced actuators responding to environmental changes like temperature or magnetic fields.

  6. Integrable structures in quantum field theory

    NASA Astrophysics Data System (ADS)

    Negro, Stefano

    2016-08-01

    This review was born as notes for a lecture given at the Young Researchers Integrability School (YRIS) school on integrability in Durham, in the summer of 2015. It deals with a beautiful method, developed in the mid-nineties by Bazhanov, Lukyanov and Zamolodchikov and, as such, called BLZ. This method can be interpreted as a field theory version of the quantum inverse scattering, also known as the algebraic Bethe ansatz. Starting with the case of conformal field theories (CFTs) we show how to build the field theory analogues of commuting transfer T matrices and Baxter Q-operators of integrable lattice models. These objects contain the complete information of the integrable structure of the theory, viz. the integrals of motion, and can be used, as we will show, to derive the thermodynamic Bethe ansatz and nonlinear integral equations. This same method can be easily extended to the description of integrable structures of certain particular massive deformations of CFTs; these, in turn, can be described as quantum group reductions of the quantum sine-Gordon model and it is an easy step to include this last theory in the framework of BLZ approach. Finally we show an interesting and surprising connection of the BLZ structures with classical objects emerging from the study of classical integrable models via the inverse scattering transform method. This connection goes under the name of ODE/IM correspondence and we will present it for the specific case of quantum sine-Gordon model only.

  7. Geometric stiffening in multibody dynamics formulations

    NASA Technical Reports Server (NTRS)

    Sharf, Inna

    1993-01-01

    In this paper we discuss the issue of geometric stiffening as it arises in the context of multibody dynamics. This topic has been treated in a number of previous publications in this journal and appears to be a debated subject. The controversy revolves primarily around the 'correct' methodology for incorporating the stiffening effect into dynamics formulations. The main goal of this work is to present the different approaches that have been developed for this problem through an in-depth review of several publications dealing with this subject. This is done with the goal of contributing to a precise understanding of the existing methodologies for modelling the stiffening effects in multibody systems. Thus, in presenting the material we attempt to illuminate the key characteristics of the various methods as well as show how they relate to each other. In addition, we offer a number of novel insights and clarifying interpretations of these schemes. The paper is completed with a general classification and comparison of the different approaches.

  8. Investigation into Z-Pin Reinforced Composite Skin/Stiffener Debond under Monotonic and Cyclic Bending

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangyang; Li, Yong; Van Hoa, Suong; Xiao, Jun; Chu, Qiyi

    2017-08-01

    Skin/stiffener debonding has been a longstanding concern for the users of stiffened composite panels in long-term service. Z-pinning technology is an emerging solution to reinforce the composite assembly joints. This work experimentally characterizes the progressive debonding of Z-pinned skin/stiffener interface with the skin under static bend loading. The three-stage failure process is identified as: flange edge debonding, pin/laminate debonding, and ultimate structural failure. Three different distribution patterns were compared in terms of the static debonding properties revealed the affirmative fact that locating pins in high normal stress regions, that is close to the flange edges in skin/stiffener structures, is more beneficial to utilize the full potential of Z-pinning reinforcement. The unit strip FE model was developed and demonstrated effective to analysis the effect of Z-pin distribution on the ultimate debond load. On the other hand, the evolution of fatigue cracks at Z-pinned skin/flange interface was investigated with a series of displacement-controlled fatigue bending tests and microscopic observations. Results show that Z-pinning postpones crack initiations at low displacement levels, and the remarkable crack-arresting function of pins enables the structure a prolonged fatigue life. However, pins become less effective when the maximum displacement exceeds the crack initiation level due to gradually pullout of pins.

  9. Forced vibrations of plates and cylindrical shells with regular orthogonal system of stiffeners

    NASA Astrophysics Data System (ADS)

    Efimtsov, B. M.; Lazarev, L. A.

    2009-10-01

    A wide range of engineering structures, such as aircraft fuselages or ship hulls have as the foundation a shell orthogonally strengthened by two sets of stiffeners. Solution of the task related to determining the vibrations of such complicated structures requires an application of special methods which permit accounting for the interaction between the shell and the two sets of discrete stiffeners correctly. The present work proposes an effective method of predicting the vibrations of a finite orthogonally stiffened structure as a part of an infinite one when the edge conditions permit. The prediction method proposed is based on the method of space-harmonic expansions when the shell displacements and forces are presented in the form of special double trigonometric series. The method allows the interconnection of all three components of displacement and rotation of the shell and the stiffeners to be taken into account. The vibration velocity of the construction is determined directly without a need for solving the task of eigen-values first. The vibration shapes are broken into a large number of non-interacting groups of shapes. The solution reduces to a system of equations relating to the generalized reactions at supports. All this allows predictions to be made for large parts of the investigated construction over practically the whole frequency range of sound.

  10. Integrated segmentation of cellular structures

    NASA Astrophysics Data System (ADS)

    Ajemba, Peter; Al-Kofahi, Yousef; Scott, Richard; Donovan, Michael; Fernandez, Gerardo

    2011-03-01

    Automatic segmentation of cellular structures is an essential step in image cytology and histology. Despite substantial progress, better automation and improvements in accuracy and adaptability to novel applications are needed. In applications utilizing multi-channel immuno-fluorescence images, challenges include misclassification of epithelial and stromal nuclei, irregular nuclei and cytoplasm boundaries, and over and under-segmentation of clustered nuclei. Variations in image acquisition conditions and artifacts from nuclei and cytoplasm images often confound existing algorithms in practice. In this paper, we present a robust and accurate algorithm for jointly segmenting cell nuclei and cytoplasm using a combination of ideas to reduce the aforementioned problems. First, an adaptive process that includes top-hat filtering, Eigenvalues-of-Hessian blob detection and distance transforms is used to estimate the inverse illumination field and correct for intensity non-uniformity in the nuclei channel. Next, a minimum-error-thresholding based binarization process and seed-detection combining Laplacian-of-Gaussian filtering constrained by a distance-map-based scale selection is used to identify candidate seeds for nuclei segmentation. The initial segmentation using a local maximum clustering algorithm is refined using a minimum-error-thresholding technique. Final refinements include an artifact removal process specifically targeted at lumens and other problematic structures and a systemic decision process to reclassify nuclei objects near the cytoplasm boundary as epithelial or stromal. Segmentation results were evaluated using 48 realistic phantom images with known ground-truth. The overall segmentation accuracy exceeds 94%. The algorithm was further tested on 981 images of actual prostate cancer tissue. The artifact removal process worked in 90% of cases. The algorithm has now been deployed in a high-volume histology analysis application.

  11. Structurally Integrated Antenna Concepts for HALE UAVs

    NASA Technical Reports Server (NTRS)

    Cravey, Robin L.; Vedeler, Erik; Goins, Larry; Young, W. Robert; Lawrence, Roland W.

    2006-01-01

    This technical memorandum describes work done in support of the Multifunctional Structures and Materials Team under the Vehicle Systems Program's ITAS (Integrated Tailored Aero Structures) Project during FY 2005. The Electromagnetics and Sensors Branch (ESB) developed three ultra lightweight antenna concepts compatible with HALE UAVs (High Altitude Long Endurance Unmanned Aerial Vehicles). ESB also developed antenna elements that minimize the interaction between elements and the vehicle to minimize the impact of wing flexure on the EM (electromagnetic) performance of the integrated array. In addition, computer models were developed to perform phase correction for antenna arrays whose elements are moving relative to each other due to wing deformations expected in HALE vehicle concepts. Development of lightweight, conformal or structurally integrated antenna elements and compensating for the impact of a lightweight, flexible structure on a large antenna array are important steps in the realization of HALE UAVs for microwave applications such as passive remote sensing and communications.

  12. Interlaminar stress analysis at the skin-stiffener interface of a grid-stiffened composite panel

    NASA Technical Reports Server (NTRS)

    Wiggenraad, J. F. M.; Bauld, N. R., Jr.

    1991-01-01

    Results are presented of an analysis of the interlaminar stress components at the skin-wrap, skin-core, and wrap-core interfaces for an advanced-concept stiffened panel using a global/local finite element procedure. The procedure consists of a global model of two-dimensional shell elements that is used to design a grid-stiffened panel with blade-type stiffeners, a local model of three-dimensional solid elements that is used to compute interlaminar stress components, and a scheme devised to assign displacement boundary conditions for the local model that are derived from displacement and rotation data of a few nodes of the global model. The interlaminar stresses for this panel design were found to be well below typical tensile normal and shearing strengths of a graphite-epoxy material.

  13. Stiffener-skin interactions in pressure-loaded composite panels

    NASA Technical Reports Server (NTRS)

    Loup, D. C.; Hyer, M. W.; Starnes, J. H., Jr.

    1986-01-01

    The effects of flange thickness, web height, and skin stiffness on the strain distributions in the skin-stiffener interface region of pressure-loaded graphite-epoxy panels, stiffened by the type-T stiffener, were examined at pressure levels up to one atmosphere. The results indicate that at these pressures geometric nonlinearities are important, and that the overall stiffener stiffness has a significant effect on panel response, particularly on the out-of-plane deformation or pillowing of the skin. The strain gradients indicated that the interface between the skin and the stiffener experiences two components of shear stress, in addition to a normal (peel) stress. Thus, the skin-stiffener interface problem is a three-dimensional problem rather than a two-dimensional one, as is often assumed.

  14. Structures of the CRISPR genome integration complex.

    PubMed

    Wright, Addison V; Liu, Jun-Jie; Knott, Gavin J; Doxzen, Kevin W; Nogales, Eva; Doudna, Jennifer A

    2017-09-15

    CRISPR-Cas systems depend on the Cas1-Cas2 integrase to capture and integrate short foreign DNA fragments into the CRISPR locus, enabling adaptation to new viruses. We present crystal structures of Cas1-Cas2 bound to both donor and target DNA in intermediate and product integration complexes, as well as a cryo-electron microscopy structure of the full CRISPR locus integration complex, including the accessory protein IHF (integration host factor). The structures show unexpectedly that indirect sequence recognition dictates integration site selection by favoring deformation of the repeat and the flanking sequences. IHF binding bends the DNA sharply, bringing an upstream recognition motif into contact with Cas1 to increase both the specificity and efficiency of integration. These results explain how the Cas1-Cas2 CRISPR integrase recognizes a sequence-dependent DNA structure to ensure site-selective CRISPR array expansion during the initial step of bacterial adaptive immunity. Copyright © 2017, American Association for the Advancement of Science.

  15. Evaluation of structural integrity using integrated testing and analysis

    NASA Technical Reports Server (NTRS)

    Coppolino, Robert N.

    1988-01-01

    An integrated approach to dynamic testing and mathematical model analysis is described. The overall approach addresses four key tasks, namely, pretest planning and analysis, test data acquisition, data reduction and analysis, and test/analysis correlation and mathematical model updates. Several key software programs are employed to accomplish this task. They are a leading finite element code, a sophisticated data analysis processor and a graphical pre- and post-processor along with an advanced interface utility. Several practical structures are used to illustrate tools and concepts employed in the integrated test analysis process.

  16. Theories and experiments on the stiffening effect of high-frequency excitation for continuous elastic systems

    NASA Astrophysics Data System (ADS)

    Thomsen, J. J.

    2003-02-01

    One effect of strong mechanical high-frequency excitation may be to apparently "stiffen" a structure, a well-described phenomenon for discrete systems. The present study provides theoretical and experimental results on this effect for continuous elastic structures. A laboratory experiment is set up for demonstrating and measuring the stiffening effect in a simple setting, in the form of a horizontal piano string subjected to longitudinal high-frequency excitation at the clamped base and free at the other end. A simplest possible theoretical model is set up and analyzed using a hierarchy of three approximating theories, each providing valuable insight. One of these is capable of predicting the vertical string lift due to stiffening in terms of simple expressions, with results that agree very well with experimental measurements for a wide range of conditions. It appears that resonance effects cannot be ignored, as was done in a few related studies—unless the system has very low modal density or heavy damping; thus first-order consideration to resonance effects is included. Using the specific example with experimental support to put confidence on the proposed theory, expressions for predicting the stiffening effect for a more general class of continuous systems in differential operator form are also provided.

  17. Interphase Induced Dynamic Self-Stiffening in Graphene-Based Polydimethylsiloxane Nanocomposites.

    PubMed

    Cao, Linlin; Wang, Yanlei; Dong, Pei; Vinod, Soumya; Tijerina, Jaime Taha; Ajayan, Pulickel M; Xu, Zhiping; Lou, Jun

    2016-07-01

    The ability to rearrange microstructures and self-stiffen in response to dynamic external mechanical stimuli is critical for biological tissues to adapt to the environment. While for most synthetic materials, subjecting to repeated mechanical stress lower than their yield point would lead to structural failure. Here, it is reported that the graphene-based polydimethylsiloxane (PDMS) nanocomposite, a chemically and physically cross-linked system, exhibits an increase in the storage modulus under low-frequency, low-amplitude dynamic compressive loading. Cross-linking density statistics and molecular dynamics calculations show that the dynamic self-stiffening could be attributed to the increase in physical cross-linking density, resulted from the re-alignment and re-orientation of polymer chains along the surface of nano-fillers that constitute an interphase. Consequently, the interfacial interaction between PDMS-nano-fillers and the mobility of polymer chain, which depend on the degree of chemical cross-linking and temperature, are important factors defining the observed performance of self-stiffening. The understanding of the dynamic self-stiffening mechanism lays the ground for the future development of adaptive structural materials and bio-compatible, load-bearing materials for tissue engineering applications.

  18. Communication: Stiffening of dilute alcohol and alkane mixtures with water

    NASA Astrophysics Data System (ADS)

    Ashbaugh, Henry S.; Wesley Barnett, J.; Saltzman, Alexander; Langrehr, Mae E.; Houser, Hayden

    2016-11-01

    We probe the anomalous compressibilities of dilute mixtures of alcohols and alkane gases in water using molecular simulations. The response to increasing solute concentration depends sensitively on temperature, with the compressibility decreasing upon solute addition at low temperatures and increasing at elevated temperatures. The thermodynamic origin of stiffening is directly tied to the solute's partial compressibility, which is negative at low temperatures and rises above water's compressibility with increasing temperature. Hydration shell waters concurrently tilt towards clathrate-like structures at low temperatures that fade with heating. Kirkwood-Buff theory traces the solute's partial compressibility to changes in the solute-water association volume upon heating and incongruous packing of waters at the boundary between the more structured hydration shell and bulk water.

  19. Design and fabrication of a stringer stiffened discrete-tube actively cooled panel for a hypersonic aircraft

    NASA Technical Reports Server (NTRS)

    Anthony, F. M.; Halenbrook, R. G.

    1981-01-01

    A 0.61 x 1.22 m (2 x 4 ft) test panel was fabricated and delivered to the Langley Research Center for assessment of the thermal and structural features of the optimized panel design. The panel concept incorporated an aluminum alloy surface panel actively cooled by a network of discrete, parallel, redundant, counterflow passage interconnected with appropriate manifolding, and assembled by adhesive bonding. The cooled skin was stiffened with a mechanically fastened conventional substructure of stringers and frames. A 40 water/60 glycol solution was the coolant. Low pressure leak testing, radiography, holography and infrared scanning were applied at various stages of fabrication to assess integrity and uniformity. By nondestructively inspecting selected specimens which were subsequently tested to destruction, it was possible to refine inspection standards as applied to this cooled panel design.

  20. Keratin network modifications lead to the mechanical stiffening of the hair follicle fiber.

    PubMed

    Bornschlögl, Thomas; Bildstein, Lucien; Thibaut, Sébastien; Santoprete, Roberto; Fiat, Françoise; Luengo, Gustavo S; Doucet, Jean; Bernard, Bruno A; Baghdadli, Nawel

    2016-05-24

    The complex mechanical properties of biomaterials such as hair, horn, skin, or bone are determined by the architecture of the underlying fibrous bionetworks. Although much is known about the influence of the cytoskeleton on the mechanics of isolated cells, this has been less studied in tridimensional tissues. We used the hair follicle as a model to link changes in the keratin network composition and architecture to the mechanical properties of the nascent hair. We show using atomic force microscopy that the soft keratinocyte matrix at the base of the follicle stiffens by a factor of ∼360, from 30 kPa to 11 MPa along the first millimeter of the follicle. The early mechanical stiffening is concomitant to an increase in diameter of the keratin macrofibrils, their continuous compaction, and increasingly parallel orientation. The related stiffening of the material follows a power law, typical of the mechanics of nonthermal bending-dominated fiber networks. In addition, we used X-ray diffraction to monitor changes in the (supra)molecular organization within the keratin fibers. At later keratinization stages, the inner mechanical properties of the macrofibrils dominate the stiffening due to the progressive setting up of the cystine network. Our findings corroborate existing models on the sequence of biological and structural events during hair keratinization.

  1. Keratin network modifications lead to the mechanical stiffening of the hair follicle fiber

    PubMed Central

    Bornschlögl, Thomas; Bildstein, Lucien; Thibaut, Sébastien; Santoprete, Roberto; Fiat, Françoise; Luengo, Gustavo S.; Doucet, Jean; Bernard, Bruno A.; Baghdadli, Nawel

    2016-01-01

    The complex mechanical properties of biomaterials such as hair, horn, skin, or bone are determined by the architecture of the underlying fibrous bionetworks. Although much is known about the influence of the cytoskeleton on the mechanics of isolated cells, this has been less studied in tridimensional tissues. We used the hair follicle as a model to link changes in the keratin network composition and architecture to the mechanical properties of the nascent hair. We show using atomic force microscopy that the soft keratinocyte matrix at the base of the follicle stiffens by a factor of ∼360, from 30 kPa to 11 MPa along the first millimeter of the follicle. The early mechanical stiffening is concomitant to an increase in diameter of the keratin macrofibrils, their continuous compaction, and increasingly parallel orientation. The related stiffening of the material follows a power law, typical of the mechanics of nonthermal bending-dominated fiber networks. In addition, we used X-ray diffraction to monitor changes in the (supra)molecular organization within the keratin fibers. At later keratinization stages, the inner mechanical properties of the macrofibrils dominate the stiffening due to the progressive setting up of the cystine network. Our findings corroborate existing models on the sequence of biological and structural events during hair keratinization. PMID:27162354

  2. Viscoelastic Analysis of Thermally Stiffening Polymer Nanocomposites

    NASA Astrophysics Data System (ADS)

    Ehlers, Andrew; Rende, Deniz; Senses, Erkan; Akcora, Pinar; Ozisik, Rahmi

    Poly(ethylene oxide), PEO, filled with silica nanoparticles coated with poly(methyl methacrylate), PMMA, was shown to present thermally stiffening behavior above the glass transition temperature of both PEO and PMMA. In the current study, the viscoelastic beahvior of this nanocomposite system is investigated via nanoindenation experiments to complement on going rheological studies. Results were compared to neat polymers, PEO and PMMA, to understand the effect of coated nanoparticles. This material is based upon work supported by the National Science Foundation under Grant No. CMMI-1538730.

  3. Integrated Management of Structural Pests in Schools.

    ERIC Educational Resources Information Center

    Illinois State Dept. of Public Health, Springfield.

    The state of Illinois is encouraging schools to better inspect and evaluate the causes of their pest infestation problems through use of the Integrated Pest Management (IPM) guidelines developed by the Illinois Department of Public Health. This guide reviews the philosophy and organization of an IPM program for structural pests in schools,…

  4. Improved Fabrication of Ceramic Matrix Composite/Foam Core Integrated Structures

    NASA Technical Reports Server (NTRS)

    Hurwitz, Frances I.

    2009-01-01

    The use of hybridized carbon/silicon carbide (C/SiC) fabric to reinforce ceramic matrix composite face sheets and the integration of such face sheets with a foam core creates a sandwich structure capable of withstanding high-heatflux environments (150 W/cm2) in which the core provides a temperature drop of 1,000 C between the surface and the back face without cracking or delamination of the structure. The composite face sheet exhibits a bilinear response, which results from the SiC matrix not being cracked on fabrication. In addition, the structure exhibits damage tolerance under impact with projectiles, showing no penetration to the back face sheet. These attributes make the composite ideal for leading edge structures and control surfaces in aerospace vehicles, as well as for acreage thermal protection systems and in high-temperature, lightweight stiffened structures. By tailoring the coefficient of thermal expansion (CTE) of a carbon fiber containing ceramic matrix composite (CMC) face sheet to match that of a ceramic foam core, the face sheet and the core can be integrally fabricated without any delamination. Carbon and SiC are woven together in the reinforcing fabric. Integral densification of the CMC and the foam core is accomplished with chemical vapor deposition, eliminating the need for bond-line adhesive. This means there is no need to separately fabricate the core and the face sheet, or to bond the two elements together, risking edge delamination during use. Fibers of two or more types are woven together on a loom. The carbon and ceramic fibers are pulled into the same pick location during the weaving process. Tow spacing may be varied to accommodate the increased volume of the combined fiber tows while maintaining a target fiber volume fraction in the composite. Foam pore size, strut thickness, and ratio of face sheet to core thickness can be used to tailor thermal and mechanical properties. The anticipated CTE for the hybridized composite is managed by

  5. Mode interaction in stiffened composite shells under combined mechanical and thermal loadings

    NASA Technical Reports Server (NTRS)

    Sridharan, Srinivasan

    1992-01-01

    Stiffened shells of various configurations fabricated out of composite materials find extensive applications in aircraft structures. Two distinctive modes of buckling dominate structural response of stiffened panels, viz. the short-wave local mode in which the shell skin buckles essentially between the stiffeners and the long-wave overall mode in which the shell skin buckles carrying the stiffeners with it. In optimized designs, the critical stresses corresponding to these modes of buckling would be close to each other. This leads to a nonlinear mode interaction which is recognized to be the principal cause of the failure of stiffened structures. If the structure is subjected to through-the-thickness thermal gradients, then large-wave bending effects would begin to occur well below the overall critical load and these would play the role of overall imperfections. The load carrying capacity would be significantly diminished as a result of interaction of local buckling with overall thermal distortions. The analysis of this problem using standard finite element techniques can be shown to be prohibitively expensive for design iterations. A concept which would greatly facilitate the analysis of mode interaction is advanced. We note that the local buckling occurs in a more or less periodic pattern in a structure having regular spacings of stiffeners. Thus it is a relatively simple matter to analyze the local buckling and the second order effects (which are essential for modeling postbuckling phenomena) using a unit cell of the structure. Once analyzed, these dormations are embedded in a shell element. Thus, a shell element could span several half-waves of local buckling and still be able to depict local buckling effects with requisite accuracy. A major consequence of the interaction of overall buckling/bending is the slow variation of the local buckling amplitude across the structure - the phenomenon of 'amplitude modulation' - and this is accounted for in the present

  6. 49 CFR 179.400-9 - Stiffening rings.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    .... (a) If stiffening rings are used in designing the cylindrical portion of the outer jacket for external pressure, they must be attached to the jacket by means of fillet welds. Outside stiffening ring... outer jacket wall thickness. (b) A portion of the outer jacket may be included when calculating the...

  7. 49 CFR 179.400-9 - Stiffening rings.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    .... (a) If stiffening rings are used in designing the cylindrical portion of the outer jacket for external pressure, they must be attached to the jacket by means of fillet welds. Outside stiffening ring... outer jacket wall thickness. (b) A portion of the outer jacket may be included when calculating the...

  8. Elastic buckling of stiffened plates by the finite element method

    SciTech Connect

    Sabir, A.B.; Djoudi, M.S.

    1995-09-01

    The finite element method is used to obtain the elastic buckling loads of stiffened plates. The plates are modeled by rectangular plate elements and the stiffeners which are rectangular in cross section are modeled by exact beam elements. Eccentrically located stiffeners as well as stiffeners having centroids coinciding with the middle surface of the plates are considered. The effect of the flexural rigidity of the stiffeners relative to that of the plates on the buckling load is investigated. Square plates simply supported along the four edges are considered when subjected to uniform uniaxial compressive loads. Further investigations are carried out to examine the effect of the number of stiffeners and their locations on the buckling load and the mode of buckling. Stiffeners positioned in the direction of the applied compressive load or in the transverse direction are also considered. The method used in the calculation of the buckling load is the subspace iteration technique. This method is shown to produce acceptable results for the eigenvalues and the associated eigenvectors of the transidental equations for the combined stiffness and geometric matrices for the stiffened plates. The buckling loads as well as the modes of buckling are determined and compared where possible with existing solutions.

  9. 49 CFR 178.338-5 - Stiffening rings.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Stiffening rings. 178.338-5 Section 178.338-5 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... Containers for Motor Vehicle Transportation § 178.338-5 Stiffening rings. (a) A tank is not required to...

  10. 49 CFR 178.338-5 - Stiffening rings.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Stiffening rings. 178.338-5 Section 178.338-5 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... Containers for Motor Vehicle Transportation § 178.338-5 Stiffening rings. (a) A tank is not required to...

  11. 49 CFR 178.338-5 - Stiffening rings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Stiffening rings. 178.338-5 Section 178.338-5 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... Containers for Motor Vehicle Transportation § 178.338-5 Stiffening rings. (a) A tank is not required to...

  12. 49 CFR 178.338-5 - Stiffening rings.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Stiffening rings. 178.338-5 Section 178.338-5 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... Containers for Motor Vehicle Transportation § 178.338-5 Stiffening rings. (a) A tank is not required to...

  13. MMM: A toolbox for integrative structure modeling.

    PubMed

    Jeschke, Gunnar

    2017-08-11

    Structural characterization of proteins and their complexes may require integration of restraints from various experimental techniques. MMM (Multiscale Modeling of Macromolecules) is a Matlab-based open-source modeling toolbox for this purpose with a particular emphasis on distance distribution restraints obtained from electron paramagnetic resonance experiments on spin-labelled proteins and nucleic acids and their combination with atomistic structures of domains or whole protomers, small-angle scattering data, secondary structure information, homology information, and elastic network models. MMM does not only integrate various types of restraints, but also various existing modeling tools by providing a common graphical user interface to them. The types of restraints that can support such modeling and the available model types are illustrated by recent application examples. © 2017 The Protein Society.

  14. Integrated Catadioptric Pickup with Ferrofluidic Cooling Structure

    NASA Astrophysics Data System (ADS)

    Onozawa, Kazutoshi; Yamanaka, Kazuhiko; Okuda, Takuya; Tojo, Tomoaki; Iijima, Shinichi; Ueda, Daisuke; Kubo, Junichi; Kitagawa, Seiichro

    2006-02-01

    We have developed a novel integrated catadioptric pickup with a ferrofluidic cooling structure for digital versatile discs (DVDs). To miniaturize the optical system, we made the catadioptric system on a moving head. The catadioptric system consists of a holographic catadioptric lens (HCL), a reflective mirror, a laser diode (LD), and a photodiode IC (PDIC). The HCL has a holographic surface, an aspherical mirror and two aspherical surfaces. This system realized the integration of all optical components into the moving head. The height of the optical system was 8.6 mm including the working distance. To realize efficient heat transfer without sacrificing the motion of the moving head, we developed a cooling structure in which gaps between magnets and coils are filled with ferrofluid. The thermal characteristics were as good as those of conventional optical pickups, proving that the ferrofluidic cooling structure has superior cooling performance. The ferrofluid did not sacrifice the motion of the moving head because of its fluidity.

  15. Quantifying the structural integrity of nanorod arrays.

    PubMed

    Thöle, Florian; Xue, Longjian; HEß, Claudia; Hillebrand, Reinald; Gorb, Stanislav N; Steinhart, Martin

    2017-02-01

    Arrays of aligned nanorods oriented perpendicular to a support, which are accessible by top-down lithography or by means of shape-defining hard templates, have received increasing interest as sensor components, components for nanophotonics and nanoelectronics, substrates for tissue engineering, surfaces having specific adhesive or antiadhesive properties and as surfaces with customized wettability. Agglomeration of the nanorods deteriorates the performance of components based on nanorod arrays. A comprehensive body of literature deals with mechanical failure mechanisms of nanorods and design criteria for mechanically stable nanorod arrays. However, the structural integrity of nanorod arrays is commonly evaluated only visually and qualitatively. We use real-space analysis of microscopic images to quantify the fraction of condensed nanorods in nanorod arrays. We suggest the number of array elements apparent in the micrographs divided by the number of array elements a defect-free array would contain in the same area, referred to as integrity fraction, as a measure of structural array integrity. Reproducible procedures to determine the imaged number of array elements are introduced. Thus, quantitative comparisons of different nanorod arrays, or of one nanorod array at different stages of its use, are possible. Structural integrities of identical nanorod arrays differing only in the length of the nanorods are exemplarily analysed.

  16. Thermal postbuckling of thin-walled composite stiffeners

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Peters, J. M.

    1991-01-01

    A study is made of the thermal postbuckling response of composite stiffeners subjected to prescribed edge displacement and a temperature rise. The flanges and web of the stiffeners are modeled by using two-dimensional plate finite elements. A mixed formulation is used with the fundamental unknowns consisting of the generalized displacements and the stress resultants of the plate. A reduction method is used in conjunction with mixed finite element models for determining the postbuckling response of the stiffeners. Sensitivity derivatives are evaluated and used to study the effects of variations in the different lamination and material parameters of the stiffeners on their postbuckling response characteristics. Numerical studies are presented for anisotropic stiffeners with Zee and channel sections.

  17. Study of shear-stiffened elastomers

    NASA Astrophysics Data System (ADS)

    Tian, Tongfei; Li, Weihua; Ding, Jie; Alici, Gursel; Du, Haiping

    2013-06-01

    Shear thickening fluids, which are usually concentrated colloidal suspensions composed of non-aggregating solid particles suspended in fluids, exhibit a marked increase in viscosity beyond a critical shear rate. This increased viscosity is seen as being both 'field-activated', due to the dependence on shearing rate, as well as reversible. Shear thickening fluids have found good applications as protection materials, such as in liquid body armor, vibration absorber or dampers. This research aims to expand the protection material family by developing a novel solid status shear thickening material, called shear-stiffened elastomers. These new shear-stiffened elastomers were fabricated with the mixture of silicone rubber and silicone oil. A total of four SSE samples were fabricated in this study. Their mechanical and rheological properties under both steady-state and dynamic loading conditions were tested with a parallel-plate. The effects of silicone oil composition and angular frequency were summarized. When raising the angular frequency in dynamic shear test, the storage modulus of conventional silicone rubber shows a small increasing trend with the frequency. However, if silicone oil is selected to be mixed with silicone rubber, the storage modulus increases dramatically when the frequency and strain are both beyond the critical values.

  18. Resveratrol prevents high fat/sucrose diet-induced central arterial wall inflammation and stiffening in nonhuman primates

    PubMed Central

    Mattison, Julie A.; Wang, Mingyi; Bernier, Michel; Zhang, Jing; Park, Sung-Soo; Maudsley, Stuart; An, Steven S.; Santhanam, Lakshmi; Martin, Bronwen; Faulkner, Shakeela; Morrell, Christopher; Baur, Joseph A.; Peshkin, Leonid; Sosnowska, Danuta; Csiszar, Anna; Herbert, Richard L.; Tilmont, Edward M.; Ungvari, Zoltan; Pearson, Kevin J.; Lakatta, Edward G.; de Cabo, Rafael

    2014-01-01

    SUMMARY Central arterial wall stiffening driven by a chronic inflammatory milieu accompanies arterial diseases, the leading cause of cardiovascular (CV) morbidity and mortality in Western society. Increase in central arterial wall stiffening, measured as an increase in aortic pulse wave velocity (PWV), is a major risk factor for clinical CV disease events. However, no specific therapies to reduce PWV are presently available. In rhesus monkeys, a two-year diet high in fat and sucrose (HFS) increases not only body weight and cholesterol, but also induces prominent central arterial wall stiffening and increases PWV and inflammation. The observed loss of endothelial cell integrity, lipid and macrophage infiltration, and calcification of the arterial wall were driven by genomic and proteomic signatures of oxidative stress and inflammation. Resveratrol prevented the HFS-induced arterial wall inflammation and the accompanying increase in PWV. Dietary resveratrol may hold promise as a novel therapy to ameliorate increases in PWV. PMID:24882067

  19. Research on deformation of 7050 aluminum alloy panels with stiffeners by pre-stress shot peen forming

    NASA Astrophysics Data System (ADS)

    Wang, Mingtao; Zeng, Yuansong; Huang, Xia; Lv, Fenggong

    2016-10-01

    Pre-stress shot peen forming is an effective plastic forming method for integral panels with stiffeners used in aeronautical industry. 7050 aluminum alloy panels with stiffeners were pre-stress peen formed in an orthogonal experiment. The deformation rule of those workpieces whose exterior surfaces were convex bending was investigated. The results show that the contribution of peening parameters on workpiece deformation is in following order: air pressure, pre-load stress and moving velocity of workpiece. The deformation of workpiece whose merely exterior surface is peened is much lower than that whose two side-faces of stiffener are also peened. The decreasing rate is changed from 13% to 39% by means of parameters variation. Moreover, the regression formulas about the quantitative relationships between radius of curvature and peening parameters have been established. The results could offer some basic reference to peen forming aluminum alloy panels of future aircrafts.

  20. Duplicating Dynamic Strain-Stiffening Behavior and Nanomechanics of Biological Tissues in a Synthetic Self-Healing Flexible Network Hydrogel.

    PubMed

    Yan, Bin; Huang, Jun; Han, Linbo; Gong, Lu; Li, Lin; Israelachvili, Jacob N; Zeng, Hongbo

    2017-10-02

    Biological tissues can accurately differentiate external mechanical stresses and actively select suitable strategies (e.g., reversible strain-stiffening, self-healing) to sustain or restore their integrity and related functionalities as required. Synthetic materials that can imitate the characteristics of biological tissues have a wide range of engineering and bioengineering applications. However, no success has been demonstrated to realize such strain-stiffening behavior in synthetic networks, particularly using flexible polymers, which has remained a great challenge. Here, we present one such synthetic hydrogel material prepared from two flexible polymers (polyethylene glycol and branched polyethylenimine) that exhibits both strain-stiffening and self-healing capabilities. The developed synthetic hydrogel network not only mimics the main features of biological mechanically responsive systems but also autonomously self-heals after becoming damaged, thereby recovering its full capacity to perform its normal physiological functions.

  1. Resveratrol prevents high fat/sucrose diet-induced central arterial wall inflammation and stiffening in nonhuman primates.

    PubMed

    Mattison, Julie A; Wang, Mingyi; Bernier, Michel; Zhang, Jing; Park, Sung-Soo; Maudsley, Stuart; An, Steven S; Santhanam, Lakshmi; Martin, Bronwen; Faulkner, Shakeela; Morrell, Christopher; Baur, Joseph A; Peshkin, Leonid; Sosnowska, Danuta; Csiszar, Anna; Herbert, Richard L; Tilmont, Edward M; Ungvari, Zoltan; Pearson, Kevin J; Lakatta, Edward G; de Cabo, Rafael

    2014-07-01

    Central arterial wall stiffening, driven by a chronic inflammatory milieu, accompanies arterial diseases, the leading cause of cardiovascular (CV) morbidity and mortality in Western society. An increase in central arterial wall stiffening, measured as an increase in aortic pulse wave velocity (PWV), is a major risk factor for clinical CV disease events. However, no specific therapies to reduce PWV are presently available. In rhesus monkeys, a 2 year diet high in fat and sucrose (HFS) increases not only body weight and cholesterol, but also induces prominent central arterial wall stiffening and increases PWV and inflammation. The observed loss of endothelial cell integrity, lipid and macrophage infiltration, and calcification of the arterial wall were driven by genomic and proteomic signatures of oxidative stress and inflammation. Resveratrol prevented the HFS-induced arterial wall inflammation and the accompanying increase in PWV. Dietary resveratrol may hold promise as a therapy to ameliorate increases in PWV.

  2. Integrated Propulsion/Vehicle System Structurally Optimized

    NASA Technical Reports Server (NTRS)

    Hunter, James E.; McCurdy, David R.

    2003-01-01

    Ongoing research and testing are essential in the development of air-breathing hypersonic propulsion technology, and this year some positive advancement was made at the NASA Glenn Research Center. Recent work performed for GTX, a rocket-based combined-cycle, single-stage-to-orbit concept, included structural assessments of both the engine and flight vehicle. In the development of air-breathing engine technology, it is impractical to design and optimize components apart from the fully integrated system because tradeoffs must be made between performance and structural capability. Efforts were made to control the flight trajectory, for example, to minimize the aerodynamic heating effects. Structural optimization was applied to evaluate concept feasibility and was instrumental in the determination of the gross liftoff weight of the integrated system. Achieving low Earth orbit with even a small payload requires an aggressive approach to weight minimization through the use of lightweight, oxidation-resistant composite materials. Assessing the integrated system involved investigating the flight trajectory to determine where the critical load events occur in flight and then generating the corresponding environment at each of these events. Structural evaluation requires the mapping of the critical flight loads to finite element models, including the combined effects of aerodynamic, inertial, combustion, and other loads. NASA s APAS code was used to generate aerodynamic pressure and temperature profiles at each critical event. The radiation equilibrium surface temperatures from APAS were used to predict temperatures through the thickness. Heat transfer solutions using NASA's MINIVER code and the SINDA code (Cullimore & Ring Technologies, Littleton, CO) were calculated at selective points external to the integrated vehicle system and then extrapolated over the entire exposed surface. FORTRAN codes were written to expedite the finite element mapping of the aerodynamic heating

  3. Development of a structurally integrated conformal load-bearing multifunction antenna: overview of the Air Force Smart Skin Structures Technology Demonstration Program

    NASA Astrophysics Data System (ADS)

    Lockyer, Allen J.; Alt, Kevin H.; Kinslow, Robert W.; Kan, Han-Pin; Kudva, Jayanth N.; Tuss, James; Goetz, Allan C.

    1996-05-01

    The Structures Division of the Air Force's Wright Laboratory is sponsoring the development and demonstration of a new high pay-off technology termed CLAS--Conformal Load Bearing Antenna Structures. Northrop Grumman Corporation and TRW/ASD are developing the technology under the `Smart-Skin Structure Technology Demonstration (S3D)' program, contract, No. F33615-93-C-3200. The program goal is to design, develop, fabricate, and test a CLAS component and lay the foundation for future work where potential benefits from structurally integrated antennas may be realized. Key issues will focus but are not limited to the design, structures, and manufacturing aspects of antenna embedment into load bearing aircraft structures. Results from Phase I of the program have been previously reported, where initial pay-offs in reducing overall airframe acquisition and support cost, weight, signature, and drag were quantitatively and qualitatively identified. A full-sized CLAS component, featuring a broadband multi-arm spiral embedded in sandwich stiffened structure, will be fabricated and tested for static strength, durability, and damage tolerance. Basic electrical performance, (e.g. radiation patterns, gain, and impedance) will also be verified; however, extensive electrical validation will be the subject of further work. Key aspects of the work and progress to date are detailed below.

  4. Integrated structural-aerodynamic design optimization

    NASA Technical Reports Server (NTRS)

    Haftka, R. T.; Kao, P. J.; Grossman, B.; Polen, D.; Sobieszczanski-Sobieski, J.

    1988-01-01

    This paper focuses on the processes of simultaneous aerodynamic and structural wing design as a prototype for design integration, with emphasis on the major difficulty associated with multidisciplinary design optimization processes, their enormous computational costs. Methods are presented for reducing this computational burden through the development of efficient methods for cross-sensitivity calculations and the implementation of approximate optimization procedures. Utilizing a modular sensitivity analysis approach, it is shown that the sensitivities can be computed without the expensive calculation of the derivatives of the aerodynamic influence coefficient matrix, and the derivatives of the structural flexibility matrix. The same process is used to efficiently evaluate the sensitivities of the wing divergence constraint, which should be particularly useful, not only in problems of complete integrated aircraft design, but also in aeroelastic tailoring applications.

  5. Structural Integrity of a Wind Tunnel Balance

    NASA Technical Reports Server (NTRS)

    Karkehabadi, R.; Rhew, R. D.

    2004-01-01

    The National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) has been designing strain-gage balances for utilization in wind tunnels since its inception. The utilization of balances span over a wide variety of aerodynamic tests. A force balance is an inherently critically stressed component due to the requirements of measurement sensitivity. Research and analyses are done in order to investigate the structural integrity of the balances as well as developing an understanding of their performance in order to enhance their capability. Maximum loading occurs when all 6 components of the loads are applied simultaneously with their maximum value allowed (limit load). This circumstance normally does not occur in the wind tunnel. However, if it occurs, is the balance capable of handling the loads with an acceptable factor of safety? LaRC Balance 1621 was modeled and meshed in PATRAN for analysis in NASTRAN. For a complete analysis, it is necessary to consider all the load cases as well as use dense mesh near all the edges. Because of computer limitations, it is not possible to have one model with the dense mesh near all edges. In the present study, a dense mesh is limited to the surface corners where the cage and axial sections meet. Four different load combinations are used for the current analysis. Linear analysis is performed for each load case. In the case where the stress value is above linear elastic region, it is necessary to perform nonlinear analysis. It is also important to investigate the variables limiting the structural integrity of the balances. In order to investigate the possibility of modifying the existing balances to enhance the structural integrity, some modifications are done on this balance. The structural integrity of the balance after modification is investigated.

  6. Test and analysis results for composite transport fuselage and wing structures

    NASA Technical Reports Server (NTRS)

    Deaton, Jerry W.; Kullerd, Susan M.; Madan, Ram C.; Chen, Victor L.

    1992-01-01

    Automated tow placement (ATP) and stitching of dry textile composite preforms followed by resin transfer molding (RTM) are being studied as cost effective manufacturing processes for obtaining damage tolerant fuselage and wing structures for transport aircraft. Data are presented to assess the damage tolerance of ATP and RTM fuselage elements with stitched-on stiffeners from compression tests of impacted three J-stiffened panels and from stiffener pull-off tests. Data are also presented to assess the damage tolerance of RTM wing elements which had stitched skin and stiffeners from impacted single stiffener and three blade stiffened compression tests and stiffener pull-off tests.

  7. Integrated support structure for GASCAN 2

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The focus of the Worcester Polytechnic Institute (WPI) Advanced Space Design Program was the preliminary design of the Integrated Support Structure for GASCAN II, a Get Away Special canister donated by the MITRE Corporation. Two teams of three students each worked on the support structure. There was a structural design team and a thermal design team. The structure will carry three experiments also undergoing preliminary design this year, the mu-gravity Ignition Experiment, the Rotational Flow in Low Gravity Experiment, and the Ionospheric Properties and Propagation Experiment. The structural design team was responsible for the layout of the GASCAN and the preliminary design of the structure itself. They produced the physical interface specifications defining the baseline weights and volumes for the equipment and produced layout drawings of the system. The team produced static and modal finite element analysis of the structure using ANSYS. The thermal design team was responsible for the power and timing requirements of the payload and for the identification and preliminary analysis of potential thermal problems. The team produced the power, timing, and energy interface specifications and assisted in the development of the specification of the battery pack. The thermal parameters of each experiment were cataloged and the experiments were subjected to worst case heat transfer scenarios.

  8. Vibration Response Models of a Stiffened Aluminum Plate Excited by a Shaker

    NASA Technical Reports Server (NTRS)

    Cabell, Randolph H.

    2008-01-01

    Numerical models of structural-acoustic interactions are of interest to aircraft designers and the space program. This paper describes a comparison between two energy finite element codes, a statistical energy analysis code, a structural finite element code, and the experimentally measured response of a stiffened aluminum plate excited by a shaker. Different methods for modeling the stiffeners and the power input from the shaker are discussed. The results show that the energy codes (energy finite element and statistical energy analysis) accurately predicted the measured mean square velocity of the plate. In addition, predictions from an energy finite element code had the best spatial correlation with measured velocities. However, predictions from a considerably simpler, single subsystem, statistical energy analysis model also correlated well with the spatial velocity distribution. The results highlight a need for further work to understand the relationship between modeling assumptions and the prediction results.

  9. Design of efficient stiffened shells of revolution

    NASA Technical Reports Server (NTRS)

    Majumder, D. K.; Thornton, W. A.

    1976-01-01

    A method to produce efficient piecewise uniform stiffened shells of revolution is presented. The approach uses a first order differential equation formulation for the shell prebuckling and buckling analyses and the necessary conditions for an optimum design are derived by a variational approach. A variety of local yielding and buckling constraints and the general buckling constraint are included in the design process. The local constraints are treated by means of an interior penalty function and the general buckling load is treated by means of an exterior penalty function. This allows the general buckling constraint to be included in the design process only when it is violated. The self-adjoint nature of the prebuckling and buckling formulations is used to reduce the computational effort. Results for four conical shells and one spherical shell are given.

  10. Torsion Tests of Stiffened Circular Cylinders

    NASA Technical Reports Server (NTRS)

    Moore, R L; Wescoat, C

    1944-01-01

    The design of curved sheet panels to resist shear involves a consideration of several factors: the buckling resistance of the sheet, the stress at which buckling becomes permanent, and the strength which may be developed beyond the buckling limit by tension-field action. Although some experimental as well as theoretical work has been done on the buckling and tension-field phases of this problem, neither of these types of action appears to be very well understood. The problem is of sufficient importance from the standpoint of aircraft design, it is believed, to warrant further experimental investigation. This report presents the results of the first series of torsion tests of stiffened circular cylinders to be completed in connection with this study at Aluminum Research Laboratories. (author)

  11. Tension Stiffened and Tendon Actuated Manipulator

    NASA Technical Reports Server (NTRS)

    Doggett, William R. (Inventor); Dorsey, John T. (Inventor); Ganoe, George G. (Inventor); King, Bruce D. (Inventor); Jones, Thomas C. (Inventor); Mercer, Charles D. (Inventor); Corbin, Cole K. (Inventor)

    2015-01-01

    A tension stiffened and tendon actuated manipulator is provided performing robotic-like movements when acquiring a payload. The manipulator design can be adapted for use in-space, lunar or other planetary installations as it is readily configurable for acquiring and precisely manipulating a payload in both a zero-g environment and in an environment with a gravity field. The manipulator includes a plurality of link arms, a hinge connecting adjacent link arms together to allow the adjacent link arms to rotate relative to each other and a cable actuation and tensioning system provided between adjacent link arms. The cable actuation and tensioning system includes a spreader arm and a plurality of driven and non-driven elements attached to the link arms and the spreader arm. At least one cable is routed around the driven and non-driven elements for actuating the hinge.

  12. An Investigation into the Postbuckling Response of a Single Blade-Stiffened Composite Panel

    NASA Astrophysics Data System (ADS)

    Spediacci, Alexander Daniel

    The large strength reserves of stiffened composite structures in the postbuckling range appeal to the aerospace industry because of the high strength-to weight-ratio. Design and analysis of these large-scale, complex structures is technical, and requires major computational effort. Using the building-block approach, a smaller, single-stringer panel can be a useful and efficient tool for initial design, and can reveal critical behavior of a larger, multi-stringer panel. A characterization, through finite element modeling, of buckling and postbuckling response of a single blade-stiffened composite panel is proposed. Several factors affecting buckling and postbuckling behavior are investigated, including specimen length, initial imperfections, mode switching, and skin stringer separation. Two specimens are repeatedly tested under quasi- static compression loading well into the postbuckling range, showing no sign of damage. The test data from the specimens are used to compare and validate the nonlinear finite element models, show good correlation with the models. Ultimately, this work will serve to demonstrate the safety of stiffened structures operating in the postbuckling range and allow for thinner, lighter structures, which can increase the overall efficiency of aircraft.

  13. Lamb Wave Line Sensing for Crack Detection in a Welded Stiffener

    PubMed Central

    An, Yun-Kyu; Kim, Jae Hong; Yim, Hong Jae

    2014-01-01

    This paper proposes a novel Lamb wave line sensing technique for crack detection in a welded stiffener. The proposed technique overcomes one of the biggest technical challenges of Lamb wave crack detection for real structure applications: crack-induced Lamb waves are often mixed with multiple reflections from complex waveguides. In particular, crack detection in a welded joint, one of the structural hot spots due to stress concentration, is accompanied by reflections from the welded joint as well as a crack. Extracting and highlighting crack-induced Lamb wave modes from Lamb wave responses measured at multi-spatial points along a single line can be accomplished through a frequency-wavenumber domain analysis. The advantages of the proposed technique enable us not only to enhance the crack detectability in the welded joint but also to minimize false alarms caused by environmental and operational variations by avoiding the direct comparison with the baseline data previously accumulated from the pristine condition of a target structure. The proposed technique is experimentally and numerically validated in vertically stiffened metallic structures, revealing that it successfully identifies and localizes subsurface cracks, regardless of the coexistence with the vertical stiffener. PMID:25046014

  14. Lamb wave line sensing for crack detection in a welded stiffener.

    PubMed

    An, Yun-Kyu; Kim, Jae Hong; Yim, Hong Jae

    2014-07-18

    This paper proposes a novel Lamb wave line sensing technique for crack detection in a welded stiffener. The proposed technique overcomes one of the biggest technical challenges of Lamb wave crack detection for real structure applications: crack-induced Lamb waves are often mixed with multiple reflections from complex waveguides. In particular, crack detection in a welded joint, one of the structural hot spots due to stress concentration, is accompanied by reflections from the welded joint as well as a crack. Extracting and highlighting crack-induced Lamb wave modes from Lamb wave responses measured at multi-spatial points along a single line can be accomplished through a frequency-wavenumber domain analysis. The advantages of the proposed technique enable us not only to enhance the crack detectability in the welded joint but also to minimize false alarms caused by environmental and operational variations by avoiding the direct comparison with the baseline data previously accumulated from the pristine condition of a target structure. The proposed technique is experimentally and numerically validated in vertically stiffened metallic structures, revealing that it successfully identifies and localizes subsurface cracks, regardless of the coexistence with the vertical stiffener.

  15. Optimal Design of General Stiffened Composite Circular Cylinders for Global Buckling with Strength Constraints

    NASA Technical Reports Server (NTRS)

    Jaunky, N.; Ambur, D. R.; Knight, N. F., Jr.

    1998-01-01

    A design strategy for optimal design of composite grid-stiffened cylinders subjected to global and local buckling constraints and strength constraints was developed using a discrete optimizer based on a genetic algorithm. An improved smeared stiffener theory was used for the global analysis. Local buckling of skin segments were assessed using a Rayleigh-Ritz method that accounts for material anisotropy. The local buckling of stiffener segments were also assessed. Constraints on the axial membrane strain in the skin and stiffener segments were imposed to include strength criteria in the grid-stiffened cylinder design. Design variables used in this study were the axial and transverse stiffener spacings, stiffener height and thickness, skin laminate stacking sequence and stiffening configuration, where stiffening configuration is a design variable that indicates the combination of axial, transverse and diagonal stiffener in the grid-stiffened cylinder. The design optimization process was adapted to identify the best suited stiffening configurations and stiffener spacings for grid-stiffened composite cylinder with the length and radius of the cylinder, the design in-plane loads and material properties as inputs. The effect of having axial membrane strain constraints in the skin and stiffener segments in the optimization process is also studied for selected stiffening configurations.

  16. Optimal Design of General Stiffened Composite Circular Cylinders for Global Buckling with Strength Constraints

    NASA Technical Reports Server (NTRS)

    Jaunky, Navin; Knight, Norman F., Jr.; Ambur, Damodar R.

    1998-01-01

    A design strategy for optimal design of composite grid-stiffened cylinders subjected to global and local buckling constraints and, strength constraints is developed using a discrete optimizer based on a genetic algorithm. An improved smeared stiffener theory is used for the global analysis. Local buckling of skin segments are assessed using a Rayleigh-Ritz method that accounts for material anisotropy. The local buckling of stiffener segments are also assessed. Constraints on the axial membrane strain in the skin and stiffener segments are imposed to include strength criteria in the grid-stiffened cylinder design. Design variables used in this study are the axial and transverse stiffener spacings, stiffener height and thickness, skin laminate stacking sequence, and stiffening configuration, where herein stiffening configuration is a design variable that indicates the combination of axial, transverse, and diagonal stiffener in the grid-stiffened cylinder. The design optimization process is adapted to identify the best suited stiffening configurations and stiffener spacings for grid-stiffened composite cylinder with the length and radius of the cylinder, the design in-plane loads, and material properties as inputs. The effect of having axial membrane strain constraints in the skin and stiffener segments in the optimization process is also studied for selected stiffening configuration.

  17. Structural integrity of future aging airplanes

    NASA Astrophysics Data System (ADS)

    McGuire, Jack F.; Goranson, Ulf G.

    1992-07-01

    A multitude of design considerations is involved in ensuring the structural integrity of Boeing jet transports that have common design concepts validated by extensive analyses, tests, and three decades of service. As airplanes approach their design service objectives, the incidences of fatigue and corrosion may become widespread. Continuing airworthiness of the aging jet fleet requires diligent performance from the manufacturer, the airlines, and airworthiness authorities. Aging fleet support includes timely development of supplemental structural inspection documents applicable to selected older airplanes, teardown inspections of high-time airframes retired from service, fatigue testing of older airframes, and structural surveys of more than 130 airplanes operated throughout the world. Lessons learned from these activities are incorporated in service bulletin recommendations, production line modifications, and design manual updates. An overview of traditional Boeing fleet support activities and the anticipated benefits for future generations of commercial airplanes based on the continuous design improvement process are presented.

  18. Structural integrity of future aging airplanes

    NASA Technical Reports Server (NTRS)

    Mcguire, Jack F.; Goranson, Ulf G.

    1992-01-01

    A multitude of design considerations is involved in ensuring the structural integrity of Boeing jet transports that have common design concepts validated by extensive analyses, tests, and three decades of service. As airplanes approach their design service objectives, the incidences of fatigue and corrosion may become widespread. Continuing airworthiness of the aging jet fleet requires diligent performance from the manufacturer, the airlines, and airworthiness authorities. Aging fleet support includes timely development of supplemental structural inspection documents applicable to selected older airplanes, teardown inspections of high-time airframes retired from service, fatigue testing of older airframes, and structural surveys of more than 130 airplanes operated throughout the world. Lessons learned from these activities are incorporated in service bulletin recommendations, production line modifications, and design manual updates. An overview of traditional Boeing fleet support activities and the anticipated benefits for future generations of commercial airplanes based on the continuous design improvement process are presented.

  19. Behavior of Frame-Stiffened Composite Panels with Damage

    NASA Technical Reports Server (NTRS)

    Jegley, Dawn C.

    2013-01-01

    NASA, the Air Force Research Laboratory and The Boeing Company have worked to develop new low-cost, light-weight composite structures for aircraft. A Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept has been developed which offers advantages over traditional metallic structures. In this concept, a stitched carbon-epoxy material system has been developed with the potential for reducing the weight and cost of transport aircraft structure by eliminating fasteners, thereby reducing part count and labor. Stitching and the use of thin skins with rod-stiffeners to move loading away from the morevulnerable outer surface produces a structurally efficient, damage tolerant design. This study focuses on the behavior of PRSEUS panels loaded in the frame direction and subjected to severe damage in the form of a severed central frame in a three-frame panel. Experimental results for a pristine two-frame panel and analytical predictions for pristine two-frame and three-frame panels as well as damaged three-frame panels are described.

  20. Comparison of Three Methods for Calculating the Compressive Strength of Flat and Slightly Curved Sheet and Stiffener Combinations

    NASA Technical Reports Server (NTRS)

    Lundquist, Eugene E

    1933-01-01

    This report gives a comparison of the accuracy of the three methods for calculating the compressive strength of flat sheet and stiffener combinations such as occur in stressed-skin or monocoque structures for aircraft. Of the three methods based upon various assumptions with regard to the interaction of sheet and stiffener, the method based upon mutual action of the stiffener and an effective width as a column gave the best agreement with the results of the tests. An investigation of the effect of small curvature resulted in the conclusion that the compressive strength of the curved panels is, for all practical purposes, equal to the strength of flat panels except for thick sheet where non-uniform curvature throughout the length may cause the strength of the curved panel to be 10 to 15 percent less than that of a corresponding flat panel.

  1. Integrated design of structures, controls, and materials

    NASA Technical Reports Server (NTRS)

    Blankenship, G. L.

    1994-01-01

    In this talk we shall discuss algorithms and CAD tools for the design and analysis of structures for high performance applications using advanced composite materials. An extensive mathematical theory for optimal structural (e.g., shape) design was developed over the past thirty years. Aspects of this theory have been used in the design of components for hypersonic vehicles and thermal diffusion systems based on homogeneous materials. Enhancement of the design methods to include optimization of the microstructure of the component is a significant innovation which can lead to major enhancements in component performance. Our work is focused on the adaptation of existing theories of optimal structural design (e.g., optimal shape design) to treat the design of structures using advanced composite materials (e.g., fiber reinforced, resin matrix materials). In this talk we shall discuss models and algorithms for the design of simple structures from composite materials, focussing on a problem in thermal management. We shall also discuss methods for the integration of active structural controls into the design process.

  2. Self assembled structures for 3D integration

    NASA Astrophysics Data System (ADS)

    Rao, Madhav

    Three dimensional (3D) micro-scale structures attached to a silicon substrate have various applications in microelectronics. However, formation of 3D structures using conventional micro-fabrication techniques are not efficient and require precise control of processing parameters. Self assembly is a method for creating 3D structures that takes advantage of surface area minimization phenomena. Solder based self assembly (SBSA), the subject of this dissertation, uses solder as a facilitator in the formation of 3D structures from 2D patterns. Etching a sacrificial layer underneath a portion of the 2D pattern allows the solder reflow step to pull those areas out of the substrate plane resulting in a folded 3D structure. Initial studies using the SBSA method demonstrated low yields in the formation of five different polyhedra. The failures in folding were primarily attributed to nonuniform solder deposition on the underlying metal pads. The dip soldering method was analyzed and subsequently refined. A modified dip soldering process provided improved yield among the polyhedra. Solder bridging referred as joining of solder deposited on different metal patterns in an entity influenced the folding mechanism. In general, design parameters such as small gap-spacings and thick metal pads were found to favor solder bridging for all patterns studied. Two types of soldering: face and edge soldering were analyzed. Face soldering refers to the application of solder on the entire metal face. Edge soldering indicates application of solder only on the edges of the metal face. Mechanical grinding showed that face soldered SBSA structures were void free and robust in nature. In addition, the face soldered 3D structures provide a consistent heat resistant solder standoff height that serve as attachments in the integration of dissimilar electronic technologies. Face soldered 3D structures were developed on the underlying conducting channel to determine the thermo-electric reliability of

  3. Atomic vapor spectroscopy in integrated photonic structures

    SciTech Connect

    Ritter, Ralf; Kübler, Harald; Pfau, Tilman; Löw, Robert; Gruhler, Nico; Pernice, Wolfram

    2015-07-27

    We investigate an integrated optical chip immersed in atomic vapor providing several waveguide geometries for spectroscopy applications. The narrow-band transmission through a silicon nitride waveguide and interferometer is altered when the guided light is coupled to a vapor of rubidium atoms via the evanescent tail of the waveguide mode. We use grating couplers to couple between the waveguide mode and the radiating wave, which allow for addressing arbitrary coupling positions on the chip surface. The evanescent atom-light interaction can be numerically simulated and shows excellent agreement with our experimental data. This work demonstrates a next step towards miniaturization and integration of alkali atom spectroscopy and provides a platform for further fundamental studies of complex waveguide structures.

  4. Study of the vibration of bulkhead-stiffened cylindrical shells by laser-based methods

    NASA Astrophysics Data System (ADS)

    Zhu, Ninghui

    The first part of this dissertation work deals with an experimental study of the vibration behavior of bulkhead stiffened cylindrical shells by using laser-based vibration measurement methods. Holographic interferometry and laser speckle photography are first demonstrated on revealing the dynamic behavior of a 22 ft long cylindrical shell. These methods are thereafter further explored to study the vibration characteristic of cylindrical shells with different stiffeners such as a full bulkhead or a partial bulkhead. Many experimentally obtained holograms and specklegrams reveal interesting features of the vibration of bulkhead stiffened cylindrical shells. The experimentally obtained results are compared with those obtained from a finite element model developed by General Dynamic Electric Boat Division, and the finite element model is generally validated. Mode localization theory is used to explain some interesting findings in experiments and the reason of some discrepancies between the finite element analysis and experiment results. The presence of irregularities in a weakly coupled structure such as a bulkhead-stiffened cylindrical shell is shown to be able to localize the modes of vibration and inhibit the propagation of vibration within the shell. A numerical simulation based on the finite element modal analysis indicates the validation of this explanation of the experimental findings. Thereafter, the eigensolutions of disordered, plate-stiffened cylindrical shell stiffened are derived by the use of receptance method. Numerical calculations are thereafter performed based upon this model and indeed reveal the exist of localized vibration in this kind of structure. This analytical study provides physical insights into the mode localization phenomenon in stiffened cylindrical shell type of structures from a more systematic manner. The conditions and the effect of mode localization on natural frequencies and mode shapes of cylindrical shell structure are also

  5. Development and demonstration of manufacturing processes for fabricating graphite/PMR-15 polyimide structural elements. [space shuttle aft body flap

    NASA Technical Reports Server (NTRS)

    Sheppard, C. H.; Hoggatt, J. T.; Symonds, W. A.

    1979-01-01

    The processing requirements for graphite/PMR-15 polyimide composites developed to demonstrate the structural integrity of polyimide composite structural elements at temperatures up to 589K (600 F) are described. Major tasks included: quality assurance development; materials and process development; specification verification; flat panel fabrication; stiffened panel fabrication; honeycomb panel fabrication; chopped fiber moldings; and demonstration component fabrication. Materials, processing, and quality assurance documents were prepared from experimentally derived data. Structural elements consisting of flat panels, corrugated stiffeners, I-beams, hat stiffeners, honeycomb panels, and chopped fiber moldings were made and tested. Property data from 219K (-65 F) to 589K (600 F) were obtained. All elements were made in a production environment. The size of each element was sufficient to insure production capability and structural component applicability. Problems associated with adhesive bonding, laminate and structural element analysis, material variability, and test methods were addressed.

  6. Development and demonstration of manufacturing processes for fabricating graphite/PMR-15 polyimide structural elements. [space shuttle aft body flap

    NASA Technical Reports Server (NTRS)

    Sheppard, C. H.; Hoggatt, J. T.; Symonds, W. A.

    1979-01-01

    The processing requirements for graphite/PMR-15 polyimide composites developed to demonstrate the structural integrity of polyimide composite structural elements at temperatures up to 589K (600 F) are described. Major tasks included: quality assurance development; materials and process development; specification verification; flat panel fabrication; stiffened panel fabrication; honeycomb panel fabrication; chopped fiber moldings; and demonstration component fabrication. Materials, processing, and quality assurance documents were prepared from experimentally derived data. Structural elements consisting of flat panels, corrugated stiffeners, I-beams, hat stiffeners, honeycomb panels, and chopped fiber moldings were made and tested. Property data from 219K (-65 F) to 589K (600 F) were obtained. All elements were made in a production environment. The size of each element was sufficient to insure production capability and structural component applicability. Problems associated with adhesive bonding, laminate and structural element analysis, material variability, and test methods were addressed.

  7. Challenges for the aircraft structural integrity program

    NASA Technical Reports Server (NTRS)

    Lincoln, John W.

    1994-01-01

    Thirty-six years ago the United States Air Force established the USAF Aircraft Structural Integrity Program (ASIP) because flight safety had been degraded by fatigue failures of operational aircraft. This initial program evolved, but has been stable since the issuance of MIL-STD-1530A in 1975. Today, the program faces new challenges because of a need to maintain aircraft longer in an environment of reduced funding levels. Also, there is increased pressure to reduce cost of the acquisition of new aircraft. It is the purpose of this paper to discuss the challenges for the ASIP and identify the changes in the program that will meet these challenges in the future.

  8. Dynamic kirigami structures for integrated solar tracking

    PubMed Central

    Lamoureux, Aaron; Lee, Kyusang; Shlian, Matthew; Forrest, Stephen R.; Shtein, Max

    2015-01-01

    Optical tracking is often combined with conventional flat panel solar cells to maximize electrical power generation over the course of a day. However, conventional trackers are complex and often require costly and cumbersome structural components to support system weight. Here we use kirigami (the art of paper cutting) to realize novel solar cells where tracking is integral to the structure at the substrate level. Specifically, an elegant cut pattern is made in thin-film gallium arsenide solar cells, which are then stretched to produce an array of tilted surface elements which can be controlled to within ±1°. We analyze the combined optical and mechanical properties of the tracking system, and demonstrate a mechanically robust system with optical tracking efficiencies matching conventional trackers. This design suggests a pathway towards enabling new applications for solar tracking, as well as inspiring a broader range of optoelectronic and mechanical devices. PMID:26348820

  9. Dynamic kirigami structures for integrated solar tracking

    NASA Astrophysics Data System (ADS)

    Lamoureux, Aaron; Lee, Kyusang; Shlian, Matthew; Forrest, Stephen R.; Shtein, Max

    2015-09-01

    Optical tracking is often combined with conventional flat panel solar cells to maximize electrical power generation over the course of a day. However, conventional trackers are complex and often require costly and cumbersome structural components to support system weight. Here we use kirigami (the art of paper cutting) to realize novel solar cells where tracking is integral to the structure at the substrate level. Specifically, an elegant cut pattern is made in thin-film gallium arsenide solar cells, which are then stretched to produce an array of tilted surface elements which can be controlled to within +/-1°. We analyze the combined optical and mechanical properties of the tracking system, and demonstrate a mechanically robust system with optical tracking efficiencies matching conventional trackers. This design suggests a pathway towards enabling new applications for solar tracking, as well as inspiring a broader range of optoelectronic and mechanical devices.

  10. Dynamic kirigami structures for integrated solar tracking.

    PubMed

    Lamoureux, Aaron; Lee, Kyusang; Shlian, Matthew; Forrest, Stephen R; Shtein, Max

    2015-09-08

    Optical tracking is often combined with conventional flat panel solar cells to maximize electrical power generation over the course of a day. However, conventional trackers are complex and often require costly and cumbersome structural components to support system weight. Here we use kirigami (the art of paper cutting) to realize novel solar cells where tracking is integral to the structure at the substrate level. Specifically, an elegant cut pattern is made in thin-film gallium arsenide solar cells, which are then stretched to produce an array of tilted surface elements which can be controlled to within ±1°. We analyze the combined optical and mechanical properties of the tracking system, and demonstrate a mechanically robust system with optical tracking efficiencies matching conventional trackers. This design suggests a pathway towards enabling new applications for solar tracking, as well as inspiring a broader range of optoelectronic and mechanical devices.

  11. 49 CFR 178.338-5 - Stiffening rings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SPECIFICATIONS FOR PACKAGINGS Specifications for Containers for Motor Vehicle Transportation § 178.338-5 Stiffening rings. (a) A tank is...

  12. Finite Element Analysis of Adaptive-Stiffening and Shape-Control SMA Hybrid Composites

    NASA Technical Reports Server (NTRS)

    Gao, Xiu-Jie; Turner, Travis L.; Burton, Deborah; Brinson, L. Catherine

    2005-01-01

    The usage of shape memory materials has extended rapidly to many fields, including medical devices, actuators, composites, structures and MEMS devices. For these various applications, shape memory alloys (SMAs) are available in various forms: bulk, wire, ribbon, thin film, and porous. In this work, the focus is on SMA hybrid composites with adaptive-stiffening or morphing functions. These composites are created by using SMA ribbons or wires embedded in a polymeric based composite panel/beam. Adaptive stiffening or morphing is activated via selective resistance heating or uniform thermal loads. To simulate the thermomechanical behavior of these composites, a SMA model was implemented using ABAQUS user element interface and finite element simulations of the systems were studied. Several examples are presented which show that the implemented model can be a very useful design and simulation tool for SMA hybrid composites.

  13. Nonlinear Thermomechanical Response of Composite Panels with Continuous and Terminated Stiffeners

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Peters, Jeanne M.; Starnes, James H., Jr. (Technical Monitor)

    2001-01-01

    A two-phase approach and a computational procedure are used for predicting the variability of the response of stiffened composite panels associated with variations in the geometric and material parameters of the structures. In the first phase, hierarchical sensitivity analysis is used to identify the major parameters that have the most effect on the response quantities of interest. In the second phase, the major parameters are taken to be fuzzy parameters, and a fuzzy set analysis is used to determine the range of variation of the response, associated with preselected variations in the major parameters. Numerical results are presented showing the variability of the response of panels with both continuous and terminated stiffeners associated with variations in the micro mechanical and geometric parameters. Both flat and curved panels are considered.

  14. Early stiffening and softening of collagen: interplay of deformation mechanisms in biopolymer networks.

    PubMed

    Kurniawan, Nicholas A; Wong, Long Hui; Rajagopalan, Raj

    2012-03-12

    Collagen networks, the main structural/mechanical elements in biological tissues, increasingly serve as biomimetic scaffolds for cell behavioral studies, assays, and tissue engineering, and yet their full spectrum of nonlinear behavior remains unclear. Here, with self-assembled type-I collagen as model, we use metrics beyond those in standard single-harmonic analysis of rheological measurements to reveal strain-softening and strain-stiffening of collagen networks both in instantaneous responses and at steady state. The results show how different deformation mechanisms, such as deformation-induced increase in the elastically active fibrils, nonlinear extension of individual fibrils, and slips in the physical cross-links in the network, can lead to the observed complex nonlinearity. We demonstrate how comprehensive rheological analyses can uncover the rich mechanical properties of biopolymer networks, including the above-mentioned softening as well as an early strain-stiffening, which are important for understanding physiological response of biological materials to mechanical loading.

  15. Finite Element Analysis of Adaptive-Stiffening and Shape-Control SMA Hybrid Composites

    NASA Technical Reports Server (NTRS)

    Gao, Xiu-Jie; Turner, Travis L.; Burton, Deborah; Brinson, L. Catherine

    2005-01-01

    The usage of shape memory materials has extended rapidly to many fields, including medical devices, actuators, composites, structures and MEMS devices. For these various applications, shape memory alloys (SMAs) are available in various forms: bulk, wire, ribbon, thin film, and porous. In this work, the focus is on SMA hybrid composites with adaptive-stiffening or morphing functions. These composites are created by using SMA ribbons or wires embedded in a polymeric based composite panel/beam. Adaptive stiffening or morphing is activated via selective resistance heating or uniform thermal loads. To simulate the thermomechanical behavior of these composites, a SMA model was implemented using ABAQUS user element interface and finite element simulations of the systems were studied. Several examples are presented which show that the implemented model can be a very useful design and simulation tool for SMA hybrid composites.

  16. Tumor Stiffening, a Key Determinant of Tumor Progression, is Reversed by Nanomaterial-Induced Photothermal Therapy

    PubMed Central

    Marangon, Iris; Silva, Amanda A. K.; Guilbert, Thomas; Kolosnjaj-Tabi, Jelena; Marchiol, Carmen; Natkhunarajah, Sharuja; Chamming's, Foucault; Ménard-Moyon, Cécilia; Bianco, Alberto; Gennisson, Jean-Luc; Renault, Gilles; Gazeau, Florence

    2017-01-01

    Tumor stiffening, stemming from aberrant production and organization of extracellular matrix (ECM), has been considered a predictive marker of tumor malignancy, non-invasively assessed by ultrasound shear wave elastography (SWE). Being more than a passive marker, tumor stiffening restricts the delivery of diagnostic and therapeutic agents to the tumor and per se could modulate cellular mechano-signaling, tissue inflammation and tumor progression. Current strategies to modify the tumor extracellular matrix are based on ECM-targeting chemical agents but also showed deleterious systemic effects. On-demand excitable nanomaterials have shown their ability to perturb the tumor microenvironment in a spatiotemporal-controlled manner and synergistically with chemotherapy. Here, we investigated the evolution of tumor stiffness as well as tumor integrity and progression, under the effect of mild hyperthermia and thermal ablation generated by light-exposed multi-walled carbon nanotubes (MWCNTs) in an epidermoid carcinoma mouse xenograft. SWE was used for real-time mapping of the tumor stiffness, both during the two near infrared irradiation sessions and over the days after the treatment. We observed a transient and reversible stiffening of the tumor tissue during laser irradiation, which was lowered at the second session of mild hyperthermia or photoablation. In contrast, over the days following photothermal treatment, the treated tumors exhibited a significant softening together with volume reduction, whereas non-treated growing tumors showed an increase of tumor rigidity. The organization of the collagen matrix and the distribution of CNTs revealed a spatio-temporal correlation between the presence of nanoheaters and the damages on collagen and cells. This study highlights nanohyperthermia as a promising adjuvant strategy to reverse tumor stiffening and normalize the mechanical tumor environment. PMID:28042338

  17. Coupled Thermo-Electro-Magneto-Elastic Response of Smart Stiffened Panels

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Yarrington, Phillip W.

    2009-01-01

    This report documents the procedures developed for incorporating smart laminate and panel analysis capabilities within the HyperSizer aerospace structural sizing software package. HyperSizer analyzes stiffened panels composed of arbitrary composite laminates through stiffener homogenization, or "smearing " techniques. The result is an effective constitutive equation for the stiffened panel that is suitable for use in a full vehicle-scale finite element analysis via MSC/NASTRAN. The existing thermo-elastic capabilities of HyperSizer have herein been extended to include coupled thermo-electro-magneto-elastic analysis capabilities. This represents a significant step toward realization of design tools capable of guiding the development of the next generation of smart aerospace structures. Verification results are presented that compare the developed smart HyperSizer capability with an ABAQUS piezoelectric finite element solution for a facesheet-flange combination. These results show good agreement between HyperSizer and ABAQUS, but highlight a limitation of the HyperSizer formulation in that constant electric field components are assumed.

  18. Stiffening and damping capacity of an electrostatically tuneable functional composite cantilever beam

    NASA Astrophysics Data System (ADS)

    Ginés, R.; Bergamini, A.; Motavalli, M.; Ermanni, P.

    2015-09-01

    The damping capacity of a novel composite film, designed to exhibit high dielectric strength and a high friction coefficient for an electrostatic tuneable friction damper, is tested on a cantilever beam. Such a system consists of a carbon fibre reinforced polymer stiffening element which is reversibly laminated onto a host structure with a dielectric material by means of electrostatic fields. Damping is achieved when the maximum shear at the interface between the stiffening element and structure exceeds the shear strength of the electrostatically laminated interface. The thin films tested consist of barium titanate particles and alumina platelets in an epoxy matrix. Their high dielectric constant and high coefficient of friction compared to a commercial available polymer film, polyvinylidene fluoride, lead to a reduction of the required electric field to stiffen and damp the cantilever beam. Reducing the operating voltage affects different aspects of the studied damper. The cost of possible applications of the frictional damper can be reduced, as the special components necessary at high voltages become redundant. Furthermore, the enhanced security positively affects the damping system’s appeal as an alternative damping method.

  19. A backing device based on an embedded stiffener and retractable insertion tool for thin-film cochlear arrays

    NASA Astrophysics Data System (ADS)

    Tewari, Radheshyam

    Intracochlear trauma from surgical insertion of bulky electrode arrays and inadequate pitch perception are areas of concern with current hand-assembled commercial cochlear implants. Parylene thin-film arrays with higher electrode densities and lower profiles are a potential solution, but lack rigidity and hence depend on manually fabricated permanently attached polyethylene terephthalate (PET) tubing based bulky backing devices. As a solution, we investigated a new backing device with two sub-systems. The first sub-system is a thin poly(lactic acid) (PLA) stiffener that will be embedded in the parylene array. The second sub-system is an attaching and detaching mechanism, utilizing a poly(N-vinylpyrrolidone)-block-poly(d,l-lactide) (PVP-b-PDLLA) copolymer-based biodegradable and water soluble adhesive, that will help to retract the PET insertion tool after implantation. As a proof-of-concept of sub-system one, a microfabrication process for patterning PLA stiffeners embedded in parylene has been developed. Conventional hot-embossing, mechanical micromachining, and standard cleanroom processes were integrated for patterning fully released and discrete stiffeners coated with parylene. The released embedded stiffeners were thermoformed to demonstrate that imparting perimodiolar shapes to stiffener-embedded arrays will be possible. The developed process when integrated with the array fabrication process will allow fabrication of stiffener-embedded arrays in a single process. As a proof-of-concept of sub-system two, the feasibility of the attaching and detaching mechanism was demonstrated by adhering 1x and 1.5x scale PET tube-based insertion tools and PLA stiffeners embedded in parylene using the copolymer adhesive. The attached devices survived qualitative adhesion tests, thermoforming, and flexing. The viability of the detaching mechanism was tested by aging the assemblies in-vitro in phosphate buffer solution. The average detachment times, 2.6 minutes and 10 minutes

  20. Some Investigations of the General Instability of Stiffened Metal Cylinders V : Stiffened Metal Cylinders Subjected to Pure Bending

    NASA Technical Reports Server (NTRS)

    Hoff, N J; Boley, Bruno A; Nardo, S V

    1938-01-01

    This report summarizes the work that has been carried on in the experimental investigation of the problem of general instability of stiffened metal cylinders subjected to pure bending at the C.I.T. This part of the investigation included tests of 46 sheet-covered specimens. The most significant result was the determination of a new design parameter for the case of a stiffened metal cylinder subjected to pure bending.

  1. Enhanced Composites Integrity Through Structural Health Monitoring

    NASA Astrophysics Data System (ADS)

    Giurgiutiu, Victor; Soutis, Constantinos

    2012-10-01

    This paper discusses the topic of how the integrity of safety-critical structural composites can be enhanced by the use of structural health monitoring (SHM) techniques. The paper starts with a presentation of how the certification of flight-critical composite structures can be achieved within the framework of civil aviation safety authority requirements. Typical composites damage mechanisms, which make this process substantially different from that for metallic materials are discussed. The opportunities presented by the use of SHM techniques in future civil aircraft developments are explained. The paper then focuses on active SHM with piezoelectric wafer active sensors (PWAS). After reviewing the PWAS-based SHM options, the paper follows with a discussion of the specifics of guided wave propagation in composites and PWAS-tuning effects. The paper presents a number of experimental results for damage detection in simple flat unidirectional and quasi-isotropic composite specimens. Calibrated through holes of increasing diameter and impact damage of various energies and velocities are considered. The paper ends with conclusions and suggestions for further work.

  2. Integrated Force Method for Indeterminate Structures

    NASA Technical Reports Server (NTRS)

    Hopkins, Dale A.; Halford, Gary R.; Patnaik, Surya N.

    2008-01-01

    Two methods of solving indeterminate structural-mechanics problems have been developed as products of research on the theory of strain compatibility. In these methods, stresses are considered to be the primary unknowns (in contrast to strains and displacements being considered as the primary unknowns in some prior methods). One of these methods, denoted the integrated force method (IFM), makes it possible to compute stresses, strains, and displacements with high fidelity by use of modest finite-element models that entail relatively small amounts of computation. The other method, denoted the completed Beltrami Mitchell formulation (CBMF), enables direct determination of stresses in an elastic continuum with general boundary conditions, without the need to first calculate displacements as in traditional methods. The equilibrium equation, the compatibility condition, and the material law are the three fundamental concepts of the theory of structures. For almost 150 years, it has been commonly supposed that the theory is complete. However, until now, the understanding of the compatibility condition remained incomplete, and the compatibility condition was confused with the continuity condition. Furthermore, the compatibility condition as applied to structures in its previous incomplete form was inconsistent with the strain formulation in elasticity.

  3. Cartilage-like electrostatic stiffening of responsive cryogel scaffolds

    PubMed Central

    Offeddu, G. S.; Mela, I.; Jeggle, P.; Henderson, R. M.; Smoukov, S. K.; Oyen, M. L.

    2017-01-01

    Cartilage is a structural tissue with unique mechanical properties deriving from its electrically-charged porous structure. Traditional three-dimensional environments for the culture of cells fail to display the complex physical response displayed by the natural tissue. In this work, the reproduction of the charged environment found in cartilage is achieved using polyelectrolyte hydrogels based on polyvinyl alcohol and polyacrylic acid. The mechanical response and morphology of microporous physically-crosslinked cryogels are compared to those of heat-treated chemical gels made from the same polymers, as a result of pH-dependent swelling. In contrast to the heat-treated chemically-crosslinked gels, the elastic modulus of the physical cryogels was found to increase with charge activation and swelling, explained by the occurrence of electrostatic stiffening of the polymer chains at large charge densities. At the same time, the permeability of both materials to fluid flow was impaired by the presence of electric charges. This cartilage-like mechanical behavior displayed by responsive cryogels can be reproduced in other polyelectrolyte hydrogel systems to fabricate biomimetic cellular scaffolds for the repair of the tissue. PMID:28230077

  4. Cartilage-like electrostatic stiffening of responsive cryogel scaffolds

    NASA Astrophysics Data System (ADS)

    Offeddu, G. S.; Mela, I.; Jeggle, P.; Henderson, R. M.; Smoukov, S. K.; Oyen, M. L.

    2017-02-01

    Cartilage is a structural tissue with unique mechanical properties deriving from its electrically-charged porous structure. Traditional three-dimensional environments for the culture of cells fail to display the complex physical response displayed by the natural tissue. In this work, the reproduction of the charged environment found in cartilage is achieved using polyelectrolyte hydrogels based on polyvinyl alcohol and polyacrylic acid. The mechanical response and morphology of microporous physically-crosslinked cryogels are compared to those of heat-treated chemical gels made from the same polymers, as a result of pH-dependent swelling. In contrast to the heat-treated chemically-crosslinked gels, the elastic modulus of the physical cryogels was found to increase with charge activation and swelling, explained by the occurrence of electrostatic stiffening of the polymer chains at large charge densities. At the same time, the permeability of both materials to fluid flow was impaired by the presence of electric charges. This cartilage-like mechanical behavior displayed by responsive cryogels can be reproduced in other polyelectrolyte hydrogel systems to fabricate biomimetic cellular scaffolds for the repair of the tissue.

  5. Array Processing and Forward Modeling Methods for the Analysis of Stiffened, Fluid-Loaded Cylindrical Shells.

    NASA Astrophysics Data System (ADS)

    Bondaryk, Joseph E.

    This thesis investigates array processing and forward modeling methods for the analysis of experimental, structural acoustic data to understand wave propagation on fluid-loaded, elastic, cylindrical shells in the mid -frequency range, 2 < ka < 12. The transient, acoustic, in-plane, bistatic scattering response to wideband, plane waves at various angles of incidence was collected by a synthetic array for three shells, a finite, air-filled, empty thin shell, a duplicate shell stiffened with four unequally spaced ring-stiffeners and a duplicate ribbed shell augmented by resiliently-mounted, wave-bearing, internal structural elements. Array and signal processing techniques, including source deconvolution, array weighting, conventional focusing and the removal of the geometrically scattered contribution, are used to transform the collected data to a more easily interpreted representation. The resulting waveforms show that part of the transient, dynamic, structural response of the shell surface which is capable of radiating to the far field. Compressional membrane waves are directly observable in this representation and evidence of flexural membrane waves is present. Comparisons between the shells show energy compartmentalized by the ring stiffeners and coupled into the wave-bearing internals. Energy calculations show a decay rate of 30dB/msec due to radiation for the Empty shell but only 10dB/msec for the other shells at bow incidence. The Radon Transform is used to estimate the reflection coefficient of compressional waves at the shell endcap as 0.2. The measurement array does not provide enough resolution to allow use of this technique to determine the reflection, transmission and coupling coefficients at the ring stiffeners. Therefore, a forward modeling technique is used to further analyze the 0^ circ incidence case. This modeling couples a Transmission Line model of the shell with a Simulated Annealing approach to multi-dimensional, parameter estimation. This

  6. Biomimetic Reversible Heat-Stiffening Polymer Nanocomposites

    PubMed Central

    2017-01-01

    Inspired by the ability of the sea cucumber to (reversibly) increase the stiffness of its dermis upon exposure to a stimulus, we herein report a stimuli-responsive nanocomposite that can reversibly increase its stiffness upon exposure to warm water. Nanocomposites composed of cellulose nanocrystals (CNCs) that are grafted with a lower critical solution temperature (LCST) polymer embedded within a poly(vinyl acetate) (PVAc) matrix show a dramatic increase in modulus, for example, from 1 to 350 MPa upon exposure to warm water, the hypothesis being that grafting the polymers from the CNCs disrupts the interactions between the nanofibers and minimizes the mechanical reinforcement of the film. However, exposure to water above the LCST leads to the collapse of the polymer chains and subsequent stiffening of the nanocomposite as a result of the enhanced CNC interactions. Backing up this hypothesis are energy conserving dissipative particle dynamics (EDPD) simulations which show that the attractive interactions between CNCs are switched on upon the temperature-induced collapse of the grafted polymer chains, resulting in the formation of a percolating reinforcing network. PMID:28852703

  7. Optimal Design of Grid-Stiffened Composite Panels Using Global and Local Buckling Analysis

    SciTech Connect

    Ambur, D.R.; Jaunky, N.; Knight, N.F. Jr.

    1996-04-01

    A design strategy for optimal design of composite grid-stiffened panels subjected to global and local buckling constraints is developed using a discrete optimizer. An improved smeared stiffener theory is used for the global buckling analysis. Local buckling of skin segments is assessed using a Rayleigh-Ritz method that accounts for material anisotropy and transverse shear flexibility. The local buckling of stiffener segments is also assessed. Design variables are the axial and transverse stiffener spacing, stiffener height and thickness, skin laminate, and stiffening configuration. The design optimization process is adapted to identify the lightest-weight stiffening configuration and pattern for grid stiffened composite panels given the overall panel dimensions, design in-plane loads, material properties, and boundary conditions of the grid-stiffened panel.

  8. Optimal Design of Grid-Stiffened Composite Panels Using Global and Local Buckling Analysis

    NASA Technical Reports Server (NTRS)

    Ambur, Damodar R.; Jaunky, Navin; Knight, Norman F., Jr.

    1996-01-01

    A design strategy for optimal design of composite grid-stiffened panels subjected to global and local buckling constraints is developed using a discrete optimizer. An improved smeared stiffener theory is used for the global buckling analysis. Local buckling of skin segments is assessed using a Rayleigh-Ritz method that accounts for material anisotropy and transverse shear flexibility. The local buckling of stiffener segments is also assessed. Design variables are the axial and transverse stiffener spacing, stiffener height and thickness, skin laminate, and stiffening configuration. The design optimization process is adapted to identify the lightest-weight stiffening configuration and pattern for grid stiffened composite panels given the overall panel dimensions, design in-plane loads, material properties, and boundary conditions of the grid-stiffened panel.

  9. Pattern uniformity control in integrated structures

    NASA Astrophysics Data System (ADS)

    Kobayashi, Shinji; Okada, Soichiro; Shimura, Satoru; Nafus, Kathleen; Fonseca, Carlos; Biesemans, Serge; Enomoto, Masashi

    2017-03-01

    In our previous paper dealing with multi-patterning, we proposed a new indicator to quantify the quality of final wafer pattern transfer, called interactive pattern fidelity error (IPFE). It detects patterning failures resulting from any source of variation in creating integrated patterns. IPFE is a function of overlay and edge placement error (EPE) of all layers comprising the final pattern (i.e. lower and upper layers). In this paper, we extend the use cases with Via in additional to the bridge case (Block on Spacer). We propose an IPFE budget and CD budget using simple geometric and statistical models with analysis of a variance (ANOVA). In addition, we validate the model with experimental data. From the experimental results, improvements in overlay, local-CDU (LCDU) of contact hole (CH) or pillar patterns (especially, stochastic pattern noise (SPN)) and pitch walking are all critical to meet budget requirements. We also provide a special note about the importance of the line length used in analyzing LWR. We find that IPFE and CD budget requirements are consistent to the table of the ITRS's technical requirement. Therefore the IPFE concept can be adopted for a variety of integrated structures comprising digital logic circuits. Finally, we suggest how to use IPFE for yield management and optimization requirements for each process.

  10. Structural integrity of nuclear reactor pressure vessels

    NASA Astrophysics Data System (ADS)

    Knott, John F.

    2013-09-01

    The paper starts from concerns expressed by Sir Alan Cottrell, in the early 1970s, related to the safety of the pressurized water reactor (PWR) proposed at that time for the next phase of electrical power generation. It proceeds to describe the design and operation of nuclear generation plant and gives details of the manufacture of PWR reactor pressure vessels (RPVs). Attention is paid to stress-relief cracking and under-clad cracking, experienced with early RPVs, explaining the mechanisms for these forms of cracking and the means taken to avoid them. Particular note is made of the contribution of non-destructive inspection to structural integrity. Factors affecting brittle fracture in RPV steels are described: in particular, effects of neutron irradiation. The use of fracture mechanics to assess defect tolerance is explained, together with the failure assessment diagram embodied in the R6 procedure. There is discussion of the Master Curve and how it incorporates effects of irradiation on fracture toughness. Dangers associated with extrapolation of data to low probabilities are illustrated. The treatment of fatigue-crack growth is described, in the context of transients that may be experienced in the operation of PWR plant. Detailed attention is paid to the thermal shock associated with a large loss-of-coolant accident. The final section reviews the arguments advanced to justify 'Incredibility of Failure' and how these are incorporated in assessments of the integrity of existing plant and proposed 'new build' PWR pressure vessels.

  11. Advances in Structural Integrity Analysis Methods for Aging Metallic Airframe Structures with Local Damage

    NASA Technical Reports Server (NTRS)

    Starnes, James H., Jr.; Newman, James C., Jr.; Harris, Charles E.; Piascik, Robert S.; Young, Richard D.; Rose, Cheryl A.

    2003-01-01

    Analysis methodologies for predicting fatigue-crack growth from rivet holes in panels subjected to cyclic loads and for predicting the residual strength of aluminum fuselage structures with cracks and subjected to combined internal pressure and mechanical loads are described. The fatigue-crack growth analysis methodology is based on small-crack theory and a plasticity induced crack-closure model, and the effect of a corrosive environment on crack-growth rate is included. The residual strength analysis methodology is based on the critical crack-tip-opening-angle fracture criterion that characterizes the fracture behavior of a material of interest, and a geometric and material nonlinear finite element shell analysis code that performs the structural analysis of the fuselage structure of interest. The methodologies have been verified experimentally for structures ranging from laboratory coupons to full-scale structural components. Analytical and experimental results based on these methodologies are described and compared for laboratory coupons and flat panels, small-scale pressurized shells, and full-scale curved stiffened panels. The residual strength analysis methodology is sufficiently general to include the effects of multiple-site damage on structural behavior.

  12. Integrated structural repair of a producing FPSO

    SciTech Connect

    Johnson, P.R.; Smith, T.A.

    1997-07-01

    The state of the art in FPSO design is advancing rapidly. The long-term reliability of FPSO systems has improved as maintenance issues, have received greater emphasis in both new-builds and conversions. Despite this new emphasis, problems will still arise and repairs will still be required. Ultimately, the ability of any FPSO to stay on location and on production will depend on the scope of repairs which can be economically performed in-situ. In 1994 and 1995, Marathon Petroleum Indonesia Limited (MPIL) performed an in-situ repair on the FPSO Kakap Natuna. The scope and complexity of this work suggests there are few, if any, limits on in-situ structural repairs which can be successfully performed on a producing FPSO. The use of an integrated execution strategy for the repairs greatly reduced their cost.

  13. Angiotensin II receptor blocker telmisartan attenuates aortic stiffening and remodelling in STZ-diabetic rats

    PubMed Central

    2014-01-01

    Background Prevention or attenuation of diabetic vascular complications includes anti-hypertensive treatment with renin-angiotensin system inhibitors on account of their protective effects beyond blood pressure reduction. The present study aimed to investigate the effects of telmisartan, an angiotensin II type 1 receptor blocker (ARB), on blood pressure, aortic stiffening, and aortic remodelling in experimental type 1 diabetes in rats. Methods Diabetes was induced by streptozotocin (STZ) (65 mg/kg) in male Wistar rats. One diabetic group was treated for 10 weeks with telmisartan (10 mg/kg/day p/o). Pressure-independent aortic pulse wave velocity (PWV) was measured under anaesthesia after intravenous infusion of phenylephrine and nitroglycerine. Aortic wall samples were collected for histomorphometrical analysis. Results Untreated diabetes imposed differential effects on aortic stiffening, as demonstrated by increased isobaric PWV over a range of high blood pressures, but not at lower blood pressures. This was associated with loss and disruption of elastin fibres and an increase in collagen fibres in the aortic media. Treatment with telmisartan decreased resting blood pressure, reduced aortic stiffness, and partially prevented the degradation of elastin network within the aortic wall. Conclusions Telmisartan improved the structural and functional indices of aortic stiffening induced by untreated STZ-diabetes, demonstrating the importance of ARBs in the therapeutic approach to diabetic vascular complications. PMID:24920962

  14. Extraordinary Indentation Strain Stiffening Produces Superhard Tungsten Nitrides

    NASA Astrophysics Data System (ADS)

    Lu, Cheng; Li, Quan; Ma, Yanming; Chen, Changfeng

    2017-09-01

    Transition-metal light-element compounds are a class of designer materials tailored to be a new generation of superhard solids, but indentation strain softening has hitherto limited their intrinsic load-invariant hardness to well below the 40 GPa threshold commonly set for superhard materials. Here we report findings from first-principles calculations that two tungsten nitrides, hP4-WN and hP 6 -WN2 , exhibit extraordinary strain stiffening that produces remarkably enhanced indentation strengths exceeding 40 GPa, raising exciting prospects of realizing the long-sought nontraditional superhard solids. Calculations show that hP4-WN is metallic both at equilibrium and under indentation, marking it as the first known intrinsic superhard metal. An x-ray diffraction pattern analysis indicates the presence of hP4-WN in a recently synthesized specimen. We elucidate the intricate bonding and stress response mechanisms for the identified structural strengthening, and the insights may help advance rational design and discovery of additional novel superhard materials.

  15. Response of Composite Panels with Stiffness Gradients Due to Stiffener Terminations and Cutouts

    NASA Technical Reports Server (NTRS)

    Ambur, Damodar R.; Starnes, James H., Jr.; Davila, Carlos G.; Phillips, Erik A.

    1997-01-01

    The results of an analytical and experimental study of stiffened graphite-epoxy compression panels with terminated stiffeners are presented. The local stress gradients at the stiffener termination location are determined by finite element analysis. Three stiffener termination concepts are evaluated by analysis to determine the stiffener and skin laminate parameters that affect the panel response and failure. The effects of changing local skin laminate definitions, skin reinforcement details, and stiffener termination details on local stress gradients and load-path eccentricities are discussed. Analytical and test results are presented for panels with one terminated stiffener and for panels with one terminated stiffener and two unterminated stiffeners. The effects of a cutout in the skin of a panel with a terminated stiffener is also evaluated to determine the interaction between the stress gradients in the panel due to the cutout and those due to the terminated stiffener. The results of the study indicate that the critical failure modes of the panels initiate at the skin-stiffener interface near the end of the terminated stiffener.

  16. Spaceflight Effect on White Matter Structural Integrity

    NASA Technical Reports Server (NTRS)

    Lee, Jessica K.; Kopplemans, Vincent; Paternack, Ofer; Bloomberg, Jacob J.; Mulavara, Ajitkumar P.; Seidler, Rachael D.

    2017-01-01

    Recent reports of elevated brain white matter hyperintensity (WMH) counts and volume in postflight astronaut MRIs suggest that further examination of spaceflight's impact on the microstructure of brain white matter is warranted. To this end, retrospective longitudinal diffusion-weighted MRI scans obtained from 15 astronauts were evaluated. In light of the recent reports of microgravity-induced cephalad fluid shift and gray matter atrophy seen in astronauts, we applied a technique to estimate diffusion tensor imaging (DTI) metrics corrected for free water contamination. This approach enabled the analysis of white matter tissue-specific alterations that are unrelated to fluid shifts, occurring from before spaceflight to after landing. After spaceflight, decreased fractional anisotropy (FA) values were detected in an area encompassing the superior and inferior longitudinal fasciculi and the inferior fronto-occipital fasciculus. Increased radial diffusivity (RD) and decreased axial diffusivity (AD) were also detected within overlapping regions. In addition, FA values in the corticospinal tract decreased and RD measures in the precentral gyrus white matter increased from before to after flight. The results show disrupted structural connectivity of white matter in tracts involved in visuospatial processing, vestibular function, and movement control as a result of spaceflight. The findings may help us understand the structural underpinnings of the extensive spaceflight-induced sensorimotor remodeling. Prospective longitudinal assessment of the white matter integrity in astronauts is needed to characterize the evolution of white matter microstructural changes associated with spaceflight, their behavioral consequences, and the time course of recovery. Supported by a grant from the National Space Biomedical Research Institute, NASA NCC 9-58.

  17. Structural integration in hypoxia-inducible factors

    SciTech Connect

    Wu, Dalei; Potluri, Nalini; Lu, Jingping; Kim, Youngchang; Rastinejad, Fraydoon

    2015-08-20

    The hypoxia-inducible factors (HIFs) coordinate cellular adaptations to low oxygen stress by regulating transcriptional programs in erythropoiesis, angiogenesis and metabolism. These programs promote the growth and progression of many tumours, making HIFs attractive anticancer targets. Transcriptionally active HIFs consist of HIF-alpha and ARNT (also called HIF-1 beta) subunits. Here we describe crystal structures for each of mouse HIF-2 alpha-ARNT and HIF-1 alpha-ARNT heterodimers in states that include bound small molecules and their hypoxia response element. A highly integrated quaternary architecture is shared by HIF-2 alpha-ARNT and HIF-1 alpha-ARNT, wherein ARNT spirals around the outside of each HIF-alpha subunit. Five distinct pockets are observed that permit small-molecule binding, including PAS domain encapsulated sites and an interfacial cavity formed through subunit heterodimerization. The DNA-reading head rotates, extends and cooperates with a distal PAS domain to bind hypoxia response elements. HIF-alpha mutations linked to human cancers map to sensitive sites that establish DNA binding and the stability of PAS domains and pockets.

  18. Assessment of structural integrity of wooden poles

    NASA Astrophysics Data System (ADS)

    Craighead, Ian A.; Thackery, Steve; Redstall, Martin; Thomas, Matthew R.

    2000-05-01

    Despite recent advances in the development of new materials, wood continues to be used globally for the support of overhead cable networks used by telecommunications and electrical utility companies. As a natural material, wood is subject to decay and will eventually fail, causing disruption to services and danger to public and company personnel. Internal decay, due to basidomycetes fungi or attack by termites, can progress rapidly and is often difficult to detect by casual inspection. The traditional method of testing poles for decay involves hitting them with a hammer and listening to the sound that results. However, evidence suggests that a large number of poles are replaced unnecessarily and a significant number of poles continue to fail unexpectedly in service. Therefore, a more accurate method of assessing the structural integrity of wooden poles is required. Over the last 25 years there have been a number of attempts at improving decay detection. Techniques such as ultrasound, drilling X rays etc. have been developed but have generally failed to improve upon the practicality and accuracy of the traditional testing method. The paper describes the use of signal processing techniques to analyze the acoustic response of the pole and thereby determine the presence of decay. Development of a prototype meter is described and the results of initial tests on several hundred poles are presented.

  19. Finite Element Models and Properties of a Stiffened Floor-Equipped Composite Cylinder

    NASA Technical Reports Server (NTRS)

    Grosveld, Ferdinand W.; Schiller, Noah H.; Cabell, Randolph H.

    2010-01-01

    Finite element models were developed of a floor-equipped, frame and stringer stiffened composite cylinder including a coarse finite element model of the structural components, a coarse finite element model of the acoustic cavities above and below the beam-supported plywood floor, and two dense models consisting of only the structural components. The report summarizes the geometry, the element properties, the material and mechanical properties, the beam cross-section characteristics, the beam element representations and the boundary conditions of the composite cylinder models. The expressions used to calculate the group speeds for the cylinder components are presented.

  20. Strain Stiffening in Random Packings of Entangled Granular Chains

    SciTech Connect

    Brown, Eric; Nasto, Alice; Athanassiadis, Athanasios G.; Jaeger, Heinrich M.

    2012-04-02

    Random packings of granular chains are presented as a model system to investigate the contribution of entanglements to strain stiffening. The chain packings are sheared in uniaxial compression experiments. For short chain lengths, these packings yield when the shear stress exceeds the scale of the confining pressure, similar to granular packings of unconnected particles. In contrast, packings of chains which are long enough to form loops exhibit strain stiffening, in which the effective stiffness of the material increases with strain, similar to many polymer materials. The latter packings can sustain stresses orders-of-magnitude greater than the confining pressure, and do not yield until the chain links break. X-ray tomography measurements reveal that the strain-stiffening packings contain system-spanning clusters of entangled chains.

  1. Smoothening creases on surfaces of strain-stiffening materials

    NASA Astrophysics Data System (ADS)

    Jin, Lihua; Suo, Zhigang

    2015-01-01

    When an elastic block (e.g., an elastomer or a soft tissue) is compressed to a critical strain, the smooth surface of the block forms creases, namely, localized regions of self-contact. Here we show how this instability behaves if the solid stiffens steeply. For a solid that stiffens steeply at large strains, as the compression increases, the surface is initially smooth, then forms creases, and finally becomes smooth again. For a solid that stiffens steeply at small strains, creases will never form and the surface remains smooth for all levels of compression. We also obtain the critical conditions for the onset of wrinkles. When the surface does become unstable, we find that creases always set in at a lower compression than wrinkles. Our findings may shed light in developing crease-resistant materials

  2. Fracture Assessment of Strengthened Cracked Metallic Components Using FRP Stiffeners

    NASA Astrophysics Data System (ADS)

    Ahmed, W. K.; Mourad, A.-H. I.

    2015-07-01

    The present study focuses on applying the fracture mechanics approach to the fracture assessment of a cracked member/component strengthened with fiber-reinforced polymer composite stiffeners. The parameters of linear elastic fracture mechanics (LEFM) — the stress intensity factor and the crack opening displacement — are estimated using a finite-element analysis. A metallic plate with an edge crack repaired with fiber-reinforced polymer composite stiffeners is considered in the study. The effects of crack length, debonding length, and adhesive stiffness on the LEFM parameters are examined. Two different loading conditions are considered — axial tension and bending. The results obtained show that fiber-reinforced polymer composite stiffeners are very useful in repairing cracked metallic components.

  3. Stress and Strain Estimation of Notches in Aircraft Structures

    DTIC Science & Technology

    1998-10-01

    initiation prediction models, see [23, 24, 25, 26, 27]. Currently the F/A-18 structure is monitored using a derivative of one of these programs . In the...for the F111C stiffener runout region", FAA/NASA International Symposium on Advanced Structural Integrity Methods for Airframes Durability and Damage...effect of industrial explosions on structures , maintenance and asset assessment. He has experience in metallurgical and mechanical engineering and

  4. Infinite systems in problems for a stiffened rectangular plate

    NASA Astrophysics Data System (ADS)

    Baburchenkov, M. F.; Borodachev, N. M.

    2016-07-01

    A method is proposed for obtaining analytic solutions of a set of infinite systems of linear algebraic equations arising in problems of elasticity for stiffened rectangular plates with stiffening ribs. The method is based on a transformation of a set of infinite systems to a single system and on determining a majorant of the function generating the system series with regard to the order of the unknowns. It is proved that the constructed solution satisfies the infinite system for large indices of the unknowns. The amount of computations is decreased, and the reliability of the results increases. Some realization examples are given.

  5. Progressive Failure Studies of Stiffened Panels Subjected to Shear Loading

    NASA Technical Reports Server (NTRS)

    Ambur, Damodar R.; Jaunky, Navin; Hilburger, Mark W.; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    Experimental and analytical results are presented for progressive failure of stiffened composite panels with and without a notch and subjected to in plane shear loading well into their postbuckling regime. Initial geometric imperfections are included in the finite element models. Ply damage modes such as matrix cracking, fiber-matrix shear, and fiber failure are modeled by degrading the material properties. Experimental results from the test include strain field data from video image correlation in three dimensions in addition to other strain and displacement measurements. Results from nonlinear finite element analyses are compared with experimental data. Good agreement between experimental data and numerical results are observed for the stitched stiffened composite panels studied.

  6. Shear buckling analysis of a hat-stiffened panel

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Jackson, Raymond H.

    1994-01-01

    A buckling analysis was performed on a hat-stiffened panel subjected to shear loading. Both local buckling and global buckling were analyzed. The global shear buckling load was found to be several times higher than the local shear buckling load. The classical shear buckling theory for a flat plate was found to be useful in predicting the local shear buckling load of the hat-stiffened panel, and the predicted local shear buckling loads thus obtained compare favorably with the results of finite element analysis.

  7. Fracture mechanics analyses for skin-stiffener debonding

    NASA Technical Reports Server (NTRS)

    Raju, I. S.; Sistla, R.; Krishnamurthy, T.; Lotts, C. G.

    1993-01-01

    The debond configurations presently subjected to 3D FEM fracture mechanics analyses are respectively of the flange-skin strip and skin-stiffener configuration type. Two methods employing the virtual crack closure technique were used to evaluate the strain energy release rate, or 'G-value' distributions across the debond front. Both methods yielded nearly identical G-value distributions for the debond configurations studied; they were compared with plane strain and shell analyses results from the literature for the flange skin strip configuration, and found to be in good agreement. Mode II is dominant for the skin-stiffener debond configuration.

  8. Strain energy release rates for skin-stiffener debonding

    SciTech Connect

    Raju, I.S.; Sistla, R.; Krishnamurthy, T.

    1995-06-01

    Fracture mechanics analyses of a debonded skin-stiffener configuration using three-dimensional (3D) finite element method are presented. Twenty noded isoparametric elements were used to model the debond configurations. The virtual crack closure technique (VCCT) was used to evaluate the strain energy release rate distributions across the debond front. The strain energy release rate (G-value) distributions showed that there is a boundary layer effect near the ends of the debond and there is an elevation in the G-values in the region of the blade of the stiffener. The analyses also showed that the mode-II is the dominant mode for this debond configuration.

  9. Dexamethasone Stiffens Trabecular Meshwork, Trabecular Meshwork Cells, and Matrix

    PubMed Central

    Raghunathan, Vijay Krishna; Morgan, Joshua T.; Park, Shin Ae; Weber, Darren; Phinney, Brett S.; Murphy, Christopher J.; Russell, Paul

    2015-01-01

    Purpose Treatment with corticosteroids can result in ocular hypertension and may lead to the development of steroid-induced glaucoma. The extent to which biomechanical changes in trabecular meshwork (TM) cells and extracellular matrix (ECM) contribute toward this dysfunction is poorly understood. Methods Primary human TM (HTM) cells were cultured for either 3 days or 4 weeks in the presence or absence of dexamethasone (DEX), and cell mechanics, matrix mechanics and proteomics were determined, respectively. Adult rabbits were treated topically with either 0.1% DEX or vehicle over 3 weeks, and mechanics of the TM were determined. Results Treatment with DEX for 3 days resulted in a 2-fold increase in HTM cell stiffness, and this correlated with activation of extracellular signal-related kinase 1/2 (ERK1/2) and overexpression of α-smooth muscle actin (αSMA). Further, the matrix deposited by HTM cells chronically treated with DEX is approximately 4-fold stiffer, more organized, and has elevated expression of matrix proteins commonly implicated in glaucoma (decorin, myocilin, fibrillin, secreted frizzle-related protein [SFRP1], matrix-gla). Also, DEX treatment resulted in a 3.5-fold increase in stiffness of the rabbit TM. Discussion This integrated approach clearly demonstrates that DEX treatment increases TM cell stiffness concurrent with elevated αSMA expression and activation of the mitogen-activated protein kinase (MAPK) pathway, stiffens the ECM in vitro along with upregulation of Wnt antagonists and fibrotic markers embedded in a more organized matrix, and increases the stiffness of TM tissues in vivo. These results demonstrate glucocorticoid treatment can initiate the biophysical alteration associated with increased resistance to aqueous humor outflow and the resultant increase in IOP. PMID:26193921

  10. Investigation of threaded fastener structural integrity

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Technical nondestructive evaluation approaches to the determination of fastener integrity were assessed. Existing instruments and methods used to measure stress or strain were examined, with particular interest in fastener shank stress. Industry procedures being followed were evaluated to establish fastener integrity criteria.

  11. Fe(III) oxides protect fermenter-methanogen syntrophy against interruption by elemental sulfur via stiffening of Fe(II) sulfides produced by sulfur respiration.

    PubMed

    Igarashi, Kensuke; Kuwabara, Tomohiko

    2014-03-01

    Thermosipho globiformans (rod-shaped thermophilic fermenter) and Methanocaldococcus jannaschii (coccal hyperthermophilic hydrogenotrophic methanogen) established H2-mediated syntrophy at 68 °C, forming exopolysaccharide-based aggregates. Electron microscopy showed that the syntrophic partners connected to each other directly or via intercellular bridges made from flagella, which facilitated transfer of H2. Elemental sulfur (S(0)) interrupted syntrophy; polysulfides abiotically formed from S(0) intercepted electrons that were otherwise transferred to H(+) to produce H2, resulting in the generation of sulfide (sulfur respiration). However, Fe(III) oxides significantly reduced the interruption by S(0), accompanied by stiffening of Fe(II) sulfides produced by the reduction of Fe(III) oxides with the sulfur respiration-generated sulfide. Sea sand replacing Fe(III) oxides failed to generate stiffening or protect the syntrophy. Several experimental results indicated that the stiffening of Fe(II) sulfides shielded the liquid from S(0), resulting in methane production in the liquid. Field-emission scanning electron microscopy showed that the stiffened Fe(II) sulfides formed a network of spiny structures in which the microorganisms were buried. The individual fermenter rods likely produced Fe(II) sulfides on their surface and became local centers of a core of spiny structures, and the connection of these cores formed the network, which was macroscopically recognized as stiffening.

  12. Tests of Aerodynamically Heated Multiweb Wing Structures in a Free Jet at Mach Number 2: Five Aluminum-Alloy Models of 20-Inch Chord with 0.064-Inch-Thick Skin, 0.025-Inch-Thick Webs, and Various Chordwise Stiffening at 2 deg Angle of Attack

    NASA Technical Reports Server (NTRS)

    Trussell, Donald H.; Thomson, Robert G.

    1960-01-01

    An experimental study was made on five 2024-T3 aluminum-alloy multiweb wing structures (MW-2-(4), MW-4-(3), mw-16, MW-17, and MW-18), at a Mach number of 2 and an angle of attack of 2 deg under simulated supersonic flight conditions. These models, of 20-inch chord and semi-span and 5-percent-thick circular-arc airfoil section, were identical except for the type and amount of chordwise stiffening. One model with no chordwise ribs between root and tip bulkhead fluttered and failed dynamically partway through its test. Another model with no chordwise ribs (and a thinner tip bulkhead) experienced a static bending type of failure while undergoing flutter. The three remaining models with one, two, or three chordwise ribs survived their tests. The test results indicate that the chordwise shear rigidity imparted to the models by the addition of even one chordwise rib precludes flutter and subsequent failure under the imposed test conditions. This paper presents temperature and strain data obtained from the tests and discusses the behavior of the models.

  13. 16 CFR 300.23 - Linings, paddings, stiffening, trimmings and facings.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Linings, paddings, stiffening, trimmings and... Linings, paddings, stiffening, trimmings and facings. (a) In labeling or marking garments or articles of apparel which are wool products, the fiber content of any linings, paddings, stiffening, trimmings...

  14. 16 CFR 300.23 - Linings, paddings, stiffening, trimmings and facings.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 1 2012-01-01 2012-01-01 false Linings, paddings, stiffening, trimmings and... Linings, paddings, stiffening, trimmings and facings. (a) In labeling or marking garments or articles of apparel which are wool products, the fiber content of any linings, paddings, stiffening, trimmings...

  15. 16 CFR 300.23 - Linings, paddings, stiffening, trimmings and facings.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 1 2013-01-01 2013-01-01 false Linings, paddings, stiffening, trimmings and... Linings, paddings, stiffening, trimmings and facings. (a) In labeling or marking garments or articles of apparel which are wool products, the fiber content of any linings, paddings, stiffening, trimmings...

  16. 16 CFR 300.23 - Linings, paddings, stiffening, trimmings and facings.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 1 2014-01-01 2014-01-01 false Linings, paddings, stiffening, trimmings and... Linings, paddings, stiffening, trimmings and facings. (a) In labeling or marking garments or articles of apparel which are wool products, the fiber content of any linings, paddings, stiffening, trimmings...

  17. Localised micro-mechanical stiffening in the ageing aorta

    PubMed Central

    Graham, Helen K.; Akhtar, Riaz; Kridiotis, Constantinos; Derby, Brian; Kundu, Tribikram; Trafford, Andrew W.; Sherratt, Michael J.

    2011-01-01

    Age-related loss of tissue elasticity is a common cause of human morbidity and arteriosclerosis (vascular stiffening) is associated with the development of both fatal strokes and heart failure. However, in the absence of appropriate micro-mechanical testing methodologies, multiple structural remodelling events have been proposed as the cause of arteriosclerosis. Therefore, using a model of ageing in female sheep aorta (young: <18 months, old: >8 years) we: (i) quantified age-related macro-mechanical stiffness, (ii) localised in situ micro-metre scale changes in acoustic wave speed (a measure of tissue stiffness) and (iii) characterised collagen and elastic fibre remodelling. With age, there was an increase in both macro-mechanical stiffness and mean microscopic wave speed (and hence stiffness; young wave speed: 1701 ± 1 m s−1, old wave speed: 1710 ± 1 m s−1, p < 0.001) which was localized to collagen fibril-rich regions located between large elastic lamellae. These micro-mechanical changes were associated with increases in both collagen and elastic fibre content (collagen tissue area, young: 31 ± 2%, old: 40 ± 4%, p < 0.05; elastic fibre tissue area, young: 55 ± 3%, old: 69 ± 4%, p < 0.001). Localised collagen fibrosis may therefore play a key role in mediating age-related arteriosclerosis. Furthermore, high frequency scanning acoustic microscopy is capable of co-localising micro-mechanical and micro-structural changes in ageing tissues. PMID:21777602

  18. A manufacturer's approach to ensure long term structural integrity

    NASA Technical Reports Server (NTRS)

    Ansell, Hans; Fredriksson, Billy; Holm, Ingvar

    1992-01-01

    The main features of the design concepts for the Saab 340 and Saab 2000 aircraft are described with respect to structural integrity and high reliability. Also described is the approach taken at Saab Aircraft to ensure structural integrity and high reliability. The concepts of global and local loads and sequences, and the fatigue and damage tolerance sizing and their verification are discussed. Also described is quality assurance in the production and structural maintenance program. Structural repair and feedback from operators are also covered.

  19. A manufacturer's approach to ensure long term structural integrity

    NASA Technical Reports Server (NTRS)

    Ansell, Hans; Fredriksson, Billy; Holm, Ingvar

    1992-01-01

    The main features of the design concepts for the Saab 340 and Saab 2000 aircraft are described with respect to structural integrity and high reliability. Also described is the approach taken at Saab Aircraft to ensure structural integrity and high reliability. The concepts of global and local loads and sequences, and the fatigue and damage tolerance sizing and their verification are discussed. Also described is quality assurance in the production and structural maintenance program. Structural repair and feedback from operators are also covered.

  20. Baseline-Subtraction-Free (BSF) Damage-Scattered Wave Extraction for Stiffened Isotropic Plates

    NASA Technical Reports Server (NTRS)

    He, Jiaze; Leser, Patrick E.; Leser, William P.

    2017-01-01

    Lamb waves enable long distance inspection of structures for health monitoring purposes. However, this capability is diminished when applied to complex structures where damage-scattered waves are often buried by scattering from various structural components or boundaries in the time-space domain. Here, a baseline-subtraction-free (BSF) inspection concept based on the Radon transform (RT) is proposed to identify and separate these scattered waves from those scattered by damage. The received time-space domain signals can be converted into the Radon domain, in which the scattered signals from structural components are suppressed into relatively small regions such that damage-scattered signals can be identified and extracted. In this study, a piezoelectric wafer and a linear scan via laser Doppler vibrometer (LDV) were used to excite and acquire the Lamb-wave signals in an aluminum plate with multiple stiffeners. Linear and inverse linear Radon transform algorithms were applied to the direct measurements. The results demonstrate the effectiveness of the Radon transform as a reliable extraction tool for damage-scattered waves in a stiffened aluminum plate and also suggest the possibility of generalizing this technique for application to a wide variety of complex, large-area structures.

  1. Integrable structure in discrete shell membrane theory

    PubMed Central

    Schief, W. K.

    2014-01-01

    We present natural discrete analogues of two integrable classes of shell membranes. By construction, these discrete shell membranes are in equilibrium with respect to suitably chosen internal stresses and external forces. The integrability of the underlying equilibrium equations is proved by relating the geometry of the discrete shell membranes to discrete O surface theory. We establish connections with generalized barycentric coordinates and nine-point centres and identify a discrete version of the classical Gauss equation of surface theory. PMID:24808755

  2. Design, analysis, and fabrication of the technology integration box beam

    NASA Technical Reports Server (NTRS)

    Griffin, C. F.; Meade, L. E.

    1991-01-01

    Numerous design concepts, materials, and manufacturing methods were investigated analytically and empirically for the covers and spars of a transport wing box. This information was applied to the design, analysis, and fabrication of a full-scale section of a transport wing box. A blade-stiffened design was selected for the upper and lower covers of the box. These covers have been constructed using three styles of AS4/974 prepreg fabrics. The front and rear T-stiffened channel spars were filament wound using AS4/1806 towpreg. Covers, ribs, and spars were assembled using mechanical fasteners. When they are completed later this year, the tests on the technology integration box beam will demonstrate the structural integrity of an advanced composite wing design which is 25 percent lighter than the metal baseline.

  3. Strain stiffening and stress heterogeneities in sheared collagen networks

    NASA Astrophysics Data System (ADS)

    Urbach, Jeffrey

    2014-03-01

    Disordered networks of stiff or semi-flexible filaments display unusual mechanical properties, including dramatic stiffening when sheared, but little is known about the spatial distribution of stresses. This talk will introduce the technique of Boundary Stress Microscopy, which adapts the approach of traction force microscopy to rheological measurements in order to quantify the non-uniform surface stresses in sheared soft materials. Our results on networks of the biopolymer collagen, a major component of the extracellular matrix, show stress variations over length scales much larger than the network mesh size. We find that the heterogeneity increases with strain stiffening, with stresses at high strains exceeding average stresses by an order of magnitude. The strain stiffening behavior over a wide range of mesh sizes can be parameterized by a single characteristic strain and associated stress, which describes both the strain stiffening regime and network yielding. The characteristic stress is approximately proportional to network density, but the peak stress at both the characteristic strain and at yielding are remarkably insensitive to concentration. These results show the power of Boundary Stress Microscopy to reveal the nature of stress propagation in disordered soft materials, which is critical for understanding many important mechanical properties, including the ultimate strength of a material and the nature of appropriate microscopic constitutive equations. Supported by the AFOSR (FA9550-10-1-0473) and the NSF (DMR-0804782).

  4. Compressive buckling analysis of hat-stiffened panel

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Jackson, Raymond H.

    1991-01-01

    Buckling analysis was performed on a hat-stiffened panel subjected to uniaxial compression. Both local buckling and global buckling were analyzed. It was found that the global buckling load was several times higher than the buckling load. The predicted local buckling loads compared favorably with both experimental data and finite-element analysis.

  5. 49 CFR 179.400-9 - Stiffening rings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    .... (a) If stiffening rings are used in designing the cylindrical portion of the outer jacket for... of the circumference of the tank. The maximum space between welds may not exceed eight times the outer jacket wall thickness. (b) A portion of the outer jacket may be included when calculating...

  6. 49 CFR 179.400-9 - Stiffening rings.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    .... (a) If stiffening rings are used in designing the cylindrical portion of the outer jacket for... consists of a closed section having two webs attached to the outer jacket, the jacket plate between the webs may be included up to the limit of twice the value of “W”, as defined in paragraph (b) of this...

  7. How Neighborhood Poverty Structures Types and Levels of Social Integration.

    PubMed

    Marcus, Andrea Fleisch; Echeverria, Sandra E; Holland, Bart K; Abraido-Lanza, Ana F; Passannante, Marian R

    2015-09-01

    Social integration is fundamental to health and well-being. However, few studies have explored how neighborhood contexts pattern types and levels of social integration that individuals experience. We examined how neighborhood poverty structures two dimensions of social integration: integration with neighbors and social integration more generally. Using data from the United States Third National Health and Nutrition Examination Survey, we linked study participants to percent poverty in their neighborhood of residence (N = 16,040). Social integration was assessed using a modified Social Network Index and neighborhood integration based on yearly visits with neighbors. We fit multivariate logistic regression models that accounted for the complex survey design. Living in high poverty neighborhoods was associated with lower social integration but higher visits with neighbors. Neighborhood poverty distinctly patterns social integration, demonstrating that contexts shape the extent and quality of social relationships.

  8. Packaging, deployment, and panel design concepts for a truss-stiffened 7-panel precision deployable reflector with feed boom

    NASA Technical Reports Server (NTRS)

    Heard, Walter L., Jr.; Collins, Timothy J.; Dyess, James W.; Kenner, Scott; Bush, Harold G.

    1993-01-01

    A concept is presented for achieving a remotely deployable truss-stiffened reflector consisting of seven integrated sandwich panels that form the reflective surface, and an integrated feed boom. The concept has potential for meeting aperture size and surface precision requirements for some high-frequency microwave remote sensing applications. The packaged reflector/feed boom configuration is a self-contained unit that can be conveniently attached to a spacecraft bus. The package has a cylindrical envelope compatible with typical launch vehicle shrouds. Dynamic behavior of a deployed configuration having a 216-inch focal length and consisting of 80-inch-diameter, two-inch-thick panels is examined through finite-element analysis. Results show that the feed boom and spacecraft bus can have a large impact on the fundamental frequency of the deployed configuration. Two candidate rib-stiffened sandwich panel configurations for this application are described, and analytical results for panel mass and stiffness are presented. Results show that the addition of only a few rib stiffeners, if sufficiently deep, can efficiently improve sandwich panel stiffness.

  9. An Investigation of the Effectiveness of Stiffeners on Shear-resistant Plate-girder Webs

    NASA Technical Reports Server (NTRS)

    Moore, R L

    1942-01-01

    The results of 60 different tests on 2 aluminum alloy 17S-T plate girders are presented to show the influence of size and spacing of stiffeners upon the buckling characteristics of shear-resistant webs within the elastic range. It is demonstrated that stiffeners increase the stability of a web by retarding the formation subdivided panels. An empirical method of proportioning stiffeners is proposed which recognizes both of these stiffener functions, and comparisons are made with design procedures based upon theoretical considerations of the buckling problem. Also, some experimental data are provided to show the effect of stiffener size and spacing upon ultimate web strengths.

  10. Structural basis for retroviral integration into nucleosomes.

    PubMed

    Maskell, Daniel P; Renault, Ludovic; Serrao, Erik; Lesbats, Paul; Matadeen, Rishi; Hare, Stephen; Lindemann, Dirk; Engelman, Alan N; Costa, Alessandro; Cherepanov, Peter

    2015-07-16

    Retroviral integration is catalysed by a tetramer of integrase (IN) assembled on viral DNA ends in a stable complex, known as the intasome. How the intasome interfaces with chromosomal DNA, which exists in the form of nucleosomal arrays, is currently unknown. Here we show that the prototype foamy virus (PFV) intasome is proficient at stable capture of nucleosomes as targets for integration. Single-particle cryo-electron microscopy reveals a multivalent intasome-nucleosome interface involving both gyres of nucleosomal DNA and one H2A-H2B heterodimer. While the histone octamer remains intact, the DNA is lifted from the surface of the H2A-H2B heterodimer to allow integration at strongly preferred superhelix location ±3.5 positions. Amino acid substitutions disrupting these contacts impinge on the ability of the intasome to engage nucleosomes in vitro and redistribute viral integration sites on the genomic scale. Our findings elucidate the molecular basis for nucleosome capture by the viral DNA recombination machinery and the underlying nucleosome plasticity that allows integration.

  11. Integrated Control Using the SOFFT Control Structure

    NASA Technical Reports Server (NTRS)

    Halyo, Nesim

    1996-01-01

    The need for integrated/constrained control systems has become clearer as advanced aircraft introduced new coupled subsystems such as new propulsion subsystems with thrust vectoring and new aerodynamic designs. In this study, we develop an integrated control design methodology which accomodates constraints among subsystem variables while using the Stochastic Optimal Feedforward/Feedback Control Technique (SOFFT) thus maintaining all the advantages of the SOFFT approach. The Integrated SOFFT Control methodology uses a centralized feedforward control and a constrained feedback control law. The control thus takes advantage of the known coupling among the subsystems while maintaining the identity of subsystems for validation purposes and the simplicity of the feedback law to understand the system response in complicated nonlinear scenarios. The Variable-Gain Output Feedback Control methodology (including constant gain output feedback) is extended to accommodate equality constraints. A gain computation algorithm is developed. The designer can set the cross-gains between two variables or subsystems to zero or another value and optimize the remaining gains subject to the constraint. An integrated control law is designed for a modified F-15 SMTD aircraft model with coupled airframe and propulsion subsystems using the Integrated SOFFT Control methodology to produce a set of desired flying qualities.

  12. Recent development in the design, testing and impact-damage tolerance of stiffened composite panels

    NASA Technical Reports Server (NTRS)

    Williams, J. G.; Anderson, M. S.; Rhodes, M. D.; Starnes, J. H., Jr.; Stroud, W. J.

    1979-01-01

    Structural technology of laminated filamentary-composite stiffened-panel structures under combined inplane and lateral loadings is discussed. Attention is focused on: (1) methods for analyzing the behavior of these structures under load and for determining appropriate structural proportions for weight-efficient configurations; and (2) effects of impact damage and geometric imperfections on structural performance. Recent improvements in buckling analysis involving combined inplane compression and shear loadings and transverse shear deformations are presented. A computer code is described for proportioning or sizing laminate layers and cross-sectional dimensions, and the code is used to develop structural efficiency data for a variety of configurations, loading conditions, and constraint conditions. Experimental data on buckling of panels under inplane compression is presented. Mechanisms of impact damage initiation and propagation are described.

  13. Analysis and test of superplastically formed titanium hat-stiffened panels under compression

    NASA Technical Reports Server (NTRS)

    Davis, Randall C.; Royster, Dick M.; Bales, Thomas T.

    1987-01-01

    Four hat-stiffened titanium panels with two different stiffener configurations were fabricated by superplastic forming/weld brazing and tested under a moderately heavy compressive load. The panels had the same overall dimensions but differed in the shape of the hat-stiffener webs; three panels had stiffeners with flat webs and the other panel had stiffeners with beaded webs. Analysis indicated that the local buckling strain of the flat stiffener web was considerably lower than the general panel buckling strain or cap buckling strain. The analysis also showed that beading the webs of the hat stiffeners removed them as the critical element for local buckling and improved the buckling strain of the panels. The analytical extensional stiffness and failure loads compared very well with experimental results.

  14. Stiffening hydrogels to probe short- and long-term cellular responses to dynamic mechanics

    NASA Astrophysics Data System (ADS)

    Guvendiren, Murat; Burdick, Jason A.

    2012-04-01

    Biological processes are dynamic in nature, and growing evidence suggests that matrix stiffening is particularly decisive during development, wound healing and disease; yet, nearly all in vitro models are static. Here we introduce a step-wise approach, addition then light-mediated crosslinking, to fabricate hydrogels that stiffen (for example, ~3-30 kPa) in the presence of cells, and investigated the short-term (minutes-to-hours) and long-term (days-to-weeks) cell response to dynamic stiffening. When substrates are stiffened, adhered human mesenchymal stem cells increase their area from ~500 to 3,000 μm2 and exhibit greater traction from ~1 to 10 kPa over a timescale of hours. For longer cultures up to 14 days, human mesenchymal stem cells selectively differentiate based on the period of culture, before or after stiffening, such that adipogenic differentiation is favoured for later stiffening, whereas osteogenic differentiation is favoured for earlier stiffening.

  15. Structurally Integrated X-Band Array Development

    DTIC Science & Technology

    2006-10-01

    work in progress towards the development of a very large structural x-band electronically scanned array (ESA). A building block approach that...significant structural testing from coupon through large scale structural validation have been complete and is reported. The active array testing will...mechanical performance, so trades could be used to develop the most promising configuration. This involved evaluating coupons to understand the

  16. Buckling of imperfect, anisotropic, ring-stiffened cylinders under combined loads

    NASA Technical Reports Server (NTRS)

    Ley, Robert P.; Johnson, Eric R.; Guerdal, Zafer

    1994-01-01

    The objective of this study is to develop an anlysis to predict buckling loads of ring-stiffened anisotropic cylinders subject to axial compression, torsion, and internal pressure. This structure is modeled as a branched shell. A nonlinear axisymmetric prebuckling equilibrium state is assumed which is amenable to an exact solution within each branch. Axisymmetric geometric imperfections are included. Buckling displacements are represented by a Fourier series in the circumferential coordination and the finite-element method in the axial coordinate. Application of the Trefftz criterion to the second variation of the total potential energy leads to a nonlinear eigenvalue problem for the buckling load and mode. Results are presented for both unstiffened and ring-stiffened cylinders in the form of buckling interaction diagrams. Imperfections can cause an unexpected buckling mode in the ring web which would not occur for the perfect structure, and pressurization diminishes the benefit of adding rings to the unstiffened shell to increase the buckling load. The implementation of the analysis methodology into a structural sizing algorithm is discussed.

  17. Buckling of imperfect, anisotropic, ring-stiffened cylinders under combined loads

    NASA Technical Reports Server (NTRS)

    Ley, Robert P.; Johnson, Eric R.; Gurdal, Zafer

    1992-01-01

    The objectives of this study is to develop an analysis to predict loads of ring-stiffened anisotropic cylinders subject to axial compression, torsion and internal pressure. This structure is modeled as a branched shell. A nonlinear axisymmetric prebuckling equilibrium state is assumed which is amenable to exact solution within each branch. Axisymmetric geometric imperfections are included. Buckling displacements are represented by a Fourier series in the circumferential coordinate and the finite element method in the axial coordinate. Application of Trefftz criterion to the second variation of the total potential energy leads to a nonlinear eigenvalue problem for the buckling load and mode. Results are presented for both unstiffened and ring-stiffened cylinders in the form of buckling interaction diagrams. Imperfections can cause an unexpected buckling mode in the ring web which would not occur for the perfect structure, and pressurization diminishes the benefit of adding rings to the unstiffened shell to increase the buckling load. The implementation of the analysis methodology into a structural sizing algorithm is discussed.

  18. An integrated approach to structural genomics.

    PubMed

    Heinemann, U; Frevert, J; Hofmann, K; Illing, G; Maurer, C; Oschkinat, H; Saenger, W

    2000-01-01

    Structural genomics aims at determining a set of protein structures that will represent all domain folds present in the biosphere. These structures can be used as the basis for the homology modelling of the majority of all remaining protein domains or, indeed, proteins. Structural genomics therefore promises to provide a comprehensive structural description of the protein universe. To achieve this, a broad scientific effort is required. The Berlin-based "Protein Structure Factory" (PSF) plans to contribute to this effort by setting up a local infrastructure for the low-cost, high-throughput analysis of soluble human proteins. In close collaboration with the German Human Genome Project (DHGP) protein-coding genes will be expressed in Escherichia coli or yeast. Affinity-tagged proteins will be purified semi-automatically for biophysical characterization and structure analysis by X-ray diffraction methods and NMR spectroscopy. In all steps of the structure analysis process, possibilities for automation, parallelization and standardization will be explored. Major new facilities that are created for the PSF include a robotic station for large-scale protein crystallization, an NMR center and an experimental station for protein crystallography at the synchrotron storage ring BESSY II in Berlin.

  19. Effect of bow-type initial imperfection on the buckling load and mass of graphite-epoxy blade-stiffened panels

    NASA Technical Reports Server (NTRS)

    Stroud, W. J.; Anderson, M. S.; Hennessy, K. W.

    1977-01-01

    A structural synthesis computer code which accounts for first order effects of an initial bow and which can be used for sizing stiffened composite panels having an arbitrary cross section is used to study graphite blade-stiffened panels. The effect of a small initial bow on both the load carrying ability of panels and on the mass of panels designed to carry a specified load is examined. Large reductions in the buckling load caused by a small initial bow emphasize the need for considering a bow when a panel is designed.

  20. Simulation of Detecting Damage in Composite Stiffened Panel Using Lamb Waves

    NASA Technical Reports Server (NTRS)

    Wang, John T.; Ross, Richard W.; Huang, Guo L.; Yuan, Fuh G.

    2013-01-01

    Lamb wave damage detection in a composite stiffened panel is simulated by performing explicit transient dynamic finite element analyses and using signal imaging techniques. This virtual test process does not need to use real structures, actuators/sensors, or laboratory equipment. Quasi-isotropic laminates are used for the stiffened panels. Two types of damage are studied. One type is a damage in the skin bay and the other type is a debond between the stiffener flange and the skin. Innovative approaches for identifying the damage location and imaging the damage were developed. The damage location is identified by finding the intersection of the damage locus and the path of the time reversal wave packet re-emitted from the sensor nodes. The damage locus is a circle that envelops the potential damage locations. Its center is at the actuator location and its radius is computed by multiplying the group velocity by the time of flight to damage. To create a damage image for estimating the size of damage, a group of nodes in the neighborhood of the damage location is identified for applying an image condition. The image condition, computed at a finite element node, is the zero-lag cross-correlation (ZLCC) of the time-reversed incident wave signal and the time reversal wave signal from the sensor nodes. This damage imaging process is computationally efficient since only the ZLCC values of a small amount of nodes in the neighborhood of the identified damage location are computed instead of those of the full model.

  1. Integrated aerodynamic/structural design of a sailplane wing

    NASA Technical Reports Server (NTRS)

    Grossman, B.; Gurdal, Z.; Haftka, R. T.; Strauch, G. J.; Eppard, W. M.

    1986-01-01

    Using lifting-line theory and beam analysis, the geometry (planiform and twist) and composite material structural sizes (skin thickness, spar cap, and web thickness) were designed for a sailplane wing, subject to both structural and aerodynamic constraints. For all elements, the integrated design (simultaneously designing the aerodynamics and the structure) was superior in terms of performance and weight to the sequential design (where the aerodynamic geometry is designed to maximize the performance, following which a structural/aeroelastic design minimizes the weight). Integrated designs produced less rigid, higher aspect ratio wings with favorable aerodynamic/structural interactions.

  2. Minimum weight design of ring and stringer stiffeners for axially compressed cylindrical shells with and without internal pressure

    NASA Technical Reports Server (NTRS)

    Block, D. L.

    1972-01-01

    Results of analytical study to determine desirable ring and stringer stiffener parameters and proportions for axially compressed stiffened isotropic cylinders with and without internal pressure are presented. This investigation examines the panel and general instability buckling modes of a stiffened cylindrical shell and from this determines desirable stiffener parameters and proportions. Classical buckling equations are used which retain the important effects of the stiffeners. The results determined by using the simpler classical buckling equations are then spot checked and verified using buckling equations which considered discrete ring stiffeners and nonlinear prebuckling deformations. For both rings and stringers, T-shaped stiffeners are preferable and the effects to stiffener shape are much more pronounced at low or zero values of the internal pressure parameter. Simple analytical expressions are developed and presented which express the stiffener area parameter, the ratio of stiffener area and elastics to shell wall area and elastic modulus, in terms of the cylinder geometry and internal pressure parameter.

  3. Numerical analysis of stiffened shells of revolution. Volume 3: Users' manual for STARS-2B, 2V, shell theory automated for rotational structures, 2 (buckling, vibrations), digital computer programs

    NASA Technical Reports Server (NTRS)

    Svalbonas, V.

    1973-01-01

    The User's manual for the shell theory automated for rotational structures (STARS) 2B and 2V (buckling, vibrations) is presented. Several features of the program are: (1) arbitrary branching of the shell meridians, (2) arbitrary boundary conditions, (3) minimum input requirements to describe a complex, practical shell of revolution structure, and (4) accurate analysis capability using a minimum number of degrees of freedom.

  4. 2. View, structures in Systems Integration Laboratory complex, looking north. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. View, structures in Systems Integration Laboratory complex, looking north. The Components Test Laboratory (T-27) is located in the immediate foreground. Immediately uphill to the left of T-27 is the Boiler Chiller Plant (T-28H). To the left of T-28H is the Oxidizer Conditioning Structure (T-28D). Behind the T-28D is the Long-Term Oxidizer Silo (T-28B). The twin gantry structure at the left is the Systems Integration Laboratory (T-28). - Air Force Plant PJKS, Systems Integration Laboratory, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  5. Microfabricated structures for integrated DNA analysis.

    PubMed Central

    Burns, M A; Mastrangelo, C H; Sammarco, T S; Man, F P; Webster, J R; Johnsons, B N; Foerster, B; Jones, D; Fields, Y; Kaiser, A R; Burke, D T

    1996-01-01

    Photolithographic micromachining of silicon is a candidate technology for the construction of high-throughput DNA analysis devices. However, the development of complex silicon microfabricated systems has been hindered in part by the lack of a simple, versatile pumping method for integrating individual components. Here we describe a surface-tension-based pump able to move discrete nanoliter drops through enclosed channels using only local heating. This thermocapillary pump can accurately mix, measure, and divide drops by simple electronic control. In addition, we have constructed thermal-cycling chambers, gel electrophoresis channels, and radiolabeled DNA detectors that are compatible with the fabrication of thermocapillary pump channels. Since all of the components are made by conventional photolithographic techniques, they can be assembled into more complex integrated systems. The combination of pump and components into self-contained miniaturized devices may provide significant improvements in DNA analysis speed, portability, and cost. The potential of microfabricated systems lies in the low unit cost of silicon-based construction and in the efficient sample handling afforded by component integration. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8643614

  6. Integrating electrostatic adhesion to composite structures

    NASA Astrophysics Data System (ADS)

    Heath, Callum J. C.; Bond, Ian P.; Potter, Kevin D.

    2015-04-01

    Additional functionality within load bearing components holds potential for adding value to a structure, design or product. We consider the adaptation of an established technology, electrostatic adhesion or electroadhesion, for application in glass fibre reinforced polymer (GFRP) composite materials. Electroadhesion uses high potential difference (~2-3 kV) between co-planar electrodes to generate temporary holding forces to both electrically conductive and nonconductive contact surfaces. Using a combination of established fabrication techniques, electroadhesive elements are co-cured within a composite host structure during manufacture. This provides an almost symbiotic relationship between the electroadhesive and the composite structure, with the electroadhesive providing an additional functionality, whilst the epoxy matrix material of the composite acts as a dielectric for the high voltage electrodes of the device. Silicone rubber coated devices have been shown to offer high shear load (85kPa) capability for GFRP components held together using this technique. Through careful control of the connection interface, we consider the incorporation of these devices within complete composite structures for additional functionality. The ability to vary the internal connectivity of structural elements could allow for incremental changes in connectivity between discrete sub-structures, potentially introducing variable stiffness to the global structure.

  7. Solid Propellant Grain Structural Integrity Analysis

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The structural properties of solid propellant rocket grains were studied to determine the propellant resistance to stresses. Grain geometry, thermal properties, mechanical properties, and failure modes are discussed along with design criteria and recommended practices.

  8. DSSTox EPA Integrated Risk Information System Structure ...

    EPA Pesticide Factsheets

    EPA's Integrated Risk Information System (IRIS) database was developed and is maintained by EPA's Office of Research and Developement, National Center for Environmental Assessment. IRIS is a database of human health effects that may result from exposure to various substances found in the environment. The information in IRIS is intended for those without extensive training in toxicology, but with some knowledge of sciences. IRIS chemical files contain descriptive and quantitative information in oral reference doses and inhalation reference concentrations and hazard identification, oral slope factors, and oral and inhalation unit risks for carcinogenic effects.

  9. Integrable Structure of Multispecies Zero Range Process

    NASA Astrophysics Data System (ADS)

    Kuniba, Atsuo; Okado, Masato; Watanabe, Satoshi

    2017-06-01

    We present a brief review on integrability of multispecies zero range process in one dimension introduced recently. The topics range over stochastic R matrices of quantum affine algebra U_q (A^{(1)}_n), matrix product construction of stationary states for periodic systems, q-boson representation of Zamolodchikov-Faddeev algebra, etc. We also introduce new commuting Markov transfer matrices having a mixed boundary condition and prove the factorization of a family of R matrices associated with the tetrahedron equation and generalized quantum groups at a special point of the spectral parameter.

  10. Electromechanical co-design and experiment of structurally integrated antenna

    NASA Astrophysics Data System (ADS)

    Zhou, Jinzhu; Huang, Jin; Song, Liwei; Zhang, Dan; Ma, Yunchao

    2015-03-01

    This paper proposes an electromechanical co-design method of a structurally integrated antenna to simultaneously meet mechanical and electrical requirements. The method consists of three stages. The first stage involves finishing an initial design of the microstrip antenna without a facesheet or honeycomb, according to some predefined performances. Subsequently, the facesheet and honeycomb of the structurally integrated antenna are designed using an electromechanical co-design optimization. Based on the results from the first and second stages, a fine full-wave electromagnetic model is developed and the coarse design results are further optimized to meet the electrical performance. The co-design method is applied to the design of a 2.5 GHz structurally integrated antenna, and then the designed antenna is fabricated. Experiments from the mechanical and electrical performances are conducted, and the results confirm the effectiveness of the co-design method. This method shows great promise for the multidisciplinary design of a structurally integrated antenna.

  11. Embedded Sensor Array Development for Composite Structure Integrity Monitoring

    SciTech Connect

    Kumar, A.; Bryan, W. L.; Clonts, L. G.; Franks, S.

    2007-06-26

    The purpose of this Cooperative Research and Development Agreement (CRADA) between UT-Battelle, LLC (the "Contractor") and Accellent Technologies, Inc. (the "Participant") was for the development of an embedded ultrasonic sensor system for composite structure integrity monitoring.

  12. Fracture control procedures for aircraft structural integrity

    NASA Technical Reports Server (NTRS)

    Wood, H. A.

    1972-01-01

    The application of applied fracture mechanics in the design, analysis, and qualification of aircraft structural systems are reviewed. Recent service experiences are cited. Current trends in high-strength materials application are reviewed with particular emphasis on the manner in which fracture toughness and structural efficiency may affect the material selection process. General fracture control procedures are reviewed in depth with specific reference to the impact of inspectability, structural arrangement, and material on proposed analysis requirements for safe crack growth. The relative impact on allowable design stress is indicated by example. Design criteria, material, and analysis requirements for implementation of fracture control procedures are reviewed together with limitations in current available data techniques. A summary of items which require further study and attention is presented.

  13. Addressable-Matrix Integrated-Circuit Test Structure

    NASA Technical Reports Server (NTRS)

    Sayah, Hoshyar R.; Buehler, Martin G.

    1991-01-01

    Method of quality control based on use of row- and column-addressable test structure speeds collection of data on widths of resistor lines and coverage of steps in integrated circuits. By use of straightforward mathematical model, line widths and step coverages deduced from measurements of electrical resistances in each of various combinations of lines, steps, and bridges addressable in test structure. Intended for use in evaluating processes and equipment used in manufacture of application-specific integrated circuits.

  14. Space Launch System Integrated Structural Test b-roll

    NASA Image and Video Library

    2017-04-19

    Integrated Structural Test at test stand 4699 at Marshall Space Flight Center: 1. Launch Vehicle Stage Adapter (LVSA) install to 4699 - 00:05 2. Interim Cryogenic Propulsion stage (ICPS) install to 4699 00:20 3. Orion Stage Adapter (OSA) install to 4699 00:56 4. Integrated Structural Test control room 01:10 5. Animation of stacking LVSA, ICPS & OSA in test stand 02:46

  15. Interactive design of large end rings on stiffened conical shells using composites

    NASA Technical Reports Server (NTRS)

    Davis, R. C.; Cooper, P. A.

    1974-01-01

    Design study methods and results for a composite reinforced base ring for the conical aeroshell structure of the planetary lander vehicle for Project Viking, an unmanned mission to Mars, are presented. The aeroshell is a ring and stringer-stiffened conical shell structure having a half angle of 70 degrees with a large base ring mounted at the outer edge of the cone and a large pay-load ring in the interior with many smaller rings spaced along the inside shell surface. The purpose of the structure is to develop the aerodynamic drag required to decelerate the lander in the Mars atmosphere to facilitiate a soft landing. The design of a shell structure of this complexity requires the use of the latest technology available in a large general-purpose shell buckling program. The large general-purpose non-linear shell buckling program (BOSOR 2) which was used for this purpose is described.

  16. Compressive buckling of curved, anisotropic panels stiffened in two directions. Part 2: Initial buckling of specially orthotropic curved stringer stiffened panels

    NASA Astrophysics Data System (ADS)

    Verolme, J. L.

    1993-09-01

    For initial design purposes, a fast computer program is developed to calculate the initial buckling load of specially orthotropic, curved plates, stiffened by discrete stringers. The program yields accurate results for cases, where at or before buckling no stringer cross sectional or local deformation takes place. With the program, a parametric study is performed to prove the important influence of some stringer properties, which are often neglected in the open literature. This report is the second in a series, describing a designer's tool for compressive buckling of aircraft structures. The basic equations, derived in part one, are simplified and solved on the one hand by trigonometric series representation and on the other hand by applying the finite difference technique in circumferential direction.

  17. Integrated optical interrogation of micro-structures

    DOEpatents

    Evans, III, Boyd M.; Datskos, Panagiotis G.; Rajic, Slobodan

    2003-01-01

    The invention is an integrated optical sensing element for detecting and measuring changes in position or deflection. A deflectable member, such as a microcantilever, is configured to receive a light beam. A waveguide, such as an optical waveguide or an optical fiber, is positioned to redirect light towards the deflectable member. The waveguide can be incorporated into the deflectable member or disposed adjacent to the deflectable member. Means for measuring the extent of position change or deflection of the deflectable member by receiving the light beam from the deflectable member, such as a photodetector or interferometer, receives the reflected light beam from the deflectable member. Changes in the light beam are correlated to the changes in position or deflection of the deflectable member. A plurality of deflectable members can be arranged in a matrix or an array to provide one or two-dimensional imaging or sensing capabilities.

  18. Buckling analysis of a ring stiffened hybrid composite cylinder

    NASA Astrophysics Data System (ADS)

    Potluri, Rakesh; Eswara Kumar, A.; Navuri, Karteek; Nagaraju, M.; Mojeswara Rao, Duduku

    2016-09-01

    This study aims to understand the response of the ring stiffened cylinders made up of hybrid composites subjected to buckling loads by using the concepts of Design of Experiments (DOE) and optimization by using Finite Element Method (FEM) simulation software Ansys workbench V15. Carbon epoxy and E-glass epoxy composites were used in the hybrid composite. This hybrid composite was analyzed by using different layup angles. Central composite design (CCD) was used to perform design of experiments (D.O.E) and kriging method was used to generate a response surface. The response surface optimization (RSO) was performed by using the method of the multi-objective genetic algorithm (MOGA). After optimization, the best candidate was chosen and applied to the ring stiffened cylinder and eigenvalue buckling analysis was performed to understand the buckling behavior. Best laminate candidates with high buckling strength have been identified. A generalized procedure of the laminate optimization and analysis have been shown.

  19. Compensatory Effect between Aortic Stiffening and Remodelling during Ageing

    PubMed Central

    Guala, Andrea; Camporeale, Carlo; Ridolfi, Luca

    2015-01-01

    The arterial tree exhibits a complex spatio-temporal wave pattern, whose healthy behaviour depends on a subtle balance between mechanical and geometrical properties. Several clinical studies demonstrated that such a balance progressively breaks down during ageing, when the aorta stiffens and remodels by increasing its diameter. These two degenerative processes however, have different impacts on the arterial wave pattern. They both tend to compensate for each other, thus reducing the detrimental effect they would have had if they had arisen individually. This remarkable compensatory mechanism is investigated by a validated multi-scale model, with the aim to elucidate how aortic stiffening and remodelling quantitatively impact the complex interplay between forward and reflected backward waves in the arterial network. We focus on the aorta and on the pressure at the ventricular-aortic interface, which epidemiological studies demonstrate to play a key role in cardiovascular diseases. PMID:26426360

  20. Fracture Mechanics Analysis of Stitched Stiffener-Skin Debonding

    NASA Technical Reports Server (NTRS)

    Glaessgen, E. H.; Raju, I. S.; Poe, C. C., Jr.

    1998-01-01

    An analysis based on plate finite elements and the virtual crack closure technique has been implemented to study the effect of stitching on mode I and mode II strain energy release rates for debond configurations. The stitches were modeled as discrete nonlinear fastener elements with a compliance determined by experiment. The axial and shear behavior of the stitches was considered, however, the two compliances and failure loads were assumed to be independent. Both a double cantilever beam (mode I) and a mixed mode skin-stiffener debond configuration were studied. In the double cantilever beam configurations, G(sub I) began to decrease once the debond had grown beyond the first row of stitches and was reduced to zero for long debonds. In the mixed-mode skin-stiffener configurations, G(sub I) showed a similar behavior as in the double cantilever beam configurations, however, G(sub u), continued to increase with increasing debond length.

  1. Surface Plasmon Resonance-Induced Stiffening of Silver Nanowires

    PubMed Central

    Ben, Xue; Park, Harold S.

    2015-01-01

    We report the results of a computational, atomistic electrodynamics study of the effects of electromagnetic waves on the mechanical properties, and specifically the Young’s modulus of silver nanowires. We find that the Young’s modulus of the nanowires is strongly dependent on the optical excitation energy, with a peak enhancement occurring at the localized surface plasmon resonance frequency. When the nanowire is excited at the plasmon resonance frequency, the Young’s modulus is found to increase linearly with increasing nanowire aspect ratio, with a stiffening of nearly 15% for a 2 nm cross section silver nanowire with an aspect ratio of 3.5. Furthermore, our results suggest that this plasmon resonance-induced stiffening is stronger for larger diameter nanowires for a given aspect ratio. Our study demonstrates a novel approach to actively tailoring and enhancing the mechanical properties of metal nanowires. PMID:26024426

  2. Stiffening mechanisms in amorphous polyamide bio-nanocomposites

    SciTech Connect

    Focke, Walter W.; Macheca, Afonso D.; Benhamida, Aida; Kaci, Mustapha

    2016-05-18

    Dimer fatty acid polyamide nanocomposites based on flake- or needle-shaped nanoparticles were prepared via melt compounding. Transmission electron microscopy showed the presence of both individually dispersed particles and particle agglomerates in the polymer matrix. Dynamic mechanical analysis suggests that three stiffening mechanisms were operating. The reinforcing effect of the high stiffness inorganic filler particles is the primary contributor. Together with the chain confinement effect, that expresses itself in an apparent increase in the glass transition temperature, this provided an adequate rationalization of the stiffness variation below Tg. However, an additional stiffening effect is indicated at temperatures above Tg. The mechanism may involve dynamic network formation based on fluctuating hydrogen bonding interactions between the polymer chains and the filler particles.

  3. Multiple stiffening effects of nanoscale knobs on human red blood cells infected with Plasmodium falciparum malaria parasite.

    PubMed

    Zhang, Yao; Huang, Changjin; Kim, Sangtae; Golkaram, Mahdi; Dixon, Matthew W A; Tilley, Leann; Li, Ju; Zhang, Sulin; Suresh, Subra

    2015-05-12

    During its asexual development within the red blood cell (RBC), Plasmodium falciparum (Pf), the most virulent human malaria parasite, exports proteins that modify the host RBC membrane. The attendant increase in cell stiffness and cytoadherence leads to sequestration of infected RBCs in microvasculature, which enables the parasite to evade the spleen, and leads to organ dysfunction in severe cases of malaria. Despite progress in understanding malaria pathogenesis, the molecular mechanisms responsible for the dramatic loss of deformability of Pf-infected RBCs have remained elusive. By recourse to a coarse-grained (CG) model that captures the molecular structures of Pf-infected RBC membrane, here we show that nanoscale surface protrusions, known as "knobs," introduce multiple stiffening mechanisms through composite strengthening, strain hardening, and knob density-dependent vertical coupling. On one hand, the knobs act as structural strengtheners for the spectrin network; on the other, the presence of knobs results in strain inhomogeneity in the spectrin network with elevated shear strain in the knob-free regions, which, given its strain-hardening property, effectively stiffens the network. From the trophozoite to the schizont stage that ensues within 24-48 h of parasite invasion into the RBC, the rise in the knob density results in the increased number of vertical constraints between the spectrin network and the lipid bilayer, which further stiffens the membrane. The shear moduli of Pf-infected RBCs predicted by the CG model at different stages of parasite maturation are in agreement with experimental results. In addition to providing a fundamental understanding of the stiffening mechanisms of Pf-infected RBCs, our simulation results suggest potential targets for antimalarial therapies.

  4. 1. View, structures in Systems Integration Laboratory complex, looking northwest. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. View, structures in Systems Integration Laboratory complex, looking northwest. The twin gantry structure in the center is the Systems Integration Laboratory (T-28). To its immediate left in the foreground is a truck well, concrete retaining wall, piping, and stack associated with the oxidizer vault storage area. To the immediate right of T-28 is the concrete Signal Transfer Building (T-28A). At the extreme right is the Long-Term Hydrazine Silo (T-28E). - Air Force Plant PJKS, Systems Integration Laboratory, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  5. Integrating Structure with Power in Battery Materials

    DTIC Science & Technology

    2007-09-01

    LiOTf Glass , Silica Silica Ethox. (30) Bis-A PEO 550 Acrylate PEO 1,000k Alumina Alumina 3.2 Experimental Chemicals were handled in a glove...samples, received from Sartomer Company, Inc., were mixed thoroughly with the appropriate amount of lithium triflate in a glass vial. Dissolution...enhances the structural capacity of the composite. A layer of glass fabric is also included in the design, to ensure electrical isolation of the anode

  6. The Twisting of Thin-walled, Stiffened Circular Cylinders

    NASA Technical Reports Server (NTRS)

    Schapitz, E

    1938-01-01

    On the basis of the present investigation of the twisting of thin-walled, stiffened cylinders the following conclusions can be reached: 1) there is as yet no generally applicable formula for the buckling moment of the skin; 2) the mathematical treatment of the condition of the shell after buckling of the skin is based on the tension-field theory, wherein the strain condition is considered homogenous.

  7. Some Strength Tests of Stiffened Curved Sheets Loaded in Shear

    DTIC Science & Technology

    1944-04-01

    Investigation by Thorn (reference 3) was Intended only to demonstrate the strength of a particular type of c~nstruotlon. An investigation of stiffened curved...inches P load applied at tip of beam, kips T torque applled at tip of cylinder, ldp-inches T ~he~r gtre~~ j-nsheet, ksi Subscripts: cr cr~ttcal Ult ult... Thorn , K.: Spamungsmessungen an gek&mten Schubwanden elnes Schalenrumpfes. Jahrb. 1937 der deutschen Luftfahrtforschung, R. Oldenbourg (Munich), pp

  8. Single cell mechanics: stress stiffening and kinematic hardening.

    PubMed

    Fernández, Pablo; Ott, Albrecht

    2008-06-13

    Cell mechanical properties are fundamental to the organism but remain poorly understood. We report a comprehensive phenomenological framework for the complex rheology of single fibroblast cells: a superposition of elastic stiffening and viscoplastic kinematic hardening. Despite the complexity of the living cell, its mechanical properties can be cast into simple, well-defined rules. Our results reveal the key role of crosslink slippage in determining mechanical cell strength and robustness.

  9. Integrated aerodynamic-structural-control wing design

    NASA Technical Reports Server (NTRS)

    Rais-Rohani, M.; Haftka, R. T.; Grossman, B.; Unger, E. R.

    1992-01-01

    The aerodynamic-structural-control design of a forward-swept composite wing for a high subsonic transport aircraft is considered. The structural analysis is based on a finite-element method. The aerodynamic calculations are based on a vortex-lattice method, and the control calculations are based on an output feedback control. The wing is designed for minimum weight subject to structural, performance/aerodynamic and control constraints. Efficient methods are used to calculate the control-deflection and control-effectiveness sensitivities which appear as second-order derivatives in the control constraint equations. To suppress the aeroelastic divergence of the forward-swept wing, and to reduce the gross weight of the design aircraft, two separate cases are studied: (1) combined application of aeroelastic tailoring and active controls; and (2) aeroelastic tailoring alone. The results of this study indicated that, for this particular example, aeroelastic tailoring is sufficient for suppressing the aeroelastic divergence, and the use of active controls was not necessary.

  10. The Evolving Contribution of Mass Spectrometry to Integrative Structural Biology.

    PubMed

    Faini, Marco; Stengel, Florian; Aebersold, Ruedi

    2016-06-01

    Protein complexes are key catalysts and regulators for the majority of cellular processes. Unveiling their assembly and structure is essential to understanding their function and mechanism of action. Although conventional structural techniques such as X-ray crystallography and NMR have solved the structure of important protein complexes, they cannot consistently deal with dynamic and heterogeneous assemblies, limiting their applications to small scale experiments. A novel methodological paradigm, integrative structural biology, aims at overcoming such limitations by combining complementary data sources into a comprehensive structural model. Recent applications have shown that a range of mass spectrometry (MS) techniques are able to generate interaction and spatial restraints (cross-linking MS) information on native complexes or to study the stoichiometry and connectivity of entire assemblies (native MS) rapidly, reliably, and from small amounts of substrate. Although these techniques by themselves do not solve structures, they do provide invaluable structural information and are thus ideally suited to contribute to integrative modeling efforts. The group of Brian Chait has made seminal contributions in the use of mass spectrometric techniques to study protein complexes. In this perspective, we honor the contributions of the Chait group and discuss concepts and milestones of integrative structural biology. We also review recent examples of integration of structural MS techniques with an emphasis on cross-linking MS. We then speculate on future MS applications that would unravel the dynamic nature of protein complexes upon diverse cellular states. Graphical Abstract ᅟ.

  11. Integrated controls-structures optimization of a large space structure

    NASA Technical Reports Server (NTRS)

    Padula, Sharon L.; Walsh, Joanne L.; Sandridge, Chris A.; Haftka, Raphael T.

    1990-01-01

    A technique for the simultaneous optimization of structural and control elements of a large space structure is developed and demonstrated for a test problem, the NASA COFS-I Mast Flight System. General-purpose control and structural-analysis codes are applied directly to a large detailed model, with realistic objective and constraint functions. The steps in the process (structural optimization, control optimization, and system coordination) are described and illustrated with diagrams; the numerical implementation (using different computers for different steps) is discussed; and results showing significant design improvements in three COFS-I configurations are presented in graphs. When the weights of both structure and power-generating equipment are taken into account, a 40-bay truss design is found to be better than designs with 42 or 44 bays.

  12. Local buckling and crippling of composite stiffener sections

    NASA Technical Reports Server (NTRS)

    Bonanni, David L.; Johnson, Eric R.; Starnes, James H., Jr.

    1988-01-01

    Local buckling, postbuckling, and crippling (failure) of channel, zee, and I- and J-section stiffeners made of AS4/3502 graphite-epoxy unidirectional tape are studied by experiment and analysis. Thirty-six stiffener specimens were tested statically to failure in axial compression as intermediate length columns. Web width is 1.25 inches for all specimens, and the flange width-to-thickness ratio ranges from 7 to 28 for the specimens tested. The radius of the stiffener corners is either 0.125 or 0.250 inches. A sixteen-ply orthotropic layup, an eight-ply quasi-isotropic layup, and a sixteen-ply quasi-isotropic layup are examined. Geometrically nonlinear analyses of five specimens were performed with the STAGS finite element code. Analytical results are compared to experimental data. Inplane stresses from STAGS are used to conduct a plane stress failure analysis of these specimens. Also, the development of interlaminar stress equations from equilibrium for classical laminated plate theory is presented. An algorithm to compute high order displacement derivatives required by these equations based on the Discrete Fourier Transform (DFT) is discussed.

  13. An interface controlled dynamic stiffening in polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Senses, Erkan; Akcora, Pinar

    2013-03-01

    Tunable interfaces between inorganic and organic phases determine the mechanical behavior of responsive and adaptive composites. We present that bonding/debonding of chains on nanoparticles can be modulated with extensive periodic strains. Mechanical response of an attractive model polymer composite, poly(methyl methacrylate) filled with silica nanoparticles of sizes 13 nm and 56 nm, is monitored in series of deformation-resting experiments allowing us to tune the interfacial strength of polymer. We show that this deformation process exhibit unusual stiffening of composites as the matrix polymer is bound to the surface stronger on removal of strain. Mechanical response during the recovery together with SANS and FTIR analysis of the composites at different states of deformation reveal that this behavior arises from enhancement in the entanglement of chains at interfaces. We studied the effects of strain amplitude, confinement parameter (ID/2Rg) and resting time and found that the stiffening is manifest only after large strains. This behavior offers an `on demand' reinforcement properties to polymer nanocomposites, implying that the composites with attractive interfaces can self-stiffen as needed.

  14. Stress stiffening and approximate equations in flexible multibody dynamics

    NASA Technical Reports Server (NTRS)

    Padilla, Carlos E.; Vonflotow, Andreas H.

    1993-01-01

    A useful model for open chains of flexible bodies undergoing large rigid body motions, but small elastic deformations, is one in which the equations of motion are linearized in the small elastic deformations and deformation rates. For slow rigid body motions, the correctly linearized, or consistent, set of equations can be compared to prematurely linearized, or inconsistent, equations and to 'oversimplified,' or ruthless, equations through the use of open loop dynamic simulations. It has been shown that the inconsistent model should never be used, while the ruthless model should be used whenever possible. The consistent and inconsistent models differ by stress stiffening terms. These are due to zeroth-order stresses effecting virtual work via nonlinear strain-displacement terms. In this paper we examine in detail the nature of these stress stiffening terms and conclude that they are significant only when the associated zeroth-order stresses approach 'buckling' stresses. Finally it is emphasized that when the stress stiffening terms are negligible the ruthlessly linearized equations should be used.

  15. The Noble-Abel Stiffened-Gas equation of state

    NASA Astrophysics Data System (ADS)

    Le Métayer, Olivier; Saurel, Richard

    2016-04-01

    Hyperbolic two-phase flow models have shown excellent ability for the resolution of a wide range of applications ranging from interfacial flows to fluid mixtures with several velocities. These models account for waves propagation (acoustic and convective) and consist in hyperbolic systems of partial differential equations. In this context, each phase is compressible and needs an appropriate convex equation of state (EOS). The EOS must be simple enough for intensive computations as well as boundary conditions treatment. It must also be accurate, this being challenging with respect to simplicity. In the present approach, each fluid is governed by a novel EOS named "Noble Abel stiffened gas," this formulation being a significant improvement of the popular "Stiffened Gas (SG)" EOS. It is a combination of the so-called "Noble-Abel" and "stiffened gas" equations of state that adds repulsive effects to the SG formulation. The determination of the various thermodynamic functions and associated coefficients is the aim of this article. We first use thermodynamic considerations to determine the different state functions such as the specific internal energy, enthalpy, and entropy. Then we propose to determine the associated coefficients for a liquid in the presence of its vapor. The EOS parameters are determined from experimental saturation curves. Some examples of liquid-vapor fluids are examined and associated parameters are computed with the help of the present method. Comparisons between analytical and experimental saturation curves show very good agreement for wide ranges of temperature for both liquid and vapor.

  16. Reactor pressure vessel structural integrity research

    SciTech Connect

    Pennell, W.E.; Corwin, W.R.

    1995-04-01

    Development continues on the technology used to assess the safety of irradiation-embrittled nuclear reactor pressure vessels (RPVs) containing flaws. Fracture mechanics tests on RPV steel, coupled with detailed elastic-plastic finite-element analyses of the crack-tip stress fields, have shown that (1) constraint relaxation at the crack tip of shallows surface flaws results in increased data scatter but no increase in the lower-bound fracture toughness, (2) the nil ductility temperature (NDT) performs better than the reference temperature for nil ductility transition (RT{sub NDT}) as a normalizing parameter for shallow-flaw fracture toughness data, (3) biaxial loading can reduce the shallow-flaw fracture toughness, (4) stress-based dual-parameter fracture toughness correlations cannot predict the effect of biaxial loading on a shallow-flaw fracture toughness because in-plane stresses at the crack tip are not influenced by biaxial loading, and (5) an implicit strain-based dual-parameter fracture toughness correlation can predict the effect of biaxial loading on shallow-flaw fracture toughness. Experimental irradiation investigations have shown that (1) the irradiation-induced shift in Charpy V-notch vs temperature behavior may not be adequate to conservatively assess fracture toughness shifts due to embrittlement, and (2) the wide global variations of initial chemistry and fracture properties of a nominally uniform material within a pressure vessel may confound accurate integrity assessments that require baseline properties.

  17. Improvements to a method for the geometrically nonlinear analysis of compressively loaded stiffened composite panels

    NASA Technical Reports Server (NTRS)

    Stoll, Frederick

    1993-01-01

    The NLPAN computer code uses a finite-strip approach to the analysis of thin-walled prismatic composite structures such as stiffened panels. The code can model in-plane axial loading, transverse pressure loading, and constant through-the-thickness thermal loading, and can account for shape imperfections. The NLPAN code represents an attempt to extend the buckling analysis of the VIPASA computer code into the geometrically nonlinear regime. Buckling mode shapes generated using VIPASA are used in NLPAN as global functions for representing displacements in the nonlinear regime. While the NLPAN analysis is approximate in nature, it is computationally economical in comparison with finite-element analysis, and is thus suitable for use in preliminary design and design optimization. A comprehensive description of the theoretical approach of NLPAN is provided. A discussion of some operational considerations for the NLPAN code is included. NLPAN is applied to several test problems in order to demonstrate new program capabilities, and to assess the accuracy of the code in modeling various types of loading and response. User instructions for the NLPAN computer program are provided, including a detailed description of the input requirements and example input files for two stiffened-panel configurations.

  18. Modelling of detonation in PBX 9502 with a stiffened-gas EOS mixture model

    NASA Astrophysics Data System (ADS)

    Kiyanda, Charles; Short, Mark

    2007-06-01

    An analytically tractable model of detonation in PBX 9502 is developed. It consists of a mixture of reactant and product materials, with each component represented by a stiffened-gas equation of state. The five free thermodynamic parameters in the model allow us to address some of the restrictions of simpler analytical models. We first explore generic properties of the steady ZND detonation structure under this model. Secondly, we show that fitting of the thermodynamic data to experimental data on reactant and product properties yields non-intersecting Hugoniot curves. The associated chemical kinetic scheme consists of two reaction steps. The first step has a pressure dependent rate term. It takes the reactants to an intermediate state, a mixture of effectively mostly gaseous products with some solid carbon. The second step models the clustering of solid carbon atoms. Pop-plot and detonation velocity vs. curvature data are used to fit the chemical kinetic parameters. Finally, the linear stability of PBX 9502 detonation waves modeled by the stiffened gas system is studied.

  19. Repair Concepts as Design Constraints of a Stiffened Composite PRSEUS Panel

    NASA Technical Reports Server (NTRS)

    Przekop, Adam

    2012-01-01

    A design and analysis of a repair concept applicable to a stiffened thin-skin composite panel based on the Pultruded Rod Stitched Efficient Unitized Structure is presented. The concept is a bolted repair using metal components, so that it can easily be applied in the operational environment. The damage scenario considered is a midbay-to-midbay saw-cut with a severed stiffener, flange and skin. In a previous study several repair configurations were explored and their feasibility confirmed but refinement was needed. The present study revisits the problem under recently revised design requirements and broadens the suite of loading conditions considered. The repair assembly design is based on the critical tension loading condition and subsequently its robustness is verified for a pressure loading case. High fidelity modeling techniques such as mesh-independent definition of compliant fasteners, elastic-plastic material properties for metal parts and geometrically nonlinear solutions are utilized in the finite element analysis. The best repair design is introduced, its analysis results are presented and factors influencing the design are assessed and discussed.

  20. Evaluation of a Metallic Repair on a Rod-Stiffened Composite Panel

    NASA Technical Reports Server (NTRS)

    Przekop, Adam; Jegley, Dawn C.

    2014-01-01

    A design and analysis of a repair concept applicable to a stiffened composite panel based on the pultruded rod stitched efficient unitized structure was recently completed.The damage scenario considered was a midbay-to-midbay saw-cut with a severed stiffener, flange, and skin. Advanced modeling techniques such as mesh-independent definition of compliant fasteners and elastic-plastic material properties for metal parts were used in the finite-element analysis supporting the design effort. A bolted metallic repair was selected so that it could be easily applied in the operational environment. The present work describes results obtained from a tension panel test conducted to validate both the repair concept and finite element analysis techniques used in the design effort. The test proved that the proposed repair concept is capable of sustaining load levels that are higher than those resulting from the current working stress allowables. This conclusion enables upward revision of the stress allowables that had been kept at an overly conservative level due to concerns associated with repairability of the panels. Correlation of test data with finite-element analysis results is also presented and assessed.

  1. Algebraic Structure of Cut Feynman Integrals and the Diagrammatic Coaction

    NASA Astrophysics Data System (ADS)

    Abreu, Samuel; Britto, Ruth; Duhr, Claude; Gardi, Einan

    2017-08-01

    We study the algebraic and analytic structure of Feynman integrals by proposing an operation that maps an integral into pairs of integrals obtained from a master integrand and a corresponding master contour. This operation is a coaction. It reduces to the known coaction on multiple polylogarithms, but applies more generally, e.g., to hypergeometric functions. The coaction also applies to generic one-loop Feynman integrals with any configuration of internal and external masses, and in dimensional regularization. In this case, we demonstrate that it can be given a diagrammatic representation purely in terms of operations on graphs, namely, contractions and cuts of edges. The coaction gives direct access to (iterated) discontinuities of Feynman integrals and facilitates a straightforward derivation of the differential equations they admit. In particular, the differential equations for any one-loop integral are determined by the diagrammatic coaction using limited information about their maximal, next-to-maximal, and next-to-next-to-maximal cuts.

  2. Experimental and numerical analysis of web stiffened cold-formed steel channel column with various types of edge stiffener

    NASA Astrophysics Data System (ADS)

    Manikandan, P.; Balaji, S.; Sukumar, S.; Sivakumar, M.

    2017-06-01

    This paper presents the strength and behaviour of web stiffened cold formed steel channel column with various types of edge stiffener under axial compression. An accurate finite element model is developed to simulate the tests results of the proposed section. The finite element model is verified by the test results and good correlation is achieved. The failure modes local, distortional, flexural buckling as well as the interaction between these modes is found in this study. The column strength predicted from the parametric study is compared with the nominal strength calculated by using the direct strength method for cold formed steel members. The reliability of this method is evaluated and suitable modification factor is proposed.

  3. Model reduction in integrated controls-structures design

    NASA Technical Reports Server (NTRS)

    Maghami, Peiman G.

    1993-01-01

    It is the objective of this paper to present a model reduction technique developed for the integrated controls-structures design of flexible structures. Integrated controls-structures design problems are typically posed as nonlinear mathematical programming problems, where the design variables consist of both structural and control parameters. In the solution process, both structural and control design variables are constantly changing; therefore, the dynamic characteristics of the structure are also changing. This presents a problem in obtaining a reduced-order model for active control design and analysis which will be valid for all design points within the design space. In other words, the frequency and number of the significant modes of the structure (modes that should be included) may vary considerably throughout the design process. This is also true as the locations and/or masses of the sensors and actuators change. Moreover, since the number of design evaluations in the integrated design process could easily run into thousands, any feasible order-reduction method should not require model reduction analysis at every design iteration. In this paper a novel and efficient technique for model reduction in the integrated controls-structures design process, which addresses these issues, is presented.

  4. Structural Integrity and Durability of Reusable Space Propulsion Systems

    NASA Technical Reports Server (NTRS)

    1987-01-01

    A two-day conference on the structural integrity and durability of reusable space propulsion systems was held on May 12 and 13, 1987, at the NASA Lewis research Center. Aerothermodynamic loads; instrumentation; fatigue, fracture, and constitutive modeling; and structural dynamics were discussed.

  5. Application of integrated fluid-thermal-structural analysis methods

    NASA Technical Reports Server (NTRS)

    Wieting, Allan R.; Dechaumphai, Pramote; Bey, Kim S.; Thornton, Earl A.; Morgan, Ken

    1988-01-01

    Hypersonic vehicles operate in a hostile aerothermal environment which has a significant impact on their aerothermostructural performance. Significant coupling occurs between the aerodynamic flow field, structural heat transfer, and structural response creating a multidisciplinary interaction. Interfacing state-of-the-art disciplinary analysis methods is not efficient, hence interdisciplinary analysis methods integrated into a single aerothermostructural analyzer are needed. The NASA Langley Research Center is developing such methods in an analyzer called LIFTS (Langley Integrated Fluid-Thermal-Structural) analyzer. The evolution and status of LIFTS is reviewed and illustrated through applications.

  6. Application of integrated fluid-thermal structural analysis methods

    NASA Technical Reports Server (NTRS)

    Wieting, Allan R.; Dechaumphai, Pramote; Bey, Kim S.; Thornton, Earl A.; Morgan, Ken

    1988-01-01

    Hypersonic vehicles operate in a hostile aerothermal environment which has a significant impact on their aerothermostructural performance. Significant coupling occurs between the aerodynamic flow field, structural heat transfer, and structural response creating a multidisciplinary interaction. Interfacing state-of-the-art disciplinary analysis methods are not efficient, hence interdisciplinary analysis methods integrated into a single aerothermostructural analyzer are needed. The NASA Langley Research Center is developing such methods in an analyzer called LIFTS (Langley Integrated Fluid-Thermal-Structural) analyzer. The evolution and status of LIFTS is reviewed and illustrated through applications.

  7. Some Investigations of the General Instability of Stiffened Metal Cylinders VII : Stiffened Metal Cylinders Subjected to Combined Bending and Torsion

    NASA Technical Reports Server (NTRS)

    1943-01-01

    This report summarizes the work that has been carried on in the experimental investigation of the problem of the general instability of stiffened metal cylinders subjected to combined bending and torsion at the C.I.T. This part of the investigation included tests on 26 sheet-covered specimens. An interaction curve for the case of combined bending and torsion is presented. The results of tests of 17 specimens subjected to pure torsion are also given.

  8. Integrated Controls-Structures Design Methodology for Flexible Spacecraft

    NASA Technical Reports Server (NTRS)

    Maghami, P. G.; Joshi, S. M.; Price, D. B.

    1995-01-01

    This paper proposes an approach for the design of flexible spacecraft, wherein the structural design and the control system design are performed simultaneously. The integrated design problem is posed as an optimization problem in which both the structural parameters and the control system parameters constitute the design variables, which are used to optimize a common objective function, thereby resulting in an optimal overall design. The approach is demonstrated by application to the integrated design of a geostationary platform, and to a ground-based flexible structure experiment. The numerical results obtained indicate that the integrated design approach generally yields spacecraft designs that are substantially superior to the conventional approach, wherein the structural design and control design are performed sequentially.

  9. Modal parameter identification of a compression-loaded CFRP stiffened plate and correlation with its buckling behaviour

    NASA Astrophysics Data System (ADS)

    Chaves-Vargas, M.; Dafnis, A.; Reimerdes, H.-G.; Schröder, K.-U.

    2015-10-01

    In order to study the dynamic response and the buckling behaviour of several load-carrying structural components of civil aircraft when subjected to transient load scenarios such as gusts or a landing impact, a generic mid-size aircraft is defined within the European research project DAEDALOS. From this aircraft, several sections or panels in different regions such as wing, vertical tailplane and fuselage are defined. The stiffened carbon-fibre-reinforced plastic (CFRP) plate investigated within the present work represents a simplified version of the wing panel selected from the generic aircraft. As part of the current work, the buckling behaviour and the modal properties of the stiffened plate under the effect of a static in-plane compression load are studied. This is accomplished by means of a test series including quasi-static buckling tests and an experimental modal analysis (EMA). One of the key objectives pursued is the correlation of the modal properties to the buckling behaviour by studying the relationship between the natural frequencies of the stiffened plate and its corresponding buckling load. The experimental work is verified by a finite element analysis.

  10. Medical Group Structural Integration May Not Ensure That Care Is Integrated, From The Patient's Perspective.

    PubMed

    Kerrissey, Michaela J; Clark, Jonathan R; Friedberg, Mark W; Jiang, Wei; Fryer, Ashley K; Frean, Molly; Shortell, Stephen M; Ramsay, Patricia P; Casalino, Lawrence P; Singer, Sara J

    2017-05-01

    Structural integration is increasing among medical groups, but whether these changes yield care that is more integrated remains unclear. We explored the relationships between structural integration characteristics of 144 medical groups and perceptions of integrated care among their patients. Patients' perceptions were measured by a validated national survey of 3,067 Medicare beneficiaries with multiple chronic conditions across six domains that reflect knowledge and support of, and communication with, the patient. Medical groups' structural characteristics were taken from the National Study of Physician Organizations and included practice size, specialty mix, technological capabilities, and care management processes. Patients' survey responses were most favorable for the domain of test result communication and least favorable for the domain of provider support for medication and home health management. Medical groups' characteristics were not consistently associated with patients' perceptions of integrated care. However, compared to patients of primary care groups, patients of multispecialty groups had strong favorable perceptions of medical group staff knowledge of patients' medical histories. Opportunities exist to improve patient care, but structural integration of medical groups might not be sufficient for delivering care that patients perceive as integrated. Project HOPE—The People-to-People Health Foundation, Inc.

  11. Integrated structural control design of large space structures

    SciTech Connect

    Allen, J.J.; Lauffer, J.P.

    1995-01-01

    Active control of structures has been under intensive development for the last ten years. Reference 2 reviews much of the identification and control technology for structural control developed during this time. The technology was initially focused on space structure and weapon applications; however, recently the technology is also being directed toward applications in manufacturing and transportation. Much of this technology focused on multiple-input/multiple-output (MIMO) identification and control methodology because many of the applications require a coordinated control involving multiple disturbances and control objectives where multiple actuators and sensors are necessary for high performance. There have been many optimal robust control methods developed for the design of MIMO robust control laws; however, there appears to be a significant gap between the theoretical development and experimental evaluation of control and identification methods to address structural control applications. Many methods have been developed for MIMO identification and control of structures, such as the Eigensystem Realization Algorithm (ERA), Q-Markov Covariance Equivalent Realization (Q-Markov COVER) for identification; and, Linear Quadratic Gaussian (LQG), Frequency Weighted LQG and H-/ii-synthesis methods for control. Upon implementation, many of the identification and control methods have shown limitations such as the excitation of unmodelled dynamics and sensitivity to system parameter variations. As a result, research on methods which address these problems have been conducted.

  12. Development and Characterization of Multilayer Integrated Warhead Structure.

    DTIC Science & Technology

    1985-05-01

    the final concept. Steel castings ( 17 - 4PH ) were made and specimens were machined to characterize the structural properties of the concept. The pioperty...casting 17 - 4PH test specimens and characterizing these composite structures. It was anticipated that problem would occur in the transition . from...MULTILAYER Final Report INTEGRATED WARHEAD STRUCTURE 3/ 17 /83 to 9/30/84 G. PERFORMING ORG. REPORT NUMBER 7. AUTHOR(a) 0. CONTRACT OR GRANT NUMBER(s) D

  13. Structural design of integral tankage for advanced space transportation systems

    NASA Technical Reports Server (NTRS)

    Macconochie, I. O.; Davis, R. B.; Lemessurier, R. W.

    1982-01-01

    Fully reusable launch vehicle concepts being studied for post-Shuttle era transports present major challenges for the structural design of large propellant tankage. The dominant structural elements are internal tankage for both cryogenic and non-cryogenic propellants which must operate in a broad range of thermal environments while meeting requirements for low weight and reusability. Several approaches to integral tank design are discussed and an analysis of a hot structure honeycomb sandwich tank for a circular body vehicle is presented.

  14. Structural components of nuclear integrity with gene regulatory potential.

    PubMed

    Fenelon, Kelli D; Hopyan, Sevan

    2017-10-01

    The nucleus is a mechanosensitive and load-bearing structure. Structural components of the nucleus interact to maintain nuclear integrity and have become subjects of exciting research that is relevant to cell and developmental biology. Here we outline the boundaries of what is known about key architectural elements within the nucleus and highlight their potential structural and transcriptional regulatory functions. Copyright © 2017. Published by Elsevier Ltd.

  15. An integrated computer procedure for sizing composite airframe structures

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, J.

    1979-01-01

    A computerized algorithm to generate cross-sectional dimensions and fiber orientations for composite airframe structures is described, and its application in a wing structural synthesis is established. The algorithm unifies computations of aeroelastic loads, stresses, and deflections, as well as optimal structural sizing and fiber orientations in an open-ended system of integrated computer programs. A finite-element analysis and a mathematical-optimization technique are discussed.

  16. Second-Order Structured Deformations: Relaxation, Integral Representation and Applications

    NASA Astrophysics Data System (ADS)

    Barroso, Ana Cristina; Matias, José; Morandotti, Marco; Owen, David R.

    2017-09-01

    Second-order structured deformations of continua provide an extension of the multiscale geometry of first-order structured deformations by taking into account the effects of submacroscopic bending and curving. We derive here an integral representation for a relaxed energy functional in the setting of second-order structured deformations. Our derivation covers inhomogeneous initial energy densities (i.e., with explicit dependence on the position); finally, we provide explicit formulas for bulk relaxed energies as well as anticipated applications.

  17. OVERVIEW OF HANFORD SINGLE SHELL TANK (SST) STRUCTURAL INTEGRITY - 12123

    SciTech Connect

    RAST RS; RINKER MW; WASHENFELDER DJ; JOHNSON JB

    2012-01-25

    To improve the understanding of the single-shell tanks (SSTs) integrity, Washington River Protection Solutions, LLC (WRPS), the USDOE Hanford Site tank contractor, developed an enhanced Single-Shell Tank Integrity Project in 2009. An expert panel on SST integrity, consisting of various subject matters experts in industry and academia, was created to provide recommendations supporting the development of the project. This panel developed 33 recommendations in four main areas of interest: structural integrity, liner degradation, leak integrity and prevention, and mitigation of contamination migration. Seventeen of these recommendations were used to develop the basis for the M-45-10-1 Change Package for the Hanford Federal Agreement and Compliance Order, which is also known as the Tri-Party Agreement. The structural integrity of the tanks is a key element in completing the cleanup mission at the Hanford Site. There are eight primary recommendations related to the structural integrity of Hanford SSTs. Six recommendations are being implemented through current and planned activities. The structural integrity of the Hanford SSTs is being evaluated through analysis, monitoring, inspection, materials testing, and construction document review. Structural evaluation in the form of analysis is performed using modern finite element models generated in ANSYS{reg_sign} The analyses consider in-situ, thermal, operating loads and natural phenomena such as earthquakes. Structural analysis of 108 of 149 Hanford SSTs has concluded that the tanks are structurally sound and meet current industry standards. Analyses of the remaining Hanford SSTs are scheduled for FY2013. Hanford SSTs are monitored through a dome deflection program. The program looks for deflections of the tank dome greater than 1/4 inch. No such deflections have been recorded. The tanks are also subjected to visual inspection. Digital cameras record the interior surface of the concrete tank domes, looking for cracks and

  18. Overview of Hanford Single Shell Tank (SST) Structural Integrity

    SciTech Connect

    Rast, Richard S.; Washenfelder, Dennis J.; Johnson, Jeremy M.

    2013-11-14

    To improve the understanding of the single-shell tanks (SSTs) integrity, Washington River Protection Solutions, LLC (WRPS), the USDOE Hanford Site tank contractor, developed an enhanced Single-Shell Tank Integrity Project (SSTIP) in 2009. An expert panel on SST integrity, consisting of various subject matters experts in industry and academia, was created to provide recommendations supporting the development of the project. This panel developed 33 recommendations in four main areas of interest: structural integrity, liner degradation, leak integrity and prevention, and mitigation of contamination migration, Seventeen of these recommendations were used to develop the basis for the M-45-10-1 Change Package for the Hanford Federal Agreement and Compliance Order, which is also known as the Tri-Party Agreement. The structural integrity of the tanks is a key element in completing the cleanup mission at the Hanford Site. There are eight primary recommendations related to the structural integrity of Hanford Single-Shell Tanks. Six recommendations are being implemented through current and planned activities. The structural integrity of the Hanford is being evaluated through analysis, monitoring, inspection, materials testing, and construction document review. Structural evaluation in the form of analysis is performed using modern finite element models generated in ANSYS. The analyses consider in-situ, thermal, operating loads and natural phenomena such as earthquakes. Structural analysis of 108 of 149 Hanford Single-Shell Tanks has concluded that the tanks are structurally sound and meet current industry standards. Analysis of the remaining Hanford Single-Shell Tanks is scheduled for FY2014. Hanford Single-Shell Tanks are monitored through a dome deflection program. The program looks for deflections of the tank dome greater than 1/4 inch. No such deflections have been recorded. The tanks are also subjected to visual inspection. Digital cameras record the interior surface of

  19. Single-strain-gage force/stiffness buckling prediction techniques on a hat-stiffened panel

    NASA Technical Reports Server (NTRS)

    Hudson, Larry D.; Thompson, Randolph C.

    1991-01-01

    Predicting the buckling characteristics of a test panel is necessary to ensure panel integrity during a test program. A single-strain-gage buckling prediction method was developed on a hat-stiffened, monolithic titanium buckling panel. The method is an adaptation of the original force/stiffness method which requires back-to-back gages. The single-gage method was developed because the test panel did not have back-to-back gages. The method was used to predict buckling loads and temperatures under various heating and loading conditions. The results correlated well with a finite element buckling analysis. The single-gage force/stiffness method was a valid real-time and post-test buckling prediction technique.

  20. Levels of Structural Integration and Facial Expressions of Negative Emotions.

    PubMed

    Bock, Astrid; Huber, Eva; Benecke, Cord

    2016-09-01

    For a clinically relevant understanding of facial displays of patients with mental disorders it is crucial to go beyond merely counting frequencies of facial expressions, but include the contextual information of the expression. We assume that patients with different levels of structural integration differ in the contextual embedding of their negative facial expressions of emotions. Facial affective behaviour of 80 female participants during an OPD interview was analysed using FACS (Facial Action Coding System) and the RFE coding system (Referencesof- Facial-Expression coding system; Bock et al. 2015).Using the RFE coding system, 2192 negative facial expressions of emotions were attributed to different references (e.g., interactive, self-related, object-related) by relying on contextual variables. Pure frequency of negative facial affect was not related to level of structural integration. Negative facial expressions of emotions directed towards the interviewer (interactive reference), as well as negative facial expressions directed towards the displayer's whole self were associated with lower levels of structural integration. In contrast, negative facial affects directed to single aspects of the self, to single aspects of objects, or to external situations were associated with higher levels of structural integration. The differentiation of references of facial affective behavior allows a deeper understanding of the connection between facial displays and structural levels of psychic integration.

  1. Vibration analysis of ring-stiffened cross-ply laminated cylindrical shells

    NASA Astrophysics Data System (ADS)

    Wang, Rong-Tyai; Lin, Zung-Xian

    2006-08-01

    This work presents the formulation of governing equations for a symmetric cross-ply laminated cylindrical shell with a circumferential stiffener. Two kinds of the circumferential stiffeners are considered: outer ring and inner ring. The effects of rotatory inertia and transverse shearing strain of both the cross-ply laminated shell and stiffener are considered. Further, the warping effect of stiffener also is included. An analytic method is presented to obtain the modal frequencies and their corresponding mode shape functions of the ring-stiffened laminated shell. The orthogonality of two distinct sets of mode shape functions is shown. The effects of inner ring and outer ring on modal frequencies of the ring-stiffened laminated shell are compared. Further, the effect of ply arrangement on modal frequencies of the ring-stiffened shell also is studied. The forced vibration of the ring-stiffened laminated shell due to a concentrated transient force is examined. The stress distributions in the plies of the ring-stiffened laminated shell due to the transient force are investigated.

  2. Efficient optimization of integrated aerodynamic-structural design

    NASA Technical Reports Server (NTRS)

    Haftka, R. T.; Grossman, B.; Eppard, W. M.; Kao, P. J.

    1987-01-01

    The introduction of composite materials is having a profound effect on the design process. Because these materials permit the designer to tailor material properties to improve structural, aerodynamic and acoustic performance, they require a more integrated multidisciplinary design process. Because of the complexity of the design process numerical optimization methods are required. The present paper is focused on a major difficulty associated with the multidisciplinary design optimization process - its enormous computational cost. We consider two approaches for reducing this computational burden: (1) development of efficient methods for cross-sensitivity calculation using perturbation methods; and (2) the use of approximate numerical optimization procedures. Our efforts are concentrated upon combined aerodynamic-structural optimization. Results are presented for the integrated design of a sailplane wing. The impact of our computational procedures on the computational costs of integrated costs of integrated designs are discussed.

  3. Structurally Integrated Coatings for Wear and Corrosion

    SciTech Connect

    Beardsley, M. Brad; Sebright, Jason L.

    2008-11-18

    Wear and corrosion of structures cuts across industries and continues to challenge materials scientists and engineers to develop cost effective solutions. Industries typically seek mature technologies that can be implemented for production with rapid or minimal development and have little appetite for the longer-term materials research and development required to solve complex problems. The collaborative work performed in this project addressed the complexity of this problem in a multi-year program that industries would be reluctant to undertake without government partnership. This effort built upon the prior development of Advanced Abrasion Resistant Materials conduct by Caterpillar Inc. under DOE Cooperative Agreement No. DE-FC26-01NT41054. In this referenced work, coatings were developed that exhibited significant wear life improvements over standard carburized heat treated steel in abrasive wear applications. The technology used in this referenced work, arc lamp fusing of thermal spray coatings, was one of the primary technical paths in this work effort. In addition to extending the capability of the coating technology to address corrosion issues, additional competitive coating technologies were evaluated to insure that the best technology was developed to meet the goals of the program. From this, plasma transferred arc (PTA) welding was selected as the second primary technology that was investigated. Specifically, this project developed improved, cost effective surfacing materials and processes for wear and corrosion resistance in both sliding and abrasive wear applications. Materials with wear and corrosion performance improvements that are 4 to 5 times greater than heat treated steels were developed. The materials developed were based on low cost material systems utilizing ferrous substrates and stainless steel type matrix with hard particulates formed from borides and carbides. Affordability was assessed against other competing hard surfacing or coating

  4. Multiple methods integration for structural mechanics analysis and design

    NASA Technical Reports Server (NTRS)

    Housner, J. M.; Aminpour, M. A.

    1991-01-01

    A new research area of multiple methods integration is proposed for joining diverse methods of structural mechanics analysis which interact with one another. Three categories of multiple methods are defined: those in which a physical interface are well defined; those in which a physical interface is not well-defined, but selected; and those in which the interface is a mathematical transformation. Two fundamental integration procedures are presented that can be extended to integrate various methods (e.g., finite elements, Rayleigh Ritz, Galerkin, and integral methods) with one another. Since the finite element method will likely be the major method to be integrated, its enhanced robustness under element distortion is also examined and a new robust shell element is demonstrated.

  5. On the mechanical modeling of the extreme softening/stiffening response of axially loaded tensegrity prisms

    NASA Astrophysics Data System (ADS)

    Fraternali, Fernando; Carpentieri, Gerardo; Amendola, Ada

    2015-01-01

    We study the geometrically nonlinear behavior of uniformly compressed tensegrity prisms through fully elastic and rigid-elastic models. The given models predict a variety of mechanical behaviors in the regime of large displacements, including an extreme stiffening-type response, already known in the literature, and a newly discovered, extreme softening behavior. The latter may lead to a snap buckling event producing an axial collapse of the structure. The switching from one mechanical regime to another depends on the aspect ratio of the structure, the magnitude of the applied prestress, and the material properties of the constituent elements. We discuss potential mechanical and acoustic applications of such behaviors, which are related to the design and manufacture of tensegrity lattices and innovative metamaterials.

  6. Chaotic insonification for health monitoring of an adhesively bonded composite stiffened panel

    NASA Astrophysics Data System (ADS)

    Fasel, T. R.; Todd, M. D.

    2010-07-01

    Time series prediction algorithms combined with ultrasonic chaotic excitations have shown the ability to locate and identify loss of preload in a bolted aluminum joint in previous research [1,2]. This study examines the ability of this method to classify various bond state damage conditions of a composite bonded joint, including various disbond sizes and poorly cured bonds. The stiffened panel test structure is intended to be a simplification of a wing skin-to-spar bonded joint. An active excitation signal is imparted to the structure through a macro-fiber composite (MFC) patch on one side of the bonded joint and sensed using an equivalent MFC patch on the opposite side of the joint. There is an MFC actuator/sensor pair for each bond condition to be identified. A novel statistical classification feature is developed from information theory concepts of cross-prediction and interdependence.

  7. Compressive behavior of titanium alloy skin-stiffener specimens selectively reinforced with boron-aluminum composite

    NASA Technical Reports Server (NTRS)

    Herring, H. W.; Carri, R. L.; Webster, R. C.

    1971-01-01

    A method of selectively reinforcing a conventional titanium airframe structure with unidirectional boron-aluminum composite attached by brazing was successfully demonstrated in compression tests of short skin-stiffener specimens. In a comparison with all-titanium specimens, improvements in structural performance recorded for the composite-reinforced specimens exceeded 25 percent on an equivalent-weight basis over the range from room temperature to 700 K (800 F) in terms of both initial buckling and maximum strengths. Performance at room temperature was not affected by prior exposure at 588 K (600 F) for 1000 hours in air or by 400 thermal cycles between 219 K and 588 K (-65 F and 600 F). The experimental results were generally predictable from existing analytical procedures. No evidence of failure was observed in the braze between the boron-aluminum composite and the titanium alloy.

  8. Improved finite element methodology for integrated thermal structural analysis

    NASA Technical Reports Server (NTRS)

    Dechaumphai, P.; Thornton, E. A.

    1982-01-01

    An integrated thermal-structural finite element approach for efficient coupling of thermal and structural analysis is presented. New thermal finite elements which yield exact nodal and element temperatures for one dimensional linear steady state heat transfer problems are developed. A nodeless variable formulation is used to establish improved thermal finite elements for one dimensional nonlinear transient and two dimensional linear transient heat transfer problems. The thermal finite elements provide detailed temperature distributions without using additional element nodes and permit a common discretization with lower order congruent structural finite elements. The accuracy of the integrated approach is evaluated by comparisons with analytical solutions and conventional finite element thermal structural analyses for a number of academic and more realistic problems. Results indicate that the approach provides a significant improvement in the accuracy and efficiency of thermal stress analysis for structures with complex temperature distributions.

  9. Structural Integrity Evaluation of the Lear Fan 2100 Aircraft

    NASA Technical Reports Server (NTRS)

    Kan, H. P.; Dyer, T. A.

    1996-01-01

    An in-situ nondestructive inspection was conducted to detect manufacturing and assembly induced defects in the upper two wing surfaces (skin s) and upper fuselage skin of the Lear Fan 2100 aircraft E009. The effects of the defects, detected during the inspection, on the integrity of the structure was analytically evaluated. A systematic evaluation was also conducted to determine the damage tolerance capability of the upper wing skin against impact threats and assembly induced damage. The upper wing skin was divided into small regions for damage tolerance evaluations. Structural reliability, margin of safety, allowable strains, and allowable damage size were computed. The results indicated that the impact damage threat imposed on composite military aircraft structures is too severe for the Lear Fan 2100 upper wing skin. However, the structural integrity is not significantly degraded by the assembly induced damage for properly assembled structures, such as the E009 aircraft.

  10. Improved finite element methodology for integrated thermal structural analysis

    NASA Technical Reports Server (NTRS)

    Dechaumphai, P.; Thornton, E. A.

    1982-01-01

    An integrated thermal-structural finite element approach for efficient coupling of thermal and structural analyses is presented. New thermal finite elements which yield exact nodal and element temperature for one dimensional linear steady state heat transfer problems are developed. A nodeless variable formulation is used to establish improved thermal finite elements for one dimensional nonlinear transient and two dimensional linear transient heat transfer problems. The thermal finite elements provide detailed temperature distributions without using additional element nodes and permit a common discretization with lower order congruent structural finite elements. The accuracy of the integrated approach is evaluated by comparisons with analytical solutions and conventional finite element thermal-structural analyses for a number of academic and more realistic problems. Results indicate that the approach provides a significant improvement in the accuracy and efficiency of thermal stress analysis for structures with complex temperature distributions.

  11. Mixed time integration methods for transient thermal analysis of structures

    NASA Technical Reports Server (NTRS)

    Liu, W. K.

    1982-01-01

    The computational methods used to predict and optimize the thermal structural behavior of aerospace vehicle structures are reviewed. In general, two classes of algorithms, implicit and explicit, are used in transient thermal analysis of structures. Each of these two methods has its own merits. Due to the different time scales of the mechanical and thermal responses, the selection of a time integration method can be a different yet critical factor in the efficient solution of such problems. Therefore mixed time integration methods for transient thermal analysis of structures are being developed. The computer implementation aspects and numerical evaluation of these mixed time implicit-explicit algorithms in thermal analysis of structures are presented. A computationally useful method of estimating the critical time step for linear quadrilateral element is also given. Numerical tests confirm the stability criterion and accuracy characteristics of the methods. The superiority of these mixed time methods to the fully implicit method or the fully explicit method is also demonstrated.

  12. Structural Integrity Evaluation of the Lear Fan 2100 Aircraft

    NASA Technical Reports Server (NTRS)

    Kan, H. P.; Dyer, T. A.

    1996-01-01

    An in-situ nondestructive inspection was conducted to detect manufacturing and assembly induced defects in the upper two wing surfaces (skin s) and upper fuselage skin of the Lear Fan 2100 aircraft E009. The effects of the defects, detected during the inspection, on the integrity of the structure was analytically evaluated. A systematic evaluation was also conducted to determine the damage tolerance capability of the upper wing skin against impact threats and assembly induced damage. The upper wing skin was divided into small regions for damage tolerance evaluations. Structural reliability, margin of safety, allowable strains, and allowable damage size were computed. The results indicated that the impact damage threat imposed on composite military aircraft structures is too severe for the Lear Fan 2100 upper wing skin. However, the structural integrity is not significantly degraded by the assembly induced damage for properly assembled structures, such as the E009 aircraft.

  13. Integrated fiber optic structural health sensors for inflatable space habitats

    NASA Astrophysics Data System (ADS)

    Ohanian, Osgar John; Garg, Naman; Castellucci, Matthew A.

    2017-04-01

    Inflatable space habitats offer many advantages for future space missions; however, the long term integrity of these flexible structures is a major concern in harsh space environments. Structural Health Monitoring (SHM) of these structures is essential to ensure safe operation, provide early warnings of damage, and measure structural changes over long periods of time. To address this problem, the authors have integrated distributed fiber optic strain sensors to measure loading and to identify the occurrence and location of damage in the straps and webbing used in the structural restraint layer. The fiber optic sensors employed use Rayleigh backscatter combined with optical frequency domain reflectometry to enable measurement of strain every 0.65 mm (0.026 inches) along the sensor. The Kevlar woven straps that were tested exhibited large permanent deformation during initial cycling and continued to exhibit hysteresis thereafter, but there was a consistent linear relationship between the sensor's measurement and the actual strain applied. Damage was intentionally applied to a tensioned strap, and the distributed strain measurement clearly identified a change in the strain profile centered on the location of the damage. This change in structural health was identified at a loading that was less than half of the ultimate loading that caused a structural failure. This sensing technique will be used to enable integrated SHM sensors to detect loading and damage in future inflatable space habitat structures.

  14. A performance comparison of integration algorithms in simulating flexible structures

    NASA Technical Reports Server (NTRS)

    Howe, R. M.

    1989-01-01

    Asymptotic formulas for the characteristic root errors as well as transfer function gain and phase errors are presented for a number of traditional and new integration methods. Normalized stability regions in the lambda h plane are compared for the various methods. In particular, it is shown that a modified form of Euler integration with root matching is an especially efficient method for simulating lightly-damped structural modes. The method has been used successfully for structural bending modes in the real-time simulation of missiles. Performance of this algorithm is compared with other special algorithms, including the state-transition method. A predictor-corrector version of the modified Euler algorithm permits it to be extended to the simulation of nonlinear models of the type likely to be obtained when using the discretized structure approach. Performance of the different integration methods is also compared for integration step sizes larger than those for which the asymptotic formulas are valid. It is concluded that many traditional integration methods, such as RD-4, are not competitive in the simulation of lightly damped structures.

  15. Impact of active controls technology on structural integrity

    NASA Technical Reports Server (NTRS)

    Noll, Thomas; Austin, Edward; Donley, Shawn; Graham, George; Harris, Terry

    1991-01-01

    This paper summarizes the findings of The Technical Cooperation Program to assess the impact of active controls technology on the structural integrity of aeronautical vehicles and to evaluate the present state-of-the-art for predicting the loads caused by a flight-control system modification and the resulting change in the fatigue life of the flight vehicle. The potential for active controls to adversely affect structural integrity is described, and load predictions obtained using two state-of-the-art analytical methods are given.

  16. Actively cooled plate fin sandwich structural panels for hypersonic aircraft

    NASA Technical Reports Server (NTRS)

    Smith, L. M.; Beuyukian, C. S.

    1979-01-01

    An unshielded actively cooled structural panel was designed for application to a hypersonic aircraft. The design was an all aluminum stringer-stiffened platefin sandwich structure which used a 60/40 mixture of ethylene glycol/water as the coolant. Eight small test specimens of the basic platefin sandwich concept and three fatigue specimens from critical areas of the panel design was fabricated and tested (at room temperature). A test panel representative of all features of the panel design was fabricated and tested to determine the combined thermal/mechanical performance and structural integrity of the system. The overall findings are that; (1) the stringer-stiffened platefin sandwich actively cooling concept results in a low mass design that is an excellent contender for application to a hypersonic vehicle, and (2) the fabrication processes are state of the art but new or modified facilities are required to support full scale panel fabrication.

  17. Hierarchical, multilayered cell walls reinforced by recycled silk cocoons enhance the structural integrity of honeybee combs

    PubMed Central

    Zhang, Kai; Duan, Huiling; Karihaloo, Bhushan L.; Wang, Jianxiang

    2010-01-01

    We reveal the sophisticated and hierarchical structure of honeybee combs and measure the elastic properties of fresh and old natural honeycombs at different scales by optical microscope, environmental scanning electron microscope, nano/microindentation, and by tension and shear tests. We demonstrate that the comb walls are continuously strengthened and stiffened without becoming fragile by the addition of thin wax layers reinforced by recycled silk cocoons reminiscent of modern fiber-reinforced composite laminates. This is done to increase its margin of safety against collapse due to a temperature increase. Artificial engineering honeycombs mimic only the macroscopic geometry of natural honeycombs, but have yet to achieve the microstructural sophistication of their natural counterparts. The natural honeycombs serve as a prototype of truly biomimetic cellular materials with hitherto unattainable improvement in stiffness, strength, toughness, and thermal stability. PMID:20439765

  18. Synergistic stiffening in double-fiber networks.

    PubMed

    Rombouts, Wolf H; Giesbers, Marcel; van Lent, Jan; de Wolf, Frits A; van der Gucht, Jasper

    2014-04-14

    Many biological materials are composite structures, interpenetrating networks of different types of fibers. The composite nature of such networks leads to superior mechanical properties, but the origin of this mechanical synergism is still poorly understood. Here we study soft composite networks, made by mixing two self-assembling fiber-forming components. We find that the elastic moduli of the composite networks significantly exceed the sum of the moduli of the two individual networks. This mechanical enhancement is in agreement with recent simulations, where it was attributed to a suppression of non-affine deformation modes in the most rigid fiber network due to the reaction forces in the softer network. The increase in affinity also causes a loss of strain hardening and an increase in the critical stress and stain at which the network fails.

  19. An integrable system and associated integrable models as well as Hamiltonian structures

    NASA Astrophysics Data System (ADS)

    Tam, Hon-Wah; Zhang, Yufeng

    2012-10-01

    Starting from an existed Lie algebra introduces a new Lie algebra A1 = {e1, e2, e3} so that two isospectral Lax matrices are established. By employing the Tu scheme an integrable equation hierarchy denoted by IEH is obtained from which a few reduced evolution equations are presented. One of them is the mKdV equation. The elliptic variable solutions and three kinds of Darboux transformations for one coupled equation which is from the IEH are worked out, respectively. Finally, we take use of the Lie algebra A1 to generate eight higher-dimensional Lie algebras from which the linear integrable couplings, the nonlinear integrable couplings, and the bi-integrable couplings of the IEH are engendered, whose Hamiltonian structures are also obtained by the variational identity. Then further reduce one coupled integrable equation to get a nonlinear generalized mKdV equation.

  20. The Noble-Abel Stiffened-Gas equation of state

    SciTech Connect

    Le Métayer, Olivier; Saurel, Richard

    2016-04-15

    Hyperbolic two-phase flow models have shown excellent ability for the resolution of a wide range of applications ranging from interfacial flows to fluid mixtures with several velocities. These models account for waves propagation (acoustic and convective) and consist in hyperbolic systems of partial differential equations. In this context, each phase is compressible and needs an appropriate convex equation of state (EOS). The EOS must be simple enough for intensive computations as well as boundary conditions treatment. It must also be accurate, this being challenging with respect to simplicity. In the present approach, each fluid is governed by a novel EOS named “Noble Abel stiffened gas,” this formulation being a significant improvement of the popular “Stiffened Gas (SG)” EOS. It is a combination of the so-called “Noble-Abel” and “stiffened gas” equations of state that adds repulsive effects to the SG formulation. The determination of the various thermodynamic functions and associated coefficients is the aim of this article. We first use thermodynamic considerations to determine the different state functions such as the specific internal energy, enthalpy, and entropy. Then we propose to determine the associated coefficients for a liquid in the presence of its vapor. The EOS parameters are determined from experimental saturation curves. Some examples of liquid-vapor fluids are examined and associated parameters are computed with the help of the present method. Comparisons between analytical and experimental saturation curves show very good agreement for wide ranges of temperature for both liquid and vapor.

  1. Multifunctional Structure for Exploration Rovers Integrating Power and Storage Capabilities

    NASA Astrophysics Data System (ADS)

    Atxaga, G.; Arrizabalaga, I.; Alonso, R.; Segura, M.; Mendizabal, M.; Marcos, J.; Cook, A.; Walker, S.; Foster, J.; Kireitseu, M.; Fontana, Q.

    2014-06-01

    A need for light-weight structures with a performance comparable to current solutions and which satisfies future scientific needs is identified to be important for future planetary surface exploration missions. Improvements are necessary on the reduction of the mass of the systems that constitute the Rover. Multifunctional structures are envisioned as possible breakthroughs in the recent advances to reduce space systems mass and volume.One of the activities of ROV-E project has dealt with the development of an external panel integrating solar cells in the external skin and using a battery as core of the structure. The integration of the battery in the structure provides mass and volume savings and therefore an increase the overall efficiency of the system.This paper summarizes the main findings obtained in this activity.

  2. The structure of integral dimensions: contrasting topological and Cartesian representations.

    PubMed

    Jones, Matt; Goldstone, Robert L

    2013-02-01

    Diverse evidence shows that perceptually integral dimensions, such as those composing color, are represented holistically. However, the nature of these holistic representations is poorly understood. Extant theories, such as those founded on multidimensional scaling or general recognition theory, model integral stimulus spaces using a Cartesian coordinate system, just as with spaces defined by separable dimensions. This approach entails a rich geometrical structure that has never been questioned but may not be psychologically meaningful for integral dimensions. In particular, Cartesian models carry a notion of orthogonality of component dimensions, such that if 1 dimension is diagnostic for a classification or discrimination task, another can be selected as uniquely irrelevant. This article advances an alternative model in which integral dimensions are characterized as topological spaces. The Cartesian and topological models are tested in a series of experiments using the perceptual-learning phenomenon of dimension differentiation, whereby discrimination training with integral-dimension stimuli can induce an analytic representation of those stimuli. Under the present task design, the 2 models make contrasting predictions regarding the analytic representation that will be learned. Results consistently support the Cartesian model. These findings indicate that perceptual representations of integral dimensions are surprisingly structured, despite their holistic, unanalyzed nature.

  3. Stress analysis of adhesive bonded stiffener plates and double joints

    NASA Technical Reports Server (NTRS)

    Yuceoglu, U.; Updike, D. P.

    1975-01-01

    The general problem of adhesive bonded stiffener plates and double joints of dissimilar orthotropic adherends with transverse shear deformations are analyzed. Adhesive layers are assumed to be of an isotropic, elastic and relatively flexible material. It is shown that the stress distributions in the adhesive layers are very much dependent on the bending deformations in adherends. Also, it is found that, in the adhesive layer, maximum transverse normal stress is, in many cases, larger than the longitudinal shear stress and that both occur at the edge of the joint. The general method of solution developed is applied to several practical examples.

  4. Preliminary analysis techniques for ring and stringer stiffened cylindrical shells

    NASA Technical Reports Server (NTRS)

    Graham, J.

    1993-01-01

    This report outlines methods of analysis for the buckling of thin-walled circumferentially and longitudinally stiffened cylindrical shells. Methods of analysis for the various failure modes are presented in one cohesive package. Where applicable, more than one method of analysis for a failure mode is presented along with standard practices. The results of this report are primarily intended for use in launch vehicle design in the elastic range. A Microsoft Excel worksheet with accompanying macros has been developed to automate the analysis procedures.

  5. Mechanical stiffening and thermal softening of rare earth chalcogenides

    SciTech Connect

    Shriya, S.; Varshney, Dinesh; Singh, Namita; Varshney, M.

    2014-04-24

    The pressure and temperature dependent elastic properties such as melting temperature nature in REX; (RE = La, Pr, Eu; X = O, S, Se, Te) chalcogenides is computed with emphasis on charge transfer interactions and covalent contribution in the effective interionic interaction potential. The pressure dependent elastic constants and melting temperature confirms that REX chalcogens lattice get stiffened as a consequence of bond compression and bond strengthening, however thermal softening arose due to bond expansion and bond weakening is evidenced from temperature dependence of melting temperature (T{sub M})

  6. Electron beam irradiation stiffens zinc tin oxide nanowires.

    PubMed

    Zang, Jianfeng; Bao, Lihong; Webb, Richard A; Li, Xiaodong

    2011-11-09

    We report a remarkable phenomenon that electron beam irradiation (EBI) significantly enhances the Young's modulus of zinc tin oxide (ZTO) nanowires (NWs), up to a 40% increase compared with the pristine NWs. In situ uniaxial buckling tests on individual NWs were conducted using a nanomanipulator inside a scanning electron microscope. We propose that EBI results in substantial atomic bond contraction in ZTO NWs, accounting for the observed mechanically stiffening. This argument is supported by our experimental results that EBI also reduces the electrical conductivity of ZTO NWs.

  7. Preliminary analysis techniques for ring and stringer stiffened cylindrical shells

    NASA Astrophysics Data System (ADS)

    Graham, J.

    1993-03-01

    This report outlines methods of analysis for the buckling of thin-walled circumferentially and longitudinally stiffened cylindrical shells. Methods of analysis for the various failure modes are presented in one cohesive package. Where applicable, more than one method of analysis for a failure mode is presented along with standard practices. The results of this report are primarily intended for use in launch vehicle design in the elastic range. A Microsoft Excel worksheet with accompanying macros has been developed to automate the analysis procedures.

  8. Structural Integrity Program for INTEC Calcined Solids Storage Facilities

    SciTech Connect

    Jeffrey Bryant

    2008-08-30

    This report documents the activities of the structural integrity program at the Idaho Nuclear Technology and Engineering Center relevant to the high-level waste Calcined Solids Storage Facilities and associated equipment, as required by DOE M 435.1-1, 'Radioactive Waste Management Manual'. Based on the evaluation documented in this report, the Calcined Solids Storage Facilities are not leaking and are structurally sound for continued service. Recommendations are provided for continued monitoring of the Calcined Solids Storage Facilities.

  9. Integrated control/structure optimization by multilevel decomposition

    NASA Technical Reports Server (NTRS)

    Zeiler, Thomas A.; Gilbert, Michael G.

    1990-01-01

    A method for integrated control/structure optimization by multilevel decomposition is presented. It is shown that several previously reported methods were actually partial decompositions wherein only the control was decomposed into a subsystem design. One of these partially decomposed problems was selected as a benchmark example for comparison. The present paper fully decomposes the system into structural and control subsystem designs and produces an improved design. Theory, implementation, and results for the method are presented and compared with the benchmark example.

  10. Integrated control/structure optimization by multilevel decomposition

    NASA Technical Reports Server (NTRS)

    Zeiler, Thomas A.; Gilbert, Michael G.

    1990-01-01

    A method for integrated control/structure optimization by multilevel decomposition is presented. It is shown that several previously reported methods were actually partial decompositions wherein only the control was decomposed into a subsystem design. One of these partially decomposed problems was selected as a benchmark example for comparison. The system is fully decomposed into structural and control subsystem designs and an improved design is produced. Theory, implementation, and results for the method are presented and compared with the benchmark example.

  11. Modeling the Dependency Structure of Integrated Intensity Processes

    PubMed Central

    Ma, Yong-Ki

    2015-01-01

    This paper studies an important issue of dependence structure. To model this structure, the intensities within the Cox processes are driven by dependent shot noise processes, where jumps occur simultaneously and their sizes are correlated. The joint survival probability of the integrated intensities is explicitly obtained from the copula with exponential marginal distributions. Subsequently, this result can provide a very useful guide for credit risk management. PMID:26270638

  12. Visualization of RNA structure models within the Integrative Genomics Viewer.

    PubMed

    Busan, Steven; Weeks, Kevin M

    2017-07-01

    Analyses of the interrelationships between RNA structure and function are increasingly important components of genomic studies. The SHAPE-MaP strategy enables accurate RNA structure probing and realistic structure modeling of kilobase-length noncoding RNAs and mRNAs. Existing tools for visualizing RNA structure models are not suitable for efficient analysis of long, structurally heterogeneous RNAs. In addition, structure models are often advantageously interpreted in the context of other experimental data and gene annotation information, for which few tools currently exist. We have developed a module within the widely used and well supported open-source Integrative Genomics Viewer (IGV) that allows visualization of SHAPE and other chemical probing data, including raw reactivities, data-driven structural entropies, and data-constrained base-pair secondary structure models, in context with linear genomic data tracks. We illustrate the usefulness of visualizing RNA structure in the IGV by exploring structure models for a large viral RNA genome, comparing bacterial mRNA structure in cells with its structure under cell- and protein-free conditions, and comparing a noncoding RNA structure modeled using SHAPE data with a base-pairing model inferred through sequence covariation analysis. © 2017 Busan and Weeks; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  13. Significance of stiffening of high damping rubber bearings on the response of base-isolated buildings under near-fault earthquakes

    NASA Astrophysics Data System (ADS)

    Alhan, Cenk; Gazi, Hatice; Kurtuluş, Hakan

    2016-10-01

    High Damping Rubber Bearings (HDRBs) are among various types of laterally flexible isolation system elements that effectively protect structures from detrimental effects of earthquakes by lengthening their fundamental periods. However, large isolator displacements resulting in strains larger than 100% may come into scene in case of near-fault ground motions containing long-period and large-amplitude velocity and/or displacement pulses. This is particularly important when HDRBs are used since the post-yield stiffness of an HDRB increases due to inherent strain hardening characteristics when a threshold isolator displacement limit is exceeded. Therefore, it may be critical to consider the stiffening of HDRBs in modeling of these elements for accurate seismic response evaluation of the buildings equipped with HDRBs that are located in near-fault regions. In this study, the significance of stiffening of HDRBs on the response of base-isolated buildings is investigated by conducting nonlinear time history analyses of benchmark six-story base-isolated buildings which employ HDRBs that are represented by non-stiffening or stiffening models under both historical and synthetic near-fault ground motions of various magnitudes and fault distances. The structural response parameters included in the comparisons are base displacements, story drifts, and floor accelerations. It is found that, the significance of stiffening of HDRBs on the response of base-isolated buildings under near-fault earthquakes becomes more prominent as the earthquake magnitude increases and the fault distance decreases and thus suggestions for modifications to seismic code regulations are made accordingly.

  14. Integrated structural and optical modeling of the orbiting stellar interferometer

    NASA Astrophysics Data System (ADS)

    Shaklan, Stuart B.; Yu, Jeffrey W.; Briggs, Hugh C.

    1993-11-01

    The Integrated Modeling of Optical Systems (IMOS) Integration Workbench at JPL has been used to model the effects of structural perturbations on the optics in the proposed Orbiting Stellar Interferometer (OSI). OSI consists of 3 pairs of interferometers and delay lines attached to a 7.5 meter truss. They are interferometrically monitored from a separate boom by a laser metrology system. The spatially distributed nature of the science instrument calls for a high level of integration between the optics and support structure. Because OSI is designed to achieve micro-arcsecond astrometry, many of its alignment, stability, and knowledge tolerances are in the submicron regime. The spacecraft will be subject to vibrations caused by reaction wheels and on-board equipment, as well as thermal strain due to solar and terrestrial heating. These perturbations affect optical parameters such as optical path differences and beam co-parallelism which are critical to instrument performance. IMOS provides an environment that allows one to design and perturb the structure, attach optics to structural or non-structural nodes, trace rays, and analyze the impact of mechanical perturbations on optical performance. This tool makes it simple to change the structure and immediately see performance enhancement/degradation. We have employed IMOS to analyze the effect of reaction wheel disturbances on the optical path difference in both the science and metrology interferometers.

  15. Integrate modelling of smart structures for astronomy: design future technologies

    NASA Astrophysics Data System (ADS)

    Riva, M.; Moschetti, M.

    2016-07-01

    The astronomical instrumentation needs high level of image quality and stability. The quality of images processed by an optical instrument can be referred to the size of the spot and/or the point spread function (p.s.f.), while the stability is related to the displacement of the spot centroid during the observations. The importance of new design procedures for astronomical instruments through the direct design of the materials taking into account their functionalities integrating different approaches (FEM + raytracing) is then enhanced by the new upcoming requirement. Different functional materials can be joined together exploiting each peculiar property in order to realize an integrated structure better known as Smart Structure. They are capable of sensing and reacting to their environment in a predictable and desired manner, through the integration of various elements, such as sensors, actuators, power sources, signal processors, and communications network. The Paper describes possible application related to two main functional materials: piezoelectric materials and Shape Memory Alloys.

  16. Development of Probabilistic Structural Analysis Integrated with Manufacturing Processes

    NASA Technical Reports Server (NTRS)

    Pai, Shantaram S.; Nagpal, Vinod K.

    2007-01-01

    An effort has been initiated to integrate manufacturing process simulations with probabilistic structural analyses in order to capture the important impacts of manufacturing uncertainties on component stress levels and life. Two physics-based manufacturing process models (one for powdered metal forging and the other for annular deformation resistance welding) have been linked to the NESSUS structural analysis code. This paper describes the methodology developed to perform this integration including several examples. Although this effort is still underway, particularly for full integration of a probabilistic analysis, the progress to date has been encouraging and a software interface that implements the methodology has been developed. The purpose of this paper is to report this preliminary development.

  17. Integration of fluidic jet actuators in composite structures

    NASA Astrophysics Data System (ADS)

    Schueller, Martin; Lipowski, Mathias; Schirmer, Eckart; Walther, Marco; Otto, Thomas; Geßner, Thomas; Kroll, Lothar

    2015-04-01

    Fluidic Actuated Flow Control (FAFC) has been introduced as a technology that influences the boundary layer by actively blowing air through slots or holes in the aircraft skin or wind turbine rotor blade. Modern wing structures are or will be manufactured using composite materials. In these state of the art systems, AFC actuators are integrated in a hybrid approach. The new idea is to directly integrate the active fluidic elements (such as SJAs and PJAs) and their components in the structure of the airfoil. Consequently, the integration of such fluidic devices must fit the manufacturing process and the material properties of the composite structure. The challenge is to integrate temperature-sensitive active elements and to realize fluidic cavities at the same time. The transducer elements will be provided for the manufacturing steps using roll-to-roll processes. The fluidic parts of the actuators will be manufactured using the MuCell® process that provides on the one hand the defined reproduction of the fluidic structures and, on the other hand, a high light weight index. Based on the first design concept, a demonstrator was developed in order to proof the design approach. The output velocity on the exit was measured using a hot-wire anemometer.

  18. STRUCTURAL INTEGRITY MONITORING FOR IMPROVED DRINKING WATER INFRASTRUCTURE SUSTAINABILITY

    EPA Science Inventory

    Structural integrity monitoring (SIM) is the systematic detection, location, and quantification of pipe wall damage or associated indicators. Each of the adverse situations below has the potential to be reduced by more effective and economical SIM of water mains:
    1) the dr...

  19. STRUCTURAL INTEGRITY MONITORING FOR IMPROVED DRINKING WATER INFRASTRUCTURE SUSTAINABILITY

    EPA Science Inventory

    Structural integrity monitoring (SIM) is the systematic detection, location, and quantification of pipe wall damage or associated indicators. Each of the adverse situations below has the potential to be reduced by more effective and economical SIM of water mains:
    1) the dr...

  20. Noise transmission through an acoustically treated and honeycomb stiffened aircraft sidewall

    NASA Astrophysics Data System (ADS)

    Grosveld, F. W.; Mixson, J. S.

    1984-10-01

    The noise transmission characteristics of test panels and acoustic treatments representative of an aircraft sidewall are experimentally investigated in the NASA Langley Research Center transmission loss apparatus. The test panels were built to represent a segment sidewall in the propeller plane of a twin-engine, turboprop light aircraft. It is shown that an advanced treatment, which uses honeycomb for structural stiffening of skin panels, has better noise transmission loss characteristics than a conventional treatment. An alternative treatment, using the concept of limp mass and vibration isolation, provides more transmission loss than the advanced treatment for the same total surface mass. Effects on transmission loss of a variety of acoustic treatment materials (acoustic blankets, septa, damping tape, and trim panels) are presented. Damping tape does not provide additional benefit when the other treatment provides a high level of damping. Window units representative of aircraft installations are shown to have low transmission loss relative to a completely treated sidewall.

  1. Numerical Investigation on Cold-Formed Steel Lipped Channel Columns with Intermediate Web Stiffeners

    NASA Astrophysics Data System (ADS)

    Manikandan, P.; Arun, N.

    2016-03-01

    This work describes finite element simulation into the ultimate strength and buckling behaviour of cold-formed steel lipped channel columns with intermediate web stiffeners subjected to axial compression. Numerical simulation is performed by using finite element analysis software ANSYS. A reliable finite element model is used for the parametric study of effects of cross section geometries on the ultimate strength and buckling behaviour of cold-formed steel columns are investigated. All the section geometries in this study also satisfied the limitations given for pre-qualified sections in direct strength method. The cross sectional dimensions, section properties and length of the specimen are obtained by using CUFSM software. The ultimate strength predicted by the finite element analysis are compared with the strength calculated using the current direct strength method specifications for cold-formed steel structures, suitable design recommendations are proposed.

  2. Local stiffener and skin pocket buckling prediction by special PASCO modeling technique: Correlation to test data

    NASA Technical Reports Server (NTRS)

    Yin, Dah N.; Tran, Vu M.; Swift, Patrick M.

    1989-01-01

    Waffle panels are often used on fuselage structures such as that of the Space Shuttle. The waffle panel design is an efficient design for carrying biaxial, in-plane, and shear loads. The WAFFLE program was designed for application on waffle panels. The Panel Analysis and Sizing Code (PASCO) program was designed for analyzing and sizing uniaxially stiffened panels. The application of the PASCO program in conjunction with the WAFFLE program is discussed to account for both the fillet radius and the presence of stiffness in both directions. The results of the tests are used to verify that these adjustments are valid and necessary if accurate analysis of the waffle panel is to be achieved.

  3. Free vibration of laminated composite stiffened hyperbolic paraboloid shell panel with cutout

    NASA Astrophysics Data System (ADS)

    Sahoo, Sarmila

    2016-08-01

    Composite shell structures are extensively used in aerospace, civil, marine and other engineering applications. In practical civil engineering applications, the necessity of covering large column free open areas is often an issue and hyperbolic paraboloid shells are used as roofing units. Quite often, to save weight and also to provide a facility for inspection, cutouts are provided in shell panels. The paper considers free vibration characteristics of stiffened composite hyperbolic paraboloid shell panel with cutout in terms of natural frequency and mode shapes. A finite element code is developed for the purpose by combining an eight noded curved shell element with a three noded curved beam element. The size of the cutouts and their positions with respect to the shell centre are varied for different edge conditions to arrive at a set of inferences of practical engineering significances.

  4. Integrated Controls-Structures Design Methodology: Redesign of an Evolutionary Test Structure

    NASA Technical Reports Server (NTRS)

    Maghami, Peiman G.; Gupta, Sandeep; Elliot, Kenny B.; Joshi, Suresh M.

    1997-01-01

    An optimization-based integrated controls-structures design methodology for a class of flexible space structures is described, and the phase-0 Controls-Structures-Integration evolutionary model, a laboratory testbed at NASA Langley, is redesigned using this integrated design methodology. The integrated controls-structures design is posed as a nonlinear programming problem to minimize the control effort required to maintain a specified line-of-sight pointing performance, under persistent white noise disturbance. Static and dynamic dissipative control strategies are employed for feedback control, and parameters of these controllers are considered as the control design variables. Sizes of strut elements in various sections of the CEM are used as the structural design variables. Design guides for the struts are developed and employed in the integrated design process, to ensure that the redesigned structure can be effectively fabricated. The superiority of the integrated design methodology over the conventional design approach is demonstrated analytically by observing a significant reduction in the average control power needed to maintain specified pointing performance with the integrated design approach.

  5. 49 CFR 178.337-5 - Bulkheads, baffles and ring stiffeners.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Bulkheads, baffles and ring stiffeners. 178.337-5 Section 178.337-5 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS..., baffles and ring stiffeners. (a) Not a specification requirement. (b) [Reserved] [Order 59-B, 30 FR 580...

  6. Compression Tests on Circular Cylinders Stiffened Longitudinally by Closely Spaced Z-Section Stringers

    NASA Technical Reports Server (NTRS)

    Peterson, James P.; Dow, Marvin B.

    1959-01-01

    Six circular cylinders stiffened longitudinally by closely spaced Z-section stringers were loaded to failure in compression. The results obtained are presented and compared with available theoretical results for the buckling of orthotropic cylinders. The results indicate that the large disparity that exists between theory and experiment for unstiffened compression cylinders may be significantly smaller for stiffened cylinders.

  7. Integration of encapsulated piezoelectric actuators in highly loaded CFRP structures

    NASA Astrophysics Data System (ADS)

    Bachmann, Florian; Ermanni, Paolo

    2010-04-01

    The present work has been initiated in the frame of the European research project DREAM. Within this highly interdisciplinary project we are focusing on the development and application of vibration damping solutions based on piezoelectric shunt circuits for future aeroelastic applications. The scientific community has put significant effort into the investigation of piezoelectric shunt damping in conjuction with typical engineering test structures such as beams and plates. However, investigations are mainly restricted to surface bonded piezoelectric elements. Commercially available actuators and sensors can be easily bonded to structures using standard epoxy resins. Yet, the structural integration into composite laminates is cumbersome, due to the implications in terms of overall structural integrity and functionality, and due to the problems in achieving a good electrical conductivity, intimate contact betwen electrode and piezoceramic material as well as a perfect isolation from the surrounding host structure. This contribution is concerned with technological aspects related to the integration of piezoceramic actuators into highly loaded CFRP structures. In particular, we present results of a comparative study aiming at the characterization of less invasive electrodes to establish electrical contact between the piezoceramic material and possible shunt circuits. Another drawback of commercial actuators are their limited strain allowables ranging from 0.1% to 0.3% which is not sufficient for high performance lighweight structures. The second part of this contribution is therefore dedicated to the description of a novel prestressing procedure which is used to fabricate actuators that command 170% higher strain allowables than non-prestressed actuators. Mechanical testing of these prestressed actuators are very encouraging, showing high strain allowables, perfect electrical isolation from the host structure, excellent electric contacting of the piezoelectric material

  8. Metal matrix composite structural panel construction

    NASA Technical Reports Server (NTRS)

    Mcwithey, R. R.; Royster, D. M. (Inventor); Bales, T. T.

    1983-01-01

    Lightweight capped honeycomb stiffeners for use in fabricating metal or metal/matrix exterior structural panels on aerospace type vehicles and the process for fabricating same are disclosed. The stiffener stringers are formed in sheets, cut to the desired width and length and brazed in spaced relationship to a skin with the honeycomb material serving directly as the required lightweight stiffeners and not requiring separate metal encasement for the exposed honeycomb cells.

  9. Design Charts for Flat Compression Panels Having Longitudinal Extruded Y-Section Stiffeners and Comparison with Panels Having Formed Z-Section Stiffeners

    DTIC Science & Technology

    1947-08-01

    pi L/G ts’ is emallest for the ’j𔃿s-T Y-stiffened panela and largest for the 2&3-T Z-stfffened panela - -’ ~.tiO’ fi&ureti 18 to 26 shaw’ti a...differences occurred be~been the test SpCfinene for the 2bS-T Y-stiflened and Z-stiffened panela . Differences occurred in mterial properties, diamter and

  10. Integrated optomechanical structural optimization through coupling of sensitivity matrixes

    NASA Astrophysics Data System (ADS)

    Riva, M.; Moschetti, M.

    2016-07-01

    The design of astronomical instrument is growing in dimension and complexity following ELT class telescopes. The availability of new structural material like composite ones is asking for more robust and reliable designing numerical tools. This paper wants to show a new opto-mechanical optimization approach developed starting from a previously developed integrated design framework. The Idea is to reduce number of iteration in a multi- variable structural optimization taking advantage of the embedded sensitivity routines that are available both in FEA software and in raytracing ones. This approach provide reduced iteration number mainly in case of high number of structural variable parameters.

  11. Structural Integrity Assessment Using Process Compensated Resonant Testing (pcrt)

    NASA Astrophysics Data System (ADS)

    Singh, Surendra; Jauriqui, Leanne; Biedermann, Eric; Yen, Eric; Cabrera, Daniel; Whalen, Larry; Piotrowski, David; Heck, David

    2011-06-01

    Honeywell, in collaboration with Vibrant, Delta TechOps, and Boeing, has used Process Compensated Resonant Testing (PCRT) for studying structural integrity and functional performance in various components in Auxiliary Power Units (APUs), Propulsion Engines, Defense and Space applications, and Maintenance Repair & Overhaul (MR&O). The motivation behind this work has been the desire to use PCRT for studying Manufacturing Process Control (MPC) and Structural Sustainability Evaluation (SSE), in addition to traditional quality inspection. In this paper, we will report some of these findings and discuss long term PCRT applications, such as structural sustainability evaluation, damage evolution assessment, and life prediction strategy in parts.

  12. Making the difference: integrating structural variation detection tools.

    PubMed

    Lin, Ke; Smit, Sandra; Bonnema, Guusje; Sanchez-Perez, Gabino; de Ridder, Dick

    2015-09-01

    From prokaryotes to eukaryotes, phenotypic variation, adaptation and speciation has been associated with structural variation between genomes of individuals within the same species. Many computer algorithms detecting such variations (callers) have recently been developed, spurred by the advent of the next-generation sequencing technology. Such callers mainly exploit split-read mapping or paired-end read mapping. However, as different callers are geared towards different types of structural variation, there is still no single caller that can be considered a community standard; instead, increasingly the various callers are combined in integrated pipelines. In this article, we review a wide range of callers, discuss challenges in the integration step and present a survey of pipelines used in population genomics studies. Based on our findings, we provide general recommendations on how to set-up such pipelines. Finally, we present an outlook on future challenges in structural variation detection.

  13. Stress-stiffening-mediated stem-cell commitment switch in soft responsive hydrogels

    NASA Astrophysics Data System (ADS)

    Das, Rajat K.; Gocheva, Veronika; Hammink, Roel; Zouani, Omar F.; Rowan, Alan E.

    2016-03-01

    Bulk matrix stiffness has emerged as a key mechanical cue in stem cell differentiation. Here, we show that the commitment and differentiation of human mesenchymal stem cells encapsulated in physiologically soft (~0.2-0.4 kPa), fully synthetic polyisocyanopeptide-based three-dimensional (3D) matrices that mimic the stiffness of adult stem cell niches and show biopolymer-like stress stiffening, can be readily switched from adipogenesis to osteogenesis by changing only the onset of stress stiffening. This mechanical behaviour can be tuned by simply altering the material’s polymer length whilst maintaining stiffness and ligand density. Our findings introduce stress stiffening as an important parameter that governs stem cell fate in a 3D microenvironment, and reveal a correlation between the onset of stiffening and the expression of the microtubule-associated protein DCAMKL1, thus implicating DCAMKL1 in a stress-stiffening-mediated, mechanotransduction pathway that involves microtubule dynamics in stem cell osteogenesis.

  14. Bifurcation and collapse analysis of stringer and ring-stringer stiffened cylindrical shells with cutouts

    NASA Technical Reports Server (NTRS)

    Palazotto, A. N.

    1975-01-01

    Results for cylindrical configurations using the STAGS computer program were presented. Discontinuities were imposed upon the shell's skin by incorporating symmetrical cutout openings. In addition, the surface is stiffened with both stringer and ring-stringer arrangements. The cutout problem has been shown to be highly nonlinear for smooth surface shells, but it was found that bifurcation and collapse loads are close when one is considering stiffened skin configurations. In order to arrive at this conclusion, it was necessary to evaluate the following: (1) comparison between smeared and discrete stiffener theory for linear solutions, (2) numerical finite difference convergence as directed toward buckling determination, (3) collapse load results with the various skin stiffeners. A linear bifurcation study relating to stiffening effects around cutout areas present within stringer and ring-stringer shell surfaces was included. Comparisons were made between a variety of geometric positions considering cutout frame and thickened skin additions.

  15. Optimum mass-strength analysis for orthotropic ring-stiffened cylinders under axial compression

    NASA Technical Reports Server (NTRS)

    Shideler, J. L.; Anderson, M. S.; Jackson, L. R.

    1972-01-01

    An analysis was developed to calculate the minimum mass-strength curve for an orthotropic cylinder subjected to axial compressive loading. The analysis, which includes the effects of ring and stringer eccentricities, is in a general form so that various cylinder wall and stiffener geometries can be considered. Several different ring-stiffened orthotropic configurations were studied. The minimum mass-strength curves and the dimensions associated with these curves are presented for (in order of decreasing efficiency) a tubular double bead, a nonsymmetric double bead, a Z-stiffened skin, and a trapezoidal corrugation. A comparison of efficiencies of the configurations shows a tubular element cylinder to be more efficient than a 3-percent core-density honeycomb-sandwich cylinder. It was found that for an optimized Z-stiffened skin, the location of the Z-stiffeners (internal or external) made a negligible difference in efficiency.

  16. Weight comparisons of optimized stiffened, unstiffened, and sandwich cylindrical shells made from composite or aluminum materials

    NASA Technical Reports Server (NTRS)

    Agarwal, B. L.; Sobel, L. H.

    1976-01-01

    This work presents optimum designs for unstiffened, hat stringer-stiffened and honeycomb sandwich cylinders under axial compression. Optimization results for graphite-epoxy cylinders show about a 50 percent weight savings over corresponding optimized aluminum cylinders for a wide loading range. The inclusion of minimum gage considerations results in a significant weight penalty, especially for a lightly loaded cylinder. Effects of employing a smeared stiffener buckling theory in the optimization program are investigated through comparison of results obtained from a more accurate branched shell buckling computer code. It was found that the stiffener cross-sectional deformations, which are usually ignored in smeared stiffener theory, result in about a 30 percent lower buckling load for the graphite-epoxy hat stiffened cylinder.

  17. Recombinant fibrinogen reveals the differential roles of α- and γ-chain cross-linking and molecular heterogeneity in fibrin clot strain-stiffening.

    PubMed

    Piechocka, I K; Kurniawan, N A; Grimbergen, J; Koopman, J; Koenderink, G H

    2017-05-01

    Essentials Fibrinogen circulates in human plasma as a complex mixture of heterogeneous molecular variants. We measured strain-stiffening of recombinantly produced fibrinogen upon clotting. Factor XIII and molecular heterogeneity alter clot elasticity at the protofibril and fiber level. This highlights the hitherto unknown role of molecular composition in fibrin clot mechanics. Background Fibrin plays a crucial role in haemostasis and wound healing by forming strain-stiffening fibrous networks that reinforce blood clots. The molecular origin of fibrin's strain-stiffening behavior remains poorly understood, primarily because plasma fibrinogen is a complex mixture of heterogeneous molecular variants and is often contaminated by plasma factors that affect clot properties. Objectives and methods To facilitate mechanistic dissection of fibrin nonlinear elasticity, we produced a homogeneous recombinant fibrinogen corresponding to the main variant in human plasma, termed rFib610. We characterized the structure of rFib610 clots using turbidimetry, microscopy and X-ray scattering. We used rheology to measure the strain-stiffening behavior of the clots and determined the fiber properties by modeling the clots as semi-flexible polymer networks. Results We show that addition of FXIII to rFib610 clots causes a dose-dependent stiffness increase at small deformations and renders the strain-stiffening response reversible. We find that γ-chain cross-linking contributes to clot elasticity by changing the force-extension behavior of the protofibrils, whereas α-chain cross-linking stiffens the fibers, as a consequence of tighter coupling between the constituent protofibrils. Interestingly, rFib610 protofibrils have a 25% larger bending rigidity than plasma-purified fibrin protofibrils and a delayed strain-stiffening, indicating that molecular heterogeneity influences clot mechanics at the protofibril scale. Conclusions Fibrinogen molecular heterogeneity and FXIII affect the

  18. An optimization-based integrated controls-structures design methodology for flexible space structures

    NASA Technical Reports Server (NTRS)

    Maghami, Peiman G.; Joshi, Suresh M.; Armstrong, Ernest S.

    1993-01-01

    An approach for an optimization-based integrated controls-structures design is presented for a class of flexible spacecraft that require fine attitude pointing and vibration suppression. The integrated design problem is posed in the form of simultaneous optimization of both structural and control design variables. The approach is demonstrated by application to the integrated design of a generic space platform and to a model of a ground-based flexible structure. The numerical results obtained indicate that the integrated design approach can yield spacecraft designs that have substantially superior performance over a conventional design wherein the structural and control designs are performed sequentially. For example, a 40-percent reduction in the pointing error is observed along with a slight reduction in mass, or an almost twofold increase in the controlled performance is indicated with more than a 5-percent reduction in the overall mass of the spacecraft (a reduction of hundreds of kilograms).

  19. Integrated Multidisciplinary Constrained Optimization of Offshore Support Structures

    NASA Astrophysics Data System (ADS)

    Haghi, Rad; Ashuri, Turaj; van der Valk, Paul L. C.; Molenaar, David P.

    2014-12-01

    In the current offshore wind turbine support structure design method, the tower and foundation, which form the support structure are designed separately by the turbine and foundation designer. This method yields a suboptimal design and it results in a heavy, overdesigned and expensive support structure. This paper presents an integrated multidisciplinary approach to design the tower and foundation simultaneously. Aerodynamics, hydrodynamics, structure and soil mechanics are the modeled disciplines to capture the full dynamic behavior of the foundation and tower under different environmental conditions. The objective function to be minimized is the mass of the support structure. The model includes various design constraints: local and global buckling, modal frequencies, and fatigue damage along different stations of the structure. To show the usefulness of the method, an existing SWT-3.6-107 offshore wind turbine where its tower and foundation are designed separately is used as a case study. The result of the integrated multidisciplinary design optimization shows 12.1% reduction in the mass of the support structure, while satisfying all the design constraints.

  20. Test and analysis results for composite transport fuselage and wing structures

    NASA Technical Reports Server (NTRS)

    Deaton, Jerry W.; Kullerd, Susan M.; Madan, Ram C.; Chen, Victor L.

    1992-01-01

    Automated tow placement (ATP) and stitching of dry textile composite preforms followed by resin transfer molding (RTM) are being investigated by researchers at NASA LaRC and Douglas Aircraft Company as cost-effective manufacturing processes for obtaining damage tolerant fuselage and wing structures for transport aircraft. The Douglas work is being performed under a NASA contract entitled 'Innovative Composites Aircraft Primary Structures (ICAPS)'. Data are presented in this paper to assess the damage tolerance of ATP and RTM fuselage elements with stitched-on stiffeners from compression tests of impacted three-J-stiffened panels and from stiffener pull-off tests. Data are also presented to assess the damage tolerance of RTM wing elements which had stitched skin and stiffeners from impacted single stiffener and three blade-stiffened compression tests and stiffener pull-off tests.

  1. Design for progressive fracture in composite shell structures

    NASA Technical Reports Server (NTRS)

    Minnetyan, Levon; Murthy, Pappu L. N.

    1992-01-01

    The load carrying capability and structural behavior of composite shell structures and stiffened curved panels are investigated to provide accurate early design loads. An integrated computer code is utilized for the computational simulation of composite structural degradation under practical loading for realistic design. Damage initiation, growth, accumulation, and propagation to structural fracture are included in the simulation. Progressive fracture investigations providing design insight for several classes of composite shells are presented. Results demonstrate the significance of local defects, interfacial regions, and stress concentrations on the structural durability of composite shells.

  2. Adaptivity demonstration of inflatable rigidized integrated structures (IRIS)

    NASA Astrophysics Data System (ADS)

    Natori, M. C.; Higuchi, Ken; Sekine, Koji; Okazaki, Kakuma

    1995-10-01

    An inflatable rigidized integrated structure (IRIS), which is composed of membrane elements and cable networks, and whose structural accuracy is decided by mainly cable networks, has various design adaptivity, since it is a high performance deployable structure for future space applications. In order to keep some stiffness after deployment, materials of membrane are assumed to be rigidized in space, and sometimes the cable network is also rigidized. The concept can cover various structural elements and structure systems. The accuracy analysis of reflector surface constrained by inside hard points and the manufacturing of a simple reflector model is introduced. Test results of rigidized cable columns to show many variations of IRIS to be feasible are also reported.

  3. Modification of a liquid hydrogen tank for integrated refrigeration and storage

    NASA Astrophysics Data System (ADS)

    Swanger, A. M.; Jumper, K. M.; Fesmire, J. E.; Notardonato, W. U.

    2015-12-01

    The modification and outfitting of a 125,000-liter liquid hydrogen tank was performed to provide integrated refrigeration and storage capability. These functions include zero boil-off, liquefaction, and densification and therefore require provisions for sub-atmospheric tank pressures within the vacuum-jacketed, multilayer insulated tank. The primary structural modification was to add stiffening rings inside the inner vessel. The internal stiffening rings were designed, built, and installed per the ASME Boiler and Pressure Vessel Code, Section VIII, to prevent collapse in the case of vacuum jacket failure in combination with sub-atmospheric pressure within the tank. For the integrated refrigeration loop, a modular, skeleton-type heat exchanger, with refrigerant temperature instrumentation, was constructed using the stiffening rings as supports. To support the system thermal performance testing, three custom temperature rakes were designed and installed along the 21-meter length of the tank, once again using rings as supports. The temperature rakes included a total of 20 silicon diode temperature sensors mounted both vertically and radially to map the bulk liquid temperature within the tank. The tank modifications were successful and the system is now operational for the research and development of integrated refrigeration technology.

  4. Integrated Aeromechanics with Three-Dimensional Solid-Multibody Structures

    NASA Technical Reports Server (NTRS)

    Datta, Anubhav; Johnson, Wayne

    2014-01-01

    A full three-dimensional finite element-multibody structural dynamic solver is coupled to a three-dimensional Reynolds-averaged Navier-Stokes solver for the prediction of integrated aeromechanical stresses and strains on a rotor blade in forward flight. The objective is to lay the foundations of all major pieces of an integrated three-dimensional rotor dynamic analysis - from model construction to aeromechanical solution to stress/strain calculation. The primary focus is on the aeromechanical solution. Two types of three-dimensional CFD/CSD interfaces are constructed for this purpose with an emphasis on resolving errors from geometry mis-match so that initial-stage approximate structural geometries can also be effectively analyzed. A three-dimensional structural model is constructed as an approximation to a UH-60A-like fully articulated rotor. The aerodynamic model is identical to the UH-60A rotor. For preliminary validation measurements from a UH-60A high speed flight is used where CFD coupling is essential to capture the advancing side tip transonic effects. The key conclusion is that an integrated aeromechanical analysis is indeed possible with three-dimensional structural dynamics but requires a careful description of its geometry and discretization of its parts.

  5. Children's intellectual ability is associated with structural network integrity.

    PubMed

    Kim, Dae-Jin; Davis, Elysia Poggi; Sandman, Curt A; Sporns, Olaf; O'Donnell, Brian F; Buss, Claudia; Hetrick, William P

    2016-01-01

    Recent structural and functional neuroimaging studies of adults suggest that efficient patterns of brain connectivity are fundamental to human intelligence. Specifically, whole brain networks with an efficient small-world organization, along with specific brain regions (i.e., Parieto-Frontal Integration Theory, P-FIT) appear related to intellectual ability. However, these relationships have not been studied in children using structural network measures. This cross-sectional study examined the relation between non-verbal intellectual ability and structural network organization in 99 typically developing healthy preadolescent children. We showed a strong positive association between the network's global efficiency and intelligence, in which a subtest for visuo-spatial motor processing (Block Design, BD) was prominent in both global brain structure and local regions included within P-FIT as well as temporal regions involved with pattern and form processing. BD was also associated with rich club organization, which encompassed frontal, occipital, temporal, hippocampal, and neostriatal regions. This suggests that children's visual construction ability is significantly related to how efficiently children's brains are globally and locally integrated. Our findings indicate that visual construction and reasoning may make general demands on globally integrated processing by the brain. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. An Investigation of Sheet-stiffener Panels Subjected to Compression Loads with Particular Reference to Torsionally Weak Stiffeners

    NASA Technical Reports Server (NTRS)

    Dunn, Louis G

    1940-01-01

    A total of 183 panel specimens of 24ST aluminum alloy with nominal thickness of 0.020, and 0.040 inch with extruded bulb-angle sections of 12 shapes spaced 4 and 5 inches as stiffeners were tested to obtain the buckling stress and the amplitude of the maximum wave when buckled. Bulb angles from 3 to 27 1/2 inches long were tested as pin-end columns. The experimental data are presented as stress-strain and column curves and in tabular form. Some comparisons with theoretical results are presented. Analytical methods are developed that make it possible for the designer to predict with reasonable accuracy the buckling stress and the maximum-wave amplitude of the sheet in stiffened-panel combinations. The scope of the tests was insufficient to formulate general design criteria but the results are presented as a guide for design and an indication of the type of theoretical and experimental work that is needed.

  7. Structural Integrity of Single Shell Tanks at Hanford - 9491

    SciTech Connect

    Rinker, Michael W.; Pilli, Siva Prasad; Karri, Naveen K.; Deibler, John E.; Johnson, Kenneth I.; Holbery, James D.; Mullen, O Dennis; Hurley, David E.

    2009-03-01

    The 149 Single Shell Tanks at the Hanford Site were constructed between the 1940’s and the 1960’s. Many of the tanks are either known or suspected to have leaked in the past. While the free liquids have been removed from the tanks, they still contain significant waste volumes. Recently, the tank farm operations contractor established a Single Shell Tank Integrity Program. Structural integrity is one aspect of the program. The structural analysis of the Single Shell Tanks has several challenging factors. There are several tank sizes and configurations that need to be analyzed. Tank capacities range from fifty-five thousand gallons to one-million gallons. The smallest tank type is approximately twenty feet in diameter, and the three other tank types are all seventy-five feet in diameter. Within each tank type there are varying concrete strengths, types of steel, tank floor arrangements, in-tank hardware, riser sizes and locations, and other appurtenances that need to be addressed. Furthermore, soil properties vary throughout the tank farms. The Pacific Northwest National Laboratory has been conducting preliminary structural analyses of the various single shell tank types to address these parameters. The preliminary analyses will assess which aspects of the tanks will require further detailed analysis. Evaluation criteria to which the tanks will be analyzed are also being developed for the Single Shell Tank Integrity Program. This information will be reviewed by the Single Shell Tank Integrity Expert Panel that has been formed to issue recommendations to the DOE and to the tank farm operations contractor regarding Single Shell Tank Integrity. This paper provides a summary of the preliminary analysis of the single shell tanks, a summary of the recommendations for the detailed analyses, and the proposed evaluation criteria by which the tanks will be judged.

  8. Approximation method to compute domain related integrals in structural studies

    NASA Astrophysics Data System (ADS)

    Oanta, E.; Panait, C.; Raicu, A.; Barhalescu, M.; Axinte, T.

    2015-11-01

    Various engineering calculi use integral calculus in theoretical models, i.e. analytical and numerical models. For usual problems, integrals have mathematical exact solutions. If the domain of integration is complicated, there may be used several methods to calculate the integral. The first idea is to divide the domain in smaller sub-domains for which there are direct calculus relations, i.e. in strength of materials the bending moment may be computed in some discrete points using the graphical integration of the shear force diagram, which usually has a simple shape. Another example is in mathematics, where the surface of a subgraph may be approximated by a set of rectangles or trapezoids used to calculate the definite integral. The goal of the work is to introduce our studies about the calculus of the integrals in the transverse section domains, computer aided solutions and a generalizing method. The aim of our research is to create general computer based methods to execute the calculi in structural studies. Thus, we define a Boolean algebra which operates with ‘simple’ shape domains. This algebraic standpoint uses addition and subtraction, conditioned by the sign of every ‘simple’ shape (-1 for the shapes to be subtracted). By ‘simple’ shape or ‘basic’ shape we define either shapes for which there are direct calculus relations, or domains for which their frontiers are approximated by known functions and the according calculus is carried out using an algorithm. The ‘basic’ shapes are linked to the calculus of the most significant stresses in the section, refined aspect which needs special attention. Starting from this idea, in the libraries of ‘basic’ shapes, there were included rectangles, ellipses and domains whose frontiers are approximated by spline functions. The domain triangularization methods suggested that another ‘basic’ shape to be considered is the triangle. The subsequent phase was to deduce the exact relations for the

  9. Finite Element Model Development and Validation for Aircraft Fuselage Structures

    NASA Technical Reports Server (NTRS)

    Buehrle, Ralph D.; Fleming, Gary A.; Pappa, Richard S.; Grosveld, Ferdinand W.

    2000-01-01

    The ability to extend the valid frequency range for finite element based structural dynamic predictions using detailed models of the structural components and attachment interfaces is examined for several stiffened aircraft fuselage structures. This extended dynamic prediction capability is needed for the integration of mid-frequency noise control technology. Beam, plate and solid element models of the stiffener components are evaluated. Attachment models between the stiffener and panel skin range from a line along the rivets of the physical structure to a constraint over the entire contact surface. The finite element models are validated using experimental modal analysis results. The increased frequency range results in a corresponding increase in the number of modes, modal density and spatial resolution requirements. In this study, conventional modal tests using accelerometers are complemented with Scanning Laser Doppler Velocimetry and Electro-Optic Holography measurements to further resolve the spatial response characteristics. Whenever possible, component and subassembly modal tests are used to validate the finite element models at lower levels of assembly. Normal mode predictions for different finite element representations of components and assemblies are compared with experimental results to assess the most accurate techniques for modeling aircraft fuselage type structures.

  10. Tools for integrated sequence-structure analysis with UCSF Chimera

    PubMed Central

    Meng, Elaine C; Pettersen, Eric F; Couch, Gregory S; Huang, Conrad C; Ferrin, Thomas E

    2006-01-01

    Background Comparing related structures and viewing the structures in the context of sequence alignments are important tasks in protein structure-function research. While many programs exist for individual aspects of such work, there is a need for interactive visualization tools that: (a) provide a deep integration of sequence and structure, far beyond mapping where a sequence region falls in the structure and vice versa; (b) facilitate changing data of one type based on the other (for example, using only sequence-conserved residues to match structures, or adjusting a sequence alignment based on spatial fit); (c) can be used with a researcher's own data, including arbitrary sequence alignments and annotations, closely or distantly related sets of proteins, etc.; and (d) interoperate with each other and with a full complement of molecular graphics features. We describe enhancements to UCSF Chimera to achieve these goals. Results The molecular graphics program UCSF Chimera includes a suite of tools for interactive analyses of sequences and structures. Structures automatically associate with sequences in imported alignments, allowing many kinds of crosstalk. A novel method is provided to superimpose structures in the absence of a pre-existing sequence alignment. The method uses both sequence and secondary structure, and can match even structures with very low sequence identity. Another tool constructs structure-based sequence alignments from superpositions of two or more proteins. Chimera is designed to be extensible, and mechanisms for incorporating user-specific data without Chimera code development are also provided. Conclusion The tools described here apply to many problems involving comparison and analysis of protein structures and their sequences. Chimera includes complete documentation and is intended for use by a wide range of scientists, not just those in the computational disciplines. UCSF Chimera is free for non-commercial use and is available for Microsoft

  11. Solid-state NMR structures of integral membrane proteins.

    PubMed

    Patching, Simon G

    2015-01-01

    Solid-state NMR is unique for its ability to obtain three-dimensional structures and to measure atomic-resolution structural and dynamic information for membrane proteins in native lipid bilayers. An increasing number and complexity of integral membrane protein structures have been determined by solid-state NMR using two main methods. Oriented sample solid-state NMR uses macroscopically aligned lipid bilayers to obtain orientational restraints that define secondary structure and global fold of embedded peptides and proteins and their orientation and topology in lipid bilayers. Magic angle spinning (MAS) solid-state NMR uses unoriented rapidly spinning samples to obtain distance and torsion angle restraints that define tertiary structure and helix packing arrangements. Details of all current protein structures are described, highlighting developments in experimental strategy and other technological advancements. Some structures originate from combining solid- and solution-state NMR information and some have used solid-state NMR to refine X-ray crystal structures. Solid-state NMR has also validated the structures of proteins determined in different membrane mimetics by solution-state NMR and X-ray crystallography and is therefore complementary to other structural biology techniques. By continuing efforts in identifying membrane protein targets and developing expression, isotope labelling and sample preparation strategies, probe technology, NMR experiments, calculation and modelling methods and combination with other techniques, it should be feasible to determine the structures of many more membrane proteins of biological and biomedical importance using solid-state NMR. This will provide three-dimensional structures and atomic-resolution structural information for characterising ligand and drug interactions, dynamics and molecular mechanisms of membrane proteins under physiological lipid bilayer conditions.

  12. Integrated structural analysis of the human nuclear pore complex scaffold.

    PubMed

    Bui, Khanh Huy; von Appen, Alexander; DiGuilio, Amanda L; Ori, Alessandro; Sparks, Lenore; Mackmull, Marie-Therese; Bock, Thomas; Hagen, Wim; Andrés-Pons, Amparo; Glavy, Joseph S; Beck, Martin

    2013-12-05

    The nuclear pore complex (NPC) is a fundamental component of all eukaryotic cells that facilitates nucleocytoplasmic exchange of macromolecules. It is assembled from multiple copies of about 30 nucleoporins. Due to its size and complex composition, determining the structure of the NPC is an enormous challenge, and the overall architecture of the NPC scaffold remains elusive. In this study, we have used an integrated approach based on electron tomography, single-particle electron microscopy, and crosslinking mass spectrometry to determine the structure of a major scaffold motif of the human NPC, the Nup107 subcomplex, in both isolation and integrated into the NPC. We show that 32 copies of the Nup107 subcomplex assemble into two reticulated rings, one each at the cytoplasmic and nuclear face of the NPC. This arrangement may explain how changes of the diameter are realized that would accommodate transport of huge cargoes.

  13. Bionic intraocular lens with variable focus and integrated structure

    NASA Astrophysics Data System (ADS)

    Liang, Dan; Wang, Xuan-Yin; Du, Jia-Wei; Xiang, Ke

    2015-10-01

    This paper proposes a bionic accommodating intraocular lens (IOL) for ophthalmic surgery. The designed lens has a solid-liquid mixed integrated structure, which mainly consists of a support ring, elastic membrane, rigid lens, and optical liquid. The lens focus can be adjusted through the deformation of the lens front surface when compressed. The integrated structure of the IOL is presented, as well as a detailed description of the lens materials and fabrication process. Images under different radial pressures are captured, and the lens deformation process, accommodating range, density, and optical property are analyzed. The designed lens achieves a 14.6 D accommodating range under a radial pressure of 51.4 mN and a 0.24 mm alteration of the lens outer radius. The deformation property of the lens matches well with the characteristic of the eye and shows the potential to help patients fully recover their vision accommodation ability after the cataract surgery.

  14. Performance optimized, small structurally integrated ion thruster system

    NASA Technical Reports Server (NTRS)

    Hyman, J., Jr.

    1973-01-01

    A 5-cm structurally integrated ion thruster has been developed for attitude control and stationkeeping of synchronous satellites. As optimized with a conventional ion extraction system, the system demonstrates a thrust T = 0.47 mlb at a beam voltage of 1600 V, total mass efficiency of 76%, and electrical efficiency of 56%. Under the subject contract effort, no significant performance change was noted for operation with two dimensional electrostatic thrust-vectoring grids. Structural integrity with the vectoring grids was demonstrated for shock (+ or - 30 G), sinusoidal (9 G), and random (19.9 G rms) accelerations. System envelope is 31.2 cm long by 13.4 cm flange bolt circle, with a mass of 9.0 Kg, including 6.8 Kg mercury propellant.

  15. Conformational States of macromolecular assemblies explored by integrative structure calculation.

    PubMed

    Thalassinos, Konstantinos; Pandurangan, Arun Prasad; Xu, Min; Alber, Frank; Topf, Maya

    2013-09-03

    A detailed description of macromolecular assemblies in multiple conformational states can be very valuable for understanding cellular processes. At present, structural determination of most assemblies in different biologically relevant conformations cannot be achieved by a single technique and thus requires an integrative approach that combines information from multiple sources. Different techniques require different computational methods to allow efficient and accurate data processing and analysis. Here, we summarize the latest advances and future challenges in computational methods that help the interpretation of data from two techniques-mass spectrometry and three-dimensional cryo-electron microscopy (with focus on alignment and classification of heterogeneous subtomograms from cryo-electron tomography). We evaluate how new developments in these two broad fields will lead to further integration with atomic structures to broaden our picture of the dynamic behavior of assemblies in their native environment.

  16. Integrative Analysis of Metabolic Models – from Structure to Dynamics

    PubMed Central

    Hartmann, Anja; Schreiber, Falk

    2015-01-01

    The characterization of biological systems with respect to their behavior and functionality based on versatile biochemical interactions is a major challenge. To understand these complex mechanisms at systems level modeling approaches are investigated. Different modeling formalisms allow metabolic models to be analyzed depending on the question to be solved, the biochemical knowledge and the availability of experimental data. Here, we describe a method for an integrative analysis of the structure and dynamics represented by qualitative and quantitative metabolic models. Using various formalisms, the metabolic model is analyzed from different perspectives. Determined structural and dynamic properties are visualized in the context of the metabolic model. Interaction techniques allow the exploration and visual analysis thereby leading to a broader understanding of the behavior and functionality of the underlying biological system. The System Biology Metabolic Model Framework (SBM2 – Framework) implements the developed method and, as an example, is applied for the integrative analysis of the crop plant potato. PMID:25674560

  17. Integrated Structural/Control Design via Multiobjective Optimization

    DTIC Science & Technology

    1990-05-10

    members, Dr Vadim Komkov and Lt Col Ronald Bagley, for their help and advice, as well as Dr Brad Liebst for his careful * the thorough review of my work...very strong, frequently unintentional and adverse coupling between the flexible structure and active control system, a wholistic or simultaneous...feedback). The primary contribution has been to treat the problem in an integrated or simultaneous fashion vice sequential design iterations on the two

  18. Design of Kinetic Energy Projectiles for Structural Integrity

    DTIC Science & Technology

    1981-09-01

    phase of flight . A great deal of design effort must be expended to ensure launchability of the projectile, i.e. in-bore structural integrity. Since the...travel and, sub- sequently, discard at the muzzle in such a manner as to impart low yaw and yaw rate to the flight body. These latter requirements may be...requirements. The basic flight configuration of the subprojectile is assumed to be specified by terminal ballistic and aerodynamic considerations. Thus the

  19. Structural Integrity and Durability of Reusable Space Propulsion Systems

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A two-day conference on the structural integrity and durability of reusable space propulsion systems was held on 14 to 15 May 1991 at the NASA Lewis Research Center. Presentations were made by industry, university, and government researchers organized into four sessions: (1) aerothermodynamic loads; (2) instrumentation; (3) fatigue, fracture, and constitutive modeling; and (4) structural dynamics. The principle objectives were to disseminate research results and future plans in each of four areas. This publication contains extended abstracts and the visual material presented during the conference. Particular emphasis is placed on the Space Shuttle Main Engine (SSME) and the SSME turbopump.

  20. Efficient optimization of integrated aerodynamic-structural design

    NASA Technical Reports Server (NTRS)

    Haftka, R. T.; Grossman, B.; Eppard, W. M.; Kao, P. J.; Polen, D. M.

    1989-01-01

    Techniques for reducing the computational complexity of multidisciplinary design optimization (DO) of aerodynamic structures are described and demonstrated. The basic principles of aerodynamic and structural DO are reviewed; the formulation of the combined DO problem is outlined; and particular attention is given to (1) the application of perturbation methods to cross-sensitivity computations and (2) numerical approximation procedures. Trial DOs of a simple sailplane design are presented in tables and graphs and discussed in detail. The IBM 3090 CPU time for the entire integrated DO was reduced from an estimated 10 h to about 6 min.