Sample records for integrases

  1. Prophage Integrase Typing Is a Useful Indicator of Genomic Diversity in Salmonella enterica

    PubMed Central

    Colavecchio, Anna; D’Souza, Yasmin; Tompkins, Elizabeth; Jeukens, Julie; Freschi, Luca; Emond-Rheault, Jean-Guillaume; Kukavica-Ibrulj, Irena; Boyle, Brian; Bekal, Sadjia; Tamber, Sandeep; Levesque, Roger C.; Goodridge, Lawrence D.

    2017-01-01

    Salmonella enterica is a bacterial species that is a major cause of illness in humans and food-producing animals. S. enterica exhibits considerable inter-serovar diversity, as evidenced by the large number of host adapted serovars that have been identified. The development of methods to assess genome diversity in S. enterica will help to further define the limits of diversity in this foodborne pathogen. Thus, we evaluated a PCR assay, which targets prophage integrase genes, as a rapid method to investigate S. enterica genome diversity. To evaluate the PCR prophage integrase assay, 49 isolates of S. enterica were selected, including 19 clinical isolates from clonal serovars (Enteritidis and Heidelberg) that commonly cause human illness, and 30 isolates from food-associated Salmonella serovars that rarely cause human illness. The number of integrase genes identified by the PCR assay was compared to the number of integrase genes within intact prophages identified by whole genome sequencing and phage finding program PHASTER. The PCR assay identified a total of 147 prophage integrase genes within the 49 S. enterica genomes (79 integrase genes in the food-associated Salmonella isolates, 50 integrase genes in S. Enteritidis, and 18 integrase genes in S. Heidelberg). In comparison, whole genome sequencing and PHASTER identified a total of 75 prophage integrase genes within 102 intact prophages in the 49 S. enterica genomes (44 integrase genes in the food-associated Salmonella isolates, 21 integrase genes in S. Enteritidis, and 9 integrase genes in S. Heidelberg). Collectively, both the PCR assay and PHASTER identified the presence of a large diversity of prophage integrase genes in the food-associated isolates compared to the clinical isolates, thus indicating a high degree of diversity in the food-associated isolates, and confirming the clonal nature of S. Enteritidis and S. Heidelberg. Moreover, PHASTER revealed a diversity of 29 different types of prophages and 23 different integrase genes within the food-associated isolates, but only identified four different phages and integrase genes within clonal isolates of S. Enteritidis and S. Heidelberg. These results demonstrate the potential usefulness of PCR based detection of prophage integrase genes as a rapid indicator of genome diversity in S. enterica. PMID:28740489

  2. Prophage Integrase Typing Is a Useful Indicator of Genomic Diversity in Salmonella enterica.

    PubMed

    Colavecchio, Anna; D'Souza, Yasmin; Tompkins, Elizabeth; Jeukens, Julie; Freschi, Luca; Emond-Rheault, Jean-Guillaume; Kukavica-Ibrulj, Irena; Boyle, Brian; Bekal, Sadjia; Tamber, Sandeep; Levesque, Roger C; Goodridge, Lawrence D

    2017-01-01

    Salmonella enterica is a bacterial species that is a major cause of illness in humans and food-producing animals. S. enterica exhibits considerable inter-serovar diversity, as evidenced by the large number of host adapted serovars that have been identified. The development of methods to assess genome diversity in S. enterica will help to further define the limits of diversity in this foodborne pathogen. Thus, we evaluated a PCR assay, which targets prophage integrase genes, as a rapid method to investigate S. enterica genome diversity. To evaluate the PCR prophage integrase assay, 49 isolates of S. enterica were selected, including 19 clinical isolates from clonal serovars (Enteritidis and Heidelberg) that commonly cause human illness, and 30 isolates from food-associated Salmonella serovars that rarely cause human illness. The number of integrase genes identified by the PCR assay was compared to the number of integrase genes within intact prophages identified by whole genome sequencing and phage finding program PHASTER. The PCR assay identified a total of 147 prophage integrase genes within the 49 S. enterica genomes (79 integrase genes in the food-associated Salmonella isolates, 50 integrase genes in S . Enteritidis, and 18 integrase genes in S . Heidelberg). In comparison, whole genome sequencing and PHASTER identified a total of 75 prophage integrase genes within 102 intact prophages in the 49 S. enterica genomes (44 integrase genes in the food-associated Salmonella isolates, 21 integrase genes in S . Enteritidis, and 9 integrase genes in S . Heidelberg). Collectively, both the PCR assay and PHASTER identified the presence of a large diversity of prophage integrase genes in the food-associated isolates compared to the clinical isolates, thus indicating a high degree of diversity in the food-associated isolates, and confirming the clonal nature of S . Enteritidis and S . Heidelberg. Moreover, PHASTER revealed a diversity of 29 different types of prophages and 23 different integrase genes within the food-associated isolates, but only identified four different phages and integrase genes within clonal isolates of S. Enteritidis and S. Heidelberg. These results demonstrate the potential usefulness of PCR based detection of prophage integrase genes as a rapid indicator of genome diversity in S. enterica .

  3. Incidence of class 1 and 2 integrases in clinical and commensal bacteria from livestock, companion animals, and exotics.

    PubMed

    Goldstein, C; Lee, M D; Sanchez, S; Hudson, C; Phillips, B; Register, B; Grady, M; Liebert, C; Summers, A O; White, D G; Maurer, J J

    2001-03-01

    Many pathogenic and commensal organisms are multidrug resistant due to exposure to various antibiotics. Often, this antimicrobial resistance is encoded by integrons that occur on plasmids or that are integrated into the bacterial chromosome. Integrons are commonly associated with bacterial genera in the family Enterobacteriaceae. We determined that class 1 integrases were present in approximately 46% of the isolates from the family Enterobacteriaceae; class 2 integrases were present only among Escherichia coli and Salmonella isolates. Seven percent of veterinary isolates were positive for class 3 integrase by DNA-DNA hybridization but could not be confirmed to be positive by PCR. None of the veterinary isolates possessed the class 4 integrase gene. The distribution of these integrase genes was variable within the members of the family Enterobacteriaceae when some or all integrase classes were absent from a particular genus. There was also considerable variability in the distribution of these integrases within a species, depending on the animal host. Unlike the class 1 integrases, the other integrase class, intI2, appears to be more restricted in its distribution among the members of the family Enterobacteriaceae. There is also considerable variability in the distribution of the class 1 integrases within E. coli strains isolated from different food animals. The class 1 integrases are the most widely disseminated of the four classes among the members of the family Enterobacteriaceae from both the clinical and normal flora of animals. This is the first report to closely examine the distribution of class 2 integrases in members of the family Enterobacteriaceae isolated in the United States.

  4. Comparison of Newly Assembled Full Length HIV-1 Integrase With Prototype Foamy Virus Integrase: Structure-Function Prospective.

    PubMed

    Dayer, Mohammad Reza

    2016-05-01

    Drug design against human immunodeficiency virus type 1 (HIV-1) integrase through its mechanistic study is of great interest in the area in biological research. The main obstacle in this area is the absence of the full-length crystal structure for HIV-1 integrase to be used as a model. A complete structure, similar to HIV-1 of a prototype foamy virus integrase in complex with DNA, including all conservative residues, is available and has been extensively used in recent investigations. The aim of this study was to determine whether the above model is precisely representative of HIV-1 integrase. This would critically determine the success of any designed drug using the model in deactivation of integrase and AIDS treatment. Primarily, a new structure for HIV-1 was constructed, using a crystal structure of prototype foamy virus as the starting structure. The constructed structure of HIV-1 integrase was simultaneously simulated with a prototype foamy virus integrase on a separate occasion. Our results indicate that the HIV-1 system behaves differently from the prototype foamy virus in terms of folding, hydration, hydrophobicity of binding site and stability. Based on our findings, we can conclude that HIV-1 integrase is vastly different from the prototype foamy virus integrase and does not resemble it, and the modeling output of the prototype foamy virus simulations could not be simply generalized to HIV-1 integrase. Therefore, our HIV-1 model seems to be more representative and more useful for future research.

  5. Bovine Lactoferrampin, Human Lactoferricin, and Lactoferrin 1-11 Inhibit Nuclear Translocation of HIV Integrase.

    PubMed

    Wang, Winston Yan; Wong, Jack Ho; Ip, Denis Tsz Ming; Wan, David Chi Cheong; Cheung, Randy Chifai; Ng, Tzi Bun

    2016-08-01

    This study aimed to investigate fragments derived from human and bovine lactoferrins for ability to inhibit nuclear translocation of HIV-1 integrase. It was shown that human lactoferricin, human lactoferrin 1-11, and bovine lactoferrampin reduced nuclear distribution of HIV-1 integrase. Bovine lactoferrampin could inhibit both the activity and nuclear translocation of HIV-1 integrase. Human lactoferrampin, bovine lactoferricin, and bovine lactoferrin 1-11 had no effect on HIV-1 integrase nuclear translocation. Human lactoferrampin which inhibited the activity of integrase did not prevent its nuclear translocation. Human lactoferricin and lactoferrin 1-11 did not inhibit HIV-1 integrase nuclear translocation despite their ability to attenuate the enzyme activity. The discrepancy between the findings on reduction of HIV-1 activity and inhibition of nuclear translocation of HIV-1 integrase was due to the different mechanisms involved. A similar reasoning can also be applied to the different inhibitory potencies of the milk peptides on different HIV enzymes, i.e., nuclear translocation.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Zhiqi; Shi, Ke; Banerjee, Surajit

    Integration of the reverse-transcribed viral DNA into the host genome is an essential step in the life cycle of retroviruses. Retrovirus integrase catalyses insertions of both ends of the linear viral DNA into a host chromosome. Integrase from HIV-1 and closely related retroviruses share the three-domain organization, consisting of a catalytic core domain flanked by amino- and carboxy-terminal domains essential for the concerted integration reaction. Although structures of the tetrameric integrase–DNA complexes have been reported for integrase from prototype foamy virus featuring an additional DNA-binding domain and longer interdomain linkers, the architecture of a canonical three-domain integrase bound to DNAmore » remained elusive. In this paper, we report a crystal structure of the three-domain integrase from Rous sarcoma virus in complex with viral and target DNAs. The structure shows an octameric assembly of integrase, in which a pair of integrase dimers engage viral DNA ends for catalysis while another pair of non-catalytic integrase dimers bridge between the two viral DNA molecules and help capture target DNA. The individual domains of the eight integrase molecules play varying roles to hold the complex together, making an extensive network of protein–DNA and protein–protein contacts that show both conserved and distinct features compared with those observed for prototype foamy virus integrase. Finally, our work highlights the diversity of retrovirus intasome assembly and provides insights into the mechanisms of integration by HIV-1 and related retroviruses.« less

  7. Crystal structure of the Rous sarcoma virus intasome

    DOE PAGES

    Yin, Zhiqi; Shi, Ke; Banerjee, Surajit; ...

    2016-02-17

    Integration of the reverse-transcribed viral DNA into the host genome is an essential step in the life cycle of retroviruses. Retrovirus integrase catalyses insertions of both ends of the linear viral DNA into a host chromosome. Integrase from HIV-1 and closely related retroviruses share the three-domain organization, consisting of a catalytic core domain flanked by amino- and carboxy-terminal domains essential for the concerted integration reaction. Although structures of the tetrameric integrase–DNA complexes have been reported for integrase from prototype foamy virus featuring an additional DNA-binding domain and longer interdomain linkers, the architecture of a canonical three-domain integrase bound to DNAmore » remained elusive. In this paper, we report a crystal structure of the three-domain integrase from Rous sarcoma virus in complex with viral and target DNAs. The structure shows an octameric assembly of integrase, in which a pair of integrase dimers engage viral DNA ends for catalysis while another pair of non-catalytic integrase dimers bridge between the two viral DNA molecules and help capture target DNA. The individual domains of the eight integrase molecules play varying roles to hold the complex together, making an extensive network of protein–DNA and protein–protein contacts that show both conserved and distinct features compared with those observed for prototype foamy virus integrase. Finally, our work highlights the diversity of retrovirus intasome assembly and provides insights into the mechanisms of integration by HIV-1 and related retroviruses.« less

  8. Accuracy and efficiency define Bxb1 integrase as the best of fifteen candidate serine recombinases for the integration of DNA into the human genome

    PubMed Central

    2013-01-01

    Background Phage-encoded serine integrases, such as φC31 integrase, are widely used for genome engineering. Fifteen such integrases have been described but their utility for genome engineering has not been compared in uniform assays. Results We have compared fifteen serine integrases for their utility for DNA manipulations in mammalian cells after first demonstrating that all were functional in E. coli. Chromosomal recombination reporters were used to show that seven integrases were active on chromosomally integrated DNA in human fibroblasts and mouse embryonic stem cells. Five of the remaining eight enzymes were active on extra-chromosomal substrates thereby demonstrating that the ability to mediate extra-chromosomal recombination is no guide to ability to mediate site-specific recombination on integrated DNA. All the integrases that were active on integrated DNA also promoted DNA integration reactions that were not mediated through conservative site-specific recombination or damaged the recombination sites but the extent of these aberrant reactions varied over at least an order of magnitude. Bxb1 integrase yielded approximately two-fold more recombinants and displayed about two fold less damage to the recombination sites than the next best recombinase; φC31 integrase. Conclusions We conclude that the Bxb1 and φC31 integrases are the reagents of choice for genome engineering in vertebrate cells and that DNA damage repair is a major limitation upon the utility of this class of site-specific recombinase. PMID:24139482

  9. von Hippel–Lindau binding protein 1-mediated degradation of integrase affects HIV-1 gene expression at a postintegration step

    PubMed Central

    Mousnier, Aurélie; Kubat, Nicole; Massias-Simon, Aurélie; Ségéral, Emmanuel; Rain, Jean-Christophe; Benarous, Richard; Emiliani, Stéphane; Dargemont, Catherine

    2007-01-01

    HIV-1 integrase, the viral enzyme responsible for provirus integration into the host genome, can be actively degraded by the ubiquitin–proteasome pathway. Here, we identify von Hippel–Lindau binding protein 1(VBP1), a subunit of the prefoldin chaperone, as an integrase cellular binding protein that bridges interaction between integrase and the cullin2 (Cul2)-based von Hippel–Lindau (VHL) ubiquitin ligase. We demonstrate that VBP1 and Cul2/VHL are required for proper HIV-1 expression at a step between integrase-dependent proviral integration into the host genome and transcription of viral genes. Using both an siRNA approach and Cul2/VHL mutant cells, we show that VBP1 and the Cul2/VHL ligase cooperate in the efficient polyubiquitylation of integrase and its subsequent proteasome-mediated degradation. Results presented here support a role for integrase degradation by the prefoldin–VHL–proteasome pathway in the integration–transcription transition of the viral replication cycle. PMID:17698809

  10. Genome Integration and Excision by a New Streptomyces Bacteriophage, ϕJoe

    PubMed Central

    Haley, Joshua A.; Stark, W. Marshall

    2016-01-01

    ABSTRACT Bacteriophages are the source of many valuable tools for molecular biology and genetic manipulation. In Streptomyces, most DNA cloning vectors are based on serine integrase site-specific DNA recombination systems derived from phage. Because of their efficiency and simplicity, serine integrases are also used for diverse synthetic biology applications. Here, we present the genome of a new Streptomyces phage, ϕJoe, and investigate the conditions for integration and excision of the ϕJoe genome. ϕJoe belongs to the largest Streptomyces phage cluster (R4-like) and encodes a serine integrase. The attB site from Streptomyces venezuelae was used efficiently by an integrating plasmid, pCMF92, constructed using the ϕJoe int-attP locus. The attB site for ϕJoe integrase was occupied in several Streptomyces genomes, including that of S. coelicolor, by a mobile element that varies in gene content and size between host species. Serine integrases require a phage-encoded recombination directionality factor (RDF) to activate the excision reaction. The ϕJoe RDF was identified, and its function was confirmed in vivo. Both the integrase and RDF were active in in vitro recombination assays. The ϕJoe site-specific recombination system is likely to be an important addition to the synthetic biology and genome engineering toolbox. IMPORTANCE Streptomyces spp. are prolific producers of secondary metabolites, including many clinically useful antibiotics. Bacteriophage-derived integrases are important tools for genetic engineering, as they enable integration of heterologous DNA into the Streptomyces chromosome with ease and high efficiency. Recently, researchers have been applying phage integrases for a variety of applications in synthetic biology, including rapid assembly of novel combinations of genes, biosensors, and biocomputing. An important requirement for optimal experimental design and predictability when using integrases, however, is the need for multiple enzymes with different specificities for their integration sites. In order to provide a broad platform of integrases, we identified and validated the integrase from a newly isolated Streptomyces phage, ϕJoe. ϕJoe integrase is active in vitro and in vivo. The specific recognition site for integration is present in a wide range of different actinobacteria, including Streptomyces venezuelae, an emerging model bacterium in Streptomyces research. PMID:28003200

  11. The removal of RNA primers from DNA synthesized by the reverse transcriptase of the retrotransposon Tf1 is stimulated by Tf1 integrase.

    PubMed

    Herzig, Eytan; Voronin, Nickolay; Hizi, Amnon

    2012-06-01

    The Tf1 retrotransposon represents a group of long terminal repeat retroelements that use an RNA self-primer for initiating reverse transcription while synthesizing the minus-sense DNA strand. Tf1 reverse transcriptase (RT) was found earlier to generate the self-primer in vitro. Here, we show that this RT can remove from the synthesized cDNA the entire self-primer as well as the complete polypurine tract (PPT) sequence (serving as a second primer for cDNA synthesis). However, these primer removals, mediated by the RNase H activity of Tf1 RT, are quite inefficient. Interestingly, the integrase of Tf1 stimulated the specific Tf1 RT-directed cleavage of both the self-primer and PPT, although there was no general enhancement of the RT's RNase H activity (and the integrase by itself is devoid of any primer cleavage). The RTs of two prototype retroviruses, murine leukemia virus and human immunodeficiency virus, showed only a partial and nonspecific cleavage of both Tf1-associated primers with no stimulation by Tf1 integrase. Mutagenesis of Tf1 integrase revealed that the complete Tf1 integrase protein (excluding its chromodomain) is required for stimulating the Tf1 RT primer removal activity. Nonetheless, a double mutant integrase that has lost its integration functions can still stimulate the RT's activity, though heat-inactivated integrase cannot enhance primer removals. These findings suggest that the enzymatic activity of Tf1 integrase is not essential for stimulating the RT-mediated primer removal, while the proper folding of this protein is obligatory for this function. These results highlight possible new functions of Tf1 integrase in the retrotransposon's reverse transcription process.

  12. The Removal of RNA Primers from DNA Synthesized by the Reverse Transcriptase of the Retrotransposon Tf1 Is Stimulated by Tf1 Integrase

    PubMed Central

    Herzig, Eytan; Voronin, Nickolay

    2012-01-01

    The Tf1 retrotransposon represents a group of long terminal repeat retroelements that use an RNA self-primer for initiating reverse transcription while synthesizing the minus-sense DNA strand. Tf1 reverse transcriptase (RT) was found earlier to generate the self-primer in vitro. Here, we show that this RT can remove from the synthesized cDNA the entire self-primer as well as the complete polypurine tract (PPT) sequence (serving as a second primer for cDNA synthesis). However, these primer removals, mediated by the RNase H activity of Tf1 RT, are quite inefficient. Interestingly, the integrase of Tf1 stimulated the specific Tf1 RT-directed cleavage of both the self-primer and PPT, although there was no general enhancement of the RT's RNase H activity (and the integrase by itself is devoid of any primer cleavage). The RTs of two prototype retroviruses, murine leukemia virus and human immunodeficiency virus, showed only a partial and nonspecific cleavage of both Tf1-associated primers with no stimulation by Tf1 integrase. Mutagenesis of Tf1 integrase revealed that the complete Tf1 integrase protein (excluding its chromodomain) is required for stimulating the Tf1 RT primer removal activity. Nonetheless, a double mutant integrase that has lost its integration functions can still stimulate the RT's activity, though heat-inactivated integrase cannot enhance primer removals. These findings suggest that the enzymatic activity of Tf1 integrase is not essential for stimulating the RT-mediated primer removal, while the proper folding of this protein is obligatory for this function. These results highlight possible new functions of Tf1 integrase in the retrotransposon's reverse transcription process. PMID:22491446

  13. New Applications for Phage Integrases

    PubMed Central

    Fogg, Paul C.M.; Colloms, Sean; Rosser, Susan; Stark, Marshall; Smith, Margaret C.M.

    2014-01-01

    Within the last 25 years, bacteriophage integrases have rapidly risen to prominence as genetic tools for a wide range of applications from basic cloning to genome engineering. Serine integrases such as that from ϕC31 and its relatives have found an especially wide range of applications within diverse micro-organisms right through to multi-cellular eukaryotes. Here, we review the mechanisms of the two major families of integrases, the tyrosine and serine integrases, and the advantages and disadvantages of each type as they are applied in genome engineering and synthetic biology. In particular, we focus on the new areas of metabolic pathway construction and optimization, biocomputing, heterologous expression and multiplexed assembly techniques. Integrases are versatile and efficient tools that can be used in conjunction with the various extant molecular biology tools to streamline the synthetic biology production line. PMID:24857859

  14. Thalassiolins A-C: new marine-derived inhibitors of HIV cDNA integrase.

    PubMed

    Rowley, David C; Hansen, Mark S T; Rhodes, Denise; Sotriffer, Christoph A; Ni, Haihong; McCammon, J Andrew; Bushman, Frederic D; Fenical, William

    2002-11-01

    Human immunodeficiency virus (HIV) replication requires integration of viral cDNA into the host genome, a process mediated by the viral enzyme integrase. We describe a new series of HIV integrase inhibitors, thalassiolins A-C (1-3), isolated from the Caribbean sea grass Thalassia testudinum. The thalassiolins are distinguished from other flavones previously studied by the substitution of a sulfated beta-D-glucose at the 7-position, a substituent that imparts increased potency against integrase in biochemical assays. The most active of these molecules, thalassiolin A (1), displays in vitro inhibition of the integrase catalyzed strand transfer reaction (IC50=0.4 microM) and an antiviral IC50 of 30 microM. Molecular modeling studies indicate a favorable binding mode is probable at the catalytic core domain of HIV-1 integrase.

  15. Detection of drug resistance-associated mutations in human immunodeficiency virus type 1 integrase derived from drug-naive individuals in Surabaya, Indonesia.

    PubMed

    Kotaki, Tomohiro; Khairunisa, Siti Qamariyah; Sukartiningrum, Septhia Dwi; Witaningrum, Adiana Mutamsari; Rusli, Musofa; Diansyah, M Noor; Arfijanto, M Vitanata; Rahayu, Retno Pudji; Nasronudin; Kameoka, Masanori

    2014-05-01

    Although human immunodeficiency virus type 1 (HIV-1) infection causes serious health problems in Indonesia, information in regard to drug resistance is limited. We performed a genotypic study on HIV-1 integrase derived from drug-naive individuals in Surabaya, Indonesia. Sequencing analysis revealed that no primary mutations associated with drug resistance to integrase inhibitors were detected; however, secondary mutations, V72I, L74I/M, V165I, V201I, I203M, and S230N, were detected in more than 5% of samples. In addition, V201I was conserved among all samples. Most integrase genes were classified into CRF01_AE genes. Interestingly, 40% of the CRF01_AE genes had an unusual insertion in the C-terminus of integrase. These mutations and insertions were considered natural polymorphisms since these mutations coincided with previous reports, and integrase inhibitors have not been used in Indonesia. Our results indicated that further studies may be required to assess the impact of these mutations on integrase inhibitors prior to their introduction into Indonesia.

  16. Genome Integration and Excision by a New Streptomyces Bacteriophage, ϕJoe.

    PubMed

    Fogg, Paul C M; Haley, Joshua A; Stark, W Marshall; Smith, Margaret C M

    2017-03-01

    Bacteriophages are the source of many valuable tools for molecular biology and genetic manipulation. In Streptomyces , most DNA cloning vectors are based on serine integrase site-specific DNA recombination systems derived from phage. Because of their efficiency and simplicity, serine integrases are also used for diverse synthetic biology applications. Here, we present the genome of a new Streptomyces phage, ϕJoe, and investigate the conditions for integration and excision of the ϕJoe genome. ϕJoe belongs to the largest Streptomyces phage cluster (R4-like) and encodes a serine integrase. The attB site from Streptomyces venezuelae was used efficiently by an integrating plasmid, pCMF92, constructed using the ϕJoe int-attP locus. The attB site for ϕJoe integrase was occupied in several Streptomyces genomes, including that of S. coelicolor , by a mobile element that varies in gene content and size between host species. Serine integrases require a phage-encoded recombination directionality factor (RDF) to activate the excision reaction. The ϕJoe RDF was identified, and its function was confirmed in vivo Both the integrase and RDF were active in in vitro recombination assays. The ϕJoe site-specific recombination system is likely to be an important addition to the synthetic biology and genome engineering toolbox. IMPORTANCE Streptomyces spp. are prolific producers of secondary metabolites, including many clinically useful antibiotics. Bacteriophage-derived integrases are important tools for genetic engineering, as they enable integration of heterologous DNA into the Streptomyces chromosome with ease and high efficiency. Recently, researchers have been applying phage integrases for a variety of applications in synthetic biology, including rapid assembly of novel combinations of genes, biosensors, and biocomputing. An important requirement for optimal experimental design and predictability when using integrases, however, is the need for multiple enzymes with different specificities for their integration sites. In order to provide a broad platform of integrases, we identified and validated the integrase from a newly isolated Streptomyces phage, ϕJoe. ϕJoe integrase is active in vitro and in vivo The specific recognition site for integration is present in a wide range of different actinobacteria, including Streptomyces venezuelae , an emerging model bacterium in Streptomyces research. Copyright © 2017 Fogg et al.

  17. Attachment site recognition and regulation of directionality by the serine integrases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rutherford, Karen; Yuan, Peng; Perry, Kay

    Serine integrases catalyze the integration of bacteriophage DNA into a host genome by site-specific recombination between ‘attachment sites’ in the phage ( attP ) and the host ( attB ). The reaction is highly directional; the reverse excision reaction between the product attL and attR sites does not occur in the absence of a phage-encoded factor, nor does recombination occur between other pairings of attachment sites. A mechanistic understanding of how these enzymes achieve site-selectivity and directionality has been limited by a lack of structural models. Here, we report the structure of the C-terminal domains of a serine integrase boundmore » to an attP DNA half-site. The structure leads directly to models for understanding how the integrase-bound attP and attB sites differ, why these enzymes preferentially form attP × attB synaptic complexes to initiate recombination, and how attL × attR recombination is prevented. In these models, different domain organizations on attP vs. attB half-sites allow attachment-site specific interactions to form between integrase subunits via an unusual protruding coiled-coil motif. These interactions are used to preferentially synapse integrase-bound attP and attB and inhibit synapsis of integrase-bound attL and attR . The results provide a structural framework for understanding, testing and engineering serine integrase function.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Bohyun; Kim, Inki; Nam, Ja-Ae

    EFC-1 integrase is a site-specific recombinase that belongs to the large family of serine recombinase. In previously study, we isolated the temperate phage EFC-1, and characterized its genomic sequence. Within its genome, Orf28 was predicted encode a 464 amino acid of a putative integrase gene. In this study, EFC-1 integrase was characterized in vitro and in vivo. In vitro assay was performed using purified His-tag fusion integrase. Also, to identify which serine is involved in the catalytic domain, we used site-directed mutagenesis and analyzed by a recombination assay in vitro. In vivo assay involved PCR and confocal microscopy in HEK293 cells, and determined the minimal lengthsmore » of attP and attB sites. According to our results, the EFC-1 integrase-mediated recombination was site-specific and unidirectional system in vitro and in vivo. Serine 21 of EFC-1 integrase plays a major role in the catalytic domain, and minimal sizes of attB and attP was defined 48 and 54 bp. Our finding may help develop a useful tool for gene therapy and gene delivery system. - Highlights: • EFC-1 integrase-mediated recombination was site-specific and unidirectional system. • Serine 21 of EFC-1 integrase plays a major role in the catalytic domain. • The functional minimal sizes of attB and attP was defined 48 and 54 bp.« less

  19. The Competitive Interplay between Allosteric HIV-1 Integrase Inhibitor BI/D and LEDGF/p75 during the Early Stage of HIV-1 Replication Adversely Affects Inhibitor Potency.

    PubMed

    Feng, Lei; Dharmarajan, Venkatasubramanian; Serrao, Erik; Hoyte, Ashley; Larue, Ross C; Slaughter, Alison; Sharma, Amit; Plumb, Matthew R; Kessl, Jacques J; Fuchs, James R; Bushman, Frederic D; Engelman, Alan N; Griffin, Patrick R; Kvaratskhelia, Mamuka

    2016-05-20

    Allosteric HIV-1 integrase inhibitors (ALLINIs) have recently emerged as a promising class of antiretroviral agents and are currently in clinical trials. In infected cells, ALLINIs potently inhibit viral replication by impairing virus particle maturation but surprisingly exhibit a reduced EC50 for inhibiting HIV-1 integration in target cells. To better understand the reduced antiviral activity of ALLINIs during the early stage of HIV-1 replication, we investigated the competitive interplay between a potent representative ALLINI, BI/D, and LEDGF/p75 with HIV-1 integrase. While the principal binding sites of BI/D and LEDGF/p75 overlap at the integrase catalytic core domain dimer interface, we show that the inhibitor and the cellular cofactor induce markedly different multimerization patterns of full-length integrase. LEDGF/p75 stabilizes an integrase tetramer through the additional interactions with the integrase N-terminal domain, whereas BI/D induces protein-protein interactions in C-terminal segments that lead to aberrant, higher-order integrase multimerization. We demonstrate that LEDGF/p75 binds HIV-1 integrase with significantly higher affinity than BI/D and that the cellular protein is able to reverse the inhibitor induced aberrant, higher-order integrase multimerization in a dose-dependent manner in vitro. Consistent with these observations, alterations of the cellular levels of LEDGF/p75 markedly affected BI/D EC50 values during the early steps of HIV-1 replication. Furthermore, genome-wide sequencing of HIV-1 integration sites in infected cells demonstrate that LEDGF/p75-dependent integration site selection is adversely affected by BI/D treatment. Taken together, our studies elucidate structural and mechanistic details of the interplay between LEDGF/p75 and BI/D during the early stage of HIV-1 replication.

  20. Biochemical Characterization of Novel Retroviral Integrase Proteins

    PubMed Central

    Ballandras-Colas, Allison; Naraharisetty, Hema; Li, Xiang; Serrao, Erik; Engelman, Alan

    2013-01-01

    Integrase is an essential retroviral enzyme, catalyzing the stable integration of reverse transcribed DNA into cellular DNA. Several aspects of the integration mechanism, including the length of host DNA sequence duplication flanking the integrated provirus, which can be from 4 to 6 bp, and the nucleotide preferences at the site of integration, are thought to cluster among the different retroviral genera. To date only the spumavirus prototype foamy virus integrase has provided diffractable crystals of integrase-DNA complexes, revealing unprecedented details on the molecular mechanisms of DNA integration. Here, we characterize five previously unstudied integrase proteins, including those derived from the alpharetrovirus lymphoproliferative disease virus (LPDV), betaretroviruses Jaagsiekte sheep retrovirus (JSRV), and mouse mammary tumor virus (MMTV), epsilonretrovirus walleye dermal sarcoma virus (WDSV), and gammaretrovirus reticuloendotheliosis virus strain A (Rev-A) to identify potential novel structural biology candidates. Integrase expressed in bacterial cells was analyzed for solubility, stability during purification, and, once purified, 3′ processing and DNA strand transfer activities in vitro. We show that while we were unable to extract or purify accountable amounts of WDSV, JRSV, or LPDV integrase, purified MMTV and Rev-A integrase each preferentially support the concerted integration of two viral DNA ends into target DNA. The sequencing of concerted Rev-A integration products indicates high fidelity cleavage of target DNA strands separated by 5 bp during integration, which contrasts with the 4 bp duplication generated by a separate gammaretrovirus, the Moloney murine leukemia virus (MLV). By comparing Rev-A in vitro integration sites to those generated by MLV in cells, we concordantly conclude that the spacing of target DNA cleavage is more evolutionarily flexible than are the target DNA base contacts made by integrase during integration. Given their desirable concerted DNA integration profiles, Rev-A and MMTV integrase proteins have been earmarked for structural biology studies. PMID:24124581

  1. In vivo and in vitro characterization of site-specific recombination of a novel serine integrase from the temperate phage EFC-1.

    PubMed

    Yoon, Bohyun; Kim, Inki; Nam, Ja-Ae; Chang, Hyo-Ihl; Ha, Chang Hoon

    2016-04-22

    EFC-1 integrase is a site-specific recombinase that belongs to the large family of serine recombinase. In previously study, we isolated the temperate phage EFC-1, and characterized its genomic sequence. Within its genome, Orf28 was predicted encode a 464 amino acid of a putative integrase gene. In this study, EFC-1 integrase was characterized in vitro and in vivo. In vitro assay was performed using purified His-tag fusion integrase. Also, to identify which serine is involved in the catalytic domain, we used site-directed mutagenesis and analyzed by a recombination assay in vitro. In vivo assay involved PCR and confocal microscopy in HEK293 cells, and determined the minimal lengths of attP and attB sites. According to our results, the EFC-1 integrase-mediated recombination was site-specific and unidirectional system in vitro and in vivo. Serine 21 of EFC-1 integrase plays a major role in the catalytic domain, and minimal sizes of attB and attP was defined 48 and 54 bp. Our finding may help develop a useful tool for gene therapy and gene delivery system. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Alternative Nucleophilic Substrates for the Endonuclease Activities of Human Immunodeficiency Virus Type 1 Integrase

    PubMed Central

    Ealy, Julie B.; Sudol, Malgorzata; Krzeminski, Jacek; Amin, Shantu; Katzman, Michael

    2012-01-01

    Retroviral integrase can use water or some small alcohols as the attacking nucleophile to nick DNA. To characterize the range of compounds that human immunodeficiency virus type 1 integrase can accommodate for its endonuclease activities, we tested 45 potential electron donors (having varied size and number or spacing of nucleophilic groups) as substrates during site-specific nicking at viral DNA ends and during nonspecific nicking reactions. We found that integrase used 22 of the 45 compounds to nick DNA, but not all active compounds were used for both activities. In particular, 13 compounds were used for site-specific and nonspecific nicking, 5 only for site-specific nicking, and 4 only for nonspecific nicking; 23 other compounds were not used for either activity. Thus, integrase can accommodate a large number of nucleophilic substrates but has selective requirements for its different activities, underscoring its dynamic properties and providing new information for modeling and understanding integrase. PMID:22910593

  3. Recombination directionality factor gp3 binds ϕC31 integrase via the zinc domain, potentially affecting the trajectory of the coiled-coil motif

    PubMed Central

    Younger, Ellen; Fernando, Booshini D; Khaleel, Thanafez; Stark, W Marshall; Smith, Margaret C M

    2018-01-01

    Abstract To establish a prophage state, the genomic DNA of temperate bacteriophages normally becomes integrated into the genome of their host bacterium by integrase-mediated, site-specific DNA recombination. Serine integrases catalyse a single crossover between an attachment site in the host (attB) and a phage attachment site (attP) on the circularized phage genome to generate the integrated prophage DNA flanked by recombinant attachment sites, attL and attR. Exiting the prophage state and entry into the lytic growth cycle requires an additional phage-encoded protein, the recombination directionality factor or RDF, to mediate recombination between attL and attR and excision of the phage genome. The RDF is known to bind integrase and switch its activity from integration (attP x attB) to excision (attL x attR) but its precise mechanism is unclear. Here, we identify amino acid residues in the RDF, gp3, encoded by the Streptomyces phage ϕC31 and within the ϕC31 integrase itself that affect the gp3:Int interaction. We show that residue substitutions in integrase that reduce gp3 binding adversely affect both excision and integration reactions. The mutant integrase phenotypes are consistent with a model in which the RDF binds to a hinge region at the base of the coiled-coil motif in ϕC31 integrase. PMID:29228292

  4. Appearance of Drug Resistance-Associated Mutations in Human Immunodeficiency Virus Type 1 CRF01_AE Integrase Derived from Drug-Naive Thai Patients.

    PubMed

    Isarangkura-Na-Ayuthaya, Panasda; Kaewnoo, Wiyada; Auwanit, Wattana; de Silva, U Chandimal; Ikuta, Kazuyoshi; Sawanpanyalert, Pathom; Kameoka, Masanori

    2010-12-01

    CRF01_AE is a major subtype of human immunodeficiency virus type 1 (HIV-1) circulating in Southeast Asia, including Thailand. We performed genotypic studies on HIV-1 CRF01_AE integrase derived from plasma samples from drug-naive Thai patients. Direct sequencing of amplified CRF01_AE integrase genes revealed that although no primary mutations associated with drug resistance to integrase inhibitors were detected, at least one secondary mutation was found in 96% of samples. Our results indicate that the impact of these mutations on the baseline drug susceptibility of CRF01_AE viruses to integrase inhibitors may need to be addressed prior to the introduction of these drugs in Southeast Asian countries, including Thailand.

  5. Characterization of natural polymorphic sites of the HIV-1 integrase before the introduction of HIV-1 integrase inhibitors in Germany

    PubMed Central

    Meixenberger, Karolin; Pouran Yousef, Kaveh; Somogyi, Sybille; Fiedler, Stefan; Bartmeyer, Barbara; von Kleist, Max; Kücherer, Claudia

    2014-01-01

    Introduction The aim of our study was to analyze the occurrence and evolution of HIV-1 integrase polymorphisms during the HIV-1 epidemic in Germany prior to the introduction of the first integrase inhibitor raltegravir in 2007. Materials and Methods Plasma samples from drug-naïve HIV-1 infected individuals newly diagnosed between 1986 and 2006 were used to determine PCR-based population sequences of the HIV-1 integrase (amino acids 1–278). The HIV-1 subtype was determined using the REGA HIV-1 subtyping tool. We calculated the frequency of amino acids at each position of the HIV-1 integrase in 337 subtype B strains for the time periods 1986–1989, 1991–1994, 1995–1998, 1999–2002, and 2003–2006. Positions were defined as polymorphic if amino acid variation was >1% in any period. Logistic regression was used to identify trends in amino acid variation over time. Resistance-associated mutations were identified according to the IAS 2013 list and the HIVdb, ANRS and GRADE algorithms. Results Overall, 56.8% (158/278) amino acid positions were polymorphic and 15.8% (25/158) of these positions exhibited a significant trend in amino acid variation over time. Proportionately, most polymorphic positions (63.3%, 31/49) were detected in the N-terminal zinc finger domain of the HIV-1 integrase. Motifs and residues essential for HIV-1 integrase activity were little polymorphic, but within the minimal non-specific DNA binding region I220-D270 up to 18.1% amino acid variation was noticed, including four positions with significant amino acid variation over time (S230, D232, D256, A265). No major resistance mutations were identified, and minor resistance mutations were rarely observed without trend over time. E157Q considered by HIVdb, ANRS, and GRADE algorithms was the most frequent resistance-associated polymorphism with an overall prevalence of 2.4%. Conclusions Detailed knowledge of the evolutionary variation of HIV-1 integrase polymorphisms is important to understand the development of resistance in the presence of the drug. Our results will contribute to define the relevance of integrase polymorphisms in HIV-strains resistant to integrase inhibitors and to improve resistance interpretation algorithms. PMID:25397491

  6. Structure-Guided Optimization of HIV Integrase Strand Transfer Inhibitors | Center for Cancer Research

    Cancer.gov

    Integrase mutations can reduce the effectiveness of the first-generation FDA-approved integrase strand transfer inhibitors (INSTIs), raltegravir (RAL) and elvitegravir (EVG). The second-generation agent, dolutegravir (DTG), has enjoyed considerable clinical success; however, resistancecausing mutations that diminish the efficacy of DTG have appeared. Our current findings

  7. Optimization of Streptomyces bacteriophage phi C31 integrase system to prevent post integrative gene silencing in pulmonary type II cells.

    PubMed

    Aneja, Manish Kumar; Geiger, Johannes; Imker, Rabea; Uzgun, Senta; Kormann, Michael; Hasenpusch, Guenther; Maucksch, Christof; Rudolph, Carsten

    2009-12-31

    phi C31 integrase has emerged as a potent tool for achieving long-term gene expression in different tissues. The present study aimed at optimizing elements of phi C31 integrase system for alveolar type II cells. Luciferase and beta-galactosidase activities were measured at different time points post transfection. 5-Aza-2'deoxycytidine (AZA) and trichostatin A (TSA) were used to inhibit DNA methyltransferase and histone deacetylase complex (HDAC) respectively. In A549 cells, expression of the integrase using a CMV promoter resulted in highest integrase activity, whereas in MLE12 cells, both CAG and CMV promoter were equally effective. Effect of polyA site was observed only in A549 cells, where replacement of SV40 polyA by bovine growth hormone (BGH) polyA site resulted in an enhancement of integrase activity. Addition of a C-terminal SV40 nuclear localization signal (NLS) did not result in any significant increase in integrase activity. Long-term expression studies with AZA and TSA, provided evidence for post-integrative gene silencing. In MLE12 cells, both DNA methylases and HDACs played a significant role in silencing, whereas in A549 cells, it could be attributed majorly to HDAC activity. Donor plasmids comprising cellular promoters ubiquitin B (UBB), ubiquitin C (UCC) and elongation factor 1 alpha (EF1 alpha) in an improved backbone prevented post-integrative gene silencing. In contrast to A549 and MLE12 cells, no silencing could be observed in human bronchial epithelial cells, BEAS-2B. Donor plasmid coding for murine erythropoietin under the EF1 alpha promoter when combined with phi C31 integrase resulted in higher long-term erythropoietin expression and subsequently higher hematocrit levels in mice after intravenous delivery to the lungs. These results provide evidence for cell specific post integrative gene silencing with C31 integrase and demonstrate the pivotal role of donor plasmid in long-term expression attained with this system.

  8. A historical sketch of the discovery and development of HIV-1 integrase inhibitors.

    PubMed

    Savarino, Andrea

    2006-12-01

    The long process of HIV-1 integrase inhibitor discovery and development can be attributed to both the complexity of HIV-1 integration and poor 'integration' of these researches into mainstream investigations on antiretroviral therapy in the mid-1990s. Of note, some fungal extracts investigated during this period contain the beta-hydroxyketo group, later recognised to be a key structural requirement for keto-enol acids (also referred to as diketo acids) and other integrase inhibitors. This review reconstructs (in the general context of the history of AIDS research) the principal steps that led to the integrase inhibitors currently in clinical trials, and discusses possible future directions.

  9. Long-term increase in mVEGF164 in mouse hindlimb muscle mediated by phage phiC31 integrase after nonviral DNA delivery.

    PubMed

    Portlock, Joylette L; Keravala, Annahita; Bertoni, Carmen; Lee, Solomon; Rando, Thomas A; Calos, Michele P

    2006-08-01

    Peripheral vascular disease (PVD), characterized by insufficient blood supply to extremities, can be a devastating illness. Although many gene therapy strategies for PVD using vascular endothelial growth factor (VEGF) have resulted in increased blood vessel formation, the vessels are often impermanent and regress after therapy, probably because of the short-lived VEGF expression mediated by gene therapy vectors (14 days or less). phiC31 integrase is a recombinase originally isolated from a bacteriophage of Streptomyces. This integrase performs efficient chromosomal integration of plasmid DNA into mammalian genomes that results in long-term transgene expression. In this study, gene transfer was achieved by intramuscular injection of VEGF and integrase plasmid DNAs into the tibialis anterior muscle in the mouse hindlimb, followed by electroporation of the muscle with needle electrodes. We observed VEGF levels significantly above background 40 days after injection in animals that received phiC31 integrase and the VEGF plasmid. Site-specific integration of plasmid DNA in the chromosomes of muscle tissue was verified by polymerase chain reaction at a common integration site. These results suggest the possible utility of the phiC31 integrase system to treat ischemic disease.

  10. [Isolation, idetification and anti-HIV-1 integrase activity of culturable endophytic fungi from Tibetan medicinal plant Phlomis younghusbandii Mukerjee].

    PubMed

    Zhang, Da-Wei; Zhao, Ming-Ming; Chen, Juan; Li, Chao; Guo, Shun-Xing

    2013-05-01

    A total of 52 endophytic fungi were isolated from roots and stems of Tibetan medicinal plant Phlomis younghusbandii Mukerjee. These fungal isolates were molecularly identified based on ITS sequnces and 28S sequences distributed to 12 genera, including Phoma, Chaetosphaeronema, Fusarium and Leptosphaeria, etc. Among them, the dominant genus was Phoma. Extracts of all strains were evaluated for anti-HIV-1 integrase activity by using soluable integrase expressed in E. coli BL21 (DE3). The results showed that seven samples from five fungal endophytes PHY-24, PHY-38, PHY-40, PHY-51, PHY-53, which belonged to genus Chaetosphaeronema, inhibited strand transfer reaction catalyzed by HIV-1 integrase with IC50 values, of 6.60, 5.20, 2.86, 7.86, 4.47, 4.56 and 3.23 microg x mL(-1) respectively. In conclusion, the endophytic fungi of Phlomis younghusbandii Mukerjee are valuable for further screening anti-HIV-1 integrase agents.

  11. HIV‑1 Integrase Strand Transfer Inhibitors with Reduced Susceptibility to Drug Resistant Mutant Integrases | Center for Cancer Research

    Cancer.gov

    On the cover: Mutant forms of HIV-1 IN reduce the therapeutic effectiveness of integrase strand transfer inhibitors (INSTIs). The cover figure shows the IN of prototype foamy virus complexed to a novel INSTI (gold) that retains potency against resistant mutants of HIV-1 IN. Overlain are the host and viral DNA substrates (blue and green, respectively), showing substrate mimicry

  12. Quantitative Analysis of HIV-1 Preintegration Complexes

    PubMed Central

    Engelman, Alan; Oztop, Ilker; Vandegraaff, Nick; Raghavendra, Nidhanapati K.

    2009-01-01

    Retroviral replication proceeds through the formation of a provirus, an integrated DNA copy of the viral RNA genome. The linear cDNA product of reverse transcription is the integration substrate and two different integrase activities, 3′ processing and DNA strand transfer, are required for provirus formation. Integrase nicks the cDNA ends adjacent to phylogenetically-conserved CA dinucleotides during 3′ processing. After nuclear entry and locating a suitable chromatin acceptor site, integrase joins the recessed 3′-OHs to the 5′-phosphates of a double-stranded staggered cut in the DNA target. Integrase functions in the context of a large nucleoprotein complex, called the preintegration complex (PIC), and PICs are analyzed to determine levels of integrase 3′ processing and DNA strand transfer activities that occur during acute virus infection. Denatured cDNA end regions are monitored by indirect end-labeling to measure the extent of 3′ processing. Native PICs can efficiently integrate their viral cDNA into exogenously added target DNA in vitro, and Southern blotting or nested PCR assays are used to quantify the resultant DNA strand transfer activity. This study details HIV-1 infection, PIC extraction, partial purification, and quantitative analyses of integrase 3′ processing and DNA strand transfer activities. PMID:19233280

  13. Lens Epithelium-derived Growth Factor/p75 Interacts with the Transposase-derived DDE Domain of PogZ*S⃞

    PubMed Central

    Bartholomeeusen, Koen; Christ, Frauke; Hendrix, Jelle; Rain, Jean-Christophe; Emiliani, Stéphane; Benarous, Richard; Debyser, Zeger; Gijsbers, Rik; De Rijck, Jan

    2009-01-01

    Lens epithelium-derived growth factor/p75 (LEDGF/p75) is a prominent cellular interaction partner of human immunodeficiency virus-1 (HIV-1) integrase, tethering the preintegration complex to the host chromosome. In light of the development of LEDGF/p75-integrase interaction inhibitors, it is essential to understand the cell biology of LEDGF/p75. We identified pogZ as new cellular interaction partner of LEDGF/p75. Analogous to lentiviral integrase, pogZ, a domesticated transposase, carries a DDE domain, the major determinant for LEDGF/p75 interaction. Using different in vitro and in vivo approaches, we corroborated the interaction between the C terminus of LEDGF/p75 and the DDE domain of pogZ, revealing an overlap in the binding of pogZ and HIV-1 integrase. Competition experiments showed that integrase is efficient in displacing pogZ from LEDGF/p75. Moreover, pogZ does not seem to play a role as a restriction factor of HIV. The finding that LEDGF/p75 is capable of interacting with a DDE domain protein that is not a lentiviral integrase points to a profound role of LEDGF/p75 in DDE domain protein function. PMID:19244240

  14. Diketo acids derivatives as integrase inhibitors: the war against the acquired immunodeficiency syndrome.

    PubMed

    Henao-Mejia, Jorge; Góez, Yenny; Patiño, Pablo; Rugeles, Maria T

    2006-06-01

    Since the human immunodeficiency virus was identified as etiological agent of the acquired immunodeficiency syndrome, great advances have been accomplished in the therapeutic field leading to reduced morbidity and mortality among infected patients. However, the high mutation rate of the viral genome generates strains resistant to multiple drugs, pointing to the importance of finding new therapeutic targets. Among the HIV structural genes, the POL gene codes for three essential enzymes: reverse transcriptase, protease, and integrase; nineteen of the twenty drugs currently approved by the Food and Drug Administration to treat this viral infection, inhibit the reverse transcriptase and the protease. Although intense research has been carried out in this area during the last 10 years, HIV integrase inhibitors are not yet approved for clinical use; however the fact that presence of this enzyme is a sine qua non for a productive HIV life cycle joined to its unique properties makes it a promissory target for anti-HIV therapy. Many compounds have been claimed to inhibit integrase in vitro; however, few of them have proven to have antiviral activity and low cytotoxicity in cell systems. Diketoacid derivatives are the most promising integrase inhibitors so far reported. Initially discovered independently by Shionogi & Co. and the Merck Research Laboratories, these compounds are highly specific for the integrase with potent antiviral activity in vitro and in vivo, and low cytotoxicity in cell cultures. Some of these compounds have recently entered clinical trials. Due to the high relevance of integrase inhibitors, and specifically of diketoacid derivatives, we review the latest findings and patents in this important field of research.

  15. Uncommon Pathways of Immune Escape Attenuate HIV-1 Integrase Replication Capacity

    PubMed Central

    Chopera, Denis R.; Olvera, Alex; Brumme, Chanson J.; Sela, Jennifer; Markle, Tristan J.; Martin, Eric; Carlson, Jonathan M.; Le, Anh Q.; McGovern, Rachel; Cheung, Peter K.; Kelleher, Anthony D.; Jessen, Heiko; Markowitz, Martin; Rosenberg, Eric; Frahm, Nicole; Sanchez, Jorge; Mallal, Simon; John, Mina; Harrigan, P. Richard; Heckerman, David; Brander, Christian; Walker, Bruce D.; Brumme, Zabrina L.

    2012-01-01

    An attenuation of the HIV-1 replication capacity (RC) has been observed for immune-mediated escape mutations in Gag restricted by protective HLA alleles. However, the extent to which escape mutations affect other viral proteins during natural infection is not well understood. We generated recombinant viruses encoding plasma HIV-1 RNA integrase sequences from antiretroviral-naïve individuals with early (n = 88) and chronic (n = 304) infections and measured the in vitro RC of each. In contrast to data from previous studies of Gag, we observed little evidence that host HLA allele expression was associated with integrase RC. A modest negative correlation was observed between the number of HLA-B-associated integrase polymorphisms and RC in chronic infection (R = −0.2; P = 0.003); however, this effect was not driven by mutations restricted by protective HLA alleles. Notably, the integrase variants S119R, G163E, and I220L, which represent uncommon polymorphisms associated with HLA-C*05, -A*33, and -B*52, respectively, correlated with lower RC (all q < 0.2). We identified a novel C*05-restricted epitope (HTDNGSNF114–121) that likely contributes to the selection of the S119R variant, the polymorphism most significantly associated with lower RC in patient sequences. An NL4-3 mutant encoding the S119R polymorphism displayed a ∼35%-reduced function that was rescued by a single compensatory mutation of A91E. Together, these data indicate that substantial HLA-driven attenuation of integrase is not a general phenomenon during HIV-1 adaptation to host immunity. However, uncommon polymorphisms selected by HLA alleles that are not conventionally regarded to be protective may be associated with impaired protein function. Vulnerable epitopes in integrase might therefore be considered for future vaccine strategies. PMID:22496233

  16. Uncommon pathways of immune escape attenuate HIV-1 integrase replication capacity.

    PubMed

    Brockman, Mark A; Chopera, Denis R; Olvera, Alex; Brumme, Chanson J; Sela, Jennifer; Markle, Tristan J; Martin, Eric; Carlson, Jonathan M; Le, Anh Q; McGovern, Rachel; Cheung, Peter K; Kelleher, Anthony D; Jessen, Heiko; Markowitz, Martin; Rosenberg, Eric; Frahm, Nicole; Sanchez, Jorge; Mallal, Simon; John, Mina; Harrigan, P Richard; Heckerman, David; Brander, Christian; Walker, Bruce D; Brumme, Zabrina L

    2012-06-01

    An attenuation of the HIV-1 replication capacity (RC) has been observed for immune-mediated escape mutations in Gag restricted by protective HLA alleles. However, the extent to which escape mutations affect other viral proteins during natural infection is not well understood. We generated recombinant viruses encoding plasma HIV-1 RNA integrase sequences from antiretroviral-naïve individuals with early (n = 88) and chronic (n = 304) infections and measured the in vitro RC of each. In contrast to data from previous studies of Gag, we observed little evidence that host HLA allele expression was associated with integrase RC. A modest negative correlation was observed between the number of HLA-B-associated integrase polymorphisms and RC in chronic infection (R = -0.2; P = 0.003); however, this effect was not driven by mutations restricted by protective HLA alleles. Notably, the integrase variants S119R, G163E, and I220L, which represent uncommon polymorphisms associated with HLA-C*05, -A*33, and -B*52, respectively, correlated with lower RC (all q < 0.2). We identified a novel C*05-restricted epitope (HTDNGSNF(114-121)) that likely contributes to the selection of the S119R variant, the polymorphism most significantly associated with lower RC in patient sequences. An NL4-3 mutant encoding the S119R polymorphism displayed a ~35%-reduced function that was rescued by a single compensatory mutation of A91E. Together, these data indicate that substantial HLA-driven attenuation of integrase is not a general phenomenon during HIV-1 adaptation to host immunity. However, uncommon polymorphisms selected by HLA alleles that are not conventionally regarded to be protective may be associated with impaired protein function. Vulnerable epitopes in integrase might therefore be considered for future vaccine strategies.

  17. Nucleic acid amplification of HIV-1 integrase sequence subtypes CRF01_AE and B for development of HIV anti-integrase drug resistance genotyping assay

    NASA Astrophysics Data System (ADS)

    Adlar, F. R.; Bela, B.

    2017-08-01

    To anticipate the potential use of anti-integrase drugs in Indonesia for treatment of HIV-1 infection, the development of a drug resistance genotyping assay for anti-integrase is crucial in identifying the genetic drug resistance profile of Indonesian HIV-1 strains. This experiment aimed to amplify a target region in the integrase gene of Indonesian HIV-1 subtypes CRF01_AE and B that contain genetic mutations known to confer resistance to anti-integrase drug. Eleven archived plasma samples from individuals living with HIV-1 were obtained from the Virology and Cancer Pathobiology Research Center for Health Service (VCPRC FKUI-RSCM) laboratory. One of the plasma samples contained HIV-1 subtype B, and the remaining plasma samples contained subtype CRF01_AE. The target regions for all samples were amplified through RT-PCR, with an annealing temperature of 55 °C, using the primer pair AE_POL 4086F and AE_POL 5232R that were designed by VCPRC FKUI-RSCM. The results of this experiment show that 18.2% (2/11) of the samples were successfully amplified using the one-step RT-PCR. While the primer pair was effective in amplifying the target region in the integrase gene sequence for subtype B (100%; 1/1), it had a low efficacy (10%, 1/10) for subtype CRF01_AE. In conclusion, the primer pair can be used to amplify the target region in Indonesian HIV-1 strain subtypes CRF01_AE and B. However, optimization of the PCR condition and an increased number of samples would help to determine an accurate representation of the efficacy of the primer pair.

  18. High avidity anti-integrase antibodies discriminate recent and non-recent HIV infection: Implications for HIV incidence assay.

    PubMed

    Rikhtegaran Tehrani, Zahra; Azadmanesh, Kayhan; Mostafavi, Ehsan; Gharibzadeh, Safoora; Soori, Shahrzad; Azizi, Mohammad; Khabiri, Alireza

    2018-03-01

    Estimation of HIV incidence provides real-time information of HIV transmission trends for decision makers. Anti-integrase antibodies are the last ones produced during seroconversion and presence of high-avidity anti-integrase antibodies indicates the chronicity of HIV infection. This study aimed to evaluate the performance of these antibodies in discriminating of recent from non-recent HIV infection. For this purpose, different ELISA formats were developed to detect high-avidity anti-integrase antibodies in a commercially available performance panel, and the best assay was selected for further evaluation. The false recent rate of the selected assay was evaluated in a panel of Iranian patients and compared to two commercial assays, BED-EIA and LAg-Avidity. While the false recent rate of the developed assay was 3.8%, it was 14.1% and 1.3% for BED-EIA and LAg-Avidity, respectively. To our knowledge, this is the first report to study the performance of high-avidity anti-integrase antibodies for classification of HIV infection. The preliminary results showed that the specificity of the newly developed assay is markedly higher than BED-EIA and is comparable with LAg-Avidity. The promising results point to the potential use of anti-integrase antibodies as a biomarker in HIV incidence laboratory tests or algorithms. The developed assay needs further evaluation in future. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Novel Bifunctional Quinolonyl Diketo Acid Derivatives as HIV-1 Integrase Inhibitors: Design, Synthesis, Biological Activities and Mechanism of Action

    PubMed Central

    Di Santo, Roberto; Costi, Roberta; Roux, Alessandra; Artico, Marino; Lavecchia, Antonio; Marinelli, Luciana; Novellino, Ettore; Palmisano, Lucia; Andreotti, Mauro; Amici, Roberta; Galluzzo, Clementina Maria; Nencioni, Lucia; Palamara, Anna Teresa; Pommier, Yves; Marchand, Christophe

    2008-01-01

    The virally encoded integrase protein is an essential enzyme in the life cycle of the HIV-1 virus and represents an attractive and validated target in the development of therapeutics against HIV infection. Drugs that selectively inhibit this enzyme, when used in combination with inhibitors of reverse transcriptase and protease, are believed to be highly effective in suppressing the viral replication. Among the HIV-1 integrase inhibitors, the β-diketo acids (DKAs) represent a major lead for anti-HIV-1drug development. In this study, novel bifunctional quinolonyl diketo acid derivatives were designed, synthesized and tested for their inhibitory ability against HIV-1 integrase. The compounds are potent inhibitors of integrase activity. Particularly, derivative 8 is a potent IN inhibitor for both steps of the reaction (3′-processing and strand transfer) and exhibits both high antiviral activity against HIV-1 infected cells and low cytotoxicity. Molecular modeling studies provide a plausible mechanism of action, which is consistent with ligand SARs and enzyme photo-crosslinking experiments. PMID:16539381

  20. Control of Recombination Directionality by the Listeria Phage A118 Protein Gp44 and the Coiled-Coil Motif of Its Serine Integrase.

    PubMed

    Mandali, Sridhar; Gupta, Kushol; Dawson, Anthony R; Van Duyne, Gregory D; Johnson, Reid C

    2017-06-01

    The serine integrase of phage A118 catalyzes integrative recombination between attP on the phage and a specific attB locus on the chromosome of Listeria monocytogenes , but it is unable to promote excisive recombination between the hybrid attL and attR sites found on the integrated prophage without assistance by a recombination directionality factor (RDF). We have identified and characterized the phage-encoded RDF Gp44, which activates the A118 integrase for excision and inhibits integration. Gp44 binds to the C-terminal DNA binding domain of integrase, and we have localized the primary binding site to be within the mobile coiled-coil (CC) motif but distinct from the distal tip of the CC that is required for recombination. This interaction is sufficient to inhibit integration, but a second interaction involving the N-terminal end of Gp44 is also required to activate excision. We provide evidence that these two contacts modulate the trajectory of the CC motifs as they extend out from the integrase core in a manner dependent upon the identities of the four att sites. Our results support a model whereby Gp44 shapes the Int-bound complexes to control which att sites can synapse and recombine. IMPORTANCE Serine integrases mediate directional recombination between bacteriophage and bacterial chromosomes. These highly regulated site-specific recombination reactions are integral to the life cycle of temperate phage and, in the case of Listeria monocytogenes lysogenized by A118 family phage, are an essential virulence determinant. Serine integrases are also utilized as tools for genetic engineering and synthetic biology because of their exquisite unidirectional control of the DNA exchange reaction. Here, we identify and characterize the recombination directionality factor (RDF) that activates excision and inhibits integration reactions by the phage A118 integrase. We provide evidence that the A118 RDF binds to and modulates the trajectory of the long coiled-coil motif that extends from the large carboxyl-terminal DNA binding domain and is postulated to control the early steps of recombination site synapsis. Copyright © 2017 American Society for Microbiology.

  1. A Mos1 transposase in vivo assay to screen new HIV-1 integrase inhibitors.

    PubMed

    Cancian, Mariana; Loreto, Elgion L S

    2018-04-01

    The integrase and transposase enzymes of retrovirus and transposons, respectively, share the catalytic DDE domain. In vitro assays showed that inhibitors of HIV-1 integrase generally inhibit the mariner Mos1 transposase. Using a Drosophila strain in which the mobilisation of the mariner element can be quantified by mosaic eyes, we showed that flies maintained in medium containing 210 µM to 4 mM of raltegravir, or 1 or 2 mM of dolutegravir, which are HIV-1 integrase inhibitor used in AIDS treatment, have 23-33% less somatic mobilisation in mosaic eyes when treated with raltegravir and 28-32% when treated with dolutegravir. The gene expression of the mariner transposase gene, estimated by qPCR, is similar among treated and control flies. The results suggest that in vivo assays using Drosophila can be used as a primary screening of inhibitory drugs for transposase and retroviral integrase. The advantages of this assay are that it is easy, quick, cheap and is an in vivo test, meaning that the tested substance has to have been taken in by cells and has arrived at the target site, which is not the case when in vitro assays are applied.

  2. A novel family of integrases associated with prophages and genomic islands integrated within the tRNA-dihydrouridine synthase A (dusA) gene

    PubMed Central

    Farrugia, Daniel N.; Elbourne, Liam D. H.; Mabbutt, Bridget C.; Paulsen, Ian T.

    2015-01-01

    Genomic islands play a key role in prokaryotic genome plasticity. Genomic islands integrate into chromosomal loci such as transfer RNA genes and protein coding genes, whilst retaining various cargo genes that potentially bestow novel functions on the host organism. A gene encoding a putative integrase was identified at a single site within the 5′ end of the dusA gene in the genomes of over 200 bacteria. This integrase was discovered to be a component of numerous genomic islands, which appear to share a target site within the dusA gene. dusA encodes the tRNA-dihydrouridine synthase A enzyme, which catalyses the post-transcriptional reduction of uridine to dihydrouridine in tRNA. Genomic islands encoding homologous dusA-associated integrases were found at a much lower frequency within the related dusB and dusC genes, and non-dus genes. Excision of these dusA-associated islands from the chromosome as circularized intermediates was confirmed by polymerase chain reaction. Analysis of the dusA-associated islands indicated that they were highly diverse, with the integrase gene representing the only universal common feature. PMID:25883135

  3. Development of Tricyclic Hydroxy-1H-pyrrolopyridine-trione Containing HIV-1 Integrase Inhibitors

    PubMed Central

    Zhao, Xue Zhi; Maddali, Kasthuraiah; Metifiot, Mathieu; Smith, Steven J.; Vu, B. Christie; Marchand, Christophe; Hughes, Stephen H.; Pommier, Yves; Burke, Terrence R.

    2011-01-01

    New tricyclic HIV-1 integrase (IN) inhibitors were prepared that combined structural features of bicyclic pyrimidinones with recently disclosed 4,5-dihydroxy-1H-isoindole-1,3(2H)-diones. This combination resulted in the introduction of a nitrogen into the aryl ring and the addition of a fused third ring to our previously described inhibitors. The resulting analogues showed low micromolar inhibitory potency in in vitro HIV-1 integrase assays, with good selectivity for strand transfer relative to 3′-processing. PMID:21493066

  4. Performance of the Abbott RealTime HIV-1 Viral Load Assay Is Not Impacted by Integrase Inhibitor Resistance-Associated Mutations▿

    PubMed Central

    Young, Thomas P.; Cloherty, Gavin; Fransen, Signe; Napolitano, Laura; Swanson, Priscilla; Herman, Christine; Parkin, Neil T.; Hackett, John

    2011-01-01

    The Abbott RealTime HIV-1 viral load assay uses primers and probes targeted to integrase, which is also the target of integrase inhibitors such as raltegravir. Viral loads of 42 raltegravir-susceptible and 40 raltegravir-resistant specimens were determined using RealTime HIV-1 and Roche Monitor (v1.5). The differences in viral load measurements between assays were comparable in the two groups, demonstrating that the RealTime HIV-1 assay can tolerate raltegravir-selected mutations. PMID:21289145

  5. [Isolation and identification of the temperate bacteriophage from isolated strains of Streptococcus suis serotype 2].

    PubMed

    Ma, Yuling; Lu, Chengping; Fan, Hongjie

    2008-04-01

    A PCR assay was developed to study the distributional characteristics of phage integrase gene in Streptococcus suis serotype 2 (SS2). A 323bp distinct DNA target can be amplified in 25 strains of virulent SS2, while can not be amplified in avirulent strain T15, 5 strains of other serotypes (SS1, SS7, SS9) and strains of group C Streptococcus strains from pigs, which suggested that the phage integrase gene may be related to the pathogenicity of SS2 and can be consider as a detection factor of the virulent gene of SS2. The sequencing and restriction endonuclease analysis of the PCR products were also done. Comparisons between the sequences of phage integrase gene with that of SS2 strain, showed a high homology with SS2 China strains 98HAH33, 05ZYH33 and North American strain 89-1591. Complete cell lysis was observed with SS2 virulent strains but not with avirulent strain T15 after the induction by mitomycin C. Electron microscopy analysis of the lysate from SS2 virulent strains HA9801 and ZY05719 revealed the presence of phage particles. The induced phage, named SS2-HA and SS2-ZY, both have a small isometric nucleocapsid approximately 50 nm in diameter and have no tail and is therefore a member of the Tectiviridae family. The phage integrase gene sequence of phage SS2-HA and SS2-ZY shared high homologue identities with virulent SS2 strains, which suggested that the phage integrase gene of SS2 has high specify. The temperate phage and phage integrase gene can only detected from SS2 virulent strains but not from avirulent strain, and the detection of phage integrase gene was related to the virulence-associate factors of SS2, such as the muramidase-released protein gene (mrp), which suggested that the temperate phage of SS2 may be related to the pathogenicity of SS2.

  6. Docking studies on a new human immunodeficiency virus integrase-Mg-DNA complex: phenyl ring exploration and synthesis of 1H-benzylindole derivatives through fluorine substitutions.

    PubMed

    Ferro, Stefania; De Luca, Laura; Barreca, Maria Letizia; Iraci, Nunzio; De Grazia, Sara; Christ, Frauke; Witvrouw, Myriam; Debyser, Zeger; Chimirri, Alba

    2009-01-22

    A new model of HIV-1 integrase-Mg-DNA complex that is useful for docking experiments has been built. It was used to study the binding mode of integrase strand transfer inhibitor 1 (CHI-1043) and other fluorine analogues. Molecular modeling results prompted us to synthesize the designed derivatives which showed potent enzymatic inhibition at nanomolar concentration, high antiviral activity, and low toxicity. Microwave assisted organic synthesis (MAOS) was employed in several steps of the synthetic pathway, thus reducing reaction times and improving yields.

  7. Identification and analysis of integrons and cassette arrays in bacterial genomes

    PubMed Central

    Touchon, Marie; Néron, Bertrand; Rocha, Eduardo PC

    2016-01-01

    Abstract Integrons recombine gene arrays and favor the spread of antibiotic resistance. Their broader roles in bacterial adaptation remain mysterious, partly due to lack of computational tools. We made a program – IntegronFinder – to identify integrons with high accuracy and sensitivity. IntegronFinder is available as a standalone program and as a web application. It searches for attC sites using covariance models, for integron-integrases using HMM profiles, and for other features (promoters, attI site) using pattern matching. We searched for integrons, integron-integrases lacking attC sites, and clusters of attC sites lacking a neighboring integron-integrase in bacterial genomes. All these elements are especially frequent in genomes of intermediate size. They are missing in some key phyla, such as α-Proteobacteria, which might reflect selection against cell lineages that acquire integrons. The similarity between attC sites is proportional to the number of cassettes in the integron, and is particularly low in clusters of attC sites lacking integron-integrases. The latter are unexpectedly abundant in genomes lacking integron-integrases or their remains, and have a large novel pool of cassettes lacking homologs in the databases. They might represent an evolutionary step between the acquisition of genes within integrons and their stabilization in the new genome. PMID:27130947

  8. Towards β-globin gene-targeting with integrase-defective lentiviral vectors.

    PubMed

    Inanlou, Davoud Nouri; Yakhchali, Bagher; Khanahmad, Hossein; Gardaneh, Mossa; Movassagh, Hesam; Cohan, Reza Ahangari; Ardestani, Mehdi Shafiee; Mahdian, Reza; Zeinali, Sirous

    2010-11-01

    We have developed an integrase-defective lentiviral (LV) vector in combination with a gene-targeting approach for gene therapy of β-thalassemia. The β-globin gene-targeting construct has two homologous stems including sequence upstream and downstream of the β-globin gene, a β-globin gene positioned between hygromycin and neomycin resistant genes and a herpes simplex virus type 1 thymidine kinase (HSVtk) suicide gene. Utilization of integrase-defective LV as a vector for the β-globin gene increased the number of selected clones relative to non-viral methods. This method represents an important step toward the ultimate goal of a clinical gene therapy for β-thalassemia.

  9. Incorporation of aptamers in the terminal loop of shRNAs yields an effective and novel combinatorial targeting strategy.

    PubMed

    Pang, Ka Ming; Castanotto, Daniela; Li, Haitang; Scherer, Lisa; Rossi, John J

    2018-01-09

    Gene therapy by engineering patient's own blood cells to confer HIV resistance can potentially lead to a functional cure for AIDS. Toward this goal, we have previously developed an anti-HIV lentivirus vector that deploys a combination of shRNA, ribozyme and RNA decoy. To further improve this therapeutic vector against viral escape, we sought an additional reagent to target HIV integrase. Here, we report the development of a new strategy for selection and expression of aptamer for gene therapy. We developed a SELEX protocol (multi-tag SELEX) for selecting RNA aptamers against proteins with low solubility or stability, such as integrase. More importantly, we expressed these aptamers in vivo by incorporating them in the terminal loop of shRNAs. This novel strategy allowed efficient expression of the shRNA-aptamer fusions that targeted RNAs and proteins simultaneously. Expressed shRNA-aptamer fusions targeting HIV integrase or reverse transcriptase inhibited HIV replication in cell cultures. Viral inhibition was further enhanced by combining an anti-integrase aptamer with an anti-HIV Tat-Rev shRNA. This construct exhibited efficacy comparable to that of integrase inhibitor Raltegravir. Our strategy for the selection and expression of RNA aptamers can potentially extend to other gene therapy applications. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. Nanobody-based chimeric receptor gene integration in Jurkat cells mediated by PhiC31 integrase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iri-Sofla, Farnoush Jafari; Rahbarizadeh, Fatemeh, E-mail: rahbarif@modares.ac.ir; Ahmadvand, Davoud

    2011-11-01

    The crucial role of T lymphocytes in anti-tumor immunity has led to the development of novel strategies that can target and activate T cells against tumor cells. Recombinant DNA technology has been used to generate non-MHC-restricted chimeric antigen receptors (CARs). Here, we constructed a panel of recombinant CAR that harbors the anti-MUC1 nanobody and the signaling and co-signaling moieties (CD3{zeta}/CD28) with different spacer regions derived from human IgG3 with one or two repeats of the hinge sequence or the hinge region of Fc{gamma}RII. The PhiC31 integrase system was employed to investigate if the recombination efficiency could be recruited for highmore » and stable expression of T cell chimeric receptor genes. The effect of nuclear localization signal (NLS) and two different promoters (CMV and CAG) on efficacy of PhiC31 integrase in human T cell lines was evaluated. The presence of integrase in combination with NLS, mediated up to 7.6 and 8.5 fold increases in CAR expression in ZCHN-attB and ZCHHN-attB cassette integrated T cells, respectively. Our results showed that highly efficient and stable transduction of the Jurkat cell line by PhiC31 integrase is a feasible modality for generating anti-cancer chimeric T cells for use in cancer immunotherapy.« less

  11. Nanobody-based chimeric receptor gene integration in Jurkat cells mediated by φC31 integrase.

    PubMed

    Iri-Sofla, Farnoush Jafari; Rahbarizadeh, Fatemeh; Ahmadvand, Davoud; Rasaee, Mohammad J

    2011-11-01

    The crucial role of T lymphocytes in anti-tumor immunity has led to the development of novel strategies that can target and activate T cells against tumor cells. Recombinant DNA technology has been used to generate non-MHC-restricted chimeric antigen receptors (CARs). Here, we constructed a panel of recombinant CAR that harbors the anti-MUC1 nanobody and the signaling and co-signaling moieties (CD3ζ/CD28) with different spacer regions derived from human IgG3 with one or two repeats of the hinge sequence or the hinge region of FcγRII. The PhiC31 integrase system was employed to investigate if the recombination efficiency could be recruited for high and stable expression of T cell chimeric receptor genes. The effect of nuclear localization signal (NLS) and two different promoters (CMV and CAG) on efficacy of PhiC31 integrase in human T cell lines was evaluated. The presence of integrase in combination with NLS, mediated up to 7.6 and 8.5 fold increases in CAR expression in ZCHN-attB and ZCHHN-attB cassette integrated T cells, respectively. Our results showed that highly efficient and stable transduction of the Jurkat cell line by PhiC31 integrase is a feasible modality for generating anti-cancer chimeric T cells for use in cancer immunotherapy. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Analysis of the site-specific integration system of the Streptomyces aureofaciens phage μ1/6.

    PubMed

    Farkašovská, Jarmila; Godány, Andrej

    2012-03-01

    The bacteriophage μ1/6 integrates its DNA into the chromosome of tetracycline producing strains of Streptomyces aureofaciens by a site-specific recombination process. A bioinformatic analysis of the μ1/6 genome revealed that orf5 encodes a putative integrase, a basic protein of 416 amino acids. The μ1/6 integrase was found to belong to the integrase family of site-specific tyrosine recombinases. The phage attachment site (attP) was localized downstream of the int gene. The attachment junctions (attL and attR) were determined, allowing identification of the bacterial attachment site (attB). All attachment sites shared a 46-bp common core sequence within which a site-specific recombination occurs. This core sequence comprises the 3' end of a putative tRNA(Thr) gene (anticodon TGT) which is completely restored in attL after integration of the phage into the host genome. An integration vector containing μ1/6 int-attP region was inserted stably into the S. aureofaciens B96, S. lividans TK24, and S. coelicolor A3. The μ1/6 integrase was shown to be functional in vivo in heterologous Escherichia coli without any other factors encoded by Streptomyces. In vitro recombination assay using purified μ1/6 integrase demonstrated its ability to catalyze integrative recombination in the presence of a crude extract of E. coli cells.

  13. Gene Expression in Class 2 Integrons Is SOS-Independent and Involves Two Pc Promoters.

    PubMed

    Jové, Thomas; Da Re, Sandra; Tabesse, Aurore; Gassama-Sow, Amy; Ploy, Marie-Cécile

    2017-01-01

    Integrons are powerful bacterial genetic elements that permit the expression and dissemination of antibiotic-resistance gene cassettes. They contain a promoter Pc that allows the expression of gene cassettes captured through site-specific recombination catalyzed by IntI, the integron-encoded integrase. Class 1 and 2 integrons are found in both clinical and environmental settings. The regulation of intI and of Pc promoters has been extensively studied in class 1 integrons and the regulatory role of the SOS response on intI expression has been shown. Here we investigated class 2 integrons. We characterized the P intI2 promoter and showed that intI2 expression is not regulated via the SOS response. We also showed that, unlike class 1 integrons, class 2 integrons possess not one but two active Pc promoters that are located within the attI2 region that seem to contribute equally to gene cassette expression. Class 2 integrons mostly encode an inactive truncated integrase, but the rare class 2 integrons that encode an active integrase are associated with less efficient Pc2 promoter variants. We propose an evolutionary model for class 2 integrons in which the absence of repression of the integrase gene expression led to mutations resulting in either inactive integrase or Pc variants of weaker activity, thereby reducing the potential fitness cost of these integrons.

  14. Identification and analysis of integrons and cassette arrays in bacterial genomes.

    PubMed

    Cury, Jean; Jové, Thomas; Touchon, Marie; Néron, Bertrand; Rocha, Eduardo Pc

    2016-06-02

    Integrons recombine gene arrays and favor the spread of antibiotic resistance. Their broader roles in bacterial adaptation remain mysterious, partly due to lack of computational tools. We made a program - IntegronFinder - to identify integrons with high accuracy and sensitivity. IntegronFinder is available as a standalone program and as a web application. It searches for attC sites using covariance models, for integron-integrases using HMM profiles, and for other features (promoters, attI site) using pattern matching. We searched for integrons, integron-integrases lacking attC sites, and clusters of attC sites lacking a neighboring integron-integrase in bacterial genomes. All these elements are especially frequent in genomes of intermediate size. They are missing in some key phyla, such as α-Proteobacteria, which might reflect selection against cell lineages that acquire integrons. The similarity between attC sites is proportional to the number of cassettes in the integron, and is particularly low in clusters of attC sites lacking integron-integrases. The latter are unexpectedly abundant in genomes lacking integron-integrases or their remains, and have a large novel pool of cassettes lacking homologs in the databases. They might represent an evolutionary step between the acquisition of genes within integrons and their stabilization in the new genome. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. Retroviral DNA Integration

    PubMed Central

    2016-01-01

    The integration of a DNA copy of the viral RNA genome into host chromatin is the defining step of retroviral replication. This enzymatic process is catalyzed by the virus-encoded integrase protein, which is conserved among retroviruses and LTR-retrotransposons. Retroviral integration proceeds via two integrase activities: 3′-processing of the viral DNA ends, followed by the strand transfer of the processed ends into host cell chromosomal DNA. Herein we review the molecular mechanism of retroviral DNA integration, with an emphasis on reaction chemistries and architectures of the nucleoprotein complexes involved. We additionally discuss the latest advances on anti-integrase drug development for the treatment of AIDS and the utility of integrating retroviral vectors in gene therapy applications. PMID:27198982

  16. phiC31 Integrase-Mediated Site-Specific Recombination in Barley

    PubMed Central

    Rubtsova, Myroslava; Kumlehn, Jochen; Gils, Mario

    2012-01-01

    The Streptomyces phage phiC31 integrase was tested for its feasibility in excising transgenes from the barley genome through site-specific recombination. We produced transgenic barley plants expressing an active phiC31 integrase and crossed them with transgenic barley plants carrying a target locus for recombination. The target sequence involves a reporter gene encoding green fluorescent protein (GFP), which is flanked by the attB and attP recognition sites for the phiC31 integrase. This sequence disruptively separates a gusA coding sequence from an upstream rice actin promoter. We succeeded in producing site-specific recombination events in the hybrid progeny of 11 independent barley plants carrying the above target sequence after crossing with plants carrying a phiC31 expression cassette. Some of the hybrids displayed fully executed recombination. Excision of the GFP gene fostered activation of the gusA gene, as visualized in tissue of hybrid plants by histochemical staining. The recombinant loci were detected in progeny of selfed F1, even in individuals lacking the phiC31 transgene, which provides evidence of stability and generative transmission of the recombination events. In several plants that displayed incomplete recombination, extrachromosomal excision circles were identified. Besides the technical advance achieved in this study, the generated phiC31 integrase-expressing barley plants provide foundational stock material for use in future approaches to barley genetic improvement, such as the production of marker-free transgenic plants or switching transgene activity. PMID:23024817

  17. Lack of integrase inhibitors associated resistance mutations among HIV-1C isolates.

    PubMed

    Mulu, Andargachew; Maier, Melanie; Liebert, Uwe Gerd

    2015-12-01

    Although biochemical analysis of HIV-1 integrase enzyme suggested the use of integrase inhibitors (INIs) against HIV-1C, different viral subtypes may favor different mutational pathways potentially leading to varying levels of drug resistance. Thus, the aim of this study was to search for the occurrence and natural evolution of integrase polymorphisms and/or resistance mutations in HIV-1C Ethiopian clinical isolates prior to the introduction of INIs. Plasma samples from chronically infected drug naïve patients (N = 45), of whom the PR and RT sequence was determined previously, were used to generate population based sequences of HIV-1 integrase. HIV-1 subtype was determined using the REGA HIV-1 subtyping tool. Resistance mutations were interpreted according to the Stanford HIV drug resistance database ( http://hivdb.stanford.edu ) and the updated International Antiviral Society (IAS)-USA mutation lists. Moreover, rates of polymorphisms in the current isolates were compared with South African and global HIV-1C isolates. All subjects were infected with HIV-1C concordant to the protease (PR) and reverse transcriptase (RT) regions. Neither major resistance-associated IN mutations (T66I/A/K, E92Q/G, T97A, Y143HCR, S147G, Q148H/R/K, and N155H) nor silent mutations known to change the genetic barrier were observed. Moreover, the DDE-catalytic motif (D64G/D116G/E152 K) and signature HHCC zinc-binding motifs at codon 12, 16, 40 and 43 were found to be highly conserved. However, compared to other South African subtype C isolates, the rate of polymorphism was variable at various positions. Although the sample size is small, the findings suggest that this drug class could be effective in Ethiopia and other southern African countries where HIV-1C is predominantly circulating. The data will contribute to define the importance of integrase polymorphism and to improve resistance interpretation algorithms in HIV-1C isolates.

  18. Molecular evolution of HIV-1 integrase during the 20 years prior to the first approval of integrase inhibitors.

    PubMed

    Meixenberger, Karolin; Yousef, Kaveh Pouran; Smith, Maureen Rebecca; Somogyi, Sybille; Fiedler, Stefan; Bartmeyer, Barbara; Hamouda, Osamah; Bannert, Norbert; von Kleist, Max; Kücherer, Claudia

    2017-11-14

    Detailed knowledge of the evolutionary potential of polymorphic sites in a viral protein is important for understanding the development of drug resistance in the presence of an inhibitor. We therefore set out to analyse the molecular evolution of the HIV-1 subtype B integrase at the inter-patient level in Germany during a 20-year period prior to the first introduction of integrase strand inhibitors (INSTIs). We determined 337 HIV-1 integrase subtype B sequences (amino acids 1-278) from stored plasma samples of antiretroviral treatment-naïve individuals newly diagnosed with HIV-1 between 1986 and 2006. Shannon entropy was calculated to determine the variability at each amino acid position. Time trends in the frequency of amino acid variants were identified by linear regression. Direct coupling analysis was applied to detect covarying sites. Twenty-two time trends in the frequency of amino acid variants demonstrated either single amino acid exchanges or variation in the degree of polymorphy. Covariation was observed for 17 amino acid variants with a temporal trend. Some minor INSTI resistance mutations (T124A, V151I, K156 N, T206S, S230 N) and some INSTI-selected mutations (M50I, L101I, T122I, T124 N, T125A, M154I, G193E, V201I) were identified at overall frequencies >5%. Among these, the frequencies of L101I, T122I, and V201I increased over time, whereas the frequency of M154I decreased. Moreover, L101I, T122I, T124A, T125A, M154I, and V201I covaried with non-resistance-associated variants. Time-trending, covarying polymorphisms indicate that long-term evolutionary changes of the HIV-1 integrase involve defined clusters of possibly structurally or functionally associated sites independent of selective pressure through INSTIs at the inter-patient level. Linkage between polymorphic resistance- and non-resistance-associated sites can impact the selection of INSTI resistance mutations in complex ways. Identification of these sites can help in improving genotypic resistance assays, resistance prediction algorithms, and the development of new integrase inhibitors.

  19. Integrase inhibitor versus protease inhibitor based regimen for HIV-1 infected women (WAVES): a randomised, controlled, double-blind, phase 3 study

    PubMed Central

    Squires, Kathleen; Kityo, Cissy; Hodder, Sally; Johnson, Margaret; Voronin, Evgeny; Hagins, Debbie; Avihingsanon, Anchalee; Koenig, Ellen; Jiang, Shuping; White, Kirsten; Cheng, Andrew; Szwarcberg, Javier; Cao, Huyen

    2018-01-01

    Summary Background Women are under-represented in HIV antiretroviral therapy (ART) studies. Guidelines for selection of ART as initial therapy in patients with HIV-1 infection do not contain sex-specific treatment. We aimed to assess the safety and efficacy of the single tablet integrase inhibitor regimen containing elvitegravir, cobicistat, emtricitabine, and tenofovir disoproxil fumarate compared with a boosted protease inhibitor regimen of ritonavir-boosted atazanavir with emtricitabine and tenofovir disoproxil fumarate. Methods In this international, randomised, controlled, double-blind, phase 3 study (Women AntiretroViral Efficacy and Safety study [WAVES]), we recruited treatment-naive HIV-infected women with an estimated creatinine clearance of 70 mL/min or higher from 80 centres in 11 countries. Women were randomly assigned (1:1) to receive elvitegravir, cobicistat, emtricitabine, and tenofovir disoproxil fumarate (integrase inhibitor regimen) or ritonavir-boosted atazanavir with emtricitabine and tenofovir disoproxil fumarate (protease inhibitor based regimen); regimens were masked with matching placebos. Randomisation was done by a computer-generated allocation sequence (block size four) and was stratified by HIV-1 RNA viral load and race. Investigators, patients, study staff, and those assessing outcomes were masked to treatment group. All participants who received one dose of study drug were included in the primary efficacy and safety analyses. The main outcome was the proportion of patients with plasma HIV-1 RNA less than 50 copies per mL at week 48 as defined by US Food and Drug Administration snapshot algorithm (prespecified non-inferiority margin of 12%). This study is registered with ClinicalTrials.gov, number NCT01705574. Findings Between Nov 28, 2012, and March 12, 2014, 575 women were enrolled. 289 were randomly assigned to receive the integrase inhibitor regimen and 286 to receive the protease inhibitor based regimen. 252 (87%) women in the integrase inhibitor group had plasma HIV-1 RNA less than 50 copies per mL at week 48 compared with 231 (81%) women in the protease inhibitor group (adjusted difference 6·5%; 95% CI 0·4–12·6). No participant had virological failure with resistance in the integrase inhibitor group compared with three participants ([1%]; all Met184Val/Ile) in the protease inhibitor group. 19 women in the protease inhibitor group discontinued because of adverse events compared with five in the integrase inhibitor group. Interpretation WAVES shows that clinical trials of ART regimens in global and diverse populations of treatment-naive women are possible. The findings support guidelines recommending integrase inhibitor based regimens in first-line antiretroviral therapy. PMID:27562742

  20. Real-time monitoring of disintegration activity of catalytic core domain of HIV-1 integrase using molecular beacon.

    PubMed

    Zhang, Da-wei; Zhao, Ming-ming; He, Hong-qiu; Guo, Shun-xing

    2013-09-15

    HIV-1 integrase, an essential enzyme for retroviral replication, is a validated target for anti-HIV therapy development. The catalytic core domain of integrase (IN-CCD) is capable of catalyzing disintegration reaction. In this work, a hairpin-shaped disintegration substrate was designed and validated by enzyme-linked immunosorbent assay; a molecular beacon-based assay was developed for disintegration reaction of IN-CCD. Results showed that the disintegration substrate could be recognized and catalyzed by IN-CCD, and the disintegration reaction can be monitored according to the increase of fluorescent signal. The assay can be applied to real-time detection of disintegration with advantages of simplicity, high sensitivity, and excellent specificity. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Suboptimal Doses of Raltegravir Cause Aberrant HIV Integrations | Center for Cancer Research

    Cancer.gov

    When a cell is infected with HIV, a DNA copy of the HIV genome is inserted into that cell’s chromosomal DNA. This insertion reaction is carried out by the viral enzyme integrase (IN) and involves two distinct steps: removal of two nucleotides from each 3’ end of the viral DNA, followed by the strand transfer reaction, in which the viral DNA ends are inserted into the host chromosomal DNA. Integration is essential for viral replication, making it an important target for antiviral therapy. Raltegravir, and the other approved integrase inhibitor, Elvitegravir, are called integrase strand transfer inhibitors (INSTIs), because they bind to the active site of IN and block the strand transfer reaction.      

  2. Discovery of 2-Pyridinone Aminals: A Prodrug Strategy to Advance a Second Generation of HIV-1 Integrase Strand Transfer Inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raheem, Izzat T.; Walji, Abbas M.; Klein, Daniel

    The search for new molecular constructs that resemble the critical two-metal binding pharmacophore required for HIV integrase strand transfer inhibition represents a vibrant area of research within drug discovery. Here we present the discovery of a new class of HIV integrase strand transfer inhibitors based on the 2-pyridinone core of MK-0536. These efforts led to the identification of two lead compounds with excellent antiviral activity and preclinical pharmacokinetic profiles to support a once-daily human dose prediction. Dose escalating PK studies in dog revealed significant issues with limited oral absorption and required an innovative prodrug strategy to enhance the high-dose plasmamore » exposures of the parent molecules.« less

  3. Discovery of a small-molecule HIV-1 integrase inhibitor-binding site | Center for Cancer Research

    Cancer.gov

    The lowest energy-binding conformation of an inhibitor bound to the dimeric interface of HIV-1 integrase core domain. The yellow region represents a unique allosteric binding site identified by affinity labeling and mass spectrometry and validated through mutagenesis. This site can provide a potential platform for the rational design of inhibitors selective for disruption of

  4. Substrate mimicry—overcoming HIV-1 integrase resistance mutations | Center for Cancer Research

    Cancer.gov

    HIV integrase (IN) strand transfer inhibitors (INSTIs) are among the newest anti-AIDS drugs; however, mutant forms of IN can confer resistance. We developed noncytotoxic naphthyridine-containing INSTIs that retain low nanomolar IC50 values against HIV-1 variants harboring all of the major INSTI-resistant mutations. We found by analyzing crystal structures of inhibitors bound

  5. 6-(1-Benzyl-1H-pyrrol-2-yl)-2,4-dioxo-5-hexenoic acids as dual inhibitors of recombinant HIV-1 integrase and ribonuclease H, synthesized by a parallel synthesis approach.

    PubMed

    Costi, Roberta; Métifiot, Mathieu; Esposito, Francesca; Cuzzucoli Crucitti, Giuliana; Pescatori, Luca; Messore, Antonella; Scipione, Luigi; Tortorella, Silvano; Zinzula, Luca; Novellino, Ettore; Pommier, Yves; Tramontano, Enzo; Marchand, Christophe; Di Santo, Roberto

    2013-11-14

    The increasing efficiency of HAART has helped to transform HIV/AIDS into a chronic disease. Still, resistance and drug-drug interactions warrant the development of new anti-HIV agents. We previously discovered hit 6, active against HIV-1 replication and targeting RNase H in vitro. Because of its diketo-acid moiety, we speculated that this chemotype could serve to develop dual inhibitors of both RNase H and integrase. Here, we describe a new series of 1-benzyl-pyrrolyl diketohexenoic derivatives, 7a-y and 8a-y, synthesized following a parallel solution-phase approach. Those 50 analogues have been tested on recombinant enzymes (RNase H and integrase) and in cell-based assays. Approximately half (22) exibited inhibition of HIV replication. Compounds 7b, 7u, and 8g were the most active against the RNase H activity of reverse-transcriptase, with IC50 values of 3, 3, and 2.5 μM, respectively. Compound 8g was also the most potent integrase inhibitor with an IC50 value of 26 nM.

  6. Differential Effects of the G118R, H51Y, and E138K Resistance Substitutions in Different Subtypes of HIV Integrase

    PubMed Central

    Quashie, Peter K.; Oliviera, Maureen; Veres, Tamar; Osman, Nathan; Han, Ying-Shan; Hassounah, Said; Lie, Yolanda; Huang, Wei; Mesplède, Thibault

    2014-01-01

    ABSTRACT Dolutegravir (DTG) is the latest antiretroviral (ARV) approved for the treatment of human immunodeficiency virus (HIV) infection. The G118R substitution, previously identified with MK-2048 and raltegravir, may represent the initial substitution in a dolutegravir resistance pathway. We have found that subtype C integrase proteins have a low enzymatic cost associated with the G118R substitution, mostly at the strand transfer step of integration, compared to either subtype B or recombinant CRF02_AG proteins. Subtype B and circulating recombinant form AG (CRF02_AG) clonal viruses encoding G118R-bearing integrases were severely restricted in their viral replication capacity, and G118R/E138K-bearing viruses had various levels of resistance to dolutegravir, raltegravir, and elvitegravir. In cell-free experiments, the impacts of the H51Y and E138K substitutions on resistance and enzyme efficiency, when present with G118R, were highly dependent on viral subtype. Sequence alignment and homology modeling showed that the subtype-specific effects of these mutations were likely due to differential amino acid residue networks in the different integrase proteins, caused by polymorphic residues, which significantly affect native protein activity, structure, or function and are important for drug-mediated inhibition of enzyme activity. This preemptive study will aid in the interpretation of resistance patterns in dolutegravir-treated patients. IMPORTANCE Recognized drug resistance mutations have never been reported for naive patients treated with dolutegravir. Additionally, in integrase inhibitor-experienced patients, only R263K and other previously known integrase resistance substitutions have been reported. Here we suggest that alternate resistance pathways may develop in non-B HIV-1 subtypes and explain how “minor” polymorphisms and substitutions in HIV integrase that are associated with these subtypes can influence resistance against dolutegravir. This work also highlights the importance of phenotyping versus genotyping when a strong inhibitor such as dolutegravir is being used. By characterizing the G118R substitution, this work also preemptively defines parameters for a potentially important pathway in some non-B HIV subtype viruses treated with dolutegravir and will aid in the inhibition of such a virus, if detected. The general inability of strand transfer-related substitutions to diminish 3′ processing indicates the importance of the 3′ processing step and highlights a therapeutic angle that needs to be better exploited. PMID:25552724

  7. Differential effects of the G118R, H51Y, and E138K resistance substitutions in different subtypes of HIV integrase.

    PubMed

    Quashie, Peter K; Oliviera, Maureen; Veres, Tamar; Osman, Nathan; Han, Ying-Shan; Hassounah, Said; Lie, Yolanda; Huang, Wei; Mesplède, Thibault; Wainberg, Mark A

    2015-03-01

    Dolutegravir (DTG) is the latest antiretroviral (ARV) approved for the treatment of human immunodeficiency virus (HIV) infection. The G118R substitution, previously identified with MK-2048 and raltegravir, may represent the initial substitution in a dolutegravir resistance pathway. We have found that subtype C integrase proteins have a low enzymatic cost associated with the G118R substitution, mostly at the strand transfer step of integration, compared to either subtype B or recombinant CRF02_AG proteins. Subtype B and circulating recombinant form AG (CRF02_AG) clonal viruses encoding G118R-bearing integrases were severely restricted in their viral replication capacity, and G118R/E138K-bearing viruses had various levels of resistance to dolutegravir, raltegravir, and elvitegravir. In cell-free experiments, the impacts of the H51Y and E138K substitutions on resistance and enzyme efficiency, when present with G118R, were highly dependent on viral subtype. Sequence alignment and homology modeling showed that the subtype-specific effects of these mutations were likely due to differential amino acid residue networks in the different integrase proteins, caused by polymorphic residues, which significantly affect native protein activity, structure, or function and are important for drug-mediated inhibition of enzyme activity. This preemptive study will aid in the interpretation of resistance patterns in dolutegravir-treated patients. Recognized drug resistance mutations have never been reported for naive patients treated with dolutegravir. Additionally, in integrase inhibitor-experienced patients, only R263K and other previously known integrase resistance substitutions have been reported. Here we suggest that alternate resistance pathways may develop in non-B HIV-1 subtypes and explain how "minor" polymorphisms and substitutions in HIV integrase that are associated with these subtypes can influence resistance against dolutegravir. This work also highlights the importance of phenotyping versus genotyping when a strong inhibitor such as dolutegravir is being used. By characterizing the G118R substitution, this work also preemptively defines parameters for a potentially important pathway in some non-B HIV subtype viruses treated with dolutegravir and will aid in the inhibition of such a virus, if detected. The general inability of strand transfer-related substitutions to diminish 3' processing indicates the importance of the 3' processing step and highlights a therapeutic angle that needs to be better exploited. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  8. Production of transgenic cattle highly expressing human serum albumin in milk by phiC31 integrase-mediated gene delivery.

    PubMed

    Luo, Yan; Wang, Yongsheng; Liu, Jun; Lan, Hui; Shao, Minghao; Yu, Yuan; Quan, Fusheng; Zhang, Yong

    2015-10-01

    Transgenic cattle expressing high levels of recombinant human serum albumin (HSA) in their milk may as an alternative source for commercial production. Our objective was to produce transgenic cattle highly expressing HSA in milk by using phiC31 integrase system and somatic cell nuclear transfer (SCNT). The mammary-specific expression plasmid pIACH(-), containing the attB recognition site for phiC31 integrase, were co-transfected with integrase expression plasmid pCMVInt into bovine fetal fibroblast cells (BFFs). PhiC31 integrase-mediated integrations in genome of BFFs were screened by nested inverse PCR. After analysis of sequence of the PCR products, 46.0% (23/50) of the both attB-genome junction sites (attL and attR) were confirmed, and four pseudo attP sites were identified. The integration rates in BF3, BF11, BF19 and BF4 sites were 4.0% (2/50), 6.0% (3/50), 16.0% (8/50) and 20.0% (10/50), respectively. BF3 is located in the bovine chromosome 3 collagen alpha-3 (VI) chain isomer 2 gene, while the other three sites are located in the non-coding region. The transgenic cell lines from BF11, BF19 and BF4 sites were used as donors for SCNT. Two calves from transgenic cells BF19 were born, one died within a few hours after birth, and another calf survived healthy. PCR and Southern blot analysis revealed integration of the transgene in the genome of cloned calves. The nested reverse PCR confirmed that the integration site in cloned calves was identical to the donor cells. The western blotting assessment indicated that recombinant HSA was expressed in the milk of transgenic cattle and the expression level was about 4-8 mg/mL. The present study demonstrated that phiC31 integrase system was an efficient and safety gene delivery tool for producing HSA transgenic cattle. The production of recombinant HSA in the milk of cattle may provide a large-scale and cost-effective resource.

  9. Traffic at the tmRNA Gene

    PubMed Central

    Williams, Kelly P.

    2003-01-01

    A partial screen for genetic elements integrated into completely sequenced bacterial genomes shows more significant bias in specificity for the tmRNA gene (ssrA) than for any type of tRNA gene. Horizontal gene transfer, a major avenue of bacterial evolution, was assessed by focusing on elements using this single attachment locus. Diverse elements use ssrA; among enterobacteria alone, at least four different integrase subfamilies have independently evolved specificity for ssrA, and almost every strain analyzed presents a unique set of integrated elements. Even elements using essentially the same integrase can be very diverse, as is a group with an ssrA-specific integrase of the P4 subfamily. This same integrase appears to promote damage routinely at attachment sites, which may be adaptive. Elements in arrays can recombine; one such event mediated by invertible DNA segments within neighboring elements likely explains the monophasic nature of Salmonella enterica serovar Typhi. One of a limited set of conserved sequences occurs at the attachment site of each enterobacterial element, apparently serving as a transcriptional terminator for ssrA. Elements were usually found integrated into tRNA-like sequence at the 3′ end of ssrA, at subsites corresponding to those used in tRNA genes; an exception was found at the non-tRNA-like 3′ end produced by ssrA gene permutation in cyanobacteria, suggesting that, during the evolution of new site specificity by integrases, tropism toward a conserved 3′ end of an RNA gene may be as strong as toward a tRNA-like sequence. The proximity of ssrA and smpB, which act in concert, was also surveyed. PMID:12533482

  10. Small Molecule Inhibitors of Drug Resistant Forms of HIV-1 Integrase | NCI Technology Transfer Center | TTC

    Cancer.gov

    Researchers at the National Cancer Institute discovered small-molecule compounds containing 1-hydroxy-2-oxo-1,8-naphthyridine moieties whose activity against HIV-1 integrase mutants confer resistance to currently approved INSTIs. Preliminary rodent efficacy, metabolic, and pharmacokinetic studies have been completed by the NCI researchers. The National Cancer Institute seeks partners to commercialize this class of compounds through licensing or co-development.

  11. Molecular dynamics simulation studies of the wild type and E92Q/N155H mutant of Elvitegravir-resistance HIV-1 integrase.

    PubMed

    Chen, Qi; Cheng, Xiaolin; Wei, Dongqing; Xu, Qin

    2015-03-01

    Although Elvitegravir (EVG) is a newly developed antiretrovirals drug to treat the acquired immunodeficiency syndrome (AIDS), drug resistance has already been found in clinic, such as E92Q/N155H and Q148H/G140S. Several structural investigations have already been reported to reveal the molecular mechanism of the drug resistance. As full length crystal structure for HIV-1 integrase is still unsolved, we herein use the crystal structure of the full length prototype foamy virus (PFV) in complex with virus DNA and inhibitor Elvitegravir as a template to construct the wild type and E92Q/N155H mutant system of HIV-1 integrase. Molecular dynamic simulations was used to revel the binding mode and the drug resistance of the EVG ligand in E92Q/N155H. Several important interactions were discovered between the mutated residues and the residues in the active site of the E92Q/N155H double mutant pattern, and cross correlation and clustering methods were used for detailed analysis. The results from the MD simulation studies will be used to guide the experimental efforts of developing novel inhibitors against drug-resistant HIV integrase mutants.

  12. HIV-2 integrase polymorphisms and longitudinal genotypic analysis of HIV-2 infected patients failing a raltegravir-containing regimen.

    PubMed

    Cavaco-Silva, Joana; Abecasis, Ana; Miranda, Ana Cláudia; Poças, José; Narciso, Jorge; Águas, Maria João; Maltez, Fernando; Almeida, Isabel; Germano, Isabel; Diniz, António; Gonçalves, Maria de Fátima; Gomes, Perpétua; Cunha, Celso; Camacho, Ricardo Jorge

    2014-01-01

    To characterize the HIV-2 integrase gene polymorphisms and the pathways to resistance of HIV-2 patients failing a raltegravir-containing regimen, we studied 63 integrase strand transfer inhibitors (INSTI)-naïve patients, and 10 heavily pretreated patients exhibiting virological failure while receiving a salvage raltegravir-containing regimen. All patients were infected by HIV-2 group A. 61.4% of the integrase residues were conserved, including the catalytic motif residues. No INSTI-major resistance mutations were detected in the virus population from naïve patients, but two amino acids that are secondary resistance mutations to INSTIs in HIV-1 were observed. The 10 raltegravir-experienced patients exhibited resistance mutations via three main genetic pathways: N155H, Q148R, and eventually E92Q - T97A. The 155 pathway was preferentially used (7/10 patients). Other mutations associated to raltegravir resistance in HIV-1 were also observed in our HIV-2 population (V151I and D232N), along with several novel mutations previously unreported. Data retrieved from this study should help build a more robust HIV-2-specific algorithm for the genotypic interpretation of raltegravir resistance, and contribute to improve the clinical monitoring of HIV-2-infected patients.

  13. [Efficacy of dolutegravir in treatment-experienced patients: the SAILING and VIKING trials].

    PubMed

    Moreno, Santiago; Berenguer, Juan

    2015-03-01

    Dolutegravir is an HIV integrase inhibitor with a high genetic barrier to resistance and is active against raltegravir- and/or elvitegravir-resistant strains. The clinical development of dolutegravir for HIV infection rescue therapy is based on 3 clinical trials. In the SAILING trial, dolutegravir (5 mg once daily) in combination with 2 other antiretroviral agents was well tolerated and showed greater virological effect than raltegravir (400 mg twice daily) in the treatment of integrase inhibitor-naïve adults with virological failure infected with HIV strains with at least two-class drug resistance. The VIKING studies were designed to evaluate the efficacy of dolutegravir as rescue therapy in treatment-experienced patients infected with HIV strains with resistance mutations to raltegravir and/or elvitegravir. VIKING-1-2 was a dose-ranging phase IIb trial. VIKING-3 was a phase III trial in which dolutegravir (50 mg twice daily) formed part of an optimized regimen and proved safe and effective in this difficult-to-treat group of patients. Dolutegravir is the integrase inhibitor of choice for rescue therapy in multiresistant HIV infection, both in integrase inhibitor-naïve patients and in those previously treated with raltegravir or elvitegravir. Copyright © 2015 Elsevier España, S.L.U. All rights reserved.

  14. Human Immunodeficiency Virus Type 1 cDNA Integration: New Aromatic Hydroxylated Inhibitors and Studies of the Inhibition Mechanism

    PubMed Central

    Farnet, C. M.; Wang, B.; Hansen, M.; Lipford, J. R.; Zalkow, L.; Robinson, W. E.; Siegel, J.; Bushman, F.

    1998-01-01

    Integration of the human immunodeficiency virus type 1 (HIV-1) cDNA is a required step for viral replication. Integrase, the virus-encoded enzyme important for integration, has not yet been exploited as a target for clinically useful inhibitors. Here we report on the identification of new polyhydroxylated aromatic inhibitors of integrase including ellagic acid, purpurogallin, 4,8,12-trioxatricornan, and hypericin, the last of which is known to inhibit viral replication. These compounds and others were characterized in assays with subviral preintegration complexes (PICs) isolated from HIV-1-infected cells. Hypericin was found to inhibit PIC assays, while the other compounds tested were inactive. Counterscreening of these and other integrase inhibitors against additional DNA-modifying enzymes revealed that none of the polyhydroxylated aromatic compounds are active against enzymes that do not require metals (methylases, a pox virus topoisomerase). However, all were cross-reactive with metal-requiring enzymes (restriction enzymes, a reverse transcriptase), implicating metal atoms in the inhibitory mechanism. In mechanistic studies, we localized binding of some inhibitors to the catalytic domain of integrase by assaying competition of binding by labeled nucleotides. These findings help elucidate the mechanism of action of the polyhydroxylated aromatic inhibitors and provide practical guidance for further inhibitor development. PMID:9736543

  15. Characterization of the relationship between integrase, excisionase and antirepressor activities associated with a superinfecting Shiga toxin encoding bacteriophage

    PubMed Central

    Fogg, P. C. M.; Rigden, D. J.; Saunders, J. R.; McCarthy, A. J.; Allison, H. E.

    2011-01-01

    Shigatoxigenic Escherichia coli emerged as new food borne pathogens in the early 1980s, primarily driven by the dispersal of Shiga toxin-encoding lambdoid bacteriophages. At least some of these Stx phages display superinfection phenotypes, which differ significantly from lambda phage itself, driving through in situ recombination further phage evolution, increasing host range and potentially increasing the host's pathogenic profile. Here, increasing levels of Stx phage Φ24B integrase expression in multiple lysogen cultures are demonstrated along with apparently negligible repression of integrase expression by the cognate CI repressor. The Φ24B int transcription start site and promoter region were identified and found to differ from in silico predictions. The unidirectional activity of this integrase was determined in an in situ, inducible tri-partite reaction. This indicated that Φ24B must encode a novel directionality factor that is controlling excision events during prophage induction. This excisionase was subsequently identified and characterized through complementation experiments. In addition, the previous proposal that a putative antirepressor was responsible for the lack of immunity to superinfection through inactivation of CI has been revisited and a new hypothesis involving the role of this protein in promoting efficient induction of the Φ24B prophage is proposed. PMID:21062824

  16. HIV-2 Integrase Polymorphisms and Longitudinal Genotypic Analysis of HIV-2 Infected Patients Failing a Raltegravir-Containing Regimen

    PubMed Central

    Cavaco-Silva, Joana; Abecasis, Ana; Miranda, Ana Cláudia; Poças, José; Narciso, Jorge; Águas, Maria João; Maltez, Fernando; Almeida, Isabel; Germano, Isabel; Diniz, António; Gonçalves, Maria de Fátima; Gomes, Perpétua; Cunha, Celso; Camacho, Ricardo Jorge

    2014-01-01

    To characterize the HIV-2 integrase gene polymorphisms and the pathways to resistance of HIV-2 patients failing a raltegravir-containing regimen, we studied 63 integrase strand transfer inhibitors (INSTI)-naïve patients, and 10 heavily pretreated patients exhibiting virological failure while receiving a salvage raltegravir-containing regimen. All patients were infected by HIV-2 group A. 61.4% of the integrase residues were conserved, including the catalytic motif residues. No INSTI-major resistance mutations were detected in the virus population from naïve patients, but two amino acids that are secondary resistance mutations to INSTIs in HIV-1 were observed. The 10 raltegravir-experienced patients exhibited resistance mutations via three main genetic pathways: N155H, Q148R, and eventually E92Q - T97A. The 155 pathway was preferentially used (7/10 patients). Other mutations associated to raltegravir resistance in HIV-1 were also observed in our HIV-2 population (V151I and D232N), along with several novel mutations previously unreported. Data retrieved from this study should help build a more robust HIV-2-specific algorithm for the genotypic interpretation of raltegravir resistance, and contribute to improve the clinical monitoring of HIV-2-infected patients. PMID:24681625

  17. Cellular and molecular mechanisms of HIV-1 integration targeting.

    PubMed

    Engelman, Alan N; Singh, Parmit K

    2018-07-01

    Integration is central to HIV-1 replication and helps mold the reservoir of cells that persists in AIDS patients. HIV-1 interacts with specific cellular factors to target integration to interior regions of transcriptionally active genes within gene-dense regions of chromatin. The viral capsid interacts with several proteins that are additionally implicated in virus nuclear import, including cleavage and polyadenylation specificity factor 6, to suppress integration into heterochromatin. The viral integrase protein interacts with transcriptional co-activator lens epithelium-derived growth factor p75 to principally position integration within gene bodies. The integrase additionally senses target DNA distortion and nucleotide sequence to help fine-tune the specific phosphodiester bonds that are cleaved at integration sites. Research into virus-host interactions that underlie HIV-1 integration targeting has aided the development of a novel class of integrase inhibitors and may help to improve the safety of viral-based gene therapy vectors.

  18. Molecular study on some antibiotic resistant genes in Salmonella spp. isolates

    NASA Astrophysics Data System (ADS)

    Nabi, Ari Q.

    2017-09-01

    Studying the genes related with antimicrobial resistance in Salmonella spp. is a crucial step toward a correct and faster treatment of infections caused by the pathogen. In this work Integron mediated antibiotic resistant gene IntI1 (Class I Integrase IntI1) and some plasmid mediated antibiotic resistance genes (Qnr) were scanned among the isolated non-Typhoid Salmonellae strains with known resistance to some important antimicrobial drugs using Sybr Green real time PCR. The aim of the study was to correlate the multiple antibiotics and antimicrobial resistance of Salmonella spp. with the presence of integrase (IntI1) gene and plasmid mediated quinolone resistant genes. Results revealed the presence of Class I Integrase gene in 76% of the isolates with confirmed multiple antibiotic resistances. Moreover, about 32% of the multiple antibiotic resistant serotypes showed a positive R-PCR for plasmid mediated qnrA gene encoding for nalidixic acid and ciprofloxacin resistance. No positive results could be revealed form R-PCRs targeting qnrB or qnrS. In light of these results we can conclude that the presence of at least one of the qnr genes and/or the presence of Integrase Class I gene were responsible for the multiple antibiotic resistance to for nalidixic acid and ciprofloxacin from the studied Salmonella spp. and further studies required to identify the genes related with multiple antibiotic resistance of the pathogen.

  19. ILG1 : a new integrase-like gene that is a marker of bacterial contamination by the laboratory Escherichia coli strain TOP10F'.

    PubMed Central

    Tian, Wenzhi; Chua, Kevin; Strober, Warren; Chu, Charles C.

    2002-01-01

    BACKGROUND: Identification of differentially expressed genes between normal and diseased states is an area of intense current medical research that can lead to the discovery of new therapeutic targets. However, isolation of differentially expressed genes by subtraction often suffers from unreported contamination of the resulting subtraction library with clones containing DNA sequences not from the original RNA samples. MATERIALS AND METHODS: Subtraction using cDNA representational difference analysis (RDA) was performed on human B cells from normal or common variable immunodeficiency patients. The material remaining after the subtraction was cloned and individual clones were sequenced. The sequence of one clone with similarity to integrases (ILG1, integrase-like gene-1) was used to obtain the full length cDNA sequence and as a probe for the presence of this sequence in RNA or genomic DNA samples. RESULTS: After five rounds of cDNA RDA, 23.3% of the clones from the resulting subtraction library contained Escherichia coli DNA. In addition, three clones contained the sequence of a new integrase, ILG1. The full length cDNA sequence of ILG1 exhibits prokaryotic, but not eukaryotic, features. At the DNA level, ILG1 is not similar to any known gene. At the protein level, ILG1 has 58% similarity to integrases from the cryptic P4 bacteriophage family (S clade). The catalytic domain of ILG1 contains the conserved features found in site-specific recombinases. The critical residues that form the catalytic active site pocket are conserved, including the highly conserved R-H-R-Y hallmark of these recombinases. Interestingly, ILG1 was not present in the original B cell populations. By probing genomic DNA, ILG1 could only be detected in the E. coli TOP10F' strain used in our laboratory for molecular cloning, but not in any of its precursor strains, including TOP10. Furthermore, bacteria cultured from the mouth of the laboratory worker who performed cDNA RDA were also positive for ILG1. CONCLUSIONS: In the course of our studies using cDNA RDA, we have isolated and identified ILG1, a likely active site-specific recombinase and new member of the bacteriophage P4 family of integrases. This family of integrases is implicated in the horizontal DNA transfer of pathogenic genes between bacterial species, such as those found in pathogenic strains of E. coli, Shigella, Yersinia, and Vibrio cholera. Using ILG1 as a marker of our laboratory E. coli strain TOP10F', our evidence suggests that contaminating bacterial DNA in our subtraction experiment is due to this laboratory bacterial strain, which colonized exposed surfaces of the laboratory worker. Thus, identification of differentially expressed genes between normal and diseased states could be dramatically improved by using extra precaution to prevent bacterial contamination of samples. PMID:12393938

  20. Postexposure protection of macaques from vaginal SHIV infection by topical integrase inhibitors.

    PubMed

    Dobard, Charles; Sharma, Sunita; Parikh, Urvi M; West, Rolieria; Taylor, Andrew; Martin, Amy; Pau, Chou-Pong; Hanson, Debra L; Lipscomb, Jonathan; Smith, James; Novembre, Francis; Hazuda, Daria; Garcia-Lerma, J Gerardo; Heneine, Walid

    2014-03-12

    Coitally delivered microbicide gels containing antiretroviral drugs are important for HIV prevention. However, to date, microbicides have contained entry or reverse transcriptase inhibitors that block early steps in virus infection and thus need to be given as a preexposure dose that interferes with sexual practices and may limit compliance. Integrase inhibitors block late steps after virus infection and therefore are more suitable for post-coital dosing. We first determined the kinetics of strand transfer in vitro and confirmed that integration begins about 6 hours after infection. We then used a repeat-challenge macaque model to assess efficacy of vaginal gels containing integrase strand transfer inhibitors when applied before or after simian/human immunodeficiency virus (SHIV) challenge. We showed that gel containing the strand transfer inhibitor L-870812 protected two of three macaques when applied 30 min before SHIV challenge. We next evaluated the efficacy of 1% raltegravir gel and demonstrated its ability to protect macaques when applied 3 hours after SHIV exposure (five of six protected; P < 0.05, Fisher's exact test). Breakthrough infections showed no evidence of drug resistance in plasma or vaginal secretions despite continued gel dosing after infection. We documented rapid vaginal absorption reflecting a short pharmacological lag time and noted that vaginal, but not plasma, virus load was substantially reduced in the breakthrough infection after raltegravir gel treatment. We provide a proof of concept that topically applied integrase inhibitors protect against vaginal SHIV infection when administered shortly before or 3 hours after virus exposure.

  1. Developing a Dynamic Pharmacophore Model for HIV-1 Integrase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, Heather A.; Masukawa, Keven M.; Rubins, Kathleen

    2000-05-11

    We present the first receptor-based pharmacophore model for HIV-1 integrase. The development of ''dynamic'' pharmacophore models is a new method that accounts for the inherent flexibility of the active site and aims to reduce the entropic penalties associated with binding a ligand. Furthermore, this new drug discovery method overcomes the limitation of an incomplete crystal structure of the target protein. A molecular dynamics (MD) simulation describes the flexibility of the uncomplexed protein. Many conformational models of the protein are saved from the MD simulations and used in a series of multi-unit search for interacting conformers (MUSIC) simulations. MUSIC is amore » multiple-copy minimization method, available in the BOSS program; it is used to determine binding regions for probe molecules containing functional groups that complement the active site. All protein conformations from the MD are overlaid, and conserved binding regions for the probe molecules are identified. Those conserved binding regions define the dynamic pharmacophore model. Here, the dynamic model is compared to known inhibitors of the integrase as well as a three-point, ligand-based pharmacophore model from the literature. Also, a ''static'' pharmacophore model was determined in the standard fashion, using a single crystal structure. Inhibitors thought to bind in the active site of HIV-1 integrase fit the dynamic model but not the static model. Finally, we have identified a set of compounds from the Available Chemicals Directory that fit the dynamic pharmacophore model, and experimental testing of the compounds has confirmed several new inhibitors.« less

  2. Role of the His-Cys finger of Moloney murine leukemia virus integrase protein in integration and disintegration.

    PubMed Central

    Jonsson, C B; Roth, M J

    1993-01-01

    Retroviral integrases mediate site-specific endonuclease and transesterification reactions in the absence of exogenous energy. The basis for the sequence specificity in these integrase-viral DNA recognition processes is unknown. Structural analogs of the disintegration substrate were made to analyze the disintegration reaction mechanism for the Moloney murine leukemia virus (M-MuLV) integrase (IN). Modifications in the target DNA portion of the disintegration substrate decreased enzymatic activity, while substitution of the highly conserved CA in the viral long terminal repeat portion had no effect on activity. The role of the His-Cys finger region in catalysis was addressed by N-ethylmaleimide (NEM) modification of the cysteine residues of M-MuLV IN as well as by mutations. Both integration activities, 3' processing, and strand transfer, were completely inhibited by NEM modification of M-MuLV IN, while disintegration activity was only partially sensitive. However, structural analogs of the disintegration substrates that were modified in the target DNA and had the conserved CA removed were not active with NEM-treated M-MuLV IN. In addition, mutants made in the His-Cys region of M-MuLV IN were examined and found to also be completely blocked in integration but not disintegration activity. These data suggest that the domains of M-MuLV IN that are required for the forward integration reaction substrate differ from those required for the reverse disintegration reaction substrate. Images PMID:8350412

  3. Pathogenicity Island Cross Talk Mediated by Recombination Directionality Factors Facilitates Excision from the Chromosome.

    PubMed

    Carpenter, Megan R; Rozovsky, Sharon; Boyd, E Fidelma

    2015-12-14

    Pathogenicity islands (PAIs) are mobile integrated genetic elements (MIGEs) that contain a diverse range of virulence factors and are essential in the evolution of pathogenic bacteria. PAIs are widespread among bacteria and integrate into the host genome, commonly at a tRNA locus, via integrase-mediated site-specific recombination. The excision of PAIs is the first step in the horizontal transfer of these elements and is not well understood. In this study, we examined the role of recombination directionality factors (RDFs) and their relationship with integrases in the excision of two PAIs essential for Vibrio cholerae host colonization: Vibrio pathogenicity island 1 (VPI-1) and VPI-2. VPI-1 does not contain an RDF, which allowed us to answer the question of whether RDFs are an absolute requirement for excision. We found that an RDF was required for efficient excision of VPI-2 but not VPI-1 and that RDFs can induce excision of both islands. Expression data revealed that the RDFs act as transcriptional repressors to both VPI-1- and VPI-2-encoded integrases. We demonstrated that the RDFs Vibrio excision factor A (VefA) and VefB bind at the attachment sites (overlapping the int promoter region) of VPI-1 and VPI-2, thus supporting this mode of integrase repression. In addition, V. cholerae RDFs are promiscuous due to their dual functions of promoting excision of both VPI-1 and VPI-2 and acting as negative transcriptional regulators of the integrases. This is the first demonstration of cross talk between PAIs mediated via RDFs which reveals the complex interactions that occur between separately acquired MIGEs. Deciphering the mechanisms of pathogenicity island excision is necessary for understanding the evolution and spread of these elements to their nonpathogenic counterparts. Such mechanistic insight would assist in predicting the mobility of uncharacterized genetic elements. This study identified extensive RDF-mediated cross talk between two nonhomologous VPIs and demonstrated the dual functionality of RDF proteins: (i) inducing PAI excision and (ii) acting as transcriptional regulators. Findings from this study may be implicated in determining the mobilome contribution of other bacteria with multiple MIGEs. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  4. New Insights into the Classification and Integration Specificity of Streptococcus Integrative Conjugative Elements through Extensive Genome Exploration

    PubMed Central

    Ambroset, Chloé; Coluzzi, Charles; Guédon, Gérard; Devignes, Marie-Dominique; Loux, Valentin; Lacroix, Thomas; Payot, Sophie; Leblond-Bourget, Nathalie

    2016-01-01

    Recent genome analyses suggest that integrative and conjugative elements (ICEs) are widespread in bacterial genomes and therefore play an essential role in horizontal transfer. However, only a few of these elements are precisely characterized and correctly delineated within sequenced bacterial genomes. Even though previous analysis showed the presence of ICEs in some species of Streptococci, the global prevalence and diversity of ICEs was not analyzed in this genus. In this study, we searched for ICEs in the completely sequenced genomes of 124 strains belonging to 27 streptococcal species. These exhaustive analyses revealed 105 putative ICEs and 26 slightly decayed elements whose limits were assessed and whose insertion site was identified. These ICEs were grouped in seven distinct unrelated or distantly related families, according to their conjugation modules. Integration of these streptococcal ICEs is catalyzed either by a site-specific tyrosine integrase, a low-specificity tyrosine integrase, a site-specific single serine integrase, a triplet of site-specific serine integrases or a DDE transposase. Analysis of their integration site led to the detection of 18 target-genes for streptococcal ICE insertion including eight that had not been identified previously (ftsK, guaA, lysS, mutT, rpmG, rpsI, traG, and ebfC). It also suggests that all specificities have evolved to minimize the impact of the insertion on the host. This overall analysis of streptococcal ICEs emphasizes their prevalence and diversity and demonstrates that exchanges or acquisitions of conjugation and recombination modules are frequent. PMID:26779141

  5. New Insights into the Classification and Integration Specificity of Streptococcus Integrative Conjugative Elements through Extensive Genome Exploration.

    PubMed

    Ambroset, Chloé; Coluzzi, Charles; Guédon, Gérard; Devignes, Marie-Dominique; Loux, Valentin; Lacroix, Thomas; Payot, Sophie; Leblond-Bourget, Nathalie

    2015-01-01

    Recent genome analyses suggest that integrative and conjugative elements (ICEs) are widespread in bacterial genomes and therefore play an essential role in horizontal transfer. However, only a few of these elements are precisely characterized and correctly delineated within sequenced bacterial genomes. Even though previous analysis showed the presence of ICEs in some species of Streptococci, the global prevalence and diversity of ICEs was not analyzed in this genus. In this study, we searched for ICEs in the completely sequenced genomes of 124 strains belonging to 27 streptococcal species. These exhaustive analyses revealed 105 putative ICEs and 26 slightly decayed elements whose limits were assessed and whose insertion site was identified. These ICEs were grouped in seven distinct unrelated or distantly related families, according to their conjugation modules. Integration of these streptococcal ICEs is catalyzed either by a site-specific tyrosine integrase, a low-specificity tyrosine integrase, a site-specific single serine integrase, a triplet of site-specific serine integrases or a DDE transposase. Analysis of their integration site led to the detection of 18 target-genes for streptococcal ICE insertion including eight that had not been identified previously (ftsK, guaA, lysS, mutT, rpmG, rpsI, traG, and ebfC). It also suggests that all specificities have evolved to minimize the impact of the insertion on the host. This overall analysis of streptococcal ICEs emphasizes their prevalence and diversity and demonstrates that exchanges or acquisitions of conjugation and recombination modules are frequent.

  6. Discovery of Novel HIV-1 Integrase Inhibitors Using QSAR-Based Virtual Screening of the NCI Open Database.

    PubMed

    Ko, Gene M; Garg, Rajni; Bailey, Barbara A; Kumar, Sunil

    2016-01-01

    Quantitative structure-activity relationship (QSAR) models can be used as a predictive tool for virtual screening of chemical libraries to identify novel drug candidates. The aims of this paper were to report the results of a study performed for descriptor selection, QSAR model development, and virtual screening for identifying novel HIV-1 integrase inhibitor drug candidates. First, three evolutionary algorithms were compared for descriptor selection: differential evolution-binary particle swarm optimization (DE-BPSO), binary particle swarm optimization, and genetic algorithms. Next, three QSAR models were developed from an ensemble of multiple linear regression, partial least squares, and extremely randomized trees models. A comparison of the performances of three evolutionary algorithms showed that DE-BPSO has a significant improvement over the other two algorithms. QSAR models developed in this study were used in consensus as a predictive tool for virtual screening of the NCI Open Database containing 265,242 compounds to identify potential novel HIV-1 integrase inhibitors. Six compounds were predicted to be highly active (plC50 > 6) by each of the three models. The use of a hybrid evolutionary algorithm (DE-BPSO) for descriptor selection and QSAR model development in drug design is a novel approach. Consensus modeling may provide better predictivity by taking into account a broader range of chemical properties within the data set conducive for inhibition that may be missed by an individual model. The six compounds identified provide novel drug candidate leads in the design of next generation HIV- 1 integrase inhibitors targeting drug resistant mutant viruses.

  7. Rapid Optimization of Engineered Metabolic Pathways with Serine Integrase Recombinational Assembly (SIRA).

    PubMed

    Merrick, C A; Wardrope, C; Paget, J E; Colloms, S D; Rosser, S J

    2016-01-01

    Metabolic pathway engineering in microbial hosts for heterologous biosynthesis of commodity compounds and fine chemicals offers a cheaper, greener, and more reliable method of production than does chemical synthesis. However, engineering metabolic pathways within a microbe is a complicated process: levels of gene expression, protein stability, enzyme activity, and metabolic flux must be balanced for high productivity without compromising host cell viability. A major rate-limiting step in engineering microbes for optimum biosynthesis of a target compound is DNA assembly, as current methods can be cumbersome and costly. Serine integrase recombinational assembly (SIRA) is a rapid DNA assembly method that utilizes serine integrases, and is particularly applicable to rapid optimization of engineered metabolic pathways. Using six pairs of orthogonal attP and attB sites with different central dinucleotide sequences that follow SIRA design principles, we have demonstrated that ΦC31 integrase can be used to (1) insert a single piece of DNA into a substrate plasmid; (2) assemble three, four, and five DNA parts encoding the enzymes for functional metabolic pathways in a one-pot reaction; (3) generate combinatorial libraries of metabolic pathway constructs with varied ribosome binding site strengths or gene orders in a one-pot reaction; and (4) replace and add DNA parts within a construct through targeted postassembly modification. We explain the mechanism of SIRA and the principles behind designing a SIRA reaction. We also provide protocols for making SIRA reaction components and practical methods for applying SIRA to rapid optimization of metabolic pathways. © 2016 Elsevier Inc. All rights reserved.

  8. A novel site-specific recombination system derived from bacteriophage phiMR11.

    PubMed

    Rashel, Mohammad; Uchiyama, Jumpei; Ujihara, Takako; Takemura, Iyo; Hoshiba, Hiroshi; Matsuzaki, Shigenobu

    2008-04-04

    We report identification of a novel site-specific DNA recombination system that functions in both in vivo and in vitro, derived from lysogenic Staphylococcus aureus phage phiMR11. In silico analysis of the phiMR11 genome indicated orf1 as a putative integrase gene. Phage and bacterial attachment sites (attP and attB, respectively) and attachment junctions were determined and their nucleotide sequences decoded. Sequences of attP and attB were mostly different to each other except for a two bp common core that was the crossover point. We found several inverted repeats adjacent to the core sequence of attP as potential protein binding sites. The precise and efficient integration properties of phiMR11 integrase were shown on attP and attB in Escherichia coli and the minimum size of attP was found to be 34bp. In in vitro assays using crude or purified integrase, only buffer and substrate DNAs were required for the recombination reaction, indicating that other bacterially encoded factors are not essential for activity.

  9. Islander: A database of precisely mapped genomic islands in tRNA and tmRNA genes

    DOE PAGES

    Hudson, Corey M.; Lau, Britney Y.; Williams, Kelly P.

    2014-11-05

    Genomic islands are mobile DNAs that are major agents of bacterial and archaeal evolution. Integration into prokaryotic chromosomes usually occurs site-specifically at tRNA or tmRNA gene (together, tDNA) targets, catalyzed by tyrosine integrases. This splits the target gene, yet sequences within the island restore the disrupted gene; the regenerated target and its displaced fragment precisely mark the endpoints of the island. We applied this principle to search for islands in genomic DNA sequences. Our algorithm identifies tDNAs, finds fragments of those tDNAs in the same replicon and removes unlikely candidate islands through a series of filters. A search for islandsmore » in 2168 whole prokaryotic genomes produced 3919 candidates. The website Islander (recently moved to http://bioinformatics.sandia.gov/islander/) presents these precisely mapped candidate islands, the gene content and the island sequence. The algorithm further insists that each island encode an integrase, and attachment site sequence identity is carefully noted; therefore, the database also serves in the study of integrase site-specificity and its evolution.« less

  10. Metagenomic exploration reveals a marked change in the river resistome and mobilome after treated wastewater discharges.

    PubMed

    Lekunberri, Itziar; Balcázar, José Luis; Borrego, Carles M

    2018-03-01

    Mobile genetic elements (MGEs) are key agents in the spread of antibiotic resistance genes (ARGs) across environments. Here we used metagenomics to compare the river resistome (collection of all ARGs) and mobilome (e.g., integrases, transposases, integron integrases and insertion sequence common region "ISCR" elements) between samples collected upstream (n = 6) and downstream (n = 6) of an urban wastewater treatment plant (UWWTP). In comparison to upstream metagenomes, downstream metagenomes showed a drastic increase in the abundance of ARGs, as well as markers of MGEs, particularly integron integrases and ISCR elements. These changes were accompanied by a concomitant prevalence of 16S rRNA gene signatures of bacteria affiliated to families encompassing well-known human and animal pathogens. Our results confirm that chronic discharges of treated wastewater severely impact the river resistome affecting not only the abundance and diversity of ARGs but also their potential spread by enriching the river mobilome in a wide variety of MGEs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Ferrocenyl chalcone difluoridoborates inhibit HIV-1 integrase and display low activity towards cancer and endothelial cells.

    PubMed

    Monserrat, Jean-Philippe; Al-Safi, Rasha I; Tiwari, Keshri Nath; Quentin, Lionel; Chabot, Guy G; Vessières, Anne; Jaouen, Gérard; Neamati, Nouri; Hillard, Elizabeth A

    2011-10-15

    We report here the discovery of a potent series of HIV-1 integrase (IN) inhibitors based on the ferrocenyl chalcone difluoridoborate structure. Ten new compounds have been synthesized and were generally found to have similar inhibitory activities against the IN 3' processing and strand transfer (ST) processes. IC(50) values were found to be in the low micromolar range, and significantly lower than those found for the non-coordinated ferrocenyl chalcones and other ferrocene molecules. The ferrocenyl chalcone difluoridoborates furthermore exhibited low cytotoxicity against cancer cells and low morphological activity against epithelial cells. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Flipping chromosomes in deep-sea archaea

    PubMed Central

    Catchpole, Ryan; Gadelle, Danièle; Marguet, Evelyne; Barbe, Valérie; Forterre, Patrick

    2017-01-01

    One of the major mechanisms driving the evolution of all organisms is genomic rearrangement. In hyperthermophilic Archaea of the order Thermococcales, large chromosomal inversions occur so frequently that even closely related genomes are difficult to align. Clearly not resulting from the native homologous recombination machinery, the causative agent of these inversions has remained elusive. We present a model in which genomic inversions are catalyzed by the integrase enzyme encoded by a family of mobile genetic elements. We characterized the integrase from Thermococcus nautili plasmid pTN3 and showed that besides canonical site-specific reactions, it catalyzes low sequence specificity recombination reactions with the same outcome as homologous recombination events on DNA segments as short as 104bp both in vitro and in vivo, in contrast to other known tyrosine recombinases. Through serial culturing, we showed that the integrase-mediated divergence of T. nautili strains occurs at an astonishing rate, with at least four large-scale genomic inversions appearing within 60 generations. Our results and the ubiquitous distribution of pTN3-like integrated elements suggest that a major mechanism of evolution of an entire order of Archaea results from the activity of a selfish mobile genetic element. PMID:28628615

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Qi; Cheng, Xiaolin; Univ. of Tennessee, Knoxville, TN

    Although Elvitegravir (EVG) is a newly developed antiretrovirals drug to treat the acquired immunodeficiency syndrome (AIDS), drug resistance has already been found in clinic, such as E92Q/N155H and Q148H/G140S. Several structural investigations have already been reported to reveal the molecular mechanism of the drug resistance. As full length crystal structure for HIV-1 integrase is still unsolved, we use in this paper the crystal structure of the full length prototype foamy virus (PFV) in complex with virus DNA and inhibitor Elvitegravir as a template to construct the wild type and E92Q/N155H mutant system of HIV-1 integrase. Molecular dynamic simulations was usedmore » to revel the binding mode and the drug resistance of the EVG ligand in E92Q/N155H. Several important interactions were discovered between the mutated residues and the residues in the active site of the E92Q/N155H double mutant pattern, and cross correlation and clustering methods were used for detailed analysis. The results from the MD simulation studies will be used to guide the experimental efforts of developing novel inhibitors against drug-resistant HIV integrase mutants.« less

  14. Viral fitness cost prevents HIV-1 from evading dolutegravir drug pressure

    PubMed Central

    2013-01-01

    Background Clinical studies have shown that integrase strand transfer inhibitors can be used to treat HIV-1 infection. Although the first-generation integrase inhibitors are susceptible to the emergence of resistance mutations that impair their efficacy in therapy, such resistance has not been identified to date in drug-naïve patients who have been treated with the second-generation inhibitor dolutegravir. During previous in vitro selection study, we identified a R263K mutation as the most common substitution to arise in the presence of dolutegravir with H51Y arising as a secondary mutation. Additional experiments reported here provide a plausible explanation for the absence of reported dolutegravir resistance among integrase inhibitor-naïve patients to date. Results We now show that H51Y in combination with R263K increases resistance to dolutegravir but is accompanied by dramatic decreases in both enzymatic activity and viral replication. Conclusions Since H51Y and R263K may define a unique resistance pathway to dolutegravir, our results are consistent with the absence of resistance mutations in antiretroviral drug-naive patients treated with this drug. PMID:23432922

  15. Impact of the HIV-1 genetic background and HIV-1 population size on the evolution of raltegravir resistance.

    PubMed

    Fun, Axel; Leitner, Thomas; Vandekerckhove, Linos; Däumer, Martin; Thielen, Alexander; Buchholz, Bernd; Hoepelman, Andy I M; Gisolf, Elizabeth H; Schipper, Pauline J; Wensing, Annemarie M J; Nijhuis, Monique

    2018-01-05

    Emergence of resistance against integrase inhibitor raltegravir in human immunodeficiency virus type 1 (HIV-1) patients is generally associated with selection of one of three signature mutations: Y143C/R, Q148K/H/R or N155H, representing three distinct resistance pathways. The mechanisms that drive selection of a specific pathway are still poorly understood. We investigated the impact of the HIV-1 genetic background and population dynamics on the emergence of raltegravir resistance. Using deep sequencing we analyzed the integrase coding sequence (CDS) in longitudinal samples from five patients who initiated raltegravir plus optimized background therapy at viral loads > 5000 copies/ml. To investigate the role of the HIV-1 genetic background we created recombinant viruses containing the viral integrase coding region from pre-raltegravir samples from two patients in whom raltegravir resistance developed through different pathways. The in vitro selections performed with these recombinant viruses were designed to mimic natural population bottlenecks. Deep sequencing analysis of the viral integrase CDS revealed that the virological response to raltegravir containing therapy inversely correlated with the relative amount of unique sequence variants that emerged suggesting diversifying selection during drug pressure. In 4/5 patients multiple signature mutations representing different resistance pathways were observed. Interestingly, the resistant population can consist of a single resistant variant that completely dominates the population but also of multiple variants from different resistance pathways that coexist in the viral population. We also found evidence for increased diversification after stronger bottlenecks. In vitro selections with low viral titers, mimicking population bottlenecks, revealed that both recombinant viruses and HXB2 reference virus were able to select mutations from different resistance pathways, although typically only one resistance pathway emerged in each individual culture. The generation of a specific raltegravir resistant variant is not predisposed in the genetic background of the viral integrase CDS. Typically, in the early phases of therapy failure the sequence space is explored and multiple resistance pathways emerge and then compete for dominance which frequently results in a switch of the dominant population over time towards the fittest variant or even multiple variants of similar fitness that can coexist in the viral population.

  16. Recent Advances in the Development of Small-Molecular Inhibitors Target HIV Integrase-LEDGF/p75 Interaction.

    PubMed

    Zhao, Yu; Luo, Zaigang

    2015-01-01

    Lens epithelium-derived growth factor (LEDGF/p75) plays an essential role in the HIV-1 replication. It acts by tethering integrase (IN) into the host cellular chromatin. Due to its significance of the IN-LEDGF/p75 interaction affords a novel therapeutic approach for the design of new classes of antiretroviral agents. To date, many small molecules have been found to be the inhibitors of INLEDGF/ p75 interaction. This review summarizes recent advances in the development of potential structure-based IN-LEDGF/p75 interaction inhibitors. The work will be helpful to shed light on the antiretroviral drug development pipeline in the next future.

  17. Metal-dependent inhibition of HIV-1 integrase by 5CITEP inhibitor: A theoretical QM/MM approach

    NASA Astrophysics Data System (ADS)

    do Nascimento, Josenaide P.; Araújo Silva, José Rogério; Lameira, Jerônimo; Alves, Cláudio N.

    2013-09-01

    HIV-1 integrase (IN) is a potential target for developing drugs against AIDS. In this letter, QM/MM approach was used to study the inhibition of IN by 5CITEP inhibitor in presence of divalent cations (Mg2+ or Mn2+). In addition, the main interactions occurring in 5CITEP-IN complex and the influence of divalent cations (Mg2+ or Mn2+) in enzymatic inhibition were investigated using B3LYP/6-31+G(d,p)/MM. The results suggest that the Asp64, Asp116 and four crystal water molecules plays a crucial role in cation (Mg2+ or Mn2+) coordination sphere.

  18. New and investigational antiretroviral drugs for HIV infection: mechanisms of action and early research findings.

    PubMed

    Saag, Michael S

    2012-12-01

    Numerous investigational antiretroviral agents are in clinical development. Among them are festinavir (BMS986001), a thymidine analogue similar to stavudine with reduced potential for toxicity; GS-7340, a prodrug of tenofovir that achieves greater intracellular concentrations; MK-1439, a nonnucleoside analogue reverse transcriptase inhibitor (NNRTI) that retains activity against common NNRTI-associated resistance mutations; and albuvirtide, a long-acting parenteral fusion inhibitor. Investigational integrase strand transfer inhibitors (InSTIs) include elvitegravir, recently approved by the US Food and Drug Administration (FDA) as part of a once-daily, single-tablet formulation with cobicistat/tenofovir/emtricitabine; dolutegravir, which maintains some activity against raltegravir- and elvitegravir-resistant mutants; and S/GSK1265744, which also maintains some activity against resistance mutations in the integrase gene and is being developed as a long-lasting parenteral agent. Novel 2-(quinolin-3-yl)acetic acid derivatives (LEDGINs), agents that were originally thought to inhibit the interaction of integrase with its cofactor lens epithelium-derived growth factor p75 (LEDGF/p75), be active against InSTI-resistant mutants and to have additive activity when combined with InSTIs. This article summarizes a presentation by Michael S. Saag, MD, at the IAS-USA live Improving the Management of HCV Disease continuing medical education program held in New York in October 2012.

  19. A computational model for predicting integrase catalytic domain of retrovirus.

    PubMed

    Wu, Sijia; Han, Jiuqiang; Zhang, Xinman; Zhong, Dexing; Liu, Ruiling

    2017-06-21

    Integrase catalytic domain (ICD) is an essential part in the retrovirus for integration reaction, which enables its newly synthesized DNA to be incorporated into the DNA of infected cells. Owing to the crucial role of ICD for the retroviral replication and the absence of an equivalent of integrase in host cells, it is comprehensible that ICD is a promising drug target for therapeutic intervention. However, annotated ICDs in UniProtKB database have still been insufficient for a good understanding of their statistical characteristics so far. Accordingly, it is of great importance to put forward a computational ICD model in this work to annotate these domains in the retroviruses. The proposed model then discovered 11,660 new putative ICDs after scanning sequences without ICD annotations. Subsequently in order to provide much confidence in ICD prediction, it was tested under different cross-validation methods, compared with other database search tools, and verified on independent datasets. Furthermore, an evolutionary analysis performed on the annotated ICDs of retroviruses revealed a tight connection between ICD and retroviral classification. All the datasets involved in this paper and the application software tool of this model can be available for free download at https://sourceforge.net/projects/icdtool/files/?source=navbar. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Chromodomains direct integration of retrotransposons to heterochromatin

    PubMed Central

    Gao, Xiang; Hou, Yi; Ebina, Hirotaka; Levin, Henry L.; Voytas, Daniel F.

    2008-01-01

    The enrichment of mobile genetic elements in heterochromatin may be due, in part, to targeted integration. The chromoviruses are Ty3/gypsy retrotransposons with chromodomains at their integrase C termini. Chromodomains are logical determinants for targeting to heterochromatin, because the chromodomain of heterochromatin protein 1 (HP1) typically recognizes histone H3 K9 methylation, an epigenetic mark characteristic of heterochromatin. We describe three groups of chromoviruses based on amino acid sequence relationships of their integrase C termini. Genome sequence analysis indicates that representative chromoviruses from each group are enriched in gene-poor regions of the genome relative to other retrotransposons, and when fused to fluorescent marker proteins, the chromodomains target proteins to specific subnuclear foci coincident with heterochromatin. The chromodomain of the fungal element, MAGGY, interacts with histone H3 dimethyl- and trimethyl-K9, and when the MAGGY chromodomain is fused to integrase of the Schizosaccharomyces pombe Tf1 retrotransposon, new Tf1 insertions are directed to sites of H3 K9 methylation. Repetitive sequences such as transposable elements trigger the RNAi pathway resulting in their epigenetic modification. Our results suggest a dynamic interplay between retrotransposons and heterochromatin, wherein mobile elements recognize heterochromatin at the time of integration and then perpetuate the heterochromatic mark by triggering epigenetic modification. PMID:18256242

  1. Molecular mechanisms of retroviral integration site selection

    PubMed Central

    Kvaratskhelia, Mamuka; Sharma, Amit; Larue, Ross C.; Serrao, Erik; Engelman, Alan

    2014-01-01

    Retroviral replication proceeds through an obligate integrated DNA provirus, making retroviral vectors attractive vehicles for human gene-therapy. Though most of the host cell genome is available for integration, the process of integration site selection is not random. Retroviruses differ in their choice of chromatin-associated features and also prefer particular nucleotide sequences at the point of insertion. Lentiviruses including HIV-1 preferentially integrate within the bodies of active genes, whereas the prototypical gammaretrovirus Moloney murine leukemia virus (MoMLV) favors strong enhancers and active gene promoter regions. Integration is catalyzed by the viral integrase protein, and recent research has demonstrated that HIV-1 and MoMLV targeting preferences are in large part guided by integrase-interacting host factors (LEDGF/p75 for HIV-1 and BET proteins for MoMLV) that tether viral intasomes to chromatin. In each case, the selectivity of epigenetic marks on histones recognized by the protein tether helps to determine the integration distribution. In contrast, nucleotide preferences at integration sites seem to be governed by the ability for the integrase protein to locally bend the DNA duplex for pairwise insertion of the viral DNA ends. We discuss approaches to alter integration site selection that could potentially improve the safety of retroviral vectors in the clinic. PMID:25147212

  2. Autoimmune disease: A role for new anti-viral therapies?

    PubMed

    Dreyfus, David H

    2011-12-01

    Many chronic human diseases may have an underlying autoimmune mechanism. In this review, the author presents a case of autoimmune CIU (chronic idiopathic urticaria) in stable remission after therapy with a retroviral integrase inhibitor, raltegravir (Isentress). Previous reports located using the search terms "autoimmunity" and "anti-viral" and related topics in the pubmed data-base are reviewed suggesting that novel anti-viral agents such as retroviral integrase inhibitors, gene silencing therapies and eventually vaccines may provide new options for anti-viral therapy of autoimmune diseases. Cited epidemiologic and experimental evidence suggests that increased replication of epigenomic viral pathogens such as Epstein-Barr Virus (EBV) in chronic human autoimmune diseases such as rheumatoid arthritis (RA), systemic lupus Erythematosus (SLE), and multiple sclerosis (MS) may activate endogenous human retroviruses (HERV) as a pathologic mechanism. Memory B cells are the reservoir of infection of EBV and also express endogenous retroviruses, thus depletion of memory b-lymphocytes by monoclonal antibodies (Rituximab) may have therapeutic anti-viral effects in addition to effects on B-lymphocyte presentation of both EBV and HERV superantigens. Other novel anti-viral therapies of chronic autoimmune diseases, such as retroviral integrase inhibitors, could be effective, although not without risk. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. [Mechanisms of action, pharmacology and interactions of dolutegravir].

    PubMed

    Ribera, Esteban; Podzamczer, Daniel

    2015-03-01

    Dolutegravir is a second-generation integrase strand transfer inhibitor (INSTI), whose potential and binding half-life in the integrase are far superior to those of raltegravir and elvitegravir, conferring it with unique characteristics in terms of its genetic barrier to resistance and activity against viruses with one or more mutations in the integrase. The pharmacokinetic properties of dolutegravir allow once-daily dosing (50 mg), with or without food, maintaining concentrations far above those effective against wild-type viruses. If integrase resistance mutations are present, the recommended dosing regimen is 50 mg/12 h. The distribution of dolutegravir in cerebrospinal fluid is good and effective concentrations are also reached in the male and female genital tracts. Dolutegravir is metabolized by UGT1A1 and, to a lesser extent, by CYP3A4, without being an inducer or inhibitor of the usual metabolic systems. It has a very low potential for drug interactions and can be administered in routine doses with most drugs. Dose adjustment is not required, even in patients with renal insufficiency or mild or moderate liver failure. Increasing the dose of dolutegravir (50 mg/12 h) is only recommended when administered with efavirenz, nevirapine, fosamprenavir/r, tipranavir/r, rifampicin, carbamazepine, phenytoin and phenobarbital. Coadministration of dolutegravir with etravirine is not recommended without a protease inhibitor or with Hypericum perforatum. Dolutegravir should be administered 2 h before or 6 h after antacids or products with polyvalent cations. Dolutegravir can reduce renal tubule secretion of substances excreted via OCT2, with a slight initial increase in creatinine, with no risk of renal toxicity. The drug can also increase metformin concentrations and consequently monitoring is recommended in case dose adjustment is required. In summary, dolutegravir has excellent pharmacokinetic and drug interaction profiles. Copyright © 2015 Elsevier España, S.L.U. All rights reserved.

  4. Use of dolutegravir in two INI-experienced patients with multiclass resistance resulted in excellent virological and immunological responses

    PubMed Central

    Marije Hofstra, Laura; Nijhuis, Monique; Mudrikova, Tania; Fun, Axel; Schipper, Pauline; Schneider, Margriet; Wensing, Annemarie

    2014-01-01

    Introduction Dolutegravir is a second generation integrase inhibitor with a proposed high genetic barrier to resistance. However, in clinical trials, decreased virological response was seen in a subset of patients with prior exposure to raltegravir and multiple integrase resistance mutations. Methods We describe two cases of HIV subtype B-infected patients starting dolutegravir after previous failure on a raltegravir-containing regimen with extensive resistance. Genotypic analysis was performed using population sequencing and 454 ultradeep sequencing of integrase at time of raltegravir exposure. Results Both patients were diagnosed in early 1990s and received mono- and dual therapy, followed by several cART-regimens. Due to presence of extensive resistance, the genotypic susceptibility score of these regimens never reached a score >2 and never resulted in sustained virological suppression despite good adherence. Early 2012, the clinical condition of patient 1 worsened during persistent failure of a mega-cART regimen despite excellent drug levels. Six major PI, six minor PI, seven NRTI, six NNRTI and two INI mutations plus DM-virus were detected (Table 1). Ultra-deep sequencing of integrase showed the selection of Q148R, E138K+Q148K, and N155H variants and phenotypic raltegravir resistance was demonstrated. After addition of dolutegravir and enfuvirtide to the failing regimen (zidovudine, lamivudine, tenofovir, etravirine, darunavir/ritonavir, maraviroc), viral load (VL) decreased from 244,000 to <20 cps/mL within five months, CD4-count increased (33 to 272 mm3) and the clinical condition improved substantially. In patient 2, similar worsening of the clinical condition was observed late 2012 during persistent failure on mega-cART. Five major PI, six minor PI, nine NRTI, seven NNRTI and one INI mutation plus DM-virus were detected. Ultra-deep sequencing showed selection of N155H, followed by Q95K and V151I variants and phenotypic raltegravir resistance was demonstrated. Dolutegravir was added to his failing regimen (zidovudine, lamivudine, etravirine, atazanavir/ritonavir, maraviroc) at a VL of 39,000 cps/mL. Sustained virological suppression was reached within five months with considerable increase of CD4-count (41 to 175 mm3) and slight improvement of clinical condition. Conclusions We present the first patients with extensive integrase resistance who were treated with dolutegravir in clinical practice and who achieved excellent virological and immunological success. These cases demonstrate the high genetic barrier of dolutegravir. PMID:25397500

  5. The phage integrase vector pIPI03 allows RecA-independent, site-specific labelling of Staphylococcus lugdunensis strains.

    PubMed

    Heilbronner, Simon; Monk, Ian R; Foster, Timothy J

    2013-11-01

    Staphylococcus lugdunensis is a coagulase negative staphylococcus that is a commensal of man and an opportunistic pathogen. A site-specific integrative plasmid for the use in S. lugdunensis was constructed and validated. The integrase gene ccrB of bacteriophage ϕSL01 together with its attachment site was cloned into the thermosensitive plasmid pIMAY. The resulting plasmid pIPI03 integrated RecA-independently, site-specifically and irreversibly into the S. lugdunensis chromosome. Two IPTG-inducible antibiotic resistance determinants were cloned into pIPI03 and the derivatives were used to construct strains suitable for competitive growth experiments in both in vitro and in vivo. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Amplifying genetic logic gates.

    PubMed

    Bonnet, Jerome; Yin, Peter; Ortiz, Monica E; Subsoontorn, Pakpoom; Endy, Drew

    2013-05-03

    Organisms must process information encoded via developmental and environmental signals to survive and reproduce. Researchers have also engineered synthetic genetic logic to realize simpler, independent control of biological processes. We developed a three-terminal device architecture, termed the transcriptor, that uses bacteriophage serine integrases to control the flow of RNA polymerase along DNA. Integrase-mediated inversion or deletion of DNA encoding transcription terminators or a promoter modulates transcription rates. We realized permanent amplifying AND, NAND, OR, XOR, NOR, and XNOR gates actuated across common control signal ranges and sequential logic supporting autonomous cell-cell communication of DNA encoding distinct logic-gate states. The single-layer digital logic architecture developed here enables engineering of amplifying logic gates to control transcription rates within and across diverse organisms.

  7. QSAR study of curcumine derivatives as HIV-1 integrase inhibitors.

    PubMed

    Gupta, Pawan; Sharma, Anju; Garg, Prabha; Roy, Nilanjan

    2013-03-01

    A QSAR study was performed on curcumine derivatives as HIV-1 integrase inhibitors using multiple linear regression. The statistically significant model was developed with squared correlation coefficients (r(2)) 0.891 and cross validated r(2) (r(2) cv) 0.825. The developed model revealed that electronic, shape, size, geometry, substitution's information and hydrophilicity were important atomic properties for determining the inhibitory activity of these molecules. The model was also tested successfully for external validation (r(2) pred = 0.849) as well as Tropsha's test for model predictability. Furthermore, the domain analysis was carried out to evaluate the prediction reliability of external set molecules. The model was statistically robust and had good predictive power which can be successfully utilized for screening of new molecules.

  8. Isolation and anti-HIV-1 integrase activity of lentzeosides A-F from extremotolerant lentzea sp. H45, a strain isolated from a high-altitude Atacama Desert soil.

    PubMed

    Wichner, Dominik; Idris, Hamidah; Houssen, Wael E; McEwan, Andrew R; Bull, Alan T; Asenjo, Juan A; Goodfellow, Michael; Jaspars, Marcel; Ebel, Rainer; Rateb, Mostafa E

    2017-04-01

    The extremotolerant isolate H45 was one of several actinomycetes isolated from a high-altitude Atacama Desert soil collected in northwest Chile. The isolate was identified as a new Lentzea sp. using a combination of chemotaxonomic, morphological and phylogenetic properties. Large scale fermentation of the strain in two different media followed by chromatographic purification led to the isolation of six new diene and monoene glycosides named lentzeosides A-F, together with the known compound (Z)-3-hexenyl glucoside. The structures of the new compounds were confirmed by HRESIMS and NMR analyses. Compounds 1-6 displayed moderate inhibitory activity against HIV integrase.

  9. An efficient procedure for marker-free mutagenesis of S. coelicolor by site-specific recombination for secondary metabolite overproduction.

    PubMed

    Zhang, Bo; Zhang, Lin; Dai, Ruixue; Yu, Meiying; Zhao, Guoping; Ding, Xiaoming

    2013-01-01

    Streptomyces bacteria are known for producing important natural compounds by secondary metabolism, especially antibiotics with novel biological activities. Functional studies of antibiotic-biosynthesizing gene clusters are generally through homologous genomic recombination by gene-targeting vectors. Here, we present a rapid and efficient method for construction of gene-targeting vectors. This approach is based on Streptomyces phage φBT1 integrase-mediated multisite in vitro site-specific recombination. Four 'entry clones' were assembled into a circular plasmid to generate the destination gene-targeting vector by a one-step reaction. The four 'entry clones' contained two clones of the upstream and downstream flanks of the target gene, a selectable marker and an E. coli-Streptomyces shuttle vector. After targeted modification of the genome, the selectable markers were removed by φC31 integrase-mediated in vivo site-specific recombination between pre-placed attB and attP sites. Using this method, part of the calcium-dependent antibiotic (CDA) and actinorhodin (Act) biosynthetic gene clusters were deleted, and the rrdA encoding RrdA, a negative regulator of Red production, was also deleted. The final prodiginine production of the engineered strain was over five times that of the wild-type strain. This straightforward φBT1 and φC31 integrase-based strategy provides an alternative approach for rapid gene-targeting vector construction and marker removal in streptomycetes.

  10. Role of metal ions in catalysis by HIV integrase analyzed using a quantitative PCR disintegration assay.

    PubMed

    Diamond, Tracy L; Bushman, Frederic D

    2006-01-01

    Paired metal ions have been proposed to be central to the catalytic mechanisms of RNase H nucleases, bacterial transposases, Holliday junction resolvases, retroviral integrases and many other enzymes. Here we present a sensitive assay for DNA transesterification in which catalysis by human immunodeficiency virus-type 1 (HIV-1) integrase (IN) connects two DNA strands (disintegration reaction), allowing detection using quantitative PCR (qPCR). We present evidence suggesting that the three acidic residues of the IN active site function through metal binding using metal rescue. In this method, the catalytic acidic residues were each substituted with cysteines. Mn2+ binds tightly to the sulfur atoms of the cysteine residues, but Mg2+ does not. We found that Mn2+, but not Mg2+, could rescue catalysis of each cysteine-substituted enzyme, providing evidence for functionally important metal binding by all three residues. We also used the PCR-boosted assay to show that HIV-1 IN could carry out transesterification reactions involving DNA 5' hydroxyl groups as well as 3' hydroxyls as nucleophiles. Lastly, we show that Mn2+ by itself (i.e. without enzyme) can catalyze formation of a low level of PCR-amplifiable product under extreme conditions, allowing us to estimate the rate enhancement due to the IN-protein scaffold as at least 60 million-fold.

  11. Modulation of the functional association between the HIV-1 intasome and the nucleosome by histone amino-terminal tails.

    PubMed

    Benleulmi, Mohamed S; Matysiak, Julien; Robert, Xavier; Miskey, Csaba; Mauro, Eric; Lapaillerie, Delphine; Lesbats, Paul; Chaignepain, Stéphane; Henriquez, Daniel R; Calmels, Christina; Oladosu, Oyindamola; Thierry, Eloïse; Leon, Oscar; Lavigne, Marc; Andreola, Marie-Line; Delelis, Olivier; Ivics, Zoltán; Ruff, Marc; Gouet, Patrice; Parissi, Vincent

    2017-11-28

    Stable insertion of the retroviral DNA genome into host chromatin requires the functional association between the intasome (integrase·viral DNA complex) and the nucleosome. The data from the literature suggest that direct protein-protein contacts between integrase and histones may be involved in anchoring the intasome to the nucleosome. Since histone tails are candidates for interactions with the incoming intasomes we have investigated whether they could participate in modulating the nucleosomal integration process. We show here that histone tails are required for an optimal association between HIV-1 integrase (IN) and the nucleosome for efficient integration. We also demonstrate direct interactions between IN and the amino-terminal tail of human histone H4 in vitro. Structure/function studies enabled us to identify amino acids in the carboxy-terminal domain of IN that are important for this interaction. Analysis of the nucleosome-binding properties of catalytically active mutated INs confirmed that their ability to engage the nucleosome for integration in vitro was affected. Pseudovirus particles bearing mutations that affect the IN/H4 association also showed impaired replication capacity due to altered integration and re-targeting of their insertion sites toward dynamic regions of the chromatin with lower nucleosome occupancy. Collectively, our data support a functional association between HIV-1 IN and histone tails that promotes anchoring of the intasome to nucleosomes and optimal integration into chromatin.

  12. Functional Coupling between HIV-1 Integrase and the SWI/SNF Chromatin Remodeling Complex for Efficient in vitro Integration into Stable Nucleosomes

    PubMed Central

    Lesbats, Paul; Botbol, Yair; Chevereau, Guillaume; Vaillant, Cédric; Calmels, Christina; Arneodo, Alain; Andreola, Marie-Line; Lavigne, Marc; Parissi, Vincent

    2011-01-01

    Establishment of stable HIV-1 infection requires the efficient integration of the retroviral genome into the host DNA. The molecular mechanism underlying the control of this process by the chromatin structure has not yet been elucidated. We show here that stably associated nucleosomes strongly inhibit in vitro two viral-end integration by decreasing the accessibility of DNA to integrase. Remodeling of the chromatinized template by the SWI/SNF complex, whose INI1 major component interacts with IN, restores and redirects the full-site integration into the stable nucleosome region. These effects are not observed after remodeling by other human remodeling factors such as SNF2H or BRG1 lacking the integrase binding protein INI1. This suggests that the restoration process depends on the direct interaction between IN and the whole SWI/SNF complex, supporting a functional coupling between the remodeling and integration complexes. Furthermore, in silico comparison between more than 40,000 non-redundant cellular integration sites selected from literature and nucleosome occupancy predictions also supports that HIV-1 integration is promoted in the genomic region of weaker intrinsic nucleosome density in the infected cell. Our data indicate that some chromatin structures can be refractory for integration and that coupling between nucleosome remodeling and HIV-1 integration is required to overcome this natural barrier. PMID:21347347

  13. Ultrasensitive liquid chromatography-tandem mass spectrometric methodologies for quantification of five HIV-1 integrase inhibitors in plasma for a microdose clinical trial.

    PubMed

    Sun, Li; Li, Hankun; Willson, Kenneth; Breidinger, Sheila; Rizk, Matthew L; Wenning, Larissa; Woolf, Eric J

    2012-10-16

    HIV-1 integrase strand transfer inhibitors are an important class of compounds targeted for the treatment of HIV-1 infection. Microdosing has emerged as an attractive tool to assist in drug candidate screening for clinical development, but necessitates extremely sensitive bioanalytical assays, typically in the pg/mL concentration range. Currently, accelerator mass spectrometry is the predominant tool for microdosing support, which requires a specialized facility and synthesis of radiolabeled compounds. There have been few studies attempted to comprehensively assess a liquid chromatography-tandem mass spectrometry (LC-MS/MS) approach in the context of microdosing applications. Herein, we describe the development of automated LC-MS/MS methods to quantify five integrase inhibitors in plasma with the limits of quantification at 1 pg/mL for raltegravir and 2 pg/mL for four proprietary compounds. The assays involved double extractions followed by UPLC coupled with negative ion electrospray MS/MS analysis. All methods were fully validated to the rigor of regulated bioanalysis requirements, with intraday precision between 1.20 and 14.1% and accuracy between 93.8 and 107% at the standard curve concentration range. These methods were successfully applied to a human microdose study and demonstrated to be accurate, reproducible, and cost-effective. Results of the study indicate that raltegravir displayed linear pharmacokinetics between a microdose and a pharmacologically active dose.

  14. Role of metal ions in catalysis by HIV integrase analyzed using a quantitative PCR disintegration assay

    PubMed Central

    Diamond, Tracy L.; Bushman, Frederic D.

    2006-01-01

    Paired metal ions have been proposed to be central to the catalytic mechanisms of RNase H nucleases, bacterial transposases, Holliday junction resolvases, retroviral integrases and many other enzymes. Here we present a sensitive assay for DNA transesterification in which catalysis by human immunodeficiency virus-type 1 (HIV-1) integrase (IN) connects two DNA strands (disintegration reaction), allowing detection using quantitative PCR (qPCR). We present evidence suggesting that the three acidic residues of the IN active site function through metal binding using metal rescue. In this method, the catalytic acidic residues were each substituted with cysteines. Mn2+ binds tightly to the sulfur atoms of the cysteine residues, but Mg2+ does not. We found that Mn2+, but not Mg2+, could rescue catalysis of each cysteine-substituted enzyme, providing evidence for functionally important metal binding by all three residues. We also used the PCR-boosted assay to show that HIV-1 IN could carry out transesterification reactions involving DNA 5′ hydroxyl groups as well as 3′ hydroxyls as nucleophiles. Lastly, we show that Mn2+ by itself (i.e. without enzyme) can catalyze formation of a low level of PCR-amplifiable product under extreme conditions, allowing us to estimate the rate enhancement due to the IN-protein scaffold as at least 60 million-fold. PMID:17085478

  15. Impairment of Human Immunodeficiency Virus Type-1 Integrase SUMOylation Correlates with an Early Replication Defect*

    PubMed Central

    Zamborlini, Alessia; Coiffic, Audrey; Beauclair, Guillaume; Delelis, Olivier; Paris, Joris; Koh, Yashuiro; Magne, Fabian; Giron, Marie-Lou; Tobaly-Tapiero, Joelle; Deprez, Eric; Emiliani, Stephane; Engelman, Alan; de Thé, Hugues; Saïb, Ali

    2011-01-01

    HIV-1 integrase (IN) orchestrates the integration of the reverse transcribed viral cDNA into the host cell genome and participates also in other steps of HIV-1 replication. Cellular and viral factors assist IN in performing its multiple functions, and post-translational modifications contribute to modulate its activities. Here, we show that HIV-1 IN is modified by SUMO proteins and that phylogenetically conserved SUMOylation consensus motifs represent major SUMO acceptor sites. Viruses harboring SUMOylation site IN mutants displayed a replication defect that was mapped during the early stages of infection, before integration but after reverse transcription. Because SUMOylation-defective IN mutants retained WT catalytic activity, we hypothesize that SUMOylation might regulate the affinity of IN for co-factors, contributing to efficient HIV-1 replication. PMID:21454548

  16. Site-specific integration of Streptomyces PhiC31 integrase-based vectors in the chromosome of Rhodococcus equi.

    PubMed

    Hong, Yang; Hondalus, Mary K

    2008-10-01

    Streptomyces PhiC31-based site-specific integration was used to transform the facultative intracellular pathogen Rhodococcus equi. The transformation efficiency of vectors incorporating the PhiC31 integrase and attP sites was comparable to that of replication plasmids using the same electroporation procedure. A single attB integration site was identified within an ORF encoding a pirin-like protein, which deviates slightly from the consensus sequence of Streptomyces attB sites. Vector integration was stably maintained in the R. equi chromosome for as many as 100 generations during unselected passage in vitro. In addition, integration does not appear to affect the replication of bacteria inside macrophages. Finally, this integration system was also used to successfully complement an R. equi mutant.

  17. Inorganic and organic fertilizers impact the abundance and proportion of antibiotic resistance and integron-integrase genes in agricultural grassland soil.

    PubMed

    Nõlvak, Hiie; Truu, Marika; Kanger, Kärt; Tampere, Mailiis; Espenberg, Mikk; Loit, Evelin; Raave, Henn; Truu, Jaak

    2016-08-15

    Soil fertilization with animal manure or its digestate may facilitate an important antibiotic resistance dissemination route from anthropogenic sources to the environment. This study examines the effect of mineral fertilizer (NH4NO3), cattle slurry and cattle slurry digestate amendment on the abundance and proportion dynamics of five antibiotic resistance genes (ARGs) and two classes of integron-integrase genes (intI1 and intI2) in agricultural grassland soil. Fertilization was performed thrice throughout one vegetation period. The targeted ARGs (sul1, tetA, blaCTX-M, blaOXA2 and qnrS) encode resistance to several major antibiotic classes used in veterinary medicine such as sulfonamides, tetracycline, cephalosporins, penicillin and fluoroquinolones, respectively. The non-fertilized grassland soil contained a stable background of tetA, blaCTX-M and sul1 genes. The type of applied fertilizer significantly affected ARGs and integron-integrase genes abundances and proportions in the bacterial community (p<0.001 in both cases), explaining 67.04% of the abundance and 42.95% of the proportion variations in the grassland soil. Both cattle slurry and cattle slurry digestate proved to be considerable sources of ARGs, especially sul1, as well as integron-integrases. Sul1, intI1 and intI2 levels in grassland soil were elevated in response to each organic fertilizer's application event, but this increase was followed by a stage of decrease, suggesting that microbes possessing these genes were predominantly entrained into soil via cattle slurry or its digestate application and had somewhat limited survival potential in a soil environment. However, the abundance of these three target genes did not decrease to a background level by the end of the study period. TetA was most abundant in mineral fertilizer treated soil and blaCTX-M in cattle slurry digestate amended soil. Despite significantly different abundances, the abundance dynamics of bacteria possessing these genes were similar (p<0.05 in all cases) in different treatments and resembled the dynamics of the whole bacterial community abundance in each soil treatment. Copyright © 2016. Published by Elsevier B.V.

  18. The Hepatitis B Virus Ribonuclease H Is Sensitive to Inhibitors of the Human Immunodeficiency Virus Ribonuclease H and Integrase Enzymes

    PubMed Central

    Tavis, John E.; Totten, Michael; Cao, Feng; Michailidis, Eleftherios; Aurora, Rajeev; Meyers, Marvin J.; Jacobsen, E. Jon; Parniak, Michael A.; Sarafianos, Stefan G.

    2013-01-01

    Nucleos(t)ide analog therapy blocks DNA synthesis by the hepatitis B virus (HBV) reverse transcriptase and can control the infection, but treatment is life-long and has high costs and unpredictable long-term side effects. The profound suppression of HBV by the nucleos(t)ide analogs and their ability to cure some patients indicates that they can push HBV to the brink of extinction. Consequently, more patients could be cured by suppressing HBV replication further using a new drug in combination with the nucleos(t)ide analogs. The HBV ribonuclease H (RNAseH) is a logical drug target because it is the second of only two viral enzymes that are essential for viral replication, but it has not been exploited, primarily because it is very difficult to produce active enzyme. To address this difficulty, we expressed HBV genotype D and H RNAseHs in E. coli and enriched the enzymes by nickel-affinity chromatography. HBV RNAseH activity in the enriched lysates was characterized in preparation for drug screening. Twenty-one candidate HBV RNAseH inhibitors were identified using chemical structure-activity analyses based on inhibitors of the HIV RNAseH and integrase. Twelve anti-RNAseH and anti-integrase compounds inhibited the HBV RNAseH at 10 µM, the best compounds had low micromolar IC50 values against the RNAseH, and one compound inhibited HBV replication in tissue culture at 10 µM. Recombinant HBV genotype D RNAseH was more sensitive to inhibition than genotype H. This study demonstrates that recombinant HBV RNAseH suitable for low-throughput antiviral drug screening has been produced. The high percentage of compounds developed against the HIV RNAseH and integrase that were active against the HBV RNAseH indicates that the extensive drug design efforts against these HIV enzymes can guide anti-HBV RNAseH drug discovery. Finally, differential inhibition of HBV genotype D and H RNAseHs indicates that viral genetic variability will be a factor during drug development. PMID:23349632

  19. Solution structure of the His12 --> Cys mutant of the N-terminal zinc binding domain of HIV-1 integrase complexed to cadmium.

    PubMed Central

    Cai, M.; Huang, Y.; Caffrey, M.; Zheng, R.; Craigie, R.; Clore, G. M.; Gronenborn, A. M.

    1998-01-01

    The solution structure of His12 --> Cys mutant of the N-terminal zinc binding domain (residues 1-55; IN(1-55)) of HIV-1 integrase complexed to cadmium has been solved by multidimensional heteronuclear NMR spectroscopy. The overall structure is very similar to that of the wild-type N-terminal domain complexed to zinc. In contrast to the wild-type domain, however, which exists in two interconverting conformational states arising from different modes of coordination of the two histidine side chains to the metal, the cadmium complex of the His12 --> Cys mutant exists in only a single form at low pH. The conformation of the polypeptide chain encompassing residues 10-18 is intermediate between the two forms of the wild-type complex. PMID:9865962

  20. Comparative docking and CoMFA analysis of curcumine derivatives as HIV-1 integrase inhibitors.

    PubMed

    Gupta, Pawan; Garg, Prabha; Roy, Nilanjan

    2011-08-01

    The docking studies and comparative molecular field analysis (CoMFA) were performed on highly active molecules of curcumine derivatives against 3' processing activity of HIV-1 integrase (IN) enzyme. The optimum CoMFA model was selected with statistically significant cross-validated r(2) value of 0.815 and non-cross validated r (2) value of 0.99. The common pharmacophore of highly active molecules was used for screening of HIV-1 IN inhibitors. The high contribution of polar interactions in pharmacophore mapping is well supported by docking and CoMFA results. The results of docking, CoMFA, and pharmacophore mapping give structural insights as well as important binding features of curcumine derivatives as HIV-1 IN inhibitors which can provide guidance for the rational design of novel HIV-1 IN inhibitors.

  1. Interrogating HIV integrase for compounds that bind- a SAMPL challenge

    NASA Astrophysics Data System (ADS)

    Peat, Thomas S.; Dolezal, Olan; Newman, Janet; Mobley, David; Deadman, John J.

    2014-04-01

    Tremendous gains and novel methods are often developed when people are challenged to do something new or difficult. This process is enhanced when people compete against each other-this can be seen in sport as well as in science and technology (e.g. the space race). The SAMPL challenges, like the CASP challenges, aim to challenge modellers and software developers to develop new ways of looking at molecular interactions so the community as a whole can progress in the accurate prediction of these interactions. In order for this challenge to occur, data must be supplied so the prospective test can be done. We have supplied unpublished data related to a drug discovery program run several years ago on HIV integrase for the SAMPL4 challenge. This paper describes the methods used to obtain these data and the chemistry involved.

  2. Successful Prevention of Transmission of Integrase Resistance in the Swiss HIV Cohort Study.

    PubMed

    Scherrer, Alexandra U; Yang, Wan-Lin; Kouyos, Roger D; Böni, Jürg; Yerly, Sabine; Klimkait, Thomas; Aubert, Vincent; Cavassini, Matthias; Battegay, Manuel; Hauser, Christoph; Calmy, Alexandra; Schmid, Patrick; Bernasconi, Enos; Günthard, Huldrych F

    2016-08-01

    The prevalence of integrase strand transfer inhibitor (INSTI)-transmitted drug resistance (TDR) may increase with the increasing use of INSTIs. We analyzed the prevalence of INSTI TDR in the Swiss HIV Cohort Study (2008-2014). In 1 of 1316 drug-naive samples (0.1%), a major INSTI TDR mutation was detected. Prevalence was stable, although INSTIs were increasingly used. We showed that this is in contrast to the introduction of previous drug classes, in which more treatment failures with resistant strains occurred and TDR was observed more rapidly. We demonstrated on a population-level that it is possible to avoid TDR to a new drug class for years. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  3. Probable secondary transmission of antimicrobial-resistant Escherichia coli between people living with and without pets

    PubMed Central

    CHUNG, Yeon Soo; PARK, Young Kyung; PARK, Yong Ho; PARK, Kun Taek

    2017-01-01

    Companion animals are considered as one of the reservoirs of antimicrobial-resistant (AR) bacteria that can be cross-transmitted to humans. However, limited information is available on the possibility of AR bacteria originating from companion animals being transmitted secondarily from owners to non-owners sharing the same space. To address this issue, the present study investigated clonal relatedness among AR E. coli isolated from dog owners and non-owners in the same college classroom or household. Anal samples (n=48) were obtained from 14 owners and 34 non-owners; 31 E. coli isolates were collected (nine from owners and 22 from non-owners). Of 31 E. coli, 20 isolates (64.5%) were resistant to at least one antimicrobial, and 16 isolates (51.6%) were determined as multi-drug resistant E. coli. Six isolates (19.4%) harbored integrase genes (five harbored class I integrase gene and one harbored class 2 integrase gene, respectively). Pulsed-field gel electrophoretic analysis identified three different E. coli clonal sets among isolates, indicating that cross-transmission of AR E. coli can easily occur between owners and non-owners. The findings emphasize a potential risk of spread of AR bacteria originating from pets within human communities, once they are transferred to humans. Further studies are needed to evaluate the exact risk and identify the risk factors of secondarily transmission by investigating larger numbers of isolates from pets, their owners and non-owners in a community. PMID:28190823

  4. HIV-1 resistance dynamics in patients failing dolutegravir maintenance monotherapy.

    PubMed

    Wijting, Ingeborg E A; Lungu, Cynthia; Rijnders, Bart J A; van der Ende, Marchina E; Pham, Hanh T; Mesplede, Thibault; Pas, Suzan D; Voermans, Jolanda J C; Schuurman, Rob; van de Vijver, David A M C; Boers, Patrick H M; Gruters, Rob A; Boucher, Charles A B; van Kampen, Jeroen J A

    2018-03-29

    A high genetic resistance barrier to the integrase-strand-transfer-inhibitor (INSTI) dolutegravir has been reported in vitro and in vivo. We describe the dynamics of INSTI-resistance-associated-mutations (INSTI-RAMs) and mutations in the 3'-polypurine tract (3'-PPT) in relation to virological failure (VF) observed in the randomized dolutegravir maintenance monotherapy study (DOMONO, NCT02401828). From ten patients with VF plasma samples prior to start cART and during VF were used to generate Sanger sequences of integrase, the 5' terminal bases of the 3'- LTR, and the 3'-PPT. Median HIV-RNA (IQR) at VF was 3,490 (1,440-4,990) c/mL. INSTI-RAMs were detected in 4/10 patients (S230R, R263K, N155H, E92Q+N155H) and in 4/10 patients no INSTI-RAMs were detected (2/10 patients integrase sequencing was unsuccessful). The time-to-VF ranged from 4 weeks to 72 weeks. In one patient, mutations developed in the highly conserved 3'-PPT. No changes in the terminal bases of the 3'-LTR were observed. The genetic barrier to resistance is too low to justify dolutegravir maintenance monotherapy as single INSTI-RAMs are sufficient to cause VF. The large variation in time-to-VF suggests that stochastic reactivation of a pre-existing provirus containing a single INSTI-RAM is the mechanism for failure. Changes in the 3'-PPT point to a new dolutegravir resistance mechanism in vivo.

  5. Probable secondary transmission of antimicrobial-resistant Escherichia coli between people living with and without pets.

    PubMed

    Chung, Yeon Soo; Park, Young Kyung; Park, Yong Ho; Park, Kun Taek

    2017-03-18

    Companion animals are considered as one of the reservoirs of antimicrobial-resistant (AR) bacteria that can be cross-transmitted to humans. However, limited information is available on the possibility of AR bacteria originating from companion animals being transmitted secondarily from owners to non-owners sharing the same space. To address this issue, the present study investigated clonal relatedness among AR E. coli isolated from dog owners and non-owners in the same college classroom or household. Anal samples (n=48) were obtained from 14 owners and 34 non-owners; 31 E. coli isolates were collected (nine from owners and 22 from non-owners). Of 31 E. coli, 20 isolates (64.5%) were resistant to at least one antimicrobial, and 16 isolates (51.6%) were determined as multi-drug resistant E. coli. Six isolates (19.4%) harbored integrase genes (five harbored class I integrase gene and one harbored class 2 integrase gene, respectively). Pulsed-field gel electrophoretic analysis identified three different E. coli clonal sets among isolates, indicating that cross-transmission of AR E. coli can easily occur between owners and non-owners. The findings emphasize a potential risk of spread of AR bacteria originating from pets within human communities, once they are transferred to humans. Further studies are needed to evaluate the exact risk and identify the risk factors of secondarily transmission by investigating larger numbers of isolates from pets, their owners and non-owners in a community.

  6. The integrase of the long terminal repeat-retrotransposon tf1 has a chromodomain that modulates integrase activities.

    PubMed

    Hizi, Amnon; Levin, Henry L

    2005-11-25

    Chromodomains in a variety of proteins mediate the formation of heterochromatin by interacting directly with histone H3, DNA, or RNA. A diverse family of long terminal repeat (LTR)-retrotransposons possesses chromodomains in their integrases (IN), suggesting that the chromodomains may control integration. The LTR-retrotransposon Tf1 of Schizosaccharomyces pombe is highly active and possesses a chromodomain in the COOH terminus of its IN. To test this chromodomain for a role in integration, recombinant INs with and without the chromodomain were assayed for activity in in vitro reactions. The full-length IN had integration activity with oligonucleotide substrates that modeled both the insertion reaction and a reverse reaction known as disintegration. The INs of retroviruses possess an additional activity termed 3' processing that must remove 2-3 nucleotides from the 3' ends of the viral cDNA before insertion can occur. These additional nucleotides are added during reverse transcription because of the position of the minus strand primer downstream of the LTR. The position of the primer for Tf1 suggests no nucleotides are added 3' of the LTR. It was therefore surprising that Tf1 IN was capable of 3' cleavage. The most unexpected result reported here was that the IN lacking the chromodomain had significantly higher activity and substantially reduced substrate specificity. These results reveal that both the activity and specificity of enzymes can be modulated by their chromodomains.

  7. Plasmid integration in a wide range of bacteria mediated by the integrase of Lactobacillus delbrueckii bacteriophage mv4.

    PubMed Central

    Auvray, F; Coddeville, M; Ritzenthaler, P; Dupont, L

    1997-01-01

    Bacteriophage mv4 is a temperate phage infecting Lactobacillus delbrueckii subsp. bulgaricus. During lysogenization, the phage integrates its genome into the host chromosome at the 3' end of a tRNA(Ser) gene through a site-specific recombination process (L. Dupont et al., J. Bacteriol., 177:586-595, 1995). A nonreplicative vector (pMC1) based on the mv4 integrative elements (attP site and integrase-coding int gene) is able to integrate into the chromosome of a wide range of bacterial hosts, including Lactobacillus plantarum, Lactobacillus casei (two strains), Lactococcus lactis subsp. cremoris, Enterococcus faecalis, and Streptococcus pneumoniae. Integrative recombination of pMC1 into the chromosomes of all of these species is dependent on the int gene product and occurs specifically at the pMC1 attP site. The isolation and sequencing of pMC1 integration sites from these bacteria showed that in lactobacilli, pMC1 integrated into the conserved tRNA(Ser) gene. In the other bacterial species where this tRNA gene is less or not conserved; secondary integration sites either in potential protein-coding regions or in intergenic DNA were used. A consensus sequence was deduced from the analysis of the different integration sites. The comparison of these sequences demonstrated the flexibility of the integrase for the bacterial integration site and suggested the importance of the trinucleotide CCT at the 5' end of the core in the strand exchange reaction. PMID:9068626

  8. Quantification of the HIV-integrase inhibitor raltegravir (MK-0518) in human plasma by high-performance liquid chromatography with fluorescence detection.

    PubMed

    Poirier, Jean-Marie; Robidou, Pascal; Jaillon, Patrice

    2008-05-15

    A simple and sensitive HLPC method with fluorescence detection was developed for the accurate determination of the first licensed HIV integrase inhibitor raltegravir in human plasma. A 500-microL plasma sample was spiked with delavirdine as internal standard and subjected to liquid-liquid extraction based on a previously described assay i.e. using hexane/methylene chloride (1:1, v/v%) at pH 4.0. HPLC was performed using a Symmetry Shield RP18 column (150 mm x 4.6 mm), a gradient elution of acetonitrile -0.01% (v/v) triethylamine in water adjusted to pH 3.0 at a flow rate of 1 mL/min and a fluorimetric detector set at 299 and 396 nm as excitation and emission wavelengths, respectively. The retention time was 5.0 min for internal standard and 6.4 min for raltegravir. Calibration curves were linear in the range 5-1000 ng/mL and the accuracy of quality control samples in the range 10-750 ng/mL varied from 98.3 to 99.1% and 98.3 to 101.0% of the nominal concentrations for intra-day and day-to-day analysis, respectively with a precision of 6.3% or less. Among the other antiretroviral drugs which can be given in association to HIV-infected patients, none was found to interfere with internal standard or raltegravir. The described assay was developed for the purpose of therapeutic drug of this HIV integrase inhibitor.

  9. Fragment Based Strategies for Discovery of Novel HIV-1 Reverse Transcriptase and Integrase Inhibitors.

    PubMed

    Latham, Catherine F; La, Jennifer; Tinetti, Ricky N; Chalmers, David K; Tachedjian, Gilda

    2016-01-01

    Human immunodeficiency virus (HIV) remains a global health problem. While combined antiretroviral therapy has been successful in controlling the virus in patients, HIV can develop resistance to drugs used for treatment, rendering available drugs less effective and limiting treatment options. Initiatives to find novel drugs for HIV treatment are ongoing, although traditional drug design approaches often focus on known binding sites for inhibition of established drug targets like reverse transcriptase and integrase. These approaches tend towards generating more inhibitors in the same drug classes already used in the clinic. Lack of diversity in antiretroviral drug classes can result in limited treatment options, as cross-resistance can emerge to a whole drug class in patients treated with only one drug from that class. A fresh approach in the search for new HIV-1 drugs is fragment-based drug discovery (FBDD), a validated strategy for drug discovery based on using smaller libraries of low molecular weight molecules (<300 Da) screened using primarily biophysical assays. FBDD is aimed at not only finding novel drug scaffolds, but also probing the target protein to find new, often allosteric, inhibitory binding sites. Several fragment-based strategies have been successful in identifying novel inhibitory sites or scaffolds for two proven drug targets for HIV-1, reverse transcriptase and integrase. While any FBDD-generated HIV-1 drugs have yet to enter the clinic, recent FBDD initiatives against these two well-characterised HIV-1 targets have reinvigorated antiretroviral drug discovery and the search for novel classes of HIV-1 drugs.

  10. A direct comparison of two nonviral gene therapy vectors for somatic integration: in vivo evaluation of the bacteriophage integrase phiC31 and the Sleeping Beauty transposase.

    PubMed

    Ehrhardt, Anja; Xu, Hui; Huang, Zan; Engler, Jeffrey A; Kay, Mark A

    2005-05-01

    In this study we performed a head-to-head comparison of the integrase phiC31 derived from a Streptomyces phage and the Sleeping Beauty (SB) transposase, a member of the TC1/mariner superfamily of transposable elements. Mouse liver was cotransfused with a vector containing our most robust human coagulation factor IX expression cassette and the appropriate recombinase recognition site and either a phiC31- or a SB transposase-expressing vector. To analyze transgene persistence and to prove somatic integration in vivo we induced cell cycling of mouse hepatocytes and found that the transgene expression levels dropped by only 16 to 21% and 56 to 66% in mice that received phiC31 and SB, respectively. Notably, no difference in the toxicity profile was detected in mice treated with either recombinase. Moreover we observed that with the integrase-mediated gene transfer, transgene expression levels were dependent on the remaining noncoding vector sequences, which also integrate into the host genome. Further analyses of a hot spot of integration after phiC31-mediated integration revealed small chromosomal deletions at the target site and that the recombination process was not dependent on the orientation in which the phiC31 recognition site attached to the pseudo-recognition sites in the host genome. Coupled together with ongoing improvements in both systems this study suggests that both nonviral vector systems will have important roles in achieving stable gene transfer in vivo.

  11. ФC31 Integrase-Mediated Isolation and Characterization of Novel Safe Harbors for Transgene Expression in the Pig Genome

    PubMed Central

    Bi, Yanzhen; Hua, Zaidong; Ren, Hongyan; Zhang, Liping; Xiao, Hongwei; Liu, Ximei; Hua, Wenjun; Mei, Shuqi; Molenaar, Adrian; Laible, Götz; Zheng, Xinmin

    2018-01-01

    Programmable nucleases have allowed the rapid development of gene editing and transgenics, but the technology still suffers from the lack of predefined genetic loci for reliable transgene expression and maintenance. To address this issue, we used ФC31 integrase to navigate the porcine genome and identify the pseudo attP sites suitable as safe harbors for sustained transgene expression. The combined ФC31 integrase mRNA and an enhanced green fluorescence protein (EGFP) reporter donor were microinjected into one-cell zygotes for transgene integration. Among the resulting seven EGFP-positive piglets, two had transgene integrations at pseudo attP sites, located in an intergenic region of chromosome 1 (chr1-attP) and the 6th intron of the TRABD2A gene on chromosome 3 (chr3-attP), respectively. The integration structure was determined by TAIL-PCR and Southern blotting. Primary fibroblast cells were isolated from the two piglets and examined using fluorescence-activated cell sorting (FACS) and enzyme-linked immunosorbent assay (ELISA), which demonstrated that the chr1-attP site was more potent than chr3-attP site in supporting the EGFP expression. Both piglets had green feet under the emission of UV light, and pelleted primary fibroblast cells were green-colored under natural light, corroborating that the two pseudo attP sites are beneficial to transgene expression. The discovery of these two novel safe harbors for robust and durable transgene expression will greatly facilitate the use of transgenic pigs for basic, biomedical and agricultural studies and applications. PMID:29300364

  12. Safety and efficacy of dolutegravir in treatment-experienced subjects with raltegravir-resistant HIV type 1 infection: 24-week results of the VIKING Study.

    PubMed

    Eron, Joseph J; Clotet, Bonaventura; Durant, Jacques; Katlama, Christine; Kumar, Princy; Lazzarin, Adriano; Poizot-Martin, Isabelle; Richmond, Gary; Soriano, Vincent; Ait-Khaled, Mounir; Fujiwara, Tamio; Huang, Jenny; Min, Sherene; Vavro, Cindy; Yeo, Jane

    2013-03-01

    Dolutegravir (DTG; S/GSK1349572), a human immunodeficiency virus type 1 (HIV-1) integrase inhibitor, has limited cross-resistance to raltegravir (RAL) and elvitegravir in vitro. This phase IIb study assessed the activity of DTG in HIV-1-infected subjects with genotypic evidence of RAL resistance. Subjects received DTG 50 mg once daily (cohort I) or 50 mg twice daily (cohort II) while continuing a failing regimen (without RAL) through day 10, after which the background regimen was optimized, when feasible, for cohort I, and at least 1 fully active drug was mandated for cohort II. The primary efficacy end point was the proportion of subjects on day 11 in whom the plasma HIV-1 RNA load decreased by ≥0.7 log(10) copies/mL from baseline or was <400 copies/mL. A rapid antiviral response was observed. More subjects achieved the primary end point in cohort II (23 of 24 [96%]), compared with cohort I (21 of 27 [78%]) at day 11. At week 24, 41% and 75% of subjects had an HIV-1 RNA load of <50 copies/mL in cohorts I and II, respectively. Further integrase genotypic evolution was uncommon. Dolutegravir had a good, similar safety profile with each dosing regimen. Dolutegravir 50 mg twice daily with an optimized background provided greater and more durable benefit than the once-daily regimen. These data are the first clinical demonstration of the activity of any integrase inhibitor in subjects with HIV-1 resistant to RAL.

  13. Construction of transformed, cultured silkworm cells and transgenic silkworm using the site-specific integrase system from phage φC31.

    PubMed

    Yin, Yajuan; Cao, Guangli; Xue, Renyu; Gong, Chengliang

    2014-10-01

    The Streptomyces bacteriophage, φC31, uses a site-specific integrase enzyme to perform efficient recombination. The recombination system uses specific sequences to integrate exogenous DNA from the phage into a host. The sequences are known as the attP site in the phage and the attB site in the host. The system can be used as a genetic manipulation tool. In this study it has been applied to the transformation of cultured BmN cells and the construction of transgenic Bombyx mori individuals. A plasmid, pSK-attB/Pie1-EGFP/Zeo-PASV40, containing a cassette designed to express a egfp-zeocin fusion gene, was co-transfected into cultured BmN cells with a helper plasmid, pSK-Pie1/NLS-Int/NSL. Expression of the egfp-zeocin fusion gene was driven by an ie-1 promoter, downstream of a φC31 attB site. The helper plasmid encoded the φC31 integrase enzyme, which was flanked by two nuclear localization signals. Expression of the egfp-zeocin fusion gene could be observed in transformed cells. The two plasmids were also transferred into silkworm eggs to obtain transgenic silkworms. Successful integration of the fusion gene was indicated by the detection of green fluorescence, which was emitted by the silkworms. Nucleotide sequence analysis demonstrated that the attB site had been cut, to allow recombination between the attB and endogenous pseudo attP sites in the cultured silkworm cells and silkworm individuals.

  14. Efficacies of Cabotegravir and Bictegravir against drug-resistant HIV-1 integrase mutants.

    PubMed

    Smith, Steven J; Zhao, Xue Zhi; Burke, Terrence R; Hughes, Stephen H

    2018-05-16

    Integrase strand transfer inhibitors (INSTIs) are the class of antiretroviral (ARV) drugs most recently approved by the FDA for the treatment of HIV-1 infections. INSTIs block the strand transfer reaction catalyzed by HIV-1 integrase (IN) and have been shown to potently inhibit infection by wild-type HIV-1. Of the three current FDA-approved INSTIs, Dolutegravir (DTG), has been the most effective, in part because treatment does not readily select for resistant mutants. However, recent studies showed that when INSTI-experienced patients are put on a DTG-salvage therapy, they have reduced response rates. Two new INSTIs, Cabotegravir (CAB) and Bictegravir (BIC), are currently in late-stage clinical trials. Both CAB and BIC had much broader antiviral profiles than RAL and EVG against the INSTI-resistant single, double, and triple HIV-1 mutants used in this study. BIC was more effective than DTG against several INSTI-resistant mutants. Overall, in terms of their ability to inhibit a broad range of INSTI-resistant IN mutants, BIC was superior to DTG, and DTG was superior to CAB. Modeling the binding of CAB, BIC, and DTG within the active site of IN suggested that the "left side" of the INSTI pharmacophore (the side away from the viral DNA) was important in determining the ability of the compound to inhibit the IN mutants we tested. Of the two INSTIs in late stage clinical trials, BIC appears to be better able to inhibit the replication of a broad range of IN mutants. BIC retained potency against several of the INSTI-resistant mutants that caused a decrease in susceptibility to DTG.

  15. The allosteric HIV-1 integrase inhibitor BI-D affects virion maturation but does not influence packaging of a functional RNA genome.

    PubMed

    van Bel, Nikki; van der Velden, Yme; Bonnard, Damien; Le Rouzic, Erwann; Das, Atze T; Benarous, Richard; Berkhout, Ben

    2014-01-01

    The viral integrase (IN) is an essential protein for HIV-1 replication. IN inserts the viral dsDNA into the host chromosome, thereby aided by the cellular co-factor LEDGF/p75. Recently a new class of integrase inhibitors was described: allosteric IN inhibitors (ALLINIs). Although designed to interfere with the IN-LEDGF/p75 interaction to block HIV DNA integration during the early phase of HIV-1 replication, the major impact was surprisingly found on the process of virus maturation during the late phase, causing a reverse transcription defect upon infection of target cells. Virus particles produced in the presence of an ALLINI are misformed with the ribonucleoprotein located outside the virus core. Virus assembly and maturation are highly orchestrated and regulated processes in which several viral proteins and RNA molecules closely interact. It is therefore of interest to study whether ALLINIs have unpredicted pleiotropic effects on these RNA-related processes. We confirm that the ALLINI BI-D inhibits virus replication and that the produced virus is non-infectious. Furthermore, we show that the wild-type level of HIV-1 genomic RNA is packaged in virions and these genomes are in a dimeric state. The tRNAlys3 primer for reverse transcription was properly placed on this genomic RNA and could be extended ex vivo. In addition, the packaged reverse transcriptase enzyme was fully active when extracted from virions. As the RNA and enzyme components for reverse transcription are properly present in virions produced in the presence of BI-D, the inhibition of reverse transcription is likely to reflect the mislocalization of the components in the aberrant virus particle.

  16. Improving HCV cure rates in HIV-coinfected patients - a real-world perspective.

    PubMed

    Lakshmi, Seetha; Alcaide, Maria; Palacio, Ana M; Shaikhomer, Mohammed; Alexander, Abigail L; Gill-Wiehl, Genevieve; Pandey, Aman; Patel, Kunal; Jayaweera, Dushyantha; Del Pilar Hernandez, Maria

    2016-05-01

    To study rates and predictors of hepatitis C virus (HCV) cure among human immunodeficiency virus (HIV)/HCV-coinfected patients, and then to evaluate the effect of attendance at clinic visits on HCV cure. Retrospective cohort study of adult HIV/HCV-coinfected patients who initiated and completed treatment for HCV with direct-acting antivirals (DAAs) between January 1, 2014, and June 30, 2015. Eighty-four participants reported completing treatment. The median age was 58 years (interquartile ratio, 50-66); 88% were male and 50% were black. One-third were cirrhotic and half were HCV-treatment-experienced. The most commonly used regimen was sofosbuvir/ledipasvir (40%) followed by simeprevir/sofosbuvir (30%). Cure was achieved in 83.3%, 11.9% relapsed, and 2.3% experienced virological breakthrough. Two patients (2.3%) did not complete treatment based on pill counts and follow-up visit documentation. In multivariable analysis, cure was associated with attendance at follow-up clinic visits (odds ratio [OR], 9.0; 95% CI, 2.91-163) and with use of an integrase-based HIV regimen versus other non-integrase regimens, such as non-nucleoside analogues or protease inhibitors (OR, 6.22; 95% CI 1.81-141). Age, race, genotype, presence of cirrhosis, prior HCV treatment, HCV regimen, and pre-treatment CD4 counts were not associated with cure. Real-world HCV cure rates with DAAs in HCV/HIV coinfection are lower than those seen in clinical trials. Cure is associated with attendance at follow-up clinic visits and with use of an integrase-based HIV regimen. Future studies should evaluate best antiretroviral regimens, predictors of attendance at follow-up visits, impact of different monitoring protocols on medication adherence, and interventions to ensure adequate models of HIV/HCV care.

  17. Evidence for Induction of Integron-Based Antibiotic Resistance by the SOS Response in a Clinical Setting

    PubMed Central

    Hocquet, Didier; Llanes, Catherine; Thouverez, Michelle; Kulasekara, Hemantha D.; Bertrand, Xavier; Plésiat, Patrick; Mazel, Didier; Miller, Samuel I.

    2012-01-01

    Bacterial resistance to β-lactams may rely on acquired β-lactamases encoded by class 1 integron-borne genes. Rearrangement of integron cassette arrays is mediated by the integrase IntI1. It has been previously established that integrase expression can be activated by the SOS response in vitro, leading to speculation that this is an important clinical mechanism of acquiring resistance. Here we report the first in vivo evidence of the impact of SOS response activated by the antibiotic treatment given to a patient and its output in terms of resistance development. We identified a new mechanism of modulation of antibiotic resistance in integrons, based on the insertion of a genetic element, the gcuF1 cassette, upstream of the integron-borne cassette bla OXA-28 encoding an extended spectrum β-lactamase. This insertion creates the fused protein GCUF1-OXA-28 and modulates the transcription, the translation, and the secretion of the β-lactamase in a Pseudomonas aeruginosa isolate (S-Pae) susceptible to the third generation cephalosporin ceftazidime. We found that the metronidazole, not an anti-pseudomonal antibiotic given to the first patient infected with S-Pae, triggered the SOS response that subsequently activated the integrase IntI1 expression. This resulted in the rearrangement of the integron gene cassette array, through excision of the gcuF1 cassette, and the full expression the β-lactamase in an isolate (R-Pae) highly resistant to ceftazidime, which further spread to other patients within our hospital. Our results demonstrate that in human hosts, the antibiotic-induced SOS response in pathogens could play a pivotal role in adaptation process of the bacteria. PMID:22719259

  18. Pharmacokinetic profile of raltegravir, elvitegravir and dolutegravir in plasma and mucosal secretions in rhesus macaques.

    PubMed

    Massud, Ivana; Martin, Amy; Dinh, Chuong; Mitchell, James; Jenkins, Leecresia; Heneine, Walid; Pau, Chou-Pong; García-Lerma, J Gerardo

    2015-05-01

    Pharmacokinetic studies in animal models are important for assessing the prophylactic potential of antiretroviral drugs for HIV prevention. This study sought to identify clinically relevant doses of the marketed integrase inhibitors raltegravir, elvitegravir and dolutegravir in macaques and investigate drug penetration and antiviral activity in mucosal secretions. Macaques received one oral dose of raltegravir, elvitegravir or dolutegravir alone or in combination with emtricitabine and tenofovir disoproxil fumarate followed by drug level measurements in blood and rectal and vaginal secretions. Antiviral activity was investigated in TZM-bl cells exposed to SHIV162p3 in the presence of rectal secretions collected from treated animals. Plasma drug concentrations with 50 mg/kg raltegravir or elvitegravir were within the range seen in humans receiving 400-800 mg of raltegravir or 800 mg of unboosted elvitegravir but lower than with 150 mg of elvitegravir boosted with cobicistat. AUC0-24 values for dolutegravir increased proportionally with the dose, with a calculated human-equivalent dose of 20 mg/kg. Elvitegravir showed the highest penetration in rectal and vaginal fluids despite the absence of pharmacological boosting, followed by raltegravir and dolutegravir. Rectal secretions collected at 24 h from treated macaques blocked infection of TZM-bl cells by 50% at dilutions of 1/1000 (raltegravir), 1/800 (dolutegravir) and >1/30 000 (elvitegravir). We defined macaque doses of HIV integrase inhibitors that recapitulate human clinical doses, which will facilitate efficacy and dose escalation studies in macaques. High and sustained drug concentrations and activity in mucosal secretions suggest that integrase inhibitors are promising candidates for HIV prevention. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  19. Inducing indel mutation in the SOX6 gene by zinc finger nuclease for gamma reactivation: An approach towards gene therapy of beta thalassemia.

    PubMed

    Modares Sadeghi, Mehran; Shariati, Laleh; Hejazi, Zahra; Shahbazi, Mansoureh; Tabatabaiefar, Mohammad Amin; Khanahmad, Hossein

    2018-03-01

    β-thalassemia is a common autosomal recessive disorder characterized by a deficiency in the synthesis of β-chains. Evidences show that increased HbF levels improve the symptoms in patients with β-thalassemia or sickle cell anemia. In this study, ZFN technology was applied to induce a mutation in the binding domain region of SOX6 to reactivate γ-globin expression. The sequences coding for ZFP arrays were designed and sub cloned in TDH plus as a transfer vector. The ZFN expression was confirmed using Western blot analysis. In the next step, using the site-directed mutagenesis strategy through the overlap PCR, a missense mutation (D64V) was induced in the catalytic domain of the integrase gene in the packaging plasmid and verified using DNA sequencing. Then, the integrase minus lentivirus containing ZFN cassette was packaged. Transduction of K562 cells with this virus was performed. Mutation detection assay was performed. The indel percentage of the cells transducted with lenti virus containing ZFN was 31%. After 5 days of erythroid differentiation with 15 μg/mL cisplatin, the levels of γ-globin mRNA were sixfold in the cells treated with ZFN compared to untreated cells. In the meantime, the measurement of HbF expression levels was carried out using hemoglobin electrophoresis and showed the same results. Integrase minus lentivirus can provide a useful tool for efficient transient gene expression and helps avoid disadvantages of gene targeting using the native virus. The ZFN strategy applied here to induce indel on SOX6 gene in adult erythroid progenitors may provide a method to activate fetal hemoglobin expression in individuals with β-thalassemia. © 2017 Wiley Periodicals, Inc.

  20. Safety and Efficacy of Dolutegravir in Treatment-Experienced Subjects With Raltegravir-Resistant HIV Type 1 Infection: 24-Week Results of the VIKING Study

    PubMed Central

    Eron, Joseph J.; Clotet, Bonaventura; Durant, Jacques; Katlama, Christine; Kumar, Princy; Lazzarin, Adriano; Poizot-Martin, Isabelle; Richmond, Gary; Soriano, Vincent; Ait-Khaled, Mounir; Fujiwara, Tamio; Huang, Jenny; Min, Sherene; Vavro, Cindy; Yeo, Jane; Walmsley, Sharon L.; Cox, Joseph; Reynes, Jacques; Morlat, Philippe; Vittecoq, Daniel; Livrozet, Jean-Michel; Fernández, Pompeyo Viciana; Gatell, Jose M.; DeJesus, Edwin; DeVente, Jerome; Lalezari, Jacob P.; McCurdy, Lewis H.; Sloan, Louis A.; Young, Benjamin; LaMarca, Anthony; Hawkins, Trevor

    2013-01-01

    Background. Dolutegravir (DTG; S/GSK1349572), a human immunodeficiency virus type 1 (HIV-1) integrase inhibitor, has limited cross-resistance to raltegravir (RAL) and elvitegravir in vitro. This phase IIb study assessed the activity of DTG in HIV-1–infected subjects with genotypic evidence of RAL resistance. Methods. Subjects received DTG 50 mg once daily (cohort I) or 50 mg twice daily (cohort II) while continuing a failing regimen (without RAL) through day 10, after which the background regimen was optimized, when feasible, for cohort I, and at least 1 fully active drug was mandated for cohort II. The primary efficacy end point was the proportion of subjects on day 11 in whom the plasma HIV-1 RNA load decreased by ≥0.7 log10 copies/mL from baseline or was <400 copies/mL. Results. A rapid antiviral response was observed. More subjects achieved the primary end point in cohort II (23 of 24 [96%]), compared with cohort I (21 of 27 [78%]) at day 11. At week 24, 41% and 75% of subjects had an HIV-1 RNA load of <50 copies/mL in cohorts I and II, respectively. Further integrase genotypic evolution was uncommon. Dolutegravir had a good, similar safety profile with each dosing regimen. Conclusion. Dolutegravir 50 mg twice daily with an optimized background provided greater and more durable benefit than the once-daily regimen. These data are the first clinical demonstration of the activity of any integrase inhibitor in subjects with HIV-1 resistant to RAL. PMID:23225901

  1. Structural dynamics of native and V260E mutant C-terminal domain of HIV-1 integrase

    NASA Astrophysics Data System (ADS)

    Sangeetha, Balasubramanian; Muthukumaran, Rajagopalan; Amutha, Ramaswamy

    2015-04-01

    The C-terminal domain (CTD) of HIV-1 integrase is a five stranded β-barrel resembling an SH3 fold. Mutational studies on isolated CTD and full-length IN have reported V260E mutant as either homo-dimerization defective or affecting the stability and folding of CTD. In this study, molecular dynamics simulation techniques were used to unveil the effect of V260E mutation on isolated CTD monomer and dimer. Both monomeric and dimeric forms of wild type and V260E mutant are highly stable during the simulated period. However, the stabilizing π-stacking interaction between Trp243 and Trp243' at the dimer interface is highly disturbed in CTD-V260E (>6 Å apart). The loss in entropy for dimerization is -30 and -25 kcal/mol for CTD-wt and CTD-V260E respectively signifying a weak hydrophobic interaction and its perturbation in CTD-V260E. The mutant Glu260 exhibits strong attraction/repulsion with all the basic/acidic residues of CTD. In addition to this, the dynamics of CTD-wild type and V260E monomers at 498 K was analyzed to elucidate the effect of V260E mutation on CTD folding. Increase in SASA and reduction in the number of contacts in CTD-V260E during simulation highlights the instability caused by the mutation. In general, V260E mutation affects both multimerization and protein folding with a pronounced effect on protein folding rather than multimerization. This study emphasizes the importance of the hydrophobic nature and SH3 fold of CTD in proper functioning of HIV integrase and perturbing this nature would be a rational approach toward designing more selective and potent allosteric anti-HIV inhibitors.

  2. Comparison of an In Vitro Diagnostic Next-Generation Sequencing Assay with Sanger Sequencing for HIV-1 Genotypic Resistance Testing.

    PubMed

    Tzou, Philip L; Ariyaratne, Pramila; Varghese, Vici; Lee, Charlie; Rakhmanaliev, Elian; Villy, Carolin; Yee, Meiqi; Tan, Kevin; Michel, Gerd; Pinsky, Benjamin A; Shafer, Robert W

    2018-06-01

    The ability of next-generation sequencing (NGS) technologies to detect low frequency HIV-1 drug resistance mutations (DRMs) not detected by dideoxynucleotide Sanger sequencing has potential advantages for improved patient outcomes. We compared the performance of an in vitro diagnostic (IVD) NGS assay, the Sentosa SQ HIV genotyping assay for HIV-1 genotypic resistance testing, with Sanger sequencing on 138 protease/reverse transcriptase (RT) and 39 integrase sequences. The NGS assay used a 5% threshold for reporting low-frequency variants. The level of complete plus partial nucleotide sequence concordance between Sanger sequencing and NGS was 99.9%. Among the 138 protease/RT sequences, a mean of 6.4 DRMs was identified by both Sanger and NGS, a mean of 0.5 DRM was detected by NGS alone, and a mean of 0.1 DRM was detected by Sanger sequencing alone. Among the 39 integrase sequences, a mean of 1.6 DRMs was detected by both Sanger sequencing and NGS and a mean of 0.15 DRM was detected by NGS alone. Compared with Sanger sequencing, NGS estimated higher levels of resistance to one or more antiretroviral drugs for 18.2% of protease/RT sequences and 5.1% of integrase sequences. There was little evidence for technical artifacts in the NGS sequences, but the G-to-A hypermutation was detected in three samples. In conclusion, the IVD NGS assay evaluated in this study was highly concordant with Sanger sequencing. At the 5% threshold for reporting minority variants, NGS appeared to attain a modestly increased sensitivity for detecting low-frequency DRMs without compromising sequence accuracy. Copyright © 2018 American Society for Microbiology.

  3. Rheumatic diseases in HIV-infected patients in the post-antiretroviral therapy era: a tertiary care center experience.

    PubMed

    Parperis, Konstantinos; Abdulqader, Yasir; Myers, Robert; Bhattarai, Bikash; Al-Ani, Muhsen

    2018-04-04

    The aim of the study was to calculate the proportion of rheumatic diseases in HIV patients who were receiving ART and to identify association of the HIV medications with the development of rheumatologic diseases. We conducted a retrospective chart review during the period of 2010 to 2016. We identified 2996 patients as having chronic HIV infection and on ART, and we collected data regarding patient's demographic characteristics, comorbidities, CD 4 count, HIV viral load, and ART. One hundred thirteen out of 2996 HIV patients (3.8%) were found to have a rheumatic condition (mean age of 48.6 years, 83% male). The most frequent musculoskeletal condition was avascular necrosis (AVN) in 39 (1.3%), and the most frequent autoimmune condition was psoriasis in 28 patients (1%). Compared with the 200 HIV patients without any diagnosis of rheumatic disease were the older patients with rheumatic conditions (mean age of 48.9 vs. 42.7 years; p < 0.01), and had a longer duration of HIV infection (mean duration of 15.5 vs. 10.3 years; p < 0.01). The odds of rheumatic conditions were 1.7 times higher in males (relative to females). Those who received integrase inhibitors were more likely (63.3%) to develop rheumatologic manifestations relative to those who never received integrase inhibitors (21.6%; p < 0.01). The proportion of rheumatic diseases in HIV patients appears to be comparable to the prevalence in the US population. Older age, longer duration of HIV infection, and the use of ART regimens containing integrase inhibitors, appear to increase the risk of developing a rheumatic condition.

  4. 3-Hydroxypyrimidine-2,4-dione-5-N-benzylcarboxamides potently inhibit HIV-1 integrase and RNase H

    PubMed Central

    Wu, Bulan; Tang, Jing; Wilson, Daniel J.; Huber, Andrew D.; Casey, Mary C.; Ji, Juan; Kankanala, Jayakanth; Xie, Jiashu; Sarafianos, Stefan G.; Wang, Zhengqiang

    2016-01-01

    Resistance selection by human immunodeficiency virus (HIV) towards known drug regimens necessitates the discovery of structurally novel antivirals with a distinct resistance profile. Based on our previously reported 3-hydroxypyrimidine-2,4-dione (HPD) core we have designed and synthesized a new integrase strand transfer (INST) inhibitor type featuring a 5-N-benzylcarboxamide moiety. Significantly, the 6-alkylamino variant of this new chemotype consistently conferred low nanomolar inhibitory activity against HIV-1. Extended antiviral testing against a few raltegravir-resistant HIV-1 clones revealed a resistance profile similar to that of the second generation INST inhibitor (INSTIs) dolutegravir. Although biochemical testing and molecular modeling also strongly corroborate the inhibition of INST as the antiviral mechanism of action, selected antiviral analogues also potently inhibited reverse transcriptase (RT) associated RNase H, implying potential dual target inhibition. In vitro ADME assays demonstrated that this novel chemotype possesses largely favorable physicochemical properties suitable for further development. PMID:27283261

  5. Phage-host interactions analysis of newly characterized Oenococcus oeni bacteriophages: Implications for malolactic fermentation in wine.

    PubMed

    Costantini, Antonella; Doria, Francesca; Saiz, Juan-Carlos; Garcia-Moruno, Emilia

    2017-04-04

    Nowadays, only few phages infecting Oenococcus oeni, the principal lactic acid bacteria (LAB) species responsible for malolactic fermentation (MLF) in wine, have been characterized. In the present study, to better understanding the factors affecting the lytic activity of Oenococcus phages, fifteen O. oeni bacteriophages have been studied in detail, both with molecular and microbiological methods. No correlations were found between genome sizes, type of integrase genes, or morphology and the lytic activity of the 15 tested phages. Interestingly, though phage attack in a wine at the end of alcoholic fermentation seems not to be a problem, it can indeed represent a risk factor for MLF when the alcohol content is low, feature that may be a key point for choosing the appropriate time for malolactic starter inoculation. Additionally, it was observed that some phages genomes bear 2 or 3 types of integrase genes, which point to horizontal gene transfer between O. oeni bacteriophages. Copyright © 2017. Published by Elsevier B.V.

  6. The discovery and preclinical evaluation of BMS-707035, a potent HIV-1 integrase strand transfer inhibitor.

    PubMed

    Naidu, B Narasimhulu; Walker, Michael A; Sorenson, Margaret E; Ueda, Yasutsugu; Matiskella, John D; Connolly, Timothy P; Dicker, Ira B; Lin, Zeyu; Bollini, Sagarika; Terry, Brian J; Higley, Helen; Zheng, Ming; Parker, Dawn D; Wu, Dedong; Adams, Stephen; Krystal, Mark R; Meanwell, Nicholas A

    2018-07-01

    BMS-707035 is an HIV-1 integrase strand transfer inhibitor (INSTI) discovered by systematic optimization of N-methylpyrimidinone carboxamides guided by structure-activity relationships (SARs) and the single crystal X-ray structure of compound 10. It was rationalized that the unexpectedly advantageous profiles of N-methylpyrimidinone carboxamides with a saturated C2-substitutent may be due, in part, to the geometric relationship between the C2-substituent and the pyrimidinone core. The single crystal X-ray structure of 10 provided support for this reasoning and guided the design of a spirocyclic series 12 which led to discovery of the morpholino-fused pyrimidinone series 13. Several carboxamides derived from this bicyclic scaffold displayed improved antiviral activity and pharmacokinetic profiles when compared with corresponding spirocyclic analogs. Based on the excellent antiviral activity, preclinical profiles and acceptable in vitro and in vivo toxicity profiles, 13a (BMS-707035) was selected for advancement into phase I clinical trials. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Dynamic Oligomerization of Integrase Orchestrates HIV Nuclear Entry.

    PubMed

    Borrenberghs, Doortje; Dirix, Lieve; De Wit, Flore; Rocha, Susana; Blokken, Jolien; De Houwer, Stéphanie; Gijsbers, Rik; Christ, Frauke; Hofkens, Johan; Hendrix, Jelle; Debyser, Zeger

    2016-11-10

    Nuclear entry is a selective, dynamic process granting the HIV-1 pre-integration complex (PIC) access to the chromatin. Classical analysis of nuclear entry of heterogeneous viral particles only yields averaged information. We now have employed single-virus fluorescence methods to follow the fate of single viral pre-integration complexes (PICs) during infection by visualizing HIV-1 integrase (IN). Nuclear entry is associated with a reduction in the number of IN molecules in the complexes while the interaction with LEDGF/p75 enhances IN oligomerization in the nucleus. Addition of LEDGINs, small molecule inhibitors of the IN-LEDGF/p75 interaction, during virus production, prematurely stabilizes a higher-order IN multimeric state, resulting in stable IN multimers resistant to a reduction in IN content and defective for nuclear entry. This suggests that a stringent size restriction determines nuclear pore entry. Taken together, this work demonstrates the power of single-virus imaging providing crucial insights in HIV replication and enabling mechanism-of-action studies.

  8. Dual HIV-1 reverse transcriptase and integrase inhibitors from Limonium morisianum Arrigoni, an endemic species of Sardinia (Italy).

    PubMed

    Sanna, Cinzia; Rigano, Daniela; Corona, Angela; Piano, Dario; Formisano, Carmen; Farci, Domenica; Franzini, Genni; Ballero, Mauro; Chianese, Giuseppina; Tramontano, Enzo; Taglialatela-Scafati, Orazio; Esposito, Francesca

    2018-02-04

    During our search for potential templates of HIV-1 reverse transcriptase (RT) and integrase (IN) dual inhibitors, the methanolic extract obtained from aerial parts of Limonium morisianum was investigated. Repeated bioassay-guided chromatographic purifications led to the isolation of the following secondary metabolites: myricetin, myricetin 3-O-rutinoside, myricetin-3-O-(6″-O-galloyl)-β-d-galactopyranoside, (-)-epigallocatechin 3-O-gallate, tryptamine, ferulic and phloretic acids. The isolated compounds were tested on both HIV-1 RT-associated RNase H and IN activities. Interestingly, (-)-epigallocatechin-3-O-gallate and myricetin-3-O-(6″-O-galloyl)-β-d-galactopyranoside potently inhibited both enzyme activities with IC 50 values ranging from 0.21 to 10.9 μM. Differently, tryptamine and ferulic acid exhibited a significant inhibition only on the IN strand transfer reaction, showing a selectivity for this viral enzyme. Taken together these results strongly support the potential of this plant as a valuable anti HIV-1 drugs source worthy of further investigations.

  9. Anti-HIV-1 activity of a tripodal receptor that recognizes mannose oligomers.

    PubMed

    Rivero-Buceta, Eva; Carrero, Paula; Casanova, Elena; Doyagüez, Elisa G; Madrona, Andrés; Quesada, Ernesto; Peréz-Pérez, María Jesús; Mateos, Raquel; Bravo, Laura; Mathys, Leen; Noppen, Sam; Kiselev, Evgeny; Marchand, Christophe; Pommier, Yves; Liekens, Sandra; Balzarini, Jan; Camarasa, María José; San-Félix, Ana

    2015-12-01

    The glycoprotein gp120 of the HIV-1 viral envelope has a high content in mannose residues, particularly α-1,2-mannose oligomers. Compounds that interact with these high-mannose type glycans may disturb the interaction between gp120 and its (co)receptors and are considered potential anti-HIV agents. Previously, we demonstrated that a tripodal receptor (1), with a central scaffold of 1,3,5-triethylbenzene substituted with three 2,3,4-trihydroxybenzoyl groups, selectively recognizes α-1,2-mannose polysaccharides. Here we present additional studies to determine the anti-HIV-1 activity and the mechanism of antiviral activity of this compound. Our studies indicate that 1 shows anti-HIV-1 activity in the low micromolar range and has pronounced gp120 binding and HIV-1 integrase inhibitory capacity. However, gp120 binding rather than integrase inhibition seems to be the primary mechanism of antiviral activity of 1. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  10. Redefinition and unification of the SXT/R391 family of integrative and conjugative elements.

    PubMed

    Bioteau, Audrey; Durand, Romain; Burrus, Vincent

    2018-04-13

    Integrative and conjugative elements (ICEs) of the SXT/R391 family are key drivers of the spread of antibiotic resistance in Vibrio cholerae , the infectious agent of cholera, and other pathogenic bacteria. The SXT/R391 family of ICEs was defined based on the conservation of a core set of 52 genes and site-specific integration into the 5' end of the chromosomal gene prfC Hence, the integrase gene int has been intensively used as a marker to detect SXT/R391 ICEs in clinical isolates. ICEs sharing most core genes but differing by their integration site and integrase gene have been recently reported and excluded from the SXT/R391 family. Here we explored the prevalence and diversity of atypical ICEs in Genbank databases and their relationship with typical SXT/R391 ICEs. We found atypical ICEs in V. cholerae isolates that predate the emergence and expansion of typical SXT/R391 ICEs in the mid-1980s in seventh pandemic toxigenic V. cholerae O1 and O139 strains. Our analyses revealed that while atypical ICEs are not associated with antibiotic resistance genes, they often carry cation efflux pumps suggesting heavy metal resistance. Atypical ICEs constitute a polyphyletic group likely because of occasional recombination events with typical ICEs. Furthermore, we show that the alternative integration and excision genes of atypical ICEs remain under the control of SetCD, the main activator of the conjugative functions of SXT/R391 ICEs. Together these observations indicate that substitution of the integration/excision module and change of specificity of integration do not preclude atypical ICEs from inclusion into the SXT/R391 family. Importance Vibrio cholerae is the causative agent of cholera, an acute intestinal infection that remains to this day a world public health threat. Integrative and conjugative elements (ICEs) of the SXT/R391 family have played a major role in spreading antimicrobial resistance in seventh pandemic V. cholerae but also in several species of Enterobacteriaceae Most epidemiological surveys use the integrase gene as a marker to screen for SXT/R391 ICEs in clinical or environmental strains. With the recent reports of closely related elements that encode an alternative integrase gene, it became urgent to investigate whether ICEs that have been left out of the family are a liability for the accuracy of such screenings. In this study based on comparative genomics, we broaden the SXT/R391 family of ICEs to include atypical ICEs that are often associated with heavy metal resistance. Copyright © 2018 American Society for Microbiology.

  11. Antibiotic resistance genes persist longer in soils with subsurface banded poultry litter

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to determine the concentration of AR genes for sulfonamide (sulI), tetracycline (tetW), streptomycin (strpB) and for the class one integrase (intI1) gene in soils with subsurface banded PL. Field scale plots were established with triplicate treatments of either no fer...

  12. Kuwanon-L as a New Allosteric HIV-1 Integrase Inhibitor: Molecular Modeling and Biological Evaluation.

    PubMed

    Esposito, Francesca; Tintori, Cristina; Martini, Riccardo; Christ, Frauke; Debyser, Zeger; Ferrarese, Roberto; Cabiddu, Gianluigi; Corona, Angela; Ceresola, Elisa Rita; Calcaterra, Andrea; Iovine, Valentina; Botta, Bruno; Clementi, Massimo; Canducci, Filippo; Botta, Maurizio; Tramontano, Enzo

    2015-11-01

    HIV-1 integrase (IN) active site inhibitors are the latest class of drugs approved for HIV treatment. The selection of IN strand-transfer drug-resistant HIV strains in patients supports the development of new agents that are active as allosteric IN inhibitors. Here, a docking-based virtual screening has been applied to a small library of natural ligands to identify new allosteric IN inhibitors that target the sucrose binding pocket. From theoretical studies, kuwanon-L emerged as the most promising binder and was thus selected for biological studies. Biochemical studies showed that kuwanon-L is able to inhibit the HIV-1 IN catalytic activity in the absence and in the presence of LEDGF/p75 protein, the IN dimerization, and the IN/LEDGF binding. Kuwanon-L also inhibited HIV-1 replication in cell cultures. Overall, docking and biochemical results suggest that kuwanon-L binds to an allosteric binding pocket and can be considered an attractive lead for the development of new allosteric IN antiviral agents. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Insight into the fundamental interactions between LEDGF binding site inhibitors and integrase combining docking and molecular dynamics simulations.

    PubMed

    De Luca, Laura; Morreale, Francesca; Chimirri, Alba

    2012-12-21

    In recent years, HIV-1 integrase (IN) has emerged as an attractive target for novel anti-AIDS agents. In particular, nonactive-site-binding IN inhibitors would display synergy with current strand-transfer-specific IN inhibitors and other antiretroviral drugs in clinical use. An effective allosteric inhibitory approach would be the disruption of protein-protein interaction (PPI) between IN and cellular cofactors, such as LEDGF/p75. To date, several small molecules have been reported to be inhibitors of the PPI between IN and LEDGF/p75. In this study, we investigated the most relevant interactions between five selected PPI inhibitors and IN comparing them to the naturally occurring IN-LEDGF/p75 complex. We calculated the binding free energies by using the method of molecular mechanics-generalized Born surface area (MM-GBSA). Total energy was decomposed on per residue contribution, and hydrogen bond occupancies were monitored throughout the simulations. Considering all these results we obtained a good correlation with experimental activity and useful insights for the development of new inhibitors.

  14. Unusual Structure of the attB Site of the Site-Specific Recombination System of Lactobacillus delbrueckii Bacteriophage mv4

    PubMed Central

    Auvray, Frédéric; Coddeville, Michèle; Ordonez, Romy Catoira; Ritzenthaler, Paul

    1999-01-01

    The temperate phage mv4 integrates its genome into the chromosome of Lactobacillus delbrueckii subsp. bulgaricus by site-specific recombination within the 3′ end of a tRNASer gene. Recombination is catalyzed by the phage-encoded integrase and occurs between the phage attP site and the bacterial attB site. In this study, we show that the mv4 integrase functions in vivo in Escherichia coli and we characterize the bacterial attB site with a site-specific recombination test involving compatible plasmids carrying the recombination sites. The importance of particular nucleotides within the attB sequence was determined by site-directed mutagenesis. The structure of the attB site was found to be simple but rather unusual. A 16-bp DNA fragment was sufficient for function. Unlike most genetic elements that integrate their DNA into tRNA genes, none of the dyad symmetry elements of the tRNASer gene were present within the minimal attB site. No inverted repeats were detected within this site either, in contrast to the lambda site-specific recombination model. PMID:10572145

  15. Targeting Virus-host Interactions of HIV Replication.

    PubMed

    Weydert, Caroline; De Rijck, Jan; Christ, Frauke; Debyser, Zeger

    2016-01-01

    Cellular proteins that are hijacked by HIV in order to complete its replication cycle, form attractive new targets for antiretroviral therapy. In particular, the protein-protein interactions between these cellular proteins (cofactors) and viral proteins are of great interest to develop new therapies. Research efforts have led to the validation of different cofactors and some successes in therapeutic applications. Maraviroc, the first cofactor inhibitor approved for human medicinal use, provided a proof of concept. Furthermore, compounds developed as Integrase-LEDGF/p75 interaction inhibitors (LEDGINs) have advanced to early clinical trials. Other compounds targeting cofactors and cofactor-viral protein interactions are currently under development. Likewise, interactions between cellular restriction factors and their counteracting HIV protein might serve as interesting targets in order to impair HIV replication. In this respect, compounds targeting the Vif-APOBEC3G interaction have been described. In this review, we focus on compounds targeting the Integrase- LEDGF/p75 interaction, the Tat-P-TEFb interaction and the Vif-APOBEC3G interaction. Additionally we give an overview of currently discovered compounds presumably targeting cellular cofactor-HIV protein interactions.

  16. A QSAR study of integrase strand transfer inhibitors based on a large set of pyrimidine, pyrimidone, and pyridopyrazine carboxamide derivatives

    NASA Astrophysics Data System (ADS)

    de Campos, Luana Janaína; de Melo, Eduardo Borges

    2017-08-01

    In the present study, 199 compounds derived from pyrimidine, pyrimidone and pyridopyrazine carboxamides with inhibitory activity against HIV-1 integrase were modeled. Subsequently, a multivariate QSAR study was conducted with 54 molecules employed by Ordered Predictors Selection (OPS) and Partial Least Squares (PLS) for the selection of variables and model construction, respectively. Topological, electrotopological, geometric, and molecular descriptors were used. The selected real model was robust and free from chance correlation; in addition, it demonstrated favorable internal and external statistical quality. Once statistically validated, the training model was used to predict the activity of a second data set (n = 145). The root mean square deviation (RMSD) between observed and predicted values was 0.698. Although it is a value outside of the standards, only 15 (10.34%) of the samples exhibited higher residual values than 1 log unit, a result considered acceptable. Results of Williams and Euclidean applicability domains relative to the prediction showed that the predictions did not occur by extrapolation and that the model is representative of the chemical space of test compounds.

  17. Large Diversity of Nonstandard Genes and Dynamic Evolution of Chloroplast Genomes in Siphonous Green Algae (Bryopsidales, Chlorophyta)

    PubMed Central

    Leliaert, Frederik; Marcelino, Vanessa R

    2018-01-01

    Abstract Chloroplast genomes have undergone tremendous alterations through the evolutionary history of the green algae (Chloroplastida). This study focuses on the evolution of chloroplast genomes in the siphonous green algae (order Bryopsidales). We present five new chloroplast genomes, which along with existing sequences, yield a data set representing all but one families of the order. Using comparative phylogenetic methods, we investigated the evolutionary dynamics of genomic features in the order. Our results show extensive variation in chloroplast genome architecture and intron content. Variation in genome size is accounted for by the amount of intergenic space and freestanding open reading frames that do not show significant homology to standard plastid genes. We show the diversity of these nonstandard genes based on their conserved protein domains, which are often associated with mobile functions (reverse transcriptase/intron maturase, integrases, phage- or plasmid-DNA primases, transposases, integrases, ligases). Investigation of the introns showed proliferation of group II introns in the early evolution of the order and their subsequent loss in the core Halimedineae, possibly through RT-mediated intron loss. PMID:29635329

  18. Schizosaccharomyces pombe Retrotransposon Tf2 Mobilizes Primarily through Homologous cDNA Recombination

    PubMed Central

    Hoff, Eleanor F.; Levin, Henry L.; Boeke, Jef D.

    1998-01-01

    The Tf2 retrotransposon, found in the fission yeast Schizosaccharomyces pombe, is nearly identical to its sister element, Tf1, in its reverse transcriptase-RNase H and integrase domains but is very divergent in the gag domain, the protease, the 5′ untranslated region, and the U3 domain of the long terminal repeats. It has now been demonstrated that a neo-marked copy of Tf2 overexpressed from a heterologous promoter can mobilize into the S. pombe genome and produce true transposition events. However, the Tf2-neo mobilization frequency is 10- to 20-fold lower than that of Tf1-neo, and 70% of the Tf2-neo events are homologous recombination events generated independently of a functional Tf2 integrase. Thus, the Tf2 element is primarily dependent on homologous recombination with preexisting copies of Tf2 for its propagation. Finally, production of Tf2-neo proteins and cDNA was also analyzed; surprisingly, Tf2 was found to produce its reverse transcriptase as a single species in which it is fused to protease, unlike all other retroviruses and retrotransposons. PMID:9774697

  19. B′-protein phosphatase 2A is a functional binding partner of delta-retroviral integrase

    PubMed Central

    Maertens, Goedele N.

    2016-01-01

    To establish infection, a retrovirus must insert a DNA copy of its RNA genome into host chromatin. This reaction is catalysed by the virally encoded enzyme integrase (IN) and is facilitated by viral genus-specific host factors. Herein, cellular serine/threonine protein phosphatase 2A (PP2A) is identified as a functional IN binding partner exclusive to δ-retroviruses, including human T cell lymphotropic virus type 1 and 2 (HTLV-1 and HTLV-2) and bovine leukaemia virus (BLV). PP2A is a heterotrimer composed of a scaffold, catalytic and one of any of four families of regulatory subunits, and the interaction is specific to the B′ family of the regulatory subunits. B′-PP2A and HTLV-1 IN display nuclear co-localization, and the B′ subunit stimulates concerted strand transfer activity of δ-retroviral INs in vitro. The protein–protein interaction interface maps to a patch of highly conserved residues on B′, which when mutated render B′ incapable of binding to and stimulating HTLV-1 and -2 IN strand transfer activity. PMID:26657642

  20. Resistance Analyses of Integrase Strand Transfer Inhibitors within Phase 3 Clinical Trials of Treatment-Naive Patients

    PubMed Central

    White, Kirsten L.; Raffi, Francois; Miller, Michael D.

    2014-01-01

    The integrase (IN) strand transfer inhibitors (INSTIs), raltegravir (RAL), elvitegravir (EVG) and dolutegravir (DTG), comprise the newest drug class approved for the treatment of HIV-1 infection, which joins the existing classes of reverse transcriptase, protease and binding/entry inhibitors. The efficacy of first-line regimens has attained remarkably high levels, reaching undetectable viral loads in 90% of patients by Week 48; however, there remain patients who require a change in regimen due to adverse events, virologic failure with emergent resistance or other issues of patient management. Large, randomized clinical trials conducted in antiretroviral treatment-naive individuals are required for drug approval in this population in the US, EU and other countries, with the primary endpoint for virologic success at Week 48. However, there are differences in the definition of virologic failure and the evaluation of drug resistance among the trials. This review focuses on the methodology and tabulation of resistance to INSTIs in phase 3 clinical trials of first-line regimens and discusses case studies of resistance. PMID:25054884

  1. Reduction of antibiotic resistome and integron-integrase genes in laboratory-scale photobioreactors treating municipal wastewater.

    PubMed

    Nõlvak, Hiie; Truu, Marika; Oopkaup, Kristjan; Kanger, Kärt; Krustok, Ivo; Nehrenheim, Emma; Truu, Jaak

    2018-06-08

    Wastewater treatment systems receiving municipal wastewater are major dissemination nodes of antibiotic resistance genes (ARGs) between anthropogenic and natural environments. This study examined the fate of antibiotic resistome and class 1-3 integron-integrase genes in photobioreactors that were treating municipal wastewater diluted (70/30) with lake or tap water for the algal biomass production. A combined approach of metagenomic and quantitative (qPCR) analysis was undertaken. Municipal wastewater treatment in the photobioreactors led to reduced antibiotic resistome proportion, number of ARG subtypes, and abundances of individual ARGs in the bacterial community. The ARGs and intI1 gene abundances and relative abundances in the discharges of the photobioreactors were either comparable or lower than the respective values in the effluents of conventional wastewater treatment plants. The reduction of the resistome proved to be strongly related to the changes in the bacterial community composition during the wastewater treatment process as it was responding to rising pH levels caused by intense algal growth. Several bacterial genera (e.g., Azoarcus, Dechloromonas, and Sulfuritalea) were recognized as potential hosts of multiple antibiotic resistance types. Although the lake water contributed a diverse and abundant resistome and intI genes profile to the treatment system, it proved to be considerably more beneficial for wastewater dilution than the tap water. The diversity (number of detected resistance types and subtypes) and proportion of the antibiotic resistome, the amount of plasmid borne integron-integrase gene reads, and the abundances and relative abundances of the majority of quantified ARGs (aadA, sul1, tetQ, tetW, qnrS, ermB, blaOXA2-type) and intI1 gene as well as the amount of multi-resistance determinants were significantly lower in the discharges of photobioreactors where lake water was used to dilute wastewater. Copyright © 2018. Published by Elsevier Ltd.

  2. Multiple Genetic Pathways Involving Amino Acid Position 143 of HIV-1 Integrase Are Preferentially Associated with Specific Secondary Amino Acid Substitutions and Confer Resistance to Raltegravir and Cross-Resistance to Elvitegravir

    PubMed Central

    Frantzell, Arne; Fransen, Signe; Petropoulos, Christos J.

    2013-01-01

    Y143C,R substitutions in HIV-1 integrase define one of three primary raltegravir (RAL) resistance pathways. Here we describe clinical isolates with alternative substitutions at position 143 (Y143A, Y143G, Y143H, and Y143S [Y143A,G,H,S]) that emerge less frequently, and we compare the genotypic and phenotypic profiles of these viruses to Y143C,R viruses to reconcile the preferential selection of Y143C,R variants during RAL treatment. Integrase amino acid sequences and RAL susceptibility were characterized in 117 patient isolates submitted for drug resistance testing and contained Y143 amino acid changes. The influence of specific Y143 substitutions on RAL susceptibility and their preferential association with particular secondary substitutions were further defined by evaluating the composition of patient virus populations along with a large panel of site-directed mutants. Our observations demonstrate that the RAL resistance profiles of Y143A,G,H,S viruses and their association with specific secondary substitutions are similar to the well-established Y143C profile but distinct from the Y143R profile. Y143R viruses differ from Y143A,C,G,H,S viruses in that Y143R confers a greater reduction in RAL susceptibility as a single substitution, consistent with a lower resistance barrier. Among Y143A,C,G,H,S viruses, the higher prevalence of Y143C viruses is the result of a lower genetic barrier than that of the Y143A,G,S viruses and a lower resistance barrier than that of the Y143H viruses. In addition, Y143A,C,G,H,S viruses require multiple secondary substitutions to develop large reductions in RAL susceptibility. Patient-derived viruses containing Y143 substitutions exhibit cross-resistance to elvitegravir. PMID:23733474

  3. Recent trends and patterns in HIV-1 transmitted drug resistance in the United Kingdom.

    PubMed

    Tostevin, A; White, E; Dunn, D; Croxford, S; Delpech, V; Williams, I; Asboe, D; Pozniak, A; Churchill, D; Geretti, A M; Pillay, D; Sabin, C; Leigh-Brown, A; Smit, E

    2017-03-01

    Transmission of drug-resistant HIV-1 has decreased in the UK since the early 2000s. This analysis reports recent trends and characteristics of transmitted drug resistance (TDR) in the UK from 2010 to 2013. Resistance tests conducted in antiretroviral treatment (ART)-naïve individuals between 2010 and 2013 were analysed for the presence of transmitted drug resistance mutations (TDRMs), defined as any mutations from a modified 2009 World Health Organization surveillance list, or a modified 2013 International Antiviral Society-USA list for integrase tests. Logistic regression was used to examine associations between demographics and the prevalence of TDRMs. TDRMs were observed in 1223 (7.5%) of 16 425 individuals; prevalence declined from 8.1% in 2010 to 6.6% in 2013 (P = 0.02). The prevalence of TDRMs was higher among men who have sex with men (MSM) compared with heterosexual men and women (8.7% versus 6.4%, respectively) with a trend for decreasing TDRMs among MSM (P = 0.008) driven by a reduction in nucleoside reverse transcriptase inhibitor (NRTI)-related mutations. The most frequently detected TDRMs were K103N (2.2%), T215 revertants (1.6%), M41L (0.9%) and L90M (0.7%). Predicted phenotypic resistance to first-line ART was highest to the nonnucleoside reverse transcriptase inhibitors (NNRTIs) rilpivirine and efavirenz (6.2% and 3.4%, respectively) but minimal to NRTIs, including tenofovir, and protease inhibitors (PIs). No major integrase TDRMs were detected among 101 individuals tested while ART-naïve. We observed a decrease in TDRMs in recent years. However, this was confined to the MSM population and rates remained stable in those with heterosexually acquired HIV infection. Resistance to currently recommended first-line ART, including integrase inhibitors, remained reassuringly low. © 2016 The Authors. HIV Medicine published by John Wiley & Sons Ltd on behalf of British HIV Association.

  4. Genetic redundancy and persistence of plasmid-mediated trimethoprim/sulfamethoxazole resistant effluent and stream water Escherichia coli.

    PubMed

    Suhartono, Suhartono; Savin, Mary; Gbur, Edward E

    2016-10-15

    Antibiotic resistant bacteria may persist in effluent receiving surface water in the presence of low (sub-inhibitory) antibiotic concentrations if the bacteria possess multiple genes encoding resistance to the same antibiotic. This redundancy of antibiotic resistance genes may occur in plasmids harboring conjugation and mobilization (mob) and integrase (intI) genes. Plasmids extracted from 76 sulfamethoxazole-trimethoprim resistant Escherichia coli originally isolated from effluent and an effluent-receiving stream were used as DNA template to identify sulfamethoxazole (sul) and trimethoprim (dfr) resistances genes plus detect the presence of intI and mob genes using PCR. Sulfamethoxazole and trimethoprim resistance was plasmid-mediated with three sul (sul1, sul2 and sul3 genes) and four dfr genes (dfrA12, dfrA8, dfrA17, and dfrA1 gene) the most prevalently detected. Approximately half of the plasmids carried class 1 and/or 2 integron and, although unrelated, half were also transmissible. Sampling site in relationship to effluent input significantly affected the number of intI and mob but not the number of sul and dfr genes. In the presence of low (sub-inhibitory) sulfamethoxazole concentration, isolates persisted regardless of integron and mobilization gene designation, whereas in the presence of trimethoprim, the presence of both integron and mobilization genes made isolates less persistent than in the absence of both or the presence of a gene from either group individually. Regardless, isolates persisted in large concentrations throughout the experiment. Treated effluent containing antibiotic resistant bacteria may be an important source of integrase and mobilization genes into the stream environment. Sulfamethoxazole-trimethoprim resistant bacteria may have a high degree of genetic redundancy and diversity carrying resistance to each antibiotic, although the role of integrase and mobilization genes towards persistence is unclear. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Mavericks, a novel class of giant transposable elements widespread in eukaryotes and related to DNA viruses.

    PubMed

    Pritham, Ellen J; Putliwala, Tasneem; Feschotte, Cédric

    2007-04-01

    We previously identified a group of atypical mobile elements designated Mavericks from the nematodes Caenorhabditis elegans and C. briggsae and the zebrafish Danio rerio. Here we present the results of comprehensive database searches of the genome sequences available, which reveal that Mavericks are widespread in invertebrates and non-mammalian vertebrates but show a patchy distribution in non-animal species, being present in the fungi Glomus intraradices and Phakopsora pachyrhizi and in several single-celled eukaryotes such as the ciliate Tetrahymena thermophila, the stramenopile Phytophthora infestans and the trichomonad Trichomonas vaginalis, but not detectable in plants. This distribution, together with comparative and phylogenetic analyses of Maverick-encoded proteins, is suggestive of an ancient origin of these elements in eukaryotes followed by lineage-specific losses and/or recurrent episodes of horizontal transmission. In addition, we report that Maverick elements have amplified recently to high copy numbers in T. vaginalis where they now occupy as much as 30% of the genome. Sequence analysis confirms that most Mavericks encode a retroviral-like integrase, but lack other open reading frames typically found in retroelements. Nevertheless, the length and conservation of the target site duplication created upon Maverick insertion (5- or 6-bp) is consistent with a role of the integrase-like protein in the integration of a double-stranded DNA transposition intermediate. Mavericks also display long terminal-inverted repeats but do not contain ORFs similar to proteins encoded by DNA transposons. Instead, Mavericks encode a conserved set of 5 to 9 genes (in addition to the integrase) that are predicted to encode proteins with homology to replication and packaging proteins of some bacteriophages and diverse eukaryotic double-stranded DNA viruses, including a DNA polymerase B homolog and putative capsid proteins. Based on these and other structural similarities, we speculate that Mavericks represent an evolutionary missing link between seemingly disparate invasive DNA elements that include bacteriophages, adenoviruses and eukaryotic linear plasmids.

  6. The Conjugative Relaxase TrwC Promotes Integration of Foreign DNA in the Human Genome.

    PubMed

    González-Prieto, Coral; Gabriel, Richard; Dehio, Christoph; Schmidt, Manfred; Llosa, Matxalen

    2017-06-15

    Bacterial conjugation is a mechanism of horizontal DNA transfer. The relaxase TrwC of the conjugative plasmid R388 cleaves one strand of the transferred DNA at the oriT gene, covalently attaches to it, and leads the single-stranded DNA (ssDNA) into the recipient cell. In addition, TrwC catalyzes site-specific integration of the transferred DNA into its target sequence present in the genome of the recipient bacterium. Here, we report the analysis of the efficiency and specificity of the integrase activity of TrwC in human cells, using the type IV secretion system of the human pathogen Bartonella henselae to introduce relaxase-DNA complexes. Compared to Mob relaxase from plasmid pBGR1, we found that TrwC mediated a 10-fold increase in the rate of plasmid DNA transfer to human cells and a 100-fold increase in the rate of chromosomal integration of the transferred DNA. We used linear amplification-mediated PCR and plasmid rescue to characterize the integration pattern in the human genome. DNA sequence analysis revealed mostly reconstituted oriT sequences, indicating that TrwC is active and recircularizes transferred DNA in human cells. One TrwC-mediated site-specific integration event was detected, proving that TrwC is capable of mediating site-specific integration in the human genome, albeit with very low efficiency compared to the rate of random integration. Our results suggest that TrwC may stabilize the plasmid DNA molecules in the nucleus of the human cell, probably by recircularization of the transferred DNA strand. This stabilization would increase the opportunities for integration of the DNA by the host machinery. IMPORTANCE Different biotechnological applications, including gene therapy strategies, require permanent modification of target cells. Long-term expression is achieved either by extrachromosomal persistence or by integration of the introduced DNA. Here, we studied the utility of conjugative relaxase TrwC, a bacterial protein with site-specific integrase activity in bacteria, as an integrase in human cells. Although it is not efficient as a site-specific integrase, we found that TrwC is active in human cells and promotes random integration of the transferred DNA in the human genome, probably acting as a DNA chaperone until it is integrated by host mechanisms. TrwC-DNA complexes can be delivered to human cells through a type IV secretion system involved in pathogenesis. Thus, TrwC could be used in vivo to transfer the DNA of interest into the appropriate cell and promote its integration. If used in combination with a site-specific nuclease, it could lead to site-specific integration of the incoming DNA by homologous recombination. Copyright © 2017 American Society for Microbiology.

  7. The Conjugative Relaxase TrwC Promotes Integration of Foreign DNA in the Human Genome

    PubMed Central

    González-Prieto, Coral; Gabriel, Richard; Dehio, Christoph; Schmidt, Manfred

    2017-01-01

    ABSTRACT Bacterial conjugation is a mechanism of horizontal DNA transfer. The relaxase TrwC of the conjugative plasmid R388 cleaves one strand of the transferred DNA at the oriT gene, covalently attaches to it, and leads the single-stranded DNA (ssDNA) into the recipient cell. In addition, TrwC catalyzes site-specific integration of the transferred DNA into its target sequence present in the genome of the recipient bacterium. Here, we report the analysis of the efficiency and specificity of the integrase activity of TrwC in human cells, using the type IV secretion system of the human pathogen Bartonella henselae to introduce relaxase-DNA complexes. Compared to Mob relaxase from plasmid pBGR1, we found that TrwC mediated a 10-fold increase in the rate of plasmid DNA transfer to human cells and a 100-fold increase in the rate of chromosomal integration of the transferred DNA. We used linear amplification-mediated PCR and plasmid rescue to characterize the integration pattern in the human genome. DNA sequence analysis revealed mostly reconstituted oriT sequences, indicating that TrwC is active and recircularizes transferred DNA in human cells. One TrwC-mediated site-specific integration event was detected, proving that TrwC is capable of mediating site-specific integration in the human genome, albeit with very low efficiency compared to the rate of random integration. Our results suggest that TrwC may stabilize the plasmid DNA molecules in the nucleus of the human cell, probably by recircularization of the transferred DNA strand. This stabilization would increase the opportunities for integration of the DNA by the host machinery. IMPORTANCE Different biotechnological applications, including gene therapy strategies, require permanent modification of target cells. Long-term expression is achieved either by extrachromosomal persistence or by integration of the introduced DNA. Here, we studied the utility of conjugative relaxase TrwC, a bacterial protein with site-specific integrase activity in bacteria, as an integrase in human cells. Although it is not efficient as a site-specific integrase, we found that TrwC is active in human cells and promotes random integration of the transferred DNA in the human genome, probably acting as a DNA chaperone until it is integrated by host mechanisms. TrwC-DNA complexes can be delivered to human cells through a type IV secretion system involved in pathogenesis. Thus, TrwC could be used in vivo to transfer the DNA of interest into the appropriate cell and promote its integration. If used in combination with a site-specific nuclease, it could lead to site-specific integration of the incoming DNA by homologous recombination. PMID:28411218

  8. LEDGINs, non-catalytic site inhibitors of HIV-1 integrase: a patent review (2006 - 2014).

    PubMed

    Demeulemeester, Jonas; Chaltin, Patrick; Marchand, Arnaud; De Maeyer, Marc; Debyser, Zeger; Christ, Frauke

    2014-06-01

    Integration of the viral genome into the host cell chromatin is a central step in the replication cycle of the HIV. Blocking the viral integrase (IN) enzyme therefore provides an attractive therapeutic strategy, as evidenced by the recent clinical approval of three IN strand transfer inhibitors. Viral resistance and cross-resistance among these inhibitors, however, warrant the search for compounds targeting HIV integration through alternative mechanisms of action. The most potent class of allosteric IN inhibitors was independently identified at the University of Leuven, Belgium, and at Boehringer Ingelheim, Canada. These compounds, coined LEDGINs (after the lens epithelium-derived growth factor/p75 cofactor binding pocket on IN) or non-catalytic site IN inhibitors (NCINIs) by the respective groups, have shown remarkable antiviral activity. This review provides a brief introduction to the compound class and discusses the recent patent literature (2006 to the present). LEDGINs are still early in development. Trials with clinical candidate BI-224436 were put on hold despite promising results. Literature, however, reveals that almost all major pharmaceutical companies active in the treatment of HIV/AIDS have taken a significant interest in this class. As a result, several of these inhibitors may soon enter clinical trials.

  9. Comparative analysis of prophages in Streptococcus mutans genomes

    PubMed Central

    Fu, Tiwei; Fan, Xiangyu; Long, Quanxin; Deng, Wanyan; Song, Jinlin

    2017-01-01

    Prophages have been considered genetic units that have an intimate association with novel phenotypic properties of bacterial hosts, such as pathogenicity and genomic variation. Little is known about the genetic information of prophages in the genome of Streptococcus mutans, a major pathogen of human dental caries. In this study, we identified 35 prophage-like elements in S. mutans genomes and performed a comparative genomic analysis. Comparative genomic and phylogenetic analyses of prophage sequences revealed that the prophages could be classified into three main large clusters: Cluster A, Cluster B, and Cluster C. The S. mutans prophages in each cluster were compared. The genomic sequences of phismuN66-1, phismuNLML9-1, and phismu24-1 all shared similarities with the previously reported S. mutans phages M102, M102AD, and ϕAPCM01. The genomes were organized into seven major gene clusters according to the putative functions of the predicted open reading frames: packaging and structural modules, integrase, host lysis modules, DNA replication/recombination modules, transcriptional regulatory modules, other protein modules, and hypothetical protein modules. Moreover, an integrase gene was only identified in phismuNLML9-1 prophages. PMID:29158986

  10. Stable integration and expression of heterologous genes in several lactobacilli using an integration vector constructed from the integrase and attP sequences of phage ΦAT3 isolated from Lactobacillus casei ATCC 393.

    PubMed

    Lin, Chao-Fen; Lo, Ta-Chun; Kuo, Yang-Cheng; Lin, Thy-Hou

    2013-04-01

    An integration vector capable of stably integrating and maintaining in the chromosomes of several lactobacilli over hundreds of generations has been constructed. The major integration machinery used is based on the ΦAT3 integrase (int) and attP sequences determined previously. A novel core sequence located at the 3' end of the tRNA(leu) gene is identified in Lactobacillus fermentum ATCC 14931 as the integration target by the integration vector though most of such sequences found in other lactobacilli are similar to that determined previously. Due to the lack of an appropriate attB site in Lactococcus lactis MG1363, the integration vector is found to be unable to integrate into the chromosome of the strain. However, such integration can be successfully restored by cotransforming the integration vector with a replicative one harboring both attB and erythromycin resistance sequences into the strain. Furthermore, the integration vector constructed carries a promoter region of placT from the chromosome of Lactobacillus rhamnosus TCELL-1 which is used to express green fluorescence and luminance protein genes in the lactobacilli studied.

  11. Integrase inhibitor reversal dynamics indicate unintegrated HIV-1 dna initiate de novo integration.

    PubMed

    Thierry, Sylvain; Munir, Soundasse; Thierry, Eloïse; Subra, Frédéric; Leh, Hervé; Zamborlini, Alessia; Saenz, Dyana; Levy, David N; Lesbats, Paul; Saïb, Ali; Parissi, Vincent; Poeschla, Eric; Deprez, Eric; Delelis, Olivier

    2015-03-12

    Genomic integration, an obligate step in the HIV-1 replication cycle, is blocked by the integrase inhibitor raltegravir. A consequence is an excess of unintegrated viral DNA genomes, which undergo intramolecular ligation and accumulate as 2-LTR circles. These circularized genomes are also reliably observed in vivo in the absence of antiviral therapy and they persist in non-dividing cells. However, they have long been considered as dead-end products that are not precursors to integration and further viral propagation. Here, we show that raltegravir action is reversible and that unintegrated viral DNA is integrated in the host cell genome after raltegravir removal leading to HIV-1 replication. Using quantitative PCR approach, we analyzed the consequences of reversing prolonged raltegravir-induced integration blocks. We observed, after RAL removal, a decrease of 2-LTR circles and a transient increase of linear DNA that is subsequently integrated in the host cell genome and fuel new cycles of viral replication. Our data highly suggest that 2-LTR circles can be used as a reserve supply of genomes for proviral integration highlighting their potential role in the overall HIV-1 replication cycle.

  12. Comparison of Multiple Molecular Dynamics Trajectories Calculated for the Drug-Resistant HIV-1 Integrase T66I/M154I Catalytic Domain

    PubMed Central

    Brigo, Alessandro; Lee, Keun Woo; Iurcu Mustata, Gabriela; Briggs, James M.

    2005-01-01

    HIV-1 integrase (IN) is an essential enzyme for the viral replication and an interesting target for the design of new pharmaceuticals for multidrug therapy of AIDS. Single and multiple mutations of IN at residues T66, S153, or M154 confer degrees of resistance to several inhibitors that prevent the enzyme from performing its normal strand transfer activity. Four different conformations of IN were chosen from a prior molecular dynamics (MD) simulation on the modeled IN T66I/M154I catalytic core domain as starting points for additional MD studies. The aim of this article is to understand the dynamic features that may play roles in the catalytic activity of the double mutant enzyme in the absence of any inhibitor. Moreover, we want to verify the influence of using different starting points on the MD trajectories and associated dynamical properties. By comparison of the trajectories obtained from these MD simulations we have demonstrated that the starting point does not affect the conformational space explored by this protein and that the time of the simulation is long enough to achieve convergence for this system. PMID:15764656

  13. Architecture and Assembly of HIV Integrase Multimers in the Absence of DNA Substrates*

    PubMed Central

    Bojja, Ravi Shankar; Andrake, Mark D.; Merkel, George; Weigand, Steven; Dunbrack, Roland L.; Skalka, Anna Marie

    2013-01-01

    We have applied small angle x-ray scattering and protein cross-linking coupled with mass spectrometry to determine the architectures of full-length HIV integrase (IN) dimers in solution. By blocking interactions that stabilize either a core-core domain interface or N-terminal domain intermolecular contacts, we show that full-length HIV IN can form two dimer types. One is an expected dimer, characterized by interactions between two catalytic core domains. The other dimer is stabilized by interactions of the N-terminal domain of one monomer with the C-terminal domain and catalytic core domain of the second monomer as well as direct interactions between the two C-terminal domains. This organization is similar to the “reaching dimer” previously described for wild type ASV apoIN and resembles the inner, substrate binding dimer in the crystal structure of the PFV intasome. Results from our small angle x-ray scattering and modeling studies indicate that in the absence of its DNA substrate, the HIV IN tetramer assembles as two stacked reaching dimers that are stabilized by core-core interactions. These models of full-length HIV IN provide new insight into multimer assembly and suggest additional approaches for enzyme inhibition. PMID:23322775

  14. Antiretroviral Therapy in Advanced HIV Disease: Which is the Best Regimen?

    PubMed

    Burgos, Joaquin; Ribera, Esteban; Falcó, Vicenç

    2018-01-01

    Advanced HIV disease, defined as a CD4 cell count below 200 cells/μl or the presence of an AIDS-defining illness, remains common among HIV-infected individuals who first present for medical care. In developed countries, nearly 30% of new HIV diagnoses occurred at advanced stages of the disease, and it is important because advanced HIV disease has been associated with worse clinical outcomes, including lower rates of virological response, higher morbidity, and higher mortality. However, there are scarce data regarding which is the best antiretroviral regimen in these patients. Nowadays, integrase inhibitor-based regimens are widely recommended as the best initial therapy for treatment-naïve HIV-infected patients by all international guidelines. However, these guidelines hardly mention the recommended regimens in individuals with advanced HIV disease. Otherwise, recent data indicating a higher risk of immune reconstitution inflammatory syndrome associated to the use of integrase inhibitors have raised concerns on the use of these drugs in patients with advanced HIV disease. The aim of this article is to review the available evidence from randomized clinical trials for the best treatment in patients with advanced HIV disease.

  15. Qualitative and Quantitative Assays of Transposition and Homologous Recombination of the Retrotransposon Tf1 in Schizosaccharomyces pombe.

    PubMed

    Sangesland, Maya; Atwood-Moore, Angela; Rai, Sudhir K; Levin, Henry L

    2016-01-01

    Transposition and homologous recombination assays are valuable genetic tools to measure the production and integration of cDNA from the long terminal repeat (LTR) retrotransposon Tf1 in the fission yeast (Schizosaccharomyces pombe). Here we describe two genetic assays, one that measures the transposition activity of Tf1 by monitoring the mobility of a drug resistance marked Tf1 element expressed from a multi-copy plasmid and another assay that measures homologous recombination between Tf1 cDNA and the expression plasmid. While the transposition assay measures insertion of full-length Tf1 cDNA mediated by the transposon integrase, the homologous recombination assay measures levels of cDNA present in the nucleus and is independent of integrase activity. Combined, these assays can be used to systematically screen large collections of strains to identify mutations that specifically inhibit the integration step in the retroelement life cycle. Such mutations can be identified because they reduce transposition activity but nevertheless have wild-type frequencies of homologous recombination. Qualitative assays of yeast patches on agar plates detect large defects in integration and recombination, while the quantitative approach provides a precise method of determining integration and recombination frequencies.

  16. Anti-HIV-1 Integrase Activity and Molecular Docking Study of Compounds from Caesalpinia  sappan L.

    PubMed

    Tewtrakul, Supinya; Chaniad, Prapaporn; Pianwanit, Somsak; Karalai, Chatchanok; Ponglimanont, Chanita; Yodsaoue, Orapun

    2015-05-01

    Caesalpinia sappan L. (Caesalpiniaceae) has been traditionally used as blood tonic, expectorant, and astringent by boiling with water. Searching for HIV-1 integrase (IN) inhibitors from this plant is a promising approach. The EtOH extract of C. sappan and its isolated compounds were tested for their anti-HIV-1 IN effect using the multiplate integration assay, and the active compounds were determined for their mechanisms by molecular docking technique. Extraction from the heartwoods and roots of C. sappan led to the isolation of nine compounds. Among the compounds tested, sappanchalcone (2) displayed the strongest effect against HIV-1 IN with an IC50 value of 2.3 μM followed by protosappanin A (9, IC50  = 12.6 μM). Structure-activity relationships of compounds from C. sappan were found, in which the vicinal hydroxyl moiety were essential for anti-HIV-1 IN effect of compounds 2 and 9 by binding with the amino acid residues Gln148 and Thr66 in the core domain of the HIV- 1 IN enzyme, respectively. Copyright © 2015 John Wiley & Sons, Ltd.

  17. Raltegravir cerebrospinal fluid concentrations in HIV-1 infection.

    PubMed

    Yilmaz, Aylin; Gisslén, Magnus; Spudich, Serena; Lee, Evelyn; Jayewardene, Anura; Aweeka, Francesca; Price, Richard W

    2009-09-01

    Raltegravir is an HIV-1 integrase inhibitor currently used in treatment-experienced HIV-1-infected patients resistant to other drug classes. In order to assess its central nervous system penetration, we measured raltegravir concentrations in cerebrospinal fluid (CSF) and plasma in subjects receiving antiretroviral treatment regimens containing this drug. Raltegravir concentrations were determined by liquid chromatography tandem mass spectrometry in 25 paired CSF and plasma samples from 16 HIV-1-infected individuals. The lower limit of quantitation was 2.0 ng/ml for CSF and 10 ng/ml for plasma. Twenty-four of the 25 CSF samples had detectable raltegravir concentrations with a median raltegravir concentration of 18.4 ng/ml (range, <2.0-126.0). The median plasma raltegravir concentration was 448 ng/ml (range, 37-5180). CSF raltegravir concentrations correlated with CSF:plasma albumin ratios and CSF albumin concentrations. Approximately 50% of the CSF specimens exceeded the IC(95) levels reported to inhibit HIV-1 strains without resistance to integrase inhibitors. In addition to contributing to control of systemic HIV-1 infection, raltegravir achieves local inhibitory concentrations in CSF in most, but not all, patients. Blood-brain and blood-CSF barriers likely restrict drug entry, while enhanced permeability of these barriers enhances drug entry.

  18. DNA Supercoiling and the Lrp Protein Determine the Directionality of fim Switch DNA Inversion in Escherichia coli K-12

    PubMed Central

    Kelly, Arlene; Conway, Colin; Ó Cróinín, Tadhg; Smith, Stephen G. J.; Dorman, Charles J.

    2006-01-01

    Site-specific recombinases of the integrase family usually require cofactors to impart directionality in the recombination reactions that they catalyze. The FimB integrase inverts the Escherichia coli fim switch (fimS) in the on-to-off and off-to-on directions with approximately equal efficiency. Inhibiting DNA gyrase with novobiocin caused inversion to become biased in the off-to-on direction. This directionality was not due to differential DNA topological distortion of fimS in the on and off phases by the activity of its resident PfimA promoter. Instead, the leucine-responsive regulatory (Lrp) protein was found to determine switching outcomes. Knocking out the lrp gene or abolishing Lrp binding sites 1 and 2 within fimS completely reversed the response of the switch to DNA relaxation. Inactivation of either Lrp site alone resulted in mild on-to-off bias, showing that they act together to influence the response of the switch to changes in DNA supercoiling. Thus, Lrp is not merely an architectural element organizing the fim invertasome, it collaborates with DNA supercoiling to determine the directionality of the DNA inversion event. PMID:16855224

  19. Using the class 1 integron-integrase gene as a proxy for anthropogenic pollution.

    PubMed

    Gillings, Michael R; Gaze, William H; Pruden, Amy; Smalla, Kornelia; Tiedje, James M; Zhu, Yong-Guan

    2015-06-01

    Around all human activity, there are zones of pollution with pesticides, heavy metals, pharmaceuticals, personal care products and the microorganisms associated with human waste streams and agriculture. This diversity of pollutants, whose concentration varies spatially and temporally, is a major challenge for monitoring. Here, we suggest that the relative abundance of the clinical class 1 integron-integrase gene, intI1, is a good proxy for pollution because: (1) intI1 is linked to genes conferring resistance to antibiotics, disinfectants and heavy metals; (2) it is found in a wide variety of pathogenic and nonpathogenic bacteria; (3) its abundance can change rapidly because its host cells can have rapid generation times and it can move between bacteria by horizontal gene transfer; and (4) a single DNA sequence variant of intI1 is now found on a wide diversity of xenogenetic elements, these being complex mosaic DNA elements fixed through the agency of human selection. Here we review the literature examining the relationship between anthropogenic impacts and the abundance of intI1, and outline an approach by which intI1 could serve as a proxy for anthropogenic pollution.

  20. Human Activity Determines the Presence of Integron-Associated and Antibiotic Resistance Genes in Southwestern British Columbia.

    PubMed

    Uyaguari-Díaz, Miguel I; Croxen, Matthew A; Luo, Zhiyao; Cronin, Kirby I; Chan, Michael; Baticados, Waren N; Nesbitt, Matthew J; Li, Shaorong; Miller, Kristina M; Dooley, Damion; Hsiao, William; Isaac-Renton, Judith L; Tang, Patrick; Prystajecky, Natalie

    2018-01-01

    The dissemination of antibiotic resistant bacteria from anthropogenic sources into the environment poses an emerging public health threat. Antibiotic resistance genes (ARGs) and gene-capturing systems such as integron-associated integrase genes ( intI ) play a key role in alterations of microbial communities and the spread of antibiotic resistant bacteria into the environment. In order to assess the effect of anthropogenic activities on watersheds in southwestern British Columbia, the presence of putative antibiotic resistance and integrase genes was analyzed in the microbiome of agricultural, urban influenced, and protected watersheds. A metagenomics approach and high-throughput quantitative PCR (HT qPCR) were used to screen for elements of resistance including ARGs and intI . Metagenomic sequencing of bacterial genomic DNA was used to characterize the resistome of microbial communities present in watersheds over a 1-year period. There was a low prevalence of ARGs relative to the microbial population (<1%). Analysis of the metagenomic sequences detected a total of 60 elements of resistance including 46 ARGs, intI1 , and groEL/ intI1 genes and 12 quaternary ammonium compounds ( qac ) resistance genes across all watershed locations. The relative abundance and richness of ARGs was found to be highest in agriculture impacted watersheds compared to urban and protected watersheds. A downstream transport pattern was observed in the impacted watersheds (urban and agricultural) during dry months. Similar to other reports, this study found a strong association between intI1 and ARGs (e.g., sul1 ), an association which may be used as a proxy for anthropogenic activities. Chemical analysis of water samples for three major groups of antibiotics was below the detection limit. However, the high richness and gene copy numbers (GCNs) of ARGs in impacted sites suggest that the effects of effluents on microbial communities are occurring even at low concentrations of antimicrobials in the water column. Antibiotic resistance and integrase genes in a year-long metagenomic study showed that ARGs were driven mainly by environmental factors from anthropogenized sites in agriculture and urban watersheds. Environmental factors such as land-use and water quality parameters accounted for 45% of the variability observed in watershed locations.

  1. Human immunodeficiency virus integrase inhibitors efficiently suppress feline immunodeficiency virus replication in vitro and provide a rationale to redesign antiretroviral treatment for feline AIDS

    PubMed Central

    Savarino, Andrea; Pistello, Mauro; D'Ostilio, Daniela; Zabogli, Elisa; Taglia, Fabiana; Mancini, Fabiola; Ferro, Stefania; Matteucci, Donatella; De Luca, Laura; Barreca, Maria Letizia; Ciervo, Alessandra; Chimirri, Alba; Ciccozzi, Massimo; Bendinelli, Mauro

    2007-01-01

    Background Treatment of feline immunodeficiency virus (FIV) infection has been hampered by the absence of a specific combination antiretroviral treatment (ART). Integrase strand transfer inhibitors (INSTIs) are emerging as a promising new drug class for HIV-1 treatment, and we evaluated the possibility of inhibiting FIV replication using INSTIs. Methods Phylogenetic analysis of lentiviral integrase (IN) sequences was carried out using the PAUP* software. A theoretical three-dimensional structure of the FIV IN catalytic core domain (CCD) was obtained by homology modeling based on a crystal structure of HIV-1 IN CCD. The interaction of the transferred strand of viral DNA with the catalytic cavity of FIV IN was deduced from a crystal structure of a structurally similar transposase complexed with transposable DNA. Molecular docking simulations were conducted using a genetic algorithm (GOLD). Antiviral activity was tested in feline lymphoblastoid MBM cells acutely infected with the FIV Petaluma strain. Circular and total proviral DNA was quantified by real-time PCR. Results The calculated INSTI-binding sites were found to be nearly identical in FIV and HIV-1 IN CCDs. The close similarity of primate and feline lentivirus IN CCDs was also supported by phylogenetic analysis. In line with these bioinformatic analyses, FIV replication was efficiently inhibited in acutely infected cell cultures by three investigational INSTIs, designed for HIV-1 and belonging to different classes. Of note, the naphthyridine carboxamide INSTI, L-870,810 displayed an EC50 in the low nanomolar range. Inhibition of FIV integration in situ was shown by real-time PCR experiments that revealed accumulation of circular forms of FIV DNA within cells treated with L-870,810. Conclusion We report a drug class (other than nucleosidic reverse transcriptase inhibitors) that is capable of inhibiting FIV replication in vitro. The present study helped establish L-870,810, a compound successfully tested in human clinical trials, as one of the most potent anti-FIV agents ever tested in vitro. This finding may provide new avenues for treating FIV infection and contribute to the development of a small animal model mimicking the effects of ART in humans. PMID:17971219

  2. Human Activity Determines the Presence of Integron-Associated and Antibiotic Resistance Genes in Southwestern British Columbia

    PubMed Central

    Uyaguari-Díaz, Miguel I.; Croxen, Matthew A.; Luo, Zhiyao; Cronin, Kirby I.; Chan, Michael; Baticados, Waren N.; Nesbitt, Matthew J.; Li, Shaorong; Miller, Kristina M.; Dooley, Damion; Hsiao, William; Isaac-Renton, Judith L.; Tang, Patrick; Prystajecky, Natalie

    2018-01-01

    The dissemination of antibiotic resistant bacteria from anthropogenic sources into the environment poses an emerging public health threat. Antibiotic resistance genes (ARGs) and gene-capturing systems such as integron-associated integrase genes (intI) play a key role in alterations of microbial communities and the spread of antibiotic resistant bacteria into the environment. In order to assess the effect of anthropogenic activities on watersheds in southwestern British Columbia, the presence of putative antibiotic resistance and integrase genes was analyzed in the microbiome of agricultural, urban influenced, and protected watersheds. A metagenomics approach and high-throughput quantitative PCR (HT qPCR) were used to screen for elements of resistance including ARGs and intI. Metagenomic sequencing of bacterial genomic DNA was used to characterize the resistome of microbial communities present in watersheds over a 1-year period. There was a low prevalence of ARGs relative to the microbial population (<1%). Analysis of the metagenomic sequences detected a total of 60 elements of resistance including 46 ARGs, intI1, and groEL/intI1 genes and 12 quaternary ammonium compounds (qac) resistance genes across all watershed locations. The relative abundance and richness of ARGs was found to be highest in agriculture impacted watersheds compared to urban and protected watersheds. A downstream transport pattern was observed in the impacted watersheds (urban and agricultural) during dry months. Similar to other reports, this study found a strong association between intI1 and ARGs (e.g., sul1), an association which may be used as a proxy for anthropogenic activities. Chemical analysis of water samples for three major groups of antibiotics was below the detection limit. However, the high richness and gene copy numbers (GCNs) of ARGs in impacted sites suggest that the effects of effluents on microbial communities are occurring even at low concentrations of antimicrobials in the water column. Antibiotic resistance and integrase genes in a year-long metagenomic study showed that ARGs were driven mainly by environmental factors from anthropogenized sites in agriculture and urban watersheds. Environmental factors such as land-use and water quality parameters accounted for 45% of the variability observed in watershed locations. PMID:29765365

  3. Genome Sequences of Mycobacteriophages Amgine, Amohnition, Bella96, Cain, DarthP, Hammy, Krueger, LastHope, Peanam, PhelpsODU, Phrank, SirPhilip, Slimphazie, and Unicorn

    PubMed Central

    Anders, Kirk R.; Mavrodi, Dmitri V.; Vazquez, Edwin; Amoh, Nana Yaa A.; Baliraine, Frederick N.; Buchser, William J.; Cast, Thomas P.; Chamberlain, Carmen E.; Chung, Hui-Min; D’Angelo, William A.; Farris, Christian T.; Fernandez-Martinez, Mariceli; Fischman, Haley D.; Forsyth, Mark H.; Fortier, Anna G.; Gallo, Kara F.; Held, Greta J.; Lomas, Miguel A.; Maldonado-Vazquez, Natalia Y.; Moonsammy, Claudia H.; Namboote, Peace; Paudel, Sudip; Reyes, Gabriella M.; Rubin, Michael R.; Saha, Margaret S.; Stukey, Joseph; Tobias, Tristan D.; Garlena, Rebecca A.; Stoner, Ty H.; Russell, Daniel A.

    2017-01-01

    ABSTRACT We report the genome sequences of 14 cluster K mycobacteriophages isolated using Mycobacterium smegmatis mc²155 as host. Four are closely related to subcluster K1 phages, and 10 are members of subcluster K6. The phage genomes span considerable sequence diversity, including multiple types of integrases and integration sites. PMID:29217790

  4. Raltegravir Cerebrospinal Fluid Concentrations in HIV-1 Infection

    PubMed Central

    Yilmaz, Aylin; Gisslén, Magnus; Spudich, Serena; Lee, Evelyn; Jayewardene, Anura; Aweeka, Francesca; Price, Richard W.

    2009-01-01

    Introduction Raltegravir is an HIV-1 integrase inhibitor currently used in treatment-experienced HIV-1-infected patients resistant to other drug classes. In order to assess its central nervous system penetration, we measured raltegravir concentrations in cerebrospinal fluid (CSF) and plasma in subjects receiving antiretroviral treatment regimens containing this drug. Methods Raltegravir concentrations were determined by liquid chromatography tandem mass spectrometry in 25 paired CSF and plasma samples from 16 HIV-1-infected individuals. The lower limit of quantitation was 2.0 ng/ml for CSF and 10 ng/ml for plasma. Results Twenty-four of the 25 CSF samples had detectable raltegravir concentrations with a median raltegravir concentration of 18.4 ng/ml (range, <2.0–126.0). The median plasma raltegravir concentration was 448 ng/ml (range, 37–5180). CSF raltegravir concentrations correlated with CSF:plasma albumin ratios and CSF albumin concentrations. Conclusions Approximately 50% of the CSF specimens exceeded the IC95 levels reported to inhibit HIV-1 strains without resistance to integrase inhibitors. In addition to contributing to control of systemic HIV-1 infection, raltegravir achieves local inhibitory concentrations in CSF in most, but not all, patients. Blood-brain and blood-CSF barriers likely restrict drug entry, while enhanced permeability of these barriers enhances drug entry. PMID:19721718

  5. 1-Hydroxypyrido[2,3-d]pyrimidin-2(1H)-ones as novel selective HIV integrase inhibitors obtained via privileged substructure-based compound libraries.

    PubMed

    Gao, Ping; Zhang, Lingzi; Sun, Lin; Huang, Tianguang; Tan, Jing; Zhang, Jian; Zhou, Zhongxia; Zhao, Tong; Menéndez-Arias, Luis; Pannecouque, Christophe; Clercq, Erik De; Zhan, Peng; Liu, Xinyong

    2017-10-15

    A small library containing 3-hydroxyquinazoline-2,4(1H,3H)-dione and 1-hydroxypyrido[2,3-d]pyrimidin-2(1H)-one scaffolds was obtained via the copper(I)-catalyzed azidealkyne cycloaddition (CuAAC) reaction and evaluated for their anti-HIV activity in MT-4 cells. Among the synthesized compounds, several 1-hydroxypyrido[2,3-d]pyrimidin-2(1H)-one derivatives showed remarkable anti-HIV potency with EC 50 values ranging from 0.92 to 26.85µM. The most active one, IIA-2, also showed remarkable and selective potency against HIV type 1 integrase (IN). To the best of our knowledge, this is the first report showing that 1-hydroxypyrido[2,3-d]pyrimidin-2(1H)-ones are selective HIV IN inhibitors. Preliminary structure-activity relationship (SAR) studies suggested that the divalent metal ion chelators and the nature and position of substituents around the core are important for antiviral potency. Molecular modeling has been used to predict the binding site of the pyrido[2,3-d]pyrimidin-2(1H)-one core in HIV type 1 IN and suggestions are made for improvement of its inhibitory activity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. 1,4-Bis(5-(naphthalen-1-yl)thiophen-2-yl)naphthalene, a small molecule, functions as a novel anti-HIV-1 inhibitor targeting the interaction between integrase and cellular Lens epithelium-derived growth factor.

    PubMed

    Gu, Wan-gang; Ip, Denis Tsz-Ming; Liu, Si-jie; Chan, Joseph H; Wang, Yan; Zhang, Xuan; Zheng, Yong-tang; Wan, David Chi-Cheong

    2014-04-25

    Translocation of viral integrase (IN) into the nucleus is a critical precondition of integration during the life cycle of HIV, a causative agent of Acquired Immunodeficiency Syndromes (AIDS). As the first discovered cellular factor to interact with IN, Lens epithelium-derived growth factor (LEDGF/p75) plays an important role in the process of integration. Disruption of the LEDGF/p75-IN interaction has provided a great interest for anti-HIV agent discovery. In this work, we reported that one small molecular compound, 1,4-bis(5-(naphthalen-1-yl)thiophen-2-yl)naphthalene(Compound 15), potently inhibit the IN-LEDGF/p75 interaction and affect the HIV-1 IN nuclear distribution at 1 μM. The putative binding mode of Compound 15 was constructed by a molecular docking simulation to provide structural insights into the ligand-binding mechanism. Compound 15 suppressed viral replication by measuring p24 antigen production in HIV-1IIIB acute infected C8166 cells with EC50 value of 11.19 μM. Compound 15 might supply useful structural information for further anti-HIV agent discovery. Copyright © 2014. Published by Elsevier Ireland Ltd.

  7. The S230R Integrase Substitution Associated with Viral Rebound during DTG Monotherapy Confers Low Levels INSTI Drug Resistance.

    PubMed

    Pham, Hanh T; Labrie, Lydia; Wijting, Ingeborg E A; Hassounah, Said; Lok, Ka Yee; Portna, Inna; Goring, Mark; Han, Yingshan; Lungu, Cynthia; van der Ende, Marchina E; Brenner, Bluma G; Boucher, Charles A; Rijnders, Bart J A; van Kampen, Jeroen J A; Mesplède, Thibault; Wainberg, Mark A

    2018-03-29

    Dolutegravir (DTG) is an integrase strand-transfer inhibitor (INSTI) used for treatment of HIV-infected individuals. Due to its high genetic barrier to resistance, DTG has been clinically investigated as maintenance monotherapy to maintain viral suppression and to reduce complication and healthcare costs. Our study aims to explain the underlying mechanism related to the emergence of a S230R substitution in patients who experienced virological failure while using DTG monotherapy. We evaluated the effect of S230R substitution in regard to IN enzyme activity, viral infectivity, replicative capacity and susceptibility to different INSTIs by biochemical and cell-based assays. S230R substitution conferred 63% reduction in enzyme efficiency. The S230R virus was 1.29-fold less infectious than wildtype (WT), but could replicate in PM1 cells without significant delay. Resistance levels against DTG, CAB, RAL and EVG in tissue culture were 3.85-, 3.72-, 1.52-, and 1.21-fold, respectively. Our data indicate that the S230R substitution is comparable to the previously reported R263K in some respects. Virological failure under DTG monotherapy can occur through the development of such S230R or R263K mutations without the need for high levels DTG resistance.

  8. The Need for Development of New HIV-1 Reverse Transcriptase and Integrase Inhibitors in the Aftermath of Antiviral Drug Resistance

    PubMed Central

    Wainberg, Mark A.

    2012-01-01

    The use of highly active antiretroviral therapy (HAART) involves combinations of drugs to achieve maximal virological response and reduce the potential for the emergence of antiviral resistance. There are two broad classes of reverse transcriptase inhibitors, the nucleoside reverse transcriptase inhibitors (NRTIs) and nonnucleoside reverse transcriptase inhibitors (NNRTIs). Since the first classes of such compounds were developed, viral resistance against them has necessitated the continuous development of novel compounds within each class. This paper considers the NRTIs and NNRTIs currently in both preclinical and clinical development or approved for second line therapy and describes the patterns of resistance associated with their use, as well as the underlying mechanisms that have been described. Due to reasons of both affordability and availability, some reverse transcriptase inhibitors with low genetic barrier are more commonly used in resource-limited settings. Their use results to the emergence of specific patterns of antiviral resistance and so may require specific actions to preserve therapeutic options for patients in such settings. More recently, the advent of integrase strand transfer inhibitors represents another major step forward toward control of HIV infection, but these compounds are also susceptible to problems of HIV drug resistance. PMID:24278679

  9. A Novel System for Simultaneous or Sequential Integration of Multiple Gene-Loading Vectors into a Defined Site of a Human Artificial Chromosome

    PubMed Central

    Suzuki, Teruhiko; Kazuki, Yasuhiro; Oshimura, Mitsuo; Hara, Takahiko

    2014-01-01

    Human artificial chromosomes (HACs) are gene-delivery vectors suitable for introducing large DNA fragments into mammalian cells. Although a HAC theoretically incorporates multiple gene expression cassettes of unlimited DNA size, its application has been limited because the conventional gene-loading system accepts only one gene-loading vector (GLV) into a HAC. We report a novel method for the simultaneous or sequential integration of multiple GLVs into a HAC vector (designated as the SIM system) via combined usage of Cre, FLP, Bxb1, and φC31 recombinase/integrase. As a proof of principle, we first attempted simultaneous integration of three GLVs encoding EGFP, Venus, and TdTomato into a gene-loading site of a HAC in CHO cells. These cells successfully expressed all three fluorescent proteins. Furthermore, microcell-mediated transfer of HACs enabled the expression of those fluorescent proteins in recipient cells. We next demonstrated that GLVs could be introduced into a HAC one-by-one via reciprocal usage of recombinase/integrase. Lastly, we introduced a fourth GLV into a HAC after simultaneous integration of three GLVs by FLP-mediated DNA recombination. The SIM system expands the applicability of HAC vectors and is useful for various biomedical studies, including cell reprogramming. PMID:25303219

  10. A novel system for simultaneous or sequential integration of multiple gene-loading vectors into a defined site of a human artificial chromosome.

    PubMed

    Suzuki, Teruhiko; Kazuki, Yasuhiro; Oshimura, Mitsuo; Hara, Takahiko

    2014-01-01

    Human artificial chromosomes (HACs) are gene-delivery vectors suitable for introducing large DNA fragments into mammalian cells. Although a HAC theoretically incorporates multiple gene expression cassettes of unlimited DNA size, its application has been limited because the conventional gene-loading system accepts only one gene-loading vector (GLV) into a HAC. We report a novel method for the simultaneous or sequential integration of multiple GLVs into a HAC vector (designated as the SIM system) via combined usage of Cre, FLP, Bxb1, and φC31 recombinase/integrase. As a proof of principle, we first attempted simultaneous integration of three GLVs encoding EGFP, Venus, and TdTomato into a gene-loading site of a HAC in CHO cells. These cells successfully expressed all three fluorescent proteins. Furthermore, microcell-mediated transfer of HACs enabled the expression of those fluorescent proteins in recipient cells. We next demonstrated that GLVs could be introduced into a HAC one-by-one via reciprocal usage of recombinase/integrase. Lastly, we introduced a fourth GLV into a HAC after simultaneous integration of three GLVs by FLP-mediated DNA recombination. The SIM system expands the applicability of HAC vectors and is useful for various biomedical studies, including cell reprogramming.

  11. [The role of integrons in dissemination of antibiotic resistance].

    PubMed

    Ploy, M C; Lambert, T; Gassama, A; Denis, F

    2000-01-01

    Bacteria can transfer genetic information to get protection against most antibiotics. The acquisition of resistance genes involves genetic mobile elements such as plasmids and transposons. Another genetic structures, named integrons, have been described and contain one or more gene cassettes located at a specific site. Integrons contain an intI gene encoding a site-specific recombinase belonging to the integrase family and a recombination site attI. A gene cassette includes an open reading frame and, at the 3'-end, a recombination site attC. Integration or excision of cassettes occurs by a site-specific recombination mechanism catalyzed by the integrase. However, insertion can rarely occur, at non-specific sites leading to a stable situation for the cassette. Cassettes are transcribed from a common promoter located in the 5'-conserved segment and expression of distal genes is reduced by the presence of upstream cassettes. Most gene cassettes encode antibiotic resistant determinants but antiseptic resistant genes have also been described. Integrons seem to have a major role in the spread of multidrug resistance in Gram-negative bacteria but integrons in Gram-positive bacteria have been recently described. Moreover, the finding of super-integrons with gene cassettes coding for other determinants (biochemical functions, virulence factors) in different Gram negative bacteria suggests that integrons are probably implied in bacterial genome evolution.

  12. Dissecting the mechanism of histone deacetylase inhibitors to enhance the activity of zinc finger nucleases delivered by integrase-defective lentiviral vectors.

    PubMed

    Joglekar, Alok V; Stein, Libby; Ho, Michelle; Hoban, Megan D; Hollis, Roger P; Kohn, Donald B

    2014-07-01

    Integrase-defective lentiviral vectors (IDLVs) have been of limited success in the delivery of zinc finger nucleases (ZFNs) to human cells, due to low expression. A reason for reduced gene expression has been proposed to involve the epigenetic silencing of vector genomes, carried out primarily by histone deacetylases (HDACs). In this study, we tested valproic acid (VPA), a known HDAC inhibitor (HDACi), for its ability to increase transgene expression from IDLVs, especially in the context of ZFN delivery. Using ZFNs targeting the human adenosine deaminase (ADA) gene in K562 cells, we demonstrated that treatment with VPA enhanced ZFN expression by up to 3-fold, resulting in improved allelic disruption at the ADA locus. Furthermore, three other U.S. Food and Drug Administration-approved HDACis (vorinostat, givinostat, and trichostatin-A) exhibited a similar effect on the activity of ZFN-IDLVs in K562 cells. In primary human CD34(+) cells, VPA- and vorinostat-treated cells showed higher levels of expression of both green fluorescent protein (GFP) as well as ZFNs from IDLVs. A major mechanism for the effects of HDAC inhibitors on improving expression was from their modulation of the cell cycle, and the influence of heterochromatinization was determined to be a lesser contributing factor.

  13. Coordinated disintegration reactions mediated by Moloney murine leukemia virus integrase.

    PubMed Central

    Donzella, G A; Jonsson, C B; Roth, M J

    1996-01-01

    The protein-DNA and protein-protein interactions important for function of the integrase (IN) protein of Moloney murine leukemia virus (M-MuLV) were investigated by using a coordinated-disintegration assay. A panel of M-MuLV IN mutants and substrate alterations highlighted distinctions between the intermolecular and intramolecular reactions of coordinated disintegration. Mispairing of the crossbone single-strand region and altered long terminal repeat (LTR) positioning affected the intermolecular, but not the intramolecular, reactions of coordinated disintegration. Partial components of the crossbone substrate were coordinated by M-MuLV IN, indicating a reliance on both LTR and target DNA determinants for substrate assembly. The intramolecular reaction was dependent on the presence of either the HHCC domain or a crossbone LTR 5' single-stranded tail. An M-MuLV IN mutant without the HHCC domain (Ndelta105) catalyzed reduced levels of double disintegration but not single disintegration. A separately purified HHCC domain protein (Cdelta232) stimulated double disintegration mediated by Ndelta105, suggesting a role of the N-terminal HHCC domain in stable IN-IN and IN-DNA interactions. Significantly, crossbone substrates lacking the LTR 5' tails were not recognized by the fingerless Ndelta105 protein. Collectively, these data suggest similar roles of the HHCC domain and 5' LTR tail in substrate recognition and modulation of IN activity. PMID:8648728

  14. Genome Sequences of Mycobacteriophages Amgine, Amohnition, Bella96, Cain, DarthP, Hammy, Krueger, LastHope, Peanam, PhelpsODU, Phrank, SirPhilip, Slimphazie, and Unicorn.

    PubMed

    Anders, Kirk R; Barekzi, Nazir; Best, Aaron A; Frederick, Gregory D; Mavrodi, Dmitri V; Vazquez, Edwin; Amoh, Nana Yaa A; Baliraine, Frederick N; Buchser, William J; Cast, Thomas P; Chamberlain, Carmen E; Chung, Hui-Min; D'Angelo, William A; Farris, Christian T; Fernandez-Martinez, Mariceli; Fischman, Haley D; Forsyth, Mark H; Fortier, Anna G; Gallo, Kara F; Held, Greta J; Lomas, Miguel A; Maldonado-Vazquez, Natalia Y; Moonsammy, Claudia H; Namboote, Peace; Paudel, Sudip; Polley, Sarah-Elizabeth M; Reyes, Gabriella M; Rubin, Michael R; Saha, Margaret S; Stukey, Joseph; Tobias, Tristan D; Garlena, Rebecca A; Stoner, Ty H; Cresawn, Steven G; Jacobs-Sera, Deborah; Pope, Welkin H; Russell, Daniel A; Hatfull, Graham F

    2017-12-07

    We report the genome sequences of 14 cluster K mycobacteriophages isolated using Mycobacterium smegmatis mc²155 as host. Four are closely related to subcluster K1 phages, and 10 are members of subcluster K6. The phage genomes span considerable sequence diversity, including multiple types of integrases and integration sites. Copyright © 2017 Anders et al.

  15. Suboptimal Doses of Raltegravir Cause Aberrant HIV Integrations | Center for Cancer Research

    Cancer.gov

    When a cell is infected with HIV, a DNA copy of the HIV genome is inserted into that cell’s chromosomal DNA. This insertion reaction is carried out by the viral enzyme integrase (IN) and involves two distinct steps: removal of two nucleotides from each 3’ end of the viral DNA, followed by the strand transfer reaction, in which the viral DNA ends are inserted into the host

  16. Versatile P(acman) BAC Libraries for Transgenesis Studies in Drosophila melanogaster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venken, Koen J.T.; Carlson, Joseph W.; Schulze, Karen L.

    2009-04-21

    We constructed Drosophila melanogaster BAC libraries with 21-kb and 83-kb inserts in the P(acman) system. Clones representing 12-fold coverage and encompassing more than 95percent of annotated genes were mapped onto the reference genome. These clones can be integrated into predetermined attP sites in the genome using Phi C31 integrase to rescue mutations. They can be modified through recombineering, for example to incorporate protein tags and assess expression patterns.

  17. Broad advances in understanding HIV resistance to antiretrovirals: report on the XVII International HIV Drug Resistance Workshop.

    PubMed

    Mascolini, Mark; Larder, Brendan A; Boucher, Charles A B; Richman, Douglas D; Mellors, John W

    2008-01-01

    The 2008 International HIV Drug Resistance Workshop explored six topics on viral resistance: new antiretrovirals; clinical implications; epidemiology; new technologies and interpretations; HIV pathogenesis, fitness, and resistance; and mechanisms of resistance. The last of these topics provided a forum for new work on resistance of hepatitis B and C viruses, which were also explored in two poster sessions. Much work focused on resistance to the two most recent antiretroviral classes (integrase inhibitors and CCR5 antagonists), a new set of entry inhibitor candidates and one new class represented by the maturation inhibitor bevirimat. Other research explored two novel non-nucleoside reverse transcriptase inhibitors, etravirine and IDX899. Epidemiological work analysed rates of transmitted resistant virus, multiclass resistance in antiretroviral-experienced patients and a heightened resistance risk in injecting drug users regardless of adherence. New research on resistance technologies involved an enhanced assay for HIV-1 coreceptor determination and improved gene-based tools for predicting coreceptor use. In the pathogenesis arena, a small study of intensification shed light on the likely source of residual viraemia in patients on successful antiretroviral therapy. A large study in Mozambique correlated the timing of infant infection with selection, transmission and persistence of nevirapine resistance mutations. Mechanistic research explored resistance to the integrase inhibitor raltegravir, K65R-mediated resistance to tenofovir and the role of connection domain mutations in resistance to zidovudine.

  18. Expanding the Definition of the Classical Bipartite Nuclear Localization Signal

    PubMed Central

    Lange, Allison; McLane, Laura M.; Mills, Ryan E.; Devine, Scott E.; Corbett, Anita H.

    2010-01-01

    Nuclear localization signals (NLSs) are amino acid sequences that target cargo proteins into the nucleus. Rigorous characterization of NLS motifs is essential to understanding and predicting pathways for nuclear import. The best-characterized NLS is the classical NLS (cNLS), which is recognized by the cNLS receptor, importin-α. cNLSs are conventionally defined as having one (monopartite) or two clusters of basic amino acids separated by a 9-12 amino acid linker (bipartite). Motivated by the finding that Ty1 integrase, which contains an unconventional putative bipartite cNLS with a 29 amino acid linker, exploits the classical nuclear import machinery, we assessed the functional boundaries for linker length within a bipartite cNLS. We confirmed that the integrase cNLS is a bona fide bipartite cNLS, then carried out a systematic analysis of linker length in an obligate bipartite cNLS cargo, which revealed that some linkers longer than conventionally defined can function in nuclear import. Linker function is dependent on the sequence and likely the inherent flexibility of the linker. Subsequently, we interrogated the Saccharomyces cerevisiae proteome to identify cellular proteins containing putative long bipartite cNLSs. We experimentally confirmed that Rrp4 contains a bipartite cNLS with a 25 amino acid linker. Our studies reveal that the traditional definition of bipartite cNLSs is too restrictive and linker length can vary depending on amino acid composition PMID:20028483

  19. Site-specific recombination in the cyanobacterium Anabaena sp. strain PCC 7120 catalyzed by the integrase of coliphage HK022.

    PubMed

    Melnikov, Olga; Zaritsky, Arieh; Zarka, Aliza; Boussiba, Sammy; Malchin, Natalia; Yagil, Ezra; Kolot, Mikhail

    2009-07-01

    The integrase (Int) of the lambda-like coliphage HK022 catalyzes the site-specific integration and excision of the phage DNA into and from the chromosome of its host, Escherichia coli. Int recognizes two different pairs of recombining sites attP x attB and attL x attR for integration and excision, respectively. This system was adapted to the cyanobacterium Anabaena sp. strain PCC 7120 as a potential tool for site-specific gene manipulations in the cyanobacterium. Two plasmids were consecutively cointroduced by conjugation into Anabaena cells, one plasmid that expresses HK022 Int recombinase and the other plasmid that carries the excision substrate P(glnA)-attL-T1/T2-attR-lacZ, where T1/T2 are the strong transcription terminators of rrnB, to prevent expression of the lacZ reporter under the constitutive promoter P(glnA). The Int-catalyzed site-specific recombination reaction was monitored by the expression of lacZ emanating as a result of T1/T2 excision. Int catalyzed the site-specific excision reaction in Anabaena cells when its substrate was located either on the plasmid or on the chromosome with no need to supply an accessory protein, such as integration host factor and excisionase (Xis), which are indispensable for this reaction in its host, E. coli.

  20. The Microbiota and Abundance of the Class 1 Integron-Integrase Gene in Tropical Sewage Treatment Plant Influent and Activated Sludge

    PubMed Central

    Paiva, Magna C.; Ávila, Marcelo P.; Reis, Mariana P.; Costa, Patrícia S.; Nardi, Regina M. D.; Nascimento, Andréa M. A.

    2015-01-01

    Bacteria are assumed to efficiently remove organic pollutants from sewage in sewage treatment plants, where antibiotic-resistance genes can move between species via mobile genetic elements known as integrons. Nevertheless, few studies have addressed bacterial diversity and class 1 integron abundance in tropical sewage. Here, we describe the extant microbiota, using V6 tag sequencing, and quantify the class 1 integron-integrase gene (intI1) in raw sewage (RS) and activated sludge (AS). The analysis of 1,174,486 quality-filtered reads obtained from RS and AS samples revealed complex and distinct bacterial diversity in these samples. The RS sample, with 3,074 operational taxonomic units, exhibited the highest alpha-diversity indices. Among the 25 phyla, Proteobacteria, Bacteroidetes and Firmicutes represented 85% (AS) and 92% (RS) of all reads. Increased relative abundance of Micrococcales, Myxococcales, and Sphingobacteriales and reduced pathogen abundance were noted in AS. At the genus level, differences were observed for the dominant genera Simplicispira and Diaphorobacter (AS) as well as for Enhydrobacter (RS). The activated sludge process decreased (55%) the amount of bacteria harboring the intI1 gene in the RS sample. Altogether, our results emphasize the importance of biological treatment for diminishing pathogenic bacteria and those bearing the intI1 gene that arrive at a sewage treatment plant. PMID:26115093

  1. Clinical Improvement by Switching to an Integrase Strand Transfer Inhibitor in Hemophiliac Patients with HIV: The Japan Cohort Study of HIV Patients Infected through Blood Products.

    PubMed

    Kawado, Miyuki; Hashimoto, Shuji; Oka, Shin-Ichi; Fukutake, Katsuyuki; Higasa, Satoshi; Yatsuhashi, Hiroshi; Ogane, Miwa; Okamoto, Manabu; Shirasaka, Takuma

    2017-01-01

    This study aimed to determine improvement in HIV RNA levels and the CD4 cell count by switching to an antiretroviral regimen with an integrase strand transfer inhibitor (INSTI) in patients with HIV. This study was conducted on Japanese patients with HIV who were infected by blood products in the 1980s. Data were collected between 2007 and 2014. Data of 564 male hemophiliac patients with HIV from the Japan Cohort Study of HIV Patients Infected through Blood Products were available. Changes in antiretroviral regimen use, HIV RNA levels, and the CD4 cell count between 2007 and 2014 were examined. From 2007 to 2014, the proportion of use of a regimen with an INSTI increased from 0.0% to 41.0%. For patients with HIV who used a regimen, including an INSTI, the proportion of HIV RNA levels <50 copies/mL significantly increased from 58.3% in 2007 to 90.6% in 2014. Additionally, the median CD4 cell count significantly increased from 380/μL to 438/μL. There is a large effect of switching to an antiretroviral regimen with an INSTI for Japanese patients with HIV who are infected by blood products. This suggests that performing this switch in clinical practice will lead to favorable effects.

  2. Structure-Based Mutational Analysis of the C-Terminal DNA-Binding Domain of Human Immunodeficiency Virus Type 1 Integrase: Critical Residues for Protein Oligomerization and DNA Binding

    PubMed Central

    Lutzke, Ramon A. Puras; Plasterk, Ronald H. A.

    1998-01-01

    The C-terminal domain of human immunodeficiency virus type 1 (HIV-1) integrase (IN) is a dimer that binds to DNA in a nonspecific manner. The structure of the minimal region required for DNA binding (IN220–270) has been solved by nuclear magnetic resonance spectroscopy. The overall fold of the C-terminal domain of HIV-1 IN is similar to those of Src homology region 3 domains. Based on the structure of IN220–270, we studied the role of 15 amino acid residues potentially involved in DNA binding and oligomerization by mutational analysis. We found that two amino acid residues, arginine 262 and leucine 234, contribute to DNA binding in the context of IN220–270, as indicated by protein-DNA UV cross-link analysis. We also analyzed mutant proteins representing portions of the full-length IN protein. Amino acid substitution of residues located in the hydrophobic dimer interface, such as L241A and L242A, results in the loss of oligomerization of IN; consequently, the levels of 3′ processing, DNA strand transfer, and intramolecular disintegration are strongly reduced. These results suggest that dimerization of the C-terminal domain of IN is important for correct multimerization of IN. PMID:9573250

  3. The Integron: Adaptation On Demand.

    PubMed

    Escudero, José Antonio; Loot, Céline; Nivina, Aleksandra; Mazel, Didier

    2015-04-01

    The integron is a powerful system which, by capturing, stockpiling, and rearranging new functions carried by gene encoding cassettes, confers upon bacteria a rapid adaptation capability in changing environments. Chromosomally located integrons (CI) have been identified in a large number of environmental Gram-negative bacteria. Integron evolutionary history suggests that these sedentary CIs acquired mobility among bacterial species through their association with transposable elements and conjugative plasmids. As a result of massive antibiotic use, these so-called mobile integrons are now widespread in clinically relevant bacteria and are considered to be the principal agent in the emergence and rise of antibiotic multiresistance in Gram-negative bacteria. Cassette rearrangements are catalyzed by the integron integrase, a site-specific tyrosine recombinase. Central to these reactions is the single-stranded DNA nature of one of the recombination partners, the attC site. This makes the integron a unique recombination system. This review describes the current knowledge on this atypical recombination mechanism, its implications in the reactions involving the different types of sites, attC and attI, and focuses on the tight regulation exerted by the host on integron activity through the control of attC site folding. Furthermore, cassette and integrase expression are also highly controlled by host regulatory networks and the bacterial stress (SOS) response. These intimate connections to the host make the integron a genetically stable and efficient system, granting the bacteria a low cost, highly adaptive evolution potential "on demand".

  4. Optimization of rhodanine scaffold for the development of protein-protein interaction inhibitors.

    PubMed

    Ferro, Stefania; De Luca, Laura; Agharbaoui, Fatima Ezzahra; Christ, Frauke; Debyser, Zeger; Gitto, Rosaria

    2015-07-01

    Searching for novel protein-protein interactions inhibitors (PPIs) herein we describe the identification of a new series of rhodanine derivatives. The selection was performed by means virtual-screening, docking studies, Molecular Dynamic (MD) simulations and synthetic approaches. All the new obtained compounds were tested in order to evaluate their ability to inhibit the interaction between the HIV-1 integrase (IN) enzyme and the nuclear protein lens epithelium growth factor LEDGF/p75. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Postdoctoral Fellow | Center for Cancer Research

    Cancer.gov

    A postdoctoral position is available in the Bioorganic Chemistry Section of the Chemical Biology Laboratory (CBL), NCI-Frederick, under the mentorship of Dr. Terrence Burke. Research will involve developing small molecule inhibitors of HIV integrase and RNase H. The fellowship has an initial duration of two years, with the potential to extend a third year. Salary and benefit package are highly competitive. The CBL is equipped with state-of-the-art instrumentation and is located on the campus of the National Cancer Institute at Frederick, Frederick, MD.

  6. A genomic island in Vibrio cholerae with VPI-1 site-specific recombination characteristics contains CRISPR-Cas and type VI secretion modules

    PubMed Central

    Labbate, Maurizio; Orata, Fabini D.; Petty, Nicola K.; Jayatilleke, Nathasha D.; King, William L.; Kirchberger, Paul C.; Allen, Chris; Mann, Gulay; Mutreja, Ankur; Thomson, Nicholas R.; Boucher, Yan; Charles, Ian G.

    2016-01-01

    Cholera is a devastating diarrhoeal disease caused by certain strains of serogroup O1/O139 Vibrio cholerae. Mobile genetic elements such as genomic islands (GIs) have been pivotal in the evolution of O1/O139 V. cholerae. Perhaps the most important GI involved in cholera disease is the V. cholerae pathogenicity island 1 (VPI-1). This GI contains the toxin-coregulated pilus (TCP) gene cluster that is necessary for colonization of the human intestine as well as being the receptor for infection by the cholera-toxin bearing CTX phage. In this study, we report a GI (designated GIVchS12) from a non-O1/O139 strain of V. cholerae that is present in the same chromosomal location as VPI-1, contains an integrase gene with 94% nucleotide and 100% protein identity to the VPI-1 integrase, and attachment (att) sites 100% identical to those found in VPI-1. However, instead of TCP and the other accessory genes present in VPI-1, GIVchS12 contains a CRISPR-Cas element and a type VI secretion system (T6SS). GIs similar to GIVchS12 were identified in other V. cholerae genomes, also containing CRISPR-Cas elements and/or T6SS’s. This study highlights the diversity of GIs circulating in natural V. cholerae populations and identifies GIs with VPI-1 recombination characteristics as a propagator of CRISPR-Cas and T6SS modules. PMID:27845364

  7. Adeno-associated virus Rep-mediated targeting of integrase-defective retroviral vector DNA circles into human chromosome 19

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Shuohao; Kawabe, Yoshinori; Ito, Akira

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Adeno-associated virus (AAV) is capable of targeted integration in human cells. Black-Right-Pointing-Pointer Integrase-defective retroviral vector (IDRV) enables a circular DNA delivery. Black-Right-Pointing-Pointer A targeted integration system of IDRV DNA using the AAV integration mechanism. Black-Right-Pointing-Pointer Targeted IDRV integration ameliorates the safety concerns for retroviral vectors. -- Abstract: Retroviral vectors have been employed in clinical trials for gene therapy owing to their relative large packaging capacity, alterable cell tropism, and chromosomal integration for stable transgene expression. However, uncontrollable integrations of transgenes are likely to cause safety issues, such as insertional mutagenesis. A targeted transgene integration system for retroviral vectors,more » therefore, is a straightforward way to address the insertional mutagenesis issue. Adeno-associated virus (AAV) is the only known virus capable of targeted integration in human cells. In the presence of AAV Rep proteins, plasmids possessing the p5 integration efficiency element (p5IEE) can be integrated into the AAV integration site (AAVS1) in the human genome. In this report, we describe a system that can target the circular DNA derived from non-integrating retroviral vectors to the AAVS1 site by utilizing the Rep/p5IEE integration mechanism. Our results showed that after G418 selection 30% of collected clones had retroviral DNA targeted at the AAVS1 site.« less

  8. Structural and sequencing analysis of local target DNA recognition by MLV integrase.

    PubMed

    Aiyer, Sriram; Rossi, Paolo; Malani, Nirav; Schneider, William M; Chandar, Ashwin; Bushman, Frederic D; Montelione, Gaetano T; Roth, Monica J

    2015-06-23

    Target-site selection by retroviral integrase (IN) proteins profoundly affects viral pathogenesis. We describe the solution nuclear magnetic resonance structure of the Moloney murine leukemia virus IN (M-MLV) C-terminal domain (CTD) and a structural homology model of the catalytic core domain (CCD). In solution, the isolated MLV IN CTD adopts an SH3 domain fold flanked by a C-terminal unstructured tail. We generated a concordant MLV IN CCD structural model using SWISS-MODEL, MMM-tree and I-TASSER. Using the X-ray crystal structure of the prototype foamy virus IN target capture complex together with our MLV domain structures, residues within the CCD α2 helical region and the CTD β1-β2 loop were predicted to bind target DNA. The role of these residues was analyzed in vivo through point mutants and motif interchanges. Viable viruses with substitutions at the IN CCD α2 helical region and the CTD β1-β2 loop were tested for effects on integration target site selection. Next-generation sequencing and analysis of integration target sequences indicate that the CCD α2 helical region, in particular P187, interacts with the sequences distal to the scissile bonds whereas the CTD β1-β2 loop binds to residues proximal to it. These findings validate our structural model and disclose IN-DNA interactions relevant to target site selection. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Virtual screening of integrase inhibitors by large scale binding free energy calculations: the SAMPL4 challenge

    PubMed Central

    Gallicchio, Emilio; Deng, Nanjie; He, Peng; Wickstrom, Lauren; Perryman, Alexander L.; Santiago, Daniel N.; Forli, Stefano; Olson, Arthur J.; Levy, Ronald M.

    2014-01-01

    As part of the SAMPL4 blind challenge, filtered AutoDock Vina ligand docking predictions and large scale binding energy distribution analysis method binding free energy calculations have been applied to the virtual screening of a focused library of candidate binders to the LEDGF site of the HIV integrase protein. The computational protocol leveraged docking and high level atomistic models to improve enrichment. The enrichment factor of our blind predictions ranked best among all of the computational submissions, and second best overall. This work represents to our knowledge the first example of the application of an all-atom physics-based binding free energy model to large scale virtual screening. A total of 285 parallel Hamiltonian replica exchange molecular dynamics absolute protein-ligand binding free energy simulations were conducted starting from docked poses. The setup of the simulations was fully automated, calculations were distributed on multiple computing resources and were completed in a 6-weeks period. The accuracy of the docked poses and the inclusion of intramolecular strain and entropic losses in the binding free energy estimates were the major factors behind the success of the method. Lack of sufficient time and computing resources to investigate additional protonation states of the ligands was a major cause of mispredictions. The experiment demonstrated the applicability of binding free energy modeling to improve hit rates in challenging virtual screening of focused ligand libraries during lead optimization. PMID:24504704

  10. Efficacy and site-specificity of adenoviral vector integration mediated by the phage φC31 integrase.

    PubMed

    Robert, Marc-André; Zeng, Yue; Raymond, Benoît; Desfossé, Laurie; Mairey, Emilie; Tremblay, Jacques P; Massie, Bernard; Gilbert, Rénald

    2012-12-01

    Adenoviral vectors deleted of all their viral genes (helper-dependent [HD]) are efficient gene-transfer vehicles. Because transgene expression is rapidly lost in actively dividing cells, we investigated the feasibility of using phage φC31 integrase (φC31-Int) to integrate an HD carrying an attB site and the puromycin resistance gene into human cells (HeLa) and murine myoblasts (C2C12) by co-infection with a second HD-expressing φC31-Int. Because the HD genome is linear, we also investigated whether its circularization, through expression of Cre using a third HD, affects integration. Efficacy and specificity were determined by scoring the number of puromycin-resistant colonies and by sequencing integration sites. Unexpectedly, circularization of HD was unnecessary and it even reduced the integration efficacy. The maximum integration efficacy achieved was 0.5% in HeLa cells and 0.1% in C2C12 myoblasts. Up to 76% of the integration events occurred at pseudo attP sites and previously characterized hotspots were found. A small (two- to three-fold) increase in the number of γ-H2AX positive foci, accompanied by no noticeable change in γ-H2AX expression, indicated the low genotoxicity of φC31-Int. In conclusion, integration of HD mediated by φC31-Int is an attractive alternative to engineer cells, because it permits site-specific integration of large DNA fragments with low genotoxicity.

  11. Improvement of the activity of the anti-HIV-1 integrase aptamer T30175 by introducing a modified thymidine into the loops.

    PubMed

    Virgilio, Antonella; Amato, Teresa; Petraccone, Luigi; Esposito, Francesca; Grandi, Nicole; Tramontano, Enzo; Romero, Raquel; Haider, Shozeb; Gomez-Monterrey, Isabel; Novellino, Ettore; Mayol, Luciano; Esposito, Veronica; Galeone, Aldo

    2018-05-10

    In this paper, we report our investigations on analogues of the anti-human immunodeficiency virus type 1 (HIV-1) integrase (IN) aptamer T30175 in which the individual thymidines forming the loops were replaced by 5-hydroxymethyl-2'-deoxyuridine residues (H). Circular dichroism, nuclear magnetic resonance and gel electrophoresis investigations clearly indicated that all the modified aptamers preserve the ability to form the original 5'-5' end-stacked head-to-head dimeric G-quadruplex structure, in which each G-quadruplex adopts a parallel arrangement and is characterized by three G-tetrads, three propeller loops and one bulge-loop. All the modified aptamers were tested in an IN inhibition LEDGF-independent assay. While the modified aptamers INTB-H13 and INTB-H17 showed IC 50 values comparable with that of the parent aptamer (INTB-nat), analogues INTB-H2, INTB-H5 and, to a lesser extent, INTB-H9 showed a higher ability to inhibit the HIV IN than the unmodified aptamer. Molecular modelling studies evaluating the aptamer/HIV IN interaction highlighted the ability of the modified thymidines to establish several contacts with the target protein. All the data point to the importance of loops in the aptamer/target interaction and suggest that the site-specific replacement of loop residues with commercially available analogues can be considered a straightforward strategy to improve the biological activities of several G-quadruplex aptamers.

  12. Characterization of Integrons and Sulfonamide Resistance Genes among Bacteria from Drinking Water Distribution Systems in Southwestern Nigeria.

    PubMed

    Adesoji, Ayodele T; Ogunjobi, Adeniyi A; Olatoye, Isaac O

    2017-01-01

    The emergence of antibiotic resistance among pathogenic bacteria in clinical and environmental settings is a global problem. Many antibiotic resistance genes are located on mobile genetic elements such as plasmids and integrons, enabling their transfer among a variety of bacterial species. Water distribution systems may be reservoirs for the spread of antibiotic resistance. Bacteria isolated from raw, treated, and municipal tap water samples from selected water distribution systems in south-western Nigeria were investigated using the point inoculation method with seeded antibiotics, PCR amplification, and sequencing for the determination of bacterial resistance profiles and class 1/2 integrase genes and gene cassettes, respectively. sul1,sul2, and sul3 were detected in 21.6, 27.8, and 0% of the isolates, respectively (n = 162). Class 1 and class 2 integrons were detected in 21.42 and 3.6% of the isolates, respectively (n = 168). Genes encoding resistance to aminoglycosides (aadA2, aadA1, and aadB), trimethoprim (dfrA15, dfr7, and dfrA1), and sulfonamide (sul1) were detected among bacteria with class 1 integrons, while genes that encodes resistance to strepthothricin (sat2) and trimethoprim (dfrA15) were detected among bacteria with class 2 integrons. Bacteria from these water samples are a potential reservoir of multidrug-resistant traits including sul genes and mobile resistance elements, i.e. the integrase gene. © 2016 S. Karger AG, Basel.

  13. The retrotransposon Tf1 assembles virus-like particles that contain excess Gag relative to integrase because of a regulated degradation process.

    PubMed

    Atwood, A; Lin, J H; Levin, H L

    1996-01-01

    The retrotransposon Tf1, isolated from Schizosaccharomyces pombe, contains a single open reading frame with sequences encoding Gag, protease, reverse transcriptase, and integrase (IN). Tf1 has previously been shown to possess significant transposition activity. Although Tf1 proteins do assemble into virus-like particles, the assembly does not require readthrough of a translational reading frame shift or stop codon, common mechanisms used by retroelements to express Gag in molar excess of the polymerase proteins. This study was designed to determine if Tf1 particles contain equal amounts of Gag and polymerase proteins or whether they contain the typical molar excess of Gag. After using two separate methods to calibrate the strength of our antibodies, we found that both S. pombe extracts and partially purified Tf1 particles contained a 26-fold molar excess of Gag relative to IN. Knowing that Gag and IN are derived from the same Tf1 primary translation product, we concluded that the excess Gag most likely resulted from specific degradation of IN. We obtained evidence of regulated IN degradation in comparisons of Tf1 protein extracted from log-phase cells and that extracted from stationary-phase cells. The log-phase cells contained equal molar amounts of Gag and IN, whereas cells approaching stationary phase rapidly degraded IN, leaving an excess of Gag. Analysis of the reverse transcripts indicated that the bulk of reverse transcription occurred within the particles that possess a molar excess of Gag.

  14. LEDGF/p75 interacts with mRNA splicing factors and targets HIV-1 integration to highly spliced genes

    PubMed Central

    Singh, Parmit Kumar; Plumb, Matthew R.; Ferris, Andrea L.; Iben, James R.; Wu, Xiaolin; Fadel, Hind J.; Luke, Brian T.; Esnault, Caroline; Poeschla, Eric M.; Hughes, Stephen H.; Kvaratskhelia, Mamuka; Levin, Henry L.

    2015-01-01

    The host chromatin-binding factor LEDGF/p75 interacts with HIV-1 integrase and directs integration to active transcription units. To understand how LEDGF/p75 recognizes transcription units, we sequenced 1 million HIV-1 integration sites isolated from cultured HEK293T cells. Analysis of integration sites showed that cancer genes were preferentially targeted, raising concerns about using lentivirus vectors for gene therapy. Additional analysis led to the discovery that introns and alternative splicing contributed significantly to integration site selection. These correlations were independent of transcription levels, size of transcription units, and length of the introns. Multivariate analysis with five parameters previously found to predict integration sites showed that intron density is the strongest predictor of integration density in transcription units. Analysis of previously published HIV-1 integration site data showed that integration density in transcription units in mouse embryonic fibroblasts also correlated strongly with intron number, and this correlation was absent in cells lacking LEDGF. Affinity purification showed that LEDGF/p75 is associated with a number of splicing factors, and RNA sequencing (RNA-seq) analysis of HEK293T cells lacking LEDGF/p75 or the LEDGF/p75 integrase-binding domain (IBD) showed that LEDGF/p75 contributes to splicing patterns in half of the transcription units that have alternative isoforms. Thus, LEDGF/p75 interacts with splicing factors, contributes to exon choice, and directs HIV-1 integration to transcription units that are highly spliced. PMID:26545813

  15. Mutations in Nonconserved Domains of Ty3 Integrase Affect Multiple Stages of the Ty3 Life Cycle

    PubMed Central

    Nymark-McMahon, M. Henrietta; Sandmeyer, Suzanne B.

    1999-01-01

    Ty3, a retroviruslike element of Saccharomyces cerevisiae, transposes into positions immediately upstream of RNA polymerase III-transcribed genes. The Ty3 integrase (IN) protein is required for integration of the replicated, extrachromosomal Ty3 DNA. In retroviral IN, a conserved core region is sufficient for strand transfer activity. In this study, charged-to-alanine scanning mutagenesis was used to investigate the roles of the nonconserved amino- and carboxyl-terminal regions of Ty3 IN. Each of the 20 IN mutants was defective for transposition, but no mutant was grossly defective for capsid maturation. All mutations affecting steady-state levels of mature IN protein resulted in reduced levels of replicated DNA, even when polymerase activity was not grossly defective as measured by exogenous reverse transcriptase activity assay. Thus, IN could contribute to nonpolymerase functions required for DNA production in vivo or to the stability of the DNA product. Several mutations in the carboxyl-terminal domain resulted in relatively low levels of processed 3′ ends of the replicated DNA, suggesting that this domain may be important for binding of IN to the long terminal repeat. Another class of mutants produced wild-type amounts of DNA with correctly processed 3′ ends. This class could include mutants affected in nuclear entry and target association. Collectively, these mutations demonstrate that in vivo, within the preintegration complex, IN performs a central role in coordinating multiple late stages of the retrotransposition life cycle. PMID:9847351

  16. Metal Binding by the D,DX35E Motif of Human Immunodeficiency Virus Type 1 Integrase: Selective Rescue of Cys Substitutions by Mn2+ In Vitro

    PubMed Central

    Gao, Kui; Wong, Steven; Bushman, Frederic

    2004-01-01

    The D,DX35E motif characteristic of retroviral integrase enzymes (INs) is expected to bind the required metal cofactors (Mg2+ or Mn2+), but direct evidence for a catalytic role has been lacking. Here we used a metal rescue strategy to investigate metal binding. We established conditions for analysis of an activity of IN, disintegration, in both Mg2+ and Mn2+, and tested IN mutants with cysteine substitutions in each acidic residue of the D,DX35E motif. Mn2+ but not Mg2+ can bind tightly to Cys, so if metal binding at the acidic residues is mechanistically important, it is expected that the Cys-substituted enzymes would be active in the presence of Mn2+ only. Of the three acidic residues, a strong metal rescue effect was obtained for D116C, a weaker rescue was seen for D64C, and no rescue was seen with E152C. Modest rescue could also be detected for D116C in normal integration in vitro. Comparison to Ser and Ala substitutions at D116 established that the rescue was selective for Cys. Further studies of the response to pH suggest that the metal cofactor may stabilize the deprotonated nucleophile active in catalysis, and studies of the response to NaCl titrations disclose an additional role for the metal cofactor in stabilizing the IN-DNA complex. PMID:15194746

  17. CRISPR-Cas and Contact-Dependent Secretion Systems Present on Excisable Pathogenicity Islands with Conserved Recombination Modules.

    PubMed

    Carpenter, Megan R; Kalburge, Sai S; Borowski, Joseph D; Peters, Molly C; Colwell, Rita R; Boyd, E Fidelma

    2017-05-15

    Pathogenicity islands (PAIs) are mobile integrated genetic elements that contain a diverse range of virulence factors. PAIs integrate into the host chromosome at a tRNA locus that contains their specific bacterial attachment site, attB , via integrase-mediated site-specific recombination generating attL and attR sites. We identified conserved recombination modules (integrases and att sites) previously described in choleragenic Vibrio cholerae PAIs but with novel cargo genes. Clustered regularly interspaced short palindromic repeat (CRISPR)-associated proteins (Cas proteins) and a type VI secretion system (T6SS) gene cluster were identified at the Vibrio pathogenicity island 1 (VPI-1) insertion site in 19 V. cholerae strains and contained the same recombination module. Two divergent type I-F CRISPR-Cas systems were identified, which differed in Cas protein homology and content. The CRISPR repeat sequence was identical among all V. cholerae strains, but the CRISPR spacer sequences and the number of spacers varied. In silico analysis suggests that the CRISPR-Cas systems were active against phages and plasmids. A type III secretion system (T3SS) was present in 12 V. cholerae strains on a 68-kb island inserted at the same tRNA-serine insertion site as VPI-2 and contained the same recombination module. Bioinformatics analysis showed that two divergent T3SSs exist among the strains examined. Both the CRISPR and T3SS islands excised site specifically from the bacterial chromosome as complete units, and the cognate integrases were essential for this excision. These data demonstrated that identical recombination modules that catalyze integration and excision from the chromosome can acquire diverse cargo genes, signifying a novel method of acquisition for both CRISPR-Cas systems and T3SSs. IMPORTANCE This work demonstrated the presence of CRISPR-Cas systems and T3SSs on PAIs. Our work showed that similar recombination modules can associate with different cargo genes and catalyze their incorporation into bacterial chromosomes, which could convert a strain into a pathogen with very different disease pathologies. Each island had the ability to excise from the chromosome as distinct, complete units for possible transfer. Evolutionary analysis of these regions indicates that they were acquired by horizontal transfer and that PAIs are the units of transfer. Similar to the case for phage evolution, PAIs have a modular structure where different functional regions are acquired by identical recombination modules. Copyright © 2017 American Society for Microbiology.

  18. Physiological Function of Rac Prophage During Biofilm Formation and Regulation of Rac Excision in Escherichia coli K-12

    DTIC Science & Technology

    2015-11-04

    Active prophages such as Gifsy-2 can also give the Salmonella host a competitive advantage by killing competitors and by providing immunity6. In E. coli...to the lack of an active integrase for Qin and CP4-447,31. As oxidative stress is involved in biofilm formation, we tested whether oxidative stress...carbenicillin37. As shown in Fig. 6A, the Δ ttcA strain showed increased metabolic activity compared to that of the wild-type strain without carbenicillin

  19. Emergence of resistance mutations in simian immunodeficiency virus (SIV)-infected rhesus macaques receiving non-suppressive antiretroviral therapy (ART)

    DOE PAGES

    Policicchio, Benjamin Bruno; Sette, Paola; Xu, Cuiling; ...

    2018-02-21

    Two SIVmac251-infected rhesus macaques received tenofovir/emtricitabine with raltegravir intensification. Viral rebound occurred during treatment and sequencing of reverse transcriptase and integrase genes identified multiple resistance mutations. Similar to HIV infection, antiretroviral-resistance mutations may occur in SIV-infected nonhuman primates receiving nonsuppressive ART. As ART administration to nonhuman primates is currently dramatically expanding, fueled by both cure research and the study of HIV-related comorbidities, viral resistance should be factored in the study design and data interpretation

  20. Detection of XerC and XerD recombinases in gram-negative bacteria of the family Enterobacteriaceae.

    PubMed Central

    Sirois, S; Szatmari, G

    1995-01-01

    XerC and XerD are site-specific recombinases of the lambda integrase family which resolve multimeric replicons to monomers by acting at specific sites such as cer, ckr, nmr, parB, and psi, which are found in plasmids, or at the dif site found in the Escherichia coli chromosome. By using Southern hybridizations to cloned E. coli xerC and xerD genes and a cer-nmr plasmid-based resolution assay, the presence of these genes in several species of Enterobacteriaceae is shown. PMID:7608100

  1. Emergence of resistance mutations in simian immunodeficiency virus (SIV)-infected rhesus macaques receiving non-suppressive antiretroviral therapy (ART)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Policicchio, Benjamin Bruno; Sette, Paola; Xu, Cuiling

    Two SIVmac251-infected rhesus macaques received tenofovir/emtricitabine with raltegravir intensification. Viral rebound occurred during treatment and sequencing of reverse transcriptase and integrase genes identified multiple resistance mutations. Similar to HIV infection, antiretroviral-resistance mutations may occur in SIV-infected nonhuman primates receiving nonsuppressive ART. As ART administration to nonhuman primates is currently dramatically expanding, fueled by both cure research and the study of HIV-related comorbidities, viral resistance should be factored in the study design and data interpretation

  2. Five Antiretroviral Drug Class-Resistant HIV-1 in a Treatment-Naïve Patient Successfully Suppressed with Optimized Antiretroviral Drug Selection.

    PubMed

    Volpe, Joseph M; Ward, Douglas J; Napolitano, Laura; Phung, Pham; Toma, Jonathan; Solberg, Owen; Petropoulos, Christos J; Walworth, Charles M

    2015-01-01

    Transmitted HIV-1 exhibiting reduced susceptibility to protease and reverse transcriptase inhibitors is well documented but limited for integrase inhibitors and enfuvirtide. We describe here a case of transmitted 5 drug class-resistance in an antiretroviral (ARV)-naïve patient who was successfully treated based on the optimized selection of an active ARV drug regimen. The value of baseline resistance testing to determine an optimal ARV treatment regimen is highlighted in this case report. © The Author(s) 2015.

  3. Hologram quantitative structure-activity relationship and comparative molecular field analysis studies within a series of tricyclic phthalimide HIV-1 integrase inhibitors.

    PubMed

    Magalhães, Uiaran de Oliveira; Souza, Alessandra Mendonça Teles de; Albuquerque, Magaly Girão; Brito, Monique Araújo de; Bello, Murilo Lamim; Cabral, Lucio Mendes; Rodrigues, Carlos Rangel

    2013-01-01

    Acquired immunodeficiency syndrome is a public health problem worldwide caused by the Human immunodeficiency virus (HIV). Treatment with antiretroviral drugs is the best option for viral suppression, reducing morbidity and mortality. However, viral resistance in HIV-1 therapy has been reported. HIV-1 integrase (IN) is an essential enzyme for effective viral replication and an attractive target for the development of new inhibitors. In the study reported here, two- and three-dimensional quantitative structure-activity relationship (2D/3D-QSAR) studies, applying hologram quantitative structure-activity relationship (HQSAR) and comparative molecular field analysis (CoMFA) methods, respectively, were performed on a series of tricyclic phthalimide HIV-1 IN inhibitors. The best HQSAR model (q (2) = 0.802, r (2) = 0.972) was obtained using atoms, bonds, and connectivity as the fragment distinction, a fragment size of 2-5 atoms, hologram length of 61 bins, and six components. The best CoMFA model (q (2) = 0.748, r (2) = 0.974) was obtained with alignment of all atoms of the tricyclic phthalimide moiety (alignment II). The HQSAR contribution map identified that the carbonyl-hydroxy-aromatic nitrogen motif made a positive contribution to the activity of the compounds. Furthermore, CoMFA contour maps suggested that bulky groups in meta and para positions in the phenyl ring would increase the biological activity of this class. The conclusions of this work may lead to a better understanding of HIV-1 IN inhibition and contribute to the design of new and more potent derivatives.

  4. Combining short- and long-range fluorescence reporters with simulations to explore the intramolecular dynamics of an intrinsically disordered protein.

    PubMed

    Zosel, Franziska; Haenni, Dominik; Soranno, Andrea; Nettels, Daniel; Schuler, Benjamin

    2017-10-21

    Intrinsically disordered proteins (IDPs) are increasingly recognized as a class of molecules that can exert essential biological functions even in the absence of a well-defined three-dimensional structure. Understanding the conformational distributions and dynamics of these highly flexible proteins is thus essential for explaining the molecular mechanisms underlying their function. Single-molecule fluorescence spectroscopy in combination with Förster resonance energy transfer (FRET) is a powerful tool for probing intramolecular distances and the rapid long-range distance dynamics in IDPs. To complement the information from FRET, we combine it with photoinduced electron transfer (PET) quenching to monitor local loop-closure kinetics at the same time and in the same molecule. Here we employed this combination to investigate the intrinsically disordered N-terminal domain of HIV-1 integrase. The results show that both long-range dynamics and loop closure kinetics on the sub-microsecond time scale can be obtained reliably from a single set of measurements by the analysis with a comprehensive model of the underlying photon statistics including both FRET and PET. A more detailed molecular interpretation of the results is enabled by direct comparison with a recent extensive atomistic molecular dynamics simulation of integrase. The simulations are in good agreement with experiment and can explain the deviation from simple models of chain dynamics by the formation of persistent local secondary structure. The results illustrate the power of a close combination of single-molecule spectroscopy and simulations for advancing our understanding of the dynamics and detailed mechanisms in unfolded and intrinsically disordered proteins.

  5. New insights into the interaction between pyrrolyl diketoacids and HIV-1 integrase active site and comparison with RNase H.

    PubMed

    Corona, Angela; di Leva, Francesco Saverio; Rigogliuso, Giuseppe; Pescatori, Luca; Madia, Valentina Noemi; Subra, Frederic; Delelis, Olivier; Esposito, Francesca; Cadeddu, Marta; Costi, Roberta; Cosconati, Sandro; Novellino, Ettore; di Santo, Roberto; Tramontano, Enzo

    2016-10-01

    HIV-1 integrase (IN) inhibitors are one of the most recent innovations in the treatment of HIV infection. The selection of drug resistance viral strains is however a still open issue requiring constant efforts to identify new anti-HIV-1 drugs. Pyrrolyl diketo acid (DKA) derivatives inhibit HIV-1 replication by interacting with the Mg 2+ cofactors within the HIV-1 IN active site or within the HIV-1 reverse-transcriptase associated ribonuclease H (RNase H) active site. While the interaction mode of pyrrolyl DKAs with the RNase H active site has been recently reported and substantiated by mutagenesis experiments, their interaction within the IN active site still lacks a detailed understanding. In this study, we investigated the binding mode of four pyrrolyl DKAs to the HIV-1 IN active site by molecular modeling coupled with site-directed mutagenesis studies showing that the DKA pyrrolyl scaffold primarily interacts with the IN amino residues P145, Q146 and Q148. Importantly, the tested DKAs demonstrated good effectiveness against HIV-1 Raltegravir resistant Y143A and N155H INs, thus showing an interaction pattern with relevant differences if compared with the first generation IN inhibitors. These data provide precious insights for the design of new HIV inhibitors active on clinically selected Raltegravir resistant variants. Furthermore, this study provides new structural information to modulate IN and RNase H inhibitory activities for development of dual-acting anti-HIV agents. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. HRP2 determines the efficiency and specificity of HIV-1 integration in LEDGF/p75 knockout cells but does not contribute to the antiviral activity of a potent LEDGF/p75-binding site integrase inhibitor.

    PubMed

    Wang, Hao; Jurado, Kellie A; Wu, Xiaolin; Shun, Ming-Chieh; Li, Xiang; Ferris, Andrea L; Smith, Steven J; Patel, Pratiq A; Fuchs, James R; Cherepanov, Peter; Kvaratskhelia, Mamuka; Hughes, Stephen H; Engelman, Alan

    2012-12-01

    The binding of integrase (IN) to lens epithelium-derived growth factor (LEDGF)/p75 in large part determines the efficiency and specificity of HIV-1 integration. However, a significant residual preference for integration into active genes persists in Psip1 (the gene that encodes for LEDGF/p75) knockout (KO) cells. One other cellular protein, HRP2, harbors both the PWWP and IN-binding domains that are important for LEDGF/p75 co-factor function. To assess the role of HRP2 in HIV-1 integration, cells generated from Hdgfrp2 (the gene that encodes for HRP2) and Psip1/Hdgfrp2 KO mice were infected alongside matched control cells. HRP2 depleted cells supported normal infection, while disruption of Hdgfrp2 in Psip1 KO cells yielded additional defects in the efficiency and specificity of integration. These deficits were largely restored by ectopic expression of either LEDGF/p75 or HRP2. The double-KO cells nevertheless supported residual integration into genes, indicating that IN and/or other host factors contribute to integration specificity in the absence of LEDGF/p75 and HRP2. Psip1 KO significantly increased the potency of an allosteric inhibitor that binds the LEDGF/p75 binding site on IN, a result that was not significantly altered by Hdgfrp2 disruption. These findings help to rule out the host factor-IN interactions as the primary antiviral targets of LEDGF/p75-binding site IN inhibitors.

  7. Combining short- and long-range fluorescence reporters with simulations to explore the intramolecular dynamics of an intrinsically disordered protein

    NASA Astrophysics Data System (ADS)

    Zosel, Franziska; Haenni, Dominik; Soranno, Andrea; Nettels, Daniel; Schuler, Benjamin

    2017-10-01

    Intrinsically disordered proteins (IDPs) are increasingly recognized as a class of molecules that can exert essential biological functions even in the absence of a well-defined three-dimensional structure. Understanding the conformational distributions and dynamics of these highly flexible proteins is thus essential for explaining the molecular mechanisms underlying their function. Single-molecule fluorescence spectroscopy in combination with Förster resonance energy transfer (FRET) is a powerful tool for probing intramolecular distances and the rapid long-range distance dynamics in IDPs. To complement the information from FRET, we combine it with photoinduced electron transfer (PET) quenching to monitor local loop-closure kinetics at the same time and in the same molecule. Here we employed this combination to investigate the intrinsically disordered N-terminal domain of HIV-1 integrase. The results show that both long-range dynamics and loop closure kinetics on the sub-microsecond time scale can be obtained reliably from a single set of measurements by the analysis with a comprehensive model of the underlying photon statistics including both FRET and PET. A more detailed molecular interpretation of the results is enabled by direct comparison with a recent extensive atomistic molecular dynamics simulation of integrase. The simulations are in good agreement with experiment and can explain the deviation from simple models of chain dynamics by the formation of persistent local secondary structure. The results illustrate the power of a close combination of single-molecule spectroscopy and simulations for advancing our understanding of the dynamics and detailed mechanisms in unfolded and intrinsically disordered proteins.

  8. High-performance liquid chromatography-tandem mass spectrometry for simultaneous determination of raltegravir, dolutegravir and elvitegravir concentrations in human plasma and cerebrospinal fluid samples.

    PubMed

    Tsuchiya, Kiyoto; Ohuchi, Mayu; Yamane, Naoe; Aikawa, Hiroaki; Gatanaga, Hiroyuki; Oka, Shinichi; Hamada, Akinobu

    2018-02-01

    A simple sample treatment procedure and sensitive liquid chromatography-tandem mass spectrometry method were developed for the simultaneous quantification of the concentrations of human immunodeficiency virus-1 integrase strand transfer inhibitors - raltegravir, dolutegravir and elvitegravir - in human plasma and cerebrospinal fluid (CSF). Plasma and CSF samples (20 μL each) were deproteinized with acetonitrile. Raltegravir-d 3 was used as the internal standard. Chromatographic separation was achieved on an XBridge C 18 column (50 × 2.1 mm i.d., particle size 3.5 μm) using acetonitrile-water (7:3, v/v) containing 0.1% formic acid as the mobile phase at a flow rate of 0.2 mL/min. The run time was 5 min. Calibration curves for all three drugs were linear in the range 5-1500 ng/mL for plasma and 1-200 ng/mL for CSF. The intra- and inter-day precision and accuracy of all three drugs in plasma were coefficient of variation (CV) <12.9% and 100.0 ± 12.2%, respectively, while those in CSF were CV <12.3% and 100.0 ± 7.9%, respectively. Successful validation under the same LC-MS/MS conditions for both plasma and CSF indicates this analytical method is useful for monitoring the levels of these integrase strand transfer inhibitors in the management of treatment of HIV-1 carriers. Copyright © 2017 John Wiley & Sons, Ltd.

  9. A critical role for alternative polyadenylation factor CPSF6 in targeting HIV-1 integration to transcriptionally active chromatin

    PubMed Central

    Sowd, Gregory A.; Serrao, Erik; Wang, Hao; Wang, Weifeng; Fadel, Hind J.; Poeschla, Eric M.; Engelman, Alan N.

    2016-01-01

    Integration is vital to retroviral replication and influences the establishment of the latent HIV reservoir. HIV-1 integration favors active genes, which is in part determined by the interaction between integrase and lens epithelium-derived growth factor (LEDGF)/p75. Because gene targeting remains significantly enriched, relative to random in LEDGF/p75 deficient cells, other host factors likely contribute to gene-tropic integration. Nucleoporins 153 and 358, which bind HIV-1 capsid, play comparatively minor roles in integration targeting, but the influence of another capsid binding protein, cleavage and polyadenylation specificity factor 6 (CPSF6), has not been reported. In this study we knocked down or knocked out CPSF6 in parallel or in tandem with LEDGF/p75. CPSF6 knockout changed viral infectivity kinetics, decreased proviral formation, and preferentially decreased integration into transcriptionally active genes, spliced genes, and regions of chromatin enriched in genes and activating histone modifications. LEDGF/p75 depletion by contrast preferentially altered positional integration targeting within gene bodies. Dual factor knockout reduced integration into genes to below the levels observed with either single knockout and revealed that CPSF6 played a more dominant role than LEDGF/p75 in directing integration to euchromatin. CPSF6 complementation rescued HIV-1 integration site distribution in CPSF6 knockout cells, but complementation with a capsid binding mutant of CPSF6 did not. We conclude that integration targeting proceeds via two distinct mechanisms: capsid-CPSF6 binding directs HIV-1 to actively transcribed euchromatin, where the integrase-LEDGF/p75 interaction drives integration into gene bodies. PMID:26858452

  10. HIV Virions as Nanoscopic Test Tubes for Probing Oligomerization of the Integrase Enzyme

    PubMed Central

    2015-01-01

    Employing viruses as nanoscopic lipid-enveloped test tubes allows the miniaturization of protein–protein interaction (PPI) assays while preserving the physiological environment necessary for particular biological processes. Applied to the study of the human immunodeficiency virus type 1 (HIV-1), viral biology and pathology can also be investigated in novel ways, both in vitro as well as in infected cells. In this work we report on an experimental strategy that makes use of engineered HIV-1 viral particles, to allow for probing PPIs of the HIV-1 integrase (IN) inside viruses with single-molecule Förster resonance energy transfer (FRET) using fluorescent proteins (FP). We show that infectious fluorescently labeled viruses can be obtained and that the quantity of labels can be accurately measured and controlled inside individual viral particles. We demonstrate, with proper control experiments, the formation of IN oligomers in single viral particles and inside viral complexes in infected cells. Finally, we show a clear effect on IN oligomerization of small molecule inhibitors of interactions of IN with its natural human cofactor LEDGF/p75, corroborating that IN oligomer enhancing drugs are active already at the level of the virus and strongly suggesting the presence of a dynamic, enhanceable equilibrium between the IN dimer and tetramer in viral particles. Although applied to the HIV-1 IN enzyme, our methodology for utilizing HIV virions as nanoscopic test tubes for probing PPIs is generic, i.e., other PPIs targeted into the HIV-1, or PPIs targeted into other viruses, can potentially be studied with a similar strategy. PMID:24654558

  11. Hologram quantitative structure–activity relationship and comparative molecular field analysis studies within a series of tricyclic phthalimide HIV-1 integrase inhibitors

    PubMed Central

    de Oliveira Magalhães, Uiaran; de Souza, Alessandra Mendonça Teles; Albuquerque, Magaly Girão; de Brito, Monique Araújo; Bello, Murilo Lamim; Cabral, Lucio Mendes; Rodrigues, Carlos Rangel

    2013-01-01

    Acquired immunodeficiency syndrome is a public health problem worldwide caused by the Human immunodeficiency virus (HIV). Treatment with antiretroviral drugs is the best option for viral suppression, reducing morbidity and mortality. However, viral resistance in HIV-1 therapy has been reported. HIV-1 integrase (IN) is an essential enzyme for effective viral replication and an attractive target for the development of new inhibitors. In the study reported here, two- and three-dimensional quantitative structure–activity relationship (2D/3D-QSAR) studies, applying hologram quantitative structure–activity relationship (HQSAR) and comparative molecular field analysis (CoMFA) methods, respectively, were performed on a series of tricyclic phthalimide HIV-1 IN inhibitors. The best HQSAR model (q2 = 0.802, r2 = 0.972) was obtained using atoms, bonds, and connectivity as the fragment distinction, a fragment size of 2–5 atoms, hologram length of 61 bins, and six components. The best CoMFA model (q2 = 0.748, r2 = 0.974) was obtained with alignment of all atoms of the tricyclic phthalimide moiety (alignment II). The HQSAR contribution map identified that the carbonyl-hydroxy-aromatic nitrogen motif made a positive contribution to the activity of the compounds. Furthermore, CoMFA contour maps suggested that bulky groups in meta and para positions in the phenyl ring would increase the biological activity of this class. The conclusions of this work may lead to a better understanding of HIV-1 IN inhibition and contribute to the design of new and more potent derivatives. PMID:24039405

  12. Nuclear trafficking of the HIV-1 pre-integration complex depends on the ADAM10 intracellular domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Endsley, Mark A., E-mail: maendsle@utmb.edu; Somasunderam, Anoma D., E-mail: asomasun@utmb.edu; Li, Guangyu, E-mail: LIG001@mail.etsu.edu

    Previously, we showed that ADAM10 is necessary for HIV-1 replication in primary human macrophages and immortalized cell lines. Silencing ADAM10 expression interrupted the HIV-1 life cycle prior to nuclear translocation of viral cDNA. Furthermore, our data indicated that HIV-1 replication depends on the expression of ADAM15 and γ-secretase, which proteolytically processes ADAM10. Silencing ADAM15 or γ-secretase expression inhibits HIV-1 replication between reverse transcription and nuclear entry. Here, we show that ADAM10 expression also supports replication in CD4{sup +} T lymphocytes. The intracellular domain (ICD) of ADAM10 associates with the HIV-1 pre-integration complex (PIC) in the cytoplasm and immunoprecipitates and co-localizesmore » with HIV-1 integrase, a key component of PIC. Taken together, our data support a model whereby ADAM15/γ-secretase processing of ADAM10 releases the ICD, which then incorporates into HIV-1 PIC to facilitate nuclear trafficking. Thus, these studies suggest ADAM10 as a novel therapeutic target for inhibiting HIV-1 prior to nuclear entry. - Highlights: • Nuclear trafficking of the HIV-1 pre-integration complex depends on ADAM10. • ADAM10 associates with HIV-1 integrase in the pre-integration complex. • HIV-1 replication depends on the expression of ADAM15 and γ-secretase. • Silencing ADAM15 or γ-secretase expression inhibits nuclear import of viral cDNA. • ADAM10 is important for HIV-1 replication in human macrophages and CD4{sup +} T lymphocytes.« less

  13. Histone deacetylase inhibition rescues gene knockout levels achieved with integrase-defective lentiviral vectors encoding zinc-finger nucleases.

    PubMed

    Pelascini, Laetitia P L; Maggio, Ignazio; Liu, Jin; Holkers, Maarten; Cathomen, Toni; Gonçalves, Manuel A F V

    2013-12-01

    Zinc-finger nucleases (ZFNs) work as dimers to induce double-stranded DNA breaks (DSBs) at predefined chromosomal positions. In doing so, they constitute powerful triggers to edit and to interrogate the function of genomic sequences in higher eukaryotes. A preferred route to introduce ZFNs into somatic cells relies on their cotransduction with two integrase-defective lentiviral vectors (IDLVs) each encoding a monomer of a functional heterodimeric pair. The episomal nature of IDLVs diminishes the risk of genotoxicity and ensures the strict transient expression profile necessary to minimize deleterious effects associated with long-term ZFN activity. However, by deploying IDLVs and conventional lentiviral vectors encoding HPRT1- or eGFP-specific ZFNs, we report that DSB formation at target alleles is limited after IDLV-mediated ZFN transfer. This IDLV-specific underperformance stems, to a great extent, from the activity of chromatin-remodeling histone deacetylases (HDACs). Importantly, the prototypic and U.S. Food and Drug Administration-approved inhibitors of metal-dependent HDACs, trichostatin A and vorinostat, respectively, did not hinder illegitimate recombination-mediated repair of targeted chromosomal DSBs. This allowed rescuing IDLV-mediated site-directed mutagenesis to levels approaching those achieved by using their isogenic chromosomally integrating counterparts. Hence, HDAC inhibition constitutes an efficacious expedient to incorporate in genome-editing strategies based on transient IDLV-mediated ZFN expression. Finally, we compared two of the most commonly used readout systems to measure targeted gene knockout activities based on restriction and mismatch-sensitive endonucleases. These experiments indicate that these enzymatic assays display a similar performance.

  14. 1,2,3,4-Tetrahydroisoquinolines as inhibitors of HIV-1 integrase and human LEDGF/p75 interaction.

    PubMed

    George, Anu; Gopi Krishna Reddy, Alavala; Satyanarayana, Gedu; Raghavendra, Nidhanapati K

    2018-06-01

    Alkaloids are a class of organic compounds with a wide range of biological properties, including anti-HIV activity. The 1,2,3,4-tetrahydroisoquinoline is a ubiquitous structural motif of many alkaloids. Using a short and an efficient route for synthesis, a series of 1,2,3,4-tetrahydroisoquinolines/isoquinolines was developed. These compounds have been analysed for their ability to inhibit an important interaction between HIV-1 integrase enzyme (IN) and human LEDGF/p75 protein (p75) which assists in the viral integration into the active genes. A lead compound 6d is found to inhibit the LEDGF/p75-IN interaction in vitro with an IC 50 of ~10 μm. Molecular docking analysis of the isoquinoline 6d reveals its interactions with the LEDGF/p75-binding residues of IN. Based on an order of addition experiment, the binding of 6d or LEDGF/p75 to IN is shown to be mutually exclusive. Also, the activity of 6d in vitro is found to be unaffected by the presence of a non-specific DNA. As reported earlier for the inhibitors of LEDGF/p75-IN interaction, 6d exhibits a potent inhibition of both the early and late stages of HIV-1 replication. Compound 6d differing from the known inhibitors in the chemical moieties and interactions with CCD could potentially be explored further for developing small molecule inhibitors of LEDGF/p75-IN interaction having a higher potency. © 2018 John Wiley & Sons A/S.

  15. miR-142-3p is associated with aberrant Wingless/Integrase I (WNT) signaling during airway remodeling in asthma.

    PubMed

    Bartel, Sabine; Carraro, Gianni; Alessandrini, Francesca; Krauss-Etschmann, Susanne; Ricciardolo, Fabio L M; Bellusci, Saverio

    2018-05-03

    Asthma is characterized by a chronic inflammation and remodeling of the airways. While inflammation can be controlled, therapeutic options to revert remodeling do not exist. Thus, there is a large and unmet need to understand the underlying molecular mechanisms in order to develop novel therapies. we previously identified a pivotal role for miR-142-3p in regulating airway smooth muscle precursor (ASM) cell proliferation during lung development by fine-tuning the Wingless/Integrase I (WNT) signaling. Thus, we here aimed to investigate the relevance of this interaction in asthma. We performed qRT-PCR and immune-staining in a murine model for ovalbumin-induced allergic airway inflammation and in bronchial biopsies from patients with asthma and isolated primary fibroblasts thereof. miR-142-3p was increased in hyper-proliferative regions of lung in murine and human asthma, while this miRNA was excluded from regions with differentiated ASM cells. Increases in miR-142-3p were associated with a decrease of its known target Adenomatous polyposis coli (Apc). Further, we observed a differential expression of miR-142-3p in bronchial biopsies from patients with early or late onset severe asthma, which coincided with a differential WNT signature. Our data suggest that miR-142-3p is involved in regulating the balance between proliferation and differentiation of ASM cells in asthma, possibly via controlling WNT signaling. Thus, this miRNA might be an interesting target to prevent airway smooth muscle hyper-proliferation in asthma.

  16. Therapy-Emergent Drug Resistance to Integrase Strand Transfer Inhibitors in HIV-1 Patients: A Subgroup Meta-Analysis of Clinical Trials

    PubMed Central

    Wang, Hongren; Huang, Xiaojun; Qin, Zhen; Deng, Zhaomin; Luo, Jun; Wang, Baoning; Li, Mingyuan

    2016-01-01

    Background Integrase strand transfer inhibitors (INSTIs) are a novel class of anti-HIV agents that show high activity in inhibiting HIV-1 replication. Currently, licensed INSTIs include raltegravir (RAL), elvitegravir (EVG) and dolutegravir (DTG); these drugs have played a critical role in AIDS therapy, serving as additional weapons in the arsenal for treating patients infected with HIV-1. To date, long-term data regarding clinical experience with INSTI use and the emergence of resistance remain scarce. However, the literature is likely now sufficiently comprehensive to warrant a meta-analysis of resistance to INSTIs. Methods Our team implemented a manuscript retrieval protocol using Medical Subject Headings (MeSH) via the Web of Science, MEDLINE, EMBASE, and Cochrane Central Register of Controlled Trials databases. We screened the literature based on inclusion and exclusion criteria and then performed a quality analysis and evaluation using RevMan software, Stata software, and the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE). We also performed a subgroup analysis. Finally, we calculated resistance rates and risk ratios (RRs) for the three types of drugs. Results We identified 26 references via the database search. A meta-analysis of the RAL data revealed that the resistance rate was 3.9% (95% CI = 2.9%-4.9%) for the selected randomized controlled trials (RCTs). However, the RAL resistance rate reached 40.9% (95% CI = 8.8%-72.9%) for the selected observational studies (OBSs). The rates of resistance to RAL that were associated with HIV subtypes A, B, and C as well as with more complex subtypes were 0.1% (95% CI = -0.7%-0.9%), 2.5% (95% CI = 0.5%-4.5%), 4.6% (95% CI = 2.7%-6.6%) and 2.2% (95% CI = 0.7%-3.7%), respectively. The rates of resistance to EVG and DTG were 1.2% (95% CI = 0.2%-2.2%) and 0.1% (95% CI = -0.2%-0.5%), respectively. Furthermore, we found that the RRs for antiviral resistance were 0.414 (95% CI = 0.210–0.816) between DTG and RAL and 0.499 (95% CI = 0.255–0.977) between EVG and RAL. When RAL was separately co-administered with nuclear nucleoside reverse transcriptase inhibitors (NRTIs) or protease inhibitors (PIs), the rates of resistance to RAL were 0.2% (95% CI = -0.1%-0.5%) and 0.2% (95% CI = -0.2%-0.6%), respectively. The ten major integrase mutations (including N155H, Y143C/R, Q148H/R, Y143Y/H, L74L/M, E92Q, E138E/A, Y143C, Q148Q and Y143S) can reduce the sensitivity of RAL and EVG. The resistance of DTG is mainly shown in 13 integrase mutations (including T97T/A, E138E/D, V151V/I, N155H, Q148, Y143C/H/R, T66A and E92Q). Conclusions Our results reveal that the DTG resistance rate was lower than the RAL resistance rate in a head-to-head comparison. Moreover, we confirmed that the EVG resistance rate was lower than the RAL resistance rate. In addition, our results revealed that the resistance rate of RAL was lower than that of efavirenz. The rates of resistance to RAL, EVG and DTG were specifically 3.9%, 1.2% and 0.1%, respectively. Compared with other types of antiviral drugs, the rates of resistance to INSTIs are generally lower. Unfortunately, the EVG and DTG resistance rates could not be compared because of a lack of data. PMID:27532886

  17. A novel host factor for integration of mycobacteriophage L5

    PubMed Central

    Pedulla, Marisa L.; Lee, Mong Hong; Lever, Dawn C.; Hatfull, Graham F.

    1996-01-01

    Bacterial integration host factors (IHFs) play central roles in the cellular processes of recombination, DNA replication, transcription, and bacterial pathogenesis. We describe here a novel mycobacterial IHF (mIHF) of Mycobacterium smegmatis and Mycobacterium tuberculosis that stimulates integration of mycobacteriophage L5. mIHF is the product of a single gene and is unrelated at the sequence level to other integration host factors. By itself, mIHF does not bind preferentially to attP DNA, although it significantly alters the pattern of integrase (Int) binding, promoting the formation of specific integrase–mIHF–attP intasome complexes. PMID:8986825

  18. Isolation of bacterial extrachromosomal DNA from human dental plaque associated with periodontal disease, using transposon-aided capture (TRACA).

    PubMed

    Warburton, Philip J; Allan, Elaine; Hunter, Stephanie; Ward, John; Booth, Veronica; Wade, William G; Mullany, Peter

    2011-11-01

    The human oral cavity is host to a complex microbial community estimated to comprise >700 bacterial species, of which at least half are thought to be not yet cultivable in vitro. To investigate the plasmids present in this community, we used a transposon-aided capture system, which allowed the isolation of plasmids from human oral supra- and subgingival plaque samples. Thirty-two novel plasmids and a circular molecule that could be an integrase-generated circular intermediate were isolated. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  19. Resistance to pyridine-based inhibitor KF116 reveals an unexpected role of integrase in HIV-1 Gag-Pol polyprotein proteolytic processing.

    PubMed

    Hoyte, Ashley C; Jamin, Augusta V; Koneru, Pratibha C; Kobe, Matthew J; Larue, Ross C; Fuchs, James R; Engelman, Alan N; Kvaratskhelia, Mamuka

    2017-12-01

    The pyridine-based multimerization selective HIV-1 integrase (IN) inhibitors (MINIs) are a distinct subclass of allosteric IN inhibitors. MINIs potently inhibit HIV-1 replication during virion maturation by inducing hyper- or aberrant IN multimerization but are largely ineffective during the early steps of viral replication. Here, we investigated the mechanism for the evolution of a triple IN substitution (T124N/V165I/T174I) that emerges in cell culture with a representative MINI, KF116. We show that HIV-1 NL4-3(IN T124N/V165I/T174I) confers marked (>2000-fold) resistance to KF116. Two IN substitutions (T124N/T174I) directly weaken inhibitor binding at the dimer interface of the catalytic core domain but at the same time markedly impair HIV-1 replication capacity. Unexpectedly, T124N/T174I IN substitutions inhibited proteolytic processing of HIV-1 polyproteins Gag and Gag-Pol, resulting in immature virions. Strikingly, the addition of the third IN substitution (V165I) restored polyprotein processing, virus particle maturation, and significant levels of replication capacity. These results reveal an unanticipated role of IN for polyprotein proteolytic processing during virion morphogenesis. The complex evolutionary pathway for the emergence of resistant viruses, which includes the need for the compensatory V165I IN substitution, highlights a relatively high genetic barrier exerted by MINI KF116. Additionally, we have solved the X-ray structure of the drug-resistant catalytic core domain protein, which provides means for rational development of second-generation MINIs. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Structure-function analyses unravel distinct effects of allosteric inhibitors of HIV-1 integrase on viral maturation and integration.

    PubMed

    Bonnard, Damien; Le Rouzic, Erwann; Eiler, Sylvia; Amadori, Céline; Orlov, Igor; Bruneau, Jean-Michel; Brias, Julie; Barbion, Julien; Chevreuil, Francis; Spehner, Danièle; Chasset, Sophie; Ledoussal, Benoit; Moreau, François; Saïb, Ali; Klaholz, Bruno P; Emiliani, Stéphane; Ruff, Marc; Zamborlini, Alessia; Benarous, Richard

    2018-04-20

    Recently, a new class of HIV-1 integrase (IN) inhibitors with a dual mode of action, called IN-LEDGF/p75 allosteric inhibitors (INLAIs), was described. Designed to interfere with the IN-LEDGF/p75 interaction during viral integration, unexpectedly, their major impact was on virus maturation. This activity has been linked to induction of aberrant IN multimerization, whereas inhibition of the IN-LEDGF/p75 interaction accounts for weaker antiretroviral effect at integration. Because these dual activities result from INLAI binding to IN at a single binding site, we expected that these activities co-evolved together, driven by the affinity for IN. Using an original INLAI, MUT-A, and its activity on an Ala-125 (A125) IN variant, we found that these two activities on A125-IN can be fully dissociated: MUT-A-induced IN multimerization and the formation of eccentric condensates in viral particles, which are responsible for inhibition of virus maturation, were lost, whereas inhibition of the IN-LEDGF/p75 interaction and consequently integration was fully retained. Hence, the mere binding of INLAI to A125 IN is insufficient to promote the conformational changes of IN required for aberrant multimerization. By analyzing the X-ray structures of MUT-A bound to the IN catalytic core domain (CCD) with or without the Ala-125 polymorphism, we discovered that the loss of IN multimerization is due to stabilization of the A125-IN variant CCD dimer, highlighting the importance of the CCD dimerization energy for IN multimerization. Our study reveals that affinity for the LEDGF/p75-binding pocket is not sufficient to induce INLAI-dependent IN multimerization and the associated inhibition of viral maturation. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Allosteric integrase inhibitor potency is determined through the inhibition of HIV-1 particle maturation.

    PubMed

    Jurado, Kellie A; Wang, Hao; Slaughter, Alison; Feng, Lei; Kessl, Jacques J; Koh, Yasuhiro; Wang, Weifeng; Ballandras-Colas, Allison; Patel, Pratiq A; Fuchs, James R; Kvaratskhelia, Mamuka; Engelman, Alan

    2013-05-21

    Integration is essential for HIV-1 replication, and the viral integrase (IN) protein is an important therapeutic target. Allosteric IN inhibitors (ALLINIs) that engage the IN dimer interface at the binding site for the host protein lens epithelium-derived growth factor (LEDGF)/transcriptional coactivator p75 are an emerging class of small molecule antagonists. Consistent with the inhibition of a multivalent drug target, ALLINIs display steep antiviral dose-response curves ex vivo. ALLINIs multimerize IN protein and concordantly block its assembly with viral DNA in vitro, indicating that the disruption of two integration-associated functions, IN catalysis and the IN-LEDGF/p75 interaction, determines the multimode mechanism of ALLINI action. We now demonstrate that ALLINI potency is unexpectedly accounted for during the late phase of HIV-1 replication. The compounds promote virion IN multimerization and, reminiscent of class II IN mutations, block the formation of the electron-dense viral core and inhibit reverse transcription and integration in subsequently infected target cells. Mature virions are recalcitrant to ALLINI treatment, and compound potency during virus production is independent of the level of LEDGF/p75 expression. We conclude that cooperative multimerization of IN by ALLINIs together with the inability for LEDGF/p75 to effectively engage the virus during its egress from cells underscores the multimodal mechanism of ALLINI action. Our results highlight the versatile nature of allosteric inhibitors to primarily inhibit viral replication at a step that is distinct from the catalytic requirement for the target enzyme. The vulnerability of IN to small molecules during the late phase of HIV-1 replication unveils a pharmacological Achilles' heel for exploitation in clinical ALLINI development.

  2. Effect of dolutegravir functional monotherapy on HIV-1 virological response in integrase strand transfer inhibitor resistant patients.

    PubMed

    Naeger, Lisa K; Harrington, Patrick; Komatsu, Takashi; Deming, Damon

    2016-01-01

    VIKING-4 assessed the safety and efficacy of dolutegravir in heavily antiretroviral treatment-experienced patients who had documented integrase strand transfer inhibitor (INSTI) resistance-associated substitutions in their HIV. VIKING-4 had a placebo-controlled 7-day dolutegravir functional monotherapy phase followed by dolutegravir plus an optimized background regimen for 48 weeks. Independent resistance analyses evaluated week 48 virological responses in the VIKING-4 trial based on the presence of baseline INSTI resistance-associated substitutions and baseline dolutegravir phenotypic susceptibility. Response rates at week 48 based on baseline dolutegravir resistance subgroups were compared for the 7-day dolutegravir functional monotherapy arm and placebo-control arm. Additionally, genotypic and phenotypic resistance at day 8 and time of failure was analysed for the virological failures from both arms. Week 48 response rates for VIKING-4 were 23% (3/13) in the 7-day dolutegravir functional monotherapy arm compared with 60% (9/15) in the 7-day placebo arm. Response rates were consistently lower in the dolutegravir functional monotherapy arm across baseline INSTI genotypic and phenotypic subgroups. There was a higher proportion of virological failures in the 7-day dolutegravir functional monotherapy arm (n=6/13; 46%) compared with the 7-day placebo arm (n=3/15; 20%). Additionally, five virological failures in the dolutegravir arm had virus expressing emergent INSTI resistance-associated substitutions compared with two in the placebo arm. Analysis of response rates and resistance emergence in VIKING-4 suggests careful consideration should be given to the duration of functional monotherapy in future studies of highly treatment-experienced patients to reduce the risk of resistance and virological failure.

  3. [Safety profile of dolutegravir].

    PubMed

    Rivero, Antonio; Domingo, Pere

    2015-03-01

    Integrase inhibitors are the latest drug family to be added to the therapeutic arsenal against human immunodeficiency virus infection. Drugs in this family that do not require pharmacological boosting are characterized by a very good safety profile. The latest integrase inhibitor to be approved for use is dolutegravir. In clinical trials, dolutegravir has shown an excellent tolerability profile, both in antiretroviral-naïve and previously treated patients. Discontinuation rates due to adverse effects were 2% and 3%, respectively. The most frequent adverse effects were nausea, headache, diarrhea and sleep disturbance. A severe hypersensitivity reaction has been reported in only one patient. In patients coinfected with hepatropic viruses, the safety profile is similar to that in patients without coinfection. The lipid profile of dolutegravir is similar to that of raltegravir and superior to those of Atripla® and darunavir/ritonavir. Dolutegravir induces an early, predictable and non-progressive increase in serum creatinine of around 10% of baseline values in treatment-naïve patients and of 14% in treatment-experienced patients. This increase is due to inhibition of tubular creatinine secretion through the OCT2 receptor and does not lead to a real decrease in estimated glomerular filtration rate with algorithms that include serum creatinine. The effect of the combination of dolutegravir plus Kivexa(®) on biomarkers of bone remodeling is lower than that of Atripla(®). Dolutegravir has an excellent tolerability profile with no current evidence of long-term adverse effects. Its use is accompanied by an early and non-progressive increase in serum creatinine due to OCT2 receptor inhibition. In combination with abacavir/lamivudine, dolutegravir has a lower impact than enofovir/emtricitabine/efavirenz on bone remodelling markers. Copyright © 2015 Elsevier España, S.L.U. All rights reserved.

  4. A novel high-throughput format assay for HIV-1 integrase strand transfer reaction using magnetic beads.

    PubMed

    He, Hong-qiu; Ma, Xiao-hui; Liu, Bin; Chen, Wei-zu; Wang, Cun-xin; Cheng, Shao-hui

    2008-03-01

    To develop a novel high-throughput format assay to monitor the integrase (IN) strand transfer (ST) reaction in vitro and apply it to a reaction character study and the identification of antiviral drugs. The donor DNA duplex, with a sequence identical to the U5 end of HIV-1 long terminal repeats, is labeled at its 5' end with biotin (BIO). The target DNA duplex is labeled at its 3' end with digoxin (DIG). IN mediates the integration of donor DNA into target DNA and results in a 5' BIO and 3' DIG-labeled duplex DNA product. Streptavidin-coated magnetic beads were used to capture the product, and the amount of DIG was measured as the ST reaction product. The assay was optimized in 96-well microplate format for high-throughput screening purpose. Moreover, the assay was applied in a ST reaction character study, and the efficiency of the assay in the identification of antiviral compounds was tested. The end-point values, measured as absorbance at 405 nm was approximately 1.5 for the IN-mediated ST reaction as compared with no more than 0.05 of background readings. The ST reaction character and the half maximal inhibitory concentration (IC50) values of 2 known IN inhibitors obtained in our assay were similar to previously reported results using other assays. The evaluation parameter Z' factor for this assay ranged from 0.6 to 0.9. The assay presented here has been proven to be rapid, sensitive, and specific for the detection of IN ST activity, the reaction character study, as well as for the identification of antiviral drugs targeting IN.

  5. Structure-based virtual screening toward the discovery of novel inhibitors for impeding the protein-protein interaction between HIV-1 integrase and human lens epithelium-derived growth factor (LEDGF/p75).

    PubMed

    Panwar, Umesh; Singh, Sanjeev Kumar

    2017-10-23

    HIV-1 integrase is a unique promising component of the viral replication cycle, catalyzing the integration of reverse transcribed viral cDNA into the host cell genome. Generally, IN activity requires both viral as well as a cellular co-factor in the processing replication cycle. Among them, the human lens epithelium-derived growth factor (LEDGF/p75) represented as promising cellular co-factor which supports the viral replication by tethering IN to the chromatin. Due to its major importance in the early steps of HIV replication, the interaction between IN and LEDGF/p75 has become a pleasing target for anti-HIV drug discovery. The present study involves the finding of novel inhibitor based on the information of dimeric CCD of IN in complex with known inhibitor, which were carried out by applying a structure-based virtual screening concept with molecular docking. Additionally, Free binding energy, ADME properties, PAINS analysis, Density Functional Theory, and Enrichment Calculations were performed on selected compounds for getting a best lead molecule. On the basis of these analyses, the current study proposes top 3 compounds: Enamine-Z742267384, Maybridge-HTS02400, and Specs-AE-848/37125099 with acceptable pharmacological properties and enhanced binding affinity to inhibit the interaction between IN and LEDGF/p75. Furthermore, Simulation studies were carried out on these molecules to expose their dynamics behavior and stability. We expect that the findings obtained here could be future therapeutic agents and may provide an outline for the experimental studies to stimulate the innovative strategy for research community.

  6. Dynamics of the Ternary Complex Formed by c-Myc Interactor JPO2, Transcriptional Co-activator LEDGF/p75, and Chromatin*

    PubMed Central

    Hendrix, Jelle; van Heertum, Bart; Vanstreels, Els; Daelemans, Dirk; De Rijck, Jan

    2014-01-01

    Lens epithelium-derived growth factor (LEDGF/p75) is a transcriptional co-activator involved in targeting human immunodeficiency virus (HIV) integration and the development of MLL fusion-mediated acute leukemia. A previous study revealed that LEDGF/p75 dynamically scans the chromatin, and upon interaction with HIV-1 integrase, their complex is locked on chromatin. At present, it is not known whether LEDGF/p75-mediated chromatin locking is typical for interacting proteins. Here, we employed continuous photobleaching and fluorescence correlation and cross-correlation spectroscopy to investigate in vivo chromatin binding of JPO2, a LEDGF/p75- and c-Myc-interacting protein involved in transcriptional regulation. In the absence of LEDGF/p75, JPO2 performs chromatin scanning inherent to transcription factors. However, whereas the dynamics of JPO2 chromatin binding are decelerated upon interaction with LEDGF/p75, very strong locking of their complex onto chromatin is absent. Similar results were obtained with the domesticated transposase PogZ, another cellular interaction partner of LEDGF/p75. We furthermore show that diffusive JPO2 can oligomerize; that JPO2 and LEDGF/p75 interact directly and specifically in vivo through the specific interaction domain of JPO2 and the C-terminal domain of LEDGF/p75, comprising the integrase-binding domain; and that modulation of JPO2 dynamics requires a functional PWWP domain in LEDGF/p75. Our results suggest that the dynamics of the LEDGF/p75-chromatin interaction depend on the specific partner and that strong chromatin locking is not a property of all LEDGF/p75-binding proteins. PMID:24634210

  7. Antiviral activity, safety, and pharmacokinetics/pharmacodynamics of dolutegravir as 10-day monotherapy in HIV-1-infected adults.

    PubMed

    Min, Sherene; Sloan, Louis; DeJesus, Edwin; Hawkins, Trevor; McCurdy, Lewis; Song, Ivy; Stroder, Richard; Chen, Shuguang; Underwood, Mark; Fujiwara, Tamio; Piscitelli, Stephen; Lalezari, Jay

    2011-09-10

    To evaluate the antiviral activity, safety, pharmacokinetics, and pharmacokinetics/pharmacodynamics of dolutegravir (DTG), a next-generation HIV integrase inhibitor (INI), as short-term monotherapy. A phase IIa, randomized, double-blind, dose-ranging study. In this study, INI-naive, HIV-1-infected adults currently off antiretroviral therapy were randomized to receive DTG (2, 10, or 50 mg) or placebo once daily for 10 days in an eight active and two placebo randomization scheme per DTG dose. Placebo patients were pooled for the purpose of analysis. Thirty-five patients (n = 9 for DTG 2 and 10 mg, n = 10 for DTG 50 mg, and n = 7 for placebo) were enrolled. Baseline characteristics were similar across dose groups. Significant reductions in plasma HIV-1 RNA from baseline to day 11 were observed for all DTG dose groups compared with placebo (P < 0.001), with a mean decrease of 1.51-2.46 log(10) copies/ml. In addition, a well characterized dose-response relationship was observed for viral load decrease. Most patients (seven of 10, 70%) receiving DTG 50 mg achieved plasma HIV-1 RNA less than 50 copies/ml. The pharmacokinetic variability was low (coefficient of variation, range 25-50%). Plasma HIV-1 RNA reduction was best predicted by Cτ using an E(max) model. The most common adverse events were diarrhea, fatigue, and headache; the majority of adverse events were mild or moderate in severity. Dolutegravir demonstrated potent antiviral activity, good short-term tolerability, low pharmacokinetic variability, and a predictable pharmacokinetics/pharmacodynamics relationship, which support once-daily dosing without a pharmacokinetic booster in integrase-naive patients in future studies.

  8. Computational modeling of Repeat1 region of INI1/hSNF5: An evolutionary link with ubiquitin

    PubMed Central

    Bhutoria, Savita

    2016-01-01

    Abstract The structure of a protein can be very informative of its function. However, determining protein structures experimentally can often be very challenging. Computational methods have been used successfully in modeling structures with sufficient accuracy. Here we have used computational tools to predict the structure of an evolutionarily conserved and functionally significant domain of Integrase interactor (INI)1/hSNF5 protein. INI1 is a component of the chromatin remodeling SWI/SNF complex, a tumor suppressor and is involved in many protein‐protein interactions. It belongs to SNF5 family of proteins that contain two conserved repeat (Rpt) domains. Rpt1 domain of INI1 binds to HIV‐1 Integrase, and acts as a dominant negative mutant to inhibit viral replication. Rpt1 domain also interacts with oncogene c‐MYC and modulates its transcriptional activity. We carried out an ab initio modeling of a segment of INI1 protein containing the Rpt1 domain. The structural model suggested the presence of a compact and well defined ββαα topology as core structure in the Rpt1 domain of INI1. This topology in Rpt1 was similar to PFU domain of Phospholipase A2 Activating Protein, PLAA. Interestingly, PFU domain shares similarity with Ubiquitin and has ubiquitin binding activity. Because of the structural similarity between Rpt1 domain of INI1 and PFU domain of PLAA, we propose that Rpt1 domain of INI1 may participate in ubiquitin recognition or binding with ubiquitin or ubiquitin related proteins. This modeling study may shed light on the mode of interactions of Rpt1 domain of INI1 and is likely to facilitate future functional studies of INI1. PMID:27261671

  9. Impact of resistance mutations on inhibitor binding to HIV-1 integrase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Qi; Buolamwini, John K.; Smith, Jeremy C.

    2013-11-08

    Here, HIV-1 integrase (IN) is essential for HIV-1 replication, catalyzing two key reaction steps termed 3' processing and strand transfer. Therefore, IN has become an important target for antiviral drug discovery. However, mutants have emerged, such as E92Q/N155H and G140S/Q148H, which confer resistance to raltegravir (RAL), the first IN strand transfer inhibitor (INSTI) approved by the FDA, and to the recently approved elvitegravir (EVG). To gain insights into the molecular mechanisms of ligand binding and drug resistance, we performed molecular dynamics (MD) simulations of homology models of the HIV-1 IN and four relevant mutants complexed with viral DNA and RAL.more » The results show that the structure and dynamics of the 140s loop, comprising residues 140 to 149, are strongly influenced by the IN mutations. In the simulation of the G140S/Q148H double mutant, we observe spontaneous dissociation of RAL from the active site, followed by an intrahelical swing-back of the 3' -OH group of nucleotide A17, consistent with the experimental observation that the G140S/Q148H mutant exhibits the highest resistance to RAL compared to other IN mutants. An important hydrogen bond between residues 145 and 148 is present in the wild-type IN but not in the G140S/Q148H mutant, accounting for the structural and dynamical differences of the 140s' loop and ultimately impairing RAL binding in the double mutant. End-point free energy calculations that broadly capture the experimentally known RAL binding profiles elucidate the contributions of the 140s' loop to RAL binding free energies and suggest possible approaches to overcoming drug resistance.« less

  10. Safety, tolerability, and pharmacokinetics of the HIV integrase inhibitor dolutegravir given twice daily with rifampin or once daily with rifabutin: results of a phase 1 study among healthy subjects.

    PubMed

    Dooley, Kelly E; Sayre, Patrick; Borland, Julie; Purdy, Elizabeth; Chen, Shuguang; Song, Ivy; Peppercorn, Amanda; Everts, Stephanie; Piscitelli, Stephen; Flexner, Charles

    2013-01-01

    Cotreatment of tuberculosis (TB) and HIV among coinfected patients is now the standard of care. Rifampin (RIF) is a standard part of TB treatment but is a potent inducer of drug metabolizing enzymes. This study evaluated the effect of RIF or rifabutin (RBT) on the pharmacokinetics of the investigational HIV integrase inhibitor, dolutegravir (DTG). Phase I pharmacokinetic drug interaction study. In arm 1, healthy subjects received 50 mg of DTG once daily for 7 days (period 1), then 50 mg of DTG twice daily for 7 days (period 2), then 50 mg of DTG twice daily together with 600 mg of RIF once daily for 14 days (period 3). In arm 2, subjects received 50 mg of DTG once daily for 7 days (period 1) then 50 mg of DTG once daily together with 300 mg of RBT once daily for 14 days (period 2). PK sampling was performed at the end of each period. In arm 1, comparing period 3 to period 1, the geometric mean ratio (GMR) for the 24-hour area under the time-concentration curve (AUC0-24) was 1.33 [90% confidence interval (CI): 1.14 to 1.53], and the GMR for the trough (Cτ) was 1.22 (90% CI: 1.01 to 1.48). Comparing period 2 to period 1 in arm 2, the GMR for the AUC0-24 was 0.95 (90% CI: 0.82 to 1.10), and the GMR for the Cτ was 0.70 (90% CI: 0.57 to 0.87). Regimens including twice-daily DTG and RIF or once-daily DTG and RBT may represent a new treatment option for patients who require concomitant treatment of HIV and TB.

  11. Rapid activity prediction of HIV-1 integrase inhibitors: harnessing docking energetic components for empirical scoring by chemometric and artificial neural network approaches

    NASA Astrophysics Data System (ADS)

    Thangsunan, Patcharapong; Kittiwachana, Sila; Meepowpan, Puttinan; Kungwan, Nawee; Prangkio, Panchika; Hannongbua, Supa; Suree, Nuttee

    2016-06-01

    Improving performance of scoring functions for drug docking simulations is a challenging task in the modern discovery pipeline. Among various ways to enhance the efficiency of scoring function, tuning of energetic component approach is an attractive option that provides better predictions. Herein we present the first development of rapid and simple tuning models for predicting and scoring inhibitory activity of investigated ligands docked into catalytic core domain structures of HIV-1 integrase (IN) enzyme. We developed the models using all energetic terms obtained from flexible ligand-rigid receptor dockings by AutoDock4, followed by a data analysis using either partial least squares (PLS) or self-organizing maps (SOMs). The models were established using 66 and 64 ligands of mercaptobenzenesulfonamides for the PLS-based and the SOMs-based inhibitory activity predictions, respectively. The models were then evaluated for their predictability quality using closely related test compounds, as well as five different unrelated inhibitor test sets. Weighting constants for each energy term were also optimized, thus customizing the scoring function for this specific target protein. Root-mean-square error (RMSE) values between the predicted and the experimental inhibitory activities were determined to be <1 (i.e. within a magnitude of a single log scale of actual IC50 values). Hence, we propose that, as a pre-functional assay screening step, AutoDock4 docking in combination with these subsequent rapid weighted energy tuning methods via PLS and SOMs analyses is a viable approach to predict the potential inhibitory activity and to discriminate among small drug-like molecules to target a specific protein of interest.

  12. A New Class of Allosteric HIV-1 Integrase Inhibitors Identified by Crystallographic Fragment Screening of the Catalytic Core Domain.

    PubMed

    Patel, Disha; Antwi, Janet; Koneru, Pratibha C; Serrao, Erik; Forli, Stefano; Kessl, Jacques J; Feng, Lei; Deng, Nanjie; Levy, Ronald M; Fuchs, James R; Olson, Arthur J; Engelman, Alan N; Bauman, Joseph D; Kvaratskhelia, Mamuka; Arnold, Eddy

    2016-11-04

    HIV-1 integrase (IN) is essential for virus replication and represents an important multifunctional therapeutic target. Recently discovered quinoline-based allosteric IN inhibitors (ALLINIs) potently impair HIV-1 replication and are currently in clinical trials. ALLINIs exhibit a multimodal mechanism of action by inducing aberrant IN multimerization during virion morphogenesis and by competing with IN for binding to its cognate cellular cofactor LEDGF/p75 during early steps of HIV-1 infection. However, quinoline-based ALLINIs impose a low genetic barrier for the evolution of resistant phenotypes, which highlights a need for discovery of second-generation inhibitors. Using crystallographic screening of a library of 971 fragments against the HIV-1 IN catalytic core domain (CCD) followed by a fragment expansion approach, we have identified thiophenecarboxylic acid derivatives that bind at the CCD-CCD dimer interface at the principal lens epithelium-derived growth factor (LEDGF)/p75 binding pocket. The most active derivative (5) inhibited LEDGF/p75-dependent HIV-1 IN activity in vitro with an IC 50 of 72 μm and impaired HIV-1 infection of T cells at an EC 50 of 36 μm The identified lead compound, with a relatively small molecular weight (221 Da), provides an optimal building block for developing a new class of inhibitors. Furthermore, although structurally distinct thiophenecarboxylic acid derivatives target a similar pocket at the IN dimer interface as the quinoline-based ALLINIs, the lead compound, 5, inhibited IN mutants that confer resistance to quinoline-based compounds. Collectively, our findings provide a plausible path for structure-based development of second-generation ALLINIs. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Strand transfer inhibitors of HIV-1 integrase: bringing IN a new era of antiretroviral therapy.

    PubMed

    McColl, Damian J; Chen, Xiaowu

    2010-01-01

    HIV-1 integrase (IN) is one of three essential enzymes (along with reverse transcriptase and protease) encoded by the viral pol gene. IN mediates two critical reactions during viral replication; firstly 3'-end processing (3'EP) of the double-stranded viral DNA ends and then strand transfer (STF) which joins the viral DNA to the host chromosomal DNA forming a functional integrated proviral DNA. IN is a 288 amino acid protein containing three functional domains, the N-terminal domain (NTD), catalytic core domain (CCD) and the C-terminal domain (CTD). The CCD contains three conserved catalytic residues, Asp64, Asp116 and Glu152, which coordinate divalent metal ions essential for the STF reaction. Intensive research over the last two decades has led to the discovery and development of small molecule inhibitors of the IN STF reaction (INSTIs). INSTIs are catalytic inhibitors of IN, and act to chelate the divalent metal ions in the CCD. One INSTI, raltegravir (RAL, Merck Inc.) was approved in late 2007 for the treatment of HIV-1 infection in patients with prior antiretroviral (ARV) treatment experience and was recently approved also for first line therapy. A second INSTI, elvitegravir (EVG, Gilead Sciences, Inc.) is currently undergoing phase 3 studies in ARV treatment-experienced patients and phase 2 studies in ARV naïve patients as part of a novel fixed dose combination. Several additional INSTIs are in early stage clinical development. This review will discuss the discovery and development of this novel class of antiretrovirals. This article forms part of a special issue of Antiviral Research marking the 25th anniversary of antiretroviral drug discovery and development, Vol 85, issue 1, 2010. Copyright 2009. Published by Elsevier B.V.

  14. Molecular and epidemiological characterisation of clinical isolates of carbapenem-resistant Acinetobacter baumannii from public and private sector intensive care units in Karachi, Pakistan.

    PubMed

    Irfan, S; Turton, J F; Mehraj, J; Siddiqui, S Z; Haider, S; Zafar, A; Memon, B; Afzal, O; Hasan, R

    2011-06-01

    The purpose of this study was to identify molecular and epidemiological characteristics of hospital-acquired carbapenem-resistant Acinetobacter baumannii (CRAB) from two different intensive care unit (ICU) settings in Karachi, Pakistan. A cross-sectional study was performed in the adult ICUs of a private sector tertiary care hospital (PS-ICU) and of a government sector hospital (GS-ICU) between November 2007 and August 2008. Deduplicated CRAB isolates from clinical specimens were examined for carbapenemase and class 1 integrase genes. Isolates were typed using sequence-based multiplex polymerase chain reaction, pulsed-field gel electrophoresis (PFGE) and variable number tandem repeat (VNTR). A total of 50 patients (33 from PS-ICU and 17 from GS-ICU) were recruited. There were statistically significant differences between patients in the two ICUs in terms of mean age, comorbidities, the presence of central venous pressure lines, urinary catheters, and average length of stay. bla(OxA-23-like) acquired-oxacillinase genes were found in 47/50 isolates. Class 1 integrase genes were found in 50% (25/50) of the organisms. The majority of isolates belonged to strains of European clones I and II. PFGE typing grouped the isolates into eight distinct clusters, three of which were found in both hospitals. Most of the isolates within each PFGE cluster shared identical or highly similar VNTR profiles, suggesting close epidemiological association. Irrespective of differences in risk factors and infection control policies and practices, the extent of clonality among CRAB isolates was very similar in both ICU settings. Copyright © 2011 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  15. Treatment with integrase inhibitor suggests a new interpretation of HIV RNA decay curves that reveals a subset of cells with slow integration

    DOE PAGES

    Cardozo, Erwing Fabian; Andrade, Adriana; Mellors, John W.; ...

    2017-07-05

    The kinetics of HIV-1 decay under treatment depends on the class of antiretrovirals used. Mathematical models are useful to interpret the different profiles, providing quantitative information about the kinetics of virus replication and the cell populations contributing to viral decay. We modeled proviral integration in short- and long-lived infected cells to compare viral kinetics under treatment with and without the integrase inhibitor raltegravir (RAL). We fitted the model to data obtained from participants treated with RAL-containing regimes or with a four-drug regimen of protease and reverse transcriptase inhibitors. Our model explains the existence and quantifies the three phases of HIV-1more » RNA decay in RAL-based regimens vs. the two phases observed in therapies without RAL. Our findings indicate that HIV-1 infection is mostly sustained by short-lived infected cells with fast integration and a short viral production period, and by long-lived infected cells with slow integration but an equally short viral production period. We propose that these cells represent activated and resting infected CD4+ T-cells, respectively, and estimate that infection of resting cells represent ~4% of productive reverse transcription events in chronic infection. RAL reveals the kinetics of proviral integration, showing that in short-lived cells the pre-integration population has a half-life of ~7 hours, whereas in long-lived cells this half-life is ~6 weeks. We also show that the efficacy of RAL can be estimated by the difference in viral load at the start of the second phase in protocols with and without RAL. Altogether, we provide a mechanistic model of viral infection that parsimoniously explains the kinetics of viral load decline under multiple classes of antiretrovirals.« less

  16. Novel environmental class 1 integrons and cassette arrays recovered from an on-farm bio-purification plant.

    PubMed

    Martini, María Carla; Quiroga, María Paula; Pistorio, Mariano; Lagares, Antonio; Centrón, Daniela; Del Papa, María Florencia

    2018-03-01

    Rapid dissemination and emergence of novel antibiotic resistance genes among bacteria are rising problems worldwide. Since their discovery in clinical isolates in the late 1980s, class 1 integrons have been found in a wide range of bacterial genera and have been extensively studied as contributors to dissemination of antibiotic resistance. The present study aimed to investigate the presence and structure of class 1 integrons in plasmid-carrying bacterial isolates obtained from a biopurification system used for decontamination of pesticide-contaminated water as well as their possible role as reservoir of antimicrobial resistance gene cassettes. A total of 35 representative isolates were screened for the presence of class 1 integron integrase encoded by intI1. PCR and DNA sequencing revealed the presence of six class 1 integrons with four variable regions: 5΄CS-aadA1b-3΄CS, 5΄CS-aadA2-3΄CS, 5΄CS-aadA11cΔ-3΄CS and 5΄CS-dfrB3-aadA1di-catB2-aadA6k-3΄CS, the last two being unseen arrays of antimicrobial resistance gene cassettes associated with novel environmental alleles of intI1. These four class 1 integrons were identified as being present in four different genera, including Ochrobactrum, and Variovorax, where class 1 integrons have not been previously reported. The results provide evidence of the biopurification systems as a tank of class 1 integron carrying strains and novel environmental class 1 integron integrases associated with antimicrobial resistance gene cassette arrays. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Treatment with integrase inhibitor suggests a new interpretation of HIV RNA decay curves that reveals a subset of cells with slow integration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardozo, Erwing Fabian; Andrade, Adriana; Mellors, John W.

    The kinetics of HIV-1 decay under treatment depends on the class of antiretrovirals used. Mathematical models are useful to interpret the different profiles, providing quantitative information about the kinetics of virus replication and the cell populations contributing to viral decay. We modeled proviral integration in short- and long-lived infected cells to compare viral kinetics under treatment with and without the integrase inhibitor raltegravir (RAL). We fitted the model to data obtained from participants treated with RAL-containing regimes or with a four-drug regimen of protease and reverse transcriptase inhibitors. Our model explains the existence and quantifies the three phases of HIV-1more » RNA decay in RAL-based regimens vs. the two phases observed in therapies without RAL. Our findings indicate that HIV-1 infection is mostly sustained by short-lived infected cells with fast integration and a short viral production period, and by long-lived infected cells with slow integration but an equally short viral production period. We propose that these cells represent activated and resting infected CD4+ T-cells, respectively, and estimate that infection of resting cells represent ~4% of productive reverse transcription events in chronic infection. RAL reveals the kinetics of proviral integration, showing that in short-lived cells the pre-integration population has a half-life of ~7 hours, whereas in long-lived cells this half-life is ~6 weeks. We also show that the efficacy of RAL can be estimated by the difference in viral load at the start of the second phase in protocols with and without RAL. Altogether, we provide a mechanistic model of viral infection that parsimoniously explains the kinetics of viral load decline under multiple classes of antiretrovirals.« less

  18. The phytopathogenic virulent effector protein RipI induces apoptosis in budding yeast Saccharomyces cerevisiae.

    PubMed

    Deng, Meng-Ying; Sun, Yun-Hao; Li, Pai; Fu, Bei; Shen, Dong; Lu, Yong-Jun

    2016-10-01

    Virulent protein toxins secreted by the bacterial pathogens can cause cytotoxicity by various molecular mechanisms to combat host cell defense. On the other hand, these proteins can also be used as probes to investigate the defense pathway of host innate immunity. Ralstonia solanacearum, one of the most virulent bacterial phytopathogens, translocates more than 70 effector proteins via type III secretion system during infection. Here, we characterized the cytotoxicity of effector RipI in budding yeast Saccharomyce scerevisiae, an alternative host model. We found that over-expression of RipI resulted in severe growth defect and arginine (R) 117 within the predicted integrase motif was required for inhibition of yeast growth. The phenotype of death manifested the hallmarks of apoptosis. Our data also revealed that RipI-induced apoptosis was independent of Yca1 and mitochondria-mediated apoptotic pathways because Δyca1 and Δaif1 were both sensitive to RipI as compared with the wild type. We further demonstrated that RipI was localized in the yeast nucleus and the N-terminal 1-174aa was required for the localization. High-throughput RNA sequencing analysis showed that upon RipI over-expression, 101 unigenes of yeast ribosome presented lower expression level, and 42 GO classes related to the nucleus or recombination were enriched with differential expression levels. Taken together, our data showed that a nuclear-targeting effector RipI triggers yeast apoptosis, potentially dependent on its integrase function. Our results also provided an alternative strategy to dissect the signaling pathway of cytotoxicity induced by the protein toxins. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Mechanism of inhibition of HIV-1 integrase by G-tetrad-forming oligonucleotides in Vitro.

    PubMed

    Jing, N; Marchand, C; Liu, J; Mitra, R; Hogan, M E; Pommier, Y

    2000-07-14

    The G-tetrad-forming oligonucleotides and have been identified as potent inhibitors of human immunodeficiency virus type 1 integrase (HIV-1 IN) activity (Rando, R. F., Ojwang, J., Elbaggari, A., Reyes, G. R., Tinder, R., McGrath, M. S., and Hogan, M. E. (1995) J. Biol. Chem. 270, 1754-1760; Mazumder, A., Neamati, N., Ojwang, J. O., Sunder, S., Rando, R. F., and Pommier, Y. (1996) Biochemistry 35, 13762-13771; Jing, N., and Hogan, M. E. (1998) J. Biol. Chem. 273, 34992-34999). To understand the inhibition of HIV-1 IN activity by the G-quartet inhibitors, we have designed the oligonucleotides and, composed of three and four G-quartets with stem lengths of 19 and 24 A, respectively. The fact that increasing the G-quartet stem length from 15 to 24 A kept inhibition of HIV-1 IN activity unchanged suggests that the binding interaction occurs between a GTGT loop domain of the G-quartet inhibitors and a catalytic site of HIV-1 IN, referred to as a face-to-face interaction. Docking the NMR structure of (Jing and Hogan (1998)) into the x-ray structure of the core domain of HIV-1 IN, HIV-1 IN-(51-209) (Maignan, S., Guilloteau, J.-P. , Qing, Z.-L., Clement-Mella, C., and Mikol, V. (1998) J. Mol. Biol. 282, 359-368), was performed using the GRAMM program. The statistical distributions of hydrogen bonding between HIV-1 IN and were obtained from the analyses of 1000 random docking structures. The docking results show a high probability of interaction between the GTGT loop residues of the G-quartet inhibitors and the catalytic site of HIV-1 IN, in agreement with the experimental observation.

  20. Substitutions at Amino Acid Positions 143, 148, and 155 of HIV-1 Integrase Define Distinct Genetic Barriers to Raltegravir Resistance In Vivo

    PubMed Central

    Fransen, Signe; Gupta, Soumi; Frantzell, Arne; Petropoulos, Christos J.

    2012-01-01

    Mutations at amino acids 143, 148, and 155 in HIV-1 integrase (IN) define primary resistance pathways in subjects failing raltegravir (RAL)-containing treatments. Although each pathway appears to be genetically distinct, shifts in the predominant resistant virus population have been reported under continued drug pressure. To better understand this dynamic, we characterized the RAL susceptibility of 200 resistant viruses, and we performed sequential clonal analysis for selected cases. Patient viruses containing Y143R, Q148R, or Q148H mutations consistently exhibited larger reductions in RAL susceptibility than patient viruses containing N155H mutations. Sequential analyses of virus populations from three subjects revealed temporal shifts in subpopulations representing N155H, Y143R, or Q148H escape pathways. Evaluation of molecular clones isolated from different time points demonstrated that Y143R and Q148H variants exhibited larger reductions in RAL susceptibility and higher IN-mediated replication capacity (RC) than N155H variants within the same subject. Furthermore, shifts from the N155H pathway to either the Q148R or H pathway or the Y143R pathway were dependent on the amino acid substitution at position 148 and the secondary mutations in Y143R- or Q148R- or H-containing variants and correlated with reductions in RAL susceptibility and restorations in RC. Our observations in patient viruses were confirmed by analyzing site-directed mutations. In summary, viruses that acquire mutations defining the 143 or 148 escape pathways are less susceptible to RAL and exhibit greater RC than viruses containing 155 pathway mutations. These selective pressures result in the displacement of N155H variants by 143 or 148 variants under continued drug exposure. PMID:22553340

  1. Prevalence and characterization of Salmonella isolated from chicken meat in Turkey.

    PubMed

    Siriken, Belgin; Türk, Haldun; Yildirim, Tuba; Durupinar, Belma; Erol, Irfan

    2015-05-01

    This study was conducted in a Turkish province to investigate the presence of Salmonella spp. in 150 chicken meat samples using 2 phenotyping techniques: classic culture technique (CCT) and immunomagnetic separation (IMS). For the confirmation of the isolates at molecular levels, invA gene was detected in these isolates. The presence of invA, class 1 (Cls1) integrons, and integrase (Int1) genes was demonstrated by PCR assay; and the resistance of the isolated Salmonella spp. strains to antibiotics was determined by disk diffusion test. All the cultural and PCR results were evaluated together; Salmonella spp. were detected in a total of 64 (42.66%) chicken meat samples. Contamination rate was higher in carcasses (53.33%, n = 75) than in meat pieces (32%, n = 75). When results of standard culture were compared with IMS technique, IMS (n = 54) showed a clear superiority over the CCT (n = 38). A very high resistance rate (≥ 89.28%) to vancomycin, tetracycline, streptomycin, or nalidixic acid was found. Trimethoprim-sulfamethoxazole resistance was present in 32.14%. Relatively lower incidence of resistance (≤ 8.33%) to gentamicin, chloramphenicol, ampicillin, and ceftriaxone was observed. Concurrent resistance to at least 4 antibiotics was detected in 92.85% of the isolates. Cls1 integrons and Int1 were positive in 80.95% and 95.23% of the isolates, respectively. However, Int1 alone was detected in 15.47% (n = 13). In conclusion, the high prevalence of Salmonella spp. in chicken meat may pose a potential public health risk, and the presence of antibiotic-resistant Salmonella spp. isolate together with Cls1 integron and/or integrase might play an important role in horizontal antibiotic gene transfer. © 2015 Institute of Food Technologists®

  2. Origins of the Xylella fastidiosa prophage-like regions and their impact in genome differentiation.

    PubMed

    de Mello Varani, Alessandro; Souza, Rangel Celso; Nakaya, Helder I; de Lima, Wanessa Cristina; Paula de Almeida, Luiz Gonzaga; Kitajima, Elliot Watanabe; Chen, Jianchi; Civerolo, Edwin; Vasconcelos, Ana Tereza Ribeiro; Van Sluys, Marie-Anne

    2008-01-01

    Xylella fastidiosa is a Gram negative plant pathogen causing many economically important diseases, and analyses of completely sequenced X. fastidiosa genome strains allowed the identification of many prophage-like elements and possibly phage remnants, accounting for up to 15% of the genome composition. To better evaluate the recent evolution of the X. fastidiosa chromosome backbone among distinct pathovars, the number and location of prophage-like regions on two finished genomes (9a5c and Temecula1), and in two candidate molecules (Ann1 and Dixon) were assessed. Based on comparative best bidirectional hit analyses, the majority (51%) of the predicted genes in the X. fastidiosa prophage-like regions are related to structural phage genes belonging to the Siphoviridae family. Electron micrograph reveals the existence of putative viral particles with similar morphology to lambda phages in the bacterial cell in planta. Moreover, analysis of microarray data indicates that 9a5c strain cultivated under stress conditions presents enhanced expression of phage anti-repressor genes, suggesting switches from lysogenic to lytic cycle of phages under stress-induced situations. Furthermore, virulence-associated proteins and toxins are found within these prophage-like elements, thus suggesting an important role in host adaptation. Finally, clustering analyses of phage integrase genes based on multiple alignment patterns reveal they group in five lineages, all possessing a tyrosine recombinase catalytic domain, and phylogenetically close to other integrases found in phages that are genetic mosaics and able to perform generalized and specialized transduction. Integration sites and tRNA association is also evidenced. In summary, we present comparative and experimental evidence supporting the association and contribution of phage activity on the differentiation of Xylella genomes.

  3. The Chromodomain of Tf1 Integrase Promotes Binding to cDNA and Mediates Target Site Selection▿ †

    PubMed Central

    Chatterjee, Atreyi Ghatak; Leem, Young Eun; Kelly, Felice D.; Levin, Henry L.

    2009-01-01

    The long terminal repeat (LTR) retrotransposon Tf1 of Schizosaccharomyces pombe integrates specifically into the promoters of pol II-transcribed genes. Its integrase (IN) contains a C-terminal chromodomain related to the chromodomains that bind to the N-terminal tail of histone H3. Although we have been unable to detect an interaction between histone tails and the chromodomain of Tf1 IN, it is possible that the chromodomain plays a role in directing IN to its target sites. To test this idea, we generated transposons with single amino acid substitutions in highly conserved residues of the chromodomain and created a chromodomain-deleted mutant. The mutations, V1290A, Y1292A, W1305A, and CHDΔ, substantially reduced transposition activity in vivo. Blotting assays showed that there was little or no reduction in the levels of IN or cDNA. By measuring the homologous recombination between cDNA and the plasmid copy of Tf1, we found that two of the mutations did not reduce the import of cDNA into the nucleus, while another caused a 33% reduction. Chromatin immunoprecipitation assays revealed that CHDΔ caused an approximately threefold reduction in the binding of IN to the downstream LTR of the cDNA. These data indicate that the chromodomain contributed directly to integration. We therefore tested whether the chromodomain contributed to selecting insertion sites. Results of a target plasmid assay showed that the deletion of the chromodomain resulted in a drastic reduction in the preference for pol II promoters. Collectively, these data indicate that the chromodomain promotes binding of cDNA and plays a key role in efficient targeting. PMID:19109383

  4. The chromodomain of Tf1 integrase promotes binding to cDNA and mediates target site selection.

    PubMed

    Chatterjee, Atreyi Ghatak; Leem, Young Eun; Kelly, Felice D; Levin, Henry L

    2009-03-01

    The long terminal repeat (LTR) retrotransposon Tf1 of Schizosaccharomyces pombe integrates specifically into the promoters of pol II-transcribed genes. Its integrase (IN) contains a C-terminal chromodomain related to the chromodomains that bind to the N-terminal tail of histone H3. Although we have been unable to detect an interaction between histone tails and the chromodomain of Tf1 IN, it is possible that the chromodomain plays a role in directing IN to its target sites. To test this idea, we generated transposons with single amino acid substitutions in highly conserved residues of the chromodomain and created a chromodomain-deleted mutant. The mutations, V1290A, Y1292A, W1305A, and CHDDelta, substantially reduced transposition activity in vivo. Blotting assays showed that there was little or no reduction in the levels of IN or cDNA. By measuring the homologous recombination between cDNA and the plasmid copy of Tf1, we found that two of the mutations did not reduce the import of cDNA into the nucleus, while another caused a 33% reduction. Chromatin immunoprecipitation assays revealed that CHDDelta caused an approximately threefold reduction in the binding of IN to the downstream LTR of the cDNA. These data indicate that the chromodomain contributed directly to integration. We therefore tested whether the chromodomain contributed to selecting insertion sites. Results of a target plasmid assay showed that the deletion of the chromodomain resulted in a drastic reduction in the preference for pol II promoters. Collectively, these data indicate that the chromodomain promotes binding of cDNA and plays a key role in efficient targeting.

  5. The GP(Y/F) Domain of TF1 Integrase Multimerizes when Present in a Fragment, and Substitutions in This Domain Reduce Enzymatic Activity of the Full-length Protein*S⃞

    PubMed Central

    Ebina, Hirotaka; Chatterjee, Atreyi Ghatak; Judson, Robert L.; Levin, Henry L.

    2008-01-01

    Integrases (INs) of retroviruses and long terminal repeat retrotransposons possess a C-terminal domain with DNA binding activity. Other than this binding activity, little is known about how the C-terminal domain contributes to integration. A stretch of conserved amino acids called the GP(Y/F) domain has been identified within the C-terminal IN domains of two distantly related families, the γ-retroviruses and the metavirus retrotransposons. To enhance understanding of the C-terminal domain, we examined the function of the GP(Y/F) domain in the IN of Tf1, a long terminal repeat retrotransposon of Schizosaccharomyces pombe. The activities of recombinant IN were measured with an assay that modeled the reverse of integration called disintegration. Although deletion of the entire C-terminal domain disrupted disintegration activity, an alanine substitution (P365A) in a conserved amino acid of the GP(Y/F) domain did not significantly reduce disintegration. When assayed for the ability to join two molecules of DNA in a reaction that modeled forward integration, the P365A substitution disrupted activity. UV cross-linking experiments detected DNA binding activity in the C-terminal domain and found that this activity was not reduced by substitutions in two conserved amino acids of the GP(Y/F) domain, G364A and P365A. Gel filtration and cross-linking of a 71-amino acid fragment containing the GP(Y/F) domain revealed a surprising ability to form dimers, trimers, and tetramers that was disrupted by the G364A and P365A substitutions. These results suggest that the GP(Y/F) residues may play roles in promoting multimerization and intermolecular strand joining. PMID:18397885

  6. The GP(Y/F) domain of TF1 integrase multimerizes when present in a fragment, and substitutions in this domain reduce enzymatic activity of the full-length protein.

    PubMed

    Ebina, Hirotaka; Chatterjee, Atreyi Ghatak; Judson, Robert L; Levin, Henry L

    2008-06-06

    Integrases (INs) of retroviruses and long terminal repeat retrotransposons possess a C-terminal domain with DNA binding activity. Other than this binding activity, little is known about how the C-terminal domain contributes to integration. A stretch of conserved amino acids called the GP(Y/F) domain has been identified within the C-terminal IN domains of two distantly related families, the gamma-retroviruses and the metavirus retrotransposons. To enhance understanding of the C-terminal domain, we examined the function of the GP(Y/F) domain in the IN of Tf1, a long terminal repeat retrotransposon of Schizosaccharomyces pombe. The activities of recombinant IN were measured with an assay that modeled the reverse of integration called disintegration. Although deletion of the entire C-terminal domain disrupted disintegration activity, an alanine substitution (P365A) in a conserved amino acid of the GP(Y/F) domain did not significantly reduce disintegration. When assayed for the ability to join two molecules of DNA in a reaction that modeled forward integration, the P365A substitution disrupted activity. UV cross-linking experiments detected DNA binding activity in the C-terminal domain and found that this activity was not reduced by substitutions in two conserved amino acids of the GP(Y/F) domain, G364A and P365A. Gel filtration and cross-linking of a 71-amino acid fragment containing the GP(Y/F) domain revealed a surprising ability to form dimers, trimers, and tetramers that was disrupted by the G364A and P365A substitutions. These results suggest that the GP(Y/F) residues may play roles in promoting multimerization and intermolecular strand joining.

  7. DNA Physical Properties and Nucleosome Positions Are Major Determinants of HIV-1 Integrase Selectivity

    PubMed Central

    Naughtin, Monica; Haftek-Terreau, Zofia; Xavier, Johan; Meyer, Sam; Silvain, Maud; Jaszczyszyn, Yan; Levy, Nicolas; Miele, Vincent; Benleulmi, Mohamed Salah; Ruff, Marc; Parissi, Vincent; Vaillant, Cédric; Lavigne, Marc

    2015-01-01

    Retroviral integrases (INs) catalyse the integration of the reverse transcribed viral DNA into the host cell genome. This process is selective, and chromatin has been proposed to be a major factor regulating this step in the viral life cycle. However, the precise underlying mechanisms are still under investigation. We have developed a new in vitro integration assay using physiologically-relevant, reconstituted genomic acceptor chromatin and high-throughput determination of nucleosome positions and integration sites, in parallel. A quantitative analysis of the resulting data reveals a chromatin-dependent redistribution of the integration sites and establishes a link between integration sites and nucleosome positions. The co-activator LEDGF/p75 enhanced integration but did not modify the integration sites under these conditions. We also conducted an in cellulo genome-wide comparative study of nucleosome positions and human immunodeficiency virus type-1 (HIV-1) integration sites identified experimentally in vivo. These studies confirm a preferential integration in nucleosome-covered regions. Using a DNA mechanical energy model, we show that the physical properties of DNA probed by IN binding are important in determining IN selectivity. These novel in vitro and in vivo approaches confirm that IN has a preference for integration into a nucleosome, and suggest the existence of two levels of IN selectivity. The first depends on the physical properties of the target DNA and notably, the energy required to fit DNA into the IN catalytic pocket. The second depends on the DNA deformation associated with DNA wrapping around a nucleosome. Taken together, these results indicate that HIV-1 IN is a shape-readout DNA binding protein. PMID:26075397

  8. Dissemination of veterinary antibiotics and corresponding resistance genes from a concentrated swine feedlot along the waste treatment paths.

    PubMed

    Wang, Jian; Ben, Weiwei; Yang, Min; Zhang, Yu; Qiang, Zhimin

    2016-01-01

    Swine feedlots are an important pollution source of antibiotics and antibiotic resistance genes (ARGs) to the environment. This study investigated the dissemination of two classes of commonly-used veterinary antibiotics, namely, tetracyclines (TCs) and sulfonamides (SAs), and their corresponding ARGs along the waste treatment paths from a concentrated swine feedlot located in Beijing, China. The highest total TC and total SA concentrations detected were 166.7mgkg(-1) and 64.5μgkg(-1) in swine manure as well as 388.7 and 7.56μgL(-1) in swine wastewater, respectively. Fourteen tetracycline resistance genes (TRGs) encoding ribosomal protection proteins (RPP), efflux proteins (EFP) and enzymatic inactivation proteins, three sulfonamide resistance genes (SRGs), and two integrase genes were detected along the waste treatment paths with detection frequencies of 33.3-75.0%. The relative abundances of target ARGs ranged from 2.74×10(-6) to 1.19. The antibiotics and ARGs generally declined along both waste treatment paths, but their degree of reduction was more significant along the manure treatment path. The RPP TRGs dominated in the upstream samples and then decreased continuously along both waste treatment paths, whilst the EFP TRGs and SRGs maintained relatively stable. Strong correlations between antibiotic concentrations and ARGs were observed among both manure and wastewater samples. In addition, seasonal temperature, and integrase genes, moisture content and nutrient level of tested samples could all impact the relative abundances of ARGs along the swine waste treatment paths. This study helps understand the evolution and spread of ARGs from swine feedlots to the environment as well as assess the environmental risk arising from swine waste treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Origins of the Xylella fastidiosa Prophage-Like Regions and Their Impact in Genome Differentiation

    PubMed Central

    de Mello Varani, Alessandro; Souza, Rangel Celso; Nakaya, Helder I.; de Lima, Wanessa Cristina; Paula de Almeida, Luiz Gonzaga; Kitajima, Elliot Watanabe; Chen, Jianchi; Civerolo, Edwin; Vasconcelos, Ana Tereza Ribeiro; Van Sluys, Marie-Anne

    2008-01-01

    Xylella fastidiosa is a Gram negative plant pathogen causing many economically important diseases, and analyses of completely sequenced X. fastidiosa genome strains allowed the identification of many prophage-like elements and possibly phage remnants, accounting for up to 15% of the genome composition. To better evaluate the recent evolution of the X. fastidiosa chromosome backbone among distinct pathovars, the number and location of prophage-like regions on two finished genomes (9a5c and Temecula1), and in two candidate molecules (Ann1 and Dixon) were assessed. Based on comparative best bidirectional hit analyses, the majority (51%) of the predicted genes in the X. fastidiosa prophage-like regions are related to structural phage genes belonging to the Siphoviridae family. Electron micrograph reveals the existence of putative viral particles with similar morphology to lambda phages in the bacterial cell in planta. Moreover, analysis of microarray data indicates that 9a5c strain cultivated under stress conditions presents enhanced expression of phage anti-repressor genes, suggesting switches from lysogenic to lytic cycle of phages under stress-induced situations. Furthermore, virulence-associated proteins and toxins are found within these prophage-like elements, thus suggesting an important role in host adaptation. Finally, clustering analyses of phage integrase genes based on multiple alignment patterns reveal they group in five lineages, all possessing a tyrosine recombinase catalytic domain, and phylogenetically close to other integrases found in phages that are genetic mosaics and able to perform generalized and specialized transduction. Integration sites and tRNA association is also evidenced. In summary, we present comparative and experimental evidence supporting the association and contribution of phage activity on the differentiation of Xylella genomes. PMID:19116666

  10. Blocking the interaction between HIV-1 integrase and human LEDGF/p75: mutational studies, virtual screening and molecular dynamics simulations.

    PubMed

    Reddy, Karnati Konda; Singh, Poonam; Singh, Sanjeev Kumar

    2014-03-04

    HIV-1 integrase (IN) mediates integration of viral cDNA into the host cell genome, an essential step in the retroviral life cycle. The human lens epithelium-derived growth factor (LEDGF/p75) is a co-factor of HIV-1 IN that plays a crucial role in viral integration. Because of its crucial role in early steps of HIV replication, the IN-LEDGF/p75 interaction represents an attractive target for anti-HIV drug discovery. In this study, the IN-LEDGF/p75 interaction was studied by in silico mutational studies and molecular dynamics simulations. The results showed that all of the key residues in the LEDGF/p75 binding pocket of IN protein are important for stabilization of the complex. Structure-based virtual screening against HIV-1 IN using the ChemBridge database was performed through three different protocols of docking simulations with varying precisions and computational intensities. Six compounds based on the docking score, binding affinity and pharmacokinetic parameters were selected and an analysis of the interactions with key amino acid residues of IN was carried out. Subsequently, molecular dynamics simulations of these compounds in the LEDGF/p75 binding site of IN were carried out in order to study the stability of complexes and their hydrogen bonding interactions. IN residues Glu170, His171, and Thr174 in chain A as well as Gln95 and Thr125 in chain B were discovered to play important roles in the binding of compounds. These findings could be helpful for blocking IN-LEDGF/p75 interaction, and provide a method for avoiding viral resistance and cross-resistance.

  11. The 3D structures of G-quadruplexes of HIV-1 integrase inhibitors: molecular dynamics simulations in aqueous solution and in the gas phase.

    PubMed

    Li, Ming-Hui; Zhou, Yi-Han; Luo, Quan; Li, Ze-Sheng

    2010-04-01

    The unimolecular G-quadruplex structures of d(GGGTGGGTGGGTGGGT) (G1) and d(GTGGTGGGTGGGTGGGT) (G2) are known as the potent nanomolar HIV-1 integrase inhibitors, thus investigating the 3D structures of the two sequences is significant for structure-based rational anti-HIV drug design. In this research, based on the experimental data of circular dichroism (CD) spectropolarimetry and electrospray ionization mass spectrometry (ESI-MS), the initial models of G1 and G2 were constructed by molecular modeling method. The modeling structures of G1 and G2 are intramolecular parallel-stranded quadruplex conformation with three guanine tetrads. Particularly, the structure of G2 possesses a T loop residue between the first and the second G residues that are the component of two adjacent same-stranded G-tetrad planes. This structure proposed by us has a very novel geometry and is different from all reported G-quadruplexes. The extended (35 ns) molecular dynamic (MD) simulations for the models indicate that the G-quadruplexes maintain their structures very well in aqueous solution whether the existence of K(+) or NH (4) (+) in the central channel. Furthermore, we perform 500 ns MD simulations for the models in the gas phase. The results show that all the ion-G-quadruplex complexes are maintained during the whole simulations, despite the large magnitude of phosphate-phosphate repulsions. The gas phase MD simulations provide a good explanation to ESI-MS experiments. Our 3D structures for G1 and G2 will assist in understanding geometric formalism of G-quadruplex folding and may be helpful as a platform for rational anti-HIV drug design.

  12. Computational modeling of Repeat1 region of INI1/hSNF5: An evolutionary link with ubiquitin.

    PubMed

    Bhutoria, Savita; Kalpana, Ganjam V; Acharya, Seetharama A

    2016-09-01

    The structure of a protein can be very informative of its function. However, determining protein structures experimentally can often be very challenging. Computational methods have been used successfully in modeling structures with sufficient accuracy. Here we have used computational tools to predict the structure of an evolutionarily conserved and functionally significant domain of Integrase interactor (INI)1/hSNF5 protein. INI1 is a component of the chromatin remodeling SWI/SNF complex, a tumor suppressor and is involved in many protein-protein interactions. It belongs to SNF5 family of proteins that contain two conserved repeat (Rpt) domains. Rpt1 domain of INI1 binds to HIV-1 Integrase, and acts as a dominant negative mutant to inhibit viral replication. Rpt1 domain also interacts with oncogene c-MYC and modulates its transcriptional activity. We carried out an ab initio modeling of a segment of INI1 protein containing the Rpt1 domain. The structural model suggested the presence of a compact and well defined ββαα topology as core structure in the Rpt1 domain of INI1. This topology in Rpt1 was similar to PFU domain of Phospholipase A2 Activating Protein, PLAA. Interestingly, PFU domain shares similarity with Ubiquitin and has ubiquitin binding activity. Because of the structural similarity between Rpt1 domain of INI1 and PFU domain of PLAA, we propose that Rpt1 domain of INI1 may participate in ubiquitin recognition or binding with ubiquitin or ubiquitin related proteins. This modeling study may shed light on the mode of interactions of Rpt1 domain of INI1 and is likely to facilitate future functional studies of INI1. © 2016 The Protein Society.

  13. A long-acting integrase inhibitor protects female macaques from repeated high-dose intravaginal SHIV challenge.

    PubMed

    Andrews, Chasity D; Yueh, Yun Lan; Spreen, William R; St Bernard, Leslie; Boente-Carrera, Mar; Rodriguez, Kristina; Gettie, Agegnehu; Russell-Lodrigue, Kasi; Blanchard, James; Ford, Susan; Mohri, Hiroshi; Cheng-Mayer, Cecilia; Hong, Zhi; Ho, David D; Markowitz, Martin

    2015-01-14

    Long-acting GSK1265744 (GSK744 LA) is a strand transfer inhibitor of the HIV/SIV (simian immunodeficiency virus) integrase and was shown to be an effective preexposure prophylaxis (PrEP) agent in a low-dose intrarectal SHIV (simian-human immunodeficiency virus) rhesus macaque challenge model. We examined the pharmacokinetics and efficacy of GSK744 LA as PrEP against repeat high-dose intravaginal SHIV challenge in female rhesus macaques treated with Depo-Provera (depot medroxyprogesterone acetate), which promotes viral transmission vaginally. When Depo-Provera-treated female rhesus macaques were dosed with GSK744 LA (50 mg/kg) monthly, systemic and tissue drug concentrations were lower than previously observed in male rhesus macaques. GSK744 concentrations were fivefold lower on average in cervical tissues than in rectal tissues. Eight female rhesus macaques were treated with GSK744 LA at week 0, and four female rhesus macaques served as controls. All animals received a high-dose challenge of SHIV162P3 at week 1. No infection was detected in GSK744 LA-treated rhesus macaques, whereas viremia was detected 1 to 2 weeks after SHIV challenge in all control animals. The GSK744 LA-treated rhesus macaques were given a second administration of drug at week 4 and further challenged at weeks 5 and 7. GSK744 LA treatment protected six of eight female rhesus macaques against three high-dose SHIV challenges, whereas all control animals became infected after the first challenge (P = 0.0003, log-rank test). These results support further clinical development of GSK744 LA for PrEP. Copyright © 2015, American Association for the Advancement of Science.

  14. 5-Hydroxypyrido[2,3-b]pyrazin-6(5H)-one derivatives as novel dual inhibitors of HIV-1 reverse transcriptase-associated ribonuclease H and integrase.

    PubMed

    Sun, Lin; Gao, Ping; Dong, Guanyu; Zhang, Xujie; Cheng, Xiqiang; Ding, Xiao; Wang, Xueshun; Daelemans, Dirk; De Clercq, Erik; Pannecouque, Christophe; Menéndez-Arias, Luis; Zhan, Peng; Liu, Xinyong

    2018-06-18

    We reported herein the design, synthesis and biological evaluation of a series of 5-hydroxypyrido[2,3-b]pyrazin-6(5H)-one derivatives as HIV-1 reverse transcriptase (RT) ribonuclease H (RNase H) inhibitors using a privileged structure-guided scaffold refining strategy. In view of the similarities between the pharmacophore model of RNase H and integrase (IN) inhibitors as well as their catalytic sites, we also performed IN inhibition assays. Notably, the majority of these derivatives inhibited RNase H and IN at micromolar concentrations. Among them, compound 7a exhibited similar inhibitory activity against RNase H and IN (IC 50 RNase H  = 1.77 μM, IC 50 IN  = 1.18 μM, ratio = 1.50). To the best of our knowledge, this is the first reported dual HIV-1 RNase H-IN inhibitor based on a 5-hydroxypyrido[2,3-b]pyrazin-6(5H)-one structure. Molecular modeling has been used to predict the binding mode of 7a in complex with the catalytic cores of HIV-1 RNase H and IN. Taken together these results strongly support the feasibility of developing HIV-1 dual inhibitors from analog-based optimization of divalent metal ion chelators. Recently, the identification of dual inhibitors proved to be a highly effective strategy for novel antivirals discovery. Therefore, these compounds appear to be useful leads that can be further modified to develop more valuable anti-HIV-1 molecules with suitable drug profiles. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  15. Drug resistance in B and non-B subtypes amongst subjects recently diagnosed as primary/recent or chronic HIV-infected over the period 2013-2016: Impact on susceptibility to first-line strategies including integrase strand-transfer inhibitors.

    PubMed

    Andreis, Samantha; Basso, Monica; Scaggiante, Renzo; Cruciani, Mario; Ferretto, Roberto; Manfrin, Vinicio; Panese, Sandro; Rossi, Maria Cristina; Francavilla, Ermenegildo; Boldrin, Caterina; Alvarez, Mario; Dal Bello, Federico; Mengoli, Carlo; Turriziani, Ombretta; Sarmati, Loredana; Antonelli, Guido; Andreoni, Massimo; Palù, Giorgio; Parisi, Saverio Giuseppe

    2017-09-01

    To characterize the prevalence of transmitted drug resistance mutations (TDRMs) by plasma analysis of 750 patients at the time of HIV diagnosis from January 1, 2013 to November 16, 2016 in the Veneto region (Italy), where all drugs included in the recommended first line therapies were prescribed, included integrase strand transfer inhibitors (InNSTI). TDRMs were defined according to the Stanford HIV database algorithm. Subtype B was the most prevalent HIV clade (67.3%). A total of 92 patients (12.3%) were expected to be resistant to one drug at least, most with a single class mutation (60/68-88.2% in subtype B infected subjectsand 23/24-95.8% in non-B subjects) and affecting mainly NNRTIs. No significant differences were observed between the prevalence rates of TDRMs involving one or more drugs, except for the presence of E138A quite only in patients with B subtype and other NNRTI in subjects with non-B infection. The diagnosis of primary/recent infection was made in 73 patients (9.7%): they had almost only TDRMs involving a single class. Resistance to InSTI was studied in 484 subjects (53 with primary-recent infection), one patient had 143C in 2016, a total of thirteen 157Q mutations were detected (only one in primary/recent infection). Only one major InSTI-TDRM was identified but monitoring of TDRMs should continue in the light of continuing presence of NNRTI-related mutation amongst newly diagnosed subjects, sometime impacting also to modern NNRTI drugs recommended in first-line therapy. Copyright © 2017 International Society for Chemotherapy of Infection and Cancer. Published by Elsevier Ltd. All rights reserved.

  16. A novel Streptomyces spp. integration vector derived from the S. venezuelae phage, SV1.

    PubMed

    Fayed, Bahgat; Younger, Ellen; Taylor, Gabrielle; Smith, Margaret C M

    2014-05-30

    Integrating vectors based on the int/attP loci of temperate phages are convenient and used widely, particularly for cloning genes in Streptomyces spp. We have constructed and tested a novel integrating vector based on g27, encoding integrase, and attP site from the phage, SV1. This plasmid, pBF3 integrates efficiently in S. coelicolor and S. lividans but surprisingly fails to generate stable integrants in S. venezuelae, the natural host for phage SV1. pBF3 promises to be a useful addition to the range of integrating vectors currently available for Streptomyces molecular genetics.

  17. A tailing genome walking method suitable for genomes with high local GC content.

    PubMed

    Liu, Taian; Fang, Yongxiang; Yao, Wenjuan; Guan, Qisai; Bai, Gang; Jing, Zhizhong

    2013-10-15

    The tailing genome walking strategies are simple and efficient. However, they sometimes can be restricted due to the low stringency of homo-oligomeric primers. Here we modified their conventional tailing step by adding polythymidine and polyguanine to the target single-stranded DNA (ssDNA). The tailed ssDNA was then amplified exponentially with a specific primer in the known region and a primer comprising 5' polycytosine and 3' polyadenosine. The successful application of this novel method for identifying integration sites mediated by φC31 integrase in goat genome indicates that the method is more suitable for genomes with high complexity and local GC content. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Gold nanoparticles to improve HIV drug delivery.

    PubMed

    Garrido, Carolina; Simpson, Carrie A; Dahl, Noelle P; Bresee, Jamee; Whitehead, Daniel C; Lindsey, Erick A; Harris, Tyler L; Smith, Candice A; Carter, Carly J; Feldheim, Daniel L; Melander, Christian; Margolis, David M

    2015-01-01

    Antiretroviral therapy (ART) has improved lifespan and quality of life of patients infected with the HIV-1. However, ART has several potential limitations, including the development of drug resistance and suboptimal penetration to selected anatomic compartments. Improving the delivery of antiretroviral molecules could overcome several of the limitations of current ART. Two to ten nanometer diameter inorganic gold crystals serve as a base scaffold to combine molecules with an array of properties in its surface. We show entry into different cell types, antiviral activity of an HIV integrase inhibitor conjugated in a gold nanoparticle and penetration into the brain in vivo without toxicity. Herein, gold nanoparticles prove to be a promising tool to use in HIV therapy.

  19. Might dolutegravir be part of a functional cure for HIV?

    PubMed

    Wainberg, Mark A; Han, Ying-Shan; Mesplède, Thibault

    2016-05-01

    Antiretroviral therapy (ART) has greatly decreased HIV-related morbidity and mortality. However, HIV can establish viral reservoirs that evade both the immune system and ART. Dolutegravir (DTG) is a second-generation integrase strand transfer inhibitor (INSTI) related to the first-generation INSTIs raltegravir (RAL) and elvitegravir (EVG). DTG shows a higher genetic barrier to the development of HIV-1 resistance than RAL and EVG. More interestingly, clinical resistance mutations to DTG in treatment-naïve patients have not been observed to date. This review summarizes recent studies on strategies toward a cure for HIV, explores resistance profiles of DTG, and discusses how DTG might help in finding a functional cure for HIV.

  20. A Simple And Rapid Minicircle DNA Vector Manufacturing System

    PubMed Central

    Kay, Mark A; He, Cheng-Yi; Chen, Zhi-Ying

    2010-01-01

    Minicircle DNA vectors consisting of a circular expression cassette devoid of the bacterial plasmid DNA backbone provides several advantages including sustained transgene expression in quiescent cells/tissues. Their use has been limited by labor-intensive production. We report on a strategy for making multiple genetic modifications in E.coli to construct a producer strain that stably expresses a set of inducible minicircle-assembly enzymes, the øC31-integrase and I-SceI homing-endonuclease. This bacterial strain is capable of producing highly purified minicircle yields in the same time frame as routine plasmid DNA. It is now feasible for minicircle DNA vectors to replace routine plasmids in mammalian transgene expression studies. PMID:21102455

  1. A quantum mechanic/molecular mechanic study of the wild-type and N155S mutant HIV-1 integrase complexed with diketo acid.

    PubMed

    Alves, Cláudio Nahum; Martí, Sergio; Castillo, Raquel; Andrés, Juan; Moliner, Vicent; Tuñón, Iñaki; Silla, Estanislao

    2008-04-01

    Integrase (IN) is one of the three human immunodeficiency virus type 1 (HIV-1) enzymes essential for effective viral replication. Recently, mutation studies have been reported that have shown that a certain degree of viral resistance to diketo acids (DKAs) appears when some amino acid residues of the IN active site are mutated. Mutations represent a fascinating experimental challenge, and we invite theoretical simulations for the disclosure of still unexplored features of enzyme reactions. The aim of this work is to understand the molecular mechanisms of HIV-1 IN drug resistance, which will be useful for designing anti-HIV inhibitors with unique resistance profiles. In this study, we use molecular dynamics simulations, within the hybrid quantum mechanics/molecular mechanics (QM/MM) approach, to determine the protein-ligand interaction energy for wild-type and N155S mutant HIV-1 IN, both complexed with a DKA. This hybrid methodology has the advantage of the inclusion of quantum effects such as ligand polarization upon binding, which can be very important when highly polarizable groups are embedded in anisotropic environments, for example in metal-containing active sites. Furthermore, an energy terms decomposition analysis was performed to determine contributions of individual residues to the enzyme-inhibitor interactions. The results reveal that there is a strong interaction between the Lys-159, Lys-156, and Asn-155 residues and Mg(2+) cation and the DKA inhibitor. Our calculations show that the binding energy is higher in wild-type than in the N155S mutant, in accordance with the experimental results. The role of the mutated residue has thus been checked as maintaining the structure of the ternary complex formed by the protein, the Mg(2+) cation, and the inhibitor. These results might be useful to design compounds with more interesting anti-HIV-1 IN activity on the basis of its three-dimensional structure.

  2. Evaluation of the effect of short-term treatment with the integrase inhibitor raltegravir (Isentress) on the course of progressive feline leukemia virus infection.

    PubMed

    Boesch, Andrea; Cattori, Valentino; Riond, Barbara; Willi, Barbara; Meli, Marina L; Rentsch, Katharina M; Hosie, Margaret J; Hofmann-Lehmann, Regina; Lutz, Hans

    2015-02-25

    Cats persistently infected with the gammaretrovirus feline leukemia virus (FeLV) are at risk to die within months to years from FeLV-associated disease, such as immunosuppression, anemia or lymphoma/leukemia. The integrase inhibitor raltegravir has been demonstrated to reduce FeLV replication in vitro. The aim of the present study was to investigate raltegravir in vivo for its safety and efficacy to suppress FeLV replication. The safety was tested in three naïve specified pathogen-free (SPF) cats during a 15 weeks treatment period (initially 20mg then 40mg orally b.i.d.). No adverse effects were noted. The efficacy was tested in seven persistently FeLV-infected SPF cats attained from 18 cats experimentally exposed to FeLV-A/Glasgow-1. The seven cats were treated during nine weeks (40mg then 80mg b.i.d.). Raltegravir was well tolerated even at the higher dose. A significant decrease in plasma viral RNA loads (∼5×) was found; however, after treatment termination a rebound effect was observed. Only one cat developed anti-FeLV antibodies and viral RNA loads remained decreased after treatment termination. Of note, one of the untreated FeLV-A infected cats developed fatal FeLV-C associated anemia within 5 weeks of FeLV-A infection. Moreover, progressive FeLV infection was associated with significantly lower enFeLV loads prior to infection supporting that FeLV susceptibility may be related to the genetic background of the cat. Overall, our data demonstrate the ability of raltegravir to reduce viral replication also in vivo. However, no complete control of viremia was achieved. Further investigations are needed to find an optimized treatment against FeLV. (250 words). Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Discordant predictions of residual activity could impact dolutegravir prescription upon raltegravir failure.

    PubMed

    Theys, Kristof; Abecasis, Ana; Libin, Pieter; Gomes, Perpe Tua; Cabanas, Joaquim; Camacho, Ricardo J; Van Laethem, Kristel

    2015-09-01

    Dolutegravir is approved for the treatment of HIV-1 patients exposed to other integrase inhibitors, but the decision to use dolutegravir in this setting should be informed by drug resistance testing. This study determined the extent of disagreement in predicted residual dolutegravir activity after raltegravir use, and identified individual mutational patterns for which uncertainty exists among HIV-1 expert systems. Mutation patterns were classified in raltegravir signature pathways including positions 143, 148 and 155, and interpreted into clinically informative resistance levels using genotypic drug resistance interpretation systems ANRS v24, HIVdb v7.0 and Rega v9.1.0, and instructions of dolutegravir use as approved by the Food and Drug Administration and the European Medicines Agency. In 216HIV-1 patients failing raltegravir-therapy, 87% patients displayed mutations associated with resistance towards integrase inhibitors. A total of 141 unique mutational patterns were observed, with N155H (25.4%), Q148H (16.2%) and Y143R (8.3%) the most prevalent signature mutations. The Q148 pathway occurred almost exclusively in HIV-1 subtype B viruses. Concordances in predicted dolutegravir susceptibility scores among 5 systems were obtained in 57.8% of patients, and concordant intermediate resistant and concordant resistant scores were only observed in 6.5% and 0.9% of patients, respectively. However, systems individually scored higher levels of dolutegravir intermediate resistance and resistance, ranging from 4.2% to 10.2% and from 14.8% to 22.7% of patients, respectively. A consensus on interpreting the extent of residual activity was lacking in 34.7% of patients and was highly resistance pathway-specific. Dolutegravir may potentially be effective in the majority of HIV-1 patients failing raltegravir, but concern over the uncertainty in predicted residual activity could withhold clinicians from prescribing dolutegravir during its clinical assessment. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Dolutegravir versus placebo in subjects harbouring HIV-1 with integrase inhibitor resistance associated substitutions: 48-week results from VIKING-4, a randomized study.

    PubMed

    Akil, Bisher; Blick, Gary; Hagins, Debbie P; Ramgopal, Moti N; Richmond, Gary J; Samuel, Rafik M; Givens, Naomi; Vavro, Cindy; Song, Ivy H; Wynne, Brian; Ait-Khaled, Mounir

    2015-01-01

    The Phase III VIKING-3 study demonstrated that dolutegravir (DTG) 50 mg twice daily was efficacious in antiretroviral therapy (ART)-experienced subjects harbouring raltegravir- and/or elvitegravir-resistant HIV-1. VIKING-4 (ING116529) included a placebo-controlled 7-day monotherapy phase to demonstrate that short-term antiviral activity was attributable to DTG. VIKING-4 is a Phase III randomized, double-blind study in therapy-experienced adults with integrase inhibitor (INI)-resistant virus randomized to DTG 50 mg twice daily or placebo while continuing their failing regimen (without raltegravir or elvitegravir) for 7 days (clinicaltrials.gov identifier NCT01568892). At day 8, all subjects switched to open-label DTG 50 mg twice daily and optimized background therapy including ≥1 fully active drug. The primary end point was change from baseline in plasma HIV-1 RNA at day 8. The study population (n=30) was highly ART-experienced with advanced HIV disease. Patients had extensive baseline resistance to all approved antiretroviral classes. Adjusted mean change in HIV-1 RNA at day 8 was 
-1.06 log10 copies/ml for the DTG arm and 0.10 log10 copies/ml for the placebo arm (treatment difference -1.16 log10 copies/ml [-1.52, -0.80]; P<0.001). Overall, 47% and 57% of subjects had plasma HIV-1 RNA <50 and <400 copies/ml at week 24, and 40% and 53% at week 48, respectively. No discontinuations due to drug-related adverse events occurred in the study. The observed day 8 antiviral activity in this highly treatment-experienced population with INI-resistant HIV-1 was attributable to DTG. Longer-term efficacy (after considering baseline ART resistance) and safety during the open-label phase were in-line with the results of the larger VIKING-3 study.

  5. Tn5253 family integrative and conjugative elements carrying mef(I) and catQ determinants in Streptococcus pneumoniae and Streptococcus pyogenes.

    PubMed

    Mingoia, Marina; Morici, Eleonora; Morroni, Gianluca; Giovanetti, Eleonora; Del Grosso, Maria; Pantosti, Annalisa; Varaldo, Pietro E

    2014-10-01

    The linkage between the macrolide efflux gene mef(I) and the chloramphenicol inactivation gene catQ was first described in Streptococcus pneumoniae (strain Spn529), where the two genes are located in a module designated IQ element. Subsequently, two different defective IQ elements were detected in Streptococcus pyogenes (strains Spy029 and Spy005). The genetic elements carrying the three IQ elements were characterized, and all were found to be Tn5253 family integrative and conjugative elements (ICEs). The ICE from S. pneumoniae (ICESpn529IQ) was sequenced, whereas the ICEs from S. pyogenes (ICESpy029IQ and ICESpy005IQ, the first Tn5253-like ICEs reported in this species) were characterized by PCR mapping, partial sequencing, and restriction analysis. ICESpn529IQ and ICESpy029IQ were found to share the intSp 23FST81 integrase gene and an identical Tn916 fragment, whereas ICESpy005IQ has int5252 and lacks Tn916. All three ICEs were found to lack the linearized pC194 plasmid that is usually associated with Tn5253-like ICEs, and all displayed a single copy of a toxin-antitoxin operon that is typically contained in the direct repeats flanking the excisable pC194 region when this region is present. Two different insertion sites of the IQ elements were detected, one in ICESpn529IQ and ICESpy029IQ, and another in ICESpy005IQ. The chromosomal integration of the three ICEs was site specific, depending on the integrase (intSp 23FST81 or int5252). Only ICESpy005IQ was excised in circular form and transferred by conjugation. By transformation, mef(I) and catQ were cotransferred at a high frequency from S. pyogenes Spy005 and at very low frequencies from S. pneumoniae Spn529 and S. pyogenes Spy029. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  6. Targeted transgene insertion into the CHO cell genome using Cre recombinase-incorporating integrase-defective retroviral vectors.

    PubMed

    Kawabe, Yoshinori; Shimomura, Takuya; Huang, Shuohao; Imanishi, Suguru; Ito, Akira; Kamihira, Masamichi

    2016-07-01

    Retroviral vectors have served as efficient gene delivery tools in various biotechnology fields. However, viral DNA is randomly inserted into the genome, which can cause problems, such as insertional mutagenesis and gene silencing. Previously, we reported a site-specific gene integration system, in which a transgene is integrated into a predetermined chromosomal locus of Chinese hamster ovary (CHO) cells using integrase-defective retroviral vectors (IDRVs) and Cre recombinase. In this system, a Cre expression plasmid is transfected into founder cells before retroviral transduction. In practical applications of site-specific gene modification such as for hard-to-transfect cells or for in vivo gene delivery, both the transgene and the Cre protein into retroviral virions should be encapsulate. Here, we generated novel hybrid IDRVs in which viral genome and enzymatically active Cre can be delivered (Cre-IDRVs). Cre-IDRVs encoding marker genes, neomycin resistance and enhanced green fluorescent protein (EGFP), flanked by wild-type and mutated loxP sites were produced using an expression plasmid for a chimeric protein of Cre and retroviral gag-pol. After analyzing the incorporation of the Cre protein into retroviral virions by Western blotting, the Cre-IDRV was infected into founder CHO cells, in which marker genes (hygromycin resistance and red fluorescent protein) flanked with corresponding loxP sites are introduced into the genome. G418-resistant colonies expressing GFP appeared and the site-specific integration of the transgene into the expected chromosomal site was confirmed by PCR and sequencing of amplicons. Moreover, when Cre-IDRV carried a gene expression unit for a recombinant antibody, the recombinant cells in which the antibody expression cassette was integrated in a site-specific manner were generated and the cells produced the recombinant antibody. This method may provide a promising tool to perform site-specific gene modification according to Cre-based cell engineering. Biotechnol. Bioeng. 2016;113: 1600-1610. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Novel Method for Simultaneous Quantification of Phenotypic Resistance to Maturation, Protease, Reverse Transcriptase, and Integrase HIV Inhibitors Based on 3′Gag(p2/p7/p1/p6)/PR/RT/INT-Recombinant Viruses: a Useful Tool in the Multitarget Era of Antiretroviral Therapy▿†

    PubMed Central

    Weber, Jan; Vazquez, Ana C.; Winner, Dane; Rose, Justine D.; Wylie, Doug; Rhea, Ariel M.; Henry, Kenneth; Pappas, Jennifer; Wright, Alison; Mohamed, Nizar; Gibson, Richard; Rodriguez, Benigno; Soriano, Vicente; King, Kevin; Arts, Eric J.; Olivo, Paul D.; Quiñones-Mateu, Miguel E.

    2011-01-01

    Twenty-six antiretroviral drugs (ARVs), targeting five different steps in the life cycle of the human immunodeficiency virus type 1 (HIV-1), have been approved for the treatment of HIV-1 infection. Accordingly, HIV-1 phenotypic assays based on common cloning technology currently employ three, or possibly four, different recombinant viruses. Here, we describe a system to assess HIV-1 resistance to all drugs targeting the three viral enzymes as well as viral assembly using a single patient-derived, chimeric virus. Patient-derived p2-INT (gag-p2/NCp7/p1/p6/pol-PR/RT/IN) products were PCR amplified as a single fragment (3,428 bp) or two overlapping fragments (1,657 bp and 2,002 bp) and then recombined into a vector containing a near-full-length HIV-1 genome with the Saccharomyces cerevisiae uracil biosynthesis gene (URA3) replacing the 3,428 bp p2-INT segment (Dudley et al., Biotechniques 46:458–467, 2009). P2-INT-recombinant viruses were employed in drug susceptibility assays to test the activity of protease (PI), nucleoside/nucleotide reverse transcriptase (NRTI), nonnucleoside reverse transcriptase (NNRTI), and integrase strand-transfer (INSTI) inhibitors. Using a single standardized test (ViralARTS HIV), this new technology permits the rapid and automated quantification of phenotypic resistance for all known and candidate antiretroviral drugs targeting all viral enzymes (PR, RT, including polymerase and RNase H activities, and IN), some of the current and potential assembly inhibitors, and any drug targeting Pol or Gag precursor cleavage sites (relevant for PI and maturation inhibitors) This novel assay may be instrumental (i) in the development and clinical assessment of novel ARV drugs and (ii) to monitor patients failing prior complex treatment regimens. PMID:21628544

  8. Effects of treatment with suppressive combination antiretroviral drug therapy and the histone deacetylase inhibitor suberoylanilide hydroxamic acid; (SAHA) on SIV-infected Chinese rhesus macaques.

    PubMed

    Ling, Binhua; Piatak, Michael; Rogers, Linda; Johnson, Ann-Marie; Russell-Lodrigue, Kasi; Hazuda, Daria J; Lifson, Jeffrey D; Veazey, Ronald S

    2014-01-01

    Viral reservoirs-persistent residual virus despite combination antiretroviral therapy (cART)-remain an obstacle to cure of HIV-1 infection. Difficulty studying reservoirs in patients underscores the need for animal models that mimics HIV infected humans on cART. We studied SIV-infected Chinese-origin rhesus macaques (Ch-RM) treated with intensive combination antiretroviral therapy (cART) and 3 weeks of treatment with the histone deacetyalse inhibitor, suberoylanilide hydroxamic acid (SAHA). SIVmac251 infected Ch-RM received reverse transcriptase inhibitors PMPA and FTC and integrase inhibitor L-870812 beginning 7 weeks post infection. Integrase inhibitor L-900564 and boosted protease inhibitor treatment with Darunavir and Ritonavir were added later. cART was continued for 45 weeks, with daily SAHA administered for the last 3 weeks, followed by euthanasia/necropsy. Plasma viral RNA and cell/tissue-associated SIV gag RNA and DNA were quantified by qRT-PCR/qPCR, with flow cytometry monitoring changes in immune cell populations. Upon cART initiation, plasma viremia declined, remaining <30 SIV RNA copy Eq/ml during cART, with occasional blips. Decreased viral replication was associated with decreased immune activation and partial restoration of intestinal CD4+ T cells. SAHA was well tolerated but did not result in demonstrable treatment-associated changes in plasma or cell associated viral parameters. The ability to achieve and sustain virological suppression makes cART-suppressed, SIV-infected Ch-RM a potentially useful model to evaluate interventions targeting residual virus. However, despite intensive cART over one year, persistent viral DNA and RNA remained in tissues of all three animals. While well tolerated, three weeks of SAHA treatment did not demonstrably impact viral RNA levels in plasma or tissues; perhaps reflecting dosing, sampling and assay limitations.

  9. Plasma CXCL10, sCD163 and sCD14 Levels Have Distinct Associations with Antiretroviral Treatment and Cardiovascular Disease Risk Factors

    PubMed Central

    Castley, Alison; Williams, Leah; James, Ian; Guelfi, George; Berry, Cassandra; Nolan, David

    2016-01-01

    We investigate the associations of three established plasma biomarkers in the context of HIV and treatment-related variables including a comprehensive cardiovascular disease risk assessment, within a large ambulatory HIV cohort. Patients were recruited in 2010 to form the Royal Perth Hospital HIV/CVD risk cohort. Plasma sCD14, sCD163 and CXCL10 levels were measured in 475 consecutive patients with documented CVD risk (age, ethnicity, gender, smoking, blood pressure, BMI, fasting metabolic profile) and HIV treatment history including immunological/virological outcomes. The biomarkers assessed showed distinct associations with virological response: CXCL10 strongly correlated with HIV-1 RNA (p<0.001), sCD163 was significantly reduced among ‘aviraemic’ patients only (p = 0.02), while sCD14 was unaffected by virological status under 10,000 copies/mL (p>0.2). Associations between higher sCD163 and protease inhibitor therapy (p = 0.05) and lower sCD14 with integrase inhibitor therapy (p = 0.02) were observed. Levels of sCD163 were also associated with CVD risk factors (age, ethnicity, HDL, BMI), with a favourable influence of Framingham score <10% (p = 0.04). Soluble CD14 levels were higher among smokers (p = 0.002), with no effect of other CVD risk factors, except age (p = 0.045). Our findings confirm CXCL10, sCD163 and sCD14 have distinct associations with different aspects of HIV infection and treatment. Levels of CXCL10 correlated with routinely monitored variables, sCD163 levels reflect a deeper level of virological suppression and influence of CVD risk factors, while sCD14 levels were not associated with routinely monitored variables, with evidence of specific effects of smoking and integrase inhibitor therapy warranting further investigation. PMID:27355513

  10. Prediction of the binding mode and resistance profile for a dual-target pyrrolyl diketo acid scaffold against HIV-1 integrase and reverse-transcriptase-associated ribonuclease H.

    PubMed

    Yang, Fengyuan; Zheng, Guoxun; Fu, Tingting; Li, Xiaofeng; Tu, Gao; Li, Ying Hong; Yao, Xiaojun; Xue, Weiwei; Zhu, Feng

    2018-06-27

    The rapid emergence of drug-resistant variants is one of the most common causes of highly active antiretroviral therapeutic (HAART) failure in patients infected with HIV-1. Compared with the existing HAART, the recently developed pyrrolyl diketo acid scaffold targeting both HIV-1 integrase (IN) and reverse transcriptase-associated ribonuclease H (RNase H) is an efficient approach to counteract the failure of anti-HIV treatment due to drug resistance. However, the binding mode and potential resistance profile of these inhibitors with important mechanistic principles remain poorly understood. To address this issue, an integrated computational method was employed to investigate the binding mode of inhibitor JMC6F with HIV-1 IN and RNase H. By using per-residue binding free energy decomposition analysis, the following residues: Asp64, Thr66, Leu68, Asp116, Tyr143, Gln148 and Glu152 in IN, Asp443, Glu478, Trp536, Lys541 and Asp549 in RNase H were identified as key residues for JMC6F binding. And then computational alanine scanning was carried to further verify the key residues. Moreover, the resistance profile of the currently known major mutations in HIV-1 IN and 2 mutations in RNase H against JMC6F was predicted by in silico mutagenesis studies. The results demonstrated that only three mutations in HIV-1 IN (Y143C, Q148R and N155H) and two mutations in HIV-1 RNase H (Y501R and Y501W) resulted in a reduction of JMC6F potency, thus indicating their potential role in providing resistance to JMC6F. These data provided important insights into the binding mode and resistance profile of the inhibitors with a pyrrolyl diketo acid scaffold in HIV-1 IN and RNase H, which would be helpful for the development of more effective dual HIV-1 IN and RNase H inhibitors.

  11. Transmitted drug resistance in patients with acute/recent HIV infection in Brazil.

    PubMed

    Ferreira, Ana Cristina G; Coelho, Lara E; Grinsztejn, Eduarda; Jesus, Carlos S de; Guimarães, Monick L; Veloso, Valdiléa G; Grinsztejn, Beatriz; Cardoso, Sandra W

    The widespread use of antiretroviral therapy increased the transmission of antiretroviral resistant HIV strains. Antiretroviral therapy initiation during acute/recent HIV infection limits HIV reservoirs and improves immune response in HIV infected individuals. Transmitted drug resistance may jeopardize the early goals of early antiretroviral treatment among acute/recent HIV infected patients. Patients with acute/recent HIV infection who underwent resistance test before antiretroviral treatment initiation were included in this analysis. HIV-1 sequences were obtained using an in house protease/reverse transcriptase genotyping assay. Transmitted drug resistance was identified according to the Stanford HIV Database for Transmitted Drug Resistance Mutations, based on WHO 2009 surveillance list, and HIV-1 subtyping according to Rega HIV-1 subtyping tool. Comparison between patients with and without transmitted drug resistance was made using Kruskal-Wallis and Chi-square tests. Forty-three patients were included, 13 with acute HIV infection and 30 with recent HIV infection. The overall transmitted drug resistance prevalence was 16.3% (95% confidence interval [CI]: 8.1-30.0%). The highest prevalence of resistance (11.6%, 95% CI: 8.1-24.5) was against non-nucleoside reverse transcriptase inhibitors, and K103N was the most frequently identified mutation. The high prevalence of nonnucleoside reverse transcriptase inhibitors resistance indicates that efavirenz-based regimen without prior resistance testing is not ideal for acutely/recently HIV-infected individuals in our setting. In this context, the recent proposal of including integrase inhibitors as a first line regimen in Brazil could be an advantage for the treatment of newly HIV infected individuals. However, it also poses a new challenge, since integrase resistance test is not routinely performed for antiretroviral naive individuals. Further studies on transmitted drug resistance among acutely/recently HIV-infected are needed to inform the predictors of transmitted resistance and the antiretroviral therapy outcomes among these population. Copyright © 2017 Sociedade Brasileira de Infectologia. Published by Elsevier Editora Ltda. All rights reserved.

  12. Viral Activity | Center for Cancer Research

    Cancer.gov

    In the last four decades, HIV has gone from being an unknown killer to the cause of a manageable chronic disease. Stephen Hughes, Ph.D., Chief of CCR’s Retroviral Replication Laboratory, began his study of retroviruses before HIV was identified, but quickly made the virus the main focus of his research career. Hughes is internationally recognized for his work on two of the three essential enzymes in the HIV life cycle: reverse transcriptase (RT) and integrase (IN). His work has shed light on the emergence of drug resistance and, more recently, the nature of reservoirs of HIV that persist despite combination antiretroviral therapy. He has also used engineered host proteins that redirect HIV integration as tools for understanding eukaryotic chromatin organization.

  13. Gold nanoparticles to improve HIV drug delivery

    PubMed Central

    Garrido, Carolina; Simpson, Carrie A; Dahl, Noelle P; Bresee, Jamee; Whitehead, Daniel C; Lindsey, Erick A; Harris, Tyler L; Smith, Candice A; Carter, Carly J; Feldheim, Daniel L; Melander, Christian; Margolis, David M

    2015-01-01

    Background: Antiretroviral therapy (ART) has improved lifespan and quality of life of patients infected with the HIV-1. However, ART has several potential limitations, including the development of drug resistance and suboptimal penetration to selected anatomic compartments. Improving the delivery of antiretroviral molecules could overcome several of the limitations of current ART. Results & Conclusion: Two to ten nanometer diameter inorganic gold crystals serve as a base scaffold to combine molecules with an array of properties in its surface. We show entry into different cell types, antiviral activity of an HIV integrase inhibitor conjugated in a gold nanoparticle and penetration into the brain in vivo without toxicity. Herein, gold nanoparticles prove to be a promising tool to use in HIV therapy. PMID:26132521

  14. Implication of a Central Cysteine Residue and the HHCC Domain of Moloney Murine Leukemia Virus Integrase Protein in Functional Multimerization

    PubMed Central

    Donzella, George A.; Leon, Oscar; Roth, Monica J.

    1998-01-01

    Moloney murine leukemia virus (M-MuLV) IN-IN protein interactions important for catalysis of strand transfer and unimolecular and bimolecular disintegration reactions were investigated by using a panel of chemically modified M-MuLV IN proteins. Functional complementation of an HHCC-deleted protein (NΔ105) by an independent HHCC domain (CΔ232) was severely compromised by NEM modification of either subunit. Productive NΔ105 IN-DNA interactions with a disintegration substrate lacking a long terminal repeat 5′-single-stranded tail also required complementation by a functional HHCC domain. Virus encoding the C209A M-MuLV IN mutation exhibited delayed virion production and replication kinetics. PMID:9445080

  15. Filamentous phages of Ralstonia solanacearum: double-edged swords for pathogenic bacteria.

    PubMed

    Yamada, Takashi

    2013-01-01

    Some phages from genus Inovirus use host or bacteriophage-encoded site-specific integrases or recombinases establish a prophage state. During integration or excision, a superinfective form can be produced. The three states (free, prophage, and superinfective) of such phages exert different effects on host bacterial phenotypes. In Ralstonia solanacearum, the causative agent of bacterial wilt disease of crops, the bacterial virulence can be positively or negatively affected by filamentous phages, depending on their state. The presence or absence of a repressor gene in the phage genome may be responsible for the host phenotypic differences (virulent or avirulent) caused by phage infection. This strategy of virulence control may be widespread among filamentous phages that infect pathogenic bacteria of plants.

  16. Inhibiting the HIV Integration Process: Past, Present, and the Future

    PubMed Central

    2013-01-01

    HIV integrase (IN) catalyzes the insertion into the genome of the infected human cell of viral DNA produced by the retrotranscription process. The discovery of raltegravir validated the existence of the IN, which is a new target in the field of anti-HIV drug research. The mechanism of catalysis of IN is depicted, and the characteristics of the inhibitors of the catalytic site of this viral enzyme are reported. The role played by the resistance is elucidated, as well as the possibility of bypassing this problem. New approaches to block the integration process are depicted as future perspectives, such as development of allosteric IN inhibitors, dual inhibitors targeting both IN and other enzymes, inhibitors of enzymes that activate IN, activators of IN activity, as well as a gene therapy approach. PMID:24025027

  17. Retroviral integration: Site matters

    PubMed Central

    Demeulemeester, Jonas; De Rijck, Jan

    2015-01-01

    Here, we review genomic target site selection during retroviral integration as a multistep process in which specific biases are introduced at each level. The first asymmetries are introduced when the virus takes a specific route into the nucleus. Next, by co‐opting distinct host cofactors, the integration machinery is guided to particular chromatin contexts. As the viral integrase captures a local target nucleosome, specific contacts introduce fine‐grained biases in the integration site distribution. In vivo, the established population of proviruses is subject to both positive and negative selection, thereby continuously reshaping the integration site distribution. By affecting stochastic proviral expression as well as the mutagenic potential of the virus, integration site choice may be an inherent part of the evolutionary strategies used by different retroviruses to maximise reproductive success. PMID:26293289

  18. Discrimination of Single Base Pair Differences Among Individual DNA Molecules Using a Nanopore

    NASA Technical Reports Server (NTRS)

    Vercoutere, Wenonah; DeGuzman, Veronica

    2003-01-01

    The protein toxin alpha-hemolysin form nanometer scale channels across lipid membranes. Our lab uses a single channel in an artificial lipid bilayer in a patch clamp device to capture and examine individual DNA molecules. This nanopore detector used with a support vector machine (SVM) can analyze DNA hairpin molecules on the millisecond time scale. We distinguish duplex stem length, base pair mismatches, loop length, and single base pair differences. The residual current fluxes also reveal structural molecular dynamics elements. DNA end-fraying (terminal base pair dissociation) can be observed as near full blockades, or spikes, in current. This technique can be used to investigate other biological processes dependent on DNA end-fraying, such as the processing of HIV DNA by HIV integrase.

  19. The site of antiviral action of 3-nitrosobenzamide on the infectivity process of human immunodeficiency virus in human lymphocytes.

    PubMed Central

    Rice, W G; Schaeffer, C A; Graham, L; Bu, M; McDougal, J S; Orloff, S L; Villinger, F; Young, M; Oroszlan, S; Fesen, M R

    1993-01-01

    The C-nitroso compound 3-nitrosobenzamide, which has been shown to remove zinc from the retroviral-type zinc finger of p7NC nucleocapsid proteins, inhibits acute infection of human immunodeficiency virus type 1 in cultured human lymphocytes. The attachment of the virus to lymphocytes and the activities of critical viral enzymes, such as reverse transcriptase, protease, and integrase, are not affected by 3-nitrosobenzamide. However, the process of reverse transcription to form proviral DNA is effectively abolished by the drug, identifying the mode of action of 3-nitrosobenzamide as interrupting the role of p7NC in accurate proviral DNA synthesis during the infectious phase of the virus life cycle. Images Fig. 3 Fig. 4 PMID:7692451

  20. Novel antiretroviral combinations in treatment-experienced patients with HIV infection: rationale and results.

    PubMed

    Taiwo, Babafemi; Murphy, Robert L; Katlama, Christine

    2010-09-10

    Novel antiretroviral drugs offer different degrees of improvement in activity against drug-resistant HIV, short- and long-term tolerability, and dosing convenience compared with earlier drugs. Those drugs approved more recently and commonly used in treatment-experienced patients include the entry inhibitor enfuvirtide, protease inhibitors (PIs) [darunavir and tipranavir], a C-C chemokine receptor (CCR) type 5 antagonist (maraviroc), an integrase inhibitor (raltegravir) and etravirine, a non-nucleoside reverse transcriptase inhibitor (NNRTI). Novel agents in earlier stages of development include a CCR5 monoclonal antibody (PRO 140) administered subcutaneously once weekly, once-daily integrase inhibitors (elvitegravir and S/GSK1349572), and several nucleoside (nucleotide) reverse transcriptase inhibitors and NNRTIs. Bevirimat, a maturation inhibitor, has compromised activity in the presence of relatively common Gag polymorphisms. Viral suppression is necessary to control the evolution of drug resistance, reduce chronic immune activation that probably underlies the excess morbidity and mortality in HIV-infected patients, and reduce viral transmission, including transmitted drug resistance. In general, the proportion of viraemic patients who achieve suppression increases with the number of active pharmacokinetically compatible antiretroviral drugs in the regimen. In the ANRS139-TRIO trial, 86% of highly treatment-experienced patients treated with darunavir-ritonavir, etravirine and raltegravir had HIV RNA <50 copies/mL at 48 weeks. In patients who had received at least 12 weeks of a stable regimen and had no darunavir resistance-associated mutations, once-daily darunavir boosted with ritonavir 100 mg was virologically noninferior with better lipid effects than with the twice-daily dosing, which requires a 200 mg total daily dose of ritonavir. Raltegravir plus a boosted PI is being investigated for second-line therapy in patients not responding to NNRTI-based first-line treatment in resource-limited settings (RLS). However, concerns about this potential strategy include the low barrier against resistance of raltegravir, limited penetration of some PIs into the CNS and the unknown impact of integrase polymorphisms seen more commonly in non-B subtype HIV-1. In patients who have already achieved viral suppression, novel agents may be used to simplify the dosing schedule, lower costs (such as by switching to boosted PI monotherapy), reduce adverse events or preserve antiretroviral drug options, especially since the absence of an HIV eradication strategy implies the need for life-long combination antiretroviral therapy. Switching enfuvirtide to raltegravir eliminated painful injection-site reactions without compromising virological suppression. Two studies found different virological outcomes when patients were switched from lopinavir/ritonavir to raltegravir, but there was an improvement in the lipid profile. Simplifying to darunavir-ritonavir monotherapy after suppression of plasma HIV RNA to <50 copies/mL has been found to be safe with no emergence of resistance in cases of viral rebound, but longer-term data are needed. The initial suggestion that maraviroc may possess unique CD4+ T-cell boosting effects was not confirmed in several clinical trials. Improved understanding of HIV pathogenesis has opened new frontiers for research such as identifying the sources, consequences and optimal management of residual viraemia in those with plasma HIV RNA <50 copies/mL. Globally, however, one of the most urgent priorities is providing the increasing number of treatment-experienced virologically failing patients in RLS with access to optimal treatment, including those treatments based on novel antiretroviral agents.

  1. The HIV-1 integrase-LEDGF allosteric inhibitor MUT-A: resistance profile, impairment of virus maturation and infectivity but without influence on RNA packaging or virus immunoreactivity.

    PubMed

    Amadori, Céline; van der Velden, Yme Ubeles; Bonnard, Damien; Orlov, Igor; van Bel, Nikki; Le Rouzic, Erwann; Miralles, Laia; Brias, Julie; Chevreuil, Francis; Spehner, Daniele; Chasset, Sophie; Ledoussal, Benoit; Mayr, Luzia; Moreau, François; García, Felipe; Gatell, José; Zamborlini, Alessia; Emiliani, Stéphane; Ruff, Marc; Klaholz, Bruno P; Moog, Christiane; Berkhout, Ben; Plana, Montserrat; Benarous, Richard

    2017-11-09

    HIV-1 Integrase (IN) interacts with the cellular co-factor LEDGF/p75 and tethers the HIV preintegration complex to the host genome enabling integration. Recently a new class of IN inhibitors was described, the IN-LEDGF allosteric inhibitors (INLAIs). Designed to interfere with the IN-LEDGF interaction during integration, the major impact of these inhibitors was surprisingly found on virus maturation, causing a reverse transcription defect in target cells. Here we describe the MUT-A compound as a genuine INLAI with an original chemical structure based on a new type of scaffold, a thiophene ring. MUT-A has all characteristics of INLAI compounds such as inhibition of IN-LEDGF/p75 interaction, IN multimerization, dual antiretroviral (ARV) activities, normal packaging of genomic viral RNA and complete Gag protein maturation. MUT-A has more potent ARV activity compared to other INLAIs previously reported, but similar profile of resistance mutations and absence of ARV activity on SIV. HIV-1 virions produced in the presence of MUT-A were non-infectious with the formation of eccentric condensates outside of the core. In studying the immunoreactivity of these non-infectious virions, we found that inactivated HIV-1 particles were captured by anti-HIV-specific neutralizing and non-neutralizing antibodies (b12, 2G12, PGT121, 4D4, 10-1074, 10E8, VRC01) with efficiencies comparable to non-treated virus. Autologous CD4 + T lymphocyte proliferation and cytokine induction by monocyte-derived dendritic cells (MDDC) pulsed either with MUT-A-inactivated HIV or non-treated HIV were also comparable. Although strongly defective in infectivity, HIV-1 virions produced in the presence of the MUT-A INLAI have a normal protein and genomic RNA content as well as B and T cell immunoreactivities comparable to non-treated HIV-1. These inactivated viruses might form an attractive new approach in vaccine research in an attempt to study if this new type of immunogen could elicit an immune response against HIV-1 in animal models.

  2. Emerging contaminants and nutrients synergistically affect the spread of class 1 integron-integrase (intI1) and sul1 genes within stable streambed bacterial communities.

    PubMed

    Subirats, Jèssica; Timoner, Xisca; Sànchez-Melsió, Alexandre; Balcázar, José Luis; Acuña, Vicenç; Sabater, Sergi; Borrego, Carles M

    2018-07-01

    Wastewater effluents increase the nutrient load of receiving streams while introducing a myriad of anthropogenic chemical pollutants that challenge the resident aquatic (micro)biota. Disentangling the effects of both kind of stressors and their potential interaction on the dissemination of antibiotic resistance genes in bacterial communities requires highly controlled manipulative experiments. In this work, we investigated the effects of a combined regime of nutrients (at low, medium and high concentrations) and a mixture of emerging contaminants (ciprofloxacin, erythromycin, sulfamethoxazole, diclofenac, and methylparaben) on the bacterial composition, abundance and antibiotic resistance profile of biofilms grown in artificial streams. In particular, we investigated the effect of this combined stress on genes encoding resistance to ciprofloxacin (qnrS), erythromycin (ermB), sulfamethoxazole (sul1 and sul2) as well as the class 1 integron-integrase gene (intI1). Only genes conferring resistance to sulfonamides (sul1 and sul2) and intI1 gene were detected in all treatments during the study period. Besides, bacterial communities exposed to emerging contaminants showed higher copy numbers of sul1 and intI1 genes than those not exposed, whereas nutrient amendments did not affect their abundance. However, bacterial communities exposed to both emerging contaminants and a high nutrient concentration (1, 25 and 1 mg L -1 of phosphate, nitrate and ammonium, respectively) showed the highest increase on the abundance of sul1 and intI1 genes thus suggesting a factors synergistic effect of both stressors. Since none of the treatments caused a significant change on the composition of bacterial communities, the enrichment of sul1 and intI1 genes within the community was caused by their dissemination under the combined pressure exerted by nutrients and emerging contaminants. To the best of our knowledge, this is the first study demonstrating the contribution of nutrients on the maintenance and spread of antibiotic resistance genes in streambed biofilms under controlled conditions. Our results also highlight that nutrients could enhance the effect of emerging contaminants on the dissemination of antibiotic resistance. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Crystal and electronic structures of magnesium(II), copper(II), and mixed magnesium(II)-copper(II) complexes of the quinoline half of styrylquinoline-type HIV-1 integrase inhibitors.

    PubMed

    Courcot, B; Firley, D; Fraisse, B; Becker, P; Gillet, J-M; Pattison, P; Chernyshov, D; Sghaier, M; Zouhiri, F; Desmaële, D; d'Angelo, J; Bonhomme, F; Geiger, S; Ghermani, N E

    2007-05-31

    A new target in AIDS therapy development is HIV-1 integrase (IN). It was proven that HIV-1 IN required divalent metal cations to achieve phosphodiester bond cleavage of DNA. Accordingly, all newly investigated potent IN inhibitors contain chemical fragments possessing a high ability to chelate metal cations. One of the promising leads in the polyhydroxylated styrylquinolines (SQLs) series is (E)-8-hydroxy-2-[2-(4,5-dihydroxy-3-methoxyphenyl)-ethenyl]-7-quinoline carboxylic acid (1). The present study focuses on the quinoline-based progenitor (2), which is actually the most probable chelating part of SQLs. Conventional and synchrotron low-temperature X-ray crystallographic studies were used to investigate the chelating power of progenitor 2. Mg2+ and Cu2+ cations were selected for this purpose, and three types of metal complexes of 2 were obtained: Mg(II) complex (4), Cu(II) complex (5) and mixed Mg(II)-Cu(II) complexes (6 and 7). The analysis of the crystal structure of complex 4 indicates that two tridentate ligands coordinate two Mg2+ cations, both in octahedral geometry. The Mg-Mg distance was found equal to 3.221(1) A, in agreement with the metal-metal distance of 3.9 A encountered in the crystal structure of Escherichia coli DNA polymerase I. In 5, the complex is formed by two bidentate ligands coordinating one copper ion in tetrahedral geometry. Both mixed Mg(II)-Cu(II) complexes, 6 and 7 exhibit an original arrangement of four ligands linked to a central heterometallic cluster consisting of three octahedrally coordinated magnesium ions and one tetrahedrally coordinated copper ion. Quantum mechanics calculations were also carried out in order to display the electrostatic potential generated by the dianionic ligand 2 and complex 4 and to quantify the binding energy (BE) during the formation of the magnesium complex of progenitor 2. A comparison of the binding energies of two hypothetical monometallic Mg(II) complexes with that found in the bimetallic magnesium complex 4 was made.

  4. Two distinct variants of simian foamy virus in naturally infected mandrills (Mandrillus sphinx) and cross-species transmission to humans.

    PubMed

    Mouinga-Ondémé, Augustin; Betsem, Edouard; Caron, Mélanie; Makuwa, Maria; Sallé, Bettina; Renault, Noemie; Saib, Ali; Telfer, Paul; Marx, Preston; Gessain, Antoine; Kazanji, Mirdad

    2010-12-14

    Each of the pathogenic human retroviruses (HIV-1/2 and HTLV-1) has a nonhuman primate counterpart, and the presence of these retroviruses in humans results from interspecies transmission. The passage of another simian retrovirus, simian foamy virus (SFV), from apes or monkeys to humans has been reported. Mandrillus sphinx, a monkey species living in central Africa, is naturally infected with SFV. We evaluated the natural history of the virus in a free-ranging colony of mandrills and investigated possible transmission of mandrill SFV to humans. We studied 84 semi-free-ranging captive mandrills at the Primate Centre of the Centre International de Recherches Médicales de Franceville (Gabon) and 15 wild mandrills caught in various areas of the country. The presence of SFV was also evaluated in 20 people who worked closely with mandrills and other nonhuman primates. SFV infection was determined by specific serological (Western blot) and molecular (nested PCR of the integrase region in the polymerase gene) assays. Seropositivity for SFV was found in 70/84 (83%) captive and 9/15 (60%) wild-caught mandrills and in 2/20 (10%) humans. The 425-bp SFV integrase fragment was detected in peripheral blood DNA from 53 captive and 8 wild-caught mandrills and in two personnel. Sequence and phylogenetic studies demonstrated the presence of two distinct strains of mandrill SFV, one clade including SFVs from mandrills living in the northern part of Gabon and the second consisting of SFV from animals living in the south. One man who had been bitten 10 years earlier by a mandrill and another bitten 22 years earlier by a macaque were found to be SFV infected, both at the Primate Centre. The second man had a sequence close to SFVmac sequences. Comparative sequence analysis of the virus from the first man and from the mandrill showed nearly identical sequences, indicating genetic stability of SFV over time. Our results show a high prevalence of SFV infection in a semi-free-ranging colony of mandrills, with the presence of two different strains. We also showed transmission of SFV from a mandrill and a macaque to humans.

  5. A Trial of a Single Tablet Regimen of Elvitegravir, Cobicistat, Emtricitabine, and Tenofovir Disoproxil Fumarate for the Initial Treatment of HIV-2 Infection in a Resource-Limited Setting: 48 Week Results from Senegal, West Africa.

    PubMed

    Ba, Selly; Raugi, Dana N; Smith, Robert A; Sall, Fatima; Faye, Khadim; Hawes, Stephen E; Sow, Papa Salif; Seydi, Moussa; Gottlieb, Geoffrey S

    2018-04-17

    There is an urgent need for safe and effective ART for HIV-2 infection. We undertook the first clinical trial of a single-tablet-regimen containing elvitegravir-cobicistat-emtricitabine-tenofovir disoproxil fumarate (E/C/F/TDF) to assess its effectiveness in HIV-2-infected individuals in Senegal, West Africa. HIV-2-infected, ART-naïve adults with WHO stage 3-4 disease or CD4 counts below 750 cells/mm3 were eligible for this 48 week, open-label trial. We analyzed HIV-2 viral loads (VL), CD4 counts, clinical and adverse events, mortality and loss-to-follow-up. We enrolled 30 subjects who initiated E/C/F/TDF. Twenty-nine subjects completed 48 weeks of follow-up. The majority were female (80%). There were no deaths, no new AIDS-associated clinical events, and one loss-to-follow-up. The median baseline CD4 count was 408 cells/mm3 (range: 34-747); which increased by a median +161 cells/mm3 (range: 27-547) at week 48. Twenty-five subjects had baseline HIV-2 VL of less than 50 copies/ml of plasma. In those with detectable HIV-2 VL, the median was 41 copies/ml (range: 10-6135). Using a mITT analysis (FDA Snapshot method), 28 of 30 (93.3%; 95% CI=77.9%-99.2%) had viral suppression at 48 weeks. The one subject with virologic failure had multidrug resistant HIV-2 (RT mutation: K65R; integrase mutations: G140S & Q148R) detected at week 48. There were eight grade 3-4 adverse events, none were deemed study related. Adherence and acceptability were good. Our data suggest that E/C/F/TDF, a once-daily, single-tablet-regimen, is safe, effective, and well-tolerated. Our findings support the use of integrase inhibitor-based regimens for HIV-2 treatment. NCT02180438.

  6. Conserved structure and inferred evolutionary history of long terminal repeats (LTRs)

    PubMed Central

    2013-01-01

    Background Long terminal repeats (LTRs, consisting of U3-R-U5 portions) are important elements of retroviruses and related retrotransposons. They are difficult to analyse due to their variability. The aim was to obtain a more comprehensive view of structure, diversity and phylogeny of LTRs than hitherto possible. Results Hidden Markov models (HMM) were created for 11 clades of LTRs belonging to Retroviridae (class III retroviruses), animal Metaviridae (Gypsy/Ty3) elements and plant Pseudoviridae (Copia/Ty1) elements, complementing our work with Orthoretrovirus HMMs. The great variation in LTR length of plant Metaviridae and the few divergent animal Pseudoviridae prevented building HMMs from both of these groups. Animal Metaviridae LTRs had the same conserved motifs as retroviral LTRs, confirming that the two groups are closely related. The conserved motifs were the short inverted repeats (SIRs), integrase recognition signals (5´TGTTRNR…YNYAACA 3´); the polyadenylation signal or AATAAA motif; a GT-rich stretch downstream of the polyadenylation signal; and a less conserved AT-rich stretch corresponding to the core promoter element, the TATA box. Plant Pseudoviridae LTRs differed slightly in having a conserved TATA-box, TATATA, but no conserved polyadenylation signal, plus a much shorter R region. The sensitivity of the HMMs for detection in genomic sequences was around 50% for most models, at a relatively high specificity, suitable for genome screening. The HMMs yielded consensus sequences, which were aligned by creating an HMM model (a ‘Superviterbi’ alignment). This yielded a phylogenetic tree that was compared with a Pol-based tree. Both LTR and Pol trees supported monophyly of retroviruses. In both, Pseudoviridae was ancestral to all other LTR retrotransposons. However, the LTR trees showed the chromovirus portion of Metaviridae clustering together with Pseudoviridae, dividing Metaviridae into two portions with distinct phylogeny. Conclusion The HMMs clearly demonstrated a unitary conserved structure of LTRs, supporting that they arose once during evolution. We attempted to follow the evolution of LTRs by tracing their functional foundations, that is, acquisition of RNAse H, a combined promoter/ polyadenylation site, integrase, hairpin priming and the primer binding site (PBS). Available information did not support a simple evolutionary chain of events. PMID:23369192

  7. Human Immunodeficiency Virus Type 1 Employs the Cellular Dynein Light Chain 1 Protein for Reverse Transcription through Interaction with Its Integrase Protein

    PubMed Central

    Jayappa, Kallesh Danappa; Ao, Zhujun; Wang, Xiaoxia; Mouland, Andrew J.; Shekhar, Sudhanshu; Yang, Xi

    2015-01-01

    ABSTRACT In this study, we examined the requirement for host dynein adapter proteins such as dynein light chain 1 (DYNLL1), dynein light chain Tctex-type 1 (DYNLT1), and p150Glued in early steps of human immunodeficiency virus type 1 (HIV-1) replication. We found that the knockdown (KD) of DYNLL1, but not DYNLT1 or p150Glued, resulted in significantly lower levels of HIV-1 reverse transcription in cells. Following an attempt to determine how DYNLL1 could impact HIV-1 reverse transcription, we detected the DYNLL1 interaction with HIV-1 integrase (IN) but not with capsid (CA), matrix (MA), or reverse transcriptase (RT) protein. Furthermore, by mutational analysis of putative DYNLL1 interaction motifs in IN, we identified the motifs 52GQVD and 250VIQD in IN as essential for DYNLL1 interaction. The DYNLL1 interaction-defective IN mutant HIV-1 (HIV-1INQ53A/Q252A) exhibited impaired reverse transcription. Through further investigations, we have also detected relatively smaller amounts of particulate CA in DYNLL1-KD cells or in infections with HIV-1INQ53A/Q252A mutant virus. Overall, our study demonstrates the novel interaction between HIV-1 IN and cellular DYNLL1 proteins and suggests the requirement of this virus-cell interaction for proper uncoating and efficient reverse transcription of HIV-1. IMPORTANCE Host cellular DYNLL1, DYNLT1, and p150Glued proteins have been implicated in the replication of several viruses. However, their roles in HIV-1 replication have not been investigated. For the first time, we demonstrated that during viral infection, HIV-1 IN interacts with DYNLL1, and their interaction was found to have a role in proper uncoating and efficient reverse transcription of HIV-1. Thus, interaction of IN and DYNLL1 may be a potential target for future anti-HIV therapy. Moreover, while our study has evaluated the involvement of IN in HIV-1 uncoating and reverse transcription, it also predicts a possible mechanism by which IN contributes to these early viral replication steps. PMID:25568209

  8. Cross-resistance to elvitegravir and dolutegravir in 502 patients failing on raltegravir: a French national study of raltegravir-experienced HIV-1-infected patients.

    PubMed

    Fourati, Slim; Charpentier, Charlotte; Amiel, Corinne; Morand-Joubert, Laurence; Reigadas, Sandrine; Trabaud, Mary-Anne; Delaugerre, Constance; Nicot, Florence; Rodallec, Audrey; Maillard, Anne; Mirand, Audrey; Jeulin, Hélène; Montès, Brigitte; Barin, Francis; Bettinger, Dominique; Le Guillou-Guillemette, Hélène; Vallet, Sophie; Signori-Schmuck, Anne; Descamps, Diane; Calvez, Vincent; Flandre, Philippe; Marcelin, Anne-Genevieve

    2015-05-01

    The objectives of this study were to determine the prevalence and patterns of resistance to integrase strand transfer inhibitors (INSTIs) in patients experiencing virological failure on raltegravir-based ART and the impact on susceptibility to INSTIs (raltegravir, elvitegravir and dolutegravir). Data were collected from 502 treatment-experienced patients failing a raltegravir-containing regimen in a multicentre study. Reverse transcriptase, protease and integrase were sequenced at failure for each patient. INSTI resistance-associated mutations investigated were those included in the last ANRS genotypic algorithm (v23). Among the 502 patients, at failure, median baseline HIV-1 RNA (viral load) was 2.9 log10 copies/mL. Patients had been previously exposed to a median of five NRTIs, one NNRTI and three PIs. Seventy-one percent harboured HIV-1 subtype B and the most frequent non-B subtype was CRF02_AG (13.3%). The most frequent mutations observed were N155H/S (19.1%), Q148G/H/K/R (15.4%) and Y143C/G/H/R/S (6.7%). At failure, viruses were considered as fully susceptible to all INSTIs in 61.0% of cases, whilst 38.6% were considered as resistant to raltegravir, 34.9% to elvitegravir and 13.9% to dolutegravir. In the case of resistance to raltegravir, viruses were considered as susceptible to elvitegravir in 11% and to dolutegravir in 64% of cases. High HIV-1 viral load at failure (P < 0.001) and low genotypic sensitivity score of the associated treatment with raltegravir (P < 0.001) were associated with the presence of raltegravir-associated mutations at failure. Q148 mutations were selected more frequently in B subtypes versus non-B subtypes (P = 0.004). This study shows that a high proportion of viruses remain susceptible to dolutegravir in the case of failure on a raltegravir-containing regimen. © The Author 2015. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Improving the Transduction of Bone Marrow–Derived Cells with an Integrase-Defective Lentiviral Vector

    PubMed Central

    Pay, S. Louise; Qi, Xiaoping; Willard, Jeffrey F.; Godoy, Juliana; Sankhavaram, Kavya; Horton, Ranier; Mitter, Sayak K.; Quigley, Judith L.; Chang, Lung-Ji; Grant, Maria B.; Boulton, Michael E.

    2018-01-01

    In lentiviral vector (LV) applications where transient transgene expression is sufficient, integrase-defective lentiviral vectors (IDLVs) are beneficial for reducing the potential for off-target effects associated with insertional mutagenesis. It was previously demonstrated that human RPE65 mRNA expression from an integrating lentiviral vector (ILV) induces endogenous Rpe65 and Cralbp mRNA expression in murine bone marrow–derived cells (BMDCs), initiating programming of the cells to retinal pigment epithelium (RPE)-like cells. These cells regenerate RPE in retinal degeneration models when injected systemically. As transient expression of RPE65 is sufficient to activate endogenous RPE-associated genes for programming BMDCs, use of an ILV is an unnecessary risk. In this study, an IDLV expressing RPE65 (IDLV3-RPE65) was generated. Transduction with IDLV3-RPE65 is less efficient than the integrating vector (ILV3-RPE65). Therefore, IDLV3-RPE65 transduction was enhanced with a combination of preloading 20 × -concentrated viral supernatant on RetroNectin at a multiplicity of infection of 50 and transduction of BMDCs by low-speed centrifugation. RPE65 mRNA levels increased from ∼12-fold to ∼25-fold (p < 0.05) after modification of the IDLV3-RPE65 transduction protocol, achieving expression similar to the ∼27-fold (p < 0.05) increase observed with ILV3-RPE65. Additionally, the study shows that the same preparation of RetroNectin can be used to coat up to three wells with no reduction in transduction. Critically, IDLV3-RPE65 transduction initiates endogenous Rpe65 mRNA expression in murine BMDCs and Cralbp/CRALBP mRNA in both murine and human BMDCs, similar to expression observed in ILV3-RPE65-transduced cells. Systemic administration of ILV3-RPE65 or IDLV3-RPE65 programmed BMDCs in a mouse model of retinal degeneration is sufficient to retain visual function and reduce retinal degeneration compared to mice receiving no treatment or naïve BMDC. It is concluded that IDLV3-RPE65 is appropriate for programming BMDCs to RPE-like cells. PMID:29160102

  10. Switching regimens in virologically suppressed HIV-1-infected patients: evidence base and rationale for integrase strand transfer inhibitor (INSTI)-containing regimens.

    PubMed

    Raffi, F; Esser, S; Nunnari, G; Pérez-Valero, I; Waters, L

    2016-10-01

    In an era when most individuals with treated HIV infection can expect to live into old age, clinicians should proactively review their patients' current and future treatment needs and challenges. Clinical guidelines acknowledge that, in the setting of virological suppression, treatment switch may yield benefits in terms of tolerability, regimen simplification, adherence, convenience and long-term health considerations, particularly in the context of ageing. In this paper, we review evidence from six key clinical studies on switching virologically suppressed patients to regimens based on integrase strand transfer inhibitors (INSTIs), the antiretroviral class increasingly preferred as initial therapy in clinical guidelines. We review these studies and focus on the virological efficacy, safety, and tolerability of switching to INSTI-based regimens in suppressed HIV-positive individuals. We review the early switch studies SWITCHMRK and SPIRAL [assessing a switch from a ritonavir-boosted protease inhibitor (PI/r) to raltegravir (RAL)-containing regimens], together with data from STRATEGY-PI [assessing a switch to elvitegravir (EVG)-containing regimens; EVG/cobicistat (COBI)/emtricitabine (FTC)/tenofovir disoproxil fumarate (TDF) vs. remaining on a PI/r-containing regimen], STRATEGY-NNRTI [assessing a switch to EVG/COBI/FTC/TDF vs. continuation of a nonnucleoside reverse transcriptase inhibitor (NNRTI) and two nucleoside reverse transcriptase inhibitors (NRTIs)], STRIIVING [assessing a switch to a dolutegravir (DTG)-containing regimen (abacavir (ABC)/lamivudine (3TC)/DTG) vs. staying on the background regimen], and GS study 109 [assessing a switch to EVG/COBI/FTC/tenofovir alafenamide fumarate (TAF) vs. continuation of FTC/TDF-based regimens]. Switching to INSTI-containing regimens has been shown to support good virological efficacy, with evidence from two studies demonstrating superior virological efficacy for a switch to EVG-containing regimens. In addition, switching to INSTI regimens was associated with improved tolerability and greater reported patient satisfaction and outcomes in some studies. INSTI-based regimens offer an important contemporary switch option that may be tailored to meet and optimize the needs of many patients. © 2016 British HIV Association.

  11. HIV-1 IN Inhibitors: 2010 Update and Perspectives

    PubMed Central

    Marchand, Christophe; Maddali, Kasthuraiah; Metifiot, Mathieu; Pommier, Yves

    2010-01-01

    Integrase (IN) is the newest validated target against AIDS and retroviral infections. The remarkable activity of raltegravir (Isentress®) led to its rapid approval by the FDA in 2007 as the first IN inhibitor. Several other IN strand transfer inhibitors (STIs) are in development with the primary goal to overcome resistance due to the rapid occurrence of IN mutations in raltegravir-treated patients. Thus, many scientists and drug companies are actively pursuing clinically useful IN inhibitors. The objective of this review is to provide an update on the IN inhibitors reported in the last two years, including second generation strand transfer inhibitors (STI), recently developed hydroxylated aromatics, natural products, peptide, antibody and oligonucleotide inhibitors. Additionally, the targeting of IN cofactors such as LEDGF and Vpr will be discussed as novel strategies for the treatment of AIDS. PMID:19747122

  12. Experience of dolutegravir in HIV-infected treatment-naive patients from a tertiary care University Hospital in Ireland

    PubMed Central

    Waqas, Sarmad; O’Connor, Mairead; Levey, Ciara; Mallon, Paddy; Sheehan, Gerard; Patel, Anjali; Avramovic, Gordana; Lambert, John S

    2016-01-01

    Objective: Dolutegravir, an HIV integrase inhibitor, is a relatively new treatment option. To assess the tolerability, side effects, and time to viral decline to non-detectable in patients newly started on dolutegravir. Methods: Retrospective health care record of 61 consecutive HIV treatment-naive patients started on dolutegravir was reviewed and analysed on SPSS. Results: The mean initial viral load was 160826.05 copies/mL (range, 79–1,126,617 copies/mL). HIV viral load became non-detectable in 63.9% of patients on dolutegravir within 3 months. In all, 60.7% of patients reported no side effects on dolutegravir; 98.4% of the patients claimed full compliance to their antiretrovirals. Conclusion: Dolutegravir was found to be efficacious and well tolerated in HIV-infected treatment-naive patients. PMID:27826447

  13. Anti-HIV drugs: 25 compounds approved within 25 years after the discovery of HIV.

    PubMed

    De Clercq, Erik

    2009-04-01

    In 2008, 25 years after the human immunodeficiency virus (HIV) was discovered as the then tentative aetiological agent of acquired immune deficiency syndrome (AIDS), exactly 25 anti-HIV compounds have been formally approved for clinical use in the treatment of AIDS. These compounds fall into six categories: nucleoside reverse transcriptase inhibitors (NRTIs: zidovudine, didanosine, zalcitabine, stavudine, lamivudine, abacavir and emtricitabine); nucleotide reverse transcriptase inhibitors (NtRTIs: tenofovir); non-nucleoside reverse transcriptase inhibitors (NNRTIs: nevirapine, delavirdine, efavirenz and etravirine); protease inhibitors (PIs: saquinavir, ritonavir, indinavir, nelfinavir, amprenavir, lopinavir, atazanavir, fosamprenavir, tipranavir and darunavir); cell entry inhibitors [fusion inhibitors (FIs: enfuvirtide) and co-receptor inhibitors (CRIs: maraviroc)]; and integrase inhibitors (INIs: raltegravir). These compounds should be used in drug combination regimens to achieve the highest possible benefit, tolerability and compliance and to diminish the risk of resistance development.

  14. Brief Report: Dolutegravir Plus Abacavir/Lamivudine for the Treatment of HIV-1 Infection in Antiretroviral Therapy-Naive Patients: Week 96 and Week 144 Results From the SINGLE Randomized Clinical Trial.

    PubMed

    Walmsley, Sharon; Baumgarten, Axel; Berenguer, Juan; Felizarta, Franco; Florence, Eric; Khuong-Josses, Marie-Aude; Kilby, J Michael; Lutz, Thomas; Podzamczer, Daniel; Portilla, Joaquin; Roth, Norman; Wong, Deborah; Granier, Catherine; Wynne, Brian; Pappa, Keith

    2015-12-15

    The SINGLE study was a randomized, double-blind, noninferiority study that evaluated the safety and efficacy of 50 mg dolutegravir + abacavir/lamivudine versus efavirenz/tenofovir/emtricitabine in 833 ART-naive HIV-1 + participants. Of 833 randomized participants, 71% in the dolutegravir + abacavir/lamivudine arm and 63% in the efavirenz/tenofovir/emtricitabine arm maintained viral loads of <50 copies per milliliter through W144 (P = 0.01). Superior efficacy was primarily driven by fewer discontinuations due to adverse events in the dolutegravir + abacavir/lamivudine arm [dolutegravir + abacavir/lamivudine arm, 16 (4%); efavirenz/tenofovir/emtricitabine arm, 58 (14%)] through W144 [corrected]. No treatment-emergent integrase or nucleoside resistance was observed in dolutegravir + abacavir/lamivudine recipients through W144.

  15. Development of a loop-mediated isothermal amplification assay for rapid detection of Burkholderia mallei.

    PubMed

    Mirzai, S; Safi, S; Mossavari, N; Afshar, D; Bolourchian, M

    2016-08-31

    The present study was conducted to establish a Loop-mediated isothermal amplification (LAMP) technique for the rapid detection of B. mallei the etiologic agent of glanders, a highly contagious disease of equines. A set of six specific primers targeting integrase gene cluster were designed for the LAMP test. The reaction was optimized using different temperatures and time intervals. The specificity of the assay was evaluated using DNA from B.pseudomallei and Pseudomonas aeruginosa. The LAMP products were analyzed both visually and under UV light after electrophoresis. The optimized conditions were found to be at 63ºC for 60 min. The assay showed high specificity and sensitivity. It was concluded that the established LAMP assay is a rapid, sensitive and practical tool for detection of B. mallei and early diagnosis of glanders.

  16. Initiating therapy: when to start, what to use.

    PubMed

    Hirsch, Martin S

    2008-05-15

    Decisions regarding whether to start combination antiretroviral therapy (cART) during primary infection and when to initiate treatment during chronic infection continue to evolve. Although current data suggest that there may be a benefit to therapy during primary infection, results are inconclusive. Once begun, treatment probably should be continued indefinitely, since its potential advantages disappear over time if treatment is stopped. Recent studies suggest that cART may be useful at higher CD4 cell count thresholds than are currently recommended in several guidelines. Several regimens are acceptable as initial therapy, with tenofovir/emtricitabine/efavirenz favored by many because of potency and ease of administration. Other favored regimens include combinations of 2 nucleoside (or nucleotide) reverse-transcriptase inhibitors and a ritonavir-boosted protease inhibitor. Some new antiretroviral drugs under study, particularly integrase inhibitors, may prove useful in treatment-naive patients.

  17. Thiazoline peptides and a tris-phenethyl urea from Didemnum molle with anti-HIV activity.

    PubMed

    Lu, Zhenyu; Harper, Mary Kay; Pond, Christopher D; Barrows, Louis R; Ireland, Chris M; Van Wagoner, Ryan M

    2012-08-24

    As part of our screening for anti-HIV agents from marine invertebrates, the MeOH extract of Didemnum molle was tested and showed moderate in vitro anti-HIV activity. Bioassay-guided fractionation of a large-scale extract allowed the identification of two new cyclopeptides, mollamides E and F (1 and 2), and one new tris-phenethyl urea, molleurea A (3). The absolute configurations were established using the advanced Marfey's method. The three compounds were evaluated for anti-HIV activity in both an HIV integrase inhibition assay and a cytoprotective cell-based assay. Compound 2 was active in both assays with IC(50) values of 39 and 78 μM, respectively. Compound 3 was active only in the cytoprotective cell-based assay, with an IC(50) value of 60 μM.

  18. Identification and Characterization of Putative Integron-Like Elements of the Heavy-Metal-Hypertolerant Strains of Pseudomonas spp.

    PubMed

    Ciok, Anna; Adamczuk, Marcin; Bartosik, Dariusz; Dziewit, Lukasz

    2016-11-28

    Pseudomonas strains isolated from the heavily contaminated Lubin copper mine and Zelazny Most post-flotation waste reservoir in Poland were screened for the presence of integrons. This analysis revealed that two strains carried homologous DNA regions composed of a gene encoding a DNA_BRE_C domain-containing tyrosine recombinase (with no significant sequence similarity to other integrases of integrons) plus a three-component array of putative integron gene cassettes. The predicted gene cassettes encode three putative polypeptides with homology to (i) transmembrane proteins, (ii) GCN5 family acetyltransferases, and (iii) hypothetical proteins of unknown function (homologous proteins are encoded by the gene cassettes of several class 1 integrons). Comparative sequence analyses identified three structural variants of these novel integron-like elements within the sequenced bacterial genomes. Analysis of their distribution revealed that they are found exclusively in strains of the genus Pseudomonas .

  19. An Automated Design Framework for Multicellular Recombinase Logic.

    PubMed

    Guiziou, Sarah; Ulliana, Federico; Moreau, Violaine; Leclere, Michel; Bonnet, Jerome

    2018-05-18

    Tools to systematically reprogram cellular behavior are crucial to address pressing challenges in manufacturing, environment, or healthcare. Recombinases can very efficiently encode Boolean and history-dependent logic in many species, yet current designs are performed on a case-by-case basis, limiting their scalability and requiring time-consuming optimization. Here we present an automated workflow for designing recombinase logic devices executing Boolean functions. Our theoretical framework uses a reduced library of computational devices distributed into different cellular subpopulations, which are then composed in various manners to implement all desired logic functions at the multicellular level. Our design platform called CALIN (Composable Asynchronous Logic using Integrase Networks) is broadly accessible via a web server, taking truth tables as inputs and providing corresponding DNA designs and sequences as outputs (available at http://synbio.cbs.cnrs.fr/calin ). We anticipate that this automated design workflow will streamline the implementation of Boolean functions in many organisms and for various applications.

  20. Towards novel therapeutics for HIV through fragment-based screening and drug design.

    PubMed

    Tiefendbrunn, Theresa; Stout, C David

    2014-01-01

    Fragment-based drug discovery has been applied with varying levels of success to a number of proteins involved in the HIV (Human Immunodeficiency Virus) life cycle. Fragment-based approaches have led to the discovery of novel binding sites within protease, reverse transcriptase, integrase, and gp41. Novel compounds that bind to known pockets within CCR5 have also been identified via fragment screening, and a fragment-based approach to target the TAR-Tat interaction was explored. In the context of HIV-1 reverse transcriptase (RT), fragment-based approaches have yielded fragment hits with mid-μM activity in an in vitro activity assay, as well as fragment hits that are active against drug-resistant variants of RT. Fragment-based drug discovery is a powerful method to elucidate novel binding sites within proteins, and the method has had significant success in the context of HIV proteins.

  1. Risks Associated With Lentiviral Vector Exposures and Prevention Strategies

    PubMed Central

    Schlimgen, Ryan; Howard, John; Wooley, Dawn; Thompson, Maureen; Baden, Lindsey R.; Yang, Otto O.; Christiani, David C.; Mostoslavsky, Gustavo; Diamond, David V.; Duane, Elizabeth Gilman; Byers, Karen; Winters, Thomas; Gelfand, Jeffrey A.; Fujimoto, Gary; Hudson, T. Warner; Vyas, Jatin M.

    2016-01-01

    Lentiviral vectors (LVVs) are powerful genetic tools that are being used with greater frequency in biomedical laboratories and clinical trials. Adverse events reported from initial clinical studies provide a basis for risk assessment of occupational exposures, yet many questions remain about the potential harm that LVVs may cause. We review those risks and provide a framework for principal investigators, Institutional Biosafety Committees, and occupational health professionals to assess and communicate the risks of exposure to staff. We also provide recommendations to federal research and regulatory agencies for tracking LVV exposures to evaluate long-term outcomes. U.S. Food and Drug Administration approved antiviral drugs for HIV have theoretical benefits in LVV exposures, although evidence to support their use is currently limited. If treatment is appropriate, we recommend a 7-day treatment with an integrase inhibitor with or without a reverse transcriptase inhibitor within 72 hours of exposure. PMID:27930472

  2. [Microbiological diagnosis of human immunodeficiency virus infection].

    PubMed

    Álvarez Estévez, Marta; Reina González, Gabriel; Aguilera Guirao, Antonio; Rodríguez Martín, Carmen; García García, Federico

    2015-10-01

    This document attempts to update the main tasks and roles of the Clinical Microbiology laboratory in HIV diagnosis and monitoring. The document is divided into three parts. The first deals with HIV diagnosis and how serological testing has changed in the last few years, aiming to improve diagnosis and to minimize missed opportunities for diagnosis. Technological improvements for HIV Viral Load are shown in the second part of the document, which also includes a detailed description of the clinical significance of low-level and very low-level viremia. Finally, the third part of the document deals with resistance to antiretroviral drugs, incorporating clinical indications for integrase and tropism testing, as well as the latest knowledge on minority variants. Copyright © 2014 Elsevier España, S.L.U. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  3. The history of antiretrovirals: key discoveries over the past 25 years.

    PubMed

    De Clercq, Erik

    2009-09-01

    Within 25 years after zidovudine (3'-azido-2',3'-dideoxythymidine, AZT) was first described as an inhibitor of HIV replication, 25 anti-HIV drugs have been formally approved for clinical use in the treatment of HIV infections: seven nucleoside reverse transcriptase inhibitors (NRTIs): zidovudine, didanosine, zalcitabine, stavudine, lamivudine, abacavir and emtricitabine; one nucleotide reverse transcriptase inhibitor (NtRTI): tenofovir [in its oral prodrug form: tenofovir disoproxil fumarate (TDF)]; four non-nucleoside reverse transcriptase inhibitors (NNRTIs): nevirapine, delavirdine, efavirenz and etravirine; ten protease inhibitors (PIs): saquinavir, ritonavir, indinavir, nelfinavir, amprenavir, lopinavir, atazanavir, fosamprenavir, tipranavir and darunavir; one fusion inhibitor (FI): enfuvirtide; one co-receptor inhibitor (CRI): maraviroc and one integrase inhibitor (INI): raltegravir. These compounds are used in various drug combination (some at fixed dose) regimens so as to achieve the highest possible benefit and tolerability, and to diminish the risk of virus-drug resistance development. (c) 2009 John Wiley & Sons, Ltd.

  4. Gene Deletion in Barley Mediated by LTR-retrotransposon BARE

    PubMed Central

    Shang, Yi; Yang, Fei; Schulman, Alan H.; Zhu, Jinghuan; Jia, Yong; Wang, Junmei; Zhang, Xiao-Qi; Jia, Qiaojun; Hua, Wei; Yang, Jianming; Li, Chengdao

    2017-01-01

    A poly-row branched spike (prbs) barley mutant was obtained from soaking a two-rowed barley inflorescence in a solution of maize genomic DNA. Positional cloning and sequencing demonstrated that the prbs mutant resulted from a 28 kb deletion including the inflorescence architecture gene HvRA2. Sequence annotation revealed that the HvRA2 gene is flanked by two LTR (long terminal repeat) retrotransposons (BARE) sharing 89% sequence identity. A recombination between the integrase (IN) gene regions of the two BARE copies resulted in the formation of an intact BARE and loss of HvRA2. No maize DNA was detected in the recombination region although the flanking sequences of HvRA2 gene showed over 73% of sequence identity with repetitive sequences on 10 maize chromosomes. It is still unknown whether the interaction of retrotransposons between barley and maize has resulted in the recombination observed in the present study. PMID:28252053

  5. Single helically folded aromatic oligoamides that mimic the charge surface of double-stranded B-DNA

    NASA Astrophysics Data System (ADS)

    Ziach, Krzysztof; Chollet, Céline; Parissi, Vincent; Prabhakaran, Panchami; Marchivie, Mathieu; Corvaglia, Valentina; Bose, Partha Pratim; Laxmi-Reddy, Katta; Godde, Frédéric; Schmitter, Jean-Marie; Chaignepain, Stéphane; Pourquier, Philippe; Huc, Ivan

    2018-05-01

    Numerous essential biomolecular processes require the recognition of DNA surface features by proteins. Molecules mimicking these features could potentially act as decoys and interfere with pharmacologically or therapeutically relevant protein-DNA interactions. Although naturally occurring DNA-mimicking proteins have been described, synthetic tunable molecules that mimic the charge surface of double-stranded DNA are not known. Here, we report the design, synthesis and structural characterization of aromatic oligoamides that fold into single helical conformations and display a double helical array of negatively charged residues in positions that match the phosphate moieties in B-DNA. These molecules were able to inhibit several enzymes possessing non-sequence-selective DNA-binding properties, including topoisomerase 1 and HIV-1 integrase, presumably through specific foldamer-protein interactions, whereas sequence-selective enzymes were not inhibited. Such modular and synthetically accessible DNA mimics provide a versatile platform to design novel inhibitors of protein-DNA interactions.

  6. Murine Leukemia Viruses: Objects and Organisms

    PubMed Central

    Rein, Alan

    2011-01-01

    Murine leukemia viruses (MLVs) are among the simplest retroviruses. Prototypical gammaretroviruses encode only the three polyproteins that will be used in the assembly of progeny virus particles. These are the Gag polyprotein, which is the structural protein of a retrovirus particle, the Pol protein, comprising the three retroviral enzymes—protease, which catalyzes the maturation of the particle, reverse transcriptase, which copies the viral RNA into DNA upon infection of a new host cell, and integrase, which inserts the DNA into the chromosomal DNA of the host cell, and the Env polyprotein, which induces the fusion of the viral membrane with that of the new host cell, initiating infection. In general, a productive MLV infection has no obvious effect upon host cells. Although gammaretroviral structure and replication follow the same broad outlines as those of other retroviruses, we point out a number of significant differences between different retroviral genera. PMID:22312342

  7. Murine leukemia viruses: objects and organisms.

    PubMed

    Rein, Alan

    2011-01-01

    Murine leukemia viruses (MLVs) are among the simplest retroviruses. Prototypical gammaretroviruses encode only the three polyproteins that will be used in the assembly of progeny virus particles. These are the Gag polyprotein, which is the structural protein of a retrovirus particle, the Pol protein, comprising the three retroviral enzymes-protease, which catalyzes the maturation of the particle, reverse transcriptase, which copies the viral RNA into DNA upon infection of a new host cell, and integrase, which inserts the DNA into the chromosomal DNA of the host cell, and the Env polyprotein, which induces the fusion of the viral membrane with that of the new host cell, initiating infection. In general, a productive MLV infection has no obvious effect upon host cells. Although gammaretroviral structure and replication follow the same broad outlines as those of other retroviruses, we point out a number of significant differences between different retroviral genera.

  8. Rapid onset of rhabdomyolysis after switching to a raltegravir-based antiretroviral regimen.

    PubMed

    Tsai, Wan-Jung; Lee, Susan Shin-Jung; Tsai, Hung-Chin; Sy, Cheng-Len; Chen, Jui-Kuang; Wu, Kuang-Sheng; Wang, Yung-Hsin; Chen, Yao-Shen

    2016-04-01

    Raltegravir is the first integrase inhibitor antiretroviral agent that has been demonstrated to have antiviral efficacy and safety. However, the US Food and Drug Administration has recommended use with caution in patients with risk factors for rhabdomyolysis, based on four case reports of rhabdomyolysis in patients with identifiable risk factors. We present a 32-year-old Asian man with human immunodeficiency virus (HIV), but without other underlying diseases, who developed rapid-onset, raltegravir-associated rhabdomyolysis and hyperlactatemia. Our patient lacked predisposing factors for rhabdomyolysis, and the rapid onset time of 4 days was the shortest reported. Therefore, clinicians should exercise caution when using raltegravir and closely monitor all patients for the symptoms of muscle pain and weakness. This case has been reported to the National Adverse Drug Reactions Reporting System of the Department of Health in Taiwan. Copyright © 2013. Published by Elsevier B.V.

  9. HIV Treatment and Prevention: An Overview of Recommendations From the 2016 IAS–USA Antiretroviral Guidelines Panel

    PubMed Central

    Volberding, Paul A.

    2017-01-01

    Updated recommendations from the IAS–USA Antiretroviral Guidelines Panel on antiretroviral therapy for the treatment and prevention of HIV infection in adults were published in the Journal of the American Medical Association in 2016. The updated, evidence-based recommendations address when to initiate antiretroviral therapy, recommended initial antiretroviral regimens, including integrase strand transfer inhibitor (InSTI)-based regimens, recommended regimens for persons in whom an InSTI is not an option, and special treatment considerations. The interface between antiretroviral therapy and opportunistic infections, when and how to switch antiretroviral therapy, laboratory monitoring, engagement in care, adherence to antiretroviral therapy, and use of antiretroviral therapy as HIV prevention are also discussed, as well as future directions in HIV treatment. This article summarizes an IAS–USA continuing education webinar presented by Paul A. Volberding, MD, in August 2016. PMID:28402930

  10. Plasmids for increased efficiency of vector construction and genetic engineering in filamentous fungi.

    PubMed

    Schoberle, Taylor J; Nguyen-Coleman, C Kim; May, Gregory S

    2013-01-01

    Fungal species are continuously being studied to not only understand disease in humans and plants but also to identify novel antibiotics and other metabolites of industrial importance. Genetic manipulations, such as gene deletion, gene complementation, and gene over-expression, are common techniques to investigate fungal gene functions. Although advances in transformation efficiency and promoter usage have improved genetic studies, some basic steps in vector construction are still laborious and time-consuming. Gateway cloning technology solves this problem by increasing the efficiency of vector construction through the use of λ phage integrase proteins and att recombination sites. We developed a series of Gateway-compatible vectors for use in genetic studies in a range of fungal species. They contain nutritional and drug-resistance markers and can be utilized to manipulate different filamentous fungal genomes. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Characterization of the SOS meta-regulon in the human gut microbiome.

    PubMed

    Cornish, Joseph P; Sanchez-Alberola, Neus; O'Neill, Patrick K; O'Keefe, Ronald; Gheba, Jameel; Erill, Ivan

    2014-05-01

    Data from metagenomics projects remain largely untapped for the analysis of transcriptional regulatory networks. Here, we provide proof-of-concept that metagenomic data can be effectively leveraged to analyze regulatory networks by characterizing the SOS meta-regulon in the human gut microbiome. We combine well-established in silico and in vitro techniques to mine the human gut microbiome data and determine the relative composition of the SOS network in a natural setting. Our analysis highlights the importance of translesion synthesis as a primary function of the SOS response. We predict the association of this network with three novel protein clusters involved in cell wall biogenesis, chromosome partitioning and restriction modification, and we confirm binding of the SOS response transcriptional repressor to sites in the promoter of a cell wall biogenesis enzyme, a phage integrase and a death-on-curing protein. We discuss the implications of these findings and the potential for this approach for metagenome analysis.

  12. Synthesis, biological evaluation and molecular modeling of 2-Hydroxyisoquinoline-1,3-dione analogues as inhibitors of HIV reverse transcriptase associated ribonuclease H and polymerase.

    PubMed

    Tang, Jing; Vernekar, Sanjeev Kumar V; Chen, Yue-Lei; Miller, Lena; Huber, Andrew D; Myshakina, Nataliya; Sarafianos, Stefan G; Parniak, Michael A; Wang, Zhengqiang

    2017-06-16

    Human immunodeficiency virus (HIV) reverse transcriptase (RT) associated ribonuclease H (RNase H) remains the only virally encoded enzymatic function not clinically validated as an antiviral target. 2-Hydroxyisoquinoline-1,3-dione (HID) is known to confer active site directed inhibition of divalent metal-dependent enzymatic functions, such as HIV RNase H, integrase (IN) and hepatitis C virus (HCV) NS5B polymerase. We report herein the synthesis and biochemical evaluation of a few C-5, C-6 or C-7 substituted HID subtypes as HIV RNase H inhibitors. Our data indicate that while some of these subtypes inhibited both the RNase H and polymerase (pol) functions of RT, potent and selective RNase H inhibition was achieved with subtypes 8-9 as exemplified with compounds 8c and 9c. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. A novel integrase-containing element may interact with Laem-Singh virus (LSNV) to cause slow growth in giant tiger shrimp

    PubMed Central

    2011-01-01

    Background From 2001-2003 monodon slow growth syndrome (MSGS) caused severe economic losses for Thai shrimp farmers who cultivated the native, giant tiger shrimp, and this led them to adopt exotic stocks of the domesticated whiteleg shrimp as the species of cultivation choice, despite the higher value of giant tiger shrimp. In 2008, newly discovered Laem-Singh virus (LSNV) was proposed as a necessary but insufficient cause of MSGS, and this stimulated the search for the additional component cause(s) of MSGS in the hope that discovery would lead to preventative measures that could revive cultivation of the higher value native shrimp species. Results Using a universal shotgun cloning protocol, a novel RNA, integrase-containing element (ICE) was found in giant tiger shrimp from MSGS ponds (GenBank accession number FJ498866). In situ hybridization probes and RT-PCR tests revealed that ICE and Laem-Singh virus (LSNV) occurred together in lymphoid organs (LO) of shrimp from MSGS ponds but not in shrimp from normal ponds. Tissue homogenates of shrimp from MSGS ponds yielded a fraction that gave positive RT-PCR reactions for both ICE and LSNV and showed viral-like particles by transmission electron microscopy (TEM). Bioassays of this fraction with juvenile giant tiger shrimp resulted in retarded growth with gross signs of MSGS, and in situ hybridization assays revealed ICE and LSNV together in LO, eyes and gills. Viral-like particles similar to those seen in tissue extracts from natural infections were also seen by TEM. Conclusions ICE and LSNV were found together only in shrimp from MSGS ponds and only in shrimp showing gross signs of MSGS after injection with a preparation containing ICE and LSNV. ICE was never found in the absence of LSNV although LSNV was sometimes found in normal shrimp in the absence of ICE. The results suggest that ICE and LSNV may act together as component causes of MSGS, but this cannot be proven conclusively without single and combined bioassays using purified preparations of both ICE and LSNV. Despite this ambiguity, it is recommended in the interim that ICE be added to the agents such as LSNV already listed for exclusion from domesticated stocks of the black tiger shrimp. PMID:21569542

  14. Virtual screening with AutoDock Vina and the common pharmacophore engine of a low diversity library of fragments and hits against the three allosteric sites of HIV integrase: participation in the SAMPL4 protein-ligand binding challenge

    NASA Astrophysics Data System (ADS)

    Perryman, Alexander L.; Santiago, Daniel N.; Forli, Stefano; Santos-Martins, Diogo; Olson, Arthur J.

    2014-04-01

    To rigorously assess the tools and protocols that can be used to understand and predict macromolecular recognition, and to gain more structural insight into three newly discovered allosteric binding sites on a critical drug target involved in the treatment of HIV infections, the Olson and Levy labs collaborated on the SAMPL4 challenge. This computational blind challenge involved predicting protein-ligand binding against the three allosteric sites of HIV integrase (IN), a viral enzyme for which two drugs (that target the active site) have been approved by the FDA. Positive control cross-docking experiments were utilized to select 13 receptor models out of an initial ensemble of 41 different crystal structures of HIV IN. These 13 models of the targets were selected using our new "Rank Difference Ratio" metric. The first stage of SAMPL4 involved using virtual screens to identify 62 active, allosteric IN inhibitors out of a set of 321 compounds. The second stage involved predicting the binding site(s) and crystallographic binding mode(s) for 57 of these inhibitors. Our team submitted four entries for the first stage that utilized: (1) AutoDock Vina (AD Vina) plus visual inspection; (2) a new common pharmacophore engine; (3) BEDAM replica exchange free energy simulations, and a Consensus approach that combined the predictions of all three strategies. Even with the SAMPL4's very challenging compound library that displayed a significantly lower amount of structural diversity than most libraries that are conventionally employed in prospective virtual screens, these approaches produced hit rates of 24, 25, 34, and 27 %, respectively, on a set with 19 % declared binders. Our only entry for the second stage challenge was based on the results of AD Vina plus visual inspection, and it ranked third place overall according to several different metrics provided by the SAMPL4 organizers. The successful results displayed by these approaches highlight the utility of the computational structure-based drug discovery tools and strategies that are being developed to advance the goals of the newly created, multi-institution, NIH-funded center called the "HIV Interaction and Viral Evolution Center".

  15. Virtual screening with AutoDock Vina and the common pharmacophore engine of a low diversity library of fragments and hits against the three allosteric sites of HIV integrase: participation in the SAMPL4 protein-ligand binding challenge.

    PubMed

    Perryman, Alexander L; Santiago, Daniel N; Forli, Stefano; Martins, Diogo Santos; Olson, Arthur J

    2014-04-01

    To rigorously assess the tools and protocols that can be used to understand and predict macromolecular recognition, and to gain more structural insight into three newly discovered allosteric binding sites on a critical drug target involved in the treatment of HIV infections, the Olson and Levy labs collaborated on the SAMPL4 challenge. This computational blind challenge involved predicting protein-ligand binding against the three allosteric sites of HIV integrase (IN), a viral enzyme for which two drugs (that target the active site) have been approved by the FDA. Positive control cross-docking experiments were utilized to select 13 receptor models out of an initial ensemble of 41 different crystal structures of HIV IN. These 13 models of the targets were selected using our new "Rank Difference Ratio" metric. The first stage of SAMPL4 involved using virtual screens to identify 62 active, allosteric IN inhibitors out of a set of 321 compounds. The second stage involved predicting the binding site(s) and crystallographic binding mode(s) for 57 of these inhibitors. Our team submitted four entries for the first stage that utilized: (1) AutoDock Vina (AD Vina) plus visual inspection; (2) a new common pharmacophore engine; (3) BEDAM replica exchange free energy simulations, and a Consensus approach that combined the predictions of all three strategies. Even with the SAMPL4's very challenging compound library that displayed a significantly lower amount of structural diversity than most libraries that are conventionally employed in prospective virtual screens, these approaches produced hit rates of 24, 25, 34, and 27 %, respectively, on a set with 19 % declared binders. Our only entry for the second stage challenge was based on the results of AD Vina plus visual inspection, and it ranked third place overall according to several different metrics provided by the SAMPL4 organizers. The successful results displayed by these approaches highlight the utility of the computational structure-based drug discovery tools and strategies that are being developed to advance the goals of the newly created, multi-institution, NIH-funded center called the "HIV Interaction and Viral Evolution Center".

  16. [GESIDA/National AIDS Plan: Consensus document on antiretroviral therapy in adults infected by the human immunodeficiency virus (Updated January 2015)].

    PubMed

    2015-10-01

    This consensus document is an update of combined antiretroviral therapy (cART) guidelines and recommendations for HIV-1 infected adult patients. To formulate these recommendations, a panel composed of members of the AIDS Study Group and the AIDS National Plan (GeSIDA/Plan Nacional sobre el Sida) reviewed the efficacy and safety advances in clinical trials, and cohort and pharmacokinetic studies published in medical journals (PubMed and Embase) or presented in medical scientific meetings. The strength of the recommendations, and the evidence that supports them, are based on modified criteria of the Infectious Diseases Society of America. In this update, cART is recommended for all patients infected by type 1 human immunodeficiency virus (HIV-1). The strength and level of the recommendation depends on the CD4+T-lymphocyte count, the presence of opportunistic diseases or comorbid conditions, age, and prevention of transmission of HIV. The objective of cART is to achieve an undetectable plasma viral load. Initial cART should always comprise a combination of 3 drugs, including 2 nucleoside reverse transcriptase inhibitors, and a third drug from a different family. Three out of the ten recommended regimes are regarded as preferential (all of them with an integrase inhibitor as the third drug), and the other seven (based on a non-nucleoside reverse transcriptase inhibitor, a ritonavir-boosted protease inhibitor, or an integrase inhibitor) as alternatives. This update presents the causes and criteria for switching cART in patients with undetectable plasma viral load, and in cases of virological failure where rescue cART should comprise 3 (or at least 2) drugs that are fully active against the virus. An update is also provided for the specific criteria for cART in special situations (acute infection, HIV-2 infection, and pregnancy) and with comorbid conditions (tuberculosis or other opportunistic infections, kidney disease, liver disease, and cancer). These new guidelines update previous recommendations related to cART (when to begin and what drugs should be used), how to monitor and what to do in case of viral failure or drug adverse reactions. cART specific criteria in comorbid patients and special situations are equally updated. Copyright © 2015 Elsevier España, S.L.U. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  17. Integrase inhibitors in late pregnancy and rapid HIV viral load reduction.

    PubMed

    Rahangdale, Lisa; Cates, Jordan; Potter, JoNell; Badell, Martina L; Seidman, Dominika; Miller, Emilly S; Coleman, Jenell S; Lazenby, Gweneth B; Levison, Judy; Short, William R; Yawetz, Sigal; Ciaranello, Andrea; Livingston, Elizabeth; Duthely, Lunthita; Rimawi, Bassam H; Anderson, Jean R; Stringer, Elizabeth M

    2016-03-01

    Minimizing time to HIV viral suppression is critical in pregnancy. Integrase strand transfer inhibitors (INSTIs), like raltegravir, are known to rapidly suppress plasma HIV RNA in nonpregnant adults. There are limited data in pregnant women. We describe time to clinically relevant reduction in HIV RNA in pregnant women using INSTI-containing and non-INSTI-containing antiretroviral therapy (ART) options. We conducted a retrospective cohort study of pregnant HIV-infected women in the United States from 2009 through 2015. We included women who initiated ART, intensified their regimen, or switched to a new regimen due to detectable viremia (HIV RNA >40 copies/mL) at ≥20 weeks gestation. Among women with a baseline HIV RNA permitting 1-log reduction, we estimated time to 1-log RNA reduction using the Kaplan-Meier estimator comparing women starting/adding an INSTI in their regimen vs other ART. To compare groups with similar follow-up time, we also conducted a subgroup analysis limited to women with ≤14 days between baseline and follow-up RNA data. This study describes 101 HIV-infected pregnant women from 11 US clinics. In all, 75% (76/101) of women were not taking ART at baseline; 24 were taking non-INSTI containing ART, and 1 received zidovudine monotherapy. In all, 39% (39/101) of women started an INSTI-containing regimen or added an INSTI to their ART regimen. Among 90 women with a baseline HIV RNA permitting 1-log reduction, the median time to 1-log RNA reduction was 8 days (interquartile range [IQR], 7-14) in the INSTI group vs 35 days (IQR, 20-53) in the non-INSTI ART group (P < .01). In a subgroup of 39 women with first and last RNA measurements ≤14 days apart, median time to 1-log reduction was 7 days (IQR, 6-10) in the INSTI group vs 11 days (IQR, 10-14) in the non-INSTI group (P < .01). ART that includes INSTIs appears to induce more rapid viral suppression than other ART regimens in pregnancy. Inclusion of an INSTI may play a role in optimal reduction of HIV RNA for HIV-infected pregnant women presenting late to care or failing initial therapy. Larger studies are urgently needed to assess the safety and effectiveness of this approach. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Sensitive Deep-Sequencing-Based HIV-1 Genotyping Assay To Simultaneously Determine Susceptibility to Protease, Reverse Transcriptase, Integrase, and Maturation Inhibitors, as Well as HIV-1 Coreceptor Tropism

    PubMed Central

    Gibson, Richard M.; Meyer, Ashley M.; Winner, Dane; Archer, John; Feyertag, Felix; Ruiz-Mateos, Ezequiel; Leal, Manuel; Robertson, David L.; Schmotzer, Christine L.

    2014-01-01

    With 29 individual antiretroviral drugs available from six classes that are approved for the treatment of HIV-1 infection, a combination of different phenotypic and genotypic tests is currently needed to monitor HIV-infected individuals. In this study, we developed a novel HIV-1 genotypic assay based on deep sequencing (DeepGen HIV) to simultaneously assess HIV-1 susceptibilities to all drugs targeting the three viral enzymes and to predict HIV-1 coreceptor tropism. Patient-derived gag-p2/NCp7/p1/p6/pol-PR/RT/IN- and env-C2V3 PCR products were sequenced using the Ion Torrent Personal Genome Machine. Reads spanning the 3′ end of the Gag, protease (PR), reverse transcriptase (RT), integrase (IN), and V3 regions were extracted, truncated, translated, and assembled for genotype and HIV-1 coreceptor tropism determination. DeepGen HIV consistently detected both minority drug-resistant viruses and non-R5 HIV-1 variants from clinical specimens with viral loads of ≥1,000 copies/ml and from B and non-B subtypes. Additional mutations associated with resistance to PR, RT, and IN inhibitors, previously undetected by standard (Sanger) population sequencing, were reliably identified at frequencies as low as 1%. DeepGen HIV results correlated with phenotypic (original Trofile, 92%; enhanced-sensitivity Trofile assay [ESTA], 80%; TROCAI, 81%; and VeriTrop, 80%) and genotypic (population sequencing/Geno2Pheno with a 10% false-positive rate [FPR], 84%) HIV-1 tropism test results. DeepGen HIV (83%) and Trofile (85%) showed similar concordances with the clinical response following an 8-day course of maraviroc monotherapy (MCT). In summary, this novel all-inclusive HIV-1 genotypic and coreceptor tropism assay, based on deep sequencing of the PR, RT, IN, and V3 regions, permits simultaneous multiplex detection of low-level drug-resistant and/or non-R5 viruses in up to 96 clinical samples. This comprehensive test, the first of its class, will be instrumental in the development of new antiretroviral drugs and, more importantly, will aid in the treatment and management of HIV-infected individuals. PMID:24468782

  19. Effects of Combined CCR5/Integrase Inhibitors-Based Regimen on Mucosal Immunity in HIV-Infected Patients Naïve to Antiretroviral Therapy: A Pilot Randomized Trial.

    PubMed

    Serrano-Villar, Sergio; Sainz, Talia; Ma, Zhong-Min; Utay, Netanya S; Chun, Tae-Wook; Wook-Chun, Tae; Mann, Surinder; Kashuba, Angela D; Siewe, Basile; Albanese, Anthony; Troia-Cancio, Paolo; Sinclair, Elizabeth; Somasunderam, Anoma; Yotter, Tammy; Deeks, Steven G; Landay, Alan; Pollard, Richard B; Miller, Christopher J; Moreno, Santiago; Asmuth, David M

    2016-01-01

    Whether initiation of antiretroviral therapy (ART) regimens aimed at achieving greater concentrations within gut associated lymphoid tissue (GALT) impacts the level of mucosal immune reconstitution, inflammatory markers and the viral reservoir remains unknown. We included 12 HIV- controls and 32 ART-naïve HIV patients who were randomized to efavirenz, maraviroc or maraviroc+raltegravir, each with fixed-dose tenofovir disoproxil fumarate/emtricitabine. Rectal and duodenal biopsies were obtained at baseline and at 9 months of ART. We performed a comprehensive assay of T-cell subsets by flow cytometry, T-cell density in intestinal biopsies, plasma and tissue concentrations of antiretroviral drugs by high-performance liquid chromatography/mass spectroscopy, and plasma interleukin-6 (IL-6), lipoteichoic acid (LTA), soluble CD14 (sCD14) and zonulin-1 each measured by ELISA. Total cell-associated HIV DNA was measured in PBMC and rectal and duodenal mononuclear cells. Twenty-six HIV-infected patients completed the follow-up. In the duodenum, the quadruple regimen resulted in greater CD8+ T-cell density decline, greater normalization of mucosal CCR5+CD4+ T-cells and increase of the naïve/memory CD8+ T-cell ratio, and a greater decline of sCD14 levels and duodenal HIV DNA levels (P = 0.004 and P = 0.067, respectively), with no changes in HIV RNA in plasma or tissue. Maraviroc showed the highest drug distribution to the gut tissue, and duodenal concentrations correlated well with other T-cell markers in duodenum, i.e., the CD4/CD8 ratio, %CD4+ and %CD8+ HLA-DR+CD38+ T-cells. Maraviroc use elicited greater activation of the mucosal naïve CD8+ T-cell subset, ameliorated the distribution of the CD8+ T-cell maturational subsets and induced higher improvement of zonulin-1 levels. These data suggest that combined CCR5 and integrase inhibitor based combination therapy in ART treatment naïve patients might more effectively reconstitute duodenal immunity, decrease inflammatory markers and impact on HIV persistence by cell-dependent mechanisms, and show unique effects of MVC in duodenal immunity driven by higher drug tissue penetration and possibly by class-dependent effects.

  20. Nonviral vectors for cancer gene therapy: prospects for integrating vectors and combination therapies.

    PubMed

    Ohlfest, John R; Freese, Andrew B; Largaespada, David A

    2005-12-01

    Gene therapy has the potential to improve the clinical outcome of many cancers by transferring therapeutic genes into tumor cells or normal host tissue. Gene transfer into tumor cells or tumor-associated stroma is being employed to induce tumor cell death, stimulate anti-tumor immune response, inhibit angiogenesis, and control tumor cell growth. Viral vectors have been used to achieve this proof of principle in animal models and, in select cases, in human clinical trials. Nevertheless, there has been considerable interest in developing nonviral vectors for cancer gene therapy. Nonviral vectors are simpler, more amenable to large-scale manufacture, and potentially safer for clinical use. Nonviral vectors were once limited by low gene transfer efficiency and transient or steadily declining gene expression. However, recent improvements in plasmid-based vectors and delivery methods are showing promise in circumventing these obstacles. This article reviews the current status of nonviral cancer gene therapy, with an emphasis on combination strategies, long-term gene transfer using transposons and bacteriophage integrases, and future directions.

  1. Target DNA bending by the Mu transpososome promotes careful transposition and prevents its reversal

    PubMed Central

    Fuller, James R; Rice, Phoebe A

    2017-01-01

    The transposition of bacteriophage Mu serves as a model system for understanding DDE transposases and integrases. All available structures of these enzymes at the end of the transposition reaction, including Mu, exhibit significant bends in the transposition target site DNA. Here we use Mu to investigate the ramifications of target DNA bending on the transposition reaction. Enhancing the flexibility of the target DNA or prebending it increases its affinity for transpososomes by over an order of magnitude and increases the overall reaction rate. This and FRET confirm that flexibility is interrogated early during the interaction between the transposase and a potential target site, which may be how other DNA binding proteins can steer selection of advantageous target sites. We also find that the conformation of the target DNA after strand transfer is involved in preventing accidental catalysis of the reverse reaction, as conditions that destabilize this conformation also trigger reversal. DOI: http://dx.doi.org/10.7554/eLife.21777.001 PMID:28177285

  2. Potential disruption of protein-protein interactions by graphene oxide

    NASA Astrophysics Data System (ADS)

    Feng, Mei; Kang, Hongsuk; Yang, Zaixing; Luan, Binquan; Zhou, Ruhong

    2016-06-01

    Graphene oxide (GO) is a promising novel nanomaterial with a wide range of potential biomedical applications due to its many intriguing properties. However, very little research has been conducted to study its possible adverse effects on protein-protein interactions (and thus subsequent toxicity to human). Here, the potential cytotoxicity of GO is investigated at molecular level using large-scale, all-atom molecular dynamics simulations to explore the interaction mechanism between a protein dimer and a GO nanosheet oxidized at different levels. Our theoretical results reveal that GO nanosheet could intercalate between the two monomers of HIV-1 integrase dimer, disrupting the protein-protein interactions and eventually lead to dimer disassociation as graphene does [B. Luan et al., ACS Nano 9(1), 663 (2015)], albeit its insertion process is slower when compared with graphene due to the additional steric and attractive interactions. This study helps to better understand the toxicity of GO to cell functions which could shed light on how to improve its biocompatibility and biosafety for its wide potential biomedical applications.

  3. Potential disruption of protein-protein interactions by graphene oxide.

    PubMed

    Feng, Mei; Kang, Hongsuk; Yang, Zaixing; Luan, Binquan; Zhou, Ruhong

    2016-06-14

    Graphene oxide (GO) is a promising novel nanomaterial with a wide range of potential biomedical applications due to its many intriguing properties. However, very little research has been conducted to study its possible adverse effects on protein-protein interactions (and thus subsequent toxicity to human). Here, the potential cytotoxicity of GO is investigated at molecular level using large-scale, all-atom molecular dynamics simulations to explore the interaction mechanism between a protein dimer and a GO nanosheet oxidized at different levels. Our theoretical results reveal that GO nanosheet could intercalate between the two monomers of HIV-1 integrase dimer, disrupting the protein-protein interactions and eventually lead to dimer disassociation as graphene does [B. Luan et al., ACS Nano 9(1), 663 (2015)], albeit its insertion process is slower when compared with graphene due to the additional steric and attractive interactions. This study helps to better understand the toxicity of GO to cell functions which could shed light on how to improve its biocompatibility and biosafety for its wide potential biomedical applications.

  4. Curcumin and its analogues: a potential natural compound against HIV infection and AIDS.

    PubMed

    Prasad, Sahdeo; Tyagi, Amit K

    2015-11-01

    No safe and effective cure currently exists for human immunodeficiency virus (HIV). However, antiretroviral therapy can prolong the lives of HIV patients and lowers the secondary infections. Natural compounds, which are considered to be pleiotropic molecules, could be useful against HIV. Curcumin, a yellow pigment present in the spice turmeric (Curcuma longa), can be used for the treatment of several diseases including HIV-AIDS because of its antioxidant, anti-inflammatory, anticancer, antiviral, and antibacterial nature. In this review we have summarized that how curcumin and its analogues inhibit the infection and replication of viral genes and prevent multiplicity of HIV. They are inhibitors of HIV protease and integrase. Curcumin also inhibits Tat transactivation of the HIV1-LTR genome, inflammatory molecules (interleukins, TNF-α, NF-κB, COX-2) and HIV associated various kinases including tyrosine kinase, PAK1, MAPK, PKC, cdk and others. In addition, curcumin enhances the effect of conventional therapeutic drugs and minimizes their side effects.

  5. Improved site-specific recombinase-based method to produce selectable marker- and vector-backbone-free transgenic cells

    NASA Astrophysics Data System (ADS)

    Yu, Yuan; Tong, Qi; Li, Zhongxia; Tian, Jinhai; Wang, Yizhi; Su, Feng; Wang, Yongsheng; Liu, Jun; Zhang, Yong

    2014-02-01

    PhiC31 integrase-mediated gene delivery has been extensively used in gene therapy and animal transgenesis. However, random integration events are observed in phiC31-mediated integration in different types of mammalian cells; as a result, the efficiencies of pseudo attP site integration and evaluation of site-specific integration are compromised. To improve this system, we used an attB-TK fusion gene as a negative selection marker, thereby eliminating random integration during phiC31-mediated transfection. We also excised the selection system and plasmid bacterial backbone by using two other site-specific recombinases, Cre and Dre. Thus, we generated clean transgenic bovine fetal fibroblast cells free of selectable marker and plasmid bacterial backbone. These clean cells were used as donor nuclei for somatic cell nuclear transfer (SCNT), indicating a similar developmental competence of SCNT embryos to that of non-transgenic cells. Therefore, the present gene delivery system facilitated the development of gene therapy and agricultural biotechnology.

  6. Broadening the use of antiretroviral therapy: the case for feline leukemia virus

    PubMed Central

    Greggs, Willie M; Clouser, Christine L; Patterson, Steven E; Mansky, Louis M

    2011-01-01

    Antiretroviral drugs have saved and extended the lives of millions of individuals infected with HIV. The major classes of anti-HIV drugs include reverse transcriptase inhibitors, protease inhibitors, integrase inhibitors, and entry/fusion inhibitors. While antiretroviral drug regimens are not commonly used to treat other types of retroviral infections, there are instances where there is a perceived need for re-evaluation of the benefits of antiretroviral therapy. One case in point is that of feline leukemia virus (FeLV), an infection of companion felines. While vaccines exist to prevent FeLV infection and spread, they have not eliminated FeLV infection. For FeLV-infected felines and their human companions, antiretroviral therapy would be desirable and of practical importance if good options were available. Here, we discuss FeLV biology and current treatment options, and propose that there is a need for antiretroviral treatment options for FeLV infection. The comparative use and analysis of antiretroviral therapy can provide new insights into the mechanism of antiretroviral drug action. PMID:21479142

  7. Positive relationship detected between soil bioaccessible organic pollutants and antibiotic resistance genes at dairy farms in Nanjing, Eastern China.

    PubMed

    Sun, Mingming; Ye, Mao; Wu, Jun; Feng, Yanfang; Wan, Jinzhong; Tian, Da; Shen, Fangyuan; Liu, Kuan; Hu, Feng; Li, Huixin; Jiang, Xin; Yang, Linzhang; Kengara, Fredrick Orori

    2015-11-01

    Co-contaminated soils by organic pollutants (OPs), antibiotics and antibiotic resistance genes (ARGs) have been becoming an emerging problem. However, it is unclear if an interaction exists between mixed pollutants and ARG abundance. Therefore, the potential relationship between OP contents and ARG and class 1 integron-integrase gene (intI1) abundance was investigated from seven dairy farms in Nanjing, Eastern China. Phenanthrene, pentachlorophenol, sulfadiazine, roxithromycin, associated ARG genes, and intI1 had the highest detection frequencies. Correlation analysis suggested a stronger positive relationship between the ARG abundance and the bioaccessible OP content than the total OP content. Additionally, the significant correlation between the bioaccessible mixed pollutant contents and ARG/intI1 abundance suggested a direct/indirect impact of the bioaccessible mixed pollutants on soil ARG dissemination. This study provided a preliminary understanding of the interaction between mixed pollutants and ARGs in co-contaminated soils. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Tn552 transposase purification and in vitro activities.

    PubMed Central

    Rowland, S J; Sherratt, D J; Stark, W M; Boocock, M R

    1995-01-01

    The Staphylococcus aureus transposon Tn552 encodes a protein (p480) containing the 'D,D(35)E' motif common to retroviral integrases and the transposases of a number of bacterial elements, including phage Mu, the integron-containing element Tn5090, Tn7 and IS3. p480 and a histidine-tagged derivative were overexpressed in Escherichia coli and purified by methods involving denaturation and renaturation. DNase I footprinting and gel binding assays demonstrated that p480 binds to two adjacent, directly repeated 23 bp motifs at each end of Tn552. Although donor strand cleavage by p480 was not detected, in vitro conditions were defined for strand transfer activity with transposon end fragments having pre-cleaved 3' termini. Strand transfer was Mn(2+)-dependent and appeared to join a single left or right end fragment to target DNA. The importance of the terminal dinucleotide CA-3' was demonstrated by mutation. The in vitro activities of p480 are consistent with its proposed function as the Tn552 transposase. Images PMID:7828593

  9. Characterizing Class‐Specific Exposure‐Viral Load Suppression Response of HIV Antiretrovirals Using A Model‐Based Meta‐Analysis

    PubMed Central

    Xu, Y; Li, YF; Zhang, D; Dockendorf, M; Tetteh, E; Rizk, ML; Grobler, JA; Lai, M‐T; Gobburu, J

    2016-01-01

    We applied model‐based meta‐analysis of viral suppression as a function of drug exposure and in vitro potency for short‐term monotherapy in human immunodeficiency virus type 1 (HIV‐1)‐infected treatment‐naïve patients to set pharmacokinetic targets for development of nonnucleoside reverse transcriptase inhibitors (NNRTIs) and integrase strand transfer inhibitors (InSTIs). We developed class‐specific models relating viral load kinetics from monotherapy studies to potency normalized steady‐state trough plasma concentrations. These models were integrated with a literature assessment of doses which demonstrated to have long‐term efficacy in combination therapy, in order to set steady‐state trough concentration targets of 6.17‐ and 2.15‐fold above potency for NNRTIs and InSTIs, respectively. Both the models developed and the pharmacokinetic targets derived can be used to guide compound selection during preclinical development and to predict the dose–response of new antiretrovirals to inform early clinical trial design. PMID:27171172

  10. Medicine patent pool--pharma philanthropy or PR?

    PubMed

    De Luca, Carmela

    2015-01-01

    Merck recently signed an agreement with The Medicines Patent Pool (MPP) to license intellectual property relating to pediatric formulations of its integrase HIV drug, raltegravir (Ral) (the 'Agreement'). The Agreement is alleged to clear the way for cheaper formulations for use in developing and some middle income countries and allows for the development of novel pediatric formulations of Ral as well as novel combinations. Merck's license is royalty free and under the terms of the Agreement, manufacturers anywhere in the world who meet the quality assurance criteria, can manufacture and sell pediatric versions of the drug in the licensed countries under the agreed conditions without paying a royalty to Merck. The Agreement covers at least 92 countries and MPP reports that 98.1% of children with HIV in the developing world live in the included countries. The Agreement has been criticized as a public relations exercise. The article asks if the criticism is justified and explores several aspects of the Agreement in addressing the question.

  11. Retrotransposon Tf1 is targeted to pol II promoters by transcription activators

    PubMed Central

    Leem, Young-Eun; Ripmaster, Tracy; Kelly, Felice; Ebina, Hirotaka; Heincelman, Marc; Zhang, Ke; Grewal, Shiv I. S.; Hoffman, Charles S.; Levin, Henry L.

    2008-01-01

    SUMMARY The LTR-retrotransposon Tf1 preserves the coding capacity of its host Schizosaccharomyces pombe by integrating upstream of open reading frames (ORFs). To determine which features of the target sites were recognized by the transposon, we introduced plasmids containing candidate insertion sites into S. pombe and mapped the positions of integration. We found that Tf1 was targeted specifically to the promoters of pol II transcribed genes. A detailed analysis of integration in plasmids that contained either ade6 or fbp1 revealed insertions occurred in the promoters at positions where transcription factors bound. Further experiments revealed that the activator Atf1p and its binding site were required for directing integration to the promoter of fbp1. An interaction between Tf1 integrase and Atf1p was observed indicating that integration at fbp1 was mediated by the activator bound to its promoter. Surprisingly we found Tf1 contained sequences that activated transcription and these substituted for elements of the ade6 promoter disrupted by integration. PMID:18406330

  12. Retrotransposon Tf1 is targeted to Pol II promoters by transcription activators.

    PubMed

    Leem, Young-Eun; Ripmaster, Tracy L; Kelly, Felice D; Ebina, Hirotaka; Heincelman, Marc E; Zhang, Ke; Grewal, Shiv I S; Hoffman, Charles S; Levin, Henry L

    2008-04-11

    The LTR-retrotransposon Tf1 preserves the coding capacity of its host Schizosaccharomyces pombe by integrating upstream of open reading frames (ORFs). To determine which features of the target sites were recognized by the transposon, we introduced plasmids containing candidate insertion sites into S. pombe and mapped the positions of integration. We found that Tf1 was targeted specifically to the promoters of Pol II-transcribed genes. A detailed analysis of integration in plasmids that contained either ade6 or fbp1 revealed insertions occurred in the promoters at positions where transcription factors bound. Further experiments revealed that the activator Atf1p and its binding site were required for directing integration to the promoter of fbp1. An interaction between Tf1 integrase and Atf1p was observed, indicating that integration at fbp1 was mediated by the activator bound to its promoter. Surprisingly, we found Tf1 contained sequences that activated transcription, and these substituted for elements of the ade6 promoter disrupted by integration.

  13. The future of pre-exposure prophylaxis (PrEP) for human immunodeficiency virus (HIV) infection.

    PubMed

    Özdener, Ayşe Elif; Park, Tae Eun; Kalabalik, Julie; Gupta, Rachna

    2017-05-01

    People at high risk for HIV acquisition should be offered pre-exposure prophylaxis (PrEP). Tenofovir disoproxil fumarate (TDF)/emtricitabine (FTC) is currently the only medication recommended for pre-exposure prophylaxis (PrEP) by the Centers for Disease Control and Prevention (CDC) in people at high risk for HIV acquisition. This article will review medications currently under investigation and the future landscape of PrEP therapy. Areas covered: This article will review clinical trials that have investigated nontraditional regimens of TDF/FTC, antiretroviral agents from different drug classes such as integrase strand transfer inhibitors (INSTI), nucleoside reverse transcriptase inhibitors (NRTI), and non-nucleoside reverse transcriptase inhibitors (NNRTI) as potential PrEP therapies. Expert commentary: Currently, there are several investigational drugs in the pipeline for PrEP against HIV infection. Increased utilization of PrEP therapy depends on provider identification of people at high risk for HIV transmission. Advances in PrEP development will expand options and access for people and reduce the risk of HIV acquisition.

  14. Correction of the sickle cell disease mutation in human hematopoietic stem/progenitor cells.

    PubMed

    Hoban, Megan D; Cost, Gregory J; Mendel, Matthew C; Romero, Zulema; Kaufman, Michael L; Joglekar, Alok V; Ho, Michelle; Lumaquin, Dianne; Gray, David; Lill, Georgia R; Cooper, Aaron R; Urbinati, Fabrizia; Senadheera, Shantha; Zhu, Allen; Liu, Pei-Qi; Paschon, David E; Zhang, Lei; Rebar, Edward J; Wilber, Andrew; Wang, Xiaoyan; Gregory, Philip D; Holmes, Michael C; Reik, Andreas; Hollis, Roger P; Kohn, Donald B

    2015-04-23

    Sickle cell disease (SCD) is characterized by a single point mutation in the seventh codon of the β-globin gene. Site-specific correction of the sickle mutation in hematopoietic stem cells would allow for permanent production of normal red blood cells. Using zinc-finger nucleases (ZFNs) designed to flank the sickle mutation, we demonstrate efficient targeted cleavage at the β-globin locus with minimal off-target modification. By co-delivering a homologous donor template (either an integrase-defective lentiviral vector or a DNA oligonucleotide), high levels of gene modification were achieved in CD34(+) hematopoietic stem and progenitor cells. Modified cells maintained their ability to engraft NOD/SCID/IL2rγ(null) mice and to produce cells from multiple lineages, although with a reduction in the modification levels relative to the in vitro samples. Importantly, ZFN-driven gene correction in CD34(+) cells from the bone marrow of patients with SCD resulted in the production of wild-type hemoglobin tetramers. © 2015 by The American Society of Hematology.

  15. Generation of a transgenic ORFeome library in Drosophila

    PubMed Central

    Bischof, Johannes; Sheils, Emma M.; Björklund, Mikael; Basler, Konrad

    2014-01-01

    Overexpression screens can be used to explore gene function in Drosophila melanogaster, but to demonstrate their full potential comprehensive and systematic collections of fly strains are required. Here we provide a protocol for high-throughput cloning of Drosophila open reading frames (ORFs) regulated by Upstream Activation Sequences (UAS sites); the resulting Gal4-inducible UAS-ORF plasmid library is then used to generate Drosophila strains by ΦC31 integrase-mediated site-specific integration. We also provide details for FLP/FRT-mediated in vivo exchange of epitope tags (or regulatory regions) in the ORF library strains, which further extends their potential applications. These transgenic UAS-ORF strains are a useful resource to complement and validate genetic experiments performed with loss-of-function mutants and RNAi lines. The duration of the complete protocol strongly depends on the number of ORFs required, but the procedure of injection and establishing balanced fly stocks can be completed within approx. 6-7 weeks for a few genes. PMID:24922270

  16. The commensal infant gut meta-mobilome as a potential reservoir for persistent multidrug resistance integrons.

    PubMed

    Ravi, Anuradha; Avershina, Ekaterina; Foley, Steven L; Ludvigsen, Jane; Storrø, Ola; Øien, Torbjørn; Johnsen, Roar; McCartney, Anne L; L'Abée-Lund, Trine M; Rudi, Knut

    2015-10-28

    Despite the accumulating knowledge on the development and establishment of the gut microbiota, its role as a reservoir for multidrug resistance is not well understood. This study investigated the prevalence and persistence patterns of an integrase gene (int1), used as a proxy for integrons (which often carry multiple antimicrobial resistance genes), in the fecal microbiota of 147 mothers and their children sampled longitudinally from birth to 2 years. The study showed the int1 gene was detected in 15% of the study population, and apparently more persistent than the microbial community structure itself. We found int1 to be persistent throughout the first two years of life, as well as between mothers and their 2-year-old children. Metagenome sequencing revealed integrons in the gut meta-mobilome that were associated with plasmids and multidrug resistance. In conclusion, the persistent nature of integrons in the infant gut microbiota makes it a potential reservoir of mobile multidrug resistance.

  17. The commensal infant gut meta-mobilome as a potential reservoir for persistent multidrug resistance integrons

    PubMed Central

    Ravi, Anuradha; Avershina, Ekaterina; Foley, Steven L.; Ludvigsen, Jane; Storrø, Ola; Øien, Torbjørn; Johnsen, Roar; McCartney, Anne L.; L’Abée-Lund, Trine M.; Rudi, Knut

    2015-01-01

    Despite the accumulating knowledge on the development and establishment of the gut microbiota, its role as a reservoir for multidrug resistance is not well understood. This study investigated the prevalence and persistence patterns of an integrase gene (int1), used as a proxy for integrons (which often carry multiple antimicrobial resistance genes), in the fecal microbiota of 147 mothers and their children sampled longitudinally from birth to 2 years. The study showed the int1 gene was detected in 15% of the study population, and apparently more persistent than the microbial community structure itself. We found int1 to be persistent throughout the first two years of life, as well as between mothers and their 2-year-old children. Metagenome sequencing revealed integrons in the gut meta-mobilome that were associated with plasmids and multidrug resistance. In conclusion, the persistent nature of integrons in the infant gut microbiota makes it a potential reservoir of mobile multidrug resistance. PMID:26507767

  18. Intrinsic sequence specificity of the Cas1 integrase directs new spacer acquisition

    PubMed Central

    Rollie, Clare; Schneider, Stefanie; Brinkmann, Anna Sophie; Bolt, Edward L; White, Malcolm F

    2015-01-01

    The adaptive prokaryotic immune system CRISPR-Cas provides RNA-mediated protection from invading genetic elements. The fundamental basis of the system is the ability to capture small pieces of foreign DNA for incorporation into the genome at the CRISPR locus, a process known as Adaptation, which is dependent on the Cas1 and Cas2 proteins. We demonstrate that Cas1 catalyses an efficient trans-esterification reaction on branched DNA substrates, which represents the reverse- or disintegration reaction. Cas1 from both Escherichia coli and Sulfolobus solfataricus display sequence specific activity, with a clear preference for the nucleotides flanking the integration site at the leader-repeat 1 boundary of the CRISPR locus. Cas2 is not required for this activity and does not influence the specificity. This suggests that the inherent sequence specificity of Cas1 is a major determinant of the adaptation process. DOI: http://dx.doi.org/10.7554/eLife.08716.001 PMID:26284603

  19. Geometrically and conformationally restrained cinnamoyl compounds as inhibitors of HIV-1 integrase: synthesis, biological evaluation, and molecular modeling.

    PubMed

    Artico, M; Di Santo, R; Costi, R; Novellino, E; Greco, G; Massa, S; Tramontano, E; Marongiu, M E; De Montis, A; La Colla, P

    1998-10-08

    Various cinnammoyl-based structures were synthesized and tested in enzyme assays as inhibitors of the HIV-1 integrase (IN). The majority of compounds were designed as geometrically or conformationally constrained analogues of caffeic acid phenethyl ester (CAPE) and were characterized by a syn disposition of the carbonyl group with respect to the vinylic double bond. Since the cinnamoyl moiety present in flavones such as quercetin (inactive on HIV-1-infected cells) is frozen in an anti arrangement, it was hoped that fixing our compounds in a syn disposition could favor anti-HIV-1 activity in cell-based assays. Geometrical and conformational properties of the designed compounds were taken into account through analysis of X-ray structures available from the Cambridge Structural Database. The polyhydroxylated analogues were prepared by reacting 3,4-bis(tetrahydropyran-2-yloxy)benzaldehyde with various compounds having active methylene groups such as 2-propanone, cyclopentanone, cyclohexanone, 1,3-diacetylbenzene, 2, 4-dihydroxyacetophenone, 2,3-dihydro-1-indanone, 2,3-dihydro-1, 3-indandione, and others. While active against both 3'-processing and strand-transfer reactions, the new compounds, curcumin included, failed to inhibit the HIV-1 multiplication in acutely infected MT-4 cells. Nevertheless, they specifically inhibited the enzymatic reactions associated with IN, being totally inactive against other viral (HIV-1 reverse transcriptase) and cellular (RNA polymerase II) nucleic acid-processing enzymes. On the other hand, title compounds were endowed with remarkable antiproliferative activity, whose potency correlated neither with the presence of catechols (possible source of reactive quinones) nor with inhibition of topoisomerases. The SARs developed for our compounds led to novel findings concerning the molecular determinants of IN inhibitory activity within the class of cinnamoyl-based structures. We hypothesize that these compounds bind to IN featuring the cinnamoyl residue C=C-C=O in a syn disposition, differently from flavone derivatives characterized by an anti arrangement about the same fragment. Certain inhibitors, lacking one of the two pharmacophoric catechol hydroxyls, retain moderate potency thanks to nonpharmacophoric fragments (i.e., a m-methoxy group in curcumin) which favorably interact with an "accessory" region of IN. This region is supposed to be located adjacent to the binding site accommodating the pharmacophoric dihydroxycinnamoyl moiety. Disruption of coplanarity in the inhibitor structure abolishes activity owing to poor shape complementarity with the target or an exceedingly high strain energy of the coplanar conformation.

  20. E622, a miniature, virulence-associated mobile element.

    PubMed

    Stavrinides, John; Kirzinger, Morgan W B; Beasley, Federico C; Guttman, David S

    2012-01-01

    Miniature inverted terminal repeat elements (MITEs) are nonautonomous mobile elements that have a significant impact on bacterial evolution. Here we characterize E622, a 611-bp virulence-associated MITE from Pseudomonas syringae, which contains no coding region but has almost perfect 168-bp inverted repeats. Using an antibiotic coupling assay, we show that E622 is transposable and can mobilize an antibiotic resistance gene contained between its borders. Its predicted parent element, designated TnE622, has a typical transposon structure with a three-gene operon, consisting of resolvase, integrase, and exeA-like genes, which is bounded by the same terminal inverted repeats as E622. A broader genome level survey of the E622/TnE622 inverted repeats identified homologs in Pseudomonas, Salmonella, Shewanella, Erwinia, Pantoea, and the cyanobacteria Nostoc and Cyanothece, many of which appear to encompass known virulence genes, including genes encoding toxins, enzymes, and type III secreted effectors. Its association with niche-specific genetic determinants, along with its persistence and evolutionary diversification, indicates that this mobile element family has played a prominent role in the evolution of many agriculturally and clinically relevant pathogenic bacteria.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venken, Koen J. T.; Popodi, Ellen; Holtzman, Stacy L.

    We describe a molecularly defined duplication kit for the X chromosome of Drosophila melanogaster. A set of 408 overlapping P[acman] BAC clones was used to create small duplications (average length 88 kb) covering the 22-Mb sequenced portion of the chromosome. The BAC clones were inserted into an attP docking site on chromosome 3L using C31 integrase, allowing direct comparison of different transgenes. The insertions complement 92% of the essential and viable mutations and deletions tested, demonstrating that almost all Drosophila genes are compact and that the current annotations of the genome are reasonably accurate. Moreover, almost all genes are toleratedmore » at twice the normal dosage. Finally, we more precisely mapped two regions at which duplications cause diplo-lethality in males. This collection comprises the first molecularly defined duplication set to cover a whole chromosome in a multicellular organism. The work presented removes a long-standing barrier to genetic analysis of the Drosophila X chromosome, will greatly facilitate functional assays of X-linked genes in vivo, and provides a model for functional analyses of entire chromosomes in other species.« less

  2. Targeted gene therapy and cell reprogramming in Fanconi anemia

    PubMed Central

    Rio, Paula; Baños, Rocio; Lombardo, Angelo; Quintana-Bustamante, Oscar; Alvarez, Lara; Garate, Zita; Genovese, Pietro; Almarza, Elena; Valeri, Antonio; Díez, Begoña; Navarro, Susana; Torres, Yaima; Trujillo, Juan P; Murillas, Rodolfo; Segovia, Jose C; Samper, Enrique; Surralles, Jordi; Gregory, Philip D; Holmes, Michael C; Naldini, Luigi; Bueren, Juan A

    2014-01-01

    Gene targeting is progressively becoming a realistic therapeutic alternative in clinics. It is unknown, however, whether this technology will be suitable for the treatment of DNA repair deficiency syndromes such as Fanconi anemia (FA), with defects in homology-directed DNA repair. In this study, we used zinc finger nucleases and integrase-defective lentiviral vectors to demonstrate for the first time that FANCA can be efficiently and specifically targeted into the AAVS1 safe harbor locus in fibroblasts from FA-A patients. Strikingly, up to 40% of FA fibroblasts showed gene targeting 42 days after gene editing. Given the low number of hematopoietic precursors in the bone marrow of FA patients, gene-edited FA fibroblasts were then reprogrammed and re-differentiated toward the hematopoietic lineage. Analyses of gene-edited FA-iPSCs confirmed the specific integration of FANCA in the AAVS1 locus in all tested clones. Moreover, the hematopoietic differentiation of these iPSCs efficiently generated disease-free hematopoietic progenitors. Taken together, our results demonstrate for the first time the feasibility of correcting the phenotype of a DNA repair deficiency syndrome using gene-targeting and cell reprogramming strategies. PMID:24859981

  3. Family values in the age of genomics: comparative analyses of temperate bacteriophage HK022.

    PubMed

    Weisberg, R A; Gottesmann, M E; Hendrix, R W; Little, J W

    1999-01-01

    HK022 is a temperate coliphage related to phage lambda. Its chromosome has been completely sequenced, and several aspects of its life cycle have been intensively studied. In the overall arrangement, expression, and function of most of its genes, HK022 broadly resembles lambda and other members of the lambda family. Upon closer view, significant differences emerge. The differences reveal alternative strategies used by related phages to cope with similar problems and illuminate previously unknown regulatory and structural motifs. HK022 prophages protect lysogens from superinfection by producing a sequence-specific RNA binding protein that prematurely terminates nascent transcripts of infecting phage. It uses a novel RNA-based mechanism to antiterminate its own early transcription. The HK022 protein shell is strengthened by a complex pattern of covalent subunit interlinking to form a unitary structure that resembles chain-mail armour. Its integrase and repressor proteins are similar to those of lambda, but the differences provide insights into the evolution of biological specificity and the elements needed for construction of a stable genetic switch.

  4. Site-directed mutagenesis study on DNA binding regions of the mouse homologue of Suppressor of Hairless, RBP-J kappa.

    PubMed Central

    Chung, C N; Hamaguchi, Y; Honjo, T; Kawaichi, M

    1994-01-01

    To map regions important for DNA binding of the mouse homologue of Suppressor of Hairless or RBP-J kappa protein, mutated mouse RBP-J kappa cDNAs were made by insertion of oligonucleotide linkers or base replacement. DNA binding assays using the mutated proteins expressed in COS cells showed that various mutations between 218 Arg and 227 Arg decreased the DNA binding activity drastically. The DNA binding activity was not affected by amino acid replacements within the integrase motif of the RBP-J kappa protein (230His-269His). Replacements between 291Arg and 323Tyr affected the DNA binding activity slightly but reproducibly. These results indicate that the region encompassing 218Arg-227Arg is critical for the DNA binding activity of RBP-J kappa. This region did not show any significant homology to motifs or domains of the previously described DNA binding proteins. Using a truncation mutant protein RBP-J kappa was shown to associate with DNA as a monomer. Images PMID:8065905

  5. Discovery and analysis of an active long terminal repeat-retrotransposable element in Aspergillus oryzae.

    PubMed

    Jie Jin, Feng; Hara, Seiichi; Sato, Atsushi; Koyama, Yasuji

    2014-01-01

    Wild-type Aspergillus oryzae RIB40 contains two copies of the AO090005001597 gene. We previously constructed A. oryzae RIB40 strain, RKuAF8B, with multiple chromosomal deletions, in which the AO090005001597 copy number was found to be increased significantly. Sequence analysis indicated that AO090005001597 is part of a putative 6,000-bp retrotransposable element, flanked by two long terminal repeats (LTRs) of 669 bp, with characteristics of retroviruses and retrotransposons, and thus designated AoLTR (A. oryzae LTR-retrotransposable element). AoLTR comprised putative reverse transcriptase, RNase H, and integrase domains. The deduced amino acid sequence alignment of AoLTR showed 94% overall identity with AFLAV, an A. flavus Tf1/sushi retrotransposon. Quantitative real-time RT-PCR showed that AoLTR gene expression was significantly increased in the RKuAF8B, in accordance with the increased copy number. Inverse PCR indicated that the full-length retrotransposable element was randomly integrated into multiple genomic locations. However, no obvious phenotypic changes were associated with the increased AoLTR gene copy number.

  6. Two case reports of severe myocarditis associated with the initiation of dolutegravir treatment in HIV patients

    PubMed Central

    Mahlab-Guri, Keren; Asher, Ilan; Rosenberg-Bezalel, Shira; Elbirt, Daniel; Burke, Michael; Sthoeger, Zev M.

    2016-01-01

    Abstract Rationale: The integrase inhibitor dolutegravir is now recommended as first-line treatment for HIV. A single case of myocarditis after treatment with dolutegravir was reported in the FLAMINGO trial. We present here 2 cases of severe myocarditis that occurred shortly after the initiation of dolutegravir treatment. Patients concerns: The first case is a 45-year-old female who developed severe congestive heart failure and died, weeks after the initiation of dolutegravir treatment (for simplification of her antiretroviral regimen). The second case was a 51-year-old male who presented with effort dyspnea 3 weeks after the initiation of dolutegravir treatment and was later diagnosed as severe congestive heart failure. The treatment was changed and the patient survived, but he still suffers from severe heart failure with functional impairment. Diagnosis and Outcome: Patient 1 died, patient 2 suffers from severe heart failure. Lessons: We discuss here the possible relationship between the initiation of dolutegravir treatment and the development of lymphocytic myocarditis in our patients, and we suggest a possible mechanism. PMID:27893693

  7. A humanized mouse model for HIV-2 infection and efficacy testing of a single-pill triple-drug combination anti-retroviral therapy.

    PubMed

    Hu, Shuang; Neff, Charles Preston; Kumar, Dipu Mohan; Habu, Yuichiro; Akkina, Sarah R; Seki, Takahiro; Akkina, Ramesh

    2017-01-15

    While HIV-2 is a causative agent for AIDS in addition to the better studied HIV-1, there is currently no suitable animal model for experimental studies for HIV-2 infection and evaluating promising drugs in vivo. Here we evaluated humanized mice for their susceptibility to HIV-2 infection and tested a single-pill three drug formulation of anti-retrovirals (NRTIs abacavir and lamivudine, integrase inhibitor dolutegravir) (trade name, Triumeq R ). Our results showed that hu-mice are susceptible to HIV-2 infection showing persistent viremia and CD4 T cell loss, key hallmarks of AIDS pathogenesis. Oral drug treatment led to full viral suppression and protection from CD4 T cell depletion. Cessation of therapy resulted in viral rebound and CD4 T cell loss. These proof-of-concept studies establish the utility of hu-mice for evaluating HIV-2 pathogenesis in more detail in the future, testing novel therapies and providing pre-clinical efficacy data of a three drug combination to treat HIV-2 infections. Copyright © 2016. Published by Elsevier Inc.

  8. Complete nucleotide sequence and annotation of the temperate corynephage ϕ16 genome.

    PubMed

    Lobanova, Juliya S; Gak, Evgueni R; Andreeva, Irina G; Rybak, Konstantin V; Krylov, Alexander A; Mashko, Sergey V

    2017-08-01

    The complete genome of ϕ16, a temperate corynephage from Corynebacterium glutamicum ATCC 21792, was sequenced and annotated (GenBank: KY250482). The electron microscopy study of ϕ16 virion confirmed that it belongs to the family Siphoviridae. The ϕ16 genome consists of a linear double-stranded DNA molecule of 58,200 bp (G+C = 52.2%) with protruding cohesive 3'-ends of 14 nt. Four major structural proteins were separated by SDS-PAGE and identified by peptide mass fingerprinting technique. Using bioinformatics analysis, 101 putative ORFs and 5 tRNA genes were predicted. Only 27 putative gene products could be assigned to known biological functions. The ϕ16 genome was divided into functional modules. Seven putative promoters and eight putative unidirectional intrinsic terminators were predicted. One site of putative «-1» programmed ribosomal frameshifting was proposed in the phage tail assembly genome region. C. glutamicum genetic tools could be broadened by exploiting the known integrase gene (gp33) and the newly identified excisionase gene (gp47), participating in site-specific recombination between ϕ16-attP/attB.

  9. SAMPL4 & DOCK3.7: lessons for automated docking procedures

    NASA Astrophysics Data System (ADS)

    Coleman, Ryan G.; Sterling, Teague; Weiss, Dahlia R.

    2014-03-01

    The SAMPL4 challenges were used to test current automated methods for solvation energy, virtual screening, pose and affinity prediction of the molecular docking pipeline DOCK 3.7. Additionally, first-order models of binding affinity were proposed as milestones for any method predicting binding affinity. Several important discoveries about the molecular docking software were made during the challenge: (1) Solvation energies of ligands were five-fold worse than any other method used in SAMPL4, including methods that were similarly fast, (2) HIV Integrase is a challenging target, but automated docking on the correct allosteric site performed well in terms of virtual screening and pose prediction (compared to other methods) but affinity prediction, as expected, was very poor, (3) Molecular docking grid sizes can be very important, serious errors were discovered with default settings that have been adjusted for all future work. Overall, lessons from SAMPL4 suggest many changes to molecular docking tools, not just DOCK 3.7, that could improve the state of the art. Future difficulties and projects will be discussed.

  10. LEDGF/p75 Deficiency Increases Deletions at the HIV-1 cDNA Ends.

    PubMed

    Bueno, Murilo T D; Reyes, Daniel; Llano, Manuel

    2017-09-15

    Processing of unintegrated linear HIV-1 cDNA by the host DNA repair system results in its degradation and/or circularization. As a consequence, deficient viral cDNA integration generally leads to an increase in the levels of HIV-1 cDNA circles containing one or two long terminal repeats (LTRs). Intriguingly, impaired HIV-1 integration in LEDGF/p75-deficient cells does not result in a correspondent increase in viral cDNA circles. We postulate that increased degradation of unintegrated linear viral cDNA in cells lacking the lens epithelium-derived growth factor (LEDGF/p75) account for this inconsistency. To evaluate this hypothesis, we characterized the nucleotide sequence spanning 2-LTR junctions isolated from LEDGF/p75-deficient and control cells. LEDGF/p75 deficiency resulted in a significant increase in the frequency of 2-LTRs harboring large deletions. Of note, these deletions were dependent on the 3' processing activity of integrase and were not originated by aberrant reverse transcription. Our findings suggest a novel role of LEDGF/p75 in protecting the unintegrated 3' processed linear HIV-1 cDNA from exonucleolytic degradation.

  11. Characterizing Class-Specific Exposure-Viral Load Suppression Response of HIV Antiretrovirals Using A Model-Based Meta-Analysis.

    PubMed

    Xu, Y; Li, Y F; Zhang, D; Dockendorf, M; Tetteh, E; Rizk, M L; Grobler, J A; Lai, M-T; Gobburu, J; Ankrom, W

    2016-08-01

    We applied model-based meta-analysis of viral suppression as a function of drug exposure and in vitro potency for short-term monotherapy in human immunodeficiency virus type 1 (HIV-1)-infected treatment-naïve patients to set pharmacokinetic targets for development of nonnucleoside reverse transcriptase inhibitors (NNRTIs) and integrase strand transfer inhibitors (InSTIs). We developed class-specific models relating viral load kinetics from monotherapy studies to potency normalized steady-state trough plasma concentrations. These models were integrated with a literature assessment of doses which demonstrated to have long-term efficacy in combination therapy, in order to set steady-state trough concentration targets of 6.17- and 2.15-fold above potency for NNRTIs and InSTIs, respectively. Both the models developed and the pharmacokinetic targets derived can be used to guide compound selection during preclinical development and to predict the dose-response of new antiretrovirals to inform early clinical trial design. © 2016 The Authors. Clinical and Translational Science published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.

  12. [Efficacy of initial antiretroviral therapy based on lopinavir/ritonavir plus 2 nucleoside/nucleotide analogs in patients with human immunodeficiency virus type 1 infection].

    PubMed

    Zamora, Laura; Gatell, José M

    2014-11-01

    Triple combination regimens consisting of lopinavir/ritonavir (LPV/r) plus 2 nucleoside/nucleotide analogs continue to be a valid option in initial antiretroviral therapy. Other protease inhibitors boosted with ritonavir (and in future with cobicistat) have been introduced, as well as other non-nucleoside analogs (rilpivirin) and 3 integrase inhibitors. None of the new regimens have shown superiority over LPV/r or comparisons are lacking. Therefore, regimens including LPV/r continue to be recommended as initial first-line or alternative strategies in most treatment guidelines. Dual combinations with LPV/r (plus raltegravir or lamivudine) are described in another article and can provide a similar response rate to triple combinations, better tolerance, and an improved cost-efficacy ratio, both for initial therapy and in simplification strategies. In contrast, LPV/r or darunavir/r monotherapy does not seem an acceptable option in treatment-naïve patients and is becoming increasingly less acceptable in simplification strategies. Copyright © 2014 Elsevier España, S.L.U. All rights reserved.

  13. Cas4-Dependent Prespacer Processing Ensures High-Fidelity Programming of CRISPR Arrays.

    PubMed

    Lee, Hayun; Zhou, Yi; Taylor, David W; Sashital, Dipali G

    2018-04-05

    CRISPR-Cas immune systems integrate short segments of foreign DNA as spacers into the host CRISPR locus to provide molecular memory of infection. Cas4 proteins are widespread in CRISPR-Cas systems and are thought to participate in spacer acquisition, although their exact function remains unknown. Here we show that Bacillus halodurans type I-C Cas4 is required for efficient prespacer processing prior to Cas1-Cas2-mediated integration. Cas4 interacts tightly with the Cas1 integrase, forming a heterohexameric complex containing two Cas1 dimers and two Cas4 subunits. In the presence of Cas1 and Cas2, Cas4 processes double-stranded substrates with long 3' overhangs through site-specific endonucleolytic cleavage. Cas4 recognizes PAM sequences within the prespacer and prevents integration of unprocessed prespacers, ensuring that only functional spacers will be integrated into the CRISPR array. Our results reveal the critical role of Cas4 in maintaining fidelity during CRISPR adaptation, providing a structural and mechanistic model for prespacer processing and integration. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Identification of genomic islands in six plant pathogens.

    PubMed

    Chen, Ling-Ling

    2006-06-07

    Genomic islands (GIs) play important roles in microbial evolution, which are acquired by horizontal gene transfer. In this paper, the GIs of six completely sequenced plant pathogens are identified using a windowless method based on Z curve representation of DNA sequences. Consequently, four, eight, four, one, two and four GIs are recognized with the length greater than 20-Kb in plant pathogens Agrobacterium tumefaciens str. C58, Rolstonia solanacearum GMI1000, Xanthomonas axonopodis pv. citri str. 306 (Xac), Xanthomonas campestris pv. campestris str. ATCC33913 (Xcc), Xylella fastidiosa 9a5c and Pseudomonas syringae pv. tomato str. DC3000, respectively. Most of these regions share a set of conserved features of GIs, including an abrupt change in GC content compared with that of the rest of the genome, the existence of integrase genes at the junction, the use of tRNA as the integration sites, the presence of genetic mobility genes, the difference of codon usage, codon preference and amino acid usage, etc. The identification of these GIs will benefit the research for the six important phytopathogens.

  15. Demonstration of retrotransposition of the Tf1 element in fission yeast.

    PubMed

    Levin, H L; Boeke, J D

    1992-03-01

    Tf1, a retrotransposon from fission yeast, has LTRs and coding sequences resembling the protease, reverse transcriptase and integrase domains of retroviral pol genes. A unique aspect of Tf1 is that it contains a single open reading frame whereas other retroviruses and retrotransposons usually possess two or more open reading frames. To determine whether Tf1 can transpose, we overproduced Tf1 transcripts encoded by a plasmid copy of the element marked with a neo gene. Approximately 0.1-4.0% of the cell population acquired chromosomally inherited resistance to G418. DNA blot analysis demonstrated that such strains had acquired both Tf1 and neo specific sequences within a restriction fragment of the same size; the size of this restriction fragment varied between different isolates. Structural analysis of the cloned DNA flanking the Tf1-neo element of two transposition candidates with the same regions in the parent strain showed that the ability to grow on G418 was due to transposition of Tf1-neo and not other types of recombination events.

  16. Integration Site and Clonal Expansion in Human Chronic Retroviral Infection and Gene Therapy

    PubMed Central

    Niederer, Heather A.; Bangham, Charles R. M.

    2014-01-01

    Retroviral vectors have been successfully used therapeutically to restore expression of genes in a range of single-gene diseases, including several primary immunodeficiency disorders. Although clinical trials have shown remarkable results, there have also been a number of severe adverse events involving malignant outgrowth of a transformed clonal population. This clonal expansion is influenced by the integration site profile of the viral integrase, the transgene expressed, and the effect of the viral promoters on the neighbouring host genome. Infection with the pathogenic human retrovirus HTLV-1 also causes clonal expansion of cells containing an integrated HTLV-1 provirus. Although the majority of HTLV-1-infected people remain asymptomatic, up to 5% develop an aggressive T cell malignancy. In this review we discuss recent findings on the role of the genomic integration site in determining the clonality and the potential for malignant transformation of cells carrying integrated HTLV-1 or gene therapy vectors, and how these results have contributed to the understanding of HTLV-1 pathogenesis and to improvements in gene therapy vector safety. PMID:25365582

  17. Computational challenges of structure-based approaches applied to HIV.

    PubMed

    Forli, Stefano; Olson, Arthur J

    2015-01-01

    Here, we review some of the opportunities and challenges that we face in computational modeling of HIV therapeutic targets and structural biology, both in terms of methodology development and structure-based drug design (SBDD). Computational methods have provided fundamental support to HIV research since the initial structural studies, helping to unravel details of HIV biology. Computational models have proved to be a powerful tool to analyze and understand the impact of mutations and to overcome their structural and functional influence in drug resistance. With the availability of structural data, in silico experiments have been instrumental in exploiting and improving interactions between drugs and viral targets, such as HIV protease, reverse transcriptase, and integrase. Issues such as viral target dynamics and mutational variability, as well as the role of water and estimates of binding free energy in characterizing ligand interactions, are areas of active computational research. Ever-increasing computational resources and theoretical and algorithmic advances have played a significant role in progress to date, and we envision a continually expanding role for computational methods in our understanding of HIV biology and SBDD in the future.

  18. Not so bad after all: retroviruses and long terminal repeat retrotransposons as a source of new genes in vertebrates.

    PubMed

    Naville, M; Warren, I A; Haftek-Terreau, Z; Chalopin, D; Brunet, F; Levin, P; Galiana, D; Volff, J-N

    2016-04-01

    Viruses and transposable elements, once considered as purely junk and selfish sequences, have repeatedly been used as a source of novel protein-coding genes during the evolution of most eukaryotic lineages, a phenomenon called 'molecular domestication'. This is exemplified perfectly in mammals and other vertebrates, where many genes derived from long terminal repeat (LTR) retroelements (retroviruses and LTR retrotransposons) have been identified through comparative genomics and functional analyses. In particular, genes derived from gag structural protein and envelope (env) genes, as well as from the integrase-coding and protease-coding sequences, have been identified in humans and other vertebrates. Retroelement-derived genes are involved in many important biological processes including placenta formation, cognitive functions in the brain and immunity against retroelements, as well as in cell proliferation, apoptosis and cancer. These observations support an important role of retroelement-derived genes in the evolution and diversification of the vertebrate lineage. Copyright © 2016 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  19. Simulated hatchery system to assess bacteriophage efficacy against Vibrio harveyi.

    PubMed

    Raghu Patil, J; Desai, Srividya Narayanamurthy; Roy, Panchali; Durgaiah, Murali; Saravanan, R Sanjeev; Vipra, Aradhana

    2014-12-02

    Vibriosis caused by luminous Vibrio harveyi commonly contributes to poor survival in shrimp hatcheries and aquaculture ponds. Lytic bacteriophages pathogenic for V. harveyi are currently being investigated as an alternative to antibiotics to prevent vibriosis. Here, 8 bacteriophages were isolated from oysters and clams using V. harveyi strains as baiting hosts. Among these bacteriophages, 1 strain (VHP6b) identified as broadly pathogenic for 27 V. harveyi strains examined was further characterized by electron microscopy and genome sequence analysis. Phage VHP6b possessed a tail and morphology consistent with it being a member of the family Siphoviridae, and its genome and proteome were most closely related to the Vibrio phages SSP02 and MAR10. An integrase gene essential for lysogeny was not evident. The ability of bacteriophage VHP6b to protect shrimp postlarvae against vibriosis caused by V. harveyi strain VH6 was demonstrated in a model system designed to simulate typical hatchery conditions. Bacteriophage treatment improved survival of postlarvae by 40 to 60% under these conditions, so therapies based on this or other bacteriophages may be useful in shrimp hatcheries.

  20. Crystal structure of RuvC resolvase in complex with Holliday junction substrate

    PubMed Central

    Górecka, Karolina M.; Komorowska, Weronika; Nowotny, Marcin

    2013-01-01

    The key intermediate in genetic recombination is the Holliday junction (HJ), a four-way DNA structure. At the end of recombination, HJs are cleaved by specific nucleases called resolvases. In Gram-negative bacteria, this cleavage is performed by RuvC, a dimeric endonuclease that belongs to the retroviral integrase superfamily. Here, we report the first crystal structure of RuvC in complex with a synthetic HJ solved at 3.75 Å resolution. The junction in the complex is in an unfolded 2-fold symmetrical conformation, in which the four arms point toward the vertices of a tetrahedron. The two scissile phosphates are located one nucleotide from the strand exchange point, and RuvC approaches them from the minor groove side. The key protein–DNA contacts observed in the structure were verified using a thiol-based site-specific cross-linking approach. Compared with known complex structures of the phage resolvases endonuclease I and endonuclease VII, the RuvC structure exhibits striking differences in the mode of substrate binding and location of the cleavage site. PMID:23980027

  1. A versatile strategy for gene trapping and trap conversion in emerging model organisms.

    PubMed

    Kontarakis, Zacharias; Pavlopoulos, Anastasios; Kiupakis, Alexandros; Konstantinides, Nikolaos; Douris, Vassilis; Averof, Michalis

    2011-06-01

    Genetic model organisms such as Drosophila, C. elegans and the mouse provide formidable tools for studying mechanisms of development, physiology and behaviour. Established models alone, however, allow us to survey only a tiny fraction of the morphological and functional diversity present in the animal kingdom. Here, we present iTRAC, a versatile gene-trapping approach that combines the implementation of unbiased genetic screens with the generation of sophisticated genetic tools both in established and emerging model organisms. The approach utilises an exon-trapping transposon vector that carries an integrase docking site, allowing the targeted integration of new constructs into trapped loci. We provide proof of principle for iTRAC in the emerging model crustacean Parhyale hawaiensis: we generate traps that allow specific developmental and physiological processes to be visualised in unparalleled detail, we show that trapped genes can be easily cloned from an unsequenced genome, and we demonstrate targeting of new constructs into a trapped locus. Using this approach, gene traps can serve as platforms for generating diverse reporters, drivers for tissue-specific expression, gene knockdown and other genetic tools not yet imagined.

  2. Development and application of a recombination-based library versus library high- throughput yeast two-hybrid (RLL-Y2H) screening system.

    PubMed

    Yang, Fang; Lei, Yingying; Zhou, Meiling; Yao, Qili; Han, Yichao; Wu, Xiang; Zhong, Wanshun; Zhu, Chenghang; Xu, Weize; Tao, Ran; Chen, Xi; Lin, Da; Rahman, Khaista; Tyagi, Rohit; Habib, Zeshan; Xiao, Shaobo; Wang, Dang; Yu, Yang; Chen, Huanchun; Fu, Zhenfang; Cao, Gang

    2018-02-16

    Protein-protein interaction (PPI) network maintains proper function of all organisms. Simple high-throughput technologies are desperately needed to delineate the landscape of PPI networks. While recent state-of-the-art yeast two-hybrid (Y2H) systems improved screening efficiency, either individual colony isolation, library preparation arrays, gene barcoding or massive sequencing are still required. Here, we developed a recombination-based 'library vs library' Y2H system (RLL-Y2H), by which multi-library screening can be accomplished in a single pool without any individual treatment. This system is based on the phiC31 integrase-mediated integration between bait and prey plasmids. The integrated fragments were digested by MmeI and subjected to deep sequencing to decode the interaction matrix. We applied this system to decipher the trans-kingdom interactome between Mycobacterium tuberculosis and host cells and further identified Rv2427c interfering with the phagosome-lysosome fusion. This concept can also be applied to other systems to screen protein-RNA and protein-DNA interactions and delineate signaling landscape in cells.

  3. Potential disruption of protein-protein interactions by graphene oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Mei; Kang, Hongsuk; Luan, Binquan

    Graphene oxide (GO) is a promising novel nanomaterial with a wide range of potential biomedical applications due to its many intriguing properties. However, very little research has been conducted to study its possible adverse effects on protein-protein interactions (and thus subsequent toxicity to human). Here, the potential cytotoxicity of GO is investigated at molecular level using large-scale, all-atom molecular dynamics simulations to explore the interaction mechanism between a protein dimer and a GO nanosheet oxidized at different levels. Our theoretical results reveal that GO nanosheet could intercalate between the two monomers of HIV-1 integrase dimer, disrupting the protein-protein interactions andmore » eventually lead to dimer disassociation as graphene does [B. Luan et al., ACS Nano 9(1), 663 (2015)], albeit its insertion process is slower when compared with graphene due to the additional steric and attractive interactions. This study helps to better understand the toxicity of GO to cell functions which could shed light on how to improve its biocompatibility and biosafety for its wide potential biomedical applications.« less

  4. Identification of sodium chloride-regulated genes in Burkholderia cenocepacia.

    PubMed

    Bhatt, Shantanu; Weingart, Christine L

    2008-05-01

    Previous studies have suggested that the airways of cystic fibrosis (CF) patients have elevated sodium chloride (NaCl) levels due to the malfunctioning of the CF transmembrane conductance regulator protein. For bacteria to survive in this high-salt environment, they must adjust by altering the regulation of gene expression. Among the different bacteria inhabiting the airways of CF patients is the opportunistic pathogen Burkholderia cenocepacia. Previous studies have indicated that B. cenocepacia produces a toxin and cable pili under high osmolar conditions. We used transposon mutagenesis to identify NaCl-regulated genes in the clinical strain B. cenocepacia K56-2. Six transconjugants were induced with increasing NaCl concentration. The DNA flanking the transposon was sequenced and five distinct open reading frames were identified encoding the following putative proteins: an integrase, an NAD-dependent deacetylase, TolB, an oxidoreductase, and a novel hypothetical protein. The collective results of this study provide important information about the physiology of B. cenocepacia when faced with osmotic stress and suggest the identity of significant virulence mechanisms in this opportunistic pathogen.

  5. The discovery of zinc fingers and their development for practical applications in gene regulation and genome manipulation.

    PubMed

    Klug, Aaron

    2010-02-01

    A long-standing goal of molecular biologists has been to construct DNA-binding proteins for the control of gene expression. The classical Cys2His2 (C2H2) zinc finger design is ideally suited for such purposes. Discriminating between closely related DNA sequences both in vitro and in vivo, this naturally occurring design was adopted for engineering zinc finger proteins (ZFPs) to target genes specifically. Zinc fingers were discovered in 1985, arising from the interpretation of our biochemical studies on the interaction of the Xenopus protein transcription factor IIIA (TFIIIA) with 5S RNA. Subsequent structural studies revealed its three-dimensional structure and its interaction with DNA. Each finger constitutes a self-contained domain stabilized by a zinc (Zn) ion ligated to a pair of cysteines and a pair of histidines and also by an inner structural hydrophobic core. This discovery showed not only a new protein fold but also a novel principle of DNA recognition. Whereas other DNA-binding proteins generally make use of the 2-fold symmetry of the double helix, functioning as homo- or heterodimers, zinc fingers can be linked linearly in tandem to recognize nucleic acid sequences of varying lengths. This modular design offers a large number of combinatorial possibilities for the specific recognition of DNA (or RNA). It is therefore not surprising that the zinc finger is found widespread in nature, including 3% of the genes of the human genome. The zinc finger design can be used to construct DNA-binding proteins for specific intervention in gene expression. By fusing selected zinc finger peptides to repression or activation domains, genes can be selectively switched off or on by targeting the peptide to the desired gene target. It was also suggested that by combining an appropriate zinc finger peptide with other effector or functional domains, e.g. from nucleases or integrases to form chimaeric proteins, genomes could be modified or manipulated. The first example of the power of the method was published in 1994 when a three-finger protein was constructed to block the expression of a human oncogene transformed into a mouse cell line. The same paper also described how a reporter gene was activated by targeting an inserted 9-base pair (bp) sequence, which acts as the promoter. Thus, by fusing zinc finger peptides to repression or activation domains, genes can be selectively switched off or on. It was also suggested that, by combining zinc fingers with other effector or functional domains, e.g. from nucleases or integrases, to form chimaeric proteins, genomes could be manipulated or modified. Several applications of such engineered ZFPs are described here, including some of therapeutic importance, and also their adaptation for breeding improved crop plants.

  6. The dynamics of SIV 2-LTR Circles in the Presence and Absence of CD8 + Cells

    DOE PAGES

    Policicchio, Benjamin B.; Cardozo, Erwing Fabian; Sette, Paola; ...

    2018-04-11

    CD8 +cells play a key role in HIV/SIV infection, but their specific mechanism(s) of action in controlling the virus are unclear. 2-LTR circles are extrachromosomal products generated upon failed integration of HIV/SIV. To understand the specific effects of CD8 +cells on infected cells, we analyzed the dynamics of 2-LTR circles in SIVmac251-infected rhesus macaques (RM) treated with an integrase inhibitor (INT). Twenty RMs underwent CD8 +cell depletion, received RAL monotherapy or a combination of both. Blood, lymph nodes (LNs) and gut biopsies were routinely sampled. Plasma viral loads (pVLs) and 2-LTR circles from PBMCs and LN lymphocytes were measured withmore » qRT-PCR. In the CD8 depletion group, an ~1 log increase in pVLs and a slow increase in PBMC 2-LTRs occurred following depletion. In the INT group, a strong decline in pVLs upon treatment initiation and no change in 2-LTR levels were observed. In the INT and CD8 +cell depletion group, a similar increase in pVLs following CD8 depletion was observed, with a modest decline following INT initiation, and 2-LTR circles significantly increased in PBMCs and LNs. Analyzing the 2-LTR data across all treatment groups with a mathematical model indicates that the data best supports an effect of CD8 +cells in killing cells prior to viral integration. Sensitivity analyses of these results confirm that effect, but also allow for additional effects, which the data does not discriminate well. Overall, we show that INT does not significantly increase the levels of 2-LTR circles. However, CD8 +cell depletion increases the 2-LTR levels, which are enhanced in the presence of an INT. CD8 +T cells play an essential role in controlling HIV and simian immunodeficiency virus (SIV) infection, but the specific mechanisms involved remain poorly understood. Due to failed viral infection, HIV and SIV can form 2-LTR extrachromosomal circles that can be quantified. We present novel data on the dynamics of these 2-LTR forms in a SIV-infected macaque model under three different treatment conditions: depletion of CD8 +cells; administration of the integrase inhibitor in a monotherapy, which favors the formation of 2-LTR circles; and combination of the two treatments. We used a new mathematical model to help interpret the data, and the results suggest that CD8 +cells exert a killing effect on infected cells prior to virus integration. These results provide new insights into the mechanisms of action of CD8 +cells in SIV infection. Here, confirmation of our results would be an important step in understanding immune control of HIV.« less

  7. Critical Contribution of Tyr15 in the HIV-1 Integrase (IN) in Facilitating IN Assembly and Nonenzymatic Function through the IN Precursor Form with Reverse Transcriptase.

    PubMed

    Takahata, Tatsuro; Takeda, Eri; Tobiume, Minoru; Tokunaga, Kenzo; Yokoyama, Masaru; Huang, Yu-Lun; Hasegawa, Atsuhiko; Shioda, Tatsuo; Sato, Hironori; Kannagi, Mari; Masuda, Takao

    2017-01-01

    Nonenzymatic roles for HIV-1 integrase (IN) at steps prior to the enzymatic integration step have been reported. To obtain structural and functional insights into the nonenzymatic roles of IN, we performed genetic analyses of HIV-1 IN, focusing on a highly conserved Tyr15 in the N-terminal domain (NTD), which has previously been shown to regulate an equilibrium state between two NTD dimer conformations. Replacement of Tyr15 with alanine, histidine, or tryptophan prevented HIV-1 infection and caused severe impairment of reverse transcription without apparent defects in reverse transcriptase (RT) or in capsid disassembly kinetics after entry into cells. Cross-link analyses of recombinant IN proteins demonstrated that lethal mutations of Tyr15 severely impaired IN structure for assembly. Notably, replacement of Tyr15 with phenylalanine was tolerated for all IN functions, demonstrating that a benzene ring of the aromatic side chain is a key moiety for IN assembly and functions. Additional mutagenic analyses based on previously proposed tetramer models for IN assembly suggested a key role of Tyr15 in facilitating the hydrophobic interaction among IN subunits, together with other proximal residues within the subunit interface. A rescue experiment with a mutated HIV-1 with RT and IN deleted (ΔRT ΔIN) and IN and RT supplied in trans revealed that the nonenzymatic IN function might be exerted through the IN precursor conjugated with RT (RT-IN). Importantly, the lethal mutations of Tyr15 significantly reduced the RT-IN function and assembly. Taken together, Tyr15 seems to play a key role in facilitating the proper assembly of IN and RT on viral RNA through the RT-IN precursor form. Inhibitors of the IN enzymatic strand transfer function (INSTI) have been applied in combination antiretroviral therapies to treat HIV-1-infected patients. Recently, allosteric IN inhibitors (ALLINIs) that interact with HIV-1 IN residues, the locations of which are distinct from the catalytic sites targeted by INSTI, have been discovered. Importantly, ALLINIs affect the nonenzymatic role(s) of HIV-1 IN, providing a rationale for the development of next-generation IN inhibitors with a mechanism that is distinct from that of INSTI. Here, we demonstrate that Tyr15 in the HIV-1 IN NTD plays a critical role during IN assembly by facilitating the hydrophobic interaction of the NTD with the other domains of IN. Importantly, we found that the functional assembly of IN through its fusion form with RT is critical for IN to exert its nonenzymatic function. Our results provide a novel mechanistic insight into the nonenzymatic function of HIV-1 IN and its prevention. Copyright © 2016 American Society for Microbiology.

  8. The dynamics of SIV 2-LTR Circles in the Presence and Absence of CD8 + Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Policicchio, Benjamin B.; Cardozo, Erwing Fabian; Sette, Paola

    CD8 +cells play a key role in HIV/SIV infection, but their specific mechanism(s) of action in controlling the virus are unclear. 2-LTR circles are extrachromosomal products generated upon failed integration of HIV/SIV. To understand the specific effects of CD8 +cells on infected cells, we analyzed the dynamics of 2-LTR circles in SIVmac251-infected rhesus macaques (RM) treated with an integrase inhibitor (INT). Twenty RMs underwent CD8 +cell depletion, received RAL monotherapy or a combination of both. Blood, lymph nodes (LNs) and gut biopsies were routinely sampled. Plasma viral loads (pVLs) and 2-LTR circles from PBMCs and LN lymphocytes were measured withmore » qRT-PCR. In the CD8 depletion group, an ~1 log increase in pVLs and a slow increase in PBMC 2-LTRs occurred following depletion. In the INT group, a strong decline in pVLs upon treatment initiation and no change in 2-LTR levels were observed. In the INT and CD8 +cell depletion group, a similar increase in pVLs following CD8 depletion was observed, with a modest decline following INT initiation, and 2-LTR circles significantly increased in PBMCs and LNs. Analyzing the 2-LTR data across all treatment groups with a mathematical model indicates that the data best supports an effect of CD8 +cells in killing cells prior to viral integration. Sensitivity analyses of these results confirm that effect, but also allow for additional effects, which the data does not discriminate well. Overall, we show that INT does not significantly increase the levels of 2-LTR circles. However, CD8 +cell depletion increases the 2-LTR levels, which are enhanced in the presence of an INT. CD8 +T cells play an essential role in controlling HIV and simian immunodeficiency virus (SIV) infection, but the specific mechanisms involved remain poorly understood. Due to failed viral infection, HIV and SIV can form 2-LTR extrachromosomal circles that can be quantified. We present novel data on the dynamics of these 2-LTR forms in a SIV-infected macaque model under three different treatment conditions: depletion of CD8 +cells; administration of the integrase inhibitor in a monotherapy, which favors the formation of 2-LTR circles; and combination of the two treatments. We used a new mathematical model to help interpret the data, and the results suggest that CD8 +cells exert a killing effect on infected cells prior to virus integration. These results provide new insights into the mechanisms of action of CD8 +cells in SIV infection. Here, confirmation of our results would be an important step in understanding immune control of HIV.« less

  9. Study on the association between drug‑resistance and gene mutations of the active efflux pump acrAB‑tolC gene and its regulatory genes.

    PubMed

    Ma, Quan-Ping; Su, Liang; Liu, Jing-Wen; Yao, Ming-Xiao; Yuan, Guang-Ying

    2018-06-01

    The aim of the present study was to investigate the correlation between the multi‑drug resistance of Shigella flexneri and the drug‑resistant gene cassette carried by integrons; in the meanwhile, to detect the associations between drug‑resistance and gene mutations of the active efflux pump acrAB‑tolC gene and its regulatory genes, including marOR, acrR and soxS. A total of 158 isolates were isolated from the stool samples of 1,026 children with diarrhoea aged 14 years old between May 2012 and October 2015 in Henan. The K‑B method was applied for the determination of drug resistance of Shigella flexneri, and polymerase chain reaction amplification was used for class 1, 2 and 3 integrase genes. Enzyme digestion and sequence analysis were performed for the variable regions of positive strains. Based on the drug sensitivity assessment, multi‑drug resistant strains that were resistant to five or more antibiotics, and sensitive strains were selected for amplification. Their active efflux pump genes, acrA and acrB, and regulatory genes, marOR, acrR and soxS, were selected for sequencing. The results revealed that 91.1% of the 158 strains were multi‑resistant to ampicillin, chloramphenicol, tetracycline and streptomycin, and 69.6% of the strains were multi‑resistant to sulfamethoxazole/trimethoprim. The resistance to ceftazidime, ciprofloxacin and levofloxacin was <32.9%. All strains (100%) were sensitive to cefoxitin, cefoperazone/sulbactam and imipenem. The rate of the class 1 integron positivity was 91.9% (144/158). Among these class 1 integron‑positive strains, 18 strains exhibited the resistance gene cassette dfrV in the variable region of the strain, four strains exhibited dfrA17‑aadA5 in the variable region and 140 strains exhibited blaOXA‑30‑aadA1 in the variable region. Four strains showed no resistance gene in the variable regions. The rate of class 2 integron positivity was 86.1% (136/158), and all positive strains harboured the dfrA1‑sat1‑aadA resistance gene cassette in the variable region. The class 3 integrase gene was not detected in these strains. The gene sequencing showed the deletion of base CATT in the 36, 37, 38, 39 site in the marOR gene, which is a regulatory gene of the active efflux pump, AcrAB‑TolC. Taken together, the multi‑drug resistance of Shigella flexneri was closely associated with gene mutations of class 1 and 2 integrons and the marOR gene.

  10. Single-molecule detection of protein efflux from microorganisms using fluorescent single-walled carbon nanotube sensor arrays

    NASA Astrophysics Data System (ADS)

    Landry, Markita Patricia; Ando, Hiroki; Chen, Allen Y.; Cao, Jicong; Kottadiel, Vishal Isaac; Chio, Linda; Yang, Darwin; Dong, Juyao; Lu, Timothy K.; Strano, Michael S.

    2017-05-01

    A distinct advantage of nanosensor arrays is their ability to achieve ultralow detection limits in solution by proximity placement to an analyte. Here, we demonstrate label-free detection of individual proteins from Escherichia coli (bacteria) and Pichia pastoris (yeast) immobilized in a microfluidic chamber, measuring protein efflux from single organisms in real time. The array is fabricated using non-covalent conjugation of an aptamer-anchor polynucleotide sequence to near-infrared emissive single-walled carbon nanotubes, using a variable chemical spacer shown to optimize sensor response. Unlabelled RAP1 GTPase and HIV integrase proteins were selectively detected from various cell lines, via large near-infrared fluorescent turn-on responses. We show that the process of E. coli induction, protein synthesis and protein export is highly stochastic, yielding variability in protein secretion, with E. coli cells undergoing division under starved conditions producing 66% fewer secreted protein products than their non-dividing counterparts. We further demonstrate the detection of a unique protein product resulting from T7 bacteriophage infection of E. coli, illustrating that nanosensor arrays can enable real-time, single-cell analysis of a broad range of protein products from various cell types.

  11. Targeted gene therapy and cell reprogramming in Fanconi anemia.

    PubMed

    Rio, Paula; Baños, Rocio; Lombardo, Angelo; Quintana-Bustamante, Oscar; Alvarez, Lara; Garate, Zita; Genovese, Pietro; Almarza, Elena; Valeri, Antonio; Díez, Begoña; Navarro, Susana; Torres, Yaima; Trujillo, Juan P; Murillas, Rodolfo; Segovia, Jose C; Samper, Enrique; Surralles, Jordi; Gregory, Philip D; Holmes, Michael C; Naldini, Luigi; Bueren, Juan A

    2014-06-01

    Gene targeting is progressively becoming a realistic therapeutic alternative in clinics. It is unknown, however, whether this technology will be suitable for the treatment of DNA repair deficiency syndromes such as Fanconi anemia (FA), with defects in homology-directed DNA repair. In this study, we used zinc finger nucleases and integrase-defective lentiviral vectors to demonstrate for the first time that FANCA can be efficiently and specifically targeted into the AAVS1 safe harbor locus in fibroblasts from FA-A patients. Strikingly, up to 40% of FA fibroblasts showed gene targeting 42 days after gene editing. Given the low number of hematopoietic precursors in the bone marrow of FA patients, gene-edited FA fibroblasts were then reprogrammed and re-differentiated toward the hematopoietic lineage. Analyses of gene-edited FA-iPSCs confirmed the specific integration of FANCA in the AAVS1 locus in all tested clones. Moreover, the hematopoietic differentiation of these iPSCs efficiently generated disease-free hematopoietic progenitors. Taken together, our results demonstrate for the first time the feasibility of correcting the phenotype of a DNA repair deficiency syndrome using gene-targeting and cell reprogramming strategies. © 2014 The Authors. Published under the terms of the CC BY 4.0 license.

  12. Adipocytes impair efficacy of antiretroviral therapy.

    PubMed

    Couturier, Jacob; Winchester, Lee C; Suliburk, James W; Wilkerson, Gregory K; Podany, Anthony T; Agarwal, Neeti; Xuan Chua, Corrine Ying; Nehete, Pramod N; Nehete, Bharti P; Grattoni, Alessandro; Sastry, K Jagannadha; Fletcher, Courtney V; Lake, Jordan E; Balasubramanyam, Ashok; Lewis, Dorothy E

    2018-06-01

    Adequate distribution of antiretroviral drugs to infected cells in HIV patients is critical for viral suppression. In humans and primates, HIV- and SIV-infected CD4 T cells in adipose tissues have recently been identified as reservoirs for infectious virus. To better characterize adipose tissue as a pharmacological sanctuary for HIV-infected cells, in vitro experiments were conducted to assess antiretroviral drug efficacy in the presence of adipocytes, and drug penetration in adipose tissue cells (stromal-vascular-fraction cells and mature adipocytes) was examined in treated humans and monkeys. Co-culture experiments between HIV-1-infected CD4 T cells and primary human adipocytes showed that adipocytes consistently reduced the antiviral efficacy of the nucleotide reverse transcriptase inhibitor tenofovir and its prodrug forms tenofovir disoproxil fumarate (TDF) and tenofovir alafenamide (TAF). In HIV-infected persons, LC-MS/MS analysis of intracellular lysates derived from adipose tissue stromal-vascular-fraction cells or mature adipocytes suggested that integrase inhibitors penetrate adipose tissue, whereas penetration of nucleoside/nucleotide reverse transcriptase inhibitors such as TDF, emtricitabine, abacavir, and lamivudine is restricted. The limited distribution and functions of key antiretroviral drugs within fat depots may contribute to viral persistence in adipose tissue. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Potential Implication of Residual Viremia in Patients on Effective Antiretroviral Therapy

    PubMed Central

    2015-01-01

    Abstract The current antiretroviral therapy (ART) has suppressed viremia to below the limit of detection of clinical viral load assays; however, it cannot eliminate viremia completely in the body even after prolonged treatment. Plasma HIV-1 loads persist at extremely low levels below the clinical detection limit. This low-level viremia (termed “residual viremia”) cannot be abolished in most patients, even after the addition of a new class of drug, i.e., viral integrase inhibitor, to the combined antiretroviral regimens. Neither the cellular source nor the clinical significance of this residual viremia in patients on ART remains fully clear at present. Since residual plasma viruses generally do not evolve with time in the presence of effective ART, one prediction is that these viruses are persistently released at low levels from one or more stable but yet unknown HIV-1 reservoirs in the body during therapy. This review attempts to emphasize the source of residual viremia as another important reservoir (namely, “active reservoir”) distinct from the well-known latent HIV-1 reservoir in the body, and why its elimination should be a priority in the effort for HIV-1 eradication. PMID:25428885

  14. Executive summary of the GeSIDA/National AIDS Plan consensus document on antiretroviral therapy in adults infected by the human immunodeficiency virus (updated January 2014).

    PubMed

    Berenguer, Juan; Polo, Rosa; Lozano, Fernando; López Aldeguer, José; Antela, Antonio; Arribas, José Ramón; Asensi, Víctor; Blanco, José Ramón; Clotet, Bonaventura; Domingo, Pere; Galindo, María José; Gatell, José María; González-García, Juan; Iribarren, José Antonio; Locutura, Jaime; López, Juan Carlos; Mallolas, Josep; Martínez, Esteban; Miralles, Celia; Miró, José M; Moreno, Santiago; Palacios, Rosario; Pérez Elías, María Jesús; Pineda, Juan Antonio; Podzamczer, Daniel; Portilla, Joaquín; Pulido, Federico; Ribera, Esteban; Riera, Melchor; Rubio, Rafael; Santos, Jesús; Sanz, Jesús; Tuset, Montserrat; Vidal, Francesc; Rivero, Antonio

    2014-01-01

    In this update, antiretroviral therapy (ART) is recommended for all patients infected by type 1 human immunodeficiency virus (HIV-1). The strength and grade of the recommendation varies with clinical circumstances, number of CD4 cells, comorbid conditions and prevention of transmission of HIV. The objective of ART is to achieve an undetectable plasma viral load. Initial ART should always comprise a combination of 3 drugs, including 2 nucleoside reverse transcriptase inhibitors and a third drug from a different family (non-nucleoside reverse transcriptase inhibitor, protease inhibitor, or integrase inhibitor). This update presents the causes and criteria for switching ART in patients with undetectable plasma viral load and in cases of virological failure. An update is also provided for the specific criteria for ART in special situations (acute infection, HIV-2 infection, and pregnancy) and with comorbid conditions (tuberculosis or other opportunistic infections, kidney disease, liver disease, and cancer). Copyright © 2014 Elsevier España, S.L.U. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  15. A Bacteriophage-Related Chimeric Marine Virus Infecting Abalone

    PubMed Central

    Zhuang, Jun; Cai, Guiqin; Lin, Qiying; Wu, Zujian; Xie, Lianhui

    2010-01-01

    Marine viruses shape microbial communities with the most genetic diversity in the sea by multiple genetic exchanges and infect multiple marine organisms. Here we provide proof from experimental infection that abalone shriveling syndrome-associated virus (AbSV) can cause abalone shriveling syndrome. This malady produces histological necrosis and abnormally modified macromolecules (hemocyanin and ferritin). The AbSV genome is a 34.952-kilobase circular double-stranded DNA, containing putative genes with similarity to bacteriophages, eukaryotic viruses, bacteria and endosymbionts. Of the 28 predicted open reading frames (ORFs), eight ORF-encoded proteins have identifiable functional homologues. The 4 ORF products correspond to a predicted terminase large subunit and an endonuclease in bacteriophage, and both an integrase and an exonuclease from bacteria. The other four proteins are homologous to an endosymbiont-derived helicase, primase, single-stranded binding (SSB) protein, and thymidylate kinase, individually. Additionally, AbSV exhibits a common gene arrangement similar to the majority of bacteriophages. Unique to AbSV, the viral genome also contains genes associated with bacterial outer membrane proteins and may lack the structural protein-encoding ORFs. Genomic characterization of AbSV indicates that it may represent a transitional form of microbial evolution from viruses to bacteria. PMID:21079776

  16. CRISPR-Cas encoding of a digital movie into the genomes of a population of living bacteria.

    PubMed

    Shipman, Seth L; Nivala, Jeff; Macklis, Jeffrey D; Church, George M

    2017-07-20

    DNA is an excellent medium for archiving data. Recent efforts have illustrated the potential for information storage in DNA using synthesized oligonucleotides assembled in vitro. A relatively unexplored avenue of information storage in DNA is the ability to write information into the genome of a living cell by the addition of nucleotides over time. Using the Cas1-Cas2 integrase, the CRISPR-Cas microbial immune system stores the nucleotide content of invading viruses to confer adaptive immunity. When harnessed, this system has the potential to write arbitrary information into the genome. Here we use the CRISPR-Cas system to encode the pixel values of black and white images and a short movie into the genomes of a population of living bacteria. In doing so, we push the technical limits of this information storage system and optimize strategies to minimize those limitations. We also uncover underlying principles of the CRISPR-Cas adaptation system, including sequence determinants of spacer acquisition that are relevant for understanding both the basic biology of bacterial adaptation and its technological applications. This work demonstrates that this system can capture and stably store practical amounts of real data within the genomes of populations of living cells.

  17. Novel dual small-molecule HIV inhibitors: scaffolds and discovery strategies.

    PubMed

    Song, Anran; Yu, Haiqing; Wang, Changyuan; Zhu, Xingqi; Liu, Kexin; Ma, Xiaodong

    2015-01-01

    Searching for safe and effective treatments for HIV infection is still a great challenge worldwide in spite of the 27 marketed anti-HIV drugs and the powerful highly active antiretroviral therapy (HAART). As a promising prospect for generation of new HIV therapy drugs, multiple ligands (MDLs) were greatly focused on recently due to their lower toxicity, simplified dosing and patient adherence than single-target drugs. Till now, by disrupting two active sites or steps of HIV replications, a number of HIV dual inhibitors, such as CD4-gssucap120 inhibitors, CXCR4-gp20 inhibitors, RT-CXCR4 inhibitors, RT-protease inhibitors, RT-integrase inhibitors, and RTassociated functions inhibitors have been identified. Generally, these dual inhibitors were discovered mainly through screening approaches and design strategies. Of these compounds, the molecules bearing small skeletons exhibited strong anti-HIV activity and aroused great attention recently. Reviewing the progress of the dual small-molecule HIV inhibitors from the point of view of their scaffolds and discovery strategies will provide valuable information for producing more effective anti-HIV drugs. In this regard, novel dual small-molecule HIV inhibitors were illustrated, and their discovery paradigms as the major contents were also summarized in this manuscript.

  18. The preclinical discovery and development of dolutegravir for the treatment of HIV.

    PubMed

    Bailly, Fabrice; Cotelle, Philippe

    2015-01-01

    Integration of the viral genome into the host cell chromatin is a central step in the replication cycle of HIV. Blocking the viral integrase (IN) enzyme therefore provides an attractive therapeutic strategy, as evidenced by the recent clinical approval of three IN strand transfer inhibitors. Dolutegravir is a therapy that is unique in its ability to evade HIV drug resistance in treatment-naïve patients. This review starts by providing a brief summary of the history of HIV-1 IN inhibitors. The authors follow this with details of the discovery and preclinical and clinical developments of dolutegravir. Finally, the authors provide details of dolutegravir's post-launch including the launch of the combination pill of dolutegravir, abacavir and lamivudine in August 2014. The launch of raltegravir, the first IN inhibitor from Merck & Co., has created new hopes for the patient. Indeed, pharmaceutical companies have not lost courage by attempting to address the major drawbacks of this first-in-class molecule. And while the drug elvitegravir has been inserted into a four-drug combination pill providing a once-daily dosing alternative, dolutegravir has demonstrated superiority in terms of its efficacy and resistance.

  19. A new validated HPTLC method for quantitative determination of 1, 5-dicaffeoylquinic acid in Inula crithmoides roots.

    PubMed

    Aboul-Ela, Maha Ahmed; El-Lakany, Abdalla Mohamed; Shams Eldin, Safa Mohamed; Hammoda, Hala Mostafa

    2012-10-01

    1, 5-Dicaffeoylquinic acid (1, 5-DCQA), a potent HIV-1 integrase inhibitor, is currently undergoing an evaluation as a promising novel HIV therapeutic agent. This work aims at developing an accurate, rapid, repeatable and robust HPTLC method for the determination of 1, 5-DCQA in its natural sources. 1, 5-DCQA is the major component of the n-butanol fraction, the most biologically active hepatoprotective fraction, of Inula crithmoides roots extract. Thus, it will be of interest to evaluate the plant roots as a potential source of 1, 5-DCQA using a fully validated HPTLC method. The percentage of 1, 5-DCQA in the studied plant (0.035% w/w) was found to be approximately similar to those previously determined in other antioxidant herbal drugs, in which 1, 5- DCQA is the main phenolic constituent. The results obtained showed that the described HPTLC method is suitable for routine use in quality control of herbal raw material, extracts and pharmaceutical preparations containing 1, 5-DCQA. No HPTLC method has been reported in literature for the determination of 1, 5-DCQA in medicinal plants.

  20. Executive summary of the GESIDA/National AIDS Plan Consensus Document on Antiretroviral Therapy in Adults Infected by the Human Immunodeficiency Virus (Updated January 2017).

    PubMed

    2017-05-31

    Antiretroviral therapy (ART) is recommended for all patients infected by HIV-1. The objective of ART is to achieve an undetectable plasma viral load (PVL). Initial ART should be based on a combination of 3 drugs, including 2 nucleoside reverse transcriptase inhibitors (tenofovir in either of its two formulations plus emtricitabine or abacavir plus lamivudine) and another drug from a different family. Four of the recommended regimens, all of which have an integrase inhibitor as the third drug (dolutegravir, elvitegravir boosted with cobicistat or raltegravir), are considered preferential, whereas a further 3 regimens (based on elvitegravir/cobicistat, rilpivirine, or darunavir boosted with cobicistat or ritonavir) are considered alternatives. We present the reasons and criteria for switching ART in patients with an undetectable PVL and in those who present virological failure, in which case salvage ART should include 3 (or at least 2) drugs that are fully active against HIV. We also update the criteria for ART in specific situations (acute infection, HIV-2 infection, pregnancy) and comorbidities (tuberculosis or other opportunistic infections, kidney disease, liver disease and cancer). Copyright © 2017. Publicado por Elsevier España, S.L.U.

  1. A new genome of Acidithiobacillus thiooxidans provides insights into adaptation to a bioleaching environment.

    PubMed

    Travisany, Dante; Cortés, María Paz; Latorre, Mauricio; Di Genova, Alex; Budinich, Marko; Bobadilla-Fazzini, Roberto A; Parada, Pilar; González, Mauricio; Maass, Alejandro

    2014-11-01

    Acidithiobacillus thiooxidans is a sulfur oxidizing acidophilic bacterium found in many sulfur-rich environments. It is particularly interesting due to its role in bioleaching of sulphide minerals. In this work, we report the genome sequence of At. thiooxidans Licanantay, the first strain from a copper mine to be sequenced and currently used in bioleaching industrial processes. Through comparative genomic analysis with two other At. thiooxidans non-metal mining strains (ATCC 19377 and A01) we determined that these strains share a large core genome of 2109 coding sequences and a high average nucleotide identity over 98%. Nevertheless, the presence of 841 strain-specific genes (absent in other At. thiooxidans strains) suggests a particular adaptation of Licanantay to its specific biomining environment. Among this group, we highlight genes encoding for proteins involved in heavy metal tolerance, mineral cell attachment and cysteine biosynthesis. Several of these genes were located near genetic motility genes (e.g. transposases and integrases) in genomic regions of over 10 kbp absent in the other strains, suggesting the presence of genomic islands in the Licanantay genome probably produced by horizontal gene transfer in mining environments. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  2. DNA minicircles clarify the specific role of DNA structure on retroviral integration

    PubMed Central

    Pasi, Marco; Mornico, Damien; Volant, Stevenn; Juchet, Anna; Batisse, Julien; Bouchier, Christiane; Parissi, Vincent; Ruff, Marc; Lavery, Richard; Lavigne, Marc

    2016-01-01

    Chromatin regulates the selectivity of retroviral integration into the genome of infected cells. At the nucleosome level, both histones and DNA structure are involved in this regulation. We propose a strategy that allows to specifically study a single factor: the DNA distortion induced by the nucleosome. This strategy relies on mimicking this distortion using DNA minicircles (MCs) having a fixed rotational orientation of DNA curvature, coupled with atomic-resolution modeling. Contrasting MCs with linear DNA fragments having identical sequences enabled us to analyze the impact of DNA distortion on the efficiency and selectivity of integration. We observed a global enhancement of HIV-1 integration in MCs and an enrichment of integration sites in the outward-facing DNA major grooves. Both of these changes are favored by LEDGF/p75, revealing a new, histone-independent role of this integration cofactor. PFV integration is also enhanced in MCs, but is not associated with a periodic redistribution of integration sites, thus highlighting its distinct catalytic properties. MCs help to separate the roles of target DNA structure, histone modifications and integrase (IN) cofactors during retroviral integration and to reveal IN-specific regulation mechanisms. PMID:27439712

  3. Engineering more stable, selectable marker-free autoluminescent mycobacteria by one step.

    PubMed

    Yang, Feng; Njire, Moses M; Liu, Jia; Wu, Tian; Wang, Bangxing; Liu, Tianzhou; Cao, Yuanyuan; Liu, Zhiyong; Wan, Junting; Tu, Zhengchao; Tan, Yaoju; Tan, Shouyong; Zhang, Tianyu

    2015-01-01

    In our previous study, we demonstrated that the use of the autoluminescent Mycobacterium tuberculosis as a reporter strain had the potential to drastically reduce the time, effort, animals and costs consumed in evaluation of the activities of drugs and vaccines in live mice. However, the strains were relatively unstable and lost reporter with time without selection. The kanamycin selection marker used wasn't the best choice as it provides resistance to amino glycosides which are an important class of second line drugs used in tuberculosis treatment. In addition, the marker could limit utility of the strains for screening of new potential drugs or evaluating drug combinations for tuberculosis treatment. Limited selection marker genes for mycobacterial genetic manipulation is a major drawback for such a marker-containing strain in many research fields. Therefore, selectable marker-free, more stable autoluminescent mycobacteria are highly needed. After trying several strategies, we created such mycobacterial strains successfully by using an integrative vector and removing both the resistance maker and integrase genes by Xer site-specific recombination in one step. The corresponding plasmid vectors developed in this study could be very convenient in constructing other selectable marker-free, more stable reporter mycobacteria with diverse applications.

  4. Creation of a Long-Acting Nanoformulated 2′,3′-Dideoxy-3′-Thiacytidine

    PubMed Central

    Guo, Dongwei; Zhou, Tian; Araínga, Mariluz; Palandri, Diana; Gautam, Nagsen; Bronich, Tatiana; Alnouti, Yazen; McMillan, JoEllyn; Edagwa, Benson

    2017-01-01

    Background: Antiretroviral drug discovery and formulation design will facilitate viral clearance in infectious reservoirs. Although progress has been realized for selected hydrophobic integrase and nonnucleoside reverse transcriptase inhibitors, limited success has been seen to date with hydrophilic nucleosides. To overcome these limitations, hydrophobic long-acting drug nanoparticles were created for the commonly used nucleoside reverse transcriptase inhibitor, lamivudine (2′,3′-dideoxy-3′-thiacytidine, 3TC). Methods: A 2-step synthesis created a slow-release long-acting hydrophobic 3TC. Conjugation of 3TC to a fatty acid created a myristoylated prodrug which was encased into a folate-decorated poloxamer 407. Both in vitro antiretroviral efficacy in human monocyte-derived macrophages and pharmacokinetic profiles in mice were evaluated for the decorated nanoformulated drug. Results: A stable drug formulation was produced by poloxamer encasement that improved monocyte–macrophage uptake, antiretroviral activities, and drug pharmacokinetic profiles over native drug formulations. Conclusions: Sustained release of long-acting antiretroviral therapy is a new therapeutic frontier for HIV/AIDS. 3TC depot formation in monocyte-derived macrophages can be facilitated through stable subcellular internalization and slow drug release. PMID:27559685

  5. Antiretroviral Chemoprophylaxis: State of Evidence and the Research Agenda

    PubMed Central

    Mayer, Kenneth H.

    2014-01-01

    Oral antiretroviral preexposure prophylaxis (PrEP) has been shown to decrease human immunodeficiency virus (HIV) incidence in studies of men who have sex with men, heterosexual men and women, and injecting drug users. One study of pericoital tenofovir gel demonstrated that it reduced HIV incidence in South African women. However, other studies of African women failed to demonstrate protection with either oral tenofovir or tenofovir-emtricitabine, or daily tenofovir gel. The magnitude of PrEP protection appears to be highly correlated with medication adherence. New studies are evaluating whether different antiretrovirals, including dapivirine, rilpivirine, maraviroc, and new integrase inhibitors. Different formulations are also being evaluated, including gels, films, vaginal rings, and injectable medication. Although PrEP efficacy has been demonstrated, and several normative bodies (eg, the US Food and Drug Administration) have approved PrEP for clinical use, uptake has been slow. Reasons may include lack of sufficient provider and consumer education, residual concerns about costs, potential long-term toxicities, and behavioral disinhibition. Additional work is under way to determine how to best educate consumers and providers about optimal adherence and to use PrEP in conjunction with risk mitigation. PMID:24926034

  6. Sulphonamide and Trimethoprim Resistance Genes Persist in Sediments at Baltic Sea Aquaculture Farms but Are Not Detected in the Surrounding Environment

    PubMed Central

    Muziasari, Windi Indra; Managaki, Satoshi; Pärnänen, Katariina; Karkman, Antti; Lyra, Christina; Tamminen, Manu; Suzuki, Satoru; Virta, Marko

    2014-01-01

    Persistence and dispersal of antibiotic resistance genes (ARGs) are important factors for assessing ARG risk in aquaculture environments. Here, we quantitatively detected ARGs for sulphonamides (sul1 and sul2) and trimethoprim (dfrA1) and an integrase gene for a class 1 integron (intI1) at aquaculture facilities in the northern Baltic Sea, Finland. The ARGs persisted in sediments below fish farms at very low antibiotic concentrations during the 6-year observation period from 2006 to 2012. Although the ARGs persisted in the farm sediments, they were less prevalent in the surrounding sediments. The copy numbers between the sul1 and intI1 genes were significantly correlated suggesting that class 1 integrons may play a role in the prevalence of sul1 in the farm sediments through horizontal gene transfer. In conclusion, the presence of ARGs may limit the effectiveness of antibiotics in treating fish illnesses, thereby causing a potential risk to the aquaculture industry. However, the restricted presence of ARGs at the farms is unlikely to cause serious effects in the northern Baltic Sea sediment environments around the farms. PMID:24651770

  7. [Use of Nadis(®) software to improve adverse drug reaction reporting of antiretroviral drugs: experience in south west of France (midi-pyrénées)].

    PubMed

    Pochard, Liselotte; Hauviller, Laurent; Cuzin, Lise; Eyvrard, Fréderic; Sommet, Agnès; Montastruc, Jean-Louis; Bagheri, Haleh

    2014-01-01

    To study the value of the module of pharmacovigilance in Nadis® to improve the antiretroviral (ARV) drugs-induced adverse drug reactions (ADRs) reporting. We collected the ADRs reported for 17 months from November 2010 until April 2012. Following data were recorded: characteristics of patients, ADRs, ARV drugs. The number of ADRs was compared to those collected in the same period (17 months) before use of Nadis®. The 119 ADRs reported (an increase of 183%) for 109 patients ADRs were mainly gastrointestinal (21.8%) followed by renal (20.2%), neuro-psychiatric (16.8%), hepatic (13.5%), cutaneous (8.4%), metabolic (6.7%) and others (12.6%). The repartition of ARV drugs was: nucleoside (31.8%), nucleotide (13.6%) reverse transcriptase inhibitors respectively, non-nucleoside reverse transcriptase inhibitors (13.1%), protease inhibitors (36.4%), and integrase inhibitors (5.1%). Our results show the improvement of ARV-induced ADRs reporting by Nadis® which could be used to reduce the rate of under-reporting in patients exposed to these drugs. © 2014 Société Française de Pharmacologie et de Thérapeutique.

  8. Integrative and conjugative elements and their hosts: composition, distribution and organization

    PubMed Central

    Touchon, Marie; Rocha, Eduardo P. C.

    2017-01-01

    Abstract Conjugation of single-stranded DNA drives horizontal gene transfer between bacteria and was widely studied in conjugative plasmids. The organization and function of integrative and conjugative elements (ICE), even if they are more abundant, was only studied in a few model systems. Comparative genomics of ICE has been precluded by the difficulty in finding and delimiting these elements. Here, we present the results of a method that circumvents these problems by requiring only the identification of the conjugation genes and the species’ pan-genome. We delimited 200 ICEs and this allowed the first large-scale characterization of these elements. We quantified the presence in ICEs of a wide set of functions associated with the biology of mobile genetic elements, including some that are typically associated with plasmids, such as partition and replication. Protein sequence similarity networks and phylogenetic analyses revealed that ICEs are structured in functional modules. Integrases and conjugation systems have different evolutionary histories, even if the gene repertoires of ICEs can be grouped in function of conjugation types. Our characterization of the composition and organization of ICEs paves the way for future functional and evolutionary analyses of their cargo genes, composed of a majority of unknown function genes. PMID:28911112

  9. Adipocytes Impair Efficacy of Antiretroviral Therapy

    PubMed Central

    Couturier, Jacob; Winchester, Lee C.; Suliburk, James W.; Wilkerson, Gregory K.; Podany, Anthony T.; Agarwal, Neeti; Chua, Corrine Ying Xuan; Nehete, Pramod N.; Nehete, Bharti P.; Grattoni, Alessandro; Sastry, K. Jagannadha; Fletcher, Courtney V.; Lake, Jordan E.; Balasubramanyan, Ashok; Lewis, Dorothy E.

    2018-01-01

    Adequate distribution of antiretroviral drugs to infected cells in HIV patients is critical for viral suppression. In humans and primates, HIV- and SIV-infected CD4 T cells in adipose tissues have recently been identified as reservoirs for infectious virus. To better characterize adipose tissue as a pharmacological sanctuary for HIV-infected cells, in vitro experiments were conducted to assess antiretroviral drug efficacy in the presence of adipocytes, and drug penetration in adipose tissue cells (stromal-vascular-fraction cells and mature adipocytes) was examined in treated humans and monkeys. Co-culture experiments between HIV-1-infected CD4 T cells and primary human adipocytes showed that adipocytes consistently reduced the antiviral efficacy of the nucleotide reverse transcriptase inhibitor tenofovir and its prodrug forms tenofovir disoproxil fumarate (TDF) and tenofovir alafenamide (TAF). In HIV-infected persons, LC-MS/MS analysis of intracellular lysates derived from adipose tissue stromal-vascular-fraction cells or mature adipocytes suggested that integrase inhibitors penetrate adipose tissue, whereas penetration of nucleoside/nucleotide reverse transcriptase inhibitors such as TDF, emtricitabine, abacavir, and lamivudine is restricted. The limited distribution and functions of key antiretroviral drugs within fat depots may contribute to viral persistence in adipose tissue. PMID:29630975

  10. Differential Expression of MicroRNA and Predicted Targets in Pulmonary Sarcoidosis

    PubMed Central

    Crouser, Elliott D.; Julian, Mark W.; Crawford, Melissa; Shao, Guohong; Yu, Lianbo; Planck, Stephen R.; Rosenbaum, James T.; Nana-Sinkam, S. Patrick

    2014-01-01

    Background Recent studies show that various inflammatory diseases are regulated at the level of RNA translation by small non-coding RNAs, termed microRNAs (miRNAs). We sought to determine whether sarcoidosis tissues harbor a distinct pattern of miRNA expression and then considered their potential molecular targets. Methods and Results Genome-wide microarray analysis of miRNA expression in lung tissue and peripheral blood mononuclear cells (PBMCs) was performed and differentially expressed (DE)-miRNAs were then validated by real-time PCR. A distinct pattern of DE-miRNA expression was identified in both lung tissue and PBMCs of sarcoidosis patients. A subgroup of DE-miRNAs common to lung and lymph node tissues were predicted to target transforming growth factor (TGFβ)-regulated pathways. Likewise, the DE-miRNAs identified in PBMCs of sarcoidosis patients were predicted to target the TGFβ-regulated “wingless and integrase-1” (WNT) pathway. Conclusions This study is the first to profile miRNAs in sarcoidosis tissues and to consider their possible roles in disease pathogenesis. Our results suggest that miRNA regulate TGFβ and related WNT pathways in sarcoidosis tissues, pathways previously incriminated in the pathogenesis of sarcoidosis. PMID:22209793

  11. Design, synthesis and biological evaluations of N-Hydroxy thienopyrimidine-2,4-diones as inhibitors of HIV reverse transcriptase-associated RNase H.

    PubMed

    Kankanala, Jayakanth; Kirby, Karen A; Huber, Andrew D; Casey, Mary C; Wilson, Daniel J; Sarafianos, Stefan G; Wang, Zhengqiang

    2017-12-01

    Human immunodeficiency virus (HIV) reverse transcriptase (RT) associated ribonuclease H (RNase H) is the only HIV enzymatic function not targeted by current antiviral drugs. Although various chemotypes have been reported to inhibit HIV RNase H, few have shown significant antiviral activities. We report herein the design, synthesis and biological evaluation of a novel N-hydroxy thienopyrimidine-2,3-dione chemotype (11) which potently and selectively inhibited RNase H with considerable potency against HIV-1 in cell culture. Current structure-activity-relationship (SAR) identified analogue 11d as a nanomolar inhibitor of RNase H (IC 50  = 0.04 μM) with decent antiviral potency (EC 50  = 7.4 μM) and no cytotoxicity (CC 50  > 100 μM). In extended biochemical assays compound 11d did not inhibit RT polymerase (pol) while inhibiting integrase strand transfer (INST) with 53 fold lower potency (IC 50  = 2.1 μM) than RNase H inhibition. Crystallographic and molecular modeling studies confirmed the RNase H active site binding mode. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  12. Combining in silico and in cerebro approaches for virtual screening and pose prediction in SAMPL4.

    PubMed

    Voet, Arnout R D; Kumar, Ashutosh; Berenger, Francois; Zhang, Kam Y J

    2014-04-01

    The SAMPL challenges provide an ideal opportunity for unbiased evaluation and comparison of different approaches used in computational drug design. During the fourth round of this SAMPL challenge, we participated in the virtual screening and binding pose prediction on inhibitors targeting the HIV-1 integrase enzyme. For virtual screening, we used well known and widely used in silico methods combined with personal in cerebro insights and experience. Regular docking only performed slightly better than random selection, but the performance was significantly improved upon incorporation of additional filters based on pharmacophore queries and electrostatic similarities. The best performance was achieved when logical selection was added. For the pose prediction, we utilized a similar consensus approach that amalgamated the results of the Glide-XP docking with structural knowledge and rescoring. The pose prediction results revealed that docking displayed reasonable performance in predicting the binding poses. However, prediction performance can be improved utilizing scientific experience and rescoring approaches. In both the virtual screening and pose prediction challenges, the top performance was achieved by our approaches. Here we describe the methods and strategies used in our approaches and discuss the rationale of their performances.

  13. Combining in silico and in cerebro approaches for virtual screening and pose prediction in SAMPL4

    NASA Astrophysics Data System (ADS)

    Voet, Arnout R. D.; Kumar, Ashutosh; Berenger, Francois; Zhang, Kam Y. J.

    2014-04-01

    The SAMPL challenges provide an ideal opportunity for unbiased evaluation and comparison of different approaches used in computational drug design. During the fourth round of this SAMPL challenge, we participated in the virtual screening and binding pose prediction on inhibitors targeting the HIV-1 integrase enzyme. For virtual screening, we used well known and widely used in silico methods combined with personal in cerebro insights and experience. Regular docking only performed slightly better than random selection, but the performance was significantly improved upon incorporation of additional filters based on pharmacophore queries and electrostatic similarities. The best performance was achieved when logical selection was added. For the pose prediction, we utilized a similar consensus approach that amalgamated the results of the Glide-XP docking with structural knowledge and rescoring. The pose prediction results revealed that docking displayed reasonable performance in predicting the binding poses. However, prediction performance can be improved utilizing scientific experience and rescoring approaches. In both the virtual screening and pose prediction challenges, the top performance was achieved by our approaches. Here we describe the methods and strategies used in our approaches and discuss the rationale of their performances.

  14. Linear indices of the "molecular pseudograph's atom adjacency matrix": definition, significance-interpretation, and application to QSAR analysis of flavone derivatives as HIV-1 integrase inhibitors.

    PubMed

    Marrero-Ponce, Yovani

    2004-01-01

    This report describes a new set of molecular descriptors of relevance to QSAR/QSPR studies and drug design, atom linear indices fk(xi). These atomic level chemical descriptors are based on the calculation of linear maps on Rn[fk(xi): Rn--> Rn] in canonical basis. In this context, the kth power of the molecular pseudograph's atom adjacency matrix [Mk(G)] denotes the matrix of fk(xi) with respect to the canonical basis. In addition, a local-fragment (atom-type) formalism was developed. The kth atom-type linear indices are calculated by summing the kth atom linear indices of all atoms of the same atom type in the molecules. Moreover, total (whole-molecule) linear indices are also proposed. This descriptor is a linear functional (linear form) on Rn. That is, the kth total linear indices is a linear map from Rn to the scalar R[ fk(x): Rn --> R]. Thus, the kth total linear indices are calculated by summing the atom linear indices of all atoms in the molecule. The features of the kth total and local linear indices are illustrated by examples of various types of molecular structures, including chain-lengthening, branching, heteroatoms-content, and multiple bonds. Additionally, the linear independence of the local linear indices to other 0D, 1D, 2D, and 3D molecular descriptors is demonstrated by using principal component analysis for 42 very heterogeneous molecules. Much redundancy and overlapping was found among total linear indices and most of the other structural indices presently in use in the QSPR/QSAR practice. On the contrary, the information carried by atom-type linear indices was strikingly different from that codified in most of the 229 0D-3D molecular descriptors used in this study. It is concluded that the local linear indices are an independent indices containing important structural information to be used in QSPR/QSAR and drug design studies. In this sense, atom, atom-type, and total linear indices were used for the prediction of pIC50 values for the cleavage process of a set of flavone derivatives inhibitors of HIV-1 integrase. Quantitative models found are significant from a statistical point of view (R of 0.965, 0.902, and 0.927, respectively) and permit a clear interpretation of the studied properties in terms of the structural features of molecules. A LOO cross-validation procedure revealed that the regression models had a fairly good predictability (q2 of 0.679, 0.543, and 0.721, respectively). The comparison with other approaches reveals good behavior of the method proposed. The approach described in this paper appears to be an excellent alternative or guides for discovery and optimization of new lead compounds.

  15. Once daily dolutegravir (S/GSK1349572) in combination therapy in antiretroviral-naive adults with HIV: planned interim 48 week results from SPRING-1, a dose-ranging, randomised, phase 2b trial.

    PubMed

    van Lunzen, Jan; Maggiolo, Franco; Arribas, José R; Rakhmanova, Aza; Yeni, Patrick; Young, Benjamin; Rockstroh, Jürgen K; Almond, Steve; Song, Ivy; Brothers, Cindy; Min, Sherene

    2012-02-01

    Dolutegravir (S/GSK1349572) is a new HIV-1 integrase inhibitor that has antiviral activity with once daily, unboosted dosing. SPRING-1 is an ongoing study designed to select a dose for phase 3 assessment. We present data from preplanned primary and interim analyses. In a phase 2b, multicentre, dose-ranging study, treatment-naive adults were randomly assigned (1:1:1:1) to receive 10 mg, 25 mg, or 50 mg dolutegravir or 600 mg efavirenz. Dose but not drug allocation was masked. Randomisation was by a central integrated voice-response system according to a computer-generated code. Study drugs were given with either tenofovir plus emtricitabine or abacavir plus lamivudine. Our study was done at 34 sites in France, Germany, Italy, Russia, Spain, and the USA beginning on July 9, 2009. Eligible participants were seropositive for HIV-1, aged 18 years or older, and had plasma HIV RNA viral loads of at least 1000 copies per mL and CD4 counts of at least 200 cells per μL. Our primary endpoint was the proportion of participants with viral load of less than 50 copies per mL at week 16 and we present data to week 48. Analyses were done on the basis of allocation group and included all participants who received at least one dose of study drug. This study is registered with ClinicalTrials.gov, number NCT00951015. 205 patients were randomly allocated and received at least one dose of study drug: 53, 51, and 51 to receive 10 mg, 25 mg, and 50 mg dolutegravir, respectively, and 50 to receive efavirenz. Week 16 response rates to viral loads of at most 50 copies per mL were 93% (144 of 155 participants) for all doses of dolutegravir (with little difference between dose groups) and 60% (30 of 50) for efavirenz; week 48 response rates were 87% (139 of 155) for all doses of dolutegravir and 82% (41 of 50) for efavirenz. Response rates between nucleoside reverse transcriptase inhibitor subgroups were similar. We identified three virological failures in the dolutegravir groups and one in the efavirenz group-we did not identify any integrase inhibitor mutations. We did not identify any dose-related clinical or laboratory toxic effects, with more drug-related adverse events of moderate-or-higher intensity in the efavirenz group (20%) than the dolutegravir group (8%). We did not judge that any serious adverse events were related to dolutegravir. Dolutegravir was effective when given once daily without a pharmacokinetic booster and was well tolerated at all assessed doses. Our findings support the assessment of once daily 50 mg dolutegravir in phase 3 trials. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Antiviral activity of dolutegravir in subjects with failure on an integrase inhibitor-based regimen: week 24 phase 3 results from VIKING-3

    PubMed Central

    Nichols, G; Mills, A; Grossberg, R; Lazzarin, A; Maggiolo, F; Molina, J; Pialoux, G; Wright, D; Ait-Khaled, M; Huang, J; Vavro, C; Wynne, B; Yeo, J

    2012-01-01

    Background VIKING-3 aimed to examine efficacy and safety of dolutegravir (DTG) 50 mg twice daily in patients with resistance to multiple ARV classes, including integrase inhibitors (INI). Methods RAL and/or EVG-resistant (current or historical) adult subjects with screening plasma HIV-1 RNA ≥500 c/mL and resistance to ≥2 other ART classes received open-label DTG 50 mg BID while continuing their failing regimen (without RAL/EVG). At Day 8 the background regimen was optimised and DTG continued. Activity of the optimized background regimen (OBR) was determined by Monogram Net Assessment. Primary endpoints were antiviral efficacy at Day 8 and Week 24. Results 183 subjects enrolled, 124 with INI-resistance at screening and 59 with historical (but no screening) resistance. Population was advanced: at BL, median CD4 140, prior ART 13 yrs, 56% CDC Class C; 79% had >2 NRTI, 75% >1 NNRTI, and 70% >2 PI resistance-associated mutations, and 61% had non-R5 HIV detected. Of the 114 subjects who had the opportunity to complete 24 weeks on study before data cutoff, 72 (63%) had <50 c/mL RNA at Week 24 (SNAPSHOT algorithm). Mean HIV RNA declined by 1.4 log10 c/mL (95% CI: 1.3, 1.5; p < 0.001) at Day 8; response differed by genotype pathway (Table). Primary INI mutations at BL N Mean HIV RNA (log 10) Change from BL (SD) at Day 8 %>1 log HIV RNA decline of <50 c/mL at Day 8 TOTAL 183 −1.4 (0.61) 82% T66 1 −1.9 100% Y143 28 −1.7 (0.42) 96% N155 33 −1.4 (0.51) 82% Q148 + ≤1 secondary mutation# 32 −1.1 (0.51) 69% Q148 + ≥2 secondary mutations# 20 −1.0 (0.81) 48% ≥2 primary mutations 8 −1.4 (0.76) 75% No primary mutations 60 −1.6 (0.55) 95% # Key secondary mutations comprised G140_ACS, L741, E138_AKT. In subjects with Q148 pathway mutations, virologic response decreased with increasing number of secondary mutations. Background overall susceptibility score (OSS) was not associated with Wk 24 response: % <50 c/mL were 83%, 63%, 59% and 69% for OSS 0, 1, 2 and >2, respectively. Discontinuations due to adverse events were uncommon (6/183, 3%); the most common drug-related AEs were diarrhoea, nausea and headache, each reported in only 5% of subjects. Conclusion A majority of the highly treatment-experienced subjects in VIKING-3 achieved suppression with DTG-based therapy. Responses were associated with Baseline IN genotype but not OSS, highlighting the importance and independence of DTG antiviral activity. DTG had a low rate of discontinuation due to adverse events at 50 mg BID in this advanced patient population.

  17. Targets for inhibition of HIV replication: entry, enzyme action, release and maturation.

    PubMed

    Sierra-Aragón, Saleta; Walter, Hauke

    2012-01-01

    Inhibition of HIV replication initially targeted viral enzymes, which are exclusively expressed by the virus and not present in the human cell. The development of reverse transcriptase (RT) inhibitors started with the discovery of antiretroviral activity of the nucleoside analog zidovudine in March 1987. Currently, six major classes of antiretroviral drugs are used for the treatment of HIV-infected patients: the RT inhibitors, nucleoside inhibitors and nonnucleoside inhibitors, the protease inhibitors, the integrase inhibitor raltegravir, the fusion inhibitor enfuvirtide (T-20), and the chemokine receptor 5 antagonist maraviroc. A seventh class, the maturation inhibitors, has not yet been approved as their effectiveness is impaired by HIV-1 polymorphisms naturally occurring in 30-40% of HIV-1 therapy-naive isolates. The use of antiretroviral combination therapy has proven to be effective in delaying progression to AIDS and to reconstitute the immune system of HIV-infected individuals. During the last 5 years, the introduction of the newest antiretrovirals has increased treatment efficacy tremendously. However, the development and accumulation of resistance to all antiretroviral drug classes are still a major problem. Additional targets will have to be defined to achieve the ultimate goal: the eradication of the virus from the infected human body. Copyright © 2012 S. Karger AG, Basel.

  18. Chalcone scaffolds as anti-infective agents: structural and molecular target perspectives.

    PubMed

    Mahapatra, Debarshi Kar; Bharti, Sanjay Kumar; Asati, Vivek

    2015-08-28

    In recent years, widespread outbreak of numerous infectious diseases across the globe has created havoc among the population. Particularly, the inhabitants of tropical and sub-tropical regions are mainly affected by these pathogens. Several natural and (semi) synthetic chalcones deserve the credit of being potential anti-infective candidates that inhibit various parasitic, malarial, bacterial, viral, and fungal targets like cruzain-1/2, trypanopain-Tb, trans-sialidase, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), fumarate reductase, falcipain-1/2, β-hematin, topoisomerase-II, plasmepsin-II, lactate dehydrogenase, protein kinases (Pfmrk and PfPK5), and sorbitol-induced hemolysis, DEN-1 NS3, H1N1, HIV (Integrase/Protease), protein tyrosine phosphatase A/B (Ptp-A/B), FtsZ, FAS-II, lactate/isocitrate dehydrogenase, NorA efflux pump, DNA gyrase, fatty acid synthase, chitin synthase, and β-(1,3)-glucan synthase. In this review, a comprehensive study (from Jan. 1982 to May 2015) of the structural features of anti-infective chalcones, their mechanism of actions (MOAs) and structure activity relationships (SARs) have been highlighted. With the knowledge of molecular targets, structural insights and SARs, this review may be helpful for (medicinal) chemists to design more potent, safe, selective and cost effective anti-infective agents. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  19. Synthetic Biology and the Gut Microbiome.

    PubMed

    Dou, Jennifer; Bennett, Matthew R

    2018-05-01

    The gut microbiome plays a crucial role in maintaining human health. Functions performed by gastrointestinal microbes range from regulating metabolism to modulating immune and nervous system development. Scientists have attempted to exploit this importance through the development of engineered probiotics that are capable of producing and delivering small molecule therapeutics within the gut. However, existing synthetic probiotics are simplistic and fail to replicate the complexity and adaptability of native homeostatic mechanisms. In this review, the ways in which the tools and approaches of synthetic biology have been applied to improve the efficacy of therapeutic probiotics, and the ways in which they might be applied in the future is discussed. Simple devices, such as a bistable switches and integrase memory arrays, have been successfully implemented in the mammalian gut, and models for targeted delivery in this environment have also been developed. In the future, it will be necessary to introduce concepts such as logic-gating and biocontainment mechanisms into synthetic probiotics, as well as to expand the collection of relevant biosensors. Ideally, this will bring us closer to a reality in which engineered therapeutic microbes will be able to accurately diagnose and effectively respond to a variety of disease states. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Approved Antiviral Drugs over the Past 50 Years

    PubMed Central

    2016-01-01

    SUMMARY Since the first antiviral drug, idoxuridine, was approved in 1963, 90 antiviral drugs categorized into 13 functional groups have been formally approved for the treatment of the following 9 human infectious diseases: (i) HIV infections (protease inhibitors, integrase inhibitors, entry inhibitors, nucleoside reverse transcriptase inhibitors, nonnucleoside reverse transcriptase inhibitors, and acyclic nucleoside phosphonate analogues), (ii) hepatitis B virus (HBV) infections (lamivudine, interferons, nucleoside analogues, and acyclic nucleoside phosphonate analogues), (iii) hepatitis C virus (HCV) infections (ribavirin, interferons, NS3/4A protease inhibitors, NS5A inhibitors, and NS5B polymerase inhibitors), (iv) herpesvirus infections (5-substituted 2′-deoxyuridine analogues, entry inhibitors, nucleoside analogues, pyrophosphate analogues, and acyclic guanosine analogues), (v) influenza virus infections (ribavirin, matrix 2 protein inhibitors, RNA polymerase inhibitors, and neuraminidase inhibitors), (vi) human cytomegalovirus infections (acyclic guanosine analogues, acyclic nucleoside phosphonate analogues, pyrophosphate analogues, and oligonucleotides), (vii) varicella-zoster virus infections (acyclic guanosine analogues, nucleoside analogues, 5-substituted 2′-deoxyuridine analogues, and antibodies), (viii) respiratory syncytial virus infections (ribavirin and antibodies), and (ix) external anogenital warts caused by human papillomavirus infections (imiquimod, sinecatechins, and podofilox). Here, we present for the first time a comprehensive overview of antiviral drugs approved over the past 50 years, shedding light on the development of effective antiviral treatments against current and emerging infectious diseases worldwide. PMID:27281742

  1. Dancing with chemical formulae of antivirals: A panoramic view (Part 2).

    PubMed

    De Clercq, Erik

    2013-11-15

    In this second part of "Dancing with antivirals as chemical formulae" I will focus on a number of chemical compounds that in the last few years have elicited more than common attraction from a commercial viewpoint: (i) favipiravir (T-705), as it is active against influenza, but also several other RNA viruses; (ii) neuraminidase inhibitors such as zanamivir and oseltamivir; (iii) peramivir and laninamivir octanoate, which might be effective against influenza virus following a single (intravenous or inhalation) administration; (iv) sofosbuvir, the (anticipated) cornerstone for the interferon-free therapy of HCV infections; (v) combinations of DAAs (direct antiviral agents) to achieve, in no time, a sustained virus response (SVR) against HCV infection; (vi) HIV protease inhibitors, the latest and most promising being darunavir; (vii) the integrase inhibitors (INIs) (raltegravir, elvitegravir, dolutegravir), representing a new dimension in the anti-HIV armamentarium; (viii), a new class of helicase primase inhibitors (HPIs) that may exceed acyclovir and the other anti-herpes compounds in both potency and safety; (ix) CMX-001, as the latest of Dr. Antonín Holý's legacy for its activity against poxviruses and CMV infections, and (x) noroviruses for which the ideal antiviral compounds are still awaited for. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Antibiotic-resistant genes and antibiotic-resistant bacteria in the effluent of urban residential areas, hospitals, and a municipal wastewater treatment plant system.

    PubMed

    Li, Jianan; Cheng, Weixiao; Xu, Like; Strong, P J; Chen, Hong

    2015-03-01

    In this study, we determined the abundance of 8 antibiotics (3 tetracyclines, 4 sulfonamides, and 1 trimethoprim), 12 antibiotic-resistant genes (10 tet, 2 sul), 4 antibiotic-resistant bacteria (tetracycline, sulfamethoxazole, and combined resistance), and class 1 integron integrase gene (intI1) in the effluent of residential areas, hospitals, and municipal wastewater treatment plant (WWTP) systems. The concentrations of total/individual targets (antibiotics, genes, and bacteria) varied remarkably among different samples, but the hospital samples generally had a lower abundance than the residential area samples. The WWTP demonstrated removal efficiencies of 50.8% tetracyclines, 66.8% sulfonamides, 0.5 logs to 2.5 logs tet genes, and less than 1 log of sul and intI1 genes, as well as 0.5 log to 1 log removal for target bacteria. Except for the total tetracycline concentration and the proportion of tetracycline-resistant bacteria (R (2) = 0.330, P < 0.05), there was no significant correlation between antibiotics and the corresponding resistant bacteria (P > 0.05). In contrast, various relationships were identified between antibiotics and antibiotic resistance genes (P < 0.05). Tet (A) and tet (B) displayed noticeable relationships with both tetracycline and combined antibiotic-resistant bacteria (P < 0.01).

  3. Bacteriophage recombination systems and biotechnical applications.

    PubMed

    Nafissi, Nafiseh; Slavcev, Roderick

    2014-04-01

    Bacteriophage recombination systems have been widely used in biotechnology for modifying prokaryotic species, for creating transgenic animals and plants, and more recently, for human cell gene manipulation. In contrast to homologous recombination, which benefits from the endogenous recombination machinery of the cell, site-specific recombination requires an exogenous source of recombinase in mammalian cells. The mechanism of bacteriophage evolution and their coexistence with bacterial cells has become a point of interest ever since bacterial viruses' life cycles were first explored. Phage recombinases have already been exploited as valuable genetic tools and new phage enzymes, and their potential application to genetic engineering and genome manipulation, vectorology, and generation of new transgene delivery vectors, and cell therapy are attractive areas of research that continue to be investigated. The significance and role of phage recombination systems in biotechnology is reviewed in this paper, with specific focus on homologous and site-specific recombination conferred by the coli phages, λ, and N15, the integrase from the Streptomyces phage, ΦC31, the recombination system of phage P1, and the recently characterized recombination functions of Yersinia phage, PY54. Key steps of the molecular mechanisms involving phage recombination functions and their application to molecular engineering, our novel exploitations of the PY54-derived recombination system, and its application to the development of new DNA vectors are discussed.

  4. The Saccharomyces cerevisiae DNA recombination and repair functions of the RAD52 epistasis group inhibit Ty1 transposition.

    PubMed Central

    Rattray, A J; Shafer, B K; Garfinkel, D J

    2000-01-01

    RNA transcribed from the Saccharomyces cerevisiae retrotransposon Ty1 accumulates to a high level in mitotically growing haploid cells, yet transposition occurs at very low frequencies. The product of reverse transcription is a linear double-stranded DNA molecule that reenters the genome by either Ty1-integrase-mediated insertion or homologous recombination with one of the preexisting genomic Ty1 (or delta) elements. Here we examine the role of the cellular homologous recombination functions on Ty1 transposition. We find that transposition is elevated in cells mutated for genes in the RAD52 recombinational repair pathway, such as RAD50, RAD51, RAD52, RAD54, or RAD57, or in the DNA ligase I gene CDC9, but is not elevated in cells mutated in the DNA repair functions encoded by the RAD1, RAD2, or MSH2 genes. The increase in Ty1 transposition observed when genes in the RAD52 recombinational pathway are mutated is not associated with a significant increase in Ty1 RNA or proteins. However, unincorporated Ty1 cDNA levels are markedly elevated. These results suggest that members of the RAD52 recombinational repair pathway inhibit Ty1 post-translationally by influencing the fate of Ty1 cDNA. PMID:10655210

  5. The Nucleotide Sequence and Spliced pol mRNA Levels of the Nonprimate Spumavirus Bovine Foamy Virus

    PubMed Central

    Holzschu, Donald L.; Delaney, Mari A.; Renshaw, Randall W.; Casey, James W.

    1998-01-01

    We have determined the complete nucleotide sequence of a replication-competent clone of bovine foamy virus (BFV) and have quantitated the amount of splice pol mRNA processed early in infection. The 544-amino-acid Gag protein precursor has little sequence similarity with its primate foamy virus homologs, but the putative nucleocapsid (NC) protein, like the primate NCs, contains the three glycine-arginine-rich regions that are postulated to bind genomic RNA during virion assembly. The BFV gag and pol open reading frames overlap, with pro and pol in the same translational frame. As with the human foamy virus (HFV) and feline foamy virus, we have detected a spliced pol mRNA by PCR. Quantitatively, this mRNA approximates the level of full-length genomic RNA early in infection. The integrase (IN) domain of reverse transcriptase does not contain the canonical HH-CC zinc finger motif present in all characterized retroviral INs, but it does contain a nearby histidine residue that could conceivably participate as a member of the zinc finger. The env gene encodes a protein that is over 40% identical in sequence to the HFV Env. By comparison, the Gag precursor of BFV is predicted to be only 28% identical to the HFV protein. PMID:9499074

  6. Sensitivity Changes over the Course of Infection Increases the Likelihood of Resistance Against Fusion but Not CCR5 Receptor Blockers

    PubMed Central

    Chatziandreou, Nikolaos; Arauz, Ana Belen; Freitas, Ines; Nyein, Phyu Hninn; Fenton, Gregory; Mehta, Shruti H.; Kirk, Gregory D.

    2012-01-01

    Abstract As HIV-1 evolves over the course of infection, resistance against antiretrovirals may arise in the absence of drug pressure, especially against receptor and fusion blockers because of the extensive changes observed in the envelope glycoprotein. Here we show that viruses from the chronic phase of disease are significantly less sensitive to CCR5 receptor and fusion blockers compared to early infection variants. Differences in susceptibility to CCR5 antagonists were observed in spite of no demonstrable CXCR4 receptor utilization. No significant sensitivity differences were observed to another entry blocker, soluble CD4, or to reverse transcriptase, protease, or integrase inhibitors. Chronic as compared to early phase variants demonstrated greater replication when passaged in the presence of subinhibitory concentrations of fusion but not CCR5 receptor inhibitors. Fusion antagonist resistance, however, emerged from only one chronic phase virus culture. Because sensitivity to receptor and fusion antagonists is correlated with receptor affinity and fusion capacity, respectively, changes that occur in the envelope glycoprotein over the course of infection confer greater ability to use the CCR5 receptor and increased fusion ability. Our in vitro passage studies suggest that these evolving phenotypes increase the likelihood of resistance against fusion but not CCR5 receptor blockers. PMID:22650962

  7. Antimicrobial resistance of Listeria spp. recovered from processed bison.

    PubMed

    Li, Q; Sherwood, J S; Logue, C M

    2007-01-01

    The current study examined the antimicrobial susceptibility of 86 Listeria spp. isolated from processed bison carcasses. Susceptibility to 25 antimicrobial agents was determined using E-test and National Antimicrobial Resistance Monitoring System (NARMS) panels. Most Listeria isolates (88-98%) exhibited resistance to bacitracin, oxacillin, cefotaxime, and fosfomycin. Resistance to tetracycline (18.6%) was also common. Of the 16 tetracycline-resistant Listeria isolates, 15 carried tetM and 2 contained integrase of Tn1545 transposons. Rifampicin and trimethoprim-sulfamethoxazole were the most active antimicrobial agents against Listeria spp., with a MIC(90) of 0.38 microg ml(-1). Ampicillin, erythromycin, penicillin, gentamicin, and tobramycin also exhibited good activity against Listeria spp., with MIC(90) not exceeding 1 microg ml(-1). Differences in resistance among Listeria spp. was displayed, as Listeria innocua strains were more resistant than other Listeria species. The study showed that Listeria monocytogenes strains from bison were susceptible to the antibiotics most commonly used to treat human listeriosis. However, the presence of antimicrobial resistance in L. innocua indicates the potential for transfer of resistance and a conjugative transposon to L. monocytogenes. The findings of our study will provide useful information for the development of public health policy in the use of antimicrobials in food animal production.

  8. Conservative site-specific and single-copy transgenesis in human LINE-1 elements

    PubMed Central

    Vijaya Chandra, Shree Harsha; Makhija, Harshyaa; Peter, Sabrina; Myint Wai, Cho Mar; Li, Jinming; Zhu, Jindong; Ren, Zhonglu; D'Alcontres, Martina Stagno; Siau, Jia Wei; Chee, Sharon; Ghadessy, Farid John; Dröge, Peter

    2016-01-01

    Genome engineering of human cells plays an important role in biotechnology and molecular medicine. In particular, insertions of functional multi-transgene cassettes into suitable endogenous sequences will lead to novel applications. Although several tools have been exploited in this context, safety issues such as cytotoxicity, insertional mutagenesis and off-target cleavage together with limitations in cargo size/expression often compromise utility. Phage λ integrase (Int) is a transgenesis tool that mediates conservative site-specific integration of 48 kb DNA into a safe harbor site of the bacterial genome. Here, we show that an Int variant precisely recombines large episomes into a sequence, termed attH4X, found in 1000 human Long INterspersed Elements-1 (LINE-1). We demonstrate single-copy transgenesis through attH4X-targeting in various cell lines including hESCs, with the flexibility of selecting clones according to transgene performance and downstream applications. This is exemplified with pluripotency reporter cassettes and constitutively expressed payloads that remain functional in LINE1-targeted hESCs and differentiated progenies. Furthermore, LINE-1 targeting does not induce DNA damage-response or chromosomal aberrations, and neither global nor localized endogenous gene expression is substantially affected. Hence, this simple transgene addition tool should become particularly useful for applications that require engineering of the human genome with multi-transgenes. PMID:26673710

  9. The successes and failures of HIV drug discovery.

    PubMed

    Hashimoto, Chie; Tanaka, Tomohiro; Narumi, Tetsuo; Nomura, Wataru; Tamamura, Hirokazu

    2011-10-01

    To date, several anti-human immunodeficiency virus (HIV) drugs, including reverse transcriptase inhibitors and protease inhibitors, have been developed and used clinically for the treatment of patients infected with HIV. Recently, novel drugs have been discovered which have different mechanisms of action from those of the above inhibitors, including entry inhibitors and integrase (IN) inhibitors; the clinical use of three of these inhibitors has been approved. Other inhibitors are still in development. This review article summarizes the history of the development of anti-HIV drugs and also focuses on successes in the development of these entry and IN inhibitors, along with looking at exploratory approaches for the development of other inhibitors. Currently used highly active antiretroviral therapy can be subject to a loss of efficacy, due to the emergence of multi-drug resistant (MDR) strains; a change of regimens of the drug combination is required to combat this, along with careful monitoring of the virus and CD4 in the blood, by methods such as cellular tropism testing. In such a situation, entry inhibitors such as CCR5/CXCR4 antagonists, CD4 mimics, fusion inhibitors and IN inhibitors might be optional agents for an expansion of the drug repertoire available to patients at all stages of HIV infection.

  10. Identification and characterization of a LTR retrotransposon from the genome of Cyprinus carpio var. Jian.

    PubMed

    Cao, Liping; Yin, Guojun; Cao, Zheming; Bing, Xuwen; Ding, Weidong

    2016-06-01

    A Ty3/gypsy-retrotransposon-type transposon was found in the genome of the Jian carp (Cyprinus carpio var. Jian) in a previous study (unpublished), and was designated a JRE retrotransposon (Jian retrotransposon). The full-length JRE retrotransposon is 5126 bp, which includes two long terminal repeats of 470 bp at the 5' end and 453 bp at the 3' end, and two open reading frames between them: 4203 bp encoding the group-specific antigen (GAG) and polyprotein (POL). The pol gene has a typical Ty3/gypsy retrotransposon structure, and the gene order is protease, reverse transcriptase, RNase H, and integrase (PR-RT-RH-IN). A phylogenetic analysis of the pol gene showed that it has similarities of 40.7, 40, and 32.8 %, to retrotransposons of Azumapecten farreri, Mizuhopecten yessoensis, and Xiphophorus maculatus, respectively. Therefore, JRE might belong to the JULE retrotransposon family. The copy number of the JRE transposon in the genome of the Jian carp is 124, determined with real-time quantitative PCR. The mRNA of the JRE retrotransposon is expressed in five Jian carp tissues, the liver, kidney, blood, muscle, and gonad, and slightly higher in the kidney and liver than in the other tissues.

  11. Pharmacokinetics of Dolutegravir When Administered With Mineral Supplements in Healthy Adult Subjects

    PubMed Central

    Song, Ivy; Borland, Julie; Arya, Niki; Wynne, Brian; Piscitelli, Stephen

    2015-01-01

    All commercially available integrase inhibitors are 2-metal binders and may be affected by co-administration with metal cations. The purpose of this study was to evaluate the effect of calcium and iron supplements on dolutegravir pharmacokinetics and strategies (dose separation and food) to attenuate the effects if significant reductions in dolutegravir exposure were observed. This was an open-label, crossover study that randomized 24 healthy subjects into 1 of 2 cohorts to receive 4 treatments: (1) dolutegravir alone, fasting; (2) dolutegravir with calcium carbonate or ferrous fumarate, fasting; (3) dolutegravir with calcium carbonate or ferrous fumarate with a moderate-fat meal; (4) dolutegravir administered 2 hours before calcium carbonate or ferrous fumarate, fasting. Plasma dolutegravir AUC(0–∞), Cmax, and C24 were reduced by 39%, 37%, and 39%, respectively, when co-administered with calcium carbonate while fasting and were reduced by 54%, 57%, and 56%, respectively, when co-administered with ferrous fumarate while fasting. Dolutegravir administration 2 hours before calcium or iron supplement administration (fasted), as well as administration with a meal, counteracted the effect. Dolutegravir and calcium or iron supplements can be co-administered if taken with a meal. Under fasted conditions, dolutegravir should be administered 2 hours before or 6 hours after calcium or iron supplements. PMID:25449994

  12. The fate of deleted DNA produced during programmed genomic deletion events in Tetrahymena thermophila.

    PubMed Central

    Saveliev, S V; Cox, M M

    1994-01-01

    Thousands of DNA deletion events occur during macronuclear development in the ciliate Tetrahymena thermophila. In two deleted genomic regions, designated M and R, the eliminated sequences form circles that can be detected by PCR. However, the circles are not normal products of the reaction pathway. The circular forms occur at very low levels in conjugating cells, but are stable. Sequencing analysis showed that many of the circles (as many as 50% of those examined) reflected a precise deletion in the M and R regions. The remaining circles were either smaller or larger and contained varying lengths of sequences derived from the chromosomal DNA surrounding the eliminated region. The chromosomal junctions left behind after deletion were more precise, although deletions in either the M or R regions can generate any of several alternative junctions (1). Some new chromosomal junctions were detected in the present study. The results suggest that the deleted segment is released as a linear DNA species that is degraded rapidly. The species is only rarely converted to the stable circles we detect. The deletion mechanism is different from those proposed for deletion events in hypotrichous ciliates (2-4), and does not reflect a conservative site-specific recombination process such as that promoted by the bacteriophage lambda integrase (5). Images PMID:7838724

  13. DNA Binding of Centromere Protein C (CENPC) Is Stabilized by Single-Stranded RNA

    PubMed Central

    Du, Yaqing; Topp, Christopher N.; Dawe, R. Kelly

    2010-01-01

    Centromeres are the attachment points between the genome and the cytoskeleton: centromeres bind to kinetochores, which in turn bind to spindles and move chromosomes. Paradoxically, the DNA sequence of centromeres has little or no role in perpetuating kinetochores. As such they are striking examples of genetic information being transmitted in a manner that is independent of DNA sequence (epigenetically). It has been found that RNA transcribed from centromeres remains bound within the kinetochore region, and this local population of RNA is thought to be part of the epigenetic marking system. Here we carried out a genetic and biochemical study of maize CENPC, a key inner kinetochore protein. We show that DNA binding is conferred by a localized region 122 amino acids long, and that the DNA-binding reaction is exquisitely sensitive to single-stranded RNA. Long, single-stranded nucleic acids strongly promote the binding of CENPC to DNA, and the types of RNAs that stabilize DNA binding match in size and character the RNAs present on kinetochores in vivo. Removal or replacement of the binding module with HIV integrase binding domain causes a partial delocalization of CENPC in vivo. The data suggest that centromeric RNA helps to recruit CENPC to the inner kinetochore by altering its DNA binding characteristics. PMID:20140237

  14. Pretreatment drug resistance in a large countrywide Ethiopian HIV-1C cohort: a comparison of Sanger and high-throughput sequencing.

    PubMed

    Telele, Nigus Fikrie; Kalu, Amare Worku; Gebre-Selassie, Solomon; Fekade, Daniel; Abdurahman, Samir; Marrone, Gaetano; Neogi, Ujjwal; Tegbaru, Belete; Sönnerborg, Anders

    2018-05-15

    Baseline plasma samples of 490 randomly selected antiretroviral therapy (ART) naïve patients from seven hospitals participating in the first nationwide Ethiopian HIV-1 cohort were analysed for surveillance drug resistance mutations (sDRM) by population based Sanger sequencing (PBSS). Also next generation sequencing (NGS) was used in a subset of 109 baseline samples of patients. Treatment outcome after 6- and 12-months was assessed by on-treatment (OT) and intention-to-treat (ITT) analyses. Transmitted drug resistance (TDR) was detected in 3.9% (18/461) of successfully sequenced samples by PBSS. However, NGS detected sDRM more often (24%; 26/109) than PBSS (6%; 7/109) (p = 0.0001) and major integrase strand transfer inhibitors (INSTI) DRMs were also found in minor viral variants from five patients. Patients with sDRM had more frequent treatment failure in both OT and ITT analyses. The high rate of TDR by NGS and the identification of preexisting INSTI DRMs in minor wild-type HIV-1 subtype C viral variants infected Ethiopian patients underscores the importance of TDR surveillance in low- and middle-income countries and shows added value of high-throughput NGS in such studies.

  15. A masked NES in INI1/hSNF5 mediates hCRM1-dependent nuclear export: implications for tumorigenesis

    PubMed Central

    Craig, Errol; Zhang, Zhi-Kai; Davies, Kelvin P.; Kalpana, Ganjam V.

    2002-01-01

    INI1 (integrase interactor 1)/hSNF5 is a component of the mammalian SWI/SNF complex and a tumor suppressor mutated in malignant rhabdoid tumors (MRT). We have identified a nuclear export signal (NES) in the highly conserved repeat 2 domain of INI1 that is unmasked upon deletion of a downstream sequence. Mutation of conserved hydrophobic residues within the NES, as well as leptomycin B treatment abrogated the nuclear export. Full-length INI1 specifically associated with hCRM1/exportin1 in vivo and in vitro. A mutant INI1 [INI1(1–319) delG950] found in MRT lacking the 66 C-terminal amino acids mislocalized to the cytoplasm. Full-length INI1 but not the INI1(1–319 delG950) mutant caused flat cell formation and cell cycle arrest in cell lines derived from MRT. Disruption of the NES in the delG950 mutant caused nuclear localization of the protein and restored its ability to cause cell cycle arrest. These observations demonstrate that INI1 has a masked NES that mediates regulated hCRM1/exportin1-dependent nuclear export and we propose that mutations that cause deregulated nuclear export of the protein could lead to tumorigenesis. PMID:11782423

  16. Extended-spectrum β-lactamase producing Escherichia coli in hospital wastewaters and sewage treatment plants in Queensland, Australia.

    PubMed

    Gündoğdu, Aycan; Jennison, Amy V; Smith, Helen V; Stratton, Helen; Katouli, Mohammad

    2013-11-01

    We investigated the prevalence of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli in untreated hospital wastewaters and 2 sewage treatment plants (STPs). A collection of 252 ESBL-producing E. coli isolates from hospital wastewater and STPs were typed and tested for resistance to 17 antimicrobial agents and for the presence of integron-associated integrases (intI gene) and ESBL genes. Eighty-nine percent (n = 176) of the ESBL-producing E. coli strains from hospital wastewater were found in more than 1 sample (common types), with 1 common type accounting for 35% of isolates, found in all samples. These strains were also resistant to up to 9 non-β-lactam antibiotics and showed the same pattern of resistance in all samples. More than 73% of the hospital wastewater isolates possessed SHV-type ESBL as opposed to isolates from STPs that carried only CTX-M-type ESBL genes. The prevalence of the intI gene did not differ between the sources of the isolates. Certain ESBL-producing E. coli were dominant in hospital wastewaters. These strains possessed β-lactamase genes that were different from isolates found in STPs. From a public health point of view, the presence of such a high level of ESBL-producing E. coli strains in hospital wastewaters is of great importance.

  17. A microarray study of gene and protein regulation in human and rat brain following middle cerebral artery occlusion

    PubMed Central

    Mitsios, Nick; Saka, Mohamad; Krupinski, Jerzy; Pennucci, Roberta; Sanfeliu, Coral; Wang, Qiuyu; Rubio, Francisco; Gaffney, John; Kumar, Pat; Kumar, Shant; Sullivan, Matthew; Slevin, Mark

    2007-01-01

    Background Altered gene expression is an important feature of ischemic cerebral injury and affects proteins of many functional classes. We have used microarrays to investigate the changes in gene expression at various times after middle cerebral artery occlusion in human and rat brain. Results Our results demonstrated a significant difference in the number of genes affected and the time-course of expression between the two cases. The total number of deregulated genes in the rat was 335 versus 126 in the human, while, of 393 overlapping genes between the two array sets, 184 were changed only in the rat and 36 in the human with a total of 41 genes deregulated in both cases. Interestingly, the mean fold changes were much higher in the human. The expression of novel genes, including p21-activated kinase 1 (PAK1), matrix metalloproteinase 11 (MMP11) and integrase interactor 1, was further analyzed by RT-PCR, Western blotting and immunohistochemistry. Strong neuronal staining was seen for PAK1 and MMP11. Conclusion Our findings confirmed previous studies reporting that gene expression screening can detect known and unknown transcriptional features of stroke and highlight the importance of research using human brain tissue in the search for novel therapeutic agents. PMID:17997827

  18. Integrative and conjugative elements and their hosts: composition, distribution and organization.

    PubMed

    Cury, Jean; Touchon, Marie; Rocha, Eduardo P C

    2017-09-06

    Conjugation of single-stranded DNA drives horizontal gene transfer between bacteria and was widely studied in conjugative plasmids. The organization and function of integrative and conjugative elements (ICE), even if they are more abundant, was only studied in a few model systems. Comparative genomics of ICE has been precluded by the difficulty in finding and delimiting these elements. Here, we present the results of a method that circumvents these problems by requiring only the identification of the conjugation genes and the species' pan-genome. We delimited 200 ICEs and this allowed the first large-scale characterization of these elements. We quantified the presence in ICEs of a wide set of functions associated with the biology of mobile genetic elements, including some that are typically associated with plasmids, such as partition and replication. Protein sequence similarity networks and phylogenetic analyses revealed that ICEs are structured in functional modules. Integrases and conjugation systems have different evolutionary histories, even if the gene repertoires of ICEs can be grouped in function of conjugation types. Our characterization of the composition and organization of ICEs paves the way for future functional and evolutionary analyses of their cargo genes, composed of a majority of unknown function genes. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. A novel dual luciferase assay for the simultaneous monitoring of HIV infection and cell viability.

    PubMed

    Mitsuki, Yu-Ya; Yamamoto, Takuya; Mizukoshi, Fuminori; Momota, Masatoshi; Terahara, Kazutaka; Yoshimura, Kazuhisa; Harada, Shigeyoshi; Tsunetsugu-Yokota, Yasuko

    2016-05-01

    Human immunodeficiency virus type 1 (HIV-1) reporter cell lines are critical tools for drug development. However, one disadvantage of HIV-1 reporter cell lines is that reductions in reporter gene activity need to be normalized to cytotoxicity, i.e., live cell numbers. Here, we developed a dual luciferase assay based on a R. reniformis luciferase (hRLuc)-expressing R5-type HIV-1 (NLAD8-hRLuc) and a CEM cell line expressing CCR5 and firefly luciferase (R5CEM-FiLuc). The NLAD8-hRLuc reporter virus was replication competent in peripheral blood mononuclear cells. The level of hRLuc was correlated with p24 antigen levels (p<0.001, R=0.862). The target cell line, R5CEM-FiLuc, stably expressed the firefly luciferase (FiLuc) reporter gene and allowed the simultaneous monitoring of compound cytotoxicity. The dual reporter assay combining a NLAD8-hRLuc virus with R5CEM-FiLuc cells permitted the accurate determination of drug susceptibility for entry, reverse transcriptase, integrase, and protease inhibitors at different multiplicities of infection. This dual reporter assay provides a rapid and direct method for the simultaneous monitoring of HIV infection and cell viability. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Correlation between luminescence intensity and cytotoxicity in cell-based cytotoxicity assay using luciferase.

    PubMed

    Wakuri, S; Yamakage, K; Kazuki, Y; Kazuki, K; Oshimura, M; Aburatani, S; Yasunaga, M; Nakajima, Y

    2017-04-01

    The luciferase reporter assay has become one of the conventional methods for cytotoxicity evaluation. Typically, the decrease of luminescence expressed by a constitutive promoter is used as an index of cytotoxicity. However, to our knowledge, there have been no reports of the correlation between cytotoxicity and luminescence intensity. In this study, to accurately verify the correlation between them, beetle luciferase was stably expressed in human hepatoma HepG2 cells harboring the multi-integrase mouse artificial chromosome vector. We showed that the cytotoxicity assay using luciferase does not depend on the stability of luciferase protein and the kind of constitutive promoter. Next, HepG2 cells in which green-emitting beetle luciferase was expressed under the control of CAG promoter were exposed to 58 compounds. The luminescence intensity and cytotoxicity curves of cells exposed to 48 compounds showed similar tendencies, whereas those of cells exposed to 10 compounds did not do so, although the curves gradually approached each other with increasing exposure time. Finally, we demonstrated that luciferase expressed under the control of a constitutive promoter can be utilized both as an internal control reporter for normalizing a test reporter and for monitoring cytotoxicity when two kinds of luciferases are simultaneously used in the cytotoxicity assay. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Genetic variability of psychrotolerant Acidithiobacillus ferrivorans revealed by (meta)genomic analysis.

    PubMed

    González, Carolina; Yanquepe, María; Cardenas, Juan Pablo; Valdes, Jorge; Quatrini, Raquel; Holmes, David S; Dopson, Mark

    2014-11-01

    Acidophilic microorganisms inhabit low pH environments such as acid mine drainage that is generated when sulfide minerals are exposed to air. The genome sequence of the psychrotolerant Acidithiobacillus ferrivorans SS3 was compared to a metagenome from a low temperature acidic stream dominated by an A. ferrivorans-like strain. Stretches of genomic DNA characterized by few matches to the metagenome, termed 'metagenomic islands', encoded genes associated with metal efflux and pH homeostasis. The metagenomic islands were enriched in mobile elements such as phage proteins, transposases, integrases and in one case, predicted to be flanked by truncated tRNAs. Cus gene clusters predicted to be involved in copper efflux and further Cus-like RND systems were predicted to be located in metagenomic islands and therefore, constitute part of the flexible gene complement of the species. Phylogenetic analysis of Cus clusters showed both lineage specificity within the Acidithiobacillus genus as well as niche specificity associated with an acidic environment. The metagenomic islands also contained a predicted copper efflux P-type ATPase system and a polyphosphate kinase potentially involved in polyphosphate mediated copper resistance. This study identifies genetic variability of low temperature acidophiles that likely reflects metal resistance selective pressures in the copper rich environment. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  2. Phylogenetic Evidence for Lateral Gene Transfer in the Intestine of Marine Iguanas

    PubMed Central

    Nelson, David M.; Cann, Isaac K. O.; Altermann, Eric; Mackie, Roderick I.

    2010-01-01

    Background Lateral gene transfer (LGT) appears to promote genotypic and phenotypic variation in microbial communities in a range of environments, including the mammalian intestine. However, the extent and mechanisms of LGT in intestinal microbial communities of non-mammalian hosts remains poorly understood. Methodology/Principal Findings We sequenced two fosmid inserts obtained from a genomic DNA library derived from an agar-degrading enrichment culture of marine iguana fecal material. The inserts harbored 16S rRNA genes that place the organism from which they originated within Clostridium cluster IV, a well documented group that habitats the mammalian intestinal tract. However, sequence analysis indicates that 52% of the protein-coding genes on the fosmids have top BLASTX hits to bacterial species that are not members of Clostridium cluster IV, and phylogenetic analysis suggests that at least 10 of 44 coding genes on the fosmids may have been transferred from Clostridium cluster XIVa to cluster IV. The fosmids encoded four transposase-encoding genes and an integrase-encoding gene, suggesting their involvement in LGT. In addition, several coding genes likely involved in sugar transport were probably acquired through LGT. Conclusion Our phylogenetic evidence suggests that LGT may be common among phylogenetically distinct members of the phylum Firmicutes inhabiting the intestinal tract of marine iguanas. PMID:20520734

  3. Grasshopper, a long terminal repeat (LTR) retroelement in the phytopathogenic fungus Magnaporthe grisea.

    PubMed

    Dobinson, K F; Harris, R E; Hamer, J E

    1993-01-01

    The fungal phytopathogen Magnaporthe grisea parasitizes a wide variety of gramineous hosts. In the course of investigating the genetic relationship between pathogen genotype and host specificity we identified a retroelement that is present in some strains of M. grisea that infect finger millet and goosegrass (members of the plant genus Eleusine). The element, designated grasshopper (grh), is present in multiple copies and dispersed throughout the genome. DNA sequence analysis showed that grasshopper contains 198 base pair direct, long terminal repeats (LTRs) with features characteristic of retroviral and retrotransposon LTRs. Within the element we identified an open reading frame with sequences homologous to the reverse transcriptase, RNaseH, and integrase domains of retroelement pol genes. Comparison of the open reading frame with sequences from other retroelements showed that grh is related to the gypsy family of retrotransposons. Comparisons of the distribution of the grasshopper element with other dispersed repeated DNA sequences in M. grisea indicated that grasshopper was present in a broadly dispersed subgroup of Eleusine pathogens, suggesting that the element was acquired subsequent to the evolution of this host-specific form. We present arguments that the amplification of different retroelements within populations of M. grisea is a consequence of the clonal organization of the fungal populations.

  4. Genotypic intraspecies heterogeneity of Enterococcus italicus: data from dairy environments.

    PubMed

    Borgo, Francesca; Ferrario, Chiara; Ricci, Giovanni; Fortina, Maria Grazia

    2013-01-01

    The diversity of a collection of 19 Enterococcus italicus strains isolated from different dairy sources was explored using a molecular polyphasic approach, comprising random amplification of polymorphic DNA (RAPD-PCR), repetitive element PCR (REP-PCR), plasmid profiling and ribotyping. The data obtained showed a high-level of biodiversity, not always correlated to the niche of isolation. Particularly, REP-PCR with primer BOXA1R and plasmid profiling allowed the best discrimination at strain level. Exploiting the genome shotgun sequence of the type strain of the species, available in public database, genes related to insertion sequences present on enterococcal Pathogenic Islands (ISEf1, IS905), determinants related to virulence factors (codifying for hemolysin and cell wall surface proteins), exogenously DNA (conjugal transfer protein, replication plasmid protein, pheromone shutdown protein, phage integrase/recombinase) and penicillin binding proteins system were detected. The presence of most of these genes seemed a common genetic trait in the Enterococcus genus, sur gene (cell wall surface protein) was only detected in strains of E. italicus. To our knowledge, this is the first time that specific primers, with the expection of the species-specific probe targeted to 16S rRNA gene, have been designed for this species. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Current lead natural products for the chemotherapy of human immunodeficiency virus (HIV) infection.

    PubMed

    De Clercq, E

    2000-09-01

    A large variety of natural products have been described as anti-HIV agents, and for a portion thereof the target of interaction has been identified. Cyanovirin-N, a 11-kDa protein from Cyanobacterium (blue-green alga) irreversibly inactivates HIV and also aborts cell-to-cell fusion and transmission of HIV, due to its high-affinity interaction with gp120. Various sulfated polysaccharides extracted from seaweeds (i.e., Nothogenia fastigiata, Aghardhiella tenera) inhibit the virus adsorption process. Ingenol derivatives may inhibit virus adsorption at least in part through down-regulation of CD4 molecules on the host cells. Inhibition of virus adsorption by flavanoids such as (-)epicatechin and its 3-O-gallate has been attributed to an irreversible interaction with gp120 (although these compounds are also known as reverse transcriptase inhibitors). For the triterpene glycyrrhizin (extracted from the licorice root Glycyrrhiza radix) the mode of anti-HIV action may at least in part be attributed to interference with virus-cell binding. The mannose-specific plant lectins from Galanthus, Hippeastrum, Narcissus, Epipac tis helleborine, and Listera ovata, and the N-acetylgl ucosamine-specific lectin from Urtica dioica would primarily be targeted at the virus-cell fusion process. Various other natural products seem to qualify as HIV-cell fusion inhibitors: the siamycins [siamycin I (BMY-29304), siamycin II (RP 71955, BMY 29303), and NP-06 (FR901724)] which are tricyclic 21-amino-acid peptides isolated from Streptomyces spp that differ from one another only at position 4 or 17 (valine or isoleucine in each case); the betulinic acid derivative RPR 103611, and the peptides tachyplesin and polyphemusin which are highly abundant in hemocyte debris of the horseshoe crabs Tachypleus tridentatus and Limulus polyphemus, i.e., the 18-amino-acid peptide T22 from which T134 has been derived. Both T22 and T134 have been shown to block T-tropic X4 HIV-1 strains through a specific antagonism with the HIV corecept or CXCR4. A number of natural products have been reported to interact with the reverse transcriptase, i.e., baicalin, avarol, avarone, psychotrine, phloroglucinol derivatives, and, in particular, calanolides (from the tropical rainforest tree, Calophyllum lanigerum) and inophyllums (from the Malaysian tree, Calophyllum inophyllum). The natural marine substance illimaquinone would be targeted at the RNase H function of the reverse transcriptase. Curcumin (diferuloylmethane, from turmeric, the roots/rhizomes of Curcuma spp), dicaffeoylquinic and dicaffeoylt artaric acids, L-chicoric acid, and a number of fungal metabolites (equisetin, phomasetin, oteromycin, and integric acid) have all been proposed as HIV-1 integrase inhibitors. Yet, we have recently shown that L-c hicoric acid owes its anti-HIV activity to a specific interaction with the viral envelope gp120 rather than integrase. A number of compounds would be able to inhibit HIV-1 gene expression at the transcription level: the flavonoid chrysin (through inhibition of casein kinase II, the antibacter ial peptides melittin (from bee venom) and cecropin, and EM2487, a novel substance produced by Streptomyces. (ABSTRACT TRUNCATED)

  6. Reconstructing ecosystem functions of the active microbial community of the Baltic Sea oxygen depleted sediments.

    PubMed

    Thureborn, Petter; Franzetti, Andrea; Lundin, Daniel; Sjöling, Sara

    2016-01-01

    Baltic Sea deep water and sediments hold one of the largest anthropogenically induced hypoxic areas in the world. High nutrient input and low water exchange result in eutrophication and oxygen depletion below the halocline. As a consequence at Landsort Deep, the deepest point of the Baltic Sea, anoxia in the sediments has been a persistent condition over the past decades. Given that microbial communities are drivers of essential ecosystem functions we investigated the microbial community metabolisms and functions of oxygen depleted Landsort Deep sediments by metatranscriptomics. Results show substantial expression of genes involved in protein metabolism demonstrating that the Landsort Deep sediment microbial community is active. Identified expressed gene suites of metabolic pathways with importance for carbon transformation including fermentation, dissimilatory sulphate reduction and methanogenesis were identified. The presence of transcripts for these metabolic processes suggests a potential for heterotrophic-autotrophic community synergism and indicates active mineralisation of the organic matter deposited at the sediment as a consequence of the eutrophication process. Furthermore, cyanobacteria, probably deposited from the water column, are transcriptionally active in the anoxic sediment at this depth. Results also reveal high abundance of transcripts encoding integron integrases. These results provide insight into the activity of the microbial community of the anoxic sediment at the deepest point of the Baltic Sea and its possible role in ecosystem functioning.

  7. [Bacteriophage λ: electrostatic properties of the genome and its elements].

    PubMed

    Krutinina, G G; Krutinin, E A; Kamzolova, S G; Osypov, A A

    2015-01-01

    Bacteriophage λ is a classical model object in molecular biology, but little is still known on the physical properties of its DNA and regulatory elements. A study was made of the electrostatic properties of phage λ DNA and regulatory elements. A global electrostatic potential distribution along the phage genome was found to be nonuniform with main regulatory elements being located in a limited region with a high potential. The RNA polymerase binding frequency on the linearized phage chromosome directly correlates with its local potential. Strong promoters of the phage and its host Escherichia coli have distinct electrostatic upstream elements, which differ in nucleotide sequence. Attachment and recombination sites of phage λ and its host have a higher potential, which possibly facilitates their recognition by integrase. Phage λ and host Rho-independent terminators have a symmetrical M-shaped potential profile, which only slightly depends on the annotated terminator palindrome length, and occur in a region with a substantially higher potential, which may cause polymerase retention, facilitating the formation of a terminator hairpin in RNA. It was concluded that virtually all elements of phage λ genome have potential distribution specifics, which are related to their structural properties and may play a role in their biological function. The global potential distribution along the phage genome reflects the architecture of the regulation of its transcription and integration in the host genome.

  8. Purification and biochemical heterogeneity of the mammalian SWI-SNF complex.

    PubMed Central

    Wang, W; Côté, J; Xue, Y; Zhou, S; Khavari, P A; Biggar, S R; Muchardt, C; Kalpana, G V; Goff, S P; Yaniv, M; Workman, J L; Crabtree, G R

    1996-01-01

    We have purified distinct complexes of nine to 12 proteins [referred to as BRG1-associated factors (BAFs)] from several mammalian cell lines using an antibody to the SWI2-SNF2 homolog BRG1. Microsequencing revealed that the 47 kDa BAF is identical to INI1. Previously INI1 has been shown to interact with and activate human immunodeficiency virus integrase and to be homologous to the yeast SNF5 gene. A group of BAF47-associated proteins were affinity purified with antibodies against INI1/BAF47 and were found to be identical to those co-purified with BRG1, strongly indicating that this group of proteins associates tightly and is likely to be the mammalian equivalent of the yeast SWI-SNF complex. Complexes containing BRG1 can disrupt nucleosomes and facilitate the binding of GAL4-VP16 to a nucleosomal template similar to the yeast SWI-SNF complex. Purification of the complex from several cell lines demonstrates that it is heterogeneous with respect to subunit composition. The two SWI-SNF2 homologs, BRG1 and hbrm, were found in separate complexes. Certain cell lines completely lack BRG1 and hbrm, indicating that they are not essential for cell viability and that the mammalian SWI-SNF complex may be tailored to the needs of a differentiated cell type. Images PMID:8895581

  9. Effect of Different Treatment Technologies on the Fate of Antibiotic Resistance Genes and Class 1 Integrons when Residual Municipal Wastewater Solids are Applied to Soil.

    PubMed

    Burch, Tucker R; Sadowsky, Michael J; LaPara, Timothy M

    2017-12-19

    Residual wastewater solids are a significant reservoir of antibiotic resistance genes (ARGs). While treatment technologies can reduce ARG levels in residual wastewater solids, the effects of these technologies on ARGs in soil during subsequent land-application are unknown. In this study we investigated the use of numerous treatment technologies (air drying, aerobic digestion, mesophilic anaerobic digestion, thermophilic anaerobic digestion, pasteurization, and alkaline stabilization) on the fate of ARGs and class 1 integrons in wastewater solids-amended soil microcosms. Six ARGs [erm(B), qnrA, sul1, tet(A), tet(W), and tet(X)], the integrase gene of class 1 integrons (intI1), and 16S rRNA genes were quantified using quantitative polymerase chain reaction. The quantities of ARGs and intI1 decreased in all microcosms, but thermophilic anaerobic digestion, alkaline stabilization, and pasteurization led to the most extensive decay of ARGs and intI1, often to levels similar to that of the control microcosms to which no wastewater solids had been applied. In contrast, the rates by which ARGs and intI1 declined using the other treatment technologies were generally similar, typically varying by less than 2 fold. These results demonstrate that wastewater solids treatment technologies can be used to decrease the persistence of ARGs and intI1 during their subsequent application to soil.

  10. PpRT1: the first complete gypsy-like retrotransposon isolated in Pinus pinaster.

    PubMed

    Rocheta, Margarida; Cordeiro, Jorge; Oliveira, M; Miguel, Célia

    2007-02-01

    We have isolated and characterized a complete retrotransposon sequence, named PpRT1, from the genome of Pinus pinaster. PpRT1 is 5,966 bp long and is closely related to IFG7 gypsy retrotransposon from Pinus radiata. The long terminal repeats (LTRs) have 333 bp each and show a 5.4% sequence divergence between them. In addition to the characteristic polypurine tract (PPT) and the primer binding site (PBS), PpRT1 carries internal regions with homology to retroviral genes gag and pol. The pol region contains sequence motifs related to the enzymes protease, reverse transcriptase, RNAseH and integrase in the same typical order known for Ty3/gypsy-like retrotransposons. PpRT1 was extended from an EST database sequence indicating that its transcription is occurring in pine tissues. Southern blot analyses indicate however, that PpRT1 is present in a unique or a low number of copies in the P. pinaster genome. The differences in nucleotide sequence found between PpRT1 and IFG7 may explain the strikingly different copy number in the two pine species genome. Based on the homologies observed when comparing LTR region among different gypsy elements we propose that the highly conserved LTR regions may be useful to amplify other retrotransposon sequences of the same or close retrotransposon family.

  11. Investigational Antiretroviral Drugs: What is Coming Down the Pipeline.

    PubMed

    Gulick, Roy M

    2018-04-01

    Over the past 30 years, antiretroviral drug regimens for treating HIV infection have become more effective, safer, and more convenient. Despite 31 currently approved drugs, the pipeline of investigational HIV drugs remains full. Investigational antiretroviral drugs include the nucleoside analogue reverse transcriptase translocation inhibitor (NRTTI) MK-8591, a long-acting compound that could be dosed once weekly. Investigational nonnucleoside analogue reverse transcriptase inhibitors (NNRTIs) include doravirine, which is active in vitro against NNRTI-resistant HIV and was potent and well-tolerated when used in combination with a dual-nucleoside analogue RTI (nRTI) backbone in treatment-naive individuals.New integrase strand transfer inhibitors (InSTIs) include recently approved bictegravir, which is active against InSTI-resistant viral strains in vitro and was potent and well-tolerated in combination regimens in treatment-naive individuals, and investigational cabotegravir, which is being studied with monthly parenteral dosing for HIV maintenance treatment and with bimonthly dosing for HIV preexposure prophylaxis (PrEP). Investigational HIV entry inhibitors include the new CD4 attachment inhibitor fostemsavir, which targets HIV envelope glycoprotein 120, and recently approved ibalizumab, which binds the CD4 receptor. This article summarizes presentations by Roy M. Gulick, MD, MPH, at the IAS-USA continuing education program, Improving the Management of HIV Disease, held in Los Angeles, California, in April 2017, and at the 2017 Ryan White HIV/AIDS Program Clinical Conference, held in San Antonio, Texas, in August 2017.

  12. Comparative Genome Analysis of “Candidatus Phytoplasma australiense” (Subgroup tuf-Australia I; rp-A) and “Ca. Phytoplasma asteris” Strains OY-M and AY-WB▿ †

    PubMed Central

    Tran-Nguyen, L. T. T.; Kube, M.; Schneider, B.; Reinhardt, R.; Gibb, K. S.

    2008-01-01

    The chromosome sequence of “Candidatus Phytoplasma australiense” (subgroup tuf-Australia I; rp-A), associated with dieback in papaya, Australian grapevine yellows in grapevine, and several other important plant diseases, was determined. The circular chromosome is represented by 879,324 nucleotides, a GC content of 27%, and 839 protein-coding genes. Five hundred two of these protein-coding genes were functionally assigned, while 337 genes were hypothetical proteins with unknown function. Potential mobile units (PMUs) containing clusters of DNA repeats comprised 12.1% of the genome. These PMUs encoded genes involved in DNA replication, repair, and recombination; nucleotide transport and metabolism; translation; and ribosomal structure. Elements with similarities to phage integrases found in these mobile units were difficult to classify, as they were similar to both insertion sequences and bacteriophages. Comparative analysis of “Ca. Phytoplasma australiense” with “Ca. Phytoplasma asteris” strains OY-M and AY-WB showed that the gene order was more conserved between the closely related “Ca. Phytoplasma asteris” strains than to “Ca. Phytoplasma australiense.” Differences observed between “Ca. Phytoplasma australiense” and “Ca. Phytoplasma asteris” strains included the chromosome size (18,693 bp larger than OY-M), a larger number of genes with assigned function, and hypothetical proteins with unknown function. PMID:18359806

  13. Raltegravir Treatment Intensification Does Not Alter Cerebrospinal Fluid HIV-1 Infection or Immunoactivation in Subjects on Suppressive Therapy

    PubMed Central

    Dahl, Viktor; Lee, Evelyn; Peterson, Julia; Spudich, Serena S.; Leppla, Idris; Sinclair, Elizabeth; Fuchs, Dietmar; Palmer, Sarah

    2011-01-01

    Background. Despite suppression of plasma human immunodeficiency virus type 1 (HIV-1) RNA by antiretroviral therapy to levels below clinical assay detection, infection and immune activation may persist within the central nervous system and possibly lead to continued brain injury. We hypothesized that intensifying therapy would decrease cerebrospinal fluid (CSF) infection and immune activation. Methods. This was a 12-week, randomized, open-label pilot study comparing addition of the integrase inhibitor raltegravir to no treatment augmentation, with an option for rollover to raltegravir. CSF and plasma were analyzed for HIV-1 RNA using a single-copy assay. CSF and blood immune activation was assessed by neopterin concentrations and CD4+ and CD8+ T-cell surface antigen expression. Results. Primary analysis compared 14 intensified (including rollovers) to 9 nonintensified subject experiences. Median HIV-1 RNA levels in all samples were lower in CSF (<.3 copies/mL) than in plasma (<.9 copies/mL; P < .0001), and raltegravir did not reduce HIV-1 RNA, CSF neopterin, or CD4+ and CD8+ T-cell activation. Conclusions. Raltegravir intensification did not reduce intrathecal immunoactivation or alter CSF HIV-1 RNA levels in subjects with baseline viral suppression. With and without raltegravir intensification, HIV RNA levels in CSF were very low in the enrolled subjects. Clinical Trials Registration. NCT00672932. PMID:22021620

  14. Primary atypical teratoid/rhabdoid tumor of central nervous system in children: a clinicopathological analysis and review of literature in China.

    PubMed

    Yang, Min; Chen, Xi; Wang, Ning; Zhu, Kun; Hu, Ying-Zi; Zhao, Yun; Shu, Yan; Zhao, Man-Li; Gu, Wei-Zhong; Tang, Hong-Feng

    2014-01-01

    Atypical teratoid/rhabdoid tumor (AT/RT) is a very rare and highly malignant embryonal tumor in the central nervous system (CNS). Five patients (4 girls and 1 boy) with AT/RT were treated in our hospital. The clinical histories, symptoms, neuroimaging aspects, therapies, histological and immunohistochemical findings and follow-up information were reviewed. The patients ranged from 8 to 40 months with a mean age of 20.6 months. One tumor was located in the spinal cord, two in cerebellum and two in the pineal region. The imagings of the tumors resemble medulloblastomas. Pathological examinations showed that one patient had medulloblastoma differentiation, one had choroid plexus carcinoma differentiation, and one had mesenchymal components. Immunohistochemical staining showed that all of the tumors lost the nuclear expression of integrase interactor 1 (INI1), and were positive for Vimentin, S-100 protein and epithelial membrane antigen. One case with no recurrence after 24 months may have benefited from radical excision and postoperative radiotherapy. The other 4 patients died 8, 4, 1 and 1-month respectively after operation without radiotherapy. The diagnosis of AT/RT depends on full sampling, careful observation the morphological characteristics and INI1 examination, even when the tumor are presented in uncommon sites, such as the spinal cord and the pineal region.

  15. Specific insertions of zinc finger domains into Gag-Pol yield engineered retroviral vectors with selective integration properties

    PubMed Central

    Lim, Kwang-il; Klimczak, Ryan; Yu, Julie H.; Schaffer, David V.

    2010-01-01

    Retroviral vectors offer benefits of efficient delivery and stable gene expression; however, their clinical use raises the concerns of insertional mutagenesis and potential oncogenesis due to genomic integration preferences in transcriptional start sites (TSS). We have shifted the integration preferences of retroviral vectors by generating a library of viral variants with a DNA-binding domain inserted at random positions throughout murine leukemia virus Gag-Pol, then selecting for variants that are viable and exhibit altered integration properties. We found seven permissive zinc finger domain (ZFD) insertion sites throughout Gag-Pol, including within p12, reverse transcriptase, and integrase. Comprehensive genome integration analysis showed that several ZFD insertions yielded retroviral vector variants with shifted integration patterns that did not favor TSS. Furthermore, integration site analysis revealed selective integration for numerous mutants. For example, two retroviral variants with a given ZFD at appropriate positions in Gag-Pol strikingly integrated primarily into four common sites out of 3.1 × 109 possible human genome locations (P = 4.6 × 10-29). Our findings demonstrate that insertion of DNA-binding motifs into multiple locations in Gag-Pol can make considerable progress toward engineering safer retroviral vectors that integrate into a significantly narrowed pool of sites on human genome and overcome the preference for TSS. PMID:20616052

  16. Characterization of genetic elements required for site-specific integration of Lactobacillus delbrueckii subsp. bulgaricus bacteriophage mv4 and construction of an integration-proficient vector for Lactobacillus plantarum.

    PubMed Central

    Dupont, L; Boizet-Bonhoure, B; Coddeville, M; Auvray, F; Ritzenthaler, P

    1995-01-01

    Temperate phage mv4 integrates its DNA into the chromosome of Lactobacillus delbrueckii subsp. bulgaricus strains via site-specific recombination. Nucleotide sequencing of a 2.2-kb attP-containing phage fragment revealed the presence of four open reading frames. The larger open reading frame, close to the attP site, encoded a 427-amino-acid polypeptide with similarity in its C-terminal domain to site-specific recombinases of the integrase family. Comparison of the sequences of attP, bacterial attachment site attB, and host-phage junctions attL and attR identified a 17-bp common core sequence, where strand exchange occurs during recombination. Analysis of the attB sequence indicated that the core region overlaps the 3' end of a tRNA(Ser) gene. Phage mv4 DNA integration into the tRNA(Ser) gene preserved an intact tRNA(Ser) gene at the attL site. An integration vector based on the mv4 attP site and int gene was constructed. This vector transforms a heterologous host, L. plantarum, through site-specific integration into the tRNA(Ser) gene of the genome and will be useful for development of an efficient integration system for a number of additional bacterial species in which an identical tRNA gene is present. PMID:7836291

  17. Executive summary of the GESIDA/National AIDS Plan Consensus Document on Antiretroviral Therapy in Adults Infected by the Human Immunodeficiency Virus (Updated January 2016).

    PubMed

    2016-01-01

    In this update, antiretroviral therapy (ART) is recommended for all patients infected by type 1 human immunodeficiency virus (HIV-1). The objective of ART is to achieve an undetectable plasma viral load (PVL). Initial ART should comprise 3 drugs, namely, 2 nucleoside reverse transcriptase inhibitors (NRTI), and 1 drug from another family. Four of the recommended regimens, all of which have an integrase strand transfer inhibitor (INSTI) as the third drug, are considered a preferred regimen; a further 6 regimens, which are based on an INSTI, a non-nucleoside reverse transcriptase inhibitor (NNRTI), or a protease inhibitor boosted with cobicistat or ritonavir (PI/COBI, PI/r), are considered alternatives. The reasons and criteria for switching ART are presented both for patients with an undetectable PVL and for patients who experience virological failure, in which case the rescue regimen should include 3 (or at least 2) drugs that are fully active against HIV. The specific criteria for ART in special situations (acute infection, HIV-2 infection, pregnancy) and comorbid conditions (tuberculosis and other opportunistic infections, kidney disease, liver disease, and cancer) are updated. Copyright © 2016 Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  18. Experimental single-strain mobilomics reveals events that shape pathogen emergence.

    PubMed

    Schoeniger, Joseph S; Hudson, Corey M; Bent, Zachary W; Sinha, Anupama; Williams, Kelly P

    2016-08-19

    Virulence genes on mobile DNAs such as genomic islands (GIs) and plasmids promote bacterial pathogen emergence. Excision is an early step in GI mobilization, producing a circular GI and a deletion site in the chromosome; circular forms are also known for some bacterial insertion sequences (ISs). The recombinant sequence at the junctions of such circles and deletions can be detected sensitively in high-throughput sequencing data, using new computational methods that enable empirical discovery of mobile DNAs. For the rich mobilome of a hospital Klebsiella pneumoniae strain, circularization junctions (CJs) were detected for six GIs and seven IS types. Our methods revealed differential biology of multiple mobile DNAs, imprecision of integrases and transposases, and differential activity among identical IS copies for IS26, ISKpn18 and ISKpn21 Using the resistance of circular dsDNA molecules to exonuclease, internally calibrated with the native plasmids, showed that not all molecules bearing GI CJs were circular. Transpositions were also detected, revealing replicon preference (ISKpn18 prefers a conjugative IncA/C2 plasmid), local action (IS26), regional preferences, selection (against capsule synthesis) and IS polarity inversion. Efficient discovery and global characterization of numerous mobile elements per experiment improves accounting for the new gene combinations that arise in emerging pathogens. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. Metagenomic Characterization of Antibiotic Resistance Genes in Full-Scale Reclaimed Water Distribution Systems and Corresponding Potable Systems.

    PubMed

    Garner, Emily; Chen, Chaoqi; Xia, Kang; Bowers, Jolene; Engelthaler, David M; McLain, Jean; Edwards, Marc A; Pruden, Amy

    2018-06-05

    Water reclamation provides a valuable resource for meeting nonpotable water demands. However, little is known about the potential for wastewater reuse to disseminate antibiotic resistance genes (ARGs). Here, samples were collected seasonally in 2014-2015 from four U.S. utilities' reclaimed and potable water distribution systems before treatment, after treatment, and at five points of use (POU). Shotgun metagenomic sequencing was used to profile the resistome (i.e., full contingent of ARGs) of a subset ( n = 38) of samples. Four ARGs ( qnrA, bla TEM , vanA, sul1) were quantified by quantitative polymerase chain reaction. Bacterial community composition (via 16S rRNA gene amplicon sequencing), horizontal gene transfer (via quantification of intI1 integrase and plasmid genes), and selection pressure (via detection of metals and antibiotics) were investigated as potential factors governing the presence of ARGs. Certain ARGs were elevated in all ( sul1; p ≤ 0.0011) or some ( bla TEM , qnrA; p ≤ 0.0145) reclaimed POU samples compared to corresponding potable samples. Bacterial community composition was weakly correlated with ARGs (Adonis, R 2 = 0.1424-0.1734) and associations were noted between 193 ARGs and plasmid-associated genes. This study establishes that reclaimed water could convey greater abundances of certain ARGs than potable waters and provides observations regarding factors that likely control ARG occurrence in reclaimed water systems.

  20. Towards a Safer, More Randomized Lentiviral Vector Integration Profile Exploring Artificial LEDGF Chimeras

    PubMed Central

    Vranckx, Lenard S.; Demeulemeester, Jonas; Debyser, Zeger

    2016-01-01

    The capacity to integrate transgenes into the host cell genome makes retroviral vectors an interesting tool for gene therapy. Although stable insertion resulted in successful correction of several monogenic disorders, it also accounts for insertional mutagenesis, a major setback in otherwise successful clinical gene therapy trials due to leukemia development in a subset of treated patients. Despite improvements in vector design, their use is still not risk-free. Lentiviral vector (LV) integration is directed into active transcription units by LEDGF/p75, a host-cell protein co-opted by the viral integrase. We engineered LEDGF/p75-based hybrid tethers in an effort to elicit a more random integration pattern to increase biosafety, and potentially reduce proto-oncogene activation. We therefore truncated LEDGF/p75 by deleting the N-terminal chromatin-reading PWWP-domain, and replaced this domain with alternative pan-chromatin binding peptides. Expression of these LEDGF-hybrids in LEDGF-depleted cells efficiently rescued LV transduction and resulted in LV integrations that distributed more randomly throughout the host-cell genome. In addition, when considering safe harbor criteria, LV integration sites for these LEDGF-hybrids distributed more safely compared to LEDGF/p75-mediated integration in wild-type cells. This approach should be broadly applicable to introduce therapeutic or suicide genes for cell therapy, such as patient-specific iPS cells. PMID:27788138

  1. HIV-1 Gag as an Antiviral Target: Development of Assembly and Maturation Inhibitors.

    PubMed

    Spearman, Paul

    2016-01-01

    HIV-1 Gag is the master orchestrator of particle assembly. The central role of Gag at multiple stages of the HIV lifecycle has led to efforts to develop drugs that directly target Gag and prevent the formation and release of infectious particles. Until recently, however, only the catalytic site protease inhibitors have been available to inhibit late stages of HIV replication. This review summarizes the current state of development of antivirals that target Gag or disrupt late events in the retrovirus lifecycle such as maturation of the viral capsid. Maturation inhibitors represent an exciting new series of antiviral compounds, including those that specifically target CA-SP1 cleavage and the allosteric integrase inhibitors that inhibit maturation by a completely different mechanism. Numerous small molecules and peptides targeting CA have been studied in attempts to disrupt steps in assembly. Efforts to target CA have recently gained considerable momentum from the development of small molecules that bind CA and alter capsid stability at the post-entry stage of the lifecycle. Efforts to develop antivirals that inhibit incorporation of genomic RNA or to inhibit late budding events remain in preliminary stages of development. Overall, the development of novel antivirals targeting Gag and the late stages in HIV replication appears much closer to success than ever, with the new maturation inhibitors leading the way.

  2. HIVprotI: an integrated web based platform for prediction and design of HIV proteins inhibitors.

    PubMed

    Qureshi, Abid; Rajput, Akanksha; Kaur, Gazaldeep; Kumar, Manoj

    2018-03-09

    A number of anti-retroviral drugs are being used for treating Human Immunodeficiency Virus (HIV) infection. Due to emergence of drug resistant strains, there is a constant quest to discover more effective anti-HIV compounds. In this endeavor, computational tools have proven useful in accelerating drug discovery. Although methods were published to design a class of compounds against a specific HIV protein, but an integrated web server for the same is lacking. Therefore, we have developed support vector machine based regression models using experimentally validated data from ChEMBL repository. Quantitative structure activity relationship based features were selected for predicting inhibition activity of a compound against HIV proteins namely protease (PR), reverse transcriptase (RT) and integrase (IN). The models presented a maximum Pearson correlation coefficient of 0.78, 0.76, 0.74 and 0.76, 0.68, 0.72 during tenfold cross-validation on IC 50 and percent inhibition datasets of PR, RT, IN respectively. These models performed equally well on the independent datasets. Chemical space mapping, applicability domain analyses and other statistical tests further support robustness of the predictive models. Currently, we have identified a number of chemical descriptors that are imperative in predicting the compound inhibition potential. HIVprotI platform ( http://bioinfo.imtech.res.in/manojk/hivproti ) would be useful in virtual screening of inhibitors as well as designing of new molecules against the important HIV proteins for therapeutics development.

  3. CROI 2018: Advances in Antiretroviral Therapy.

    PubMed

    Tieu, Hong-Van; Taylor, Barbara S; Jones, Joyce; Wilkin, Timothy J

    2018-05-01

    The 2018 Conference on Retroviruses and Opportunistic Infections (CROI) showcased exciting data on new investigational agents including MK-8591 and tri-specific antibody targeting 3 highly conserved epitopes on HIV-1 in a single antibody. Clinical trials of initial antiretroviral therapy (ART) and switch studies involving bictegravir/emtricitabine/tenofovir alafenamide were presented. Intensification of initial ART with integrase strand transfer inhibitors did not increase the risk of immune reconstitution inflammatory syndrome. Pharmacokinetic issues were discussed, including the substantial drug-drug interactions between efavirenz-based ART and hormonal contraception delivered via a vaginal ring. Studies on pre-ART drug resistance and emergence of drug resistance after initial and second-line ART in different settings and populations were highlighted. Novel technologies to identify drug resistance included a free, cloud-based web service for HIV genotyping analysis and a promising technology for point-of-care drug resistance mutations testing. New strategies to improve the HIV care continuum included home-based testing with initiation of same-day ART and stratified care with specialized clinics to serve those disengaged in care, but the data on financial incentives were not encouraging. Several studies provided insights into the impact of early ART on decreasing the size of the HIV reservoir in HIV-infected infants. Pertinent conference findings relating to women's health issues included similar clinical outcomes between breastfeeding and formula feeding HIV-infected women, the problem of viral rebound and ART nonadherence in pregnancy and postpartum.

  4. GB3.0: a platform for plant bio-design that connects functional DNA elements with associated biological data

    PubMed Central

    Vazquez-Vilar, Marta; Quijano-Rubio, Alfredo; Fernandez-del-Carmen, Asun; Sarrion-Perdigones, Alejandro; Ochoa-Fernandez, Rocio; Ziarsolo, Peio

    2017-01-01

    Abstract Modular DNA assembly simplifies multigene engineering in Plant Synthetic Biology. Furthermore, the recent adoption of a common syntax to facilitate the exchange of plant DNA parts (phytobricks) is a promising strategy to speed up genetic engineering. Following this lead, here, we present a platform for plant biodesign that incorporates functional descriptions of phytobricks obtained under pre-defined experimental conditions, and systematically registers the resulting information as metadata for documentation. To facilitate the handling of functional descriptions, we developed a new version (v3.0) of the GoldenBraid (GB) webtool that integrates the experimental data and displays it in the form of datasheets. We report the use of the Luciferase/Renilla (Luc/Ren) transient agroinfiltration assay in Nicotiana benthamiana as a standard to estimate relative transcriptional activities conferred by regulatory phytobricks, and show the consistency and reproducibility of this method in the characterization of a synthetic phytobrick based on the CaMV35S promoter. Furthermore, we illustrate the potential for combinatorial optimization and incremental innovation of the GB3.0 platform in two separate examples, (i) the development of a collection of orthogonal transcriptional regulators based on phiC31 integrase and (ii) the design of a small genetic circuit that connects a glucocorticoid switch to a MYB/bHLH transcriptional activation module. PMID:28053117

  5. Construction of a New Phage Integration Vector pFIV-Val for Use in Different Francisella Species

    PubMed Central

    Tlapák, Hana; Köppen, Kristin; Rydzewski, Kerstin; Grunow, Roland; Heuner, Klaus

    2018-01-01

    We recently identified and described a putative prophage on the genomic island FhaGI-1 located within the genome of Francisella hispaniensis AS02-814 (F. tularensis subsp. novicida-like 3523). In this study, we constructed two variants of a Francisella phage integration vector, called pFIV1-Val and pFIV2-Val (Francisella Integration Vector-tRNAVal-specific), using the attL/R-sites and the site-specific integrase (FN3523_1033) of FhaGI-1, a chloramphenicol resistance cassette and a sacB gene for counter selection of transformants against the vector backbone. We inserted the respective sites and genes into vector pUC57-Kana to allow for propagation in Escherichia coli. The constructs generated a circular episomal form in E. coli which could be used to transform Francisella spp. where FIV-Val stably integrated site specifically into the tRNAVal gene of the genome, whereas pUC57-Kana is lost due to counter selection. Functionality of the new vector was demonstrated by the successfully complementation of a Francisella mutant strain. The vectors were stable in vitro and during host-cell infection without selective pressure. Thus, the vectors can be applied as a further genetic tool in Francisella research, expanding the present genetic tools by an integrative element. This new element is suitable to perform long-term experiments with different Francisella species. PMID:29594068

  6. A Long Terminal Repeat-Containing Retrotransposon of Schizosaccharomyces pombe Expresses a Gag-Like Protein That Assembles into Virus-Like Particles Which Mediate Reverse Transcription

    PubMed Central

    Teysset, Laure; Dang, Van-Dinh; Kim, Min Kyung; Levin, Henry L.

    2003-01-01

    The Tf1 element of Schizosaccharomyces pombe is a long terminal repeat-containing retrotransposon that encodes functional protease, reverse transcriptase, and integrase proteins. Although these proteins are known to be necessary for protein processing, reverse transcription, and integration, respectively, the function of the protein thought to be Gag has not been determined. We present here the first electron microscopy of Tf1 particles. We tested whether the putative Gag of Tf1 was required for particle formation, packaging of RNA, and reverse transcription. We generated deletions of 10 amino acids in each of the four hydrophilic domains of the protein and found that all four mutations reduced transposition activity. The N-terminal deletion removed a nuclear localization signal and inhibited nuclear import of the transposon. The two mutations in the center of Gag destabilized the protein and resulted in no virus-like particles. The C-terminal deletion caused a defect in RNA packaging and, as a result, low levels of cDNA. The electron microscopy of cells expressing a truncated Tf1 showed that Gag alone was sufficient for the formation of virus-like particles. Taken together, these results indicate that Tf1 encodes a Gag protein that is a functional equivalent of the Gag proteins of retroviruses. PMID:12692246

  7. Novel gene expression mechanism in a fission yeast retroelement: Tf1 proteins are derived from a single primary translation product.

    PubMed

    Levin, H L; Weaver, D C; Boeke, J D

    1993-12-01

    In sharp contrast to the single ORF of the Schizosaccharomyces pombe retrotransposon Tf1, retroviruses and most retrotransposons employ two different ORFs to separately encode the Gag and Pol proteins. The different ORFs are thought to allow for overexpression of the Gag protein relative to Pol protein presumed necessary for the assembly of functional retrovirus particles and virus-like particles (VLPs). The results of in vivo experiments designed to detect the transposition of Tf1 show that Tf1 is indeed active and can insert itself into the host genome via a true retrotransposition process. Thus, a paradox emerged between the lack of any obvious means of overexpressing Tf1 Gag protein and the demonstrated functionality of the element. Epitope tagging experiments described here confirm that the Tf1 large ORF is intact and that there is no translational or transcriptional mechanism used to overexpress the Tf1 Gag protein. In addition, we used sucrose gradients and antisera specific for Tf1 capsid (CA) and integrase (IN) to show that the Tf1 proteins do assemble into uniform populations of macromolecular particles that also cosediment with Tf1 reverse transcription products. This evidence suggests that Tf1 proteins form VLPs without using the previously described mechanisms that retroviruses and retrotransposons require to overexpress Gag proteins.

  8. Characterization of AFLAV, a Tf1/Sushi retrotransposon from Aspergillus flavus.

    PubMed

    Hua, Sui-Sheng T; Tarun, Alice S; Pandey, Sonal N; Chang, Leo; Chang, Perng-Kuang

    2007-02-01

    The plasmid, pAF28, a genomic clone from Aspergillus flavus NRRL 6541, has been used as a hybridization probe to fingerprint A. flavus strains isolated in corn and peanut fields. The insert of pAF28 contains a 4.5 kb region which encodes a truncated retrotransposon (AfRTL-1). In search for a full-length and intact copy of retrotransposon, we exploited a novel PCR cloning strategy by amplifying a 3.4 kb region from the genomic DNA of A. flavus NRRL 6541. The fragment was cloned into pCR 4-TOPO. Sequence analysis confirmed that this region encoded putative domains of partial reverse transcriptase, RNase H, and integrase of the predicted retrotransposon. The two flanking long terminal repeats (LTRs) and the sequence between them comprise a putative full-length LTR retrotransposon of 7799 bp in length. This intact retrotransposon sequence is named AFLAV (A. flavus Retrotransposon). The order of the predicted catalytic domains in the polyprotein (Pol) placed AFLAV in the Tf1/sushi subgroup of the Ty3/gypsy retrotransposon family. Primers derived from AFLAV sequence were used to screen this retrotransposon in other strains of A. flavus. More than fifty strains of A. flavus isolated from different geological origins were surveyed and the results show that many strains have extensive deletions in the regions encoding the capsid (Gag) and Pol.

  9. CROI 2017: Advances in Antiretroviral Therapy

    PubMed Central

    Jones, Joyce; Taylor, Barbara S.; Tieu, Hong-Van; Wilkin, Timothy J.

    2017-01-01

    The 2017 Conference on Retroviruses and Opportunistic Infections (CROI) featured exciting preclinical data on investigational antiretroviral agents with good in vitro efficacy and long half-lives. Investigational medications, including bictegravir, demonstrated excellent efficacy and tolerability, as did dual-agent therapy with dolutegravir paired with rilpivirine or with lamivudine. Dolutegravir monotherapy proved inadvisable due to virologic failure and resistance. The gap between high- and low-income settings along the HIV care continuum is narrowing, with Zimbabwe, Malawi, and Zambia approaching the 90-90-90 targets established by the joint United Nations Programme on HIV/AIDS (UNAIDS), whereas communities in the Southern United States are falling behind. Innovative strategies to improve outcomes include 2-way text messaging, home-based HIV testing, peer navigation, and New York City's realignment of services into comprehensive sexual health programs. A high prevalence of resistance was documented in low- and middle-income settings and policy considerations were modeled to address increasing resistance rates. Novel resistance mutations to integrase strand transfer inhibitors and nucleoside analogue reserve transcriptase inhibitors were identified, but the clinical implications are unclear and require further investigation. Several studies provided insights on dosing and safety of antiretroviral therapy to prevent mother-to-child transmission through pharmacokinetic analysis. A special session devoted to Zika virus included a study of its effects on the central nervous system and a promising animal study of a Zika vaccine. PMID:28598790

  10. Characterization of a Theta-Type Plasmid from Lactobacillus sakei: a Potential Basis for Low-Copy-Number Vectors in Lactobacilli

    PubMed Central

    Alpert, Carl-Alfred; Crutz-Le Coq, Anne-Marie; Malleret, Christine; Zagorec, Monique

    2003-01-01

    The complete nucleotide sequence of the 13-kb plasmid pRV500, isolated from Lactobacillus sakei RV332, was determined. Sequence analysis enabled the identification of genes coding for a putative type I restriction-modification system, two genes coding for putative recombinases of the integrase family, and a region likely involved in replication. The structural features of this region, comprising a putative ori segment containing 11- and 22-bp repeats and a repA gene coding for a putative initiator protein, indicated that pRV500 belongs to the pUCL287 subfamily of theta-type replicons. A 3.7-kb fragment encompassing this region was fused to an Escherichia coli replicon to produce the shuttle vector pRV566 and was observed to be functional in L. sakei for plasmid replication. The L. sakei replicon alone could not support replication in E. coli. Plasmid pRV500 and its derivative pRV566 were determined to be at very low copy numbers in L. sakei. pRV566 was maintained at a reasonable rate over 20 generations in several lactobacilli, such as Lactobacillus curvatus, Lactobacillus casei, and Lactobacillus plantarum, in addition to L. sakei, making it an interesting basis for developing vectors. Sequence relationships with other plasmids are described and discussed. PMID:12957947

  11. Characterization of In40 of Enterobacter aerogenes BM2688, a Class 1 Integron with Two New Gene Cassettes, cmlA2 and qacF

    PubMed Central

    Ploy, Marie-Cécile; Courvalin, Patrice; Lambert, Thierry

    1998-01-01

    Enterobacter aerogenes BM2688, which is resistant to multiple antibiotics, and its aminoglycoside-susceptible derivative BM2688-1 were isolated from the same clinical sample. Strain BM2688 harbored plasmid pIP833, which carries a class 1 integron, In40, containing (in addition to qacEΔ1 and sul1, which are characteristic of class 1 integrons) four gene cassettes: aac(6′)-Ib, qacF, cmlA2, and oxa-9. The cmlA2 gene had 83.7% identity with the previously described nonenzymatic chloramphenicol resistance cmlA1 gene. The qacF gene conferred resistance to quaternary ammonium compounds and displayed a high degree of similarity with qacE (67.8% identity) which, however, has been found as part of a cassette with a very different 59-base element. The oxa-9 gene was not expressed due to a lack of promoter sequences. Study of the antibiotic-susceptible derivative BM2688-1 indicated that a 3,148-bp deletion between the 3′ end of the aac(6′)-Ib gene and the 3′ conserved segment of In40 was responsible for the loss of resistance. The occurrence of this DNA rearrangement, which did not involve homologous sequences, suggests that the In40 integrase could promote recombination at secondary sites. PMID:9756755

  12. Reconstructing ecosystem functions of the active microbial community of the Baltic Sea oxygen depleted sediments

    PubMed Central

    Franzetti, Andrea; Lundin, Daniel; Sjöling, Sara

    2016-01-01

    Baltic Sea deep water and sediments hold one of the largest anthropogenically induced hypoxic areas in the world. High nutrient input and low water exchange result in eutrophication and oxygen depletion below the halocline. As a consequence at Landsort Deep, the deepest point of the Baltic Sea, anoxia in the sediments has been a persistent condition over the past decades. Given that microbial communities are drivers of essential ecosystem functions we investigated the microbial community metabolisms and functions of oxygen depleted Landsort Deep sediments by metatranscriptomics. Results show substantial expression of genes involved in protein metabolism demonstrating that the Landsort Deep sediment microbial community is active. Identified expressed gene suites of metabolic pathways with importance for carbon transformation including fermentation, dissimilatory sulphate reduction and methanogenesis were identified. The presence of transcripts for these metabolic processes suggests a potential for heterotrophic-autotrophic community synergism and indicates active mineralisation of the organic matter deposited at the sediment as a consequence of the eutrophication process. Furthermore, cyanobacteria, probably deposited from the water column, are transcriptionally active in the anoxic sediment at this depth. Results also reveal high abundance of transcripts encoding integron integrases. These results provide insight into the activity of the microbial community of the anoxic sediment at the deepest point of the Baltic Sea and its possible role in ecosystem functioning. PMID:26823996

  13. Mobile contingency locus controlling Escherichia coli K1 polysialic acid capsule acetylation.

    PubMed

    Vimr, Eric R; Steenbergen, Susan M

    2006-05-01

    Escherichia coli K1 is part of a reservoir of adherent, invasive facultative pathogens responsible for a wide range of human and animal disease including sepsis, meningitis, urinary tract infection and inflammatory bowel syndrome. A prominent virulence factor in these diseases is the polysialic acid capsular polysaccharide (K1 antigen), which is encoded by the kps/neu accretion domain inserted near pheV at 67 map units. Some E. coli K1 strains undergo form (phase) variation involving loss or gain of O-acetyl esters at carbon positions 7 or 9 of the individual sialic acid residues of the polysialic acid chains. Acetylation is catalysed by the receptor-modifying acetyl coenzyme-A-dependent O-acetyltransferase encoded by neuO, a phase variable locus mapping near the integrase gene of the K1-specific prophage, CUS-3, which is inserted in argW at 53.1 map units. As the first E. coli contingency locus shown to operate by a translational switch, further investigation of neuO should provide a better understanding of the invasive K1 pathotype. Minimal estimates of morbidity and economic costs associated with human infections caused by extraintestinal pathogenic E. coli strains such as K1 indicate at least 6.5 million cases with attendant medical costs exceeding 2.5 billion US dollars annually in the United States alone.

  14. Construction of a New Phage Integration Vector pFIV-Val for Use in Different Francisella Species.

    PubMed

    Tlapák, Hana; Köppen, Kristin; Rydzewski, Kerstin; Grunow, Roland; Heuner, Klaus

    2018-01-01

    We recently identified and described a putative prophage on the genomic island FhaGI-1 located within the genome of Francisella hispaniensis AS02-814 ( F. tularensis subsp. novicida -like 3523). In this study, we constructed two variants of a Francisella phage integration vector, called pFIV1-Val and pFIV2-Val ( Francisella Integration Vector-tRNA Val -specific), using the attL/R- sites and the site-specific integrase (FN3523_1033) of FhaGI-1, a chloramphenicol resistance cassette and a sacB gene for counter selection of transformants against the vector backbone. We inserted the respective sites and genes into vector pUC57-Kana to allow for propagation in Escherichia coli . The constructs generated a circular episomal form in E. coli which could be used to transform Francisella spp . where FIV-Val stably integrated site specifically into the tRNA Val gene of the genome, whereas pUC57-Kana is lost due to counter selection. Functionality of the new vector was demonstrated by the successfully complementation of a Francisella mutant strain. The vectors were stable in vitro and during host-cell infection without selective pressure. Thus, the vectors can be applied as a further genetic tool in Francisella research, expanding the present genetic tools by an integrative element. This new element is suitable to perform long-term experiments with different Francisella species.

  15. Antibiotics in Feed Induce Prophages in Swine Fecal Microbiomes

    PubMed Central

    Allen, Heather K.; Looft, Torey; Bayles, Darrell O.; Humphrey, Samuel; Levine, Uri Y.; Alt, David; Stanton, Thaddeus B.

    2011-01-01

    ABSTRACT Antibiotics are a cost-effective tool for improving feed efficiency and preventing disease in agricultural animals, but the full scope of their collateral effects is not understood. Antibiotics have been shown to mediate gene transfer by inducing prophages in certain bacterial strains; therefore, one collateral effect could be prophage induction in the gut microbiome at large. Here we used metagenomics to evaluate the effect of two antibiotics in feed (carbadox and ASP250 [chlortetracycline, sulfamethazine, and penicillin]) on swine intestinal phage metagenomes (viromes). We also monitored the bacterial communities using 16S rRNA gene sequencing. ASP250, but not carbadox, caused significant population shifts in both the phage and bacterial communities. Antibiotic resistance genes, such as multidrug resistance efflux pumps, were identified in the viromes, but in-feed antibiotics caused no significant changes in their abundance. The abundance of phage integrase-encoding genes was significantly increased in the viromes of medicated swine over that in the viromes of nonmedicated swine, demonstrating the induction of prophages with antibiotic treatment. Phage-bacterium population dynamics were also examined. We observed a decrease in the relative abundance of Streptococcus bacteria (prey) when Streptococcus phages (predators) were abundant, supporting the “kill-the-winner” ecological model of population dynamics in the swine fecal microbiome. The data show that gut ecosystem dynamics are influenced by phages and that prophage induction is a collateral effect of in-feed antibiotics. PMID:22128350

  16. Bacterial phylogeny structures soil resistomes across habitats

    NASA Astrophysics Data System (ADS)

    Forsberg, Kevin J.; Patel, Sanket; Gibson, Molly K.; Lauber, Christian L.; Knight, Rob; Fierer, Noah; Dantas, Gautam

    2014-05-01

    Ancient and diverse antibiotic resistance genes (ARGs) have previously been identified from soil, including genes identical to those in human pathogens. Despite the apparent overlap between soil and clinical resistomes, factors influencing ARG composition in soil and their movement between genomes and habitats remain largely unknown. General metagenome functions often correlate with the underlying structure of bacterial communities. However, ARGs are proposed to be highly mobile, prompting speculation that resistomes may not correlate with phylogenetic signatures or ecological divisions. To investigate these relationships, we performed functional metagenomic selections for resistance to 18 antibiotics from 18 agricultural and grassland soils. The 2,895 ARGs we discovered were mostly new, and represent all major resistance mechanisms. We demonstrate that distinct soil types harbour distinct resistomes, and that the addition of nitrogen fertilizer strongly influenced soil ARG content. Resistome composition also correlated with microbial phylogenetic and taxonomic structure, both across and within soil types. Consistent with this strong correlation, mobility elements (genes responsible for horizontal gene transfer between bacteria such as transposases and integrases) syntenic with ARGs were rare in soil by comparison with sequenced pathogens, suggesting that ARGs may not transfer between soil bacteria as readily as is observed between human pathogens. Together, our results indicate that bacterial community composition is the primary determinant of soil ARG content, challenging previous hypotheses that horizontal gene transfer effectively decouples resistomes from phylogeny.

  17. Do drying and rewetting cycles modulate effects of sulfadiazine spiked manure in soil?

    PubMed

    Jechalke, Sven; Radl, Viviane; Schloter, Michael; Heuer, Holger; Smalla, Kornelia

    2016-05-01

    Naturally occurring drying-rewetting events in soil have been shown to affect the dissipation of veterinary antibiotics entering soil by manure fertilization. However, knowledge of effects on the soil microbial community structure and resistome is scarce. Here, consequences of drying-rewetting cycles on effects of sulfadiazine (SDZ) in soil planted with Dactylis glomerata L. were investigated in microcosms. Manure containing SDZ or not was applied to the pregrown grass and incubated for 56 days in a climate chamber. Water was either added daily or reduced during two drying events of 7 days, each followed by a recovery phase. Total community DNA was analyzed to reveal the effects on the bacterial community structure and on the abundance of sul1, sul2, intI1 ,intI2, qacE+qacEΔ1, traN and korB genes relative to 16S rRNA genes. 16S rRNA gene-based DGGE fingerprints indicated that drying-rewetting cycles modulated the effects of SDZ on the bacterial community structure in the soil. Furthermore, the SDZ treatment increased the relative abundance of sulfonamide resistance and integrase genes compared to the control. However, this increase was not different between moisture regimes, indicating that drying-rewetting had only a negligible effect on the selection of the resistome by SDZ in the manured soil. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Occurrence and Distribution of Antibiotic-resistant Bacteria and Transfer of Resistance Genes in Lake Taihu

    PubMed Central

    Yin, Qian; Yue, Dongmei; Peng, Yuke; Liu, Ying; Xiao, Lin

    2013-01-01

    The overuse of antibiotics has accelerated antibiotic resistance in the natural environment, especially fresh water, generating a potential risk for public health around the world. In this study, antibiotic resistance in Lake Taihu was investigated and this was the first thorough data obtained through culture-dependent methods. High percentages of resistance to streptomycin and ampicillin among bacterial isolates were detected, followed by tetracycline and chloramphenicol. Especially high levels of ampicillin resistance in the western and northern regions were illustrated. Bacterial identification of the isolates selected for further study indicated the prevalence of some opportunistic pathogens and 62.0% of the 78 isolates exhibited multiple antibiotic resistance. The presence of ESBLs genes was in the following sequence: blaTEM > blaSHV > blaCTMX and 38.5% of the isolates had a class I integrase gene. Of all tested strains, 80.8% were able to transfer antibiotic resistance through conjugation. We also concluded that some new families of human-associated ESBLs and AmpC genes can be found in natural environmental isolates. The prevalence of antibiotic resistance and the dissemination of transferable antibiotic resistance in bacterial isolates (especially in opportunistic pathogens) was alarming and clearly indicated the urgency of realizing the health risks of antibiotic resistance to human and animal populations who are dependent on Lake Taihu for water consumption. PMID:24240317

  19. Conserved sequences in the current strains of HIV-1 subtype A in Russia are effectively targeted by artificial RNAi in vitro.

    PubMed

    Tchurikov, Nickolai A; Fedoseeva, Daria M; Gashnikova, Natalya M; Sosin, Dmitri V; Gorbacheva, Maria A; Alembekov, Ildar R; Chechetkin, Vladimir R; Kravatsky, Yuri V; Kretova, Olga V

    2016-05-25

    Highly active antiretroviral therapy has greatly reduced the morbidity and mortality of AIDS. However, many of the antiretroviral drugs are toxic with long-term use, and all currently used anti-HIV agents generate drug-resistant mutants. Therefore, there is a great need for new approaches to AIDS therapy. RNAi is a powerful means of inhibiting HIV-1 production in human cells. We propose to use RNAi for gene therapy of HIV/AIDS. Previously we identified a number of new biologically active siRNAs targeting several moderately conserved regions in HIV-1 transcripts. Here we analyze the heterogeneity of nucleotide sequences in three RNAi targets in sequences encoding the reverse transcriptase and integrase domains of current isolates of HIV-1 subtype A in Russia. These data were used to generate genetic constructs expressing short hairpin RNAs 28-30-bp in length that could be processed in cells into siRNAs. After transfection of the constructs we observed siRNAs that efficiently attacked the selected targets. We expect that targeting several viral genes important for HIV-1 reproduction will help overcome the problem of viral adaptation and will prevent the appearance of RNAi escape mutants in current virus strains, an important feature of gene therapy of HIV/AIDS. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Surface Diversity in Mycoplasma agalactiae Is Driven by Site-Specific DNA Inversions within the vpma Multigene Locus

    PubMed Central

    Glew, Michelle D.; Marenda, Marc; Rosengarten, Renate; Citti, Christine

    2002-01-01

    The ruminant pathogen Mycoplasma agalactiae possesses a family of abundantly expressed variable surface lipoproteins called Vpmas. Phenotypic switches between Vpma members have previously been correlated with DNA rearrangements within a locus of vpma genes and are proposed to play an important role in disease pathogenesis. In this study, six vpma genes were characterized in the M. agalactiae type strain PG2. All vpma genes clustered within an 8-kb region and shared highly conserved 5′ untranslated regions, lipoprotein signal sequences, and short N-terminal sequences. Analyses of the vpma loci from consecutive clonal isolates showed that vpma DNA rearrangements were site specific and that cleavage and strand exchange occurred within a minimal region of 21 bp located within the 5′ untranslated region of all vpma genes. This process controlled expression of vpma genes by effectively linking the open reading frame (ORF) of a silent gene to a unique active promoter sequence within the locus. An ORF (xer1) immediately adjacent to one end of the vpma locus did not undergo rearrangement and had significant homology to a distinct subset of genes belonging to the λ integrase family of site-specific xer recombinases. It is proposed that xer1 codes for a site-specific recombinase that is not involved in chromosome dimer resolution but rather is responsible for the observed vpma-specific recombination in M. agalactiae. PMID:12374833

  1. Use of principal components analysis and protein microarray to explore the association of HIV-1-specific IgG responses with disease progression.

    PubMed

    Gerns Storey, Helen L; Richardson, Barbra A; Singa, Benson; Naulikha, Jackie; Prindle, Vivian C; Diaz-Ochoa, Vladimir E; Felgner, Phil L; Camerini, David; Horton, Helen; John-Stewart, Grace; Walson, Judd L

    2014-01-01

    The role of HIV-1-specific antibody responses in HIV disease progression is complex and would benefit from analysis techniques that examine clusterings of responses. Protein microarray platforms facilitate the simultaneous evaluation of numerous protein-specific antibody responses, though excessive data are cumbersome in analyses. Principal components analysis (PCA) reduces data dimensionality by generating fewer composite variables that maximally account for variance in a dataset. To identify clusters of antibody responses involved in disease control, we investigated the association of HIV-1-specific antibody responses by protein microarray, and assessed their association with disease progression using PCA in a nested cohort design. Associations observed among collections of antibody responses paralleled protein-specific responses. At baseline, greater antibody responses to the transmembrane glycoprotein (TM) and reverse transcriptase (RT) were associated with higher viral loads, while responses to the surface glycoprotein (SU), capsid (CA), matrix (MA), and integrase (IN) proteins were associated with lower viral loads. Over 12 months greater antibody responses were associated with smaller decreases in CD4 count (CA, MA, IN), and reduced likelihood of disease progression (CA, IN). PCA and protein microarray analyses highlighted a collection of HIV-specific antibody responses that together were associated with reduced disease progression, and may not have been identified by examining individual antibody responses. This technique may be useful to explore multifaceted host-disease interactions, such as HIV coinfections.

  2. Secretome profile analysis of multidrug-resistant, monodrug-resistant and drug-susceptible Mycobacterium tuberculosis.

    PubMed

    Putim, Chanyanuch; Phaonakrop, Narumon; Jaresitthikunchai, Janthima; Gamngoen, Ratikorn; Tragoolpua, Khajornsak; Intorasoot, Sorasak; Anukool, Usanee; Tharincharoen, Chayada Sitthidet; Phunpae, Ponrut; Tayapiwatana, Chatchai; Kasinrerk, Watchara; Roytrakul, Sittiruk; Butr-Indr, Bordin

    2018-03-01

    The emergence of drug-resistant tuberculosis has generated great concern in the control of tuberculosis and HIV/TB patients have established severe complications that are difficult to treat. Although, the gold standard of drug-susceptibility testing is highly accurate and efficient, it is time-consuming. Diagnostic biomarkers are, therefore, necessary in discriminating between infection from drug-resistant and drug-susceptible strains. One strategy that aids to effectively control tuberculosis is understanding the function of secreting proteins that mycobacteria use to manipulate the host cellular defenses. In this study, culture filtrate proteins from Mycobacterium tuberculosis H37Rv, isoniazid-resistant, rifampicin-resistant and multidrug-resistant strains were gathered and profiled by shotgun-proteomics technique. Mass spectrometric analysis of the secreted proteome identified several proteins, of which 837, 892, 838 and 850 were found in M. tuberculosis H37Rv, isoniazid-resistant, rifampicin-resistant and multidrug-resistant strains, respectively. These proteins have been implicated in various cellular processes, including biological adhesion, biological regulation, developmental process, immune system process localization, cellular process, cellular component organization or biogenesis, metabolic process, and response to stimulus. Analysis based on STITCH database predicted the interaction of DNA topoisomerase I, 3-oxoacyl-(acyl-carrier protein) reductase, ESAT-6-like protein, putative prophage phiRv2 integrase, and 3-phosphoshikimate 1-carboxyvinyltransferase with isoniazid, rifampicin, pyrazinamide, ethambutol and streptomycin, suggesting putative roles in controlling the anti-tuberculosis ability. However, several proteins with no interaction with all first-line anti-tuberculosis drugs might be used as markers for mycobacterial identification.

  3. Evaluating the Frequency of aac(6')-IIa, ant(2″)-I, intl1, and intl2 Genes in Aminoglycosides Resistant Klebsiella pneumoniae Isolates Obtained from Hospitalized Patients in Yazd, Iran.

    PubMed

    Mokhtari, Hesam; Eslami, Gilda; Zandi, Hengameh; Dehghan-Banadkouki, Amin; Vakili, Mahmood

    2018-01-01

    Klebsiella pneumoniae (K. pneumoniae) is an opportunistic pathogen that could be resistant to many antimicrobial agents. Resistance genes can be carried among gram-negative bacteria by integrons. Enzymatic inactivation is the most important mechanism of resistance to aminoglycosides. In this study, the frequencies of two important resistance gene aac(6')-II a and ant(2″)-I, and genes coding integrase I and II, in K. pneumoniae isolates resistant to aminoglycosides were evaluated. In this cross-sectional study, an attempt was made to assess the antibiotic susceptibility of 130 K. pneumoniae isolates obtained from different samples of patients hospitalized in training hospitals of Yazd evaluated by disk diffusion method. The frequencies of aac(6')-II a, ant(2″)-I, intl1 , and intl2 genes were determined by PCR method. Data were analyzed by chi-square method using SPSS software (Ver. 16). our results showed that resistance to gentamicin, tobramycin, kanamycin, and amikacin were 34.6, 33.8, 43.8, and 14.6%, respectively. The frequencies of aac (6')-II a, ant(2″)-I, intl1 , and intl2 genes were 44.6, 27.7, 90, and 0%, respectively. This study showed there are high frequencies of genes coding aminoglycosides resistance in K. pneumoniae isolates. Hence, it is very important to monitor and inhibit the spread of antibiotic resistance genes.

  4. Lack of specificity for the analysis of raltegravir using online sample clean-up liquid chromatography-electrospray tandem mass spectrometry.

    PubMed

    Jourdil, Jean François; Bartoli, Mireille; Stanke-Labesque, Françoise

    2009-11-01

    Raltegravir is the first antiretroviral agent to target the human immunodeficiency virus-1 (HIV-1) integrase. It is indicated, in association with other antiretrovirals, in the treatment of acquired immunodeficiency syndrome (AIDS) in antiretroviral treatment-experienced adult patients with viral resistance. To evaluate the feasibility of raltegravir therapeutic drug monitoring, we developed a rapid and specific analytical method for the quantification of raltegravir in human plasma by online sample clean-up liquid chromatography-tandem mass spectrometry (LC-MS/MS). After protein precipitation (with 100 microL of acetonitrile/methanol (50/50)) of 25 microL of plasma, fast online matrix-clean-up was performed using a column switching program. The chromatographic step was optimized to separate raltegravir and its glucuronide metabolite (G-raltegravir). Multiple reaction monitoring (MRM) was used for detection of raltegravir and G-raltegravir. In the absence of G-raltegravir standard, G-raltegravir identification was confirmed by beta-glucuronidase pre-treatment. A total analysis of 3.8 min was needed to separate raltegravir to G-raltegravir. The method was linear between 10 and 3000 ng/mL for raltegravir. Analytical recovery was 94+/-1%. Variation coefficients ranged between 5% and 8.4%. Pre-treatment of plasma from a patient under raltegravir treatment with beta-glucuronidase suppressed G-raltegravir peak. We describe a fast online LC-MS/MS assay that is valid and reliable for the quantification of raltegravir, despite the lack of specificity that could occur in MRM scanning mode experiments.

  5. Bacteriophage-based vectors for site-specific insertion of DNA in the chromosome of Corynebacteria.

    PubMed

    Oram, Mark; Woolston, Joelle E; Jacobson, Andrew D; Holmes, Randall K; Oram, Diana M

    2007-04-15

    In Corynebacterium diphtheriae, diphtheria toxin is encoded by the tox gene of some temperate corynephages such as beta. beta-like corynephages are capable of inserting into the C. diphtheriae chromosome at two specific sites, attB1 and attB2. Transcription of the phage-encoded tox gene, and many chromosomally encoded genes, is regulated by the DtxR protein in response to Fe(2+) levels. Characterizing DtxR-dependent gene regulation is pivotal in understanding diphtheria pathogenesis and mechanisms of iron-dependent gene expression; although this has been hampered by a lack of molecular genetic tools in C. diphtheriae and related Coryneform species. To expand the systems for genetic manipulation of C. diphtheriae, we constructed plasmid vectors capable of integrating into the chromosome. These plasmids contain the beta-encoded attP site and the DIP0182 integrase gene of C. diphtheriae NCTC13129. When these vectors were delivered to the cytoplasm of non-lysogenic C. diphtheriae, they integrated into either the attB1 or attB2 sites with comparable frequency. Lysogens were also transformed with these vectors, by virtue of the second attB site. An integrated vector carrying an intact dtxR gene complemented the mutant phenotypes of a C. diphtheriae DeltadtxR strain. Additionally, strains of beta-susceptible C. ulcerans, and C. glutamicum, a species non-permissive for beta, were each transformed with these vectors. This work significantly extends the tools available for targeted transformation of both pathogenic and non-pathogenic Corynebacterium species.

  6. piggybac- and PhiC31-Mediated Genetic Transformation of the Asian Tiger Mosquito, Aedes albopictus (Skuse)

    PubMed Central

    Labbé, Geneviève M. C.; Nimmo, Derric D.; Alphey, Luke

    2010-01-01

    Background The Asian tiger mosquito, Aedes albopictus (Skuse), is a vector of several arboviruses including dengue and chikungunya. This highly invasive species originating from Southeast Asia has travelled the world in the last 30 years and is now established in Europe, North and South America, Africa, the Middle East and the Caribbean. In the absence of vaccine or antiviral drugs, efficient mosquito control strategies are crucial. Conventional control methods have so far failed to control Ae. albopictus adequately. Methodology/Principal Findings Germline transformation of Aedes albopictus was achieved by micro-injection of embryos with a piggyBac-based transgene carrying a 3xP3-ECFP marker and an attP site, combined with piggyBac transposase mRNA and piggyBac helper plasmid. Five independent transgenic lines were established, corresponding to an estimated transformation efficiency of 2–3%. Three lines were re-injected with a second-phase plasmid carrying an attB site and a 3xP3-DsRed2 marker, combined with PhiC31 integrase mRNA. Successful site-specific integration was observed in all three lines with an estimated transformation efficiency of 2–6%. Conclusions/Significance Both piggybac- and site-specific PhiC31-mediated germline transformation of Aedes albopictus were successfully achieved. This is the first report of Ae. albopictus germline transformation and engineering, a key step towards studying and controlling this species using novel molecular techniques and genetic control strategies. PMID:20808959

  7. Long-acting antiviral agents for HIV treatment

    PubMed Central

    Margolis, David A.; Boffito, Marta

    2015-01-01

    Purpose of review Long-acting antiretroviral (ARV) agents are currently under development for the treatment of chronic HIV infection. This review focuses on data recently produced on injectable ARVs for patients living with HIV/AIDS and on the patients’ perspectives on the use of these agents. Recent findings Crystalline nanoparticle formulations of the nonnucleoside reverse transcriptase inhibitor rilpivirine (TMC278) and of the HIV-1 integrase strand transfer inhibitor cabotegravir (GSK1265744) have progressed into phase II clinical trials as injectable maintenance therapy for patients living with HIV/AIDS with an undetectable viral load. Summary Phase II studies evaluating the coadministration of rilpivirine and cabotegravir intramuscularly to HIV-infected individuals with an undetectable viral load are currently underway. Rilpivirine and cabotegravir are characterized by different mechanisms of action against HIV and a favorable drug interaction profile, providing a rationale for coadministration. The high potency and low daily dosing requirements of oral cabotegravir and rilpivirine facilitate long-acting formulation development. Intramuscular dosing is preceded by an oral lead-in phase to assess safety and tolerability in individual participants. In addition to assessing the safety of injectable therapies in ongoing studies, it will be important to evaluate whether differences in drug adherence between injectable and oral therapies lead to different virologic outcomes, including rates of virologic failure and the emergence of resistance. Long-acting formulations may be associated with challenges, such as the management of adverse effects with persistent drug concentrations and the risk of virologic resistance, as drug concentrations decline following discontinuation. PMID:26049949

  8. Clinical effectiveness of dolutegravir in the treatment of HIV/AIDS

    PubMed Central

    Taha, Huda; Das, Archik; Das, Satyajit

    2015-01-01

    Dolutegravir (DTG) is a second-generation integrase strand transfer inhibitor (INSTI), which has now been licensed to be used in different countries including the UK. Earlier studies have demonstrated that DTG when used with nucleoside backbone in treatment-naïve and - experienced patients has been well tolerated and demonstrated virological suppression comparable to other INSTIs and superiority against other first-line agents, including efavirenz and boosted protease inhibitors. Like other INSTIs, DTG uses separate metabolic pathways compared to other antiretrovirals and is a minor substrate for CYP-450. It does not appear to have a significant interaction with drugs, which uses the CYP-450 system. Nonetheless, it uses renal solute transporters that may potentially inhibit the transport of other drugs and can have an effect on the elimination of other drugs. However, the impact of this mechanism appears to be very minimal and insignificant clinically. The side effect profiles of DTG are similar to raltegravir and have been found to be well tolerated. DTG has a long plasma half-life and is suitable for once daily use without the need for a boosting agent. DTG has all the potential to be used as a first-line drug in combination with other nucleoside backbones, especially in the form of a single tablet in combination with abacavir and lamivudine. The purpose of this review article is to present the summary of the available key information about the clinical usefulness of DTG in the treatment of HIV infection. PMID:26491363

  9. The Design of New HIV-IN Tethered Bifunctional Inhibitors using Multiple Microdomain Targeted Docking.

    PubMed

    Ciubotaru, Mihai; Musat, Mihaela Georgiana; Surleac, Marius; Ionita, Elena; Petrescu, Andrei Jose; Abele, Edgars; Abele, Ramona

    2018-04-05

    Currently used antiretroviral HIV therapy drugs exclusively target critical groups in the enzymes essential for the viral life cycle. Increased mutagenesis of their genes, changes these viral enzymes which once mutated can evade therapeutic targeting, effects which confer drug resistance. To circumvent this, our review addresses a strategy to design and derive HIV-Integrase (HIV-IN) inhibitors which simultaneously target two IN functional domains, rendering it inactive even if the enzyme accumulates many mutations. First we review the enzymatic role of IN to insert the copied viral DNA into a chromosome of the host T lymphocyte, highlighting its main functional and structural features to be subjected to inhibitory action. From a functional and structural perspective we present all classes of HIV-IN inhibitors with their most representative candidates. For each chosen compound we also explain its mechanism of IN inhibition. We use the recently resolved cryo EM IN tetramer intasome DNA complex [1] onto which we dock various reference IN inhibitory chemical scaffolds such as to target adjacent functional IN domains. Pairing compounds with complementary activity, which dock in the vicinity of a IN structural microdomain, we design bifunctional new drugs which may not only be more resilient to IN mutations but also may be more potent inhibitors than their original counterparts. In the end of our review we propose synthesis pathways to link such paired compounds with enhanced synergistic IN inhibitory effects. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Air-drying beds reduce the quantities of antibiotic resistance genes and class 1 integrons in residual municipal wastewater solids.

    PubMed

    Burch, Tucker R; Sadowsky, Michael J; LaPara, Timothy M

    2013-09-03

    This study investigated whether air-drying beds reduce antibiotic resistance gene (ARG) concentrations in residual municipal wastewater solids. Three laboratory-scale drying beds were operated for a period of nearly 100 days. Real-time PCR was used to quantify 16S rRNA genes, 16S rRNA genes specific to fecal bacteria (AllBac) and human fecal bacteria (HF183), the integrase gene of class 1 integrons (intI1), and five ARGs representing a cross-section of antibiotic classes and resistance mechanisms (erm(B), sul1, tet(A), tet(W), and tet(X)). Air-drying beds were capable of reducing all gene target concentrations by 1 to 5 orders of magnitude, and the nature of this reduction was consistent with both a net decrease in the number of bacterial cells and a lack of selection within the microbial community. Half-lives varied between 1.5 d (HF183) and 5.4 d (tet(X)) during the first 20 d of treatment. After the first 20 d of treatment, however, half-lives varied between 8.6 d (tet(X)) and 19.3 d (AllBac), and 16S rRNA gene, intI1, and sul1 concentrations did not change (P > 0.05). These results demonstrate that air-drying beds can reduce ARG and intI1 concentrations in residual municipal wastewater solids within timeframes typical of operating practices.

  11. Gamma-Retrovirus Integration Marks Cell Type-Specific Cancer Genes: A Novel Profiling Tool in Cancer Genomics.

    PubMed

    Gilroy, Kathryn L; Terry, Anne; Naseer, Asif; de Ridder, Jeroen; Allahyar, Amin; Wang, Weiwei; Carpenter, Eric; Mason, Andrew; Wong, Gane K-S; Cameron, Ewan R; Kilbey, Anna; Neil, James C

    2016-01-01

    Retroviruses have been foundational in cancer research since early studies identified proto-oncogenes as targets for insertional mutagenesis. Integration of murine gamma-retroviruses into the host genome favours promoters and enhancers and entails interaction of viral integrase with host BET/bromodomain factors. We report that this integration pattern is conserved in feline leukaemia virus (FeLV), a gamma-retrovirus that infects many human cell types. Analysis of FeLV insertion sites in the MCF-7 mammary carcinoma cell line revealed strong bias towards active chromatin marks with no evidence of significant post-integration growth selection. The most prominent FeLV integration targets had little overlap with the most abundantly expressed transcripts, but were strongly enriched for annotated cancer genes. A meta-analysis based on several gamma-retrovirus integration profiling (GRIP) studies in human cells (CD34+, K562, HepG2) revealed a similar cancer gene bias but also remarkable cell-type specificity, with prominent exceptions including a universal integration hotspot at the long non-coding RNA MALAT1. Comparison of GRIP targets with databases of super-enhancers from the same cell lines showed that these have only limited overlap and that GRIP provides unique insights into the upstream drivers of cell growth. These observations elucidate the oncogenic potency of the gamma-retroviruses and support the wider application of GRIP to identify the genes and growth regulatory circuits that drive distinct cancer types.

  12. Spacer capture and integration by a type I-F Cas1-Cas2-3 CRISPR adaptation complex.

    PubMed

    Fagerlund, Robert D; Wilkinson, Max E; Klykov, Oleg; Barendregt, Arjan; Pearce, F Grant; Kieper, Sebastian N; Maxwell, Howard W R; Capolupo, Angela; Heck, Albert J R; Krause, Kurt L; Bostina, Mihnea; Scheltema, Richard A; Staals, Raymond H J; Fineran, Peter C

    2017-06-27

    CRISPR-Cas adaptive immune systems capture DNA fragments from invading bacteriophages and plasmids and integrate them as spacers into bacterial CRISPR arrays. In type I-E and II-A CRISPR-Cas systems, this adaptation process is driven by Cas1-Cas2 complexes. Type I-F systems, however, contain a unique fusion of Cas2, with the type I effector helicase and nuclease for invader destruction, Cas3. By using biochemical, structural, and biophysical methods, we present a structural model of the 400-kDa Cas1 4 -Cas2-3 2 complex from Pectobacterium atrosepticum with bound protospacer substrate DNA. Two Cas1 dimers assemble on a Cas2 domain dimeric core, which is flanked by two Cas3 domains forming a groove where the protospacer binds to Cas1-Cas2. We developed a sensitive in vitro assay and demonstrated that Cas1-Cas2-3 catalyzed spacer integration into CRISPR arrays. The integrase domain of Cas1 was necessary, whereas integration was independent of the helicase or nuclease activities of Cas3. Integration required at least partially duplex protospacers with free 3'-OH groups, and leader-proximal integration was stimulated by integration host factor. In a coupled capture and integration assay, Cas1-Cas2-3 processed and integrated protospacers independent of Cas3 activity. These results provide insight into the structure of protospacer-bound type I Cas1-Cas2-3 adaptation complexes and their integration mechanism.

  13. Modulation of chromatin structure by the FACT histone chaperone complex regulates HIV-1 integration.

    PubMed

    Matysiak, Julien; Lesbats, Paul; Mauro, Eric; Lapaillerie, Delphine; Dupuy, Jean-William; Lopez, Angelica P; Benleulmi, Mohamed Salah; Calmels, Christina; Andreola, Marie-Line; Ruff, Marc; Llano, Manuel; Delelis, Olivier; Lavigne, Marc; Parissi, Vincent

    2017-07-28

    Insertion of retroviral genome DNA occurs in the chromatin of the host cell. This step is modulated by chromatin structure as nucleosomes compaction was shown to prevent HIV-1 integration and chromatin remodeling has been reported to affect integration efficiency. LEDGF/p75-mediated targeting of the integration complex toward RNA polymerase II (polII) transcribed regions ensures optimal access to dynamic regions that are suitable for integration. Consequently, we have investigated the involvement of polII-associated factors in the regulation of HIV-1 integration. Using a pull down approach coupled with mass spectrometry, we have selected the FACT (FAcilitates Chromatin Transcription) complex as a new potential cofactor of HIV-1 integration. FACT is a histone chaperone complex associated with the polII transcription machinery and recently shown to bind LEDGF/p75. We report here that a tripartite complex can be formed between HIV-1 integrase, LEDGF/p75 and FACT in vitro and in cells. Biochemical analyzes show that FACT-dependent nucleosome disassembly promotes HIV-1 integration into chromatinized templates, and generates highly favored nucleosomal structures in vitro. This effect was found to be amplified by LEDGF/p75. Promotion of this FACT-mediated chromatin remodeling in cells both increases chromatin accessibility and stimulates HIV-1 infectivity and integration. Altogether, our data indicate that FACT regulates HIV-1 integration by inducing local nucleosomes dissociation that modulates the functional association between the incoming intasome and the targeted nucleosome.

  14. Measurement of In Vitro Integration Activity of HIV-1 Preintegration Complexes.

    PubMed

    Balasubramaniam, Muthukumar; Davids, Benem; Addai, Amma B; Pandhare, Jui; Dash, Chandravanu

    2017-02-22

    HIV-1 envelope proteins engage cognate receptors on the target cell surface, which leads to viral-cell membrane fusion followed by the release of the viral capsid (CA) core into the cytoplasm. Subsequently, the viral Reverse Transcriptase (RT), as part of a namesake nucleoprotein complex termed the Reverse Transcription Complex (RTC), converts the viral single-stranded RNA genome into a double-stranded DNA copy (vDNA). This leads to the biogenesis of another nucleoprotein complex, termed the pre-integration complex (PIC), composed of the vDNA and associated virus proteins and host factors. The PIC-associated viral integrase (IN) orchestrates the integration of the vDNA into the host chromosomal DNA in a temporally and spatially regulated two-step process. First, the IN processes the 3' ends of the vDNA in the cytoplasm and, second, after the PIC traffics to the nucleus, it mediates integration of the processed vDNA into the chromosomal DNA. The PICs isolated from target cells acutely infected with HIV-1 are functional in vitro, as they are competent to integrate the associated vDNA into an exogenously added heterologous target DNA. Such PIC-based in vitro integration assays have significantly contributed to delineating the mechanistic details of retroviral integration and to discovering IN inhibitors. In this report, we elaborate upon an updated HIV-1 PIC assay that employs a nested real-time quantitative Polymerase Chain Reaction (qPCR)-based strategy for measuring the in vitro integration activity of isolated native PICs.

  15. Plasma-mediated transfection of RPE

    NASA Astrophysics Data System (ADS)

    Palanker, D.; Chalberg, T.; Vankov, A.; Huie, P.; Molnar, F. E.; Butterwick, A.; Calos, M.; Marmor, M.; Blumenkranz, M. S.

    2006-02-01

    A major obstacle in applying gene therapy to clinical practice is the lack of efficient and safe gene delivery techniques. Viral delivery has encountered a number of serious problems including immunological reactions and malignancy. Non-viral delivery methods (liposomes, sonoporation and electroporation) have either low efficiency in-vivo or produce severe collateral damage to ocular tissues. We discovered that tensile stress greatly increases the susceptibility of cellular membranes to electroporation. For synchronous application of electric field and mechanical stress, both are generated by the electric discharge itself. A pressure wave is produced by rapid vaporization of the medium. To prevent termination of electric current by the vapor cavity it is ionized thus restoring its electric conductivity. For in-vivo experiments with rabbits a plasmid DNA was injected into the subretinal space, and RPE was treated trans-sclerally with an array of microelectodes placed outside the eye. Application of 250-300V and 100-200 μs biphasic pulses via a microelectrode array resulted in efficient transfection of RPE without visible damage to the retina. Gene expression was quantified and monitored using bioluminescence (luciferase) and fluorescence (GFP) imaging. Transfection efficiency of RPE with this new technique exceeded that of standard electroporation by a factor 10,000. Safe and effective non-viral DNA delivery to the mammalian retina may help to materialize the enormous potential of the ocular gene therapy. Future experiments will focus on continued characterization of the safety and efficacy of this method and evaluation of long-term transgene expression in the presence of phiC31 integrase.

  16. Abacavir/dolutegravir/lamivudine single-tablet regimen: a review of its use in HIV-1 infection.

    PubMed

    Greig, Sarah L; Deeks, Emma D

    2015-04-01

    A fixed-dose, single-tablet regimen comprising the integrase strand transfer inhibitor (INSTI) dolutegravir and the nucleos(t)ide reverse transcriptase inhibitors (NRTIs) abacavir and lamivudine (abacavir/dolutegravir/lamivudine; Triumeq®) is now available for the treatment of HIV-1 infection. In a randomized, double-blind, phase III trial in antiretroviral therapy (ART)-naive adults (SINGLE), once-daily dolutegravir plus abacavir/lamivudine had noninferior efficacy to once-daily efavirenz/tenofovir disoproxil fumarate (tenofovir DF)/emtricitabine with regard to establishing and sustaining virological suppression over 144 weeks, and subsequent superiority testing significantly favoured dolutegravir plus abacavir/lamivudine. This outcome was predominantly driven by more favourable rates of discontinuation due to adverse events versus the efavirenz/tenofovir DF/emtricitabine group. These data were generally supported by findings from other phase III trials in ART-naive adults receiving dolutegravir plus either abacavir/lamivudine or tenofovir DF/emtricitabine (SPRING-2 and FLAMINGO). Dolutegravir plus abacavir/lamivudine is generally well tolerated, with a tolerability profile that appears to be more favourable than efavirenz/tenofovir DF/emtricitabine. In the SINGLE trial, there were no major treatment-emergent INSTI or NRTI resistance-associated mutations in dolutegravir plus abacavir/lamivudine recipients with protocol-defined virological failure, indicating a high genetic barrier to resistance. Thus, triple combination therapy with abacavir, dolutegravir and lamivudine is an effective, generally well tolerated option for the management of HIV-1 infection, with the convenient once-daily fixed-dose tablet providing the first single-tablet regimen option without tenofovir DF.

  17. Precise Correction of Disease Mutations in Induced Pluripotent Stem Cells Derived From Patients With Limb Girdle Muscular Dystrophy.

    PubMed

    Turan, Soeren; Farruggio, Alfonso P; Srifa, Waracharee; Day, John W; Calos, Michele P

    2016-04-01

    Limb girdle muscular dystrophies types 2B (LGMD2B) and 2D (LGMD2D) are degenerative muscle diseases caused by mutations in the dysferlin and alpha-sarcoglycan genes, respectively. Using patient-derived induced pluripotent stem cells (iPSC), we corrected the dysferlin nonsense mutation c.5713C>T; p.R1905X and the most common alpha-sarcoglycan mutation, missense c.229C>T; p.R77C, by single-stranded oligonucleotide-mediated gene editing, using the CRISPR/Cas9 gene-editing system to enhance the frequency of homology-directed repair. We demonstrated seamless, allele-specific correction at efficiencies of 0.7-1.5%. As an alternative, we also carried out precise gene addition strategies for correction of the LGMD2B iPSC by integration of wild-type dysferlin cDNA into the H11 safe harbor locus on chromosome 22, using dual integrase cassette exchange (DICE) or TALEN-assisted homologous recombination for insertion precise (THRIP). These methods employed TALENs and homologous recombination, and DICE also utilized site-specific recombinases. With DICE and THRIP, we obtained targeting efficiencies after selection of ~20%. We purified iPSC corrected by all methods and verified rescue of appropriate levels of dysferlin and alpha-sarcoglycan protein expression and correct localization, as shown by immunoblot and immunocytochemistry. In summary, we demonstrate for the first time precise correction of LGMD iPSC and validation of expression, opening the possibility of cell therapy utilizing these corrected iPSC.

  18. A novel roseobacter phage possesses features of podoviruses, siphoviruses, prophages and gene transfer agents

    PubMed Central

    Zhan, Yuanchao; Huang, Sijun; Voget, Sonja; Simon, Meinhard; Chen, Feng

    2016-01-01

    Bacteria in the Roseobacter lineage have been studied extensively due to their significant biogeochemical roles in the marine ecosystem. However, our knowledge on bacteriophage which infects the Roseobacter clade is still very limited. Here, we report a new bacteriophage, phage DSS3Φ8, which infects marine roseobacter Ruegeria pomeroyi DSS-3. DSS3Φ8 is a lytic siphovirus. Genomic analysis showed that DSS3Φ8 is most closely related to a group of siphoviruses, CbK-like phages, which infect freshwater bacterium Caulobacter crescentus. DSS3Φ8 contains a smaller capsid and has a reduced genome size (146 kb) compared to the CbK-like phages (205–279 kb). DSS3Φ8 contains the DNA polymerase gene which is closely related to T7-like podoviruses. DSS3Φ8 also contains the integrase and repressor genes, indicating its potential to involve in lysogenic cycle. In addition, four GTA (gene transfer agent) genes were identified in the DSS3Φ8 genome. Genomic analysis suggests that DSS3Φ8 is a highly mosaic phage that inherits the genetic features from siphoviruses, podoviruses, prophages and GTAs. This is the first report of CbK-like phages infecting marine bacteria. We believe phage isolation is still a powerful tool that can lead to discovery of new phages and help interpret the overwhelming unknown sequences in the viral metagenomics. PMID:27460944

  19. Characterization of HIV-1 Resistance to Tenofovir Alafenamide In Vitro

    PubMed Central

    Johnson, Audun; Miller, Michael D.; Callebaut, Christian

    2015-01-01

    Tenofovir alafenamide (TAF) is an investigational prodrug of the HIV-1 nucleotide reverse transcriptase (RT) inhibitor (NtRTI) tenofovir (TFV), with improved potency and drug delivery properties over the current prodrug, tenofovir disoproxil fumarate (TDF). TAF is currently in phase 3 clinical studies for the treatment of HIV-1 infection, in combination with other antiretroviral agents. Phase 1 and 2 studies have shown that TAF was associated with increased peripheral blood mononuclear cell (PBMC) drug loading and increased suppression of HIV-1 replication compared to treatment with TDF. In this study, selection of in vitro resistance to both TAF and the parent compound, TFV, led to the emergence of HIV-1 with the K65R amino acid substitution in RT with 6.5-fold-reduced susceptibility to TAF. Although TAF is more potent than TFV in vitro, the antiviral susceptibilities to TAF and TFV of a large panel of nucleoside/nucleotide RT inhibitor (NRTI)-resistant mutants were highly correlated (R2 = 0.97), indicating that the two compounds have virtually the same resistance profile when assessed as fold change from the wild type. TAF showed full antiviral activity in PBMCs against primary HIV-1 isolates with protease inhibitor, nonnucleoside RT inhibitor (NNRTI), or integrase strand transfer inhibitor resistance but reduced activity against isolates with extensive NRTI resistance amino acid substitutions. However, the increased cell loading of TFV with TAF versus TDF observed in vivo suggests that TAF may retain activity against TDF-resistant mutant viruses. PMID:26149983

  20. Molecular characterization and genomic distribution of Isis: a new retrotransposon of Drosophila buzzatii.

    PubMed

    García Guerreiro, M P; Fontdevila, A

    2007-01-01

    A new transposable element, Isis, is identified as a LTR retrotransposon in Drosophila buzzatii. DNA sequence analysis shows that Isis contains three long ORFs similar to gag, pol and env genes of retroviruses. The ORF1 exhibits sequence homology to matrix, capsid and nucleocapsid gag proteins and ORF2 encodes a putative protease (PR), a reverse transcriptase (RT), an Rnase H (RH) and an integrase (IN) region. The analysis of a putative env product, encoded by the env ORF3, shows a degenerated protein containing several stop codons. The molecular study of the putative proteins coded by this new element shows striking similarities to both Ulysses and Osvaldo elements, two LTR retrotransposons, present in D. virilis and D. buzzatii, respectively. Comparisons of the predicted Isis RT to several known retrotransposons show strong phylogenetic relationships to gypsy-like elements, particulary to Ulysses retrotransposon. Studies of Isis chromosomal distribution show a strong hybridization signal in centromeric and pericentromeric regions, and a scattered distribution along all chromosomal arms. The existence of insertional polymorphisms between different strains and high molecular weight bands by Southern blot suggests the existence of full-sized copies that have been active recently. The presence of euchromatic insertion sites coincident between Isis and Osvaldo could indicate preferential insertion sites of Osvaldo element into Isis sequence or vice versa. Moreover, the presence of Isis in different species of the buzzatii complex indicates the ancient origin of this element.

Top