A Triangular Approach to Integrate Research, Education and Practice in Higher Engineering Education
ERIC Educational Resources Information Center
Heikkinen, Eetu-Pekka; Jaako, Juha; Hiltunen, Jukka
2017-01-01
Separate approaches in engineering education, research and practice are not very useful when preparing students for working life; instead, integration of education, research and industrial practices is needed. A triangular approach (TA) as a method to accomplish this integration and as a method to provide students with integrated expertise is…
How an Integrative STEM Curriculum Can Benefit Students in Engineering Design Practices
ERIC Educational Resources Information Center
Fan, Szu-Chun; Yu, Kuang-Chao
2017-01-01
STEM-oriented engineering design practice has become recognized increasingly by technology education professionals in Taiwan. This study sought to examine the effectiveness of the application of an integrative STEM approach within engineering design practices in high school technology education in Taiwan. A quasi-experimental study was conducted…
NASA Astrophysics Data System (ADS)
Fincher, Bridgette Ann
The purpose of this study was to describe the perceptions and approaches of 14 third-through-fifth grade Arkansan elementary teachers towards integrative engineering and engineering practices during 80 hours of integrated STEM professional development training in the summer and fall of 2014. This training was known as Project Flight. The purpose of the professional development was to learn integrated STEM content related to aviation and to write grade level curriculum units using Wiggins and McTighe's Understanding by Design curriculum framework. The current study builds upon on the original research. Using a mixed method exploratory, embedded QUAL[quan] case study design and a non-experimental convenience sample derived from original 20 participants of Project Flight, this research sought to answer the following question: Does professional development influence elementary teachers' perceptions of the curriculum and instruction of integrated STEM engineering and engineering practices in a 3-to-5 grade level setting? A series of six qualitative and one quantitative sub-questions informed the research of the mixed method question. Hermeneutic content analysis was applied to archival and current qualitative data sets while descriptive statistics, independent t-tests, and repeated measures ANOVA tests were performed on the quantitative data. Broad themes in the teachers' perceptions and understanding of the nature of integrated engineering and engineering practices emerged through triangulation. After the professional development and the teaching of the integrated STEM units, all 14 teachers sustained higher perceptions of personal self-efficacy in their understanding of Next Generation Science Standards (NGSS). The teachers gained understanding of engineering and engineering practices, excluding engineering habits of mind, throughout the professional development training and unit teaching. The research resulted in four major findings specific to elementary engineering, which included engineering as student social agency and empowerment and the emergence of the engineering design loop as a new heuristic, and three more general non-engineering specific findings. All seven, however, have implications for future elementary engineering professional development as teachers in adopting states start to transition into using the NGSS standards.
A triangular approach to integrate research, education and practice in higher engineering education
NASA Astrophysics Data System (ADS)
Heikkinen, Eetu-Pekka; Jaako, Juha; Hiltunen, Jukka
2017-11-01
Separate approaches in engineering education, research and practice are not very useful when preparing students for working life; instead, integration of education, research and industrial practices is needed. A triangular approach (TA) as a method to accomplish this integration and as a method to provide students with integrated expertise is proposed. The results from the application of TA, both at the course and programme level, indicate that the approach is suitable for developing engineering education. The student pass rate for courses where TA has been used has been higher than for previous approaches, and the student feedback has been very positive. Although TA aims to take both theoretical and practical aspects of engineering as well as research and education into account, the approach concentrates mainly on activities and therefore leaves the goals of these activities as well as the values behind these goals uncovered.
Systems Engineering and Integration for Technology Programs
NASA Technical Reports Server (NTRS)
Kennedy, Kruss J.
2006-01-01
The Architecture, Habitability & Integration group (AH&I) is a system engineering and integration test team within the NASA Crew and Thermal Systems Division (CTSD) at Johnson Space Center. AH&I identifies and resolves system-level integration issues within the research and technology development community. The timely resolution of these integration issues is fundamental to the development of human system requirements and exploration capability. The integration of the many individual components necessary to construct an artificial environment is difficult. The necessary interactions between individual components and systems must be approached in a piece-wise fashion to achieve repeatable results. A formal systems engineering (SE) approach to define, develop, and integrate quality systems within the life support community has been developed. This approach will allow a Research & Technology Program to systematically approach the development, management, and quality of technology deliverables to the various exploration missions. A tiered system engineering structure has been proposed to implement best systems engineering practices across all development levels from basic research to working assemblies. These practices will be implemented through a management plan across all applicable programs, projects, elements and teams. While many of the engineering practices are common to other industries, the implementation is specific to technology development. An accounting of the systems engineering management philosophy will be discussed and the associated programmatic processes will be presented.
40 CFR 68.73 - Mechanical integrity.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) CHEMICAL ACCIDENT PREVENTION PROVISIONS Program 3 Prevention Program § 68.73 Mechanical integrity. (a... accepted good engineering practices. (3) The frequency of inspections and tests of process equipment shall be consistent with applicable manufacturers' recommendations and good engineering practices, and more...
40 CFR 68.73 - Mechanical integrity.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) CHEMICAL ACCIDENT PREVENTION PROVISIONS Program 3 Prevention Program § 68.73 Mechanical integrity. (a... accepted good engineering practices. (3) The frequency of inspections and tests of process equipment shall be consistent with applicable manufacturers' recommendations and good engineering practices, and more...
40 CFR 68.73 - Mechanical integrity.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) CHEMICAL ACCIDENT PREVENTION PROVISIONS Program 3 Prevention Program § 68.73 Mechanical integrity. (a... accepted good engineering practices. (3) The frequency of inspections and tests of process equipment shall be consistent with applicable manufacturers' recommendations and good engineering practices, and more...
40 CFR 68.73 - Mechanical integrity.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) CHEMICAL ACCIDENT PREVENTION PROVISIONS Program 3 Prevention Program § 68.73 Mechanical integrity. (a... accepted good engineering practices. (3) The frequency of inspections and tests of process equipment shall be consistent with applicable manufacturers' recommendations and good engineering practices, and more...
The Design of a Practical Enterprise Safety Management System
NASA Astrophysics Data System (ADS)
Gabbar, Hossam A.; Suzuki, Kazuhiko
This book presents design guidelines and implementation approaches for enterprise safety management system as integrated within enterprise integrated systems. It shows new model-based safety management where process design automation is integrated with enterprise business functions and components. It proposes new system engineering approach addressed to new generation chemical industry. It will help both the undergraduate and professional readers to build basic knowledge about issues and problems of designing practical enterprise safety management system, while presenting in clear way, the system and information engineering practices to design enterprise integrated solution.
The Engineer and the Societal Dilemma: An Interdisciplinary Approach.
ERIC Educational Resources Information Center
Coleman, Robert J.
The University of North Carolina's Electrical Engineering Department developed and delivered a course for undergraduate engineering students. The course integrated technical, social, and ethical perspectives on problems and issues faced in the world of practicing engineers. It achieved this integration by making use of professors in engineering,…
Herkert, Joseph R
2005-07-01
Engineering ethics entails three frames of reference: individual, professional, and social. "Microethics" considers individuals and internal relations of the engineering profession; "macroethics" applies to the collective social responsibility of the profession and to societal decisions about technology. Most research and teaching in engineering ethics, including online resources, has had a "micro" focus. Mechanisms for incorporating macroethical perspectives include: integrating engineering ethics and science, technology and society (STS); closer integration of engineering ethics and computer ethics; and consideration of the influence of professional engineering societies and corporate social responsibility programs on ethical engineering practice. Integrating macroethical issues and concerns in engineering ethics involves broadening the context of ethical problem solving. This in turn implies: developing courses emphasizing both micro and macro perspectives, providing faculty development that includes training in both STS and practical ethics; and revision of curriculum materials, including online resources. Multidisciplinary collaboration is recommended 1) to create online case studies emphasizing ethical decision making in individual, professional, and societal contexts; 2) to leverage existing online computer ethics resources with relevance to engineering education and practice; and 3) to create transparent linkages between public policy positions advocated by professional societies and codes of ethics.
ERIC Educational Resources Information Center
Peterman, Karen; Daugherty, Jenny L.; Custer, Rodney L.; Ross, Julia M.
2017-01-01
Science teachers are being called on to incorporate engineering practices into their classrooms. This study explores whether the Engineering-Infused Lesson Rubric, a new rubric designed to target best practices in engineering education, could be used to evaluate the extent to which engineering is infused into online science lessons. Eighty lessons…
Update - Concept of Operations for Integrated Model-Centric Engineering at JPL
NASA Technical Reports Server (NTRS)
Bayer, Todd J.; Bennett, Matthew; Delp, Christopher L.; Dvorak, Daniel; Jenkins, Steven J.; Mandutianu, Sanda
2011-01-01
The increasingly ambitious requirements levied on JPL's space science missions, and the development pace of such missions, challenge our current engineering practices. All the engineering disciplines face this growth in complexity to some degree, but the challenges are greatest in systems engineering where numerous competing interests must be reconciled and where complex system level interactions must be identified and managed. Undesired system-level interactions are increasingly a major risk factor that cannot be reliably exposed by testing, and natural-language single-viewpoint specifications areinadequate to capture and expose system level interactions and characteristics. Systems engineering practices must improve to meet these challenges, and the most promising approach today is the movement toward a more integrated and model-centric approach to mission conception, design, implementation and operations. This approach elevates engineering models to a principal role in systems engineering, gradually replacing traditional document centric engineering practices.
Approaches to Integrating Engineering in STEM Units and Student Achievement Gains
ERIC Educational Resources Information Center
Crotty, Elizabeth A.; Guzey, Selcen S.; Roehrig, Gillian H.; Glancy, Aran W.; Ring-Whalen, Elizabeth A.
2017-01-01
This study examined different approaches to integrating engineering practices in science, technology, engineering, and mathematics (STEM) curriculum units. These various approaches were correlated with student outcomes on engineering assessment items. There are numerous reform documents in the USA and around the world that emphasize the need to…
Integrating Engineering into an Urban Science Classroom
ERIC Educational Resources Information Center
Meyer, Helen
2017-01-01
This article presents a single case study of an experienced physical science teacher (Janet) integrating engineering practices into her urban science classroom over a two-year time frame. The article traces how Janet's understanding of the role engineering in her teaching expanded beyond engineering as an application of science and mathematics to…
P3: a practice focused learning environment
NASA Astrophysics Data System (ADS)
Irving, Paul W.; Obsniuk, Michael J.; Caballero, Marcos D.
2017-09-01
There has been an increased focus on the integration of practices into physics curricula, with a particular emphasis on integrating computation into the undergraduate curriculum of scientists and engineers. In this paper, we present a university-level, introductory physics course for science and engineering majors at Michigan State University called P3 (projects and practices in physics) that is centred around providing introductory physics students with the opportunity to appropriate various science and engineering practices. The P3 design integrates computation with analytical problem solving and is built upon a curriculum foundation of problem-based learning, the principles of constructive alignment and the theoretical framework of community of practice. The design includes an innovative approach to computational physics instruction, instructional scaffolds, and a unique approach to assessment that enables instructors to guide students in the development of the practices of a physicist. We present the very positive student related outcomes of the design gathered via attitudinal and conceptual inventories and research interviews of students’ reflecting on their experiences in the P3 classroom.
ERIC Educational Resources Information Center
Lehman, James D.; Kim, WooRi; Harris, Constance
2014-01-01
The new standards for K-12 science education in the United States call for science teachers to integrate engineering concepts and practices within their science teaching in order to improve student learning. To accomplish this, teachers need appropriate instructional materials as well as the knowledge and skills to effectively use them. This mixed…
ERIC Educational Resources Information Center
Selcen Guzey, S.; Harwell, Michael; Moreno, Mario; Peralta, Yadira; Moore, Tamara J.
2017-01-01
The new science education reform documents call for integration of engineering into K-12 science classes. Engineering design and practices are new to most science teachers, meaning that implementing effective engineering instruction is likely to be challenging. This quasi-experimental study explored the influence of teacher-developed, engineering…
Integrating Science and Engineering to Implement Evidence-Based Practices in Health Care Settings.
Wu, Shinyi; Duan, Naihua; Wisdom, Jennifer P; Kravitz, Richard L; Owen, Richard R; Sullivan, J Greer; Wu, Albert W; Di Capua, Paul; Hoagwood, Kimberly Eaton
2015-09-01
Integrating two distinct and complementary paradigms, science and engineering, may produce more effective outcomes for the implementation of evidence-based practices in health care settings. Science formalizes and tests innovations, whereas engineering customizes and optimizes how the innovation is applied tailoring to accommodate local conditions. Together they may accelerate the creation of an evidence-based healthcare system that works effectively in specific health care settings. We give examples of applying engineering methods for better quality, more efficient, and safer implementation of clinical practices, medical devices, and health services systems. A specific example was applying systems engineering design that orchestrated people, process, data, decision-making, and communication through a technology application to implement evidence-based depression care among low-income patients with diabetes. We recommend that leading journals recognize the fundamental role of engineering in implementation research, to improve understanding of design elements that create a better fit between program elements and local context.
The Early Years: Integrating Design
ERIC Educational Resources Information Center
Ashbrook, Peggy; Nellor, Sue
2015-01-01
Engineering is such a common part of children's work in early childhood programs that teachers can simply look around the room to identify examples where students have engaged in engineering practices. This article presents a classroom activity that integrates engineering design by building on the everyday problems that young children encounter in…
ERIC Educational Resources Information Center
Wendell, Kristen Bethke
2014-01-01
The incorporation of engineering practices and core ideas into the "Next Generation Science Standards" at the elementary school level provides exciting opportunities but also raises important questions about the preparation of new elementary teachers. Both the teacher education and engineering education communities have a limited…
Laboratory experiments in integrated circuit fabrication
NASA Technical Reports Server (NTRS)
Jenkins, Thomas J.; Kolesar, Edward S.
1993-01-01
The objectives of the experiment are fourfold: to provide practical experience implementing the fundamental processes and technology associated with the science and art of integrated circuit (IC) fabrication; to afford the opportunity for the student to apply the theory associated with IC fabrication and semiconductor device operation; to motivate the student to exercise engineering decisions associated with fabricating integrated circuits; and to complement the theory of n-channel MOS and diffused devices that are presented in the classroom by actually fabricating and testing them. Therefore, a balance between theory and practice can be realized in the education of young engineers, whose education is often criticized as lacking sufficient design and practical content.
MDO and Cross-Disciplinary Practice in R&D: A Portrait of Principles and Current Practice
NASA Technical Reports Server (NTRS)
Rivas McGowan, Anna-Maria; Papalambros, Panos Y.; Baker, Wayne E.
2014-01-01
For several decades, Multidisciplinary Design Optimization (MDO) has served an important role in aerospace engineering by incorporating physics based disciplinary models into integrated system or sub-system models for use in research, development, (R&D) and design. This paper examines MDO's role in facilitating the integration of the researchers from different single disciplines during R&D and early design of large-scale complex engineered systems (LaCES) such as aerospace systems. The findings in this paper are summarized from a larger study on interdisciplinary practices and perspectives that included considerable empirical data from surveys, interviews, and ethnography. The synthesized findings were derived by integrating the data with theories from organization science and engineering. The over-arching finding is that issues related to cognition, organization, and social interrelations mostly dominate interactions across disciplines. Engineering issues, such as the integration of hardware or physics-based models, are not as significant. Correspondingly, the data showed that MDO is not the primary integrator of researchers working across disciplines during R&D and early design of LaCES. Cognitive focus such as analysis versus design, organizational challenges such as incentives, and social opportunities such as personal networks often drove the human interactive practices among researchers from different disciplines. Facilitation of the inherent confusion, argument, and learning in crossdisciplinary research was identified as one of several needed elements of enabling successful research across disciplines.
eLearning Hands-On: Blending Interactive eLearning with Practical Engineering Laboratory
ERIC Educational Resources Information Center
Kiravu, Cheddi; Yanev, Kamen M.; Tunde, Moses O.; Jeffrey, Anna M.; Schoenian, Dirk; Renner, Ansel
2016-01-01
Purpose: Integrating laboratory work into interactive engineering eLearning contents augments theory with practice while simultaneously ameliorating the apparent theory-practice gap in traditional eLearning. The purpose of this paper is to assess and recommend media that currently fulfil this desirable dual pedagogical goal.…
NASA Astrophysics Data System (ADS)
Selcen Guzey, S.; Harwell, Michael; Moreno, Mario; Peralta, Yadira; Moore, Tamara J.
2017-04-01
The new science education reform documents call for integration of engineering into K-12 science classes. Engineering design and practices are new to most science teachers, meaning that implementing effective engineering instruction is likely to be challenging. This quasi-experimental study explored the influence of teacher-developed, engineering design-based science curriculum units on learning and achievement among grade 4-8 students of different races, gender, special education status, and limited English proficiency (LEP) status. Treatment and control students ( n = 4450) completed pretest and posttest assessments in science, engineering, and mathematics as well as a state-mandated mathematics test. Single-level regression results for science outcomes favored the treatment for one science assessment (physical science, heat transfer), but multilevel analyses showed no significant treatment effect. We also found that engineering integration had different effects across race and gender and that teacher gender can reduce or exacerbate the gap in engineering achievement for student subgroups depending on the outcome. Other teacher factors such as the quality of engineering-focused science units and engineering instruction were predictive of student achievement in engineering. Implications for practice are discussed.
Human Systems Integration in Practice: Constellation Lessons Learned
NASA Technical Reports Server (NTRS)
Zumbado, Jennifer Rochlis
2012-01-01
NASA's Constellation program provided a unique testbed for Human Systems Integration (HSI) as a fundamental element of the Systems Engineering process. Constellation was the first major program to have HSI mandated by NASA's Human Rating document. Proper HSI is critical to the success of any project that relies on humans to function as operators, maintainers, or controllers of a system. HSI improves mission, system and human performance, significantly reduces lifecycle costs, lowers risk and minimizes re-design. Successful HSI begins with sufficient project schedule dedicated to the generation of human systems requirements, but is by no means solely a requirements management process. A top-down systems engineering process that recognizes throughout the organization, human factors as a technical discipline equal to traditional engineering disciplines with authority for the overall system. This partners with a bottoms-up mechanism for human-centered design and technical issue resolution. The Constellation Human Systems Integration Group (HSIG) was a part of the Systems Engineering and Integration (SE&I) organization within the program office, and existed alongside similar groups such as Flight Performance, Environments & Constraints, and Integrated Loads, Structures and Mechanisms. While the HSIG successfully managed, via influence leadership, a down-and-in Community of Practice to facilitate technical integration and issue resolution, it lacked parallel top-down authority to drive integrated design. This presentation will discuss how HSI was applied to Constellation, the lessons learned and best practices it revealed, and recommendations to future NASA program and project managers. This presentation will discuss how Human Systems Integration (HSI) was applied to NASA's Constellation program, the lessons learned and best practices it revealed, and recommendations to future NASA program and project managers on how to accomplish this critical function.
Practical Application of Sociology in Systems Engineering
NASA Technical Reports Server (NTRS)
Watson, Michael D.; Andrews, James G.; Eckley, Jeri Cassel; Culver, Michael L.
2017-01-01
Systems engineering involves both the integration of the system and the integration of the disciplines which develop and operate the system. Integrating the disciplines is a sociological effort to bring together different groups, who often have different terminology, to achieve a common goal, the system. The focus for the systems engineer is information flow through the organization, between the disciplines, to ensure the system is developed and operated will all relevant information informing system decisions. The practical application of the sociology in systems engineering brings in various organizational development concepts including the principles of planned renegotiation and the application of principles to address information barriers created by organizational culture. Concepts such as specification of ignorance, consistent terminology, opportunity structures, role-sets, and the reclama (reconsideration) process are all important sociological approaches that help address the organizational social structure (culture). In bringing the disciplines together, the systems engineer must also be wary of social ambivalence, social anomie, social dysfunction, and insider-outsider behavior. Unintended consequences can result when these social issues are present. These issues can occur when localized subcultures shift from the overarching organizational culture, or when the organizational culture prevents achievement of system goals. These sociological principles provide the systems engineer with key approaches to manage the information flow through the organization as the disciplines are integrated and share their information and provides key sociological barriers to information flow through the organization. This paper will discuss the practical application of sociological principles to systems engineering.
Integrating Science and Engineering to Implement Evidence-Based Practices in Health Care Settings
Wu, Shinyi; Duan, Naihua; Wisdom, Jennifer P.; Kravitz, Richard L.; Owen, Richard R.; Sullivan, Greer; Wu, Albert W.; Di Capua, Paul; Hoagwood, Kimberly Eaton
2015-01-01
Integrating two distinct and complementary paradigms, science and engineering, may produce more effective outcomes for the implementation of evidence-based practices in health care settings. Science formalizes and tests innovations, whereas engineering customizes and optimizes how the innovation is applied tailoring to accommodate local conditions. Together they may accelerate the creation of an evidence-based healthcare system that works effectively in specific health care settings. We give examples of applying engineering methods for better quality, more efficient, and safer implementation of clinical practices, medical devices, and health services systems. A specific example was applying systems engineering design that orchestrated people, process, data, decision-making, and communication through a technology application to implement evidence-based depression care among low-income patients with diabetes. We recommend that leading journals recognize the fundamental role of engineering in implementation research, to improve understanding of design elements that create a better fit between program elements and local context. PMID:25217100
ERIC Educational Resources Information Center
Stieha, Vicki; Shadle, Susan E.; Paterson, Sharon
2016-01-01
Evidence-based instructional practices (ebips) have been associated with positive student outcomes; however, institutions struggle to catalyze widespread adoption of these practices in general education science, technology, engineering, and mathematics (stem) courses. Further, linking ebips with integrated learning assessment is rarely discussed…
Interdisciplinary Interactions During R&D and Early Design of Large Engineered Systems
NASA Technical Reports Server (NTRS)
McGowan, Anna-Maria Rivas
2014-01-01
Designing Large-Scale Complex Engineered Systems (LaCES) such as aircraft and submarines requires the input of thousands of engineers and scientists whose work is proximate in neither time nor space. Comprehensive knowledge of the system is dispersed among specialists whose expertise is in typically one system component or discipline. This study examined the interactive work practices among such specialists seeking to improve engineering practice through a rigorous and theoretical understanding of current practice. This research explored current interdisciplinary practices and perspectives during R&D and early LaCES design and identified why these practices and perspectives prevail and persist. The research design consisted of a three-fold, integrative approach that combined an open-ended survey, semi-structured interviews, and ethnography. Significant empirical data from experienced engineers and scientists in a large engineering organization were obtained and integrated with theories from organization science and engineering. Qualitative analysis was used to obtain a holistic, contextualized understanding. The over-arching finding is that issues related to cognition, organization, and social interrelations mostly dominate interactions across disciplines. Engineering issues, such as the integration of hardware or physics-based models, are not as significant. For example, organization culture is an important underlying factor that guided researchers more toward individual sovereignty over cross-disciplinarity. The organization structure and the engineered system architecture also serve as constraints to the engineering work. Many differences in work practices were observed, including frequency and depth of interactions, definition or co-construction of requirements, clarity or creation of the system architecture, work group proximity, and cognitive challenges. Practitioners are often unaware of these differences resulting in confusion and incorrect assumptions regarding work expectations. Cognitively, the enactment and coconstruction of knowledge are the fundamental tasks of the interdisciplinary interactions. Distributed and collective cognition represent most of the efforts. Argument, ignorance, learning, and creativity are interrelated aspects of the interactions that cause discomfort but yield benefits such as problem mitigation, broader understanding, and improved system design and performance. The quality and quantity of social interrelations are central to all work across disciplines with reciprocity, respectful engagement, and heedful interrelations being significant to the effectiveness of the engineering and scientific work.
ERIC Educational Resources Information Center
Vick, Matthew E.; Garvey, Michael P.
2016-01-01
The Boy Scouts of America's Environmental Science and Engineering merit badges are two of their over 120 merit badges offered as a part of a non-formal educational program to U.S. boys. The Scientific and Engineering Practices of the U.S. Next Generation Science Standards provide a vision of science education that includes integrating eight…
The epistemic integrity of NASA practices in the Space Shuttle Program.
De Winter, Jan; Kosolosky, Laszlo
2013-01-01
This article presents an account of epistemic integrity and uses it to demonstrate that the epistemic integrity of different kinds of practices in NASA's Space Shuttle Program was limited. We focus on the following kinds of practices: (1) research by working engineers, (2) review by middle-level managers, and (3) communication with the public. We argue that the epistemic integrity of these practices was undermined by production pressure at NASA, i.e., the pressure to launch an unreasonable amount of flights per year. Finally, our findings are used to develop some potential strategies to protect epistemic integrity in aerospace science.
NASA Astrophysics Data System (ADS)
Wang, Hui-Hui
Quality STEM education is the key in helping the United States maintain its lead in global competitiveness and in preparing for new economic and security challenges in the future. Policymakers and professional societies emphasize STEM education by legislating the addition of engineering standards to the existing science standards. On the other hand, the nature of the work of most STEM professionals requires people to actively apply STEM knowledge to make critical decisions. Therefore, using an integrated approach to teaching STEM in K-12 is expected. However, science teachers encounter numerous difficulties in adapting the new STEM integration reforms into their classrooms because of a lack of knowledge and experience. Therefore, high quality STEM integration professional development programs are an urgent necessity. In order to provide these high quality programs, it is important to understand teachers' perceptions and classroom practices regarding STEM integration. A multiple-case study was conducted with five secondary school science teachers in order to gain a better understanding of teachers' perceptions and classroom practices in using STEM integration. This study addresses the following research questions: 1) What are secondary school science teachers' practices of STEM integration? 2) What are secondary science teachers' overall perceptions of STEM integration? and 3) What is the connection between secondary science teachers' perceptions and understanding of STEM integration with their classroom practices? This research aims to explore teachers' perceptions and classroom practices in order to set up the baseline for STEM integration and also to determine STEM integration professional development best practices in science education. Findings from the study provide critical data for making informed decision about the direction for STEM integration in science education in K-12.
ERIC Educational Resources Information Center
Montanes, M. T.; Palomares, A. E.; Sanchez-Tovar, R.
2012-01-01
The principles of sustainable development have been integrated in chemical engineering education by means of an environmental management system. These principles have been introduced in the teaching laboratories where students perform their practical classes. In this paper, the implementation of the environmental management system, the problems…
State of the art and future needs in S.I. engine combustion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maly, R.R.
1994-12-31
The paper reviews, in short, the state-of-the-art in SI engine combustion by addressing its main features: mixture formation, ignition, homogeneous combustion, pollutant formation, knock, and engine modeling. Necessary links between fundamental and practical work are clarified and discussed along with advanced diagnostics and simulation tools. The needs for further work are identified, the most important one being integration of all fundamental and practical resources to meet R and D requirements for future engines.
Sustainable NREL: From Integration to Innovation
DOE Office of Scientific and Technical Information (OSTI.GOV)
2015-09-01
NREL's sustainability practices are integrated throughout the laboratory and are essential to our mission to develop clean energy and energy efficiency technologies and practices, advance related science and engineering, and provide knowledge and innovations to integrate energy systems at all scales. Sustainability initiatives are integrated through our campus, our staff, and our environment allowing NREL to provide leadership in modeling a sustainability energy future for companies, organizations, governments, and communities.
Practical Elements in Danish Engineering Programmes, Including the European Project Semester
ERIC Educational Resources Information Center
Hansen, Jorgen
2012-01-01
In Denmark, all engineering programmes in HE have practical elements; for instance, at Bachelor's level, an internship is an integrated part of the programme. Furthermore, Denmark has a long-established tradition of problem-based and project-organized learning, and a large part of students' projects, including their final projects, is done in…
ERIC Educational Resources Information Center
National Academy of Sciences - National Research Council, Washington, DC. Commission on Engineering and Technical Systems.
This report forms an integral part of a study conducted by the Committee on the Education and Utilization of the Engineer, under the auspices of the National Research Council. Five major tasks undertaken by the panel were: (1) defining engineering; (2) determining influences on the engineering community, including external influences and internal…
ERIC Educational Resources Information Center
Kamthan, Pankaj
2007-01-01
Open Source Software (OSS) has introduced a new dimension in software community. As the development and use of OSS becomes prominent, the question of its integration in education arises. In this paper, the following practices fundamental to projects and processes in software engineering are examined from an OSS perspective: project management;…
Hamsters, Picture Books, and Engineering Design
ERIC Educational Resources Information Center
Tank, Kristina; Pettis, Christy; Moore, Tamara; Fehr, Abby
2013-01-01
With the integration of engineering into science instruction, teachers have been seeking ways to add engineering in their classrooms. This article presents a primary (K-2) STEM unit that took place in a half-day kindergarten classroom as a way to address the scientific and engineering practices (dimension 1, p.41) and the disciplinary core idea…
Bishop, P L; Keener, T C; Kukreti, A R; Kowel, S T
2004-01-01
Environmental engineering education has rapidly expanded in recent years and new teaching methods are needed. Many professionals and educators believe that a MS degree in environmental engineering should be the minimum in order to practice the profession, along with practical training. This paper describes an innovative program being offered at the University of Cincinnati that combines an integrated BS in civil engineering and an MS in environmental engineering with extensive practical co-operative education (co-op) experience, all within a five-year period. The program includes distance learning opportunities during the co-op periods. The result is a well-trained graduate who will receive higher pay and more challenging career opportunities, and who will have developed professionalism and maturity beyond that from traditional engineering programs.
NASA Astrophysics Data System (ADS)
Peterman, Karen; Daugherty, Jenny L.; Custer, Rodney L.; Ross, Julia M.
2017-09-01
Science teachers are being called on to incorporate engineering practices into their classrooms. This study explores whether the Engineering-Infused Lesson Rubric, a new rubric designed to target best practices in engineering education, could be used to evaluate the extent to which engineering is infused into online science lessons. Eighty lessons were selected at random from three online repositories, and coded with the rubric. Overall results documented the strengths of existing lessons, as well as many components that teachers might strengthen. In addition, a subset of characteristics was found to distinguish lessons with the highest level of engineering infusion. Findings are discussed in relation to the potential of the rubric to help teachers use research evidence-informed practice generally, and in relation to the new content demands of the U.S. Next Generation Science Standards, in particular.
NASA Technical Reports Server (NTRS)
McGowan, Anna-Maria Rivas; Papalambros, Panos Y.; Baker, Wayne E.
2015-01-01
This paper examines four primary methods of working across disciplines during R&D and early design of large-scale complex engineered systems such as aerospace systems. A conceptualized framework, called the Combining System Elements framework, is presented to delineate several aspects of cross-discipline and system integration practice. The framework is derived from a theoretical and empirical analysis of current work practices in actual operational settings and is informed by theories from organization science and engineering. The explanatory framework may be used by teams to clarify assumptions and associated work practices, which may reduce ambiguity in understanding diverse approaches to early systems research, development and design. The framework also highlights that very different engineering results may be obtained depending on work practices, even when the goals for the engineered system are the same.
NASA Astrophysics Data System (ADS)
Kazama, Toshiharu; Hanajima, Naohiko; Shimizu, Kazumichi; Satoh, Kohki
To foster engineers with creative power, Muroran Institute of Technology established Manufacturing and Engineering Design Center (MEDeC) that concentrates on Monozukuri. MEDeC consists of three project groups : i) Education Support Group provides educational support for practical training classes on and off campus and PDCA (plan-do-check-action) -conscious engineering design education related to Monozukuri ; ii) Fundamental Manufacturing Research Group carries out nurture research into fundamental and innovative technology of machining and manufacturing, and iii) Regional Cooperation Group coordinates the activities in cooperation with bureau, schools and industries in and around Muroran City. MEDeC has a fully integrated collection of machine tools and hand tools for manufacturing, an atelier, a tatara workplace, implements for measurement and related equipment designed for practically teaching state-of-the-practice manufacturing methods.
Congestion Management Systems: Review of Current Practices.
DOT National Transportation Integrated Search
2004-10-31
National parks roads and parkways integrate highway engineering and landscape architecture in their designs to provide access to recreational areas, and to provide scenic recreational travel opportunities. Typically the engineering challenge is to bu...
Integrated water resources management using engineering measures
NASA Astrophysics Data System (ADS)
Huang, Y.
2015-04-01
The management process of Integrated Water Resources Management (IWRM) consists of aspects of policies/strategies, measures (engineering measures and non-engineering measures) and organizational management structures, etc., among which engineering measures such as reservoirs, dikes, canals, etc., play the backbone that enables IWRM through redistribution and reallocation of water in time and space. Engineering measures are usually adopted for different objectives of water utilization and water disaster prevention, such as flood control and drought relief. The paper discusses the planning and implementation of engineering measures in IWRM of the Changjiang River, China. Planning and implementation practices of engineering measures for flood control and water utilization, etc., are presented. Operation practices of the Three Gorges Reservoir, particularly the development and application of regulation rules for flood management, power generation, water supply, ecosystem needs and sediment issues (e.g. erosion and siltation), are also presented. The experience obtained in the implementation of engineering measures in Changjiang River show that engineering measures are vital for IWRM. However, efforts should be made to deal with changes of the river system affected by the operation of engineering measures, in addition to escalatory development of new demands associated with socio-economic development.
Designing an Earthquake-Proof Art Museum: An Arts- and Engineering-Integrated Science Lesson
ERIC Educational Resources Information Center
Carignan, Anastasia; Hussain, Mahjabeen
2016-01-01
In this practical arts-integrated science and engineering lesson, an inquiry-based approach was adopted to teach a class of fourth graders in a Midwest elementary school about the scientific concepts of plate tectonics and earthquakes. Lessons were prepared following the 5 E instructional model. Next Generation Science Standards (4-ESS3-2) and the…
ERIC Educational Resources Information Center
Love, Tyler S.; Wells, John G.
2018-01-01
The purpose of this research was to investigate the extent of the relationship between select technology and science preparation experiences of United States (US) technology and engineering (T&E) teachers and their teaching of science content and practices. Utilizing a fully integrated mixed methods design (Teddlie and Tashakkori in "Res…
Engineering Design for Engineering Design: Benefits, Models, and Examples from Practice
ERIC Educational Resources Information Center
Turner, Ken L., Jr.; Kirby, Melissa; Bober, Sue
2016-01-01
Engineering design, a framework for studying and solving societal problems, is a key component of STEM education. It is also the area of greatest challenge within the Next Generation Science Standards, NGSS. Many teachers feel underprepared to teach or create activities that feature engineering design, and integrating a lesson plan of core content…
ERIC Educational Resources Information Center
Capobianco, Brenda M.; Yu, Ji H.; French, Brian F.
2015-01-01
The integration of engineering concepts and practices into elementary science education has become an emerging concern for science educators and practitioners, alike. Moreover, how children, specifically preadolescents (grades 1-5), engage in engineering design-based learning activities may help science educators and researchers learn more about…
ERIC Educational Resources Information Center
Dankenbring, Chelsey; Capobianco, Brenda M.
2016-01-01
Current reform efforts in science education in the United States call for students to learn science through the integration of science and engineering practices. Studies have examined the effect of engineering design on students' understanding of engineering, technology, and science concepts. However, the majority of studies emphasize the accuracy…
STEM Integration in Middle School Life Science: Student Learning and Attitudes
NASA Astrophysics Data System (ADS)
Guzey, S. Selcen; Moore, Tamara J.; Harwell, Michael; Moreno, Mario
2016-08-01
In many countries around the world, there has been an increasing emphasis on improving science education. Recent reform efforts in the USA call for teachers to integrate scientific and engineering practices into science teaching; for example, science teachers are asked to provide learning experiences for students that apply crosscutting concepts (e.g., patterns, scale) and increase understanding of disciplinary core ideas (e.g., physical science, earth science). Engineering practices and engineering design are essential elements of this new vision of science teaching and learning. This paper presents a research study that evaluates the effects of an engineering design-based science curriculum on student learning and attitudes. Three middle school life science teachers and 275 seventh grade students participated in the study. Content assessments and attitude surveys were administered before and after the implementation of the curriculum unit. Statewide mathematics test proficiency scores were included in the data analysis as well. Results provide evidence of the positive effects of implementing the engineering design-based science unit on student attitudes and learning.
Working on the Boundaries: Philosophies and Practices of the Design Process
NASA Technical Reports Server (NTRS)
Ryan, R.; Blair, J.; Townsend, J.; Verderaime, V.
1996-01-01
While systems engineering process is a program formal management technique and contractually binding, the design process is the informal practice of achieving the design project requirements throughout all design phases of the systems engineering process. The design process and organization are systems and component dependent. Informal reviews include technical information meetings and concurrent engineering sessions, and formal technical discipline reviews are conducted through the systems engineering process. This paper discusses and references major philosophical principles in the design process, identifies its role in interacting systems and disciplines analyses and integrations, and illustrates the process application in experienced aerostructural designs.
ERIC Educational Resources Information Center
Rehmat, Abeera P.; Owens, Marissa C.
2016-01-01
This column presents ideas and techniques to enhance your science teaching. This month's issue shares information about a unit promoting scientific literacy and the engineering design process. The integration of engineering with scientific practices in K-12 education can promote creativity, hands-on learning, and an improvement in students'…
NASA Astrophysics Data System (ADS)
Osman, Sharifah; Mohammad, Shahrin; Abu, Mohd Salleh
2015-05-01
Mathematics and engineering are inexorably and significantly linked and essentially required in analyzing and accessing thought to make good judgment when dealing in complex and varied engineering problems. A study in the current engineering education curriculum to explore how the critical thinking and mathematical thinking relates to one another, is therefore timely crucial. Unfortunately, there is not much information available explicating about the link. This paper aims to report findings of a critical review as well as to provide brief description of an on-going research aimed to investigate the dispositions of critical thinking and the relationship and integration between critical thinking and mathematical thinking during the execution of civil engineering tasks. The first part of the paper reports an in-depth review on these matters based on rather limited resources. The review showed a considerable form of congruency between these two perspectives of thinking, with some prevalent trends of engineering workplace tasks, problems and challenges. The second part describes an on-going research to be conducted by the researcher to investigate rigorously the relationship and integration between these two types of thinking within the perspective of civil engineering tasks. A reasonably close non-participant observations and semi-structured interviews will be executed for the pilot and main stages of the study. The data will be analyzed using constant comparative analysis in which the grounded theory methodology will be adopted. The findings will serve as a useful grounding for constructing a substantive theory revealing the integral relationship between critical thinking and mathematical thinking in the real civil engineering practice context. The substantive theory, from an angle of view, is expected to contribute some additional useful information to the engineering program outcomes and engineering education instructions, aligns with the expectations of engineering program outcomes set by the Engineering Accreditation Council.
40 CFR 68.73 - Mechanical integrity.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 16 2014-07-01 2014-07-01 false Mechanical integrity. 68.73 Section 68...) CHEMICAL ACCIDENT PREVENTION PROVISIONS Program 3 Prevention Program § 68.73 Mechanical integrity. (a... accepted good engineering practices. (3) The frequency of inspections and tests of process equipment shall...
Student Interest in Engineering Design-Based Science
ERIC Educational Resources Information Center
Selcen Guzey, S.; Moore, Tamara J.; Morse, Gillian
2016-01-01
Current reform efforts in science education around the world call on teachers to use integrated approaches to teach science. As a part of such reform efforts in the United States, engineering practices and engineering design have been identified in K-12 science education standards. However, there is relatively little is known about effective ways…
NASA Astrophysics Data System (ADS)
Capobianco, Brenda M.; Yu, Ji H.; French, Brian F.
2015-04-01
The integration of engineering concepts and practices into elementary science education has become an emerging concern for science educators and practitioners, alike. Moreover, how children, specifically preadolescents (grades 1-5), engage in engineering design-based learning activities may help science educators and researchers learn more about children's earliest identification with engineering. The purpose of this study was to examine the extent to which engineering identity differed among preadolescents across gender and grade, when exposing students to engineering design-based science learning activities. Five hundred fifty preadolescent participants completed the Engineering Identity Development Scale (EIDS), a recently developed measure with validity evidence that characterizes children's conceptions of engineering and potential career aspirations. Data analyses of variance among four factors (i.e., gender, grade, and group) indicated that elementary school students who engaged in the engineering design-based science learning activities demonstrated greater improvements on the EIDS subscales compared to those in the comparison group. Specifically, students in the lower grade levels showed substantial increases, while students in the higher grade levels showed decreases. Girls, regardless of grade level and participation in the engineering learning activities, showed higher scores in the academic subscale compared to boys. These findings suggest that the integration of engineering practices in the science classroom as early as grade one shows potential in fostering and sustaining student interest, participation, and self-concept in engineering and science.
ERIC Educational Resources Information Center
Grusenmeyer, Linda Huey
2017-01-01
This study examines the personal and curricular resources available to Delaware's elementary teachers during a time of innovative curriculum change, i.e., their knowledge, goals and beliefs regarding elementary engineering curriculum and the pedagogical support to teach two Science and Engineering Practices provided by science teaching materials.…
Integrating Engineering Design Challenges into Secondary STEM Education
ERIC Educational Resources Information Center
Carr, Ronald L.; Strobel, Johannes
2011-01-01
Engineering is being currently taught in the full spectrum of the P-12 system, with an emphasis on design-oriented teaching (Brophy, Klein, Portsmore, & Rogers, 2008). Due to only a small amount of research on the learning of engineering design in elementary and middle school settings, the community of practice lacks the necessary knowledge of the…
Where's Spot? Finding STEM Opportunities for Young Children in Moments of Dramatic Tension
ERIC Educational Resources Information Center
McClure, Elisabeth; Guernsey, Lisa; Ashbrook, Peggy
2017-01-01
The potential for integrated science, technology, engineering, and math (STEM) learning really is all around us. The moments of intense drama children experience when they test out a new design are the engines that drive STEM practices; it's what keeps scientists, programmers, engineers, and mathematicians up at night, wanting to try "just…
Negotiating Science and Engineering: An Exploratory Case Study of a Reform-Minded Science Teacher
ERIC Educational Resources Information Center
Guzey, S. Selcen; Ring-Whalen, Elizabeth A.
2018-01-01
Engineering has been slowly integrated into K-12 science classrooms in the United States as the result of recent science education reforms. Such changes in science teaching require that a science teacher is confident with and committed to content, practices, language, and cultures related to both science and engineering. However, from the…
Multiple case studies of STEM teachers' orientations to science teaching through engineering design
NASA Astrophysics Data System (ADS)
Rupp, Madeline
The following master's thesis is composed of two manuscripts describing STEM teachers' orientations to science teaching through engineering within the context of the Science Learning through Engineering Design (SLED) partnership. The framework guiding both studies was science teaching orientations, a component of pedagogical content knowledge. Data were collected via semi-structured interviews, multi-day classroom observations, pre- and post-observation interviews, implementation plans, and written reflections. Data sources were analyzed to generate two orientations to science teaching through engineering design for each participant. The first manuscript illustrates a single case study conducted with a sixth grade STEM teacher. Results of this study revealed a detailed picture of the teacher's goals, practices, assessments, and general views when teaching science through engineering design. Common themes across the teacher's instruction were used to characterize her orientations to science teaching through engineering design. Overall, the teacher's orientations showed a shift in her practice from didactic to student-centered methods of teaching as a result of integrating engineering design-based curriculum. The second manuscript describes a comparative case study of two sixth grade SLED participants. Results of this study revealed more complex and diverse relationships between the teachers' orientations to teaching science through engineering design and their instruction. Participants' orientations served as filters for instruction, guided by their divergent purposes for science teaching. Furthermore, their orientations and resulting implementation were developed from knowledge gained in teacher education, implying that teacher educators and researchers can use this framework to learn more about how teachers' knowledge is used to integrate engineering and science practices in the K-12 classroom.
Human Factors Interface with Systems Engineering for NASA Human Spaceflights
NASA Technical Reports Server (NTRS)
Wong, Douglas T.
2009-01-01
This paper summarizes the past and present successes of the Habitability and Human Factors Branch (HHFB) at NASA Johnson Space Center s Space Life Sciences Directorate (SLSD) in including the Human-As-A-System (HAAS) model in many NASA programs and what steps to be taken to integrate the Human-Centered Design Philosophy (HCDP) into NASA s Systems Engineering (SE) process. The HAAS model stresses systems are ultimately designed for the humans; the humans should therefore be considered as a system within the systems. Therefore, the model places strong emphasis on human factors engineering. Since 1987, the HHFB has been engaging with many major NASA programs with much success. The HHFB helped create the NASA Standard 3000 (a human factors engineering practice guide) and the Human Systems Integration Requirements document. These efforts resulted in the HAAS model being included in many NASA programs. As an example, the HAAS model has been successfully introduced into the programmatic and systems engineering structures of the International Space Station Program (ISSP). Success in the ISSP caused other NASA programs to recognize the importance of the HAAS concept. Also due to this success, the HHFB helped update NASA s Systems Engineering Handbook in December 2007 to include HAAS as a recommended practice. Nonetheless, the HAAS model has yet to become an integral part of the NASA SE process. Besides continuing in integrating HAAS into current and future NASA programs, the HHFB will investigate incorporating the Human-Centered Design Philosophy (HCDP) into the NASA SE Handbook. The HCDP goes further than the HAAS model by emphasizing a holistic and iterative human-centered systems design concept.
ERIC Educational Resources Information Center
Mayer, Kristen; Damelin, Daniel; Krajcik, Joseph
2013-01-01
The "Next Generation Science Standards" ("NGSS") emphasizes content and scientific practices, but what does this actually look like in a classroom? The "NGSS" integrates scientific and engineering practices with core ideas and crosscutting concepts, merging the three dimensions from "A Framework for K-12 Science…
Supplier Development: A Long-Term Supportability Option For USAF Engines
2012-02-01
Supply Chain Management Practices..................8 AF and DoD Regulations "Limitation or Hoax" Can USAF Develop Suppliers...integrated supply chain management (SCM) process providing engines and parts, aiding in the ability of the depots to meet the warfighter‟s needs. The... supply chain has struggled in the past to support the warfighter with enough engines to accomplish the mission. The engine supply chain management
Iteration in Early-Elementary Engineering Design
NASA Astrophysics Data System (ADS)
McFarland Kendall, Amber Leigh
K-12 standards and curricula are beginning to include engineering design as a key practice within Science Technology Engineering and Mathematics (STEM) education. However, there is little research on how the youngest students engage in engineering design within the elementary classroom. This dissertation focuses on iteration as an essential aspect of engineering design, and because research at the college and professional level suggests iteration improves the designer's understanding of problems and the quality of design solutions. My research presents qualitative case studies of students in kindergarten and third-grade as they engage in classroom engineering design challenges which integrate with traditional curricula standards in mathematics, science, and literature. I discuss my results through the lens of activity theory, emphasizing practices, goals, and mediating resources. Through three chapters, I provide insight into how early-elementary students iterate upon their designs by characterizing the ways in which lesson design impacts testing and revision, by analyzing the plan-driven and experimentation-driven approaches that student groups use when solving engineering design challenges, and by investigating how students attend to constraints within the challenge. I connect these findings to teacher practices and curriculum design in order to suggest methods of promoting iteration within open-ended, classroom-based engineering design challenges. This dissertation contributes to the field of engineering education by providing evidence of productive engineering practices in young students and support for the value of engineering design challenges in developing students' participation and agency in these practices.
NASA Astrophysics Data System (ADS)
Hussain, Azham; Mkpojiogu, Emmanuel O. C.; Abdullah, Inam
2016-08-01
Requirements Engineering (RE) is a systemic and integrated process of eliciting, elaborating, negotiating, validating and managing of the requirements of a system in a software development project. UUM has been supported by various systems developed and maintained by the UUM Information Technology (UUMIT) Centre. The aim of this study was to assess the current requirements engineering practices at UUMIT. The main problem that prompted this research is the lack of studies that support software development activities at the UUMIT. The study is geared at helping UUMIT produce quality but time and cost saving software products by implementing cutting edge and state of the art requirements engineering practices. Also, the study contributes to UUM by identifying the activities needed for software development so that the management will be able to allocate budget to provide adequate and precise training for the software developers. Three variables were investigated: Requirement Description, Requirements Development (comprising: Requirements Elicitation, Requirements Analysis and Negotiation, Requirements Validation), and Requirement Management. The results from the study showed that the current practice of requirement engineering in UUMIT is encouraging, but still need further development and improvement because a few RE practices were seldom practiced.
ERIC Educational Resources Information Center
Fick, Sarah J.; Songer, Nancy Butler
2017-01-01
Recent reforms emphasize a shift in how students should learn and demonstrate knowledge of science. These reforms call for students to learn content knowledge using science and engineering practices, creating integrated science knowledge. While there is existing literature about the development of integrated science knowledge assessments, few…
ERIC Educational Resources Information Center
Constantine, Angelina; Rózowa, Paula; Szostkowski, Alaina; Ellis, Joshua; Roehrig, Gillian
2017-01-01
In the age of STEM education, teachers consistently struggle to understand the nature of technology and how to integrate it. This multiple-case study uses the TPACK framework to explore the beliefs and practices of three elementary science and engineering teachers from an urban school district with a recently implemented 1:1 iPad policy. All three…
Engineering Student's Ethical Awareness and Behavior: A New Motivational Model.
Bairaktarova, Diana; Woodcock, Anna
2017-08-01
Professional communities are experiencing scandals involving unethical and illegal practices daily. Yet it should not take a national major structure failure to highlight the importance of ethical awareness and behavior, or the need for the development and practice of ethical behavior in engineering students. Development of ethical behavior skills in future engineers is a key competency for engineering schools as ethical behavior is a part of the professional identity and practice of engineers. While engineering educators have somewhat established instructional methods to teach engineering ethics, they still rely heavily on teaching ethical awareness, and pay little attention to how well ethical awareness predicts ethical behavior. However the ability to exercise ethical judgement does not mean that students are ethically educated or likely to behave in an ethical manner. This paper argues measuring ethical judgment is insufficient for evaluating the teaching of engineering ethics, because ethical awareness has not been demonstrated to translate into ethical behavior. The focus of this paper is to propose a model that correlates with both, ethical awareness and ethical behavior. This model integrates the theory of planned behavior, person and thing orientation, and spheres of control. Applying this model will allow educators to build confidence and trust in their students' ability to build a professional identity and be prepared for the engineering profession and practice.
Lynch, William T
2015-10-01
The article examines and extends work bringing together engineering ethics and Science and Technology Studies, which had built upon Diane Vaughan's analysis of the Challenger shuttle accident as a test case. Reconsidering the use of her term "normalization of deviance," the article argues for a middle path between moralizing against and excusing away engineering practices contributing to engineering disaster. To explore an illustrative pedagogical case and to suggest avenues for constructive research developing this middle path, it examines the emergence of green chemistry and green engineering. Green chemistry began when Paul Anastas and John Warner developed a set of new rules for chemical synthesis that sought to learn from missed opportunities to avoid environmental damage in the twentieth century, an approach that was soon extended to engineering as well. Examination of tacit assumptions about historical counterfactuals in recent, interdisciplinary discussions of green chemistry illuminate competing views about the field's prospects. An integrated perspective is sought, addressing how both technical practice within chemistry and engineering and the influence of a wider "social movement" can play a role in remedying environmental problems.
NASA Technical Reports Server (NTRS)
Smith, Leigh M.; Parker, Nelson C. (Technical Monitor)
2002-01-01
This paper analyzes the use of Computer Aided Design (CAD) packages at NASA's Marshall Space Flight Center (MSFC). It examines the effectiveness of recent efforts to standardize CAD practices across MSFC engineering activities. An assessment of the roles played by management, designers, analysts, and manufacturers in this initiative will be explored. Finally, solutions are presented for better integration of CAD across MSFC in the future.
The role of ethics in science and engineering.
Johnson, Deborah G
2010-12-01
It is generally thought that science and engineering should never cross certain ethical lines. The idea connects ethics to science and engineering, but it frames the relationship in a misleading way. Moral notions and practices inevitably influence and are influenced by science and engineering. The important question is how such interactions should take place. Anticipatory ethics is a new approach that integrates ethics into technological development. Copyright © 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Linn, Marcia C.
1995-06-01
Designing effective curricula for complex topics and incorporating technological tools is an evolving process. One important way to foster effective design is to synthesize successful practices. This paper describes a framework called scaffolded knowledge integration and illustrates how it guided the design of two successful course enhancements in the field of computer science and engineering. One course enhancement, the LISP Knowledge Integration Environment, improved learning and resulted in more gender-equitable outcomes. The second course enhancement, the spatial reasoning environment, addressed spatial reasoning in an introductory engineering course. This enhancement minimized the importance of prior knowledge of spatial reasoning and helped students develop a more comprehensive repertoire of spatial reasoning strategies. Taken together, the instructional research programs reinforce the value of the scaffolded knowledge integration framework and suggest directions for future curriculum reformers.
NASA Astrophysics Data System (ADS)
Guo, Shijun; Lyu, Jie; Zhang, Peiming
2017-08-01
In this paper, the teaching goals, teaching contents and teaching methods in biomedical optics course construction are discussed. From the dimension of teaching goals, students should master the principle of optical inspection on the human body, diagnosis and treatment of methodology and instruments, through the study of the theory and practice of this course, and can utilize biomedical optics methods to solve practical problems in the clinical medical engineering practice. From the dimension of teaching contents, based on the characteristics of biomedical engineering in medical colleges, the organic integration of engineering aspects, medical optical instruments, and biomedical aspects dispersed in human anatomy, human physiology, clinical medicine fundamental related to the biomedical optics is build. Noninvasive measurement of the human body composition and noninvasive optical imaging of the human body were taken as actual problems in biomedical optics fields. Typical medical applications such as eye optics and laser medicine were also integrated into the theory and practice teaching. From the dimension of teaching methods, referencing to organ-system based medical teaching mode, optical principle and instrument principle were taught by teachers from school of medical instruments, and the histological characteristics and clinical actual need in areas such as digestive diseases and urinary surgery were taught by teachers from school of basic medicine or clinical medicine of medical colleges. Furthermore, clinical application guidance would be provided by physician and surgeons in hospitals.
Flight-determined benefits of integrated flight-propulsion control systems
NASA Technical Reports Server (NTRS)
Stewart, James F.; Burcham, Frank W., Jr.; Gatlin, Donald H.
1992-01-01
The fundamentals of control integration for propulsion are reviewed giving practical illustrations of its use to demonstrate the advantages of integration. Attention is given to the first integration propulsion-control systems (IPCSs) which was developed for the F-111E, and the integrated controller design is described that NASA developed for the YF-12C aircraft. The integrated control systems incorporate a range of aircraft components including the engine, inlet controls, autopilot, autothrottle, airdata, navigation, and/or stability-augmentation systems. Also described are emergency-control systems, onboard engine optimization, and thrust-vectoring control technologies developed for the F-18A and the F-15. Integrated flight-propulsion control systems are shown to enhance the thrust, range, and survivability of the aircraft while reducing fuel consumption and maintenance.
A study of the displacement of a Wankel rotary engine
NASA Astrophysics Data System (ADS)
Beard, J. E.; Pennock, G. R.
1993-03-01
The volumetric displacement of a Wankel rotary engine is a function of the trochoid ratio and the pin size ratio, assuming the engine has a unit depth and the number of lobes is specified. The mathematical expression which defines the displacement contains a function which can be evaluated directly and a normal elliptic integral of the second type which does not have an explicit solution. This paper focuses on the contribution of the elliptic integral to the total displacement of the engine. The influence of the elliptic integral is shown to account for as much as 20 percent of the total displacement, depending on the trochoid ratio and the pin size ratio. Two numerical integration techniques are compared in the paper, namely, the trapezoidal rule and Simpson's 1/3 rule. The bounds on the error, associated with each numerical method, are analyzed. The results indicate that the numerical method has a minimal effect on the accuracy of the calculated displacement for a practical number of integration steps. The paper also evaluates the influence of manufacturing tolerances on the calculated displacement and the actual displacement. Finally. a numerical example of the common three-lobed Wankel rotary engine is included for illustrative purposes.
A Flipped First-Year Digital Circuits Course for Engineering and Technology Students
ERIC Educational Resources Information Center
Yelamarthi, Kumar; Drake, Eron
2015-01-01
This paper describes a flipped and improved first-year digital circuits (DC) course that incorporates several active learning strategies. With the primary objective of increasing student interest and learning, an integrated instructional design framework is proposed to provide first-year engineering and technology students with practical knowledge…
Exploring Agricultural and Biotechnical Engineering through Hands-On Integrated STEM
ERIC Educational Resources Information Center
Preble, Brian C.
2015-01-01
The manipulation of the natural world in the form of plant materials to design, control, and grow desirable agricultural commodities was central to the establishment and advancement of civilization. Modern developments in genetically modified organisms (GMOs or biologically engineered foods) can trace their origins to macro practices developed and…
Knowledge Management tools integration within DLR's concurrent engineering facility
NASA Astrophysics Data System (ADS)
Lopez, R. P.; Soragavi, G.; Deshmukh, M.; Ludtke, D.
The complexity of space endeavors has increased the need for Knowledge Management (KM) tools. The concept of KM involves not only the electronic storage of knowledge, but also the process of making this knowledge available, reusable and traceable. Establishing a KM concept within the Concurrent Engineering Facility (CEF) has been a research topic of the German Aerospace Centre (DLR). This paper presents the current KM tools of the CEF: the Software Platform for Organizing and Capturing Knowledge (S.P.O.C.K.), the data model Virtual Satellite (VirSat), and the Simulation Model Library (SimMoLib), and how their usage improved the Concurrent Engineering (CE) process. This paper also exposes the lessons learned from the introduction of KM practices into the CEF and elaborates a roadmap for the further development of KM in CE activities at DLR. The results of the application of the Knowledge Management tools have shown the potential of merging the three software platforms with their functionalities, as the next step towards the fully integration of KM practices into the CE process. VirSat will stay as the main software platform used within a CE study, and S.P.O.C.K. and SimMoLib will be integrated into VirSat. These tools will support the data model as a reference and documentation source, and as an access to simulation and calculation models. The use of KM tools in the CEF aims to become a basic practice during the CE process. The settlement of this practice will result in a much more extended knowledge and experience exchange within the Concurrent Engineering environment and, consequently, the outcome of the studies will comprise higher quality in the design of space systems.
ERIC Educational Resources Information Center
Tsang, Edmund, Ed.
This volume, the 14th in a series of monographs on service learning and academic disciplinary areas, is designed as a practical guide for faculty seeking to integrate service learning into an engineering course. The volume also deals with larger issues in engineering education and provides case studies of service-learning courses. The articles…
Relative importance of professional practice and engineering management competencies
NASA Astrophysics Data System (ADS)
Pons, Dirk
2016-09-01
Problem: The professional practice of engineering always involves engineering management, but it is difficult to know what specifically to include in the undergraduate curriculum. Approach: The population of New Zealand practising engineers was surveyed to determine the importance they placed on specific professional practice and engineering management competencies. Findings: Results show that communication and project planning were the two most important topics, followed by others as identified. The context in which practitioners use communication skills was found to be primarily with project management, with secondary contexts identified. The necessity for engineers to develop the ability to use multiple soft skills in an integrative manner is strongly supported by the data. Originality: This paper is one of only a few large-scale surveys of practising engineers to have explored the soft skill attributes. It makes a didactic contribution of providing a ranked list of topics which can be used for designing the curriculum and prioritising teaching effort, which has not previously been achieved. It yields the new insight that combinations of topics are sometimes more important than individual topics.
Concurrency in product realization
NASA Astrophysics Data System (ADS)
Kelly, Michael J.
1994-03-01
Technology per se does not provide a competitive advantage. Timely exploitation of technology is what gives the competitive edge, and this demands a major shift in the product development process and management of the industrial enterprise. `Teaming to win' is more than a management theme; it is the disciplined engineering practice that is essential to success in today's global marketplace. Teaming supports the concurrent engineering practices required to integrate the activities of people responsible for product realization through achievement of shorter development cycles, lower costs, and defect-free products.
Improving K-12 STEM Education Outcomes through Technological Integration
ERIC Educational Resources Information Center
Urban, Michael J., Ed.; Falvo, David A., Ed.
2016-01-01
The application of technology in classroom settings has equipped educators with innovative tools and techniques for effective teaching practice. Integrating digital technologies at the elementary and secondary levels helps to enrich the students' learning experience and maximize competency in the areas of science, technology, engineering, and…
Selishchev, S V
2004-01-01
The integration results of fundamental and applied medical-and-technical research made at the chair of biomedical systems, Moscow state institute of electronic engineering (technical university--MSIEE), are described in the paper. The chair is guided in its research activity by the traditions of higher education in Russia in the field of biomedical electronics and biomedical engineering. Its activities are based on the extrapolation of methods of electronic tools, computer technologies, physics, biology and medicine with due respect being paid to the requirements of practical medicine and to topical issues of research and design.
NASA Technical Reports Server (NTRS)
Modesitt, Kenneth L.
1987-01-01
Progress is reported on the development of SCOTTY, an expert knowledge-based system to automate the analysis procedure following test firings of the Space Shuttle Main Engine (SSME). The integration of a large-scale relational data base system, a computer graphics interface for experts and end-user engineers, potential extension of the system to flight engines, application of the system for training of newly-hired engineers, technology transfer to other engines, and the essential qualities of good software engineering practices for building expert knowledge-based systems are among the topics discussed.
An Introduction to Thermal-Fluid Engineering
NASA Astrophysics Data System (ADS)
Warhaft, Zellman
1998-01-01
This text is the first to provide an integrated introduction to basic engineering topics and the social implications of engineering practice. Aimed at beginning engineering students, the book presents the basic ideas of thermodynamics, fluid mechanics, heat transfer, and combustion through a real-world engineering situation. It relates the engine to the atmosphere in which it moves and exhausts its waste products. The book also discusses the greenhouse effect and atmospheric inversions, and the social implications of engineering in a crowded world with increasing energy demands. Students in mechanical, civil, agricultural, environmental, aerospace, and chemical engineering will welcome this engaging, well-illustrated introduction to thermal-fluid engineering.
From Zero to Integration in Eight Months, the Dawn Ground Data System Engineering Challenge
NASA Technical Reports Server (NTRS)
Dubon, Lydia P.
2006-01-01
The Dawn GDS Team met the SC Sim integration challenge in eight months. The GDS System Engineering approach in response to the SC Simintegration challenge, focused on a set of key practices: decomposition of project request into manageable requirements; integration of multiple ground disciplines and experts into a focused team effort; risk management thru management of expectations; and aggregation of intermediate products into a final product. By maintaining a a system-level focus, the overall systems engineering process unified team GDS Team members with a common goal: the success of the ground system as a whole and not just the success of their individual expert contributions. Incorporation of Agile-type development efforts were aligned with a risk strategy based on team-oriented principles and expectations management, thus achieving a more stable baseline solution without compromising the integrity of the GDS design.
NASA Astrophysics Data System (ADS)
Bingham, Guy A.; Southee, Darren J.; Page, Tom
2015-07-01
This paper examines the traditional engineering-based provision delivered to Product Design and Technology (B.Sc.) undergraduates at the Loughborough Design School and questions its relevancy against the increasing expectations of industry. The paper reviews final-year design projects to understand the level of transference of engineering-based knowledge into design practice and highlights areas of opportunity for improved teaching and learning. The paper discusses the development and implementation of an integrated approach to the teaching of Mechanics and Electronics to formalise and reinforce the key learning process of transference within the design context. The paper concludes with observations from the delivery of this integrated teaching and offers insights from student and academic perspectives for the further improvement of engineering-based teaching and learning.
NASA Astrophysics Data System (ADS)
Klug Boonstra, S. L.; Swann, J.; Manfredi, L.; Zippay, A.; Boonstra, D.
2014-12-01
The Next Generation Science Standards (NGSS) brought many dynamic opportunities and capabilities to the K-12 science classroom - especially with the inclusion of engineering. Using science as a context to help students engage in the engineering practices and engineering disciplinary core ideas is an essential step to students' understanding of how science drives engineering and how engineering enables science. Real world examples and applications are critical for students to see how these disciplines are integrated. Furthermore, the interface of science and engineering raise the level of science understanding, and facilitate higher order thinking skills through relevant experiences. Astrobiobound! is designed for the NGSS (Next Generation Science Standards) and CCSS (Common Core State Standards). Students also practice and build 21st Century Skills. Astrobiobound! help students see how science and systems engineering are integrated to achieve a focused scientific goal. Students engage in the engineering design process to design a space mission which requires them to balance the return of their science data with engineering limitations such as power, mass and budget. Risk factors also play a role during this simulation and adds to the excitement and authenticity. Astrobiobound! presents the authentic first stages of NASA mission design process. This simulation mirrors the NASA process in which the science goals, type of mission, and instruments to return required data to meet mission goals are proposed within mission budget before any of the construction part of engineering can begin. NASA scientists and engineers were consulted in the development of this activity as an authentic simulation of their mission proposal process.
ERIC Educational Resources Information Center
Achumba, I. E.; Azzi, D.; Dunn, V. L.; Chukwudebe, G. A.
2013-01-01
Laboratory work is critical in undergraduate engineering courses. It is used to integrate theory and practice. This demands that laboratory activities are synchronized with lectures to maximize their derivable learning outcomes, which are measurable through assessment. The typical high costs of the traditional engineering laboratory, which often…
Professional Development for the Integration of Engineering in High School STEM Classrooms
ERIC Educational Resources Information Center
Singer, Jonathan E.; Ross, Julia M.; Jackson-Lee, Yvette
2016-01-01
Science, Technology, Engineering, and Mathematics (STEM) education in the U.S. is in transition. The recently published "A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas" as well as the "Next Generation Science Standards" are responsive to this call and clearly articulate a vision that…
ERIC Educational Resources Information Center
Thompson, Michael G.
2012-01-01
Undergraduate science and engineering institutions are currently attempting to improve recruiting practices and to retain engineering majors by addressing what many studies document as the major challenges of poor instruction. Service is described as experimental learning through the integration of traditional classroom teaching with structured…
Linshiz, Gregory; Goldberg, Alex; Konry, Tania; Hillson, Nathan J
2012-01-01
Synthetic biology is a nascent field that emerged in earnest only around the turn of the millennium. It aims to engineer new biological systems and impart new biological functionality, often through genetic modifications. The design and construction of new biological systems is a complex, multistep process, requiring multidisciplinary collaborative efforts from "fusion" scientists who have formal training in computer science or engineering, as well as hands-on biological expertise. The public has high expectations for synthetic biology and eagerly anticipates the development of solutions to the major challenges facing humanity. This article discusses laboratory practices and the conduct of research in synthetic biology. It argues that the fusion science approach, which integrates biology with computer science and engineering best practices, including standardization, process optimization, computer-aided design and laboratory automation, miniaturization, and systematic management, will increase the predictability and reproducibility of experiments and lead to breakthroughs in the construction of new biological systems. The article also discusses several successful fusion projects, including the development of software tools for DNA construction design automation, recursive DNA construction, and the development of integrated microfluidics systems.
20th Annual Systems Engineering Conference. Volume 1, Monday-Tuesday
2017-10-26
Environment will follow Mr. Thompson’s presentation with a presentation focusing on how ESOH Risk Management is an integral part of the RIO Management...office successes and failures in implementing the DoDI 5000.02 acquisition ESOH policy. HUMAN SYSTEMS INTEGRATION (HSI) Track Chair: Matthew...practices, process improvements, applications and approaches to program integration . INTEROPERABILITY/NET - CENTRIC OPERATIONS Track Chairs
The Creation of an Integrated Sustainability Curriculum and Student Praxis Projects
ERIC Educational Resources Information Center
Bacon, Christopher M.; Mulvaney, Dustin; Ball, Tamara B.; DuPuis, E. Melanie; Gliessman, Stephen R.; Lipschutz, Ronnie D.; Shakouri, Ali
2011-01-01
Purpose: The purpose of this paper is to share the content and early results from an interdisciplinary sustainability curriculum that integrates theory and practice (praxis). The curriculum links new topical courses concerning renewable energy, food, water, engineering and social change with specialized labs that enhance technological and…
Teaching Service Modelling to a Mixed Class: An Integrated Approach
ERIC Educational Resources Information Center
Deng, Jeremiah D.; Purvis, Martin K.
2015-01-01
Service modelling has become an increasingly important area in today's telecommunications and information systems practice. We have adapted a Network Design course in order to teach service modelling to a mixed class of both the telecommunication engineering and information systems backgrounds. An integrated approach engaging mathematics teaching…
A practice course to cultivate students' comprehensive ability of photoelectricity
NASA Astrophysics Data System (ADS)
Lv, Yong; Liu, Yang; Niu, Chunhui; Liu, Lishuang
2017-08-01
After the studying of many theoretical courses, it's important and urgent for the students from specialty of optoelectronic information science and engineering to cultivate their comprehensive ability of photoelectricity. We set up a comprehensive practice course named "Integrated Design of Optoelectronic Information System" (IDOIS) for the purpose that students can integrate their knowledge of optics, electronics and computer programming to design, install and debug an optoelectronic system with independent functions. Eight years of practice shows that this practice course can train students' ability of analysis, design/development and debugging of photoelectric system, improve their ability in document retrieval, design proposal and summary report writing, teamwork, innovation consciousness and skill.
The research and practice of spacecraft software engineering
NASA Astrophysics Data System (ADS)
Chen, Chengxin; Wang, Jinghua; Xu, Xiaoguang
2017-06-01
In order to ensure the safety and reliability of spacecraft software products, it is necessary to execute engineering management. Firstly, the paper introduces the problems of unsystematic planning, uncertain classified management and uncontinuous improved mechanism in domestic and foreign spacecraft software engineering management. Then, it proposes a solution for software engineering management based on system-integrated ideology in the perspective of spacecraft system. Finally, a application result of spacecraft is given as an example. The research can provides a reference for executing spacecraft software engineering management and improving software product quality.
NASA Technical Reports Server (NTRS)
Pfouts, W. R.; Shamblen, C. E.; Mosier, J. S.; Peebles, R. E.; Gorsler, R. W.
1979-01-01
An attempt was made to improve methods for producing powder metallurgy aircraft gas turbine engine parts from the nickel base superalloy known as Rene 95. The parts produced were the high pressure turbine aft shaft for the CF6-50 engine and the stages 5 through 9 compressor disk forgings for the CFM56/F101 engines. A 50% cost reduction was achieved as compared to conventional cast and wrought processing practices. An integrated effort involving several powder producers and a major forging source were included.
75 FR 56491 - Technical Amendments for Marine Spark-Ignition Engines and Vessels
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-16
... spillage, incorporating safe recommended practices will result in a net benefit to the environment and lead... spillage, incorporating safe recommended practices will result in a net benefit to the environment and lead... portable fuel tanks to these new requirements, manufacturers working together on systems integration...
Village, Judy; Searcy, Cory; Salustri, Filipo; Patrick Neumann, W
2015-01-01
The 'design for human factors' grounded theory explains 'how' human factors (HF) went from a reactive, after-injury programme in safety, to being proactively integrated into each step of the production design process. In this longitudinal case study collaboration with engineers and HF Specialists in a large electronics manufacturer, qualitative data (e.g. meetings, interviews, observations and reflections) were analysed using a grounded theory methodology. The central tenet in the theory is that when HF Specialists acclimated to the engineering process, language and tools, and strategically aligned HF to the design and business goals of the organisation, HF became a means to improve business performance. This led to engineers 'pulling' HF Specialists onto their team. HF targets were adopted into engineering tools to communicate HF concerns quantitatively, drive continuous improvement, visibly demonstrate change and lead to benchmarking. Senior management held engineers accountable for HF as a key performance indicator, thus integrating HF into the production design process. Practitioner Summary: Research and practice lack explanations about how HF can be integrated early in design of production systems. This three-year case study and the theory derived demonstrate how ergonomists changed their focus to align with design and business goals to integrate HF into the design process.
Educating the humanitarian engineer.
Passino, Kevin M
2009-12-01
The creation of new technologies that serve humanity holds the potential to help end global poverty. Unfortunately, relatively little is done in engineering education to support engineers' humanitarian efforts. Here, various strategies are introduced to augment the teaching of engineering ethics with the goal of encouraging engineers to serve as effective volunteers for community service. First, codes of ethics, moral frameworks, and comparative analysis of professional service standards lay the foundation for expectations for voluntary service in the engineering profession. Second, standard coverage of global issues in engineering ethics educates humanitarian engineers about aspects of the community that influence technical design constraints encountered in practice. Sample assignments on volunteerism are provided, including a prototypical design problem that integrates community constraints into a technical design problem in a novel way. Third, it is shown how extracurricular engineering organizations can provide a theory-practice approach to education in volunteerism. Sample completed projects are described for both undergraduates and graduate students. The student organization approach is contrasted with the service-learning approach. Finally, long-term goals for establishing better infrastructure are identified for educating the humanitarian engineer in the university, and supporting life-long activities of humanitarian engineers.
NASA Astrophysics Data System (ADS)
Alias, Maizam; Lashari, Tahira Anwar; Abidin Akasah, Zainal; Jahaya Kesot, Mohd.
2014-03-01
Learning in the cognitive domain is highly emphasised and has been widely investigated in engineering education. Lesser emphasis is placed on the affective dimension although the role of affects has been supported by research. The lack of understanding on learning theories and how they may be translated into classroom application of teaching and learning is one factor that contributes to this situation. This paper proposes a working framework for integrating the affective dimension of learning into engineering education that is expected to promote better learning within the cognitive domain. Four major learning theories namely behaviourism, cognitivism, socio-culturalism, and constructivism were analysed and how affects are postulated to influence cognition are identified. The affective domain constructs identified to be important are self-efficacy, attitude and locus of control. Based on the results of the analysis, a framework that integrates methodologies for achieving learning in the cognitive domain with the support of the affective dimension of learning is proposed. It is expected that integrated approach can be used as a guideline to engineering educators in designing effective and sustainable instructional material that would result in the effective engineers for future development.
Hall-Andersen, Lene Bjerg; Neumann, Patrick; Broberg, Ole
2016-10-17
The integration of ergonomics knowledge into engineering projects leads to both healthier and more efficient workplaces. There is a lack of knowledge about integrating ergonomic knowledge into the design practice in engineering consultancies. This study explores how organizational resources can pose constraints for the integration of ergonomics knowledge into engineering design projects in a business-driven setting, and how ergonomists cope with these resource constraints. An exploratory case study in an engineering consultancy was conducted. A total of 27 participants were interviewed. Data were collected applying semi-structured interviews, observations, and documentary studies. Interviews were transcribed, coded, and categorized into themes. From the analysis five overall themes emerged as major constituents of resource constraints: 1) maximizing project revenue, 2) payment for ergonomics services, 3) value of ergonomic services, 4) role of the client, and 5) coping strategies to overcome resource constraints. We hypothesize that resource constraints were shaped due to sub-optimization of costs in design projects. The economical contribution of ergonomics measures was not evaluated in the entire life cycle of a designed workplace. Coping strategies included teaming up with engineering designers in the sales process or creating an alliance with ergonomists in the client organization.
Learning Engines - A Functional Object Model for Developing Learning Resources for the WWW.
ERIC Educational Resources Information Center
Fritze, Paul; Ip, Albert
The Learning Engines (LE) model, developed at the University of Melbourne (Australia), supports the integration of rich learning activities into the World Wide Web. The model is concerned with the practical design, educational value, and reusability of software components. The model is focused on the academic teacher who is in the best position to…
ERIC Educational Resources Information Center
Mathis, Corey A.; Siverling, Emilie A.; Glancy, Aran W.; Moore, Tamara J.
2017-01-01
One of the fundamental practices identified in Next Generation Science Standards (NGSS) is argumentation, which has been researched in P-12 science education for the previous two decades but has yet to be studied within the context of P-12 engineering education. This research explores how elementary and middle school science teachers incorporated…
Systems engineering interfaces: A model based approach
NASA Astrophysics Data System (ADS)
Fosse, E.; Delp, C. L.
The engineering of interfaces is a critical function of the discipline of Systems Engineering. Included in interface engineering are instances of interaction. Interfaces provide the specifications of the relevant properties of a system or component that can be connected to other systems or components while instances of interaction are identified in order to specify the actual integration to other systems or components. Current Systems Engineering practices rely on a variety of documents and diagrams to describe interface specifications and instances of interaction. The SysML[1] specification provides a precise model based representation for interfaces and interface instance integration. This paper will describe interface engineering as implemented by the Operations Revitalization Task using SysML, starting with a generic case and culminating with a focus on a Flight System to Ground Interaction. The reusability of the interface engineering approach presented as well as its extensibility to more complex interfaces and interactions will be shown. Model-derived tables will support the case studies shown and are examples of model-based documentation products.
Integrated System-Level Optimization for Concurrent Engineering With Parametric Subsystem Modeling
NASA Technical Reports Server (NTRS)
Schuman, Todd; DeWeck, Oliver L.; Sobieski, Jaroslaw
2005-01-01
The introduction of concurrent design practices to the aerospace industry has greatly increased the productivity of engineers and teams during design sessions as demonstrated by JPL's Team X. Simultaneously, advances in computing power have given rise to a host of potent numerical optimization methods capable of solving complex multidisciplinary optimization problems containing hundreds of variables, constraints, and governing equations. Unfortunately, such methods are tedious to set up and require significant amounts of time and processor power to execute, thus making them unsuitable for rapid concurrent engineering use. This paper proposes a framework for Integration of System-Level Optimization with Concurrent Engineering (ISLOCE). It uses parametric neural-network approximations of the subsystem models. These approximations are then linked to a system-level optimizer that is capable of reaching a solution quickly due to the reduced complexity of the approximations. The integration structure is described in detail and applied to the multiobjective design of a simplified Space Shuttle external fuel tank model. Further, a comparison is made between the new framework and traditional concurrent engineering (without system optimization) through an experimental trial with two groups of engineers. Each method is evaluated in terms of optimizer accuracy, time to solution, and ease of use. The results suggest that system-level optimization, running as a background process during integrated concurrent engineering sessions, is potentially advantageous as long as it is judiciously implemented.
STEM Integration in Middle School Life Science: Student Learning and Attitudes
ERIC Educational Resources Information Center
Guzey, S. Selcen; Moore, Tamara J.; Harwell, Michael; Moreno, Mario
2016-01-01
In many countries around the world, there has been an increasing emphasis on improving science education. Recent reform efforts in the USA call for teachers to integrate scientific and engineering practices into science teaching; for example, science teachers are asked to provide learning experiences for students that apply crosscutting concepts…
Risk evaluation of highway engineering project based on the fuzzy-AHP
NASA Astrophysics Data System (ADS)
Yang, Qian; Wei, Yajun
2011-10-01
Engineering projects are social activities, which integrate with technology, economy, management and organization. There are uncertainties in each respect of engineering projects, and it needs to strengthen risk management urgently. Based on the analysis of the characteristics of highway engineering, and the study of the basic theory on risk evaluation, the paper built an index system of highway project risk evaluation. Besides based on fuzzy mathematics principle, analytical hierarchy process was used and as a result, the model of the comprehensive appraisal method of fuzzy and AHP was set up for the risk evaluation of express way concessionary project. The validity and the practicability of the risk evaluation of expressway concessionary project were verified after the model was applied to the practice of a project.
NASA Astrophysics Data System (ADS)
Helma, H.; Mirna, M.; Edizon, E.
2018-04-01
Mathematics is often applied in physics, chemistry, economics, engineering, and others. Besides that, mathematics is also used in everyday life. Learning mathematics in school should be associated with other sciences and everyday life. In this way, the learning of mathematics is more realstic, interesting, and meaningful. Needs analysis shows that required contextual mathematics teaching materials integrated related sciences and realistic on learning mathematics. The purpose of research is to produce a valid and practical contextual mathematics teaching material integrated related sciences and realistic. This research is development research. The result of this research is a valid and practical contextual mathematics teaching material integrated related sciences and realistic produced
The Flying Classroom--A Cost Effective Integrated Approach to Learning and Teaching Flight Dynamics
ERIC Educational Resources Information Center
Bromfield, Michael A.; Belberov, Aleksandar
2017-01-01
In the UK, the Royal Aeronautical Society recommends the inclusion of practical flight exercises for accredited undergraduate aerospace engineering programmes to enhance learning and student experience. The majority of academic institutions teaching aerospace in the UK separate the theory and practice of flight dynamics with students attending a…
Astronaut Dale Gardner rehearses during EVA practice
NASA Technical Reports Server (NTRS)
1984-01-01
Astronaut Dale A. Gardner, 51-A mission specialist, rehearses control of manned maneuvering unit (MMU) during a practice for an extravehicular activity (EVA). Gardner is in the Shuttle mockup and integration laboratory at JSC. Gardner works to deploy a large stinger device designed for locking onto the orbiting satellites via entering a spent engine's nozzle.
Are Earth System model software engineering practices fit for purpose? A case study.
NASA Astrophysics Data System (ADS)
Easterbrook, S. M.; Johns, T. C.
2009-04-01
We present some analysis and conclusions from a case study of the culture and practices of scientists at the Met Office and Hadley Centre working on the development of software for climate and Earth System models using the MetUM infrastructure. The study examined how scientists think about software correctness, prioritize their requirements in making changes, and develop a shared understanding of the resulting models. We conclude that highly customized techniques driven strongly by scientific research goals have evolved for verification and validation of such models. In a formal software engineering context these represents costly, but invaluable, software integration tests with considerable benefits. The software engineering practices seen also exhibit recognisable features of both agile and open source software development projects - self-organisation of teams consistent with a meritocracy rather than top-down organisation, extensive use of informal communication channels, and software developers who are generally also users and science domain experts. We draw some general conclusions on whether these practices work well, and what new software engineering challenges may lie ahead as Earth System models become ever more complex and petascale computing becomes the norm.
Integration of Language and Cognition at Pre-Conceptual Level
2003-10-04
and cognition at a pre-conceptual level, where conceptual and emotional contents are not differentiated might be interesting for theoretical linguistics and for practical development of understanding-based search engines .
Jiehui Jiang; Yuting Zhang; Mi Zhou; Xiaosong Zheng; Zhuangzhi Yan
2017-07-01
Biomedical Engineering (BME) bachelor education aims to train qualified engineers who devote themselves to addressing biological and medical problems by integrating the technological, medical and biological knowledge. Design thinking and teamwork with other disciplines are necessary for biomedical engineers. In the current biomedical engineering education system of Shanghai University (SHU), however, such design thinking and teamwork through a practical project is lacking. This paper describes a creative "joint assignment" project in Shanghai University, China, which has provided BME bachelor students a two-year practical experience to work with students from multidisciplinary departments including sociology, mechanics, computer sciences, business and art, etc. To test the feasibility of this project, a twenty-month pilot project has been carried out from May 2015 to December 2016. The results showed that this pilot project obviously enhanced competitive power of BME students in Shanghai University, both in the capabilities of design thinking and teamwork.
Exploration Medical Capability System Engineering Introduction and Vision
NASA Technical Reports Server (NTRS)
Mindock, J.; Reilly, J.
2017-01-01
Human exploration missions to beyond low Earth orbit destinations such as Mars will require more autonomous capability compared to current low Earth orbit operations. For the medical system, lack of consumable resupply, evacuation opportunities, and real-time ground support are key drivers toward greater autonomy. Recognition of the limited mission and vehicle resources available to carry out exploration missions motivates the Exploration Medical Capability (ExMC) Element's approach to enabling the necessary autonomy. The Element's work must integrate with the overall exploration mission and vehicle design efforts to successfully provide exploration medical capabilities. ExMC is applying systems engineering principles and practices to accomplish its integrative goals. This talk will briefly introduce the discipline of systems engineering and key points in its application to exploration medical capability development. It will elucidate technical medical system needs to be met by the systems engineering work, and the structured and integrative science and engineering approach to satisfying those needs, including the development of shared mental and qualitative models within and external to the human health and performance community. These efforts are underway to ensure relevancy to exploration system maturation and to establish medical system development that is collaborative with vehicle and mission design and engineering efforts.
ERIC Educational Resources Information Center
Grande, Francisco José Suñé; Witt, Hans Jörg; Avalos, Josep Bonet
2015-01-01
The Escola Tècnica Superior d'Enginyeria Química has a long tradition in the deployment of social competencies in engineering curricula through Integrated Projects (IP) carried out in structured teams. Social competencies are taught and practiced during the development of the IPs. We conceptually introduce a methodology for a 360 degrees…
Applying Model Based Systems Engineering to NASA's Space Communications Networks
NASA Technical Reports Server (NTRS)
Bhasin, Kul; Barnes, Patrick; Reinert, Jessica; Golden, Bert
2013-01-01
System engineering practices for complex systems and networks now require that requirement, architecture, and concept of operations product development teams, simultaneously harmonize their activities to provide timely, useful and cost-effective products. When dealing with complex systems of systems, traditional systems engineering methodology quickly falls short of achieving project objectives. This approach is encumbered by the use of a number of disparate hardware and software tools, spreadsheets and documents to grasp the concept of the network design and operation. In case of NASA's space communication networks, since the networks are geographically distributed, and so are its subject matter experts, the team is challenged to create a common language and tools to produce its products. Using Model Based Systems Engineering methods and tools allows for a unified representation of the system in a model that enables a highly related level of detail. To date, Program System Engineering (PSE) team has been able to model each network from their top-level operational activities and system functions down to the atomic level through relational modeling decomposition. These models allow for a better understanding of the relationships between NASA's stakeholders, internal organizations, and impacts to all related entities due to integration and sustainment of existing systems. Understanding the existing systems is essential to accurate and detailed study of integration options being considered. In this paper, we identify the challenges the PSE team faced in its quest to unify complex legacy space communications networks and their operational processes. We describe the initial approaches undertaken and the evolution toward model based system engineering applied to produce Space Communication and Navigation (SCaN) PSE products. We will demonstrate the practice of Model Based System Engineering applied to integrating space communication networks and the summary of its results and impact. We will highlight the insights gained by applying the Model Based System Engineering and provide recommendations for its applications and improvements.
Statistical Methodologies to Integrate Experimental and Computational Research
NASA Technical Reports Server (NTRS)
Parker, P. A.; Johnson, R. T.; Montgomery, D. C.
2008-01-01
Development of advanced algorithms for simulating engine flow paths requires the integration of fundamental experiments with the validation of enhanced mathematical models. In this paper, we provide an overview of statistical methods to strategically and efficiently conduct experiments and computational model refinement. Moreover, the integration of experimental and computational research efforts is emphasized. With a statistical engineering perspective, scientific and engineering expertise is combined with statistical sciences to gain deeper insights into experimental phenomenon and code development performance; supporting the overall research objectives. The particular statistical methods discussed are design of experiments, response surface methodology, and uncertainty analysis and planning. Their application is illustrated with a coaxial free jet experiment and a turbulence model refinement investigation. Our goal is to provide an overview, focusing on concepts rather than practice, to demonstrate the benefits of using statistical methods in research and development, thereby encouraging their broader and more systematic application.
NASA Astrophysics Data System (ADS)
Butcher, G. J.; Roberts-Harris, D.
2013-12-01
A set of innovative classroom lessons were developed based on informal learning activities in the 'Sensors, Circuits, and Satellites' kit manufactured by littleBits™ Electronics that are designed to lead students through a logical science content storyline about energy using sound and light and fully implements an integrated approach to the three dimensions of the Next Generation of Science Standards (NGSS). This session will illustrate the integration of NGSS into curriculum by deconstructing lesson design to parse out the unique elements of the 3 dimensions of NGSS. We will demonstrate ways in which we have incorporated the NGSS as we believe they were intended. According to the NGSS, 'The real innovation in the NGSS is the requirement that students are required to operate at the intersection of practice, content, and connection. Performance expectations are the right way to integrate the three dimensions. It provides specificity for educators, but it also sets the tone for how science instruction should look in classrooms. (p. 3). The 'Sensors, Circuits, and Satellites' series of lessons accomplishes this by going beyond just focusing on the conceptual knowledge (the disciplinary core ideas) - traditionally approached by mapping lessons to standards. These lessons incorporate the other 2 dimensions -cross-cutting concepts and the 8-practices of Sciences and Engineering-via an authentic and exciting connection to NASA science, thus implementing the NGSS in the way they were designed to be used: practices and content with the crosscutting concepts. When the NGSS are properly integrated, students are engaged in science and engineering content through the coupling of practice, content and connection. In the past, these two dimensions have been separated as distinct entities. We know now that coupling content and practices better demonstrates what goes on in real world science and engineering. We set out to accomplish what is called for in NGSS by integrating these three dimensions to 'provide students with a context for the content of science, how science knowledge is acquired and understood, and how the sciences are connected through concepts that have universal meaning across the disciplines,' which include connections to authentic NASA science (NGSS, pg.2). The NASA context is embedded in the lessons and designed to interest students in Earth and space science. Research suggests that personal interest, experience, and enthusiasm--critical to children's learning of science at school or in other settings-- may also be linked to later educational and career choices. (Framework for K-12 Science Education: Practices, Cross-cutting concepts, Core ideas, p. 28) Students are encouraged to follow their interests, through additional online resources, real world NASA applications, and career connections offering insight to course offerings and possible majors. Combined with the innovative electronic component kit manufactured by littleBits™ Electronics, students are excited and engaged in authentic science and engineering. Sample circuit used in the Sensors, Circuits, and Satellites kit.
The Engineering Design Process: Conceptions Along the Learning-to-Teach Continuum
NASA Astrophysics Data System (ADS)
Iveland, Ashley
In this study, I sought to identify differences in the views and understandings of engineering design among individuals along the learning-to-teach continuum. To do so, I conducted a comprehensive review of literature to determine the various aspects of engineering design described in the fields of professional engineering and engineering education. Additionally, I reviewed literature on the methods used in teaching engineering design at the secondary (grade 7-12) level - to describe the various models used in classrooms, even before the implementation of the Next Generation Science Standards (NGSS Lead States, 2013). Last, I defined four groups along the learning-to-teach continuum: prospective, preservice, and practicing teachers, as well as teacher educators. The context of this study centered around a California public university, including an internship program where undergraduates engaged with practicing mentor teachers in science and engineering teaching at local high schools, and a teacher education program where secondary science preservice teachers and the teacher educators who taught them participated. Interviews were conducted with all participants to gain insights into their views and understandings of engineering design. Prospective and preservice teachers were interviewed multiple times throughout the year and completed concept maps of the engineering design process multiple times as well; practicing teachers and teacher educators were interviewed once. Three levels of analyses were conducted. I identified 30 aspects of engineering discussed by participants. Through phenomenographic methods, I also constructed six conceptual categories for engineering design to organize those aspects most commonly discussed. These categories were combined to demonstrate a participant's view of engineering design (e.g., business focused, human centered, creative, etc.) as well as their complexity of understanding of engineering design overall (the more categories their ideas fit within, the more complex their understanding was thought to be). I found that the most commonly referenced aspects of engineering design were in line with the three main dimensions described in the Next Generation Science Standards (NGSS Lead States, 2013). I also found that the practicing teacher participants overall conveyed the most complex and integrated understandings of engineering design, with the undergraduate, prospective teachers not far behind. One of the most important factors related to a more integrated understanding of engineering design was having formal engineering experience, especially in the form of conducting engineering research or having been a professional engineer. Further, I found that female participants were more likely than their male counterparts to view engineering as having a human element--recognizing the need to collaborate with others throughout the process and the need to think about the potential user of the product the engineer is solving the problem for. These findings suggest that prior experience with engineering, and not experience in the classroom or with engineering education, tends to lead to a deeper, more authentic view of engineering. Finally, I close with a discussion of the overall findings, limitations of the study, potential implications, and future work.
Practical Application of Model-based Programming and State-based Architecture to Space Missions
NASA Technical Reports Server (NTRS)
Horvath, Gregory A.; Ingham, Michel D.; Chung, Seung; Martin, Oliver; Williams, Brian
2006-01-01
Innovative systems and software engineering solutions are required to meet the increasingly challenging demands of deep-space robotic missions. While recent advances in the development of an integrated systems and software engineering approach have begun to address some of these issues, they are still at the core highly manual and, therefore, error-prone. This paper describes a task aimed at infusing MIT's model-based executive, Titan, into JPL's Mission Data System (MDS), a unified state-based architecture, systems engineering process, and supporting software framework. Results of the task are presented, including a discussion of the benefits and challenges associated with integrating mature model-based programming techniques and technologies into a rigorously-defined domain specific architecture.
NASA Astrophysics Data System (ADS)
Probst, Ron N.; Rypka, Dann
2005-09-01
Pre-engineered and manufactured sound isolation rooms were developed to ensure guaranteed sound isolation while offering the unique ability to be disassembled and relocated without loss of acoustic performance. Case studies of pre-engineered sound isolation rooms used for music practice and various radio broadcast purposes are highlighted. Three prominent universities wrestle with the challenges of growth and expansion while responding to the specialized acoustic requirements of these spaces. Reduced state funding for universities requires close examination of all options while ensuring sound isolation requirements are achieved. Changing curriculum, renovation, and new construction make pre-engineered and manufactured rooms with guaranteed acoustical performance good investments now and for the future. An added benefit is the optional integration of active acoustics to provide simulations of other spaces or venues along with the benefit of sound isolation.
Design for reliability: NASA reliability preferred practices for design and test
NASA Technical Reports Server (NTRS)
Lalli, Vincent R.
1994-01-01
This tutorial summarizes reliability experience from both NASA and industry and reflects engineering practices that support current and future civil space programs. These practices were collected from various NASA field centers and were reviewed by a committee of senior technical representatives from the participating centers (members are listed at the end). The material for this tutorial was taken from the publication issued by the NASA Reliability and Maintainability Steering Committee (NASA Reliability Preferred Practices for Design and Test. NASA TM-4322, 1991). Reliability must be an integral part of the systems engineering process. Although both disciplines must be weighed equally with other technical and programmatic demands, the application of sound reliability principles will be the key to the effectiveness and affordability of America's space program. Our space programs have shown that reliability efforts must focus on the design characteristics that affect the frequency of failure. Herein, we emphasize that these identified design characteristics must be controlled by applying conservative engineering principles.
The flying classroom - a cost effective integrated approach to learning and teaching flight dynamics
NASA Astrophysics Data System (ADS)
Bromfield, Michael A.; Belberov, Aleksandar
2017-11-01
In the UK, the Royal Aeronautical Society recommends the inclusion of practical flight exercises for accredited undergraduate aerospace engineering programmes to enhance learning and student experience. The majority of academic institutions teaching aerospace in the UK separate the theory and practice of flight dynamics with students attending a series of lectures supplemented by an intensive one-day flight exercise. Performance and/or handling qualities flight tests are performed in a dedicated aircraft fitted with specialist equipment for the recording and presentation of flight data. This paper describes an innovative approach to better integrate theory and practice and the use of portable Commercial-off-The-Shelf (COTS) technologies to enable a range of standard, unmodified aircraft to be used. The integration of theory and practice has enriched learning and teaching, improved coursework grades and the student experience. The use of COTS and unmodified aircraft has reduced costs and enabled increased student participation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makarov, Yuri V.; Du, Pengwei; Etingov, Pavel V.
This planning reference book is a document reflecting a Western Electricity Coordination Council (WECC) effort to put together multiple sources of information and provide a clear, systemic, comprehensive outline of the problems, both existing and anticipated; their impacts on the system; currently used and proposed solutions by the industry and research community; planning practices; new technologies, equipment, and standards; and expected future trends. This living (periodically updated) document could help WECC and other practicing engineers, especially the younger generation of engineers joining the workforce, to get familiar with a large variety of information related to the integration of variable resourcesmore » into the WECC system, bypassing in part the need for time-consuming information gathering and learning processes from more experienced engineers or from the literature.« less
Dynamic Gate Product and Artifact Generation from System Models
NASA Technical Reports Server (NTRS)
Jackson, Maddalena; Delp, Christopher; Bindschadler, Duane; Sarrel, Marc; Wollaeger, Ryan; Lam, Doris
2011-01-01
Model Based Systems Engineering (MBSE) is gaining acceptance as a way to formalize systems engineering practice through the use of models. The traditional method of producing and managing a plethora of disjointed documents and presentations ("Power-Point Engineering") has proven both costly and limiting as a means to manage the complex and sophisticated specifications of modern space systems. We have developed a tool and method to produce sophisticated artifacts as views and by-products of integrated models, allowing us to minimize the practice of "Power-Point Engineering" from model-based projects and demonstrate the ability of MBSE to work within and supersede traditional engineering practices. This paper describes how we have created and successfully used model-based document generation techniques to extract paper artifacts from complex SysML and UML models in support of successful project reviews. Use of formal SysML and UML models for architecture and system design enables production of review documents, textual artifacts, and analyses that are consistent with one-another and require virtually no labor-intensive maintenance across small-scale design changes and multiple authors. This effort thus enables approaches that focus more on rigorous engineering work and less on "PowerPoint engineering" and production of paper-based documents or their "office-productivity" file equivalents.
Adaptive Systems Engineering: A Medical Paradigm for Practicing Systems Engineering
DOE Office of Scientific and Technical Information (OSTI.GOV)
R. Douglas Hamelin; Ron D. Klingler; Christopher Dieckmann
2011-06-01
From its inception in the defense and aerospace industries, SE has applied holistic, interdisciplinary tools and work-process to improve the design and management of 'large, complex engineering projects.' The traditional scope of engineering in general embraces the design, development, production, and operation of physical systems, and SE, as originally conceived, falls within that scope. While this 'traditional' view has expanded over the years to embrace wider, more holistic applications, much of the literature and training currently available is still directed almost entirely at addressing the large, complex, NASA and defense-sized systems wherein the 'ideal' practice of SE provides the cradle-to-gravemore » foundation for system development and deployment. Under such scenarios, systems engineers are viewed as an integral part of the system and project life-cycle from conception to decommissioning. In far less 'ideal' applications, SE principles are equally applicable to a growing number of complex systems and projects that need to be 'rescued' from overwhelming challenges that threaten imminent failure. The medical profession provides a unique analogy for this latter concept and offers a useful paradigm for tailoring our 'practice' of SE to address the unexpected dynamics of applying SE in the real world. In short, we can be much more effective as systems engineers as we change some of the paradigms under which we teach and 'practice' SE.« less
Image-Directed Fine-needle Aspiration Biopsy of the Thyroid with Safety-engineered Devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sibbitt, Randy R., E-mail: THESIBB2@aol.com; Palmer, Dennis J., E-mail: lyonscreek@aol.com; Sibbitt, Wilmer L., E-mail: wsibbitt@salud.unm.edu
2011-10-15
Purpose: The purpose of the present study was to integrate safety-engineered devices into outpatient fine-needle aspiration (FNA) biopsy of the thyroid in an interventional radiology practice. Materials and Methods: The practice center is a tertiary referral center for image-directed FNA thyroid biopsies in difficult patients referred by the primary care physician, endocrinologist, or otolaryngologist. As a departmental quality of care and safety improvement program, we instituted integration of safety devices into our thyroid biopsy procedures and determined the effect on outcome (procedural pain, diagnostic biopsies, inadequate samples, complications, needlesticks to operator, and physician satisfaction) before institution of safety devices (54more » patients) and after institution of safety device implementation (56 patients). Safety devices included a patient safety technology-the mechanical aspirating syringe (reciprocating procedure device), and a health care worker safety technology (antineedlestick safety needle). Results: FNA of thyroid could be readily performed with the safety devices. Safety-engineered devices resulted in a 49% reduction in procedural pain scores (P < 0.0001), a 56% reduction in significant pain (P < 0.002), a 21% increase in operator satisfaction (P < 0.0001), and a 5% increase in diagnostic specimens (P = 0.5). No needlesticks to health care workers or patient injuries occurred during the study. Conclusions: Safety-engineered devices to improve both patient and health care worker safety can be successfully integrated into diagnostic FNA of the thyroid while maintaining outcomes and improving safety.« less
NASA Astrophysics Data System (ADS)
Minamino, Yoritoshi
Department of Adaptive Machine Systems, Department of Materials and Manufucturing Science and Department of Business engineering have constructed the educational programs of consecutive system from master to doctor courses in graduate school of engineering, “Pioneering Integrated Education and Research Program (PP) ”, to produce volitional and original mind researchers with high abilities of research, internationality, leader, practice, management and economics by cooperation between them for reinforcement of their ordinary curriculums. This program consists of the basic PP for master course students and the international exchange PP, leadership pp and tie-up PP of company and University for Doctor course students. In 2005th the basic PP was given to the master course students and then their effectiveness of the PP was investigated by questionnaire. The results of questionnaire proved that the graduate school students improved their various abilities by the practical lesson in cooperation between companies and our Departments in the basic PP, and that the old boys after basic PP working in companies appreciated the advantages to business planning, original conception, finding solution, patents, discussion, report skills required in companies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCorkle, D.; Yang, C.; Jordan, T.
2007-06-01
Modeling and simulation tools are becoming pervasive in the process engineering practice of designing advanced power generation facilities. These tools enable engineers to explore many what-if scenarios before cutting metal or constructing a pilot scale facility. While such tools enable investigation of crucial plant design aspects, typical commercial process simulation tools such as Aspen Plus®, gPROMS®, and HYSYS® still do not explore some plant design information, including computational fluid dynamics (CFD) models for complex thermal and fluid flow phenomena, economics models for policy decisions, operational data after the plant is constructed, and as-built information for use in as-designed models. Softwaremore » tools must be created that allow disparate sources of information to be integrated if environments are to be constructed where process simulation information can be accessed. At the Department of Energy’s (DOE) National Energy Technology Laboratory (NETL), the Advanced Process Engineering Co-Simulator (APECS) has been developed as an integrated software suite that combines process simulation (e.g., Aspen Plus) and high-fidelity equipment simulation (e.g., Fluent® CFD), together with advanced analysis capabilities including case studies, sensitivity analysis, stochastic simulation for risk/uncertainty analysis, and multi-objective optimization. In this paper, we discuss the initial phases of integrating APECS with the immersive and interactive virtual engineering software, VE-Suite, developed at Iowa State University and Ames Laboratory. VE-Suite utilizes the ActiveX (OLE Automation) controls in Aspen Plus wrapped by the CASI library developed by Reaction Engineering International to run the process simulation and query for unit operation results. This integration permits any application that uses the VE-Open interface to integrate with APECS co-simulations, enabling construction of the comprehensive virtual engineering environment needed for the rapid engineering of advanced power generation facilities.« less
Technology of interdisciplinary open-ended designing in engineering education
NASA Astrophysics Data System (ADS)
Isaev, A. P.; Plotnikov, L. V.; Fomin, N. I.
2017-11-01
Author’s technology of interdisciplinary open-ended engineering is presented in this article. This technology is an integrated teaching method that significantly increases the practical component in the educational program. Author’s technology creates the conditions to overcome the shortcomings in the engineering education. The basic ideas of the technology of open-ended engineering, experience of their implementation in higher education and the author’s vision of the teaching technology are examined in the article. The main stages of development process of the author’s technology of open-ended engineering to prepare students (bachelor) of technical profile are presented in the article. Complex of the methodological tools and procedures is shown in the article. This complex is the basis of the developed training technology that is used in educational process in higher school of engineering (UrFU). The organizational model of the technology of open-ended engineering is presented. Organizational model integrates the functions in the creation and implementation of all educational program. Analysis of the characteristics of educational activity of students working on author’s technology of interdisciplinary open-ended engineering is presented. Intermediate results of the application of author’s technology in the educational process of the engineering undergraduate are shown.
NASA Astrophysics Data System (ADS)
Berry, Ayora
The purpose of this study was to investigate the effects of a curriculum design-based (CDB) professional development model on K-12 teachers' capacity to integrate engineering education in the classroom. This teacher professional development approach differs from other training programs where teachers learn how to use a standard curriculum and adopt it in their classrooms. In a CDB professional development model teachers actively design lessons, student resources, and assessments for their classroom instruction. In other science, technology, engineering and mathematics (STEM) disciplines, CDB professional development has been reported to (a) position teachers as architects of change, (b) provide a professional learning vehicle for educators to reflect on instructional practices and develop content knowledge, (c) inspire a sense of ownership in curriculum decision-making among teachers, and (d) use an instructional approach that is coherent with teachers' interests and professional goals. The CDB professional development program in this study used the Explore-Create-Share (ECS) framework as an instructional model to support teacher-led curriculum design and implementation. To evaluate the impact of the CDB professional development and associated ECS instructional model, three research studies were conducted. In each study, the participants completed a six-month CDB professional development program, the PTC STEM Certificate Program, that included sixty-two instructional contact hours. Participants learned about industry and education engineering concepts, tested engineering curricula, collaborated with K-12 educators and industry professionals, and developed project-based engineering curricula using the ECS framework. The first study evaluated the impact of the CDB professional development program on teachers' engineering knowledge, self-efficacy in designing engineering curriculum, and instructional practice in developing project-based engineering units. The study included twenty-six teachers and data was collected pre-, mid-, and post-program using teacher surveys and a curriculum analysis instrument. The second study evaluated teachers' perceptions of the ECS model as a curriculum authoring tool and the quality of the curriculum units they developed. The study included sixty-two participants and data was collected post-program using teacher surveys and a curriculum analysis instrument. The third study evaluated teachers' experiences implementing ECS units in the classroom with a focus on identifying the benefits, challenges and solutions associated with project-based engineering in the classroom. The study included thirty-one participants and data was collected using an open-ended survey instrument after teachers completed implementation of the ECS curriculum unit. Results of these three studies indicate that teachers can be prepared to integrate engineering in the classroom using a CDB professional development model. Teachers reported an increase in engineering content knowledge, improved their self-efficacy in curriculum planning, and developed high quality instructional units that were aligned to engineering design practices and STEM educational standards. The ECS instructional model was acknowledged as a valuable tool for developing and implementing engineering education in the classroom. Teachers reported that ECS curriculum design aligned with their teaching goals, provided a framework to integrate engineering with other subject-area concepts, and incorporated innovative teaching strategies. After implementing ECS units in the classroom, teachers reported that the ECS model engaged students in engineering design challenges that were situated in a real world context and required the application of interdisciplinary content knowledge and skills. Teachers also reported a number of challenges related to scheduling, content alignment, and access to resources. In the face of these obstacles, teachers presented a number of solutions that included optimization of one's teaching practice, being resource savvy, and adopting a growth mindset.
Knowledge Integration in Global R&D Networks
NASA Astrophysics Data System (ADS)
Erkelens, Rose; van den Hooff, Bart; Vlaar, Paul; Huysman, Marleen
This paper reports a qualitative study conducted at multinational organizations' R&D departments about their process of knowledge integration. Taking into account the knowledge based view (KBV) of the firm and the practice-based view of knowledge, and building on the literatures concerning specialization and integration of knowledge in organizations, we explore which factors may have a significant influence on the integration process of knowledge between R&D units. The findings indicated (1) the contribution of relevant factors influencing knowledge integration processes and (2) a thoughtful balance between engineering and emergent approaches to be helpful in understanding and overcoming knowledge integration issues.
Application of a Sensemaking Approach to Ethics Training in the Physical Sciences and Engineering
NASA Astrophysics Data System (ADS)
Kligyte, Vykinta; Marcy, Richard T.; Waples, Ethan P.; Sevier, Sydney T.; Godfrey, Elaine S.; Mumford, Michael D.; Hougen, Dean F.
2008-06-01
Integrity is a critical determinant of the effectiveness of research organizations in terms of producing high quality research and educating the new generation of scientists. A number of responsible conduct of research (RCR) training programs have been developed to address this growing organizational concern. However, in spite of a significant body of research in ethics training, it is still unknown which approach has the highest potential to enhance researchers' integrity. One of the approaches showing some promise in improving researchers' integrity has focused on the development of ethical decision-making skills. The current effort proposes a novel curriculum that focuses on broad metacognitive reasoning strategies researchers use when making sense of day-to-day social and professional practices that have ethical implications for the physical sciences and engineering. This sensemaking training has been implemented in a professional sample of scientists conducting research in electrical engineering, atmospheric and computer sciences at a large multi-cultural, multi-disciplinary, and multi-university research center. A pre-post design was used to assess training effectiveness using scenario-based ethical decision-making measures. The training resulted in enhanced ethical decision-making of researchers in relation to four ethical conduct areas, namely data management, study conduct, professional practices, and business practices. In addition, sensemaking training led to researchers' preference for decisions involving the application of the broad metacognitive reasoning strategies. Individual trainee and training characteristics were used to explain the study findings. Broad implications of the findings for ethics training development, implementation, and evaluation in the sciences are discussed.
Application of a sensemaking approach to ethics training in the physical sciences and engineering.
Kligyte, Vykinta; Marcy, Richard T; Waples, Ethan P; Sevier, Sydney T; Godfrey, Elaine S; Mumford, Michael D; Hougen, Dean F
2008-06-01
Integrity is a critical determinant of the effectiveness of research organizations in terms of producing high quality research and educating the new generation of scientists. A number of responsible conduct of research (RCR) training programs have been developed to address this growing organizational concern. However, in spite of a significant body of research in ethics training, it is still unknown which approach has the highest potential to enhance researchers' integrity. One of the approaches showing some promise in improving researchers' integrity has focused on the development of ethical decision-making skills. The current effort proposes a novel curriculum that focuses on broad metacognitive reasoning strategies researchers use when making sense of day-to-day social and professional practices that have ethical implications for the physical sciences and engineering. This sensemaking training has been implemented in a professional sample of scientists conducting research in electrical engineering, atmospheric and computer sciences at a large multi-cultural, multi-disciplinary, and multi-university research center. A pre-post design was used to assess training effectiveness using scenario-based ethical decision-making measures. The training resulted in enhanced ethical decision-making of researchers in relation to four ethical conduct areas, namely data management, study conduct, professional practices, and business practices. In addition, sensemaking training led to researchers' preference for decisions involving the application of the broad metacognitive reasoning strategies. Individual trainee and training characteristics were used to explain the study findings. Broad implications of the findings for ethics training development, implementation, and evaluation in the sciences are discussed.
NASA Astrophysics Data System (ADS)
Mejia, Joel Alejandro
Previous studies have suggested that, when funds of knowledge are incorporated into science and mathematics curricula, students are more engaged and often develop richer understandings of scientific concepts. While there has been a growing body of research addressing how teachers may integrate students' linguistic, social, and cultural practices with science and mathematics instruction, very little research has been conducted on how the same can be accomplished with Latino and Latina students in engineering. The purpose of this study was to address this gap in the literature by investigating how fourteen Latino and Latina high school adolescents used their funds of knowledge to address engineering design challenges. This project was intended to enhance the educational experience of underrepresented minorities whose social and cultural practices have been traditionally undervalued in schools. This ethnographic study investigated the funds of knowledge of fourteen Latino and Latina high school adolescents and how they used these funds of knowledge in engineering design. Participant observation, bi-monthly group discussion, retrospective and concurrent protocols, and monthly one-on-one interviews were conducted during the study. A constant comparative analysis suggested that Latino and Latina adolescents, although profoundly underrepresented in engineering, bring a wealth of knowledge and experiences that are relevant to engineering design thinking and practice.
Negotiating science and engineering: an exploratory case study of a reform-minded science teacher
NASA Astrophysics Data System (ADS)
Guzey, S. Selcen; Ring-Whalen, Elizabeth A.
2018-05-01
Engineering has been slowly integrated into K-12 science classrooms in the United States as the result of recent science education reforms. Such changes in science teaching require that a science teacher is confident with and committed to content, practices, language, and cultures related to both science and engineering. However, from the perspective of the science teacher, this would require not only the development of knowledge and pedagogies associated with engineering, but also the construction of new identities operating within the reforms and within the context of their school. In this study, a middle school science teacher was observed and interviewed over a period of nine months to explore his experiences as he adopted new values, discourses, and practices and constructed his identity as a reform-minded science teacher. Our findings revealed that, as the teacher attempted to become a reform-minded science teacher, he constantly negotiated his professional identities - a dynamic process that created conflicts in his classroom practices. Several differences were observed between the teacher's science and engineering instruction: hands-on activities, depth and detail of content, language use, and the way the teacher positioned himself and his students with respect to science and engineering. Implications for science teacher professional development are discussed.
Building inclusive engineering identities: implications for changing engineering culture
NASA Astrophysics Data System (ADS)
Atadero, Rebecca A.; Paguyo, Christina H.; Rambo-Hernandez, Karen E.; Henderson, Heather L.
2018-05-01
Ongoing efforts to broaden the participation of women and people of colour in engineering degree programmes and careers have had limited success. This paper describes a different approach to broadening participation that seeks to work with all students and develop inclusive engineering identities. Researchers worked with the instructors of two first-year engineering courses to integrate curriculum activities designed to promote the formation of engineering identities and build an appreciation for how diversity and inclusion strengthen engineering practice. Multilevel modelling results indicated positive effects of the intervention on appreciation for diversity but no effects on engineering identity, and qualitative results indicated students learned the most about diversity not through one of the intervention activities, but through team projects in the courses. We also describe lessons learned in how to teach engineering students about diversity in ways that are relevant to engineering.
Electronic Design Automation: Integrating the Design and Manufacturing Functions
NASA Technical Reports Server (NTRS)
Bachnak, Rafic; Salkowski, Charles
1997-01-01
As the complexity of electronic systems grows, the traditional design practice, a sequential process, is replaced by concurrent design methodologies. A major advantage of concurrent design is that the feedback from software and manufacturing engineers can be easily incorporated into the design. The implementation of concurrent engineering methodologies is greatly facilitated by employing the latest Electronic Design Automation (EDA) tools. These tools offer integrated simulation of the electrical, mechanical, and manufacturing functions and support virtual prototyping, rapid prototyping, and hardware-software co-design. This report presents recommendations for enhancing the electronic design and manufacturing capabilities and procedures at JSC based on a concurrent design methodology that employs EDA tools.
Handbook of Industrial Engineering Equations, Formulas, and Calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Badiru, Adedeji B; Omitaomu, Olufemi A
The first handbook to focus exclusively on industrial engineering calculations with a correlation to applications, Handbook of Industrial Engineering Equations, Formulas, and Calculations contains a general collection of the mathematical equations often used in the practice of industrial engineering. Many books cover individual areas of engineering and some cover all areas, but none covers industrial engineering specifically, nor do they highlight topics such as project management, materials, and systems engineering from an integrated viewpoint. Written by acclaimed researchers and authors, this concise reference marries theory and practice, making it a versatile and flexible resource. Succinctly formatted for functionality, the bookmore » presents: Basic Math Calculations; Engineering Math Calculations; Production Engineering Calculations; Engineering Economics Calculations; Ergonomics Calculations; Facility Layout Calculations; Production Sequencing and Scheduling Calculations; Systems Engineering Calculations; Data Engineering Calculations; Project Engineering Calculations; and Simulation and Statistical Equations. It has been said that engineers make things while industrial engineers make things better. To make something better requires an understanding of its basic characteristics and the underlying equations and calculations that facilitate that understanding. To do this, however, you do not have to be computational experts; you just have to know where to get the computational resources that are needed. This book elucidates the underlying equations that facilitate the understanding required to improve design processes, continuously improving the answer to the age-old question: What is the best way to do a job?« less
Wang, Baojun; Barahona, Mauricio; Buck, Martin
2013-01-01
Cells perceive a wide variety of cellular and environmental signals, which are often processed combinatorially to generate particular phenotypic responses. Here, we employ both single and mixed cell type populations, pre-programmed with engineered modular cell signalling and sensing circuits, as processing units to detect and integrate multiple environmental signals. Based on an engineered modular genetic AND logic gate, we report the construction of a set of scalable synthetic microbe-based biosensors comprising exchangeable sensory, signal processing and actuation modules. These cellular biosensors were engineered using distinct signalling sensory modules to precisely identify various chemical signals, and combinations thereof, with a quantitative fluorescent output. The genetic logic gate used can function as a biological filter and an amplifier to enhance the sensing selectivity and sensitivity of cell-based biosensors. In particular, an Escherichia coli consortium-based biosensor has been constructed that can detect and integrate three environmental signals (arsenic, mercury and copper ion levels) via either its native two-component signal transduction pathways or synthetic signalling sensors derived from other bacteria in combination with a cell-cell communication module. We demonstrate how a modular cell-based biosensor can be engineered predictably using exchangeable synthetic gene circuit modules to sense and integrate multiple-input signals. This study illustrates some of the key practical design principles required for the future application of these biosensors in broad environmental and healthcare areas. PMID:22981411
NASA Technical Reports Server (NTRS)
Fridge, Ernest M., III; Hiott, Jim; Golej, Jim; Plumb, Allan
1993-01-01
Today's software systems generally use obsolete technology, are not integrated properly with other software systems, and are difficult and costly to maintain. The discipline of reverse engineering is becoming prominent as organizations try to move their systems up to more modern and maintainable technology in a cost effective manner. The Johnson Space Center (JSC) created a significant set of tools to develop and maintain FORTRAN and C code during development of the space shuttle. This tool set forms the basis for an integrated environment to reengineer existing code into modern software engineering structures which are then easier and less costly to maintain and which allow a fairly straightforward translation into other target languages. The environment will support these structures and practices even in areas where the language definition and compilers do not enforce good software engineering. The knowledge and data captured using the reverse engineering tools is passed to standard forward engineering tools to redesign or perform major upgrades to software systems in a much more cost effective manner than using older technologies. The latest release of the environment was in Feb. 1992.
ERIC Educational Resources Information Center
Fick, Sarah J.
2018-01-01
Science education reforms focus on the integration of three dimensions: disciplinary core ideas (DCIs), scientific and engineering practices (SEPs), and crosscutting concepts (CCCs). While research has examined the role of DCIs and SEPs in teaching and learning, little research has explored how the CCCs might be integrated. This research proposes…
Engine System Loads Analysis Compared to Hot-Fire Data
NASA Technical Reports Server (NTRS)
Frady, Gregory P.; Jennings, John M.; Mims, Katherine; Brunty, Joseph; Christensen, Eric R.; McConnaughey, Paul R. (Technical Monitor)
2002-01-01
Early implementation of structural dynamics finite element analyses for calculation of design loads is considered common design practice for high volume manufacturing industries such as automotive and aeronautical industries. However with the rarity of rocket engine development programs starts, these tools are relatively new to the design of rocket engines. In the NASA MC-1 engine program, the focus was to reduce the cost-to-weight ratio. The techniques for structural dynamics analysis practices, were tailored in this program to meet both production and structural design goals. Perturbation of rocket engine design parameters resulted in a number of MC-1 load cycles necessary to characterize the impact due to mass and stiffness changes. Evolution of loads and load extraction methodologies, parametric considerations and a discussion of load path sensitivities are important during the design and integration of a new engine system. During the final stages of development, it is important to verify the results of an engine system model to determine the validity of the results. During the final stages of the MC-1 program, hot-fire test results were obtained and compared to the structural design loads calculated by the engine system model. These comparisons are presented in this paper.
NASA Astrophysics Data System (ADS)
Kennedy, Mike O.
An internship with the Martin Marietta Astronautics Group that was performed in partial fulfillment of the requirements for the Doctor of Engineering degree is documented. The internship included assignments with two Martin Marietta companies, on three different programs and in four areas of engineering. A first-hand look is taken at system engineering, SDI and advanced program management, and the way Martin Marietta conducts business. The five internship objectives were related to assignments in system modeling, system integration, engineering analysis and technical management: (1) The effects of thermally and mechanically induced mirror surface distortions upon the wavefront intensity field of a high energy laser beam passing through the optical train of a space-based laser system were modeled. (2) The restrictive as opposed to the broad interpretation of the 1972 ABM Treaty, and the capability of the Strategic Defense Initiative Zenith Star Program to comply with the Treaty were evaluated. (3) The capability of Martin Marietta to develop an automated analysis system to integrate and analyze Superconducting Super Collider detector designs was investigated. (4) The thermal models that were developed in support of the Small Intercontinental Ballistic Missile flight tests were described. (5) The technical management role of the Product Integrity Engineer assigned to the Zenith Star spacecraft's Beam Control and Transfer Subsystem was discussed. The relationships between the engineering, business, security and social concerns associated with the practice of engineering and the management of programs by a major defense contractor are explored.
Control technology for future aircraft propulsion systems
NASA Technical Reports Server (NTRS)
Zeller, J. R.; Szuch, J. R.; Merrill, W. C.; Lehtinen, B.; Soeder, J. F.
1984-01-01
The need for a more sophisticated engine control system is discussed. The improvements in better thrust-to-weight ratios demand the manipulation of more control inputs. New technological solutions to the engine control problem are practiced. The digital electronic engine control (DEEC) system is a step in the evolution to digital electronic engine control. Technology issues are addressed to ensure a growth in confidence in sophisticated electronic controls for aircraft turbine engines. The need of a control system architecture which permits propulsion controls to be functionally integrated with other aircraft systems is established. Areas of technology studied include: (1) control design methodology; (2) improved modeling and simulation methods; and (3) implementation technologies. Objectives, results and future thrusts are summarized.
ERIC Educational Resources Information Center
Razzouk, Rabieh; Dyehouse, Melissa; Santone, Adam; Carr, Ronald
2014-01-01
Teachers typically teach subjects separately, but integrated science, technology, engineering, and mathematics (STEM) curriculums that focus on real-world practices are gaining momentum (NAE and NRC 2009). Before release of the "Next Generation of Science Standards" ("NGSS") (NGSS Lead States 2013), 36 states already had a…
NASA Technical Reports Server (NTRS)
Peoples, J. A.
1975-01-01
Results are reported which were obtained from a mathematical model of a generalized piston steam engine configuration employing the uniflow principal. The model accounted for the effects of clearance volume, compression work, and release volume. A simple solution is presented which characterizes optimum performance of the steam engine, based on miles per gallon. Development of the mathematical model is presented. The relationship between efficiency and miles per gallon is developed. An approach to steam car analysis and design is presented which has purpose rather than lucky hopefulness. A practical engine design is proposed which correlates to the definition of the type engine used. This engine integrates several system components into the engine structure. All conclusions relate to the classical Rankine Cycle.
Transcendental experiences during meditation practice.
Travis, Frederick
2014-01-01
This article explores transcendental experiences during meditation practice and the integration of transcendental experiences and the unfolding of higher states of consciousness with waking, dreaming, and sleeping. The subject/object relationship during transcendental experiences is characterized by the absence of time, space, and body sense--the framework that gives meaning to waking experiences. Physiologically, transcendental experiences during Transcendental Meditation practice are marked by slow inhalation, along with autonomic orientation at the onset of breath changes and heightened α1 (8-10 Hz) frontal coherence. The integration of transcendental experiences with waking, dreaming, and sleeping is also marked by distinct subjective and objective markers. This integrated state, called Cosmic Consciousness in the Vedic tradition, is subjectively marked by inner self-awareness coexisting with waking, sleeping, and dreaming. Physiologically, Cosmic Consciousness is marked by the coexistence of α1 electroencephalography (EEG) with delta EEG during deep sleep, and higher brain integration, greater emotional stability, and decreased anxiety during challenging tasks. Transcendental experiences may be the engine that fosters higher human development. © 2013 New York Academy of Sciences.
Combined Engineering Education Based on Regional Needs Aiming for Design Education
NASA Astrophysics Data System (ADS)
Hama, Katsumi; Yaegashi, Kosuke; Kobayashi, Junya
The importance of design education that cultivates integrated competences has been suggested in higher educational institutions in fields of engineering in relation to quality assurance of engineering education. However, it is also pointed out to lay stress on cooperative education in collaboration with the community because there is a limit to correspond to the design education only by a group of educational institutions. This paper reports the outline of the practical engineering education, which is executing in the project learning of Hakodate National College of Technology, based on regional needs and the result of the activity as a model of education program for fusion and combination.
1990-06-01
reduction software , prior to converting all remaining test which requires internal compensation. T he r sidual effect is pressures to engineering units...Reduction Conversion of Millivolts to Engineering Units. Carrying out numerical integrations to obtain area and mass weighted averages for various...Performance Assessment of Aircraft Turbine Engines and Components (Les MWthodes Recommande’es pour la Mesure de la Pression et de ]a Temperature de la
Human Systems Integration (HSI) Practitioner's Guide
NASA Technical Reports Server (NTRS)
Zumbado, Jennifer Rochlis
2015-01-01
The NASA/SP-2015-3709, Human Systems Integration (HSI) Practitioner's Guide, also known as the "HSIPG," provides a tool for implementing HSI activities within the NASA systems engineering framework. The HSIPG is written to aid the HSI practitioner engaged in a program or project (P/P), and serves as a knowledge base to allow the practitioner to step into an HSI lead or team member role for NASA missions. Additionally, this HSIPG is written to address the role of HSI in the P/P management and systems engineering communities and aid their understanding of the value added by incorporating good HSI practices into their programs and projects. Through helping to build a community of knowledgeable HSI practitioners, this document also hopes to build advocacy across the Agency for establishing strong, consistent HSI policies and practices. Human Systems Integration (HSI) has been successfully adopted (and adapted) by several federal agencies-most notably the U.S. Department of Defense (DoD) and the Nuclear Regulatory Commission (NRC)-as a methodology for reducing system life cycle costs (LCCs). These cost savings manifest themselves due to reductions in required numbers of personnel, the practice of human-centered design, decreased reliance on specialized skills for operations, shortened training time, efficient logistics and maintenance, and fewer safety-related risks and mishaps due to unintended human/system interactions. The HSI process for NASA establishes how cost savings and mission success can be realized through systems engineering. Every program or project has unique attributes. This HSIPG is not intended to provide one-size-fits-all recommendations for HSI implementation. Rather, HSI processes should be tailored to the size, scope, and goals of individual situations. The instructions and processes identified here are best used as a starting point for implementing human-centered system concepts and designs across programs and projects of varying types, including manned and unmanned, human spaceflight, aviation, robotics, and environmental science missions. The practitioner using this guide should have expertise in Systems Engineering or other disciplines involved in producing systems with anticipated human interactions. (See section 1.6 of this guide for further discussion on HSI discipline domains.) The HSIPG provides an "HSI layer" to the NASA Systems Engineering Engine (SEE), detailed in NASA Procedural Requirement (NPR) 7123.1B, NASA Systems Engineering Processes and Requirements, and further explained in NASA/SP-2007-6105, Systems Engineering Handbook (see HSIPG Table 2.2-1, NASA Documents with HSI Content, for specific references and document versions).
NASA Technical Reports Server (NTRS)
Fridge, Ernest M., III
1991-01-01
Today's software systems generally use obsolete technology, are not integrated properly with other software systems, and are difficult and costly to maintain. The discipline of reverse engineering is becoming prominent as organizations try to move their systems up to more modern and maintainable technology in a cost effective manner. JSC created a significant set of tools to develop and maintain FORTRAN and C code during development of the Space Shuttle. This tool set forms the basis for an integrated environment to re-engineer existing code into modern software engineering structures which are then easier and less costly to maintain and which allow a fairly straightforward translation into other target languages. The environment will support these structures and practices even in areas where the language definition and compilers do not enforce good software engineering. The knowledge and data captured using the reverse engineering tools is passed to standard forward engineering tools to redesign or perform major upgrades to software systems in a much more cost effective manner than using older technologies. A beta vision of the environment was released in Mar. 1991. The commercial potential for such re-engineering tools is very great. CASE TRENDS magazine reported it to be the primary concern of over four hundred of the top MIS executives.
ERIC Educational Resources Information Center
Boardman, D.
1979-01-01
Practical experience has shown that computer aided design programs can provide an invaluable aid in the learning process when integrated into the syllabus in lecture and laboratory periods. This should be a major area of future development of computer assisted learning in engineering education. (Author/CMV)
NASA Astrophysics Data System (ADS)
Al-Zubaidy, Sarim; Abdulaziz, Nidhal; Dashtpour, Reza
2012-08-01
Recent scholarship references indicate that integration of the student body can result in an enhanced learning experience for students and also greater satisfaction. This paper reports the results of a case study whereby mechanical engineering students studying at a newly established branch campus in Dubai of a British university were exposed to vertical and horizontal integration. Different activities have been embedded to ensure that students integrated and worked together with their peers and colleagues at different levels. The implemented processes and practices led to improved academic achievements, which were better than those of a similar cohort of students where no effort had been made to integrate. The analysis revealed that cooperative learning and the degree of academic support provided by teachers are positively and directly correlated with academic as well as the students' own sense of personal achievement. The results are discussed in light of previous research and with reference to the cultural context of the study.
NASA Astrophysics Data System (ADS)
Mentzer, Mark A.
Recent advances in the theoretical and practical design and applications of optoelectronic devices and optical circuits are examined in reviews and reports. Topics discussed include system and market considerations, guided-wave phenomena, waveguide devices, processing technology, lithium niobate devices, and coupling problems. Consideration is given to testing and measurement, integrated optics for fiber-optic systems, optical interconnect technology, and optical computing.
Reasons and resources for being explicit about the practices of science
NASA Astrophysics Data System (ADS)
Egger, A. E.
2015-12-01
The Next Generation Science Standards (NGSS) promote a fundamental shift in the way science is taught. The new focus is on three-dimensional learning, which brings science and engineering practices together with disciplinary core ideas and cross-cutting concepts. A key component is performance expectations rather than bullet lists of content that students should know. One of the stated goals is that "all students should have sufficient knowledge of science and engineering to engage in public discussions on related issues." While the NGSS were developed for K-12, college instructors benefit from familiarity with them in two critical ways: first, they provide a research-based and clearly articulated approach to three-dimensional learning that applies across the grade spectrum, and second, future K-12 teachers are sitting in their college-level science courses, and awareness of the skills those future teachers need can help direct course design. More specifically, while most college-level science courses make use of the science and engineering practices described in the NGSS, few offer explicit instruction in them or how they intertwine with disciplinary core ideas and cross-cutting concepts. Yet this explicit instruction is critical to building scientific literacy in future teachers—and all students. Many textbooks and laboratory courses limit a discussion of the process of science to one chapter or exercise, and expect students to be able to apply those concepts. In contrast, new resources from Visionlearning (http://www.visionlearning.com), InTeGrate (http://serc.carleton.edu/integrate), and other projects hosted at the Science Education Resource Center (http://serc.carleton.edu) were developed with explicit and pervasive integration of the nature and practices of science in mind. These freely available, classroom-tested and reviewed resources support instructors in introductory/general education courses as well as teacher preparation and more advanced courses.
NASA Astrophysics Data System (ADS)
Chung, Kunook; Sui, Jingyang; Demory, Brandon; Ku, Pei-Cheng
2017-07-01
Additive color mixing across the visible spectrum was demonstrated from an InGaN based light-emitting diode (LED) pixel comprising red, green, and blue subpixels monolithically integrated and enabled by local strain engineering. The device was fabricated using a top-down approach on a metal-organic chemical vapor deposition-grown sample consisting of a typical LED epitaxial stack. The three color subpixels were defined in a single lithographic step. The device was characterized for its electrical properties and emission spectra under an uncooled condition, which is desirable in practical applications. The color mixing was controlled by pulse-width modulation, and the degree of color control was also characterized.
Engineering development studies for integrated evacuated CPC arrays
NASA Astrophysics Data System (ADS)
Winston, R.
1982-04-01
An evacuated tube concentrator which achieves respectable high temperature performance (100 C to 300 C) was developed. The design concept utilizes nonimaging CPC type concentration integrated into each tube by shaping the outer glass vacuum envelope. The detailed design, prototype fabrication and preliminary test measurements are reviewed. In addition the results of this first study specifically devoted to engineering development questions related to practical applications of this collector concept are summarized. Questions having to do with the deployment of medium to large area arrays, optimizations of the manifolding of individual tube panels, selected near term applications (with an emphasis on residential cooling based on Rankine driven chillers) and long term performance projections are addressed.
On the engineering design for systematic integration of agent-orientation in industrial automation.
Yu, Liyong; Schüller, Andreas; Epple, Ulrich
2014-09-01
In today's automation industry, agent-oriented development of system functionalities appears to have a great potential for increasing autonomy and flexibility of complex operations, while lowering the workload of users. In this paper, we present a reference model for the harmonious and systematical integration of agent-orientation in industrial automation. Considering compatibility with existing automation systems and best practice, this model combines advantages of function block technology, service orientation and native description methods from the automation standard IEC 61131-3. This approach can be applied as a guideline for the engineering design of future agent-oriented automation systems. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Interactive Media and Simulation Tools for Technical Training
NASA Technical Reports Server (NTRS)
Gramoll, Kurt
1997-01-01
Over the last several years, integration of multiple media sources into a single information system has been rapidly developing. It has been found that when sound, graphics, text, animations, and simulations are skillfully integrated, the sum of the parts exceeds the individual parts for effective learning. In addition, simulations can be used to design and understand complex engineering processes. With the recent introduction of many high-level authoring, animation, modeling, and rendering programs for personal computers, significant multimedia programs can be developed by practicing engineers, scientists and even managers for both training and education. However, even with these new tools, a considerable amount of time is required to produce an interactive multimedia program. The development of both CD-ROM and Web-based programs are discussed in addition to the use of technically oriented animations. Also examined are various multimedia development tools and how they are used to develop effective engineering education courseware. Demonstrations of actual programs in engineering mechanics are shown.
ERIC Educational Resources Information Center
Pike, Lisa; Rentsch, Jeremy
2017-01-01
This math activity focuses on experimental design while connecting math with life science. It is important that the science and engineering practices (SEPs) are not taught as a separate "unit" but integrated within the curriculum wherever possible. The focus is on experimental design to teach animal behavior. Students predict and test…
ASSIP Study of Real-Time Safety-Critical Embedded Software-Intensive System Engineering Practices
2008-02-01
and assessment 2. product engineering processes 3. tooling processes 6 | CMU/SEI-2008-SR-001 Slide 1 Process Standards IEC/ ISO 12207 Software...and technical effort to align with 12207 IEC/ ISO 15026 System & Software Integrity Levels Generic Safety SAE ARP 4754 Certification Considerations...Process Frameworks in revision – ISO 9001, ISO 9004 – ISO 15288/ ISO 12207 harmonization – RTCA DO-178B, MOD Standard UK 00-56/3, … • Methods & Tools
AGU:Comments Requested on Natural Hazards Position Statement
NASA Astrophysics Data System (ADS)
2004-11-01
Natural hazards (earthquakes, floods, hurricanes, landslides, meteors, space weather, tornadoes, volcanoes, and other geophysical phenomena) are an integral component of our dynamic planet. These can have disastrous effects on vulnerable communities and ecosystems. By understanding how and where hazards occur, what causes them, and what circumstances increase their severity, we can develop effective strategies to reduce their impact. In practice, mitigating hazards requires addressing issues such as real-time monitoring and prediction, emergency preparedness, public education and awareness, post-disaster recovery, engineering, construction practices, land use, and building codes. Coordinated approaches involving scientists, engineers, policy makers, builders, lenders, insurers, news media, educators, relief organizations, and the public are therefore essential to reducing the adverse effects of natural hazards.
Experiencing production ramp-up education for engineers
NASA Astrophysics Data System (ADS)
Bassetto, S.; Fiegenwald, V.; Cholez, C.; Mangione, F.
2011-08-01
This paper presents a game of industrialisation, based on a paper airplane, that mimics real world production ramp-up and blends classical engineering courses together. It is based on a low cost product so that it can be mass produced. The game targets graduate students and practitioners in engineering fields. For students, it offers an experiment in which methods learned in separate courses can be applied. For practitioners, it affords an opportunity to engage in reflexive practices related to industrialisation. Both students and practitioners are able to experience integrated management, required by industrialisation, in a controlled environment: the laboratory.
Zero to Integration in Eight Months, the Dawn Ground Data System Engineering Challange
NASA Technical Reports Server (NTRS)
Dubon, Lydia P.
2006-01-01
The Dawn Project has presented the Ground Data System (GDS) with technical challenges driven by cost and schedule constraints commonly associated with National Aeronautics and Space Administration (NASA) Discovery Projects. The Dawn mission consists of a new and exciting Deep Space partnership among: the Jet Propulsion Laboratory (JPL), responsible for project management and flight operations; Orbital Sciences Corporation (OSC), spacecraft builder and responsible for flight system test and integration; and the University of California, at Los Angeles (UCLA), responsible for science planning and operations. As a cost-capped mission, one of Dawn s implementation strategies is to leverage from both flight and ground heritage. OSC's ground data system is used for flight system test and integration as part of the flight heritage strategy. Mission operations, however, are to be conducted with JPL s ground system. The system engineering challenge of dealing with two heterogeneous ground systems emerged immediately. During the first technical interchange meeting between the JPL s GDS Team and OSC's Flight Software Team, August 2003, the need to integrate the ground system with the flight software was brought to the table. This need was driven by the project s commitment to enable instrument engineering model integration in a spacecraft simulator environment, for both demonstration and risk mitigation purposes, by April 2004. This paper will describe the system engineering approach that was undertaken by JPL's GDS Team in order to meet the technical challenge within a non-negotiable eight-month schedule. Key to the success was adherence to an overall systems engineering process and fundamental systems engineering practices: decomposition of the project request into manageable requirements; definition of a structured yet flexible development process; integration of multiple ground disciplines and experts into a focused team effort; in-process risk management; and aggregation of the intermediate products to an integrated final product. In addition, this paper will highlight the role of lessons learned from the integration experience. The lessons learned from an early GDS deployment have served as the foundation for the design and implementation of the Dawn Ground Data System.
NASA Technical Reports Server (NTRS)
Jellicorse, John J.; Rahman, Shamin A.
2016-01-01
NASA is currently developing the next generation crewed spacecraft and launch vehicle for exploration beyond earth orbit including returning to the Moon and making the transit to Mars. Managing the design integration of major hardware elements of a space transportation system is critical for overcoming both the technical and programmatic challenges in taking a complex system from concept to space operations. An established method of accomplishing this is formal interface management. In this paper we set forth an argument that the interface management process implemented by NASA between the Orion Multi-Purpose Crew Vehicle (MPCV) and the Space Launch System (SLS) achieves the Level 3 tier of the EIA 731.1 System Engineering Capability Model (SECM) for Generic Practices. We describe the relevant NASA systems and associated organizations, and define the EIA SECM Level 3 Generic Practices. We then provide evidence for our compliance with those practices. This evidence includes discussions of: NASA Systems Engineering Interface (SE) Management standard process and best practices; the tailoring of that process for implementation on the Orion to SLS interface; changes made over time to improve the tailored process, and; the opportunities to take the resulting lessons learned and propose improvements to our institutional processes and best practices. We compare this evidence against the practices to form the rationale for the declared SECM maturity level.
DOE Office of Scientific and Technical Information (OSTI.GOV)
none,
The C370 Program was awarded in October 2010 with the ambitious goal of designing and testing the most electrically efficient recuperated microturbine engine at a rated power of less than 500 kW. The aggressive targets for electrical efficiency, emission regulatory compliance, and the estimated price point make the system state-of-the-art for microturbine engine systems. These goals will be met by designing a two stage microturbine engine identified as the low pressure spool and high pressure spool that are based on derivative hardware of Capstone’s current commercially available engines. The development and testing of the engine occurred in two phases. Phasemore » I focused on developing a higher power and more efficient engine, that would become the low pressure spool which is based on Capstone’s C200 (200kW) engine architecture. Phase II integrated the low pressure spool created in Phase I with the high pressure spool, which is based on Capstone’s C65 (65 kW) commercially available engine. Integration of the engines, based on preliminary research, would allow the dual spool engine to provide electrical power in excess of 370 kW, with electrical efficiency approaching 42%. If both of these targets were met coupled with the overall CHP target of 85% total combined heating and electrical efficiency California Air Resources Board (CARB) level emissions, and a price target of $600 per kW, the system would represent a step change in the currently available commercial generation technology. Phase I of the C370 program required the development of the C370 low pressure spool. The goal was to increase the C200 engine power by a minimum of 25% — 250 kW — and efficiency from 32% to 37%. These increases in the C200 engine output were imperative to meet the power requirements of the engine when both spools were integrated. An additional benefit of designing and testing the C370 low pressure spool was the possibility of developing a stand-alone product for possible commercialization. The low pressure spool design activity focused on an aeropath derivative of the current C200 engine. The aeropath derivative included changes to the compressor section —compressor and inducer — and to the turbine nozzle. The increased power also necessitated a larger, more powerful generator and generator controller to support the increased power requirements. These two major design changes were completed by utilizing both advanced 3D modeling and computational fluid dynamics modelling. After design, modeling, and analysis, the decision was made to acquire and integrate the components for testing. The second task of Phase I was to integrate and test the components of the low pressure spool to validate power and efficiency. Acquisition of the components for the low pressure spool was completed utilizing Capstone’s current supplier base. Utilization of Capstone’s supply base for integration of the test article would allow — if the decision was made —expedited commercialization of the product. After integration of the engine components, the engine was tested and evaluated for performance and emissions. Test data analysis confirmed that the engine met all power and efficiency requirements and did so while maintaining CARB level emissions. The emissions were met without the use of any post processing or catalyst. After testing was completed, the DOE authorized — via a milestone review — proceeding to Phase II: the development of the integrated C370 engine. The C370 high pressure spool design activity required significant changes to the C65 engine architecture. The engine required a high power density generator, completely redesigned compressor stage, turbine section, recuperator, controls architecture, and intercooler stage asThe two most critical design challenges were the turbine section (the nozzle and turbine) and the controls architecture. The design and analysis of all of the components was completed and integrated into a system model. The system model — after numerous iterations — indicated that, once integrated, the engine will meet or exceed all system requirements. Unfortunately, the turbine section’s life requirements remain a technical challenge and will require continued refinement of the bi-metallic turbine wheel design and manufacturing approach to meet the life requirement at theses high temperatures. The current controls architecture requires substantial effort to develop a system capable of handling the high-speed, near real-time controls requirement, but it was determined not to be a technical roadblock for the project. The C370 Program has been a significant effort with state-of-the-art technical targets. The targets have pushed Capstone’s designers to the limits of current technology. The program has been fortunate to see many successes: the successful testing of the low pressure spool (C250), the development of new material processes, and the implementation of new design practices. The technology and practices learned during the program will be utilized in Capstone’s current product lines and future products. The C370 Program has been a resounding success on many fronts for the DOE and for Capstone.« less
Communicating Microbiology Concepts from Multiple Contexts through Poster Presentations.
Gruss, Amy Borello
2018-01-01
Accredited environmental engineering degrees require graduates to be able to apply their scholarship to concepts of professional practice and design. This transferable skill of relating what you learn in one setting to another situation is vital for all professions, not just engineering. A course project involving designing and presenting a professional poster was implemented to enhance student mastery in Environmental Engineering Microbiology while also developing communication and transferable skills vital for all majors. Students were asked to read a contemporary non-fiction book relating to microbiology and expand upon the book's thesis by integrating course content, news articles, and peer-reviewed journal articles. They then were required to present this information in class using a professional poster. Students felt the project allowed them to synthesize and organize information, analyze ideas, and integrate ideas from various sources. These transferable skills are vital for students and professionals alike to be able to communicate advanced information and master a topic.
Performance Benefits for Wave Rotor-Topped Gas Turbine Engines
NASA Technical Reports Server (NTRS)
Jones, Scott M.; Welch, Gerard E.
1996-01-01
The benefits of wave rotor-topping in turboshaft engines, subsonic high-bypass turbofan engines, auxiliary power units, and ground power units are evaluated. The thermodynamic cycle performance is modeled using a one-dimensional steady-state code; wave rotor performance is modeled using one-dimensional design/analysis codes. Design and off-design engine performance is calculated for baseline engines and wave rotor-topped engines, where the wave rotor acts as a high pressure spool. The wave rotor-enhanced engines are shown to have benefits in specific power and specific fuel flow over the baseline engines without increasing turbine inlet temperature. The off-design steady-state behavior of a wave rotor-topped engine is shown to be similar to a conventional engine. Mission studies are performed to quantify aircraft performance benefits for various wave rotor cycle and weight parameters. Gas turbine engine cycles most likely to benefit from wave rotor-topping are identified. Issues of practical integration and the corresponding technical challenges with various engine types are discussed.
ERIC Educational Resources Information Center
Wallace, Carolyn S.; Coffey, Debra
2016-01-01
The "Next Generation Science Standards'" ("NGSS") eight scientific and engineering practices invite teachers to develop key investigative skills while addressing important disciplinary science ideas (NGSS Lead States 2013). The "NGSS" can also provide direct links to "Common Core English Language Arts…
Cases on STEAM Education in Practice
ERIC Educational Resources Information Center
Bazler, Judith, Ed.; Van Sickle, Meta, Ed.
2017-01-01
Curriculums for STEM education programs have been successfully implemented into numerous school systems for many years. Recently, the integration of arts education into such programs has proven to be significantly beneficial to students, resulting in a new method of teaching including science, technology, engineering, art, and mathematics.…
Transformative Learning: Innovating Sustainability Education in Built Environment
ERIC Educational Resources Information Center
Iyer-Raniga, Usha; Andamon, Mary Myla
2016-01-01
Purpose: This paper aims to evaluate how transformative learning is key to innovating sustainability education in the built environment in the region's universities, in addition to reporting on the research project undertaken to integrate sustainability thinking and practice into engineering/built environment curricula in Asia-Pacific…
Riley, Erin M; Hattaway, Holly Z; Felse, P Arthur
2017-01-01
Electronic lab notebooks (ELNs) are better equipped than paper lab notebooks (PLNs) to handle present-day life science and engineering experiments that generate large data sets and require high levels of data integrity. But limited training and a lack of workforce with ELN knowledge have restricted the use of ELN in academic and industry research laboratories which still rely on cumbersome PLNs for recordkeeping. We used LabArchives, a cloud-based ELN in our bioprocess engineering lab course to train students in electronic record keeping, good documentation practices (GDPs), and data integrity. Implementation of ELN in the bioprocess engineering lab course, an analysis of user experiences, and our development actions to improve ELN training are presented here. ELN improved pedagogy and learning outcomes of the lab course through stream lined workflow, quick data recording and archiving, and enhanced data sharing and collaboration. It also enabled superior data integrity, simplified information exchange, and allowed real-time and remote monitoring of experiments. Several attributes related to positive user experiences of ELN improved between the two subsequent years in which ELN was offered. Student responses also indicate that ELN is better than PLN for compliance. We demonstrated that ELN can be successfully implemented in a lab course with significant benefits to pedagogy, GDP training, and data integrity. The methods and processes presented here for ELN implementation can be adapted to many types of laboratory experiments.
Cooperative control theory and integrated flight and propulsion control
NASA Technical Reports Server (NTRS)
Schmidt, David K.; Schierman, John D.
1994-01-01
This report documents the activities and research results obtained under a grant (NAG3-998) from the NASA Lewis Research Center. The focus of the research was the investigation of dynamic interactions between airframe and engines for advanced ASTOVL aircraft configurations, and the analysis of the implications of these interactions on the stability and performance of the airframe and engine control systems. In addition, the need for integrated flight and propulsion control for such aircraft was addressed. The major contribution of this research was the exposition of the fact that airframe and engine interactions could be present, and their effects could include loss of stability and performance of the control systems. Also, the significance of two directional, as opposed to one-directional, coupling was identified and explained. A multi variable stability and performance analysis methodology was developed, and applied to several candidate aircraft configurations. Also exposed was the fact that with interactions present along with some integrated control approaches, the engine command/limiting logic (which represents an important non-linear component of the engine control system) can impact closed-loop airframe/engine system stability. Finally, a brief investigation of control-law synthesis techniques appropriate for the class of systems was pursued, and it was determined that multi variable techniques, included model-following formulations of LQG and/or H (infinity) methods showed promise. However, for practical reasons, decentralized control architectures are preferred, which is an architecture incompatible with these synthesis methods.
STEM Integration: Solids, CAD, and 3D Printers
ERIC Educational Resources Information Center
Fujiwara, Yujiro
2018-01-01
While many students may struggle to make sense of a mathematical formula and its practical implications, they can benefit greatly from an intuitive visualization and the engineering application of the topic. Effective STEM programs create clear connections at least with two subject areas, which translates into an enhanced student learning…
Teaching Cell and Molecular Biology for Gender Equity
ERIC Educational Resources Information Center
Sible, Jill C.; Wilhelm, Dayna E.; Lederman, Muriel
2006-01-01
Science, technology, engineering, and math (STEM) fields, including cell biology, are characterized by the "leaky pipeline" syndrome in which, over time, women leave the discipline. The pipeline itself and the pond into which it empties may not be neutral. Explicating invisible norms, attitudes, and practices by integrating social…
Microwave and radiofrequency techniques for clinical hyperthermia.
Cheung, A. Y.
1982-01-01
Biological and practical constraints on the use of clinical hyperthermia for the management of cancer are discussed. Commonly used electromagnetic techniques for producing clinical hyperthermia are reviewed and compared. Innovative engineering designs leading to the realization of an integrated, safe and reliable clinical hyperthermia system are also presented. PMID:6950753
Supporting Three-Dimensional Science Learning: The Role of Curiosity-Driven Classroom Discourse
ERIC Educational Resources Information Center
Johnson, Wendy Renae
2017-01-01
The National Research Council's "Framework for K-12 Science Education" (2011) presents a new vision for science education that calls for the integration of the three dimensions of science learning: science and engineering practices, crosscutting concepts, and disciplinary core ideas. Unlike previous conceptions of science learning that…
Ecohydrological processes and ecosystem services in the Anthropocene: a review
Ge Sun; Dennis Hallema; Heidi Asbjornsen
2017-01-01
The framework for ecosystem services has been increasingly used in integrated watershed ecosystem management practices that involve scientists, engineers, managers, and policy makers. The objective of this review is to explore the intimate connections between ecohydrological processes and water-related ecosystem services in human-dominated ecosystems in the...
Taking Stock: Existing Resources for Assessing a New Vision of Science Learning
ERIC Educational Resources Information Center
Alonzo, Alicia C.; Ke, Li
2016-01-01
A new vision of science learning described in the "Next Generation Science Standards"--particularly the science and engineering practices and their integration with content--pose significant challenges for large-scale assessment. This article explores what might be learned from advances in large-scale science assessment and…
The Promise and the Promises of Making in Science Education
ERIC Educational Resources Information Center
Bevan, Bronwyn
2017-01-01
"Making" is a rapidly emerging form of educational practice that involves the design, construction, testing, and revision of a wide variety of objects, using high and low technologies, and integrating a range of disciplines including art, science, engineering, and mathematics. It has garnered widespread interest and support in both…
75 FR 56477 - Technical Amendments for Marine Spark-Ignition Engines and Vessels
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-16
... spillage, incorporating safe recommended practices will result in a net benefit to the environment and lead... portable fuel tanks to these new requirements, manufacturers working together on systems integration.... We have engaged the industry to identify a simple, safe, and emissions neutral solution to this...
Combining Instructionist and Constructionist Learning in a Virtual Biotech Lab.
ERIC Educational Resources Information Center
Dawabi, Peter; Wessner, Martin
The background of this paper is an internal research project at the German National Research Center for Information Technology, Integrated Publication and Information Systems Institute, (GMD-IPSI) dealing with software engineering, computer-supported cooperative learning (CSCL) and practical biotech knowledge. The project goal is to develop a…
Design-based online teacher professional development to introduce integration of STEM in Pakistan
NASA Astrophysics Data System (ADS)
Anwar, Tasneem
In today's global society where innovations spread rapidly, the escalating focus on science, technology, engineering and mathematics (STEM) has quickly intensified in the United States, East Asia and much of Western Europe. Our ever-changing, increasingly global society faces many multidisciplinary problems, and many of the solutions require the integration of multiple science, technology, engineering, and mathematics (STEM) concepts. Thus, there is a critical need to explore the integration of STEM subjects in international education contexts. This dissertation study examined the exploration of integration of STEM in the unique context of Pakistan. This study used three-phase design-based methodological framework derived from McKenney and Reeves (2012) to explore the development of a STEM focused online teacher professional development (oTPD-STEM) and to identify the design features that facilitate teacher learning. The oTPD-STEM program was designed to facilitate eight Pakistani elementary school teachers' exploration of the new idea of STEM integration through both practical and theoretical considerations. This design-based study employed inductive analysis (Strauss and Corbin, 1998) to analyze multiple data sources of interviews, STEM perception responses, reflective learning team conversations, pre-post surveys and artifacts produced in oTPD-STEM. Findings of this study are presented as: (1) design-based decisions for oTPD-STEM, and (2) evolution in understanding of STEM by sharing participant teachers' STEM model for Pakistani context. This study advocates for the potential of school-wide oTPD for interdisciplinary collaboration through support for learner-centered practices.
Convolving engineering and medical pedagogies for training of tomorrow's health care professionals.
Lee, Raphael C
2013-03-01
Several fundamental benefits justify why biomedical engineering and medicine should form a more convergent alliance, especially for the training of tomorrow's physicians and biomedical engineers. Herein, we review the rationale underlying the benefits. Biological discovery has advanced beyond the era of molecular biology well into today's era of molecular systems biology, which focuses on understanding the rules that govern the behavior of complex living systems. This has important medical implications. To realize cost-effective personalized medicine, it is necessary to translate the advances in molecular systems biology to higher levels of biological organization (organ, system, and organismal levels) and then to develop new medical therapeutics based on simulation and medical informatics analysis. Higher education in biological and medical sciences must adapt to a new set of training objectives. This will involve a shifting away from reductionist problem solving toward more integrative, continuum, and predictive modeling approaches which traditionally have been more associated with engineering science. Future biomedical engineers and MDs must be able to predict clinical response to therapeutic intervention. Medical education will involve engineering pedagogies, wherein basic governing rules of complex system behavior and skill sets in manipulating these systems to achieve a practical desired outcome are taught. Similarly, graduate biomedical engineering programs will include more practical exposure to clinical problem solving.
Development of Next Generation Synthetic Biology Tools for Use in Streptomyces venezuelae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phelan, Ryan M.; Sachs, Daniel; Petkiewicz, Shayne J.
Streptomyces have a rich history as producers of important natural products and this genus of bacteria has recently garnered attention for its potential applications in the broader context of synthetic biology. However, the dearth of genetic tools available to control and monitor protein production precludes rapid and predictable metabolic engineering that is possible in hosts such as Escherichia coli or Saccharomyces cerevisiae. In an effort to improve genetic tools for Streptomyces venezuelae, we developed a suite of standardized, orthogonal integration vectors and an improved method to monitor protein production in this host. These tools were applied to characterize heterologous promotersmore » and various attB chromosomal integration sites. A final study leveraged the characterized toolset to demonstrate its use in producing the biofuel precursor bisabolene using a chromosomally integrated expression system. In conclusion, these tools advance S. venezuelae to be a practical host for future metabolic engineering efforts.« less
Bai, Xiao-ping; Zhang, Xi-wei
2013-01-01
Selecting construction schemes of the building engineering project is a complex multiobjective optimization decision process, in which many indexes need to be selected to find the optimum scheme. Aiming at this problem, this paper selects cost, progress, quality, and safety as the four first-order evaluation indexes, uses the quantitative method for the cost index, uses integrated qualitative and quantitative methodologies for progress, quality, and safety indexes, and integrates engineering economics, reliability theories, and information entropy theory to present a new evaluation method for building construction project. Combined with a practical case, this paper also presents detailed computing processes and steps, including selecting all order indexes, establishing the index matrix, computing score values of all order indexes, computing the synthesis score, sorting all selected schemes, and making analysis and decision. Presented method can offer valuable references for risk computing of building construction projects.
Integrating open-source software applications to build molecular dynamics systems.
Allen, Bruce M; Predecki, Paul K; Kumosa, Maciej
2014-04-05
Three open-source applications, NanoEngineer-1, packmol, and mis2lmp are integrated using an open-source file format to quickly create molecular dynamics (MD) cells for simulation. The three software applications collectively make up the open-source software (OSS) suite known as MD Studio (MDS). The software is validated through software engineering practices and is verified through simulation of the diglycidyl ether of bisphenol-a and isophorone diamine (DGEBA/IPD) system. Multiple simulations are run using the MDS software to create MD cells, and the data generated are used to calculate density, bulk modulus, and glass transition temperature of the DGEBA/IPD system. Simulation results compare well with published experimental and numerical results. The MDS software prototype confirms that OSS applications can be analyzed against real-world research requirements and integrated to create a new capability. Copyright © 2014 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Modesitt, Kenneth L.
1990-01-01
Since 1984, an effort has been underway at Rocketdyne, manufacturer of the Space Shuttle Main Engine (SSME), to automate much of the analysis procedure conducted after engine test firings. Previously published articles at national and international conferences have contained the context of and justification for this effort. Here, progress is reported in building the full system, including the extensions of integrating large databases with the system, known as Scotty. Inductive knowledge acquisition has proven itself to be a key factor in the success of Scotty. The combination of a powerful inductive expert system building tool (ExTran), a relational data base management system (Reliance), and software engineering principles and Computer-Assisted Software Engineering (CASE) tools makes for a practical, useful and state-of-the-art application of an expert system.
NASA Technical Reports Server (NTRS)
Menrad, Robert J.; Larson, Wiley J.
2008-01-01
This paper shares the findings of NASA's Integrated Learning and Development Program (ILDP) in its effort to reinvigorate the HANDS-ON practice of space systems engineering and project/program management through focused coursework, training opportunities, on-the job learning and special assignments. Prior to March 2005, NASA responsibility for technical workforce development (the program/project manager, systems engineering, discipline engineering, discipline engineering and associated communities) was executed by two parallel organizations. In March 2005 these organizations merged. The resulting program-ILDP-was chartered to implement an integrated competency-based development model capable of enhancing NASA's technical workforce performance as they face the complex challenges of Earth science, space science, aeronautics and human spaceflight missions. Results developed in collaboration with NASA Field Centers are reported on. This work led to definition of the agency's first integrated technical workforce development model known as the Requisite Occupation Competence and Knowledge (the ROCK). Critical processes and products are presented including: 'validation' techniques to guide model development, the Design-A-CUrriculuM (DACUM) process, and creation of the agency's first systems engineering body-of-knowledge. Findings were validated via nine focus groups from industry and government, validated with over 17 space-related organizations, at an estimated cost exceeding $300,000 (US). Masters-level programs and training programs have evolved to address the needs of these practitioner communities based upon these results. The ROCK reintroduced rigor and depth to the practitioner's development in these critical disciplines enabling their ability to take mission concepts from imagination to reality.
The Dawning of the Ethics of Environmental Robots.
van Wynsberghe, Aimee; Donhauser, Justin
2017-10-23
Environmental scientists and engineers have been exploring research and monitoring applications of robotics, as well as exploring ways of integrating robotics into ecosystems to aid in responses to accelerating environmental, climatic, and biodiversity changes. These emerging applications of robots and other autonomous technologies present novel ethical and practical challenges. Yet, the critical applications of robots for environmental research, engineering, protection and remediation have received next to no attention in the ethics of robotics literature to date. This paper seeks to fill that void, and promote the study of environmental robotics. It provides key resources for further critical examination of the issues environmental robots present by explaining and differentiating the sorts of environmental robotics that exist to date and identifying unique conceptual, ethical, and practical issues they present.
System Engineering of Aerospace and Advanced Technology Programs at AN Astronautics Company
NASA Astrophysics Data System (ADS)
Kennedy, Mike O.
The purpose of this Record of Study is to document an internship with the Martin Marietta Astronautics Group in Denver, Colorado that was performed in partial fulfillment of the requirements for the Doctor of Engineering degree at Texas A&M University, and to demonstrate that the internship objectives have been met. The internship included assignments with two Martin Marietta companies, on three different programs and in four areas of engineering. The Record of Study takes a first-hand look at system engineering, SDI and advanced program management, and the way Martin Marietta conducts business. The five internship objectives were related to assignments in system modeling, system integration, engineering analysis and technical management. In support of the first objective, the effects of thermally and mechanically induced mirror surface distortions upon the wavefront intensity field of a high energy laser beam passing through the optical train of a space-based laser system were modeled. To satisfy the second objective, the restrictive as opposed to the broad interpretation of the 1972 ABM Treaty, and the capability of the Strategic Defense Initiative Zenith Star Program to comply with the Treaty were evaluated. For the third objective, the capability of Martin Marietta to develop an automated analysis system to integrate and analyze Superconducting Super Collider detector designs was investigated. For the fourth objective, the thermal models that were developed in support of the Small Intercontinental Ballistic Missile flight tests were described. And in response to the fifth objective, the technical management role of the Product Integrity Engineer assigned to the Zenith Star spacecraft's Beam Control and Transfer Subsystem was discussed. This Record of Study explores the relationships between the engineering, business, security and social concerns associated with the practice of engineering and the management of programs by a major defense contractor.
25th anniversary article: key points for high-mobility organic field-effect transistors.
Dong, Huanli; Fu, Xiaolong; Liu, Jie; Wang, Zongrui; Hu, Wenping
2013-11-20
Remarkable progress has been made in developing high performance organic field-effect transistors (OFETs) and the mobility of OFETs has been approaching the values of polycrystalline silicon, meeting the requirements of various electronic applications from electronic papers to integrated circuits. In this review, the key points for development of high mobility OFETs are highlighted from aspects of molecular engineering, process engineering and interface engineering. The importance of other factors, such as impurities and testing conditions is also addressed. Finally, the current challenges in this field for practical applications of OFETs are further discussed. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Burcham, Frank W., Jr.; Gilyard, Glenn B.; Myers, Lawrence P.
1990-01-01
Integration of propulsion and flight control systems and their optimization offers significant performance improvements. Research programs were conducted which have developed new propulsion and flight control integration concepts, implemented designs on high-performance airplanes, demonstrated these designs in flight, and measured the performance improvements. These programs, first on the YF-12 airplane, and later on the F-15, demonstrated increased thrust, reduced fuel consumption, increased engine life, and improved airplane performance; with improvements in the 5 to 10 percent range achieved with integration and with no changes to hardware. The design, software and hardware developments, and testing requirements were shown to be practical.
Mechatronics education at Virginia Tech
NASA Astrophysics Data System (ADS)
Bay, John S.; Saunders, William R.; Reinholtz, Charles F.; Pickett, Peter; Johnston, Lee
1998-12-01
The advent of more complex mechatronic systems in industry has introduced new opportunities for entry-level and practicing engineers. Today, a select group of engineers are reaching out to be more knowledgeable in a wide variety of technical areas, both mechanical and electrical. A new curriculum in mechatronics developed at Virginia Tech is starting to bring students from both the mechanical and electrical engineering departments together, providing them wit an integrated perspective on electromechanical technologies and design. The course is cross-listed and team-taught by faculty from both departments. Students from different majors are grouped together throughout the course, each group containing at least one mechanical and one electrical engineering student. This gives group members the ability to learn from one another while working on labs and projects.
Advanced active health monitoring system of liquid rocket engines
NASA Astrophysics Data System (ADS)
Qing, Xinlin P.; Wu, Zhanjun; Beard, Shawn; Chang, Fu-Kuo
2008-11-01
An advanced SMART TAPE system has been developed for real-time in-situ monitoring and long term tracking of structural integrity of pressure vessels in liquid rocket engines. The practical implementation of the structural health monitoring (SHM) system including distributed sensor network, portable diagnostic hardware and dedicated data analysis software is addressed based on the harsh operating environment. Extensive tests were conducted on a simulated large booster LOX-H2 engine propellant duct to evaluate the survivability and functionality of the system under the operating conditions of typical liquid rocket engines such as cryogenic temperature, vibration loads. The test results demonstrated that the developed SHM system could survive the combined cryogenic temperature and vibration environments and effectively detect cracks as small as 2 mm.
NASA Astrophysics Data System (ADS)
Bowles, C.
2013-12-01
Ecological engineering, or eco engineering, is an emerging field in the study of integrating ecology and engineering, concerned with the design, monitoring, and construction of ecosystems. According to Mitsch (1996) 'the design of sustainable ecosystems intends to integrate human society with its natural environment for the benefit of both'. Eco engineering emerged as a new idea in the early 1960s, and the concept has seen refinement since then. As a commonly practiced field of engineering it is relatively novel. Howard Odum (1963) and others first introduced it as 'utilizing natural energy sources as the predominant input to manipulate and control environmental systems'. Mtisch and Jorgensen (1989) were the first to define eco engineering, to provide eco engineering principles and conceptual eco engineering models. Later they refined the definition and increased the number of principles. They suggested that the goals of eco engineering are: a) the restoration of ecosystems that have been substantially disturbed by human activities such as environmental pollution or land disturbance, and b) the development of new sustainable ecosystems that have both human and ecological values. Here a more detailed overview of eco engineering is provided, particularly with regard to how engineers and ecologists are utilizing multi-dimensional computational models to link ecology and engineering, resulting in increasingly successful project implementation. Descriptions are provided pertaining to 1-, 2- and 3-dimensional hydrodynamic models and their use at small- and large-scale applications. A range of conceptual models that have been developed to aid the in the creation of linkages between ecology and engineering are discussed. Finally, several case studies that link ecology and engineering via computational modeling are provided. These studies include localized stream rehabilitation, spawning gravel enhancement on a large river system, and watershed-wide floodplain modeling of the Sacramento River Valley.
Reflexive Principlism as an Effective Approach for Developing Ethical Reasoning in Engineering.
Beever, Jonathan; Brightman, Andrew O
2016-02-01
An important goal of teaching ethics to engineering students is to enhance their ability to make well-reasoned ethical decisions in their engineering practice: a goal in line with the stated ethical codes of professional engineering organizations. While engineering educators have explored a wide range of methodologies for teaching ethics, a satisfying model for developing ethical reasoning skills has not been adopted broadly. In this paper we argue that a principlist-based approach to ethical reasoning is uniquely suited to engineering ethics education. Reflexive Principlism is an approach to ethical decision-making that focuses on internalizing a reflective and iterative process of specification, balancing, and justification of four core ethical principles in the context of specific cases. In engineering, that approach provides structure to ethical reasoning while allowing the flexibility for adaptation to varying contexts through specification. Reflexive Principlism integrates well with the prevalent and familiar methodologies of reasoning within the engineering disciplines as well as with the goals of engineering ethics education.
Quiet Clean Short-haul Experimental Engine (QCSEE) composite fan frame design report
NASA Technical Reports Server (NTRS)
Mitchell, S. C.
1978-01-01
An advanced composite frame which is flight-weight and integrates the functions of several structures was developed for the over the wing (OTW) engine and for the under the wing (UTW) engine. The composite material system selected as the basic material for the frame is Type AS graphite fiber in a Hercules 3501 epoxy resin matrix. The frame was analyzed using a finite element digital computer program. This program was used in an iterative fashion to arrive at practical thicknesses and ply orientations to achieve a final design that met all strength and stiffness requirements for critical conditions. Using this information, the detail design of each of the individual parts of the frame was completed and released. On the basis of these designs, the required tooling was designed to fabricate the various component parts of the frame. To verify the structural integrity of the critical joint areas, a full-scale test was conducted on the frame before engine testing. The testing of the frame established critical spring constants and subjected the frame to three critical load cases. The successful static load test was followed by 153 and 58 hours respectively of successful running on the UTW and OTW engines.
Zero to Integration in Eight Months, the Dawn Ground Data System Engineering Challenge
NASA Technical Reports Server (NTRS)
Dubon, Lydia P.
2006-01-01
The Dawn Project has presented the Ground Data System (GDS) with technical challenges driven by cost and schedule constraints commonly associated with National Aeronautics and Space Administration (NASA) Discovery Projects. The Dawn mission consists of a new and exciting Deep Space partnership among: the Jet Propulsion Laboratory (JPL), manages the project and is responsible for flight operation; Orbital Sciences Corporation (OSC), is the spacecraft builder and is responsible for flight system test and integration; and the University of California, at Los Angeles (UCLA), is responsible for science planning and operations. As a cost-capped mission, one of Dawn's implementation strategies is to leverage from both flight and ground heritage. OSC's ground data system is used for flight system test and integration as part of the flight heritage strategy. Mission operations, however, are to be conducted with JPL's ground system. The system engineering challenge of dealing with two heterogeneous ground systems emerged immediately. During the first technical interchange meeting between the JPL's GDS Team and OSC's Flight Software Team, August 2003, the need to integrate the ground system with the flight software was brought to the table. This need was driven by the project's commitment to enable instrument engineering model integration in a spacecraft simulator environment, for both demonstration and risk mitigation purposes, by April 2004. This paper will describe the system engineering approach that was undertaken by JPL's GDS Team in order to meet the technical challenge within a non-negotiable eight-month schedule. Key to the success was adherence to fundamental systems engineering practices: decomposition of the project request into manageable requirements; integration of multiple ground disciplines and experts into a focused team effort; definition of a structured yet flexible development process; definition of an in-process risk reduction plan; and aggregation of the intermediate products to an integrated final product. In addition, this paper will highlight the role of lessons learned from the integration experience. The lessons learned from an early GDS deployment have served as the foundation for the design and implementation of the Dawn Ground Data System.
Development and Application of an Integrated Approach toward NASA Airspace Systems Research
NASA Technical Reports Server (NTRS)
Barhydt, Richard; Fong, Robert K.; Abramson, Paul D.; Koenke, Ed
2008-01-01
The National Aeronautics and Space Administration's (NASA) Airspace Systems Program is contributing air traffic management research in support of the 2025 Next Generation Air Transportation System (NextGen). Contributions support research and development needs provided by the interagency Joint Planning and Development Office (JPDO). These needs generally call for integrated technical solutions that improve system-level performance and work effectively across multiple domains and planning time horizons. In response, the Airspace Systems Program is pursuing an integrated research approach and has adapted systems engineering best practices for application in a research environment. Systems engineering methods aim to enable researchers to methodically compare different technical approaches, consider system-level performance, and develop compatible solutions. Systems engineering activities are performed iteratively as the research matures. Products of this approach include a demand and needs analysis, system-level descriptions focusing on NASA research contributions, system assessment and design studies, and common systemlevel metrics, scenarios, and assumptions. Results from the first systems engineering iteration include a preliminary demand and needs analysis; a functional modeling tool; and initial system-level metrics, scenario characteristics, and assumptions. Demand and needs analysis results suggest that several advanced concepts can mitigate demand/capacity imbalances for NextGen, but fall short of enabling three-times current-day capacity at the nation s busiest airports and airspace. Current activities are focusing on standardizing metrics, scenarios, and assumptions, conducting system-level performance assessments of integrated research solutions, and exploring key system design interfaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hillmer, Kurt T.
This report focuses on the detection and control of radioactive contamination, which are an integral part of an aggressive ALARA program and provide an indication of the effectiveness of engineering controls and proper work practices in preventing the release of radioactive material. Radioactive contamination, if undetected or not properly controlled, can be spread and contaminate areas, equipment, personnel, and the environment.
ERIC Educational Resources Information Center
Hudson, Peter; English, Lyn; Dawes, Les; King, Donna; Baker, Steve
2015-01-01
Science, technology, engineering, and mathematics (STEM) education is an emerging initiative in Australia, particularly in primary schools. This qualitative research aimed to understand Year 4 students' involvement in an integrated STEM education unit that focused on science concepts (e.g., states of matter, testing properties of materials) and…
Orbiter Entry Aerothermodynamics Practical Engineering and Applied Research
NASA Technical Reports Server (NTRS)
Campbell, Charles H.
2009-01-01
The contents include: 1) Organization of the Orbiter Entry Aeroheating Working Group; 2) Overview of the Principal RTF Aeroheating Tools Utilized for Tile Damage Assessment; 3) Description of the Integrated Tile Damage Assessment Team Analyses Process; 4) Space Shuttle Flight Support Process; and 5) JSC Applied Aerosciences and CFD Branch Applied Research Interests.
STEM Images Revealing STEM Conceptions of Pre-Service Chemistry and Mathematics Teachers
ERIC Educational Resources Information Center
Akaygun, Sevil; Aslan-Tutak, Fatma
2016-01-01
Science, technology, engineering, and mathematics (STEM) education has been an integral part of many countries' educational policies. In last decade, various practices have been implemented to make STEM areas valuable for 21st century generation. These actions require reconsideration of both pre- and in-service teacher education because those who…
ERIC Educational Resources Information Center
Rodriguez-Sanchez, M. C.; Torrado-Carvajal, Angel; Vaquero, Joaquin; Borromeo, Susana; Hernandez-Tamames, Juan A.
2016-01-01
This paper presents a case study analyzing the advantages and disadvantages of using project-based learning (PBL) combined with collaborative learning (CL) and industry best practices, integrated with information communication technologies, open-source software, and open-source hardware tools, in a specialized microcontroller and embedded systems…
Wang, Chuan; Ryu, Koungmin; Badmaev, Alexander; Zhang, Jialu; Zhou, Chongwu
2011-02-22
Complementary metal-oxide semiconductor (CMOS) operation is very desirable for logic circuit applications as it offers rail-to-rail swing, larger noise margin, and small static power consumption. However, it remains to be a challenging task for nanotube-based devices. Here in this paper, we report our progress on metal contact engineering for n-type nanotube transistors and CMOS integrated circuits using aligned carbon nanotubes. By using Pd as source/drain contacts for p-type transistors, small work function metal Gd as source/drain contacts for n-type transistors, and evaporated SiO(2) as a passivation layer, we have achieved n-type transistor, PN diode, and integrated CMOS inverter with an air-stable operation. Compared with other nanotube n-doping techniques, such as potassium doping, PEI doping, hydrazine doping, etc., using low work function metal contacts for n-type nanotube devices is not only air stable but also integrated circuit fabrication compatible. Moreover, our aligned nanotube platform for CMOS integrated circuits shows significant advantage over the previously reported individual nanotube platforms with respect to scalability and reproducibility and suggests a practical and realistic approach for nanotube-based CMOS integrated circuit applications.
Developing Systems Engineering Skills Through NASA Summer Intern Project
NASA Technical Reports Server (NTRS)
Bhasin, Kul; Barritt, Brian; Golden, Bert; Knoblock, Eric; Matthews, Seth; Warner, Joe
2010-01-01
During the Formulation phases of the NASA Project Life Cycle, communication systems engineers are responsible for designing space communication links and analyzing their performance to ensure that the proposed communication architecture is capable of satisfying high-level mission requirements. Senior engineers with extensive experience in communications systems perform these activities. However, the increasing complexity of space systems coupled with the current shortage of communications systems engineers has led to an urgent need for expedited training of new systems engineers. A pilot program, in which college-bound high school and undergraduate students studying various engineering disciplines are immersed in NASA s systems engineering practices, was conceived out of this need. This rapid summerlong training approach is feasible because of the availability of advanced software and technology tools and the students inherent ability to operate such tools. During this pilot internship program, a team of college-level and recently-hired engineers configured and utilized various software applications in the design and analysis of communication links for a plausible lunar sortie mission. The approach taken was to first design the direct-to-Earth communication links for the lunar mission elements, then to design the links between lunar surface and lunar orbital elements. Based on the data obtained from these software applications, an integrated communication system design was realized and the students gained valuable systems engineering knowledge. This paper describes this approach to rapidly training college-bound high school and undergraduate engineering students from various disciplines in NASA s systems engineering practices and tools. A summary of the potential use of NASA s emerging systems engineering internship program in broader applications is also described.
Usability Prediction & Ranking of SDLC Models Using Fuzzy Hierarchical Usability Model
NASA Astrophysics Data System (ADS)
Gupta, Deepak; Ahlawat, Anil K.; Sagar, Kalpna
2017-06-01
Evaluation of software quality is an important aspect for controlling and managing the software. By such evaluation, improvements in software process can be made. The software quality is significantly dependent on software usability. Many researchers have proposed numbers of usability models. Each model considers a set of usability factors but do not cover all the usability aspects. Practical implementation of these models is still missing, as there is a lack of precise definition of usability. Also, it is very difficult to integrate these models into current software engineering practices. In order to overcome these challenges, this paper aims to define the term `usability' using the proposed hierarchical usability model with its detailed taxonomy. The taxonomy considers generic evaluation criteria for identifying the quality components, which brings together factors, attributes and characteristics defined in various HCI and software models. For the first time, the usability model is also implemented to predict more accurate usability values. The proposed system is named as fuzzy hierarchical usability model that can be easily integrated into the current software engineering practices. In order to validate the work, a dataset of six software development life cycle models is created and employed. These models are ranked according to their predicted usability values. This research also focuses on the detailed comparison of proposed model with the existing usability models.
Knowledge management through the e-learning approach - a case study of online engineering courses
NASA Astrophysics Data System (ADS)
Aichouni, Mohamed; Benchicou, Soraya; Nehari, Dris
2013-06-01
Though it is universally accepted that the face-to-face approach is the best way for education and training, however, with the advent of the information and communication technologies (mainly the World Wide Web) it became possible to enhance further the methods we are using to teach our students and to share the teaching material within a broaden engineering, technical and business communities. This paper is dedicated to making a review of the basic concepts of knowledge management and e-learning and to show how these two modern concepts can be integrated into engineering education to produce knowledge, disseminate it and share it within virtual interest groups and networks of engineering students, academic teachers and industrial engineers and technicians and business managers. A practical case study will be presented and discussed.
A Systematic Literature Review of US Engineering Ethics Interventions.
Hess, Justin L; Fore, Grant
2018-04-01
Promoting the ethical formation of engineering students through the cultivation of their discipline-specific knowledge, sensitivity, imagination, and reasoning skills has become a goal for many engineering education programs throughout the United States. However, there is neither a consensus throughout the engineering education community regarding which strategies are most effective towards which ends, nor which ends are most important. This study provides an overview of engineering ethics interventions within the U.S. through the systematic analysis of articles that featured ethical interventions in engineering, published in select peer-reviewed journals, and published between 2000 and 2015. As a core criterion, each journal article reviewed must have provided an overview of the course as well as how the authors evaluated course-learning goals. In sum, 26 articles were analyzed with a coding scheme that included 56 binary items. The results indicate that the most common methods for integrating ethics into engineering involved exposing students to codes/standards, utilizing case studies, and discussion activities. Nearly half of the articles had students engage with ethical heuristics or philosophical ethics. Following the presentation of the results, this study describes in detail four articles to highlight less common but intriguing pedagogical methods and evaluation techniques. The findings indicate that there is limited empirical work on ethics education within engineering across the United States. Furthermore, due to the large variation in goals, approaches, and evaluation methods described across interventions, this study does not detail "best" practices for integrating ethics into engineering. The science and engineering education community should continue exploring the relative merits of different approaches to ethics education in engineering.
Cell Engineering and Molecular Pharming for Biopharmaceuticals
Abdullah, M.A; Rahmah, Anisa ur; Sinskey, A.J; Rha, C.K
2008-01-01
Biopharmaceuticals are often produced by recombinant E. coli or mammalian cell lines. This is usually achieved by the introduction of a gene or cDNA coding for the protein of interest into a well-characterized strain of producer cells. Naturally, each recombinant production system has its own unique advantages and disadvantages. This paper examines the current practices, developments, and future trends in the production of biopharmaceuticals. Platform technologies for rapid screening and analyses of biosystems are reviewed. Strategies to improve productivity via metabolic and integrated engineering are also highlighted. PMID:19662143
The Role of Computers in Research and Development at Langley Research Center
NASA Technical Reports Server (NTRS)
Wieseman, Carol D. (Compiler)
1994-01-01
This document is a compilation of presentations given at a workshop on the role cf computers in research and development at the Langley Research Center. The objectives of the workshop were to inform the Langley Research Center community of the current software systems and software practices in use at Langley. The workshop was organized in 10 sessions: Software Engineering; Software Engineering Standards, methods, and CASE tools; Solutions of Equations; Automatic Differentiation; Mosaic and the World Wide Web; Graphics and Image Processing; System Design Integration; CAE Tools; Languages; and Advanced Topics.
Communicating Microbiology Concepts from Multiple Contexts through Poster Presentations †
2018-01-01
Accredited environmental engineering degrees require graduates to be able to apply their scholarship to concepts of professional practice and design. This transferable skill of relating what you learn in one setting to another situation is vital for all professions, not just engineering. A course project involving designing and presenting a professional poster was implemented to enhance student mastery in Environmental Engineering Microbiology while also developing communication and transferable skills vital for all majors. Students were asked to read a contemporary non-fiction book relating to microbiology and expand upon the book’s thesis by integrating course content, news articles, and peer-reviewed journal articles. They then were required to present this information in class using a professional poster. Students felt the project allowed them to synthesize and organize information, analyze ideas, and integrate ideas from various sources. These transferable skills are vital for students and professionals alike to be able to communicate advanced information and master a topic. PMID:29904521
Geo-Engineering through Internet Informatics (GEMINI)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watney, W. Lynn; Doveton, John H.; Victorine, John R.
GEMINI will resolve reservoir parameters that control well performance; characterize subtle reservoir properties important in understanding and modeling hydrocarbon pore volume and fluid flow; expedite recognition of bypassed, subtle, and complex oil and gas reservoirs at regional and local scale; differentiate commingled reservoirs; build integrated geologic and engineering model based on real-time, iterate solutions to evaluate reservoir management options for improved recovery; provide practical tools to assist the geoscientist, engineer, and petroleum operator in making their tasks more efficient and effective; enable evaluations to be made at different scales, ranging from individual well, through lease, field, to play and regionmore » (scalable information infrastructure); and provide training and technology transfer to evaluate capabilities of the client.« less
Managing MDO Software Development Projects
NASA Technical Reports Server (NTRS)
Townsend, J. C.; Salas, A. O.
2002-01-01
Over the past decade, the NASA Langley Research Center developed a series of 'grand challenge' applications demonstrating the use of parallel and distributed computation and multidisciplinary design optimization. All but the last of these applications were focused on the high-speed civil transport vehicle; the final application focused on reusable launch vehicles. Teams of discipline experts developed these multidisciplinary applications by integrating legacy engineering analysis codes. As teams became larger and the application development became more complex with increasing levels of fidelity and numbers of disciplines, the need for applying software engineering practices became evident. This paper briefly introduces the application projects and then describes the approaches taken in project management and software engineering for each project; lessons learned are highlighted.
An application of object-oriented knowledge representation to engineering expert systems
NASA Technical Reports Server (NTRS)
Logie, D. S.; Kamil, H.; Umaretiya, J. R.
1990-01-01
The paper describes an object-oriented knowledge representation and its application to engineering expert systems. The object-oriented approach promotes efficient handling of the problem data by allowing knowledge to be encapsulated in objects and organized by defining relationships between the objects. An Object Representation Language (ORL) was implemented as a tool for building and manipulating the object base. Rule-based knowledge representation is then used to simulate engineering design reasoning. Using a common object base, very large expert systems can be developed, comprised of small, individually processed, rule sets. The integration of these two schemes makes it easier to develop practical engineering expert systems. The general approach to applying this technology to the domain of the finite element analysis, design, and optimization of aerospace structures is discussed.
Engineering Geodesy - Definition and Core Competencies
NASA Astrophysics Data System (ADS)
Kuhlmann, Heiner; Schwieger, Volker; Wieser, Andreas; Niemeier, Wolfgang
2014-11-01
This article summarises discussions concerning the definition of "engineering geodesy" within the German Geodetic Commission. It is noted that engineering geodesy by means of its tasks, methods and characteristics is an application-oriented science whose research questions often arise from observed phenomena or from unsolved practical problems. In particular it is characterised by the professional handling of geometry-related problems in a cost-effective manner that includes comprehensive quality assessment at all phases of the problem solution - from planning through measurement to data processing and interpretation. The current methodical developments are primarily characterised by the increasing integration of the measurement and analysis into challenging construction, production and monitoring processes as well as by the transition to spatially continuous methods. A modern definition of engineering geodesy is proposed at the end of this article.
[Development of a medical equipment support information system based on PDF portable document].
Cheng, Jiangbo; Wang, Weidong
2010-07-01
According to the organizational structure and management system of the hospital medical engineering support, integrate medical engineering support workflow to ensure the medical engineering data effectively, accurately and comprehensively collected and kept in electronic archives. Analyse workflow of the medical, equipment support work and record all work processes by the portable electronic document. Using XML middleware technology and SQL Server database, complete process management, data calculation, submission, storage and other functions. The practical application shows that the medical equipment support information system optimizes the existing work process, standardized and digital, automatic and efficient orderly and controllable. The medical equipment support information system based on portable electronic document can effectively optimize and improve hospital medical engineering support work, improve performance, reduce costs, and provide full and accurate digital data
[Research-oriented experimental course of plant cell and gene engineering for undergraduates].
Xiaofei, Lin; Rong, Zheng; Morigen, Morigen
2015-04-01
Research-oriented comprehensive experimental course for undergraduates is an important part for their training of innovation. We established an optional course of plant cell and gene engineering for undergraduates using our research platform. The course is designed to study the cellular and molecular basis and experimental techniques for plant tissue culture, isolation and culture of protoplast, genetic transformation, and screening and identification of transgenic plants. To develop undergraduates' ability in experimental design and operation, and inspire their interest in scientific research and innovation consciousness, we integrated experimental teaching and practice in plant genetic engineering on the tissue, cellular, and molecular levels. Students in the course practiced an experimental teaching model featured by two-week teaching of principles, independent experimental design and bench work, and ready-to-access laboratory. In this paper, we describe the contents, methods, evaluation system and a few issues to be solved in this course, as well as the general application and significance of the research-oriented experimental course in reforming undergraduates' teaching and training innovative talents.
Teachers' Integration of Scientific and Engineering Practices in Primary Classrooms
NASA Astrophysics Data System (ADS)
Merritt, Eileen G.; Chiu, Jennie; Peters-Burton, Erin; Bell, Randy
2017-06-01
The Next-Generation Science Standards (NGSS) challenge primary teachers and students to work and think like scientists and engineers as they strive to understand complex concepts. Teachers and teacher educators can leverage what is already known about inquiry teaching as they plan instruction to help students meet the new standards. This cross-case analysis of a multiple case study examined teacher practices in the context of a semester-long professional development course for elementary teachers. We reviewed lessons and teacher reflections, examining how kindergarten and first grade teachers incorporated NGSS scientific and engineering practices during inquiry-based instruction. We found that most of the teachers worked with their students on asking questions; planning and carrying out investigations; analyzing and interpreting data, using mathematics and computational thinking; and obtaining, evaluating and communicating information. Teachers faced challenges in supporting students in developing their own questions that could be investigated and using data collection strategies that aligned with students' development of number sense concepts. Also, some teachers overemphasized the scientific method and lacked clarity in how they elicited and responded to student predictions. Discussion focuses on teacher supports that will be needed as states transition to NGSS.
ERIC Educational Resources Information Center
Pacurar, Ecaterina; Abbas, Nargis
2015-01-01
This research investigates the effective use of Digital Work Environment (DWE) in France. A theoretical framework based on the pedagogical engineering approach is used to propose an hypothetical model, which results in an explained variable of intention for the pedagogical use of an educational technology. The sex, the teaching disciplines, the…
ERIC Educational Resources Information Center
Ceberio, Mikel; Almudí, José Manuel; Franco, Ángel
2016-01-01
In recent years, interactive computer simulations have been progressively integrated in the teaching of the sciences and have contributed significant improvements in the teaching-learning process. Practicing problem-solving is a key factor in science and engineering education. The aim of this study was to design simulation-based problem-solving…
Dynamic Performance Evaluation of PV Integration
NASA Astrophysics Data System (ADS)
Gao, Ruilin; Jiang, Anwen; Chen, Hongjin
2018-03-01
Topics on adaptability of Grid-connected photovoltaic systems (GCPVS) under sag conditions has been proposed. A basic low-voltage-ride-through (LVRT) strategy widely used in engineering practice is taken in this paper and manages to ride through different sag conditions. The role of hardware protection has been discussed in detail. By simulation validated that the proposed GCPVS have strong adaptability
ERIC Educational Resources Information Center
Hart, Jeni
2016-01-01
This paper traces the workplace practices within which mid-career women faculty in science, technology, engineering, and mathematics (STEM) carry out their careers. Findings from this case study of 25 faculty at one research university revealed three institutional processes that constrained their careers: (a) access to and integration into career…
ERIC Educational Resources Information Center
Vajravelu, Kuppalapalle; Muhs, Tammy
2016-01-01
Successful science and engineering programs require proficiency and dynamics in mathematics classes to enhance the learning of complex subject matter with a sufficient amount of practical problem solving. Improving student performance and retention in mathematics classes requires inventive approaches. At the University of Central Florida (UCF) the…
ERIC Educational Resources Information Center
Gray, Phyllis; Rule, Audrey C.; Gentzsch, Anneliese; Tallakson, Denise A.
2016-01-01
This practical article describes an arts-integrated project with engineering design and science concepts from the Next Generation Science Standards, art principles from the National Arts Standards, as well as ideas under the theme of "Culture" from the National Council for the Social Studies Standards. Preservice teachers in an…
ERIC Educational Resources Information Center
Nadelson, Louis S.; Seifert, Anne
2013-01-01
As science, technology, engineering, and mathematics (STEM) continue to grow in economic and social importance, it is critical that citizenry are prepared to be STEM literate. Furthermore, the workforce demands on STEM necessitate students seeking STEM degrees and pursuing STEM careers. Primary and secondary (K-12) teachers play an important role…
DOE Chair Excellence Professorship Environmental Disciplines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riley, Reginald
2014-10-08
The DECM Team worked closely with other academic institutions, industrial companies and government laboratories to do research and educate engineers in “cutting edge” environmentally conscious manufacturing practices and instrumentation. The participating universities also worked individually with local companies on research projects in their specialty areas. Together, they were charged with research application, integration and education in environmentally conscious manufacturing.
Structural Engineering. Technology Learning Activity. Teacher Edition. Technology Education Series.
ERIC Educational Resources Information Center
Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.
This curriculum guide provides technology learning activities designed to prepare students in grades 6-10 to work in the world of the future. The 8-day course provides exploratory, hands-on learning activities and information that can enhance the education of students of all types in an integrated curriculum that provides practical applications of…
2017-10-12
iss053e098185 (Oct. 12, 2017) --- Flight Engineer Paolo Nespoli works inside the Harmony module to configure the Combustion Integrated Rack and enable the Advanced Combustion Microgravity Experiment (ACME). The primary and secondary goals of ACME are the improved fuel efficiency and reduced pollutant production in practical combustion on Earth, and spacecraft fire prevention through innovative research focused on materials flammability.
Meteoroid/Orbital Debris Shield Engineering Development Practice and Procedure
NASA Technical Reports Server (NTRS)
Zwitter, James G.; Adams, Marc A.
2011-01-01
A document describes a series of models created for the determination of the probability of survival of critical spacecraft components from particle strike damage caused by hypervelocity impact of meteoroids and/or orbital debris. These models were integrated with both shield design and hypervelocity impact testing to develop adequate protection of said components to meet mission survivability requirements.
NASA Technical Reports Server (NTRS)
Topousis, Daria E.; Lebsock, Kenneth L.; Dennehy, Cornelius J.
2010-01-01
In 2004, NASA faced major knowledge sharing challenges due to geographically isolated field centers that inhibited engineers from sharing their experiences, expertise, ideas, and lessons learned. The necessity to collaborate on complex development projects and the reality of constrained project resources together drove the need for ensuring that personnel at all NASA centers had comparable skill sets and that engineers could find resources in a timely fashion. Mission failures and new directions for the Agency also demanded better collaborative tools for NASA's engineering workforce. In response to these needs, the online NASA Engineering Network (NEN) was formed by the NASA Office of the Chief Engineer to provide a multi-faceted system for overcoming geographic and cultural barriers. NEN integrates communities of practice with a cross-repository search and the Lessons Learned Information System. This paper describes the features of the GN&C engineering discipline CoP site which went live on NEN in May of 2008 as an online means of gathering input and guidance from practitioners. It allows GN&C discipline expertise captured at one field center to be shared in a collaborative way with the larger discipline CoP spread across the entire Agency. The site enables GN&C engineers to find the information they need quickly, to find solutions to questions from experienced engineers, and to connect with other practitioners regardless of geographic location, thus increasing the probability of project success.
NASA Astrophysics Data System (ADS)
Otsuka, Yuichi; Ohta, Kazuhide; Noguchi, Hiroshi
The 21st century Center of Excellence (COE) program in Department of Mechanical Engineering Science at Kyushu University construct the training framework of learning “Integrating Techniques” by research presentations for students in different majors and accident analyses for practical cases by Ph.D course students. The training framework is composed of three processes : 1) Peer review among Ph.D course students for the presentations, 2) Instructions by teachers in order to improve the quality of the presentations based on the result of the peer-reviews, 3) Final evaluation for the improved presentations by teachers and the students. This research has elucidated the quantitative effectiveness of the framework by the evaluations using questionnaires for the presentations. Furthermore, the result of investigation for the course students has observed positive correlation between the significance of integration techniques and the enthusiasm for participating the course, which reveals the efficacy of the learning framework proposed.
The CompreHensive collaborativE Framework (CHEF)
NASA Astrophysics Data System (ADS)
Knoop, P. A.; Hardin, J.; Killeen, T.; Middleton, D.
2002-12-01
Data integration, publication, and archiving have become important considerations in most fields of science as experiments and models increase in complexity, and the collaborations necessary to conduct the research grow broader. The development of well thought out strategies and standards for such data handling, however, only goes part way in supporting the scientific process. A primary driving force for such efforts is the need of scientists to access and work with data in a timely, reasonable, and often collaborative fashion. Internet-based collaborative environments are one way to help complete this picture, linking scientists to the data they seek and to one another (e.g., Towards a Robust, Agile, and Comprehensive Information Infrastructure for the Geosciences: A Strategic Plan For High Performance Simulation, NCAR, 2000, http://www.ncar.ucar.edu/Director/plan.pdf). The CompreHensive collaborativE Framework (CHEF, http://chefproject.org) is a generic, extensible, web-based, open-source environment for collaboration. CHEF's goal is to provide the basic building blocks from which a community can assemble a collaborative environment that fits their needs. The design of CHEF has been influenced by our experience developing the Space Physics and Aeronomy Research Collaboratory (SPARC, http://www.si.umich.edu/SPARC), which provides integrated access to a wide variety of heterogeneous data sources, including community-standardized data bases. The design has also been heavily influenced by our involvement with an effort to extract and codify the broad underlying technical and social elements that lead to successful collaboratories (http://www.scienceofcollaboratories.org). A collaborative environment is in itself also not the complete answer to data handling, rather, it provides a facilitating environment in which community efforts to integrate, publish, archive, and share data using standard formats and practices can be taken advantage of by the end-users, the scientists. We present examples of how CHEF and its predecessors are utilized in a wide variety of scientific communities, including engineering, chemistry, and the geosciences. In particular, we focus on CHEF's utilization by the earthquake engineering community, whose Network for Earthquake Engineering Simulation (NEES, http://www.nees.org) involves a community effort to develop data standards and practices. In this context NEES is using CHEF as the "integration" environment in which to place the "tools" that bring together scientists and data; this includes data browsers, meta-data search engines, real-time and archival data viewers, etc. By developing these tools within the CHEF framework and exposing the community-developed data standards to the framework, they automatically gain the features, functionality, and capabilities offered by the collaborative environment. We also explore how a collaborative environment, in conjunction with community developed standards and practices for data integration, publishing, and archiving, could benefit the ocean science community.
NASA Astrophysics Data System (ADS)
Elahi, Sakib F.; Lee, Seung Y.; Lloyd, William R.; Chen, Leng-Chun; Kuo, Shiuhyang; Zhou, Ying; Kim, Hyungjin M.; Kennedy, Robert; Marcelo, Cynthia; Feinberg, Stephen E.; Mycek, Mary-Ann
2018-02-01
Clinical translation of engineered tissue constructs requires noninvasive methods to assess construct health and viability after implantation in patients. However, current practices to monitor post-implantation construct integration are either qualitative (visual assessment) or destructive (tissue histology). As label-free fluorescence lifetime sensing can noninvasively characterize pre-implantation construct viability, we employed a handheld fluorescence lifetime spectroscopy probe to quantitatively and noninvasively assess tissue constructs that were implanted in a murine model. We designed the system to be suitable for intravital measurements: portability, localization with precise maneuverability, and rapid data acquisition. Our model tissue constructs were manufactured from primary human cells to simulate patient variability and were stressed to create a range of health states. Secreted amounts of three cytokines that relate to cellular viability were measured in vitro to assess pre-implantation construct health. In vivo optical sensing assessed tissue integration of constructs at one-week and three-weeks post-implantation. At one-week post-implantation, optical parameters correlated with in vitro pre-implantation secretion levels of all three cytokines (p < 0.05). This relationship was no longer seen at three-weeks post-implantation, suggesting comparable tissue integration independent of preimplantation health. Histology confirmed re-epithelialization of these constructs independent of pre-implantation health state, supporting the lack of a correlation. These results suggest that clinical optical diagnostic tools based on label-free fluorescence lifetime sensing of endogenous tissue fluorophores could noninvasively monitor post-implantation integration of engineered tissues.
An integrated multimedia medical information network system.
Yamamoto, K; Makino, J; Sasagawa, N; Nagira, M
1998-01-01
An integrated multimedia medical information network system at Shimane Medical university has been developed to organize medical information generated from each section and provide information services useful for education, research and clinical practice. The report describes the outline of our system. It is designed to serve as a distributed database for electronic medical records and images. We are developing the MML engine that is to be linked to the world wide web (WWW) network system. To the users, this system will present an integrated multimedia representation of the patient records, providing access to both the image and text-based data required for an effective clinical decision making and medical education.
Building international experiences into an engineering curriculum - a design project-based approach
NASA Astrophysics Data System (ADS)
Maldonado, Victor; Castillo, Luciano; Carbajal, Gerardo; Hajela, Prabhat
2014-07-01
This paper is a descriptive account of how short-term international and multicultural experiences can be integrated into early design experiences in an aerospace engineering curriculum. Such approaches are considered as important not only in fostering a student's interest in the engineering curriculum, but also exposing them to a multicultural setting that they are likely to encounter in their professional careers. In the broader sense, this programme is described as a model that can be duplicated in other engineering disciplines as a first-year experience. In this study, undergraduate students from Rensselaer Polytechnic Institute (RPI) and Universidad del Turabo (UT) in Puerto Rico collaborated on a substantial design project consisting of designing, fabricating, and flight-testing radio-controlled model aircraft as a capstone experience in a semester-long course on Fundamentals of Flight. The two-week long experience in Puerto Rico was organised into academic and cultural components designed with the following objectives: (i) to integrate students in a multicultural team-based academic and social environment, (ii) to practise team-building skills and develop students' critical thinking and analytical skills, and finally (iii) to excite students about their engineering major through practical applications of aeronautics and help them decide if it is a right fit for them.
University Experiences and Women Engineering Student Persistence
NASA Astrophysics Data System (ADS)
Ayers, LoAnn Debra Gienger
Riverside University (a pseudonym), like many universities, has not significantly increased the number of women who graduate with bachelor's degrees in engineering. The purpose of the study is to understand how the university experiences of women students influence the decision to persist in an undergraduate engineering degree and to understand the role of self-perception in how the students perceive experiences as supporting or hindering their persistence in the major. Archival data, documents and artifacts, observations, individual interviews, and a focus group with women engineering students provide insights into students' perceived barriers and supports of student success. Analysis of the data results in two major themes. First, students' self-confidence and self-efficacy influence how women assimilate university experiences as either supportive or diminishing of academic success. Second, university policies and practices shape the campus environment within which student experiences are formed and influence a student's level of institutional, academic, and social integration. The results of the study indicate opportunities for university leadership to enhance strategies that positively shape students' institutional, academic and social integration as precursors toward increasing the number of women students who successfully complete undergraduate engineering degrees at Riverside University. Future research is indicated to better understand how gender and gender identity intersects with other demographic factors, such as socio-economic status, immigration status, and life stage (e.g., traditional versus non-traditional students), to support or deter the persistence of engineering students to degree completion.
NASA Technical Reports Server (NTRS)
Devolites, Jennifer L.; Olansen, Jon B.
2015-01-01
NASA's Morpheus Project has developed and tested a prototype planetary lander capable of vertical takeoff and landing that is designed to serve as a testbed for advanced spacecraft technologies. The lander vehicle, propelled by a Liquid Oxygen (LOX)/Methane engine and sized to carry a 500kg payload to the lunar surface, provides a platform for bringing technologies from the laboratory into an integrated flight system at relatively low cost. In 2012, Morpheus began integrating the Autonomous Landing and Hazard Avoidance Technology (ALHAT) sensors and software onto the vehicle in order to demonstrate safe, autonomous landing and hazard avoidance. From the beginning, one of goals for the Morpheus Project was to streamline agency processes and practices. The Morpheus project accepted a challenge to tailor the traditional NASA systems engineering approach in a way that would be appropriate for a lower cost, rapid prototype engineering effort, but retain the essence of the guiding principles. This paper describes the tailored project life cycle and systems engineering approach for the Morpheus project, including the processes, tools, and amount of rigor employed over the project's multiple lifecycles since the project began in fiscal year (FY) 2011.
Integrated dynamic landscape analysis and modeling system (IDLAMS) : installation manual.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Z.; Majerus, K. A.; Sundell, R. C.
The Integrated Dynamic Landscape Analysis and Modeling System (IDLAMS) is a prototype, integrated land management technology developed through a joint effort between Argonne National Laboratory (ANL) and the US Army Corps of Engineers Construction Engineering Research Laboratories (USACERL). Dr. Ronald C. Sundell, Ms. Pamela J. Sydelko, and Ms. Kimberly A. Majerus were the principal investigators (PIs) for this project. Dr. Zhian Li was the primary software developer. Dr. Jeffrey M. Keisler, Mr. Christopher M. Klaus, and Mr. Michael C. Vogt developed the decision analysis component of this project. It was developed with funding support from the Strategic Environmental Research andmore » Development Program (SERDP), a land/environmental stewardship research program with participation from the US Department of Defense (DoD), the US Department of Energy (DOE), and the US Environmental Protection Agency (EPA). IDLAMS predicts land conditions (e.g., vegetation, wildlife habitats, and erosion status) by simulating changes in military land ecosystems for given training intensities and land management practices. It can be used by military land managers to help predict the future ecological condition for a given land use based on land management scenarios of various levels of training intensity. It also can be used as a tool to help land managers compare different land management practices and further determine a set of land management activities and prescriptions that best suit the needs of a specific military installation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petitpas, Guillaume; McNenly, Matthew J.; Whitesides, Russell A.
In this study, a framework for estimating experimental measurement uncertainties for a Homogenous Charge Compression Ignition (HCCI)/Low-Temperature Gasoline Combustion (LTGC) engine testing facility is presented. Detailed uncertainty quantification is first carried out for the measurement of the in-cylinder pressure, whose variations during the cycle provide most of the information for performance evaluation. Standard uncertainties of other measured quantities, such as the engine geometry and speed, the air and fuel flow rate and the intake/exhaust dry molar fractions are also estimated. Propagating those uncertainties using a Monte Carlo simulation and Bayesian inference methods then allows for estimation of uncertainties of themore » mass-average temperature and composition at IVC and throughout the cycle; and also of the engine performances such as gross Integrated Mean Effective Pressure, Heat Release and Ringing Intensity. Throughout the analysis, nominal values for uncertainty inputs were taken from a well-characterized engine test facility. However, the analysis did not take into account the calibration practice of experiments run in that facility and the resulting uncertainty values are therefore not indicative of the expected accuracy of those experimental results. A future study will employ the methodology developed here to explore the effects of different calibration methods on the different uncertainty values in order to evaluate best practices for accurate engine measurements.« less
Petitpas, Guillaume; McNenly, Matthew J.; Whitesides, Russell A.
2017-03-28
In this study, a framework for estimating experimental measurement uncertainties for a Homogenous Charge Compression Ignition (HCCI)/Low-Temperature Gasoline Combustion (LTGC) engine testing facility is presented. Detailed uncertainty quantification is first carried out for the measurement of the in-cylinder pressure, whose variations during the cycle provide most of the information for performance evaluation. Standard uncertainties of other measured quantities, such as the engine geometry and speed, the air and fuel flow rate and the intake/exhaust dry molar fractions are also estimated. Propagating those uncertainties using a Monte Carlo simulation and Bayesian inference methods then allows for estimation of uncertainties of themore » mass-average temperature and composition at IVC and throughout the cycle; and also of the engine performances such as gross Integrated Mean Effective Pressure, Heat Release and Ringing Intensity. Throughout the analysis, nominal values for uncertainty inputs were taken from a well-characterized engine test facility. However, the analysis did not take into account the calibration practice of experiments run in that facility and the resulting uncertainty values are therefore not indicative of the expected accuracy of those experimental results. A future study will employ the methodology developed here to explore the effects of different calibration methods on the different uncertainty values in order to evaluate best practices for accurate engine measurements.« less
Spyropoulos, Basile; Tzavaras, Aris
2007-01-01
The purpose of this paper is to review 20 years (1987-2007) of experience in training young Biomedical Engineers in Biochemistry and in vitro Diagnostics (IVD) Technology. This encountering has resulted in the gradual formation of a comprehensive training package that includes lectures and laboratory practicals, supported by both, traditional and on-line digital means, such as lecture-notes, slides, videos, demos and equipment simulations. Further, this course is maintained up to date by several research and development activities that offer partially feed back to the course and enrich its contents with custom developed devices, methods and application software. In this paper are presented, first, the structure and the components of this course, and second, the most important custom developed novelties, which have been integrated in the IVD Technology laboratory-practicals.
Improving Student Writing: Methods You Can Use in Science and Engineering Classrooms
NASA Astrophysics Data System (ADS)
Hitt, S. J.; Bright, K.
2013-12-01
Many educators in the fields of science and engineering assure their students that writing is an important and necessary part of their work. According to David Lindsay, in Scientific Writing=Thinking in Words, 99% of scientists agree that writing is an integral part of their jobs. However, only 5% of those same scientists have ever had formal instruction in scientific writing, and those who are also educators may then feel unconfident in teaching this skill to their students (2). Additionally, making time for writing instruction in courses that are already full of technical content can cause it to be hastily and/or peremptorily included. These situations may be some of the contributing factors to the prevailing attitude of frustration that pervades the conversation about writing in science and engineering classrooms. This presentation provides a summary of past, present, and ongoing Writing Center research on effective writing tutoring in order to give science and engineering educators integrated approaches for working with student writers in their disciplines. From creating assignments, providing instruction, guiding revisions, facilitating peer review, and using assessments, we offer a comprehensive approach to getting your students motivated to improve their writing. Our new research study focuses on developing student writing resources and support in science and engineering institutions, with the goal of utilizing cross-disciplinary knowledge that can be used by the various constituencies responsible for improving the effectiveness of writing among student engineers and scientists. We will will draw upon recent findings in the study of the rhetoric and compositional pedagogy and apply them to the specific needs of the science and engineering classroom. The fields of communication, journalism, social sciences, rhetoric, technical writing, and philosophy of science have begun to integrate these findings into classroom practice, and we will show how these can also benefit educators in science and engineering, with the goal of producing more effective student writing.
Product Lifecycle Management and the Quest for Sustainable Space Exploration Solutions
NASA Technical Reports Server (NTRS)
Caruso, Pamela W.; Dumbacher, Daniel L.; Grieves, Michael
2011-01-01
Product Lifecycle Management (PLM) is an outcome of lean thinking to eliminate waste and increase productivity. PLM is inextricably tied to the systems engineering business philosophy, coupled with a methodology by which personnel, processes and practices, and information technology combine to form an architecture platform for product design, development, manufacturing, operations, and decommissioning. In this model, which is being implemented by the Marshall Space Flight Center (MSFC) Engineering Directorate, total lifecycle costs are important variables for critical decision-making. With the ultimate goal to deliver quality products that meet or exceed requirements on time and within budget, PLM is a powerful concept to shape everything from engineering trade studies and testing goals, to integrated vehicle operations and retirement scenarios. This briefing will demonstrate how the MSFC Engineering Directorate is implementing PLM as part of an overall strategy to deliver safe, reliable, and affordable space exploration solutions and how that strategy aligns with the Agency and Center systems engineering policies and processes. Sustainable space exploration solutions demand that all lifecycle phases be optimized, and engineering the next generation space transportation system requires a paradigm shift such that digital tools and knowledge management, which are central elements of PLM, are used consistently to maximum effect. Adopting PLM, which has been used by the aerospace and automotive industry for many years, for spacecraft applications provides a foundation for strong, disciplined systems engineering and accountable return on investment. PLM enables better solutions using fewer resources by making lifecycle considerations in an integrative decision-making process.
Virtual firm as a role-playing tool for biomedical education.
Blagosklonov, Oleg; Soto-Romero, Georges; Guyon, Florent; Courjal, Nadège; Euphrasie, Sebatien; Yahiaoui, Reda; Butterlin, Nadia
2006-01-01
The paper describes design of a role-playing tool based on the experience of the practice firm which allows participants to obtain relevant and practical on-the-job experience. The students played the roles of the employees and the applicants for vacant positions at the virtual firm - a small business specialized in biomedical sector - founded to design the demonstration vehicle for a biomedical device. We found that this innovative concept may be used to improve the young engineers performance and to facilitate their post-graduate integration.
Lebon, Nicolas; Tapie, Laurent; Duret, Francois; Attal, Jean-Pierre
2016-01-01
Nowadays, dental numerical controlled (NC) milling machines are available for dental laboratories (labside solution) and dental production centers. This article provides a mechanical engineering approach to NC milling machines to help dental technicians understand the involvement of technology in digital dentistry practice. The technical and economic criteria are described for four labside and two production center dental NC milling machines available on the market. The technical criteria are focused on the capacities of the embedded technologies of milling machines to mill prosthetic materials and various restoration shapes. The economic criteria are focused on investment cost and interoperability with third-party software. The clinical relevance of the technology is discussed through the accuracy and integrity of the restoration. It can be asserted that dental production center milling machines offer a wider range of materials and types of restoration shapes than labside solutions, while labside solutions offer a wider range than chairside solutions. The accuracy and integrity of restorations may be improved as a function of the embedded technologies provided. However, the more complex the technical solutions available, the more skilled the user must be. Investment cost and interoperability with third-party software increase according to the quality of the embedded technologies implemented. Each private dental practice may decide which fabrication option to use depending on the scope of the practice.
Kelemen, Lóránd; Valkai, Sándor; Ormos, Pál
2006-04-20
A light-driven micrometer-sized mechanical motor is created by laser-light-induced two-photon photopolymerization. All necessary components of the engine are built upon a glass surface by an identical procedure and include the following: a rigid mechanical framework, a rotor freely rotating on an axis, and an integrated optical waveguide carrying the actuating light to the rotor. The resulting product is a most practical stand-alone system. The light introduced into the integrated optical waveguide input of the motor provides the driving force: neither optical tweezers or even a microscope are needed for the function. The power and efficiency of the motor are evaluated. The independent unit is expected to become an important component of more complex integrated lab-on-a-chip devices.
Western Grid Can Handle High Renewables in Challenging Conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
2015-11-01
Fact sheet outlining the key findings of Phase 3 of the Western Wind and Solar Integration Study (WWSIS-3). NREL and GE find that with good system planning, sound engineering practices, and commercially available technologies, the Western grid can maintain reliability and stability during the crucial first minute after grid disturbances with high penetrations of wind and solar power.
ERIC Educational Resources Information Center
Peters-Burton, Erin E.; Cleary, Timothy J.; Kitsantas, Anastasia
2015-01-01
A quality educational experience for secondary students involves more than an acquisition of content knowledge; it entails providing students opportunities to develop a variety of thinking skills that enable integration of knowledge and the promotion of student self-directed learning outside of the classroom. One critical skill that is often…
NASA Astrophysics Data System (ADS)
Abu, M. Y.; Nor, E. E. Mohd; Rahman, M. S. Abd
2018-04-01
Integration between quality and costing system is very crucial in order to achieve an accurate product cost and profit. Current practice by most of remanufacturers, there are still lacking on optimization during the remanufacturing process which contributed to incorrect variables consideration to the costing system. Meanwhile, traditional costing accounting being practice has distortion in the cost unit which lead to inaccurate cost of product. The aim of this work is to identify the critical and non-critical variables during remanufacturing process using Mahalanobis-Taguchi System and simultaneously estimate the cost using Activity Based Costing method. The orthogonal array was applied to indicate the contribution of variables in the factorial effect graph and the critical variables were considered with overhead costs that are actually demanding the activities. This work improved the quality inspection together with costing system to produce an accurate profitability information. As a result, the cost per unit of remanufactured crankshaft of MAN engine model with 5 critical crankpins is MYR609.50 while Detroit engine model with 4 critical crankpins is MYR1254.80. The significant of output demonstrated through promoting green by reducing re-melting process of damaged parts to ensure consistent benefit of return cores.
Engineering Ethics Education: A Comparative Study of Japan and Malaysia.
Balakrishnan, Balamuralithara; Tochinai, Fumihiko; Kanemitsu, Hidekazu
2018-03-22
This paper reports the findings of a comparative study in which students' perceived attainment of the objectives of an engineering ethics education and their attitude towards engineering ethics were investigated and compared. The investigation was carried out in Japan and Malaysia, involving 163 and 108 engineering undergraduates respectively. The research method used was based on a survey in which respondents were sent a questionnaire to elicit relevant data. Both descriptive and inferential statistical analyses were performed on the data. The results of the analyses showed that the attainment of the objectives of engineering ethics education and students' attitude towards socio-ethical issues in engineering were significantly higher and positive among Japanese engineering students compared to Malaysian engineering students. Such findings suggest that a well-structured, integrated, and innovative pedagogy for teaching ethics will have an impact on the students' attainment of ethics education objectives and their attitude towards engineering ethics. As such, the research findings serve as a cornerstone to which the current practice of teaching and learning of engineering ethics education can be examined more critically, such that further improvements can be made to the existing curriculum that can help produce engineers that have strong moral and ethical characters.
Next-Generation RS-25 Engines for the NASA Space Launch System
NASA Technical Reports Server (NTRS)
Ballard, Richard O.
2017-01-01
The utilization of heritage RS-25 engines, also known as the Space Shuttle Main Engine (SSME), has enabled rapid progress in the development and certification of the NASA Space Launch System (SLS) toward operational flight status. The RS-25 brings design maturity and extensive experience gained through 135 missions, 3000+ ground tests, and over 1 million seconds total accumulated hot-fire time. In addition, there were also 16 flight engines and 2 development engines remaining from the Space Shuttle program that could be leveraged to support the first four flights. Beyond these initial SLS flights, NASA must have a renewed supply of RS-25 engines that must reflect program affordability imperatives as well as technical requirements imposed by the SLS Block-1B vehicle (i.e., 111% RPL power level, reduced service life). Recognizing the long lead times needed for the fabrication, assembly and acceptance testing of flight engines, design activities are underway to improve system affordability and eliminate obsolescence concerns. These key objectives are enabled largely by utilizing modern materials and fabrication technologies, but also by innovations in systems engineering and integration (SE&I) practices.
NASA Astrophysics Data System (ADS)
Dettinger, Karen Marie
This study used grounded theory in a case study at a large public research university to develop a theory about how the culture in engineering education affects students with varying interests and backgrounds. According to Career Preference Theory, the engineering education system has evolved to meet the needs of one type of student, the Physical Scientist. While this educational process serves to develop the next generation of engineering faculty members, the majority of engineering undergraduates go on to work as practicing engineers, and are far removed from working as physical scientists. According to Career Preference Theory, students with a history of success in mathematics and sciences, and a focus on career, enter engineering. These students, who actually have a wide range of interests and values, each begin seeking an identity as a practicing engineer. Career Preference Theory is developed around a concept, Career Identity Type, that describes five different types of engineering students: Pragmatic, Physical Scientist, "Social" Scientist, Designer, and Educator. According to the theory, each student must develop an identity within the engineering education system if they are to persist in engineering. However, the current undergraduate engineering education system has evolved in such a way that it meets only the needs of the Physical Scientist. Pragmatic students are also likely to succeed because they tend to be extremely goal-focused and maintain a focus on the rewards they will receive once they graduate with an engineering degree. However, "Social" Scientists, who value interpersonal relationships and giving back to society; Designers, who value integrating ideas across disciplines to create aesthetically pleasing and useful products; and Educators, who have a strong desire to give back to society by working with young people, must make some connection between these values and a future engineering career if they are to persist in engineering. According to Career Preference Theory, "Social" Scientists, Designers, and Educators are likely to leave engineering, while Pragmatics and Physical Scientists are likely to persist.
NASA Astrophysics Data System (ADS)
Maeng, Jennifer L.; Whitworth, Brooke A.; Gonczi, Amanda L.; Navy, Shannon L.; Wheeler, Lindsay B.
2017-07-01
This randomised controlled trial used a mixed-methods approach to investigate the frequency and how elementary teachers integrated engineering design (ED) principles into their science instruction following professional development (PD). The ED components of the PD were aligned with Cunningham and Carlsen's [(2014). Teaching engineering practices. Journal of Science Teacher Education, 25, 197-210] guidelines for ED PD and promoted inclusion of ED within science teaching. The treatment group included 219 teachers from 83 schools. Participants in the control group included 145 teachers from 60 schools in a mid-Atlantic state. Data sources, including lesson overviews and videotaped classroom observations, were analysed quantitatively to determine the frequency of ED integration and qualitatively to describe how teachers incorporated ED into instruction after attending the PD. Results indicated more participants who attended the PD (55%) incorporated ED into instruction compared with the control participants (24%), χ2(1, n = 401) = 33.225, p < .001, ? = 0.308. Treatment and control teachers taught similar science content (p's > .05) through ED lessons. In ED lessons, students typically conducted research and created and tested initial designs. The results suggest the PD supported teachers in implementing ED into their science instruction and support the efficacy of using Cunningham and Carlsen's (2014) guidelines to inform ED PD design.
NASA Astrophysics Data System (ADS)
Hu, Feng; Zhou, Jin-peng; Wang, Xing-shu
2017-08-01
Aiming at the deficiency of the traditional postgraduate education mode for professional degree, such as the conflict between work and study, restricted supply and demand and poor efficiency of course teaching, the emergence of Massive Open Online Course (MOOC) which has large scale, online and open features can make up for the shortage of traditional professional degree postgraduate education mode by introducing MOOC teaching mode. However, it is still a fangle to integrate MOOC into the traditional postgraduate education for professional degree and there are no standard methods for reference in the construction of MOOC courses as well as the corresponding evaluations. In this paper, the construction method and practical experience of MOOC courses for professional degree postgraduate education are discussed in details, based on the MOOC course of Introduction to Engineering Optics. Firstly, the principle of MOOC course contents for professional degree postgraduate education is introduced from the aspects of students' demand, MOOC features and practical applications. Secondly, the optimization of MOOC teaching mode is discussed in order to improve the teaching quality and learning efficiency. Thirdly, in order to overcome the deficiency of current MOOC examination schemes, a novel MOOC evaluation scheme is proposed which is capable of assessing students' learning attitude as well as their ability and performance differences. Finally, a practical summary is given about how to integrate the MOOC teaching mode into the postgraduate education for professional degree, including the constructions of teaching team, course system as well as other factors. From the paper, we can conclude that the integration of MOOC teaching mode into the postgraduate education for professional degree will improve the teaching quality and efficiency.
The development of the ICME supply-chain: Route to ICME implementation and sustainment
NASA Astrophysics Data System (ADS)
Furrer, David; Schirra, John
2011-04-01
Over the past twenty years, integrated computational materials engineering (ICME) has emerged as a key engineering field with great promise. Models simulating materials-related phenomena have been developed and are being validated for industrial application. The integration of computational methods into material, process and component design has been a challenge, however, in part due to the complexities in the development of an ICME "supply-chain" that supports, sustains and delivers this emerging technology. ICME touches many disciplines, which results in a requirement for many types of computational-based technology organizations to be involved to provide tools that can be rapidly developed, validated, deployed and maintained for industrial applications. The need for, and the current state of an ICME supply-chain along with development and future requirements for the continued pace of introduction of ICME into industrial design practices will be reviewed within this article.
The Role of Probabilistic Design Analysis Methods in Safety and Affordability
NASA Technical Reports Server (NTRS)
Safie, Fayssal M.
2016-01-01
For the last several years, NASA and its contractors have been working together to build space launch systems to commercialize space. Developing commercial affordable and safe launch systems becomes very important and requires a paradigm shift. This paradigm shift enforces the need for an integrated systems engineering environment where cost, safety, reliability, and performance need to be considered to optimize the launch system design. In such an environment, rule based and deterministic engineering design practices alone may not be sufficient to optimize margins and fault tolerance to reduce cost. As a result, introduction of Probabilistic Design Analysis (PDA) methods to support the current deterministic engineering design practices becomes a necessity to reduce cost without compromising reliability and safety. This paper discusses the importance of PDA methods in NASA's new commercial environment, their applications, and the key role they can play in designing reliable, safe, and affordable launch systems. More specifically, this paper discusses: 1) The involvement of NASA in PDA 2) Why PDA is needed 3) A PDA model structure 4) A PDA example application 5) PDA link to safety and affordability.
The Application of a Boundary Integral Equation Method to the Prediction of Ducted Fan Engine Noise
NASA Technical Reports Server (NTRS)
Dunn, M. H.; Tweed, J.; Farassat, F.
1999-01-01
The prediction of ducted fan engine noise using a boundary integral equation method (BIEM) is considered. Governing equations for the BIEM are based on linearized acoustics and describe the scattering of incident sound by a thin, finite-length cylindrical duct in the presence of a uniform axial inflow. A classical boundary value problem (BVP) is derived that includes an axisymmetric, locally reacting liner on the duct interior. Using potential theory, the BVP is recast as a system of hypersingular boundary integral equations with subsidiary conditions. We describe the integral equation derivation and solution procedure in detail. The development of the computationally efficient ducted fan noise prediction program TBIEM3D, which implements the BIEM, and its utility in conducting parametric noise reduction studies are discussed. Unlike prediction methods based on spinning mode eigenfunction expansions, the BIEM does not require the decomposition of the interior acoustic field into its radial and axial components which, for the liner case, avoids the solution of a difficult complex eigenvalue problem. Numerical spectral studies are presented to illustrate the nexus between the eigenfunction expansion representation and BIEM results. We demonstrate BIEM liner capability by examining radiation patterns for several cases of practical interest.
Integrated pest management and weed management in the United States and Canada.
Owen, Micheal D K; Beckie, Hugh J; Leeson, Julia Y; Norsworthy, Jason K; Steckel, Larry E
2015-03-01
There is interest in more diverse weed management tactics because of evolved herbicide resistance in important weeds in many US and Canadian crop systems. While herbicide resistance in weeds is not new, the issue has become critical because of the adoption of simple, convenient and inexpensive crop systems based on genetically engineered glyphosate-tolerant crop cultivars. Importantly, genetic engineering has not been a factor in rice and wheat, two globally important food crops. There are many tactics that help to mitigate herbicide resistance in weeds and should be widely adopted. Evolved herbicide resistance in key weeds has influenced a limited number of growers to include a more diverse suite of tactics to supplement existing herbicidal tactics. Most growers still emphasize herbicides, often to the exclusion of alternative tactics. Application of integrated pest management for weeds is better characterized as integrated weed management, and more typically integrated herbicide management. However, adoption of diverse weed management tactics is limited. Modifying herbicide use will not solve herbicide resistance in weeds, and the relief provided by different herbicide use practices is generally short-lived at best. More diversity of tactics for weed management must be incorporated in crop systems. © 2014 Society of Chemical Industry.
Strategic deployment of CHO expression platforms to deliver Pfizer's Monoclonal Antibody Portfolio.
Scarcelli, John J; Shang, Tanya Q; Iskra, Tim; Allen, Martin J; Zhang, Lin
2017-11-01
Development of stable cell lines for expression of large-molecule therapeutics represents a significant portion of the time and effort required to advance a molecule to enabling regulatory toxicology studies and clinical evaluation. Our development strategy employs two different approaches for cell line development based on the needs of a particular project: a random integration approach for projects where high-level expression is critical, and a site-specific integration approach for projects in which speed and reduced employee time spend is a necessity. Here we describe both our random integration and site-specific integration platforms and their applications in support of monoclonal antibody development and production. We also compare product quality attributes of monoclonal antibodies produced with a nonclonal cell pool or clonal cell lines derived from the two platforms. Our data suggests that material source (pools vs. clones) does not significantly alter the examined product quality attributes. Our current practice is to leverage this observation with our site-specific integration platform, where material generated from cell pools is used for an early molecular assessment of a given candidate to make informed decisions around development strategy. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1463-1467, 2017. © 2017 American Institute of Chemical Engineers.
Adaptive design lessons from professional architects
NASA Astrophysics Data System (ADS)
Geiger, Ray W.; Snell, J. T.
1993-09-01
Psychocybernetic systems engineering design conceptualization is mimicking the evolutionary path of habitable environmental design and the professional practice of building architecture, construction, and facilities management. In pursuing better ways to design cellular automata and qualification classifiers in a design process, we have found surprising success in exploring certain more esoteric approaches, e.g., the vision of interdisciplinary artistic discovery in and around creative problem solving. Our evaluation in research into vision and hybrid sensory systems associated with environmental design and human factors has led us to discover very specific connections between the human spirit and quality design. We would like to share those very qualitative and quantitative parameters of engineering design, particularly as it relates to multi-faceted and future oriented design practice. Discussion covers areas of case- based techniques of cognitive ergonomics, natural modeling sources, and an open architectural process of means/goal satisfaction, qualified by natural repetition, gradation, rhythm, contrast, balance, and integrity of process.
ERIC Educational Resources Information Center
O'Day, Betsy
2016-01-01
Curriculum and lesson planning require the consideration of many things. With a shift to the "Next Generation Science Standards" ("NGSS"), integrating the dimensions of science and engineering practices, disciplinary core ideas, and crosscutting concepts becomes a focus of that planning. The author, Betsy O'Day, an elementary…
Achieving Maximum Integration Utilizing Requirements Flow Down
NASA Technical Reports Server (NTRS)
Archiable, Wes; Askins, Bruce
2011-01-01
A robust and experienced systems engineering team is essential for a successful program. It is often a challenge to build a core systems engineering team early enough in a program to maximize integration and assure a common path for all supporting teams in a project. Ares I was no exception. During the planning of IVGVT, the team had many challenges including lack of: early identification of stakeholders, team training in NASA s system engineering practices, solid requirements flow down and a top down documentation strategy. The IVGVT team started test planning early in the program before the systems engineering framework had been matured due to an aggressive schedule. Therefore the IVGVT team increased their involvement in the Constellation systems engineering effort. Program level requirements were established that flowed down to IVGVT aligning all stakeholders to a common set of goals. The IVGVT team utilized the APPEL REQ Development Management course providing the team a NASA focused model to follow. The IVGVT team engaged directly with the model verification and validation process to assure that a solid set of requirements drove the need for the test event. The IVGVT team looked at the initial planning state, analyzed the current state and then produced recommendations for the ideal future state of a wide range of systems engineering functions and processes. Based on this analysis, the IVGVT team was able to produce a set of lessons learned and to provide suggestions for future programs or tests to use in their initial planning phase.
NASA Technical Reports Server (NTRS)
Greene, P. H.
1972-01-01
Both in practical engineering and in control of muscular systems, low level subsystems automatically provide crude approximations to the proper response. Through low level tuning of these approximations, the proper response variant can emerge from standardized high level commands. Such systems are expressly suited to emerging large scale integrated circuit technology. A computer, using symbolic descriptions of subsystem responses, can select and shape responses of low level digital or analog microcircuits. A mathematical theory that reveals significant informational units in this style of control and software for realizing such information structures are formulated.
Solaberrieta, Eneko; Garmendia, Asier; Minguez, Rikardo; Brizuela, Aritza; Pradies, Guillermo
2015-12-01
This article describes a virtual technique for transferring the location of a digitized cast from the patient to a virtual articulator (virtual facebow transfer). Using a virtual procedure, the maxillary digital cast is transferred to a virtual articulator by means of reverse engineering devices. The following devices necessary to carry out this protocol are available in many contemporary practices: an intraoral scanner, a digital camera, and specific software. Results prove the viability of integrating different tools and software and of completely integrating this procedure into a dental digital workflow. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Knowledge-based nursing diagnosis
NASA Astrophysics Data System (ADS)
Roy, Claudette; Hay, D. Robert
1991-03-01
Nursing diagnosis is an integral part of the nursing process and determines the interventions leading to outcomes for which the nurse is accountable. Diagnoses under the time constraints of modern nursing can benefit from a computer assist. A knowledge-based engineering approach was developed to address these problems. A number of problems were addressed during system design to make the system practical extended beyond capture of knowledge. The issues involved in implementing a professional knowledge base in a clinical setting are discussed. System functions, structure, interfaces, health care environment, and terminology and taxonomy are discussed. An integrated system concept from assessment through intervention and evaluation is outlined.
Towards a mature measurement environment: Creating a software engineering research environment
NASA Technical Reports Server (NTRS)
Basili, Victor R.
1990-01-01
Software engineering researchers are building tools, defining methods, and models; however, there are problems with the nature and style of the research. The research is typically bottom-up, done in isolation so the pieces cannot be easily logically or physically integrated. A great deal of the research is essentially the packaging of a particular piece of technology with little indication of how the work would be integrated with other prices of research. The research is not aimed at solving the real problems of software engineering, i.e., the development and maintenance of quality systems in a productive manner. The research results are not evaluated or analyzed via experimentation or refined and tailored to the application environment. Thus, it cannot be easily transferred into practice. Because of these limitations we have not been able to understand the components of the discipline as a coherent whole and the relationships between various models of the process and product. What is needed is a top down experimental, evolutionary framework in which research can be focused, logically and physically integrated to produce quality software productively, and evaluated and tailored to the application environment. This implies the need for experimentation, which in turn implies the need for a laboratory that is associated with the artifact we are studying. This laboratory can only exist in an environment where software is being built, i.e., as part of a real software development and maintenance organization. Thus, we propose that Software Engineering Laboratory (SEL) type activities exist in all organizations to support software engineering research. We describe the SEL from a researcher's point of view, and discuss the corporate and government benefits of the SEL. The discussion focuses on the benefits to the research community.
NASA Astrophysics Data System (ADS)
Kryuchkov, D. I.; Zalazinsky, A. G.
2017-12-01
Mathematical models and a hybrid modeling system are developed for the implementation of the experimental-calculation method for the engineering analysis and optimization of the plastic deformation of inhomogeneous materials with the purpose of improving metal-forming processes and machines. The created software solution integrates Abaqus/CAE, a subroutine for mathematical data processing, with the use of Python libraries and the knowledge base. Practical application of the software solution is exemplified by modeling the process of extrusion of a bimetallic billet. The results of the engineering analysis and optimization of the extrusion process are shown, the material damage being monitored.
The biomedical engineer as a driver for Health Technology innovation.
Colas Fustero, Javier; Guillen Arredondo, Alejandra
2010-01-01
Health Technology has played a mayor role on most of the fundamental advances in medicine, in the last 30 years. Right now, beginning the XXI Century, it is well accepted that the most important revolution expected in Health Care is the empowerment of the individuals on their own health management. Innovation in health care technologies will continue being paramount, not only in the advances of medicine and in the self health management of patients but also in allowing the sustainability of the public health care becomes more important, the role of the biomedical engineer will turn to be more crucial for the society. The paper targets the development of new curricula for the Biomedical Engineers, The needs of evolving on his different fields in which the contribution of the Biomedical Engineer is becoming fundamental to drive the innovation that Health Care Technology Industry must provide to continue improving human health through cross-disciplinary activities that integrate the engineering sciences with the biomedical sciences and clinical practice.
A Web Centric Architecture for Deploying Multi-Disciplinary Engineering Design Processes
NASA Technical Reports Server (NTRS)
Woyak, Scott; Kim, Hongman; Mullins, James; Sobieszczanski-Sobieski, Jaroslaw
2004-01-01
There are continuous needs for engineering organizations to improve their design process. Current state of the art techniques use computational simulations to predict design performance, and optimize it through advanced design methods. These tools have been used mostly by individual engineers. This paper presents an architecture for achieving results at an organization level beyond individual level. The next set of gains in process improvement will come from improving the effective use of computers and software within a whole organization, not just for an individual. The architecture takes advantage of state of the art capabilities to produce a Web based system to carry engineering design into the future. To illustrate deployment of the architecture, a case study for implementing advanced multidisciplinary design optimization processes such as Bi-Level Integrated System Synthesis is discussed. Another example for rolling-out a design process for Design for Six Sigma is also described. Each example explains how an organization can effectively infuse engineering practice with new design methods and retain the knowledge over time.
Research-oriented teaching in optical design course and its function in education
NASA Astrophysics Data System (ADS)
Cen, Zhaofeng; Li, Xiaotong; Liu, Xiangdong; Deng, Shitao
2008-03-01
The principles and operation plans of research-oriented teaching in the course of computer aided optical design are presented, especially the mode of research in practice course. This program includes contract definition phase, project organization and execution, post project evaluation and discussion. Modes of academic organization are used in the practice course of computer aided optical design. In this course the students complete their design projects in research teams by autonomous group approach and cooperative exploration. In this research process they experience the interpersonal relationship in modern society, the importance of cooperation in team, the functions of each individual, the relationships between team members, the competition and cooperation in one academic group and with other groups, and know themselves objectively. In the design practice the knowledge of many academic fields is applied including applied optics, computer programming, engineering software and etc. The characteristic of interdisciplinary is very useful for academic research and makes the students be ready for innovation by integrating the knowledge of interdisciplinary field. As shown by the practice that this teaching mode has taken very important part in bringing up the abilities of engineering, cooperation, digesting the knowledge at a high level and problem analyzing and solving.
Managing Space System Faults: Coalescing NASA's Views
NASA Technical Reports Server (NTRS)
Muirhead, Brian; Fesq, Lorraine
2012-01-01
Managing faults and their resultant failures is a fundamental and critical part of developing and operating aerospace systems. Yet, recent studies have shown that the engineering "discipline" required to manage faults is not widely recognized nor evenly practiced within the NASA community. Attempts to simply name this discipline in recent years has been fraught with controversy among members of the Integrated Systems Health Management (ISHM), Fault Management (FM), Fault Protection (FP), Hazard Analysis (HA), and Aborts communities. Approaches to managing space system faults typically are unique to each organization, with little commonality in the architectures, processes and practices across the industry.
NASA Technical Reports Server (NTRS)
Booher, Cletis R.; Goldsberry, Betty S.
1994-01-01
During the second half of the 1980s, a document was created by the National Aeronautics and Space Administration (NASA) to aid in the application of good human factors engineering and human interface practices to the design and development of hardware and systems for use in all United States manned space flight programs. This comprehensive document, known as NASA-STD-3000, the Man-Systems Integration Standards (MSIS), attempts to address, from a human factors engineering/human interface standpoint, all of the various types of equipment with which manned space flight crew members must deal. Basically, all of the human interface situations addressed in the MSIS are present in terrestrially based systems also. The premise of this paper is that, starting with this already created standard, comprehensive documents addressing human factors engineering and human interface concerns could be developed to aid in the design of almost any type of equipment or system which humans interface with in any terrestrial environment. Utilizing the systems and processes currently in place in the MSIS Development Facility at the Johnson Space Center in Houston, TX, any number of MSIS volumes addressing the human factors / human interface needs of any terrestrially based (or, for that matter, airborne) system could be created.
Math, Science, and Engineering Integration in a High School Engineering Course: A Qualitative Study
ERIC Educational Resources Information Center
Valtorta, Clara G.; Berland, Leema K.
2015-01-01
Engineering in K-12 classrooms has been receiving expanding emphasis in the United States. The integration of science, mathematics, and engineering is a benefit and goal of K-12 engineering; however, current empirical research on the efficacy of K-12 science, mathematics, and engineering integration is limited. This study adds to this growing…
Ethical Risk Management Education in Engineering: A Systematic Review.
Guntzburger, Yoann; Pauchant, Thierry C; Tanguy, Philippe A
2017-04-01
Risk management is certainly one of the most important professional responsibilities of an engineer. As such, this activity needs to be combined with complex ethical reflections, and this requirement should therefore be explicitly integrated in engineering education. In this article, we analyse how this nexus between ethics and risk management is expressed in the engineering education research literature. It was done by reviewing 135 articles published between 1980 and March 1, 2016. These articles have been selected from 21 major journals that specialize in engineering education, engineering ethics and ethics education. Our review suggests that risk management is mostly used as an anecdote or an example when addressing ethics issues in engineering education. Further, it is perceived as an ethical duty or requirement, achieved through rational and technical methods. However, a small number of publications do offer some critical analyses of ethics education in engineering and their implications for ethical risk and safety management. Therefore, we argue in this article that the link between risk management and ethics should be further developed in engineering education in order to promote the progressive change toward more socially and environmentally responsible engineering practices. Several research trends and issues are also identified and discussed in order to support the engineering education community in this project.
Energy efficient engine component development and integration program
NASA Technical Reports Server (NTRS)
1981-01-01
Accomplishments in the Energy Efficient Engine Component Development and Integration program during the period of April 1, 1981 through September 30, 1981 are discussed. The major topics considered are: (1) propulsion system analysis, design, and integration; (2) engine component analysis, design, and development; (3) core engine tests; and (4) integrated core/low spool testing.
ERIC Educational Resources Information Center
Olds, Barbara M.; Miller, Ronald L.
The "HumEn" (Humanities/Engineering Integration) program developed at the Colorado School of Mines integrates humanities and engineering through reading and writing. Through integrative reading and writing engineering students are led to make appropriate connections between the humanities and their technical work, connections that will…
Integrated Risk and Knowledge Management Program -- IRKM-P
NASA Technical Reports Server (NTRS)
Lengyel, David M.
2009-01-01
The NASA Exploration Systems Mission Directorate (ESMD) IRKM-P tightly couples risk management and knowledge management processes and tools to produce an effective "modern" work environment. IRKM-P objectives include: (1) to learn lessons from past and current programs (Apollo, Space Shuttle, and the International Space Station); (2) to generate and share new engineering design, operations, and management best practices through preexisting Continuous Risk Management (CRM) procedures and knowledge-management practices; and (3) to infuse those lessons and best practices into current activities. The conceptual framework of the IRKM-P is based on the assumption that risks highlight potential knowledge gaps that might be mitigated through one or more knowledge management practices or artifacts. These same risks also serve as cues for collection of knowledge particularly, knowledge of technical or programmatic challenges that might recur.
Beck, Tim; Gollapudi, Sirisha; Brunak, Søren; Graf, Norbert; Lemke, Heinz U; Dash, Debasis; Buchan, Iain; Díaz, Carlos; Sanz, Ferran; Brookes, Anthony J
2012-05-01
Despite vast amount of money and research being channeled toward biomedical research, relatively little impact has been made on routine clinical practice. At the heart of this failure is the information and communication technology "chasm" that exists between research and healthcare. A new focus on "knowledge engineering for health" is needed to facilitate knowledge transmission across the research-healthcare gap. This discipline is required to engineer the bidirectional flow of data: processing research data and knowledge to identify clinically relevant advances and delivering these into healthcare use; conversely, making outcomes from the practice of medicine suitably available for use by the research community. This system will be able to self-optimize in that outcomes for patients treated by decisions that were based on the latest research knowledge will be fed back to the research world. A series of meetings, culminating in the "I-Health 2011" workshop, have brought together interdisciplinary experts to map the challenges and requirements for such a system. Here, we describe the main conclusions from these meetings. An "I4Health" interdisciplinary network of experts now exists to promote the key aims and objectives, namely "integrating and interpreting information for individualized healthcare," by developing the "knowledge engineering for health" domain. © 2012 Wiley Periodicals, Inc.
Vibration modelling and verifications for whole aero-engine
NASA Astrophysics Data System (ADS)
Chen, G.
2015-08-01
In this study, a new rotor-ball-bearing-casing coupling dynamic model for a practical aero-engine is established. In the coupling system, the rotor and casing systems are modelled using the finite element method, support systems are modelled as lumped parameter models, nonlinear factors of ball bearings and faults are included, and four types of supports and connection models are defined to model the complex rotor-support-casing coupling system of the aero-engine. A new numerical integral method that combines the Newmark-β method and the improved Newmark-β method (Zhai method) is used to obtain the system responses. Finally, the new model is verified in three ways: (1) modal experiment based on rotor-ball bearing rig, (2) modal experiment based on rotor-ball-bearing-casing rig, and (3) fault simulations for a certain type of missile turbofan aero-engine vibration. The results show that the proposed model can not only simulate the natural vibration characteristics of the whole aero-engine but also effectively perform nonlinear dynamic simulations of a whole aero-engine with faults.
Robust Adaptive Flight Control Design of Air-breathing Hypersonic Vehicles
2016-12-07
dynamic inversion controller design for a non -minimum phase hypersonic vehicle is derived by Kuipers et al. [2008]. Moreover, integrated guidance and...stabilization time for inner loop variables is lesser than the intermediate loop variables because of the three-loop-control design methodology . The control...adaptive design . Control Engineering Practice, 2016. Michael A Bolender and David B Doman. A non -linear model for the longitudinal dynamics of a
Standardization and program effect analysis (Study 2.4). Volume 3: Design-to-cost analysis
NASA Technical Reports Server (NTRS)
Shiokari, T.
1975-01-01
The program procedures that were incorporated into an on-going "design-to-cost" spacecraft program are examined. Program procedures are the activities that support the development and operations of the flight unit: contract management, documents, integration meetings, engineering, and testing. This report is limited to the program procedures that were implemented, with emphasis on areas that may depart from normal satellite development practices.
FY04 Engineering Technology Reports Technology Base
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharpe, R M
2005-01-27
Lawrence Livermore National Laboratory's Engineering Directorate has two primary discretionary avenues for its investment in technologies: the Laboratory Directed Research and Development (LDRD) program and the ''Tech Base'' program. This volume summarizes progress on the projects funded for technology-base efforts in FY2004. The Engineering Technical Reports exemplify Engineering's more than 50-year history of researching and developing (LDRD), and reducing to practice (technology-base) the engineering technologies needed to support the Laboratory's missions. Engineering has been a partner in every major program and project at the Laboratory throughout its existence, and has prepared for this role with a skilled workforce and technicalmore » resources. This accomplishment is well summarized by Engineering's mission: ''Enable program success today and ensure the Laboratory's vitality tomorrow''. LDRD is the vehicle for creating those technologies and competencies that are cutting edge. These require a significant level of research or contain some unknown that needs to be fully understood. Tech Base is used to apply those technologies, or adapt them to a Laboratory need. The term commonly used for Tech Base projects is ''reduction to practice''. Tech Base projects effect the natural transition to reduction-to-practice of scientific or engineering methods that are well understood and established. They represent discipline-oriented, core competency activities that are multi-programmatic in application, nature, and scope. The objectives of technology-base funding include: (1) the development and enhancement of tools and processes to provide Engineering support capability, such as code maintenance and improved fabrication methods; (2) support of Engineering science and technology infrastructure, such as the installation or integration of a new capability; (3) support for technical and administrative leadership through our technology Centers; and (4) the initial scoping and exploration of selected technology areas with high strategic potential, such as assessment of university, laboratory, and industrial partnerships. Engineering's five Centers, in partnership with the Division Leaders and Department Heads, focus and guide longer-term investments within Engineering. The Centers attract and retain top staff, develop and maintain critical core technologies, and enable programs. Through their technology-base projects, they oversee the application of known engineering approaches and techniques to scientific and technical problems. The Centers and their Directors are as follows: (1) Center for Computational Engineering: Robert M. Sharpe; (2) Center for Microtechnology and Nanotechnology: Raymond P. Mariella, Jr. (3) Center for Nondestructive Characterization: Harry E. Martz, Jr.; (4) Center for Precision Engineering: Keith Carlisle; and (5) Center for Complex Distributed Systems: Gregory J. Suski, Acting Director.« less
NASA Astrophysics Data System (ADS)
Dutta, Debalina
This project examines the intersectionalities of international females in engineering graduate programs of the United States, using frameworks of sustainability and liminality theory. According to Dutta and Kisselburgh (2011) international females in graduate engineering constitute the minorities of minorities, not only in terms of their status as international students but also by their underrepresentation as women in engineering (Faulkner, 2009). Research regarding international female graduate students tends to be categorized as the experiences of international students in the U.S. (Lee & Rice, 2007), or as the struggles of female engineers in engineering disciplines (Tonso, 2007). Therefore, this project aims to distinguish the unique population of female engineers of international origin from holistic studies of international students, and attempts to draw out and understand the experiences of international female students in U.S. engineering graduate programs. Dutta and Kisselburgh (2011) found that female engineers who are international in origin exist in liminal states indefinitely. This liminal nature has been described under the theory of liminality (Turner, 1967) which posits that when transitioning from one life-changing event to another (such as birth, death, marriage), individuals go through a transformatory phase where they are subjected to invisibility, vulnerability, and a feeling of loss. Although Turner posited this phase as transcendental and temporary, Dutta and Kisselburgh (2011) suggest the liminal period can be more permanent in contemporary global societies. In other words, liminal experiences of vulnerability and structural invisibility may be sustained experiences of international female engineering students. Furthermore, the project attends to the overlaps, tensions and challenging experiences faced by international females in surviving engineering graduate program. To achieve this goal, liminality theory is limited in accounting for how vulnerable individuals reframe their agentic outcomes to make meaning of their marginalized existence. Therefore, I integrate constructs of sustainability with liminality theory in order to provide a framework to understand the ability of vulnerable individuals (in this case, international female engineers) to persist within marginalizing social structures. Sustainability has been a useful framework to understand how organizations practice self-efficacy (Butler, 2001) and has the potential to understand the negotiations and discursive practices enacted by international women engineers by examining their everyday meaning-making practices. For international female engineers who are in between spaces of belonging, it becomes important to understand how they navigate these contested spaces and how they transform the spaces to their advantage by persisting in their struggles with the spaces. Through interviews and focus groups, I explored the ways in which international female engineering graduate students negotiate the tensions they experience through interviews and focus groups, attending to the underlying processes of sustenance through which international female engineering students negotiate their liminal status. In doing so, I introduce and discuss five themes of the practice of sustainability in negotiating liminality: (a) crystallizing engineering identities, (b) (re)constructing inclusion, (c) enduring hardships, (d) rearchitecting (in)visibility, and (e) (re)engineering efficacy. The contributions of this research lie in the amalgamation of liminality and sustainability theories to understand the discourses through which international women engineering graduate students negotiate the transitions they experience in U.S. engineering programs.
Integrating Rehabilitation Engineering Technology With Biologics
Collinger, Jennifer L.; Dicianno, Brad E.; Weber, Douglas J.; Cui, Xinyan Tracy; Wang, Wei; Brienza, David M.; Boninger, Michael L.
2017-01-01
Rehabilitation engineers apply engineering principles to improve function or to solve challenges faced by persons with disabilities. It is critical to integrate the knowledge of biologics into the process of rehabilitation engineering to advance the field and maximize potential benefits to patients. Some applications in particular demonstrate the value of a symbiotic relationship between biologics and rehabilitation engineering. In this review we illustrate how researchers working with neural interfaces and integrated prosthetics, assistive technology, and biologics data collection are currently integrating these 2 fields. We also discuss the potential for further integration of biologics and rehabilitation engineering to deliver the best technologies and treatments to patients. Engineers and clinicians must work together to develop technologies that meet clinical needs and are accessible to the intended patient population. PMID:21703573
NASA Astrophysics Data System (ADS)
Liu, Zhijun; Zhang, Liangpei; Liu, Zhenmin; Jiao, Hongbo; Chen, Liqun
2008-12-01
In order to manage the internal resources of Gulf of Tonkin and integrate multiple-source spatial data, the establishment of region unified plan management system is needed. The data fusion and the integrated research should be carried on because there are some difficulties in the course of the system's establishment. For example, kinds of planning and the project data format are different, and data criterion is not unified. Besides, the time state property is strong, and spatial reference is inconsistent, etc. In this article the ARCGIS ENGINE is introduced as the developing platform, key technologies are researched, such as multiple-source data transformation and fusion, remote sensing data and DEM fusion and integrated, plan and project data integration, and so on. Practice shows that the system improves the working efficiency of Guangxi Gulf of Tonkin Economic Zone Management Committee significantly and promotes planning construction work of the economic zone remarkably.
Systems Engineering for Space Exploration Medical Capabilities
NASA Technical Reports Server (NTRS)
Mindock, Jennifer; Reilly, Jeffrey; Urbina, Michelle; Hailey, Melinda; Rubin, David; Reyes, David; Hanson, Andrea; Burba, Tyler; McGuire, Kerry; Cerro, Jeffrey;
2017-01-01
Human exploration missions to beyond low Earth orbit destinations such as Mars will present significant new challenges to crew health management during a mission compared to current low Earth orbit operations. For the medical system, lack of consumable resupply, evacuation opportunities, and real-time ground support are key drivers toward greater autonomy. Recognition of the limited mission and vehicle resources available to carry out exploration missions motivates the Exploration Medical Capability (ExMC) Element's approach to enabling the necessary autonomy. The Element's work must integrate with the overall exploration mission and vehicle design efforts to successfully provide exploration medical capabilities. ExMC is applying systems engineering principles and practices to accomplish its integrative goals. This paper discusses the structured and integrative approach that is guiding the medical system technical development. Assumptions for the required levels of care on exploration missions, medical system guiding principles, and a Concept of Operations are early products that capture and clarify stakeholder expectations. Mobel-Based Systems Engineering techniques are then applied to define medical system behavior and architecture. Interfaces to other flight and ground systems, and within the medical system are identified and defined. Initial requirements and traceability are established, which sets the stage for identification of future technology development needs. An early approach for verification and validation, taking advantage of terrestrial and near-Earth exploration system analogs, is also defined to further guide system planning and development.
NASA Technical Reports Server (NTRS)
Knox, James C.; Campbell, Melissa; Murdoch, Karen; Miller, Lee A.; Jeng, Frank
2005-01-01
Currently on the International Space Station s (ISS) U.S. Segment, carbon dioxide (CO2) scrubbed from the cabin by a 4-Bed Molecular Sieve (4BMS) Carbon Dioxide Removal Assembly (CDRA) is vented overboard as a waste product. Likewise, the product hydrogen (H2) that will be generated by the Oxygen Generation Assembly (OGA) planned for installation will also be vented. A flight experiment has been proposed that will take the waste CO2 removed from the cabin, and via the catalytic Sabatier process, reduce it with waste H2 to generate water and methane. The water produced may provide cost and logistics savings for ISS by reducing the amount of water periodically re-supplied to orbit. To make this concept viable, a mechanical piston compressor and accumulator were developed for collecting and storing the CO2 from the CDRA. The compressor, accumulator and Sabatier system would be packaged together as one unit and referred to as the Carbon Dioxide Reduction Assembly (CRA). Testing was required to evaluate the performance of a 4BMS CDRA, compressor, accumulator, and Sabatier performance along with their operating rules when integrated together. This had been numerically modeled and simulated; however, testing was necessary to verify the results from the engineering analyses. Testing also allowed a better understanding of the practical inefficiencies and control issues involved in a fully integrated system versus the theoretical ideals in the model. This paper presents and discusses the results of an integrated engineering development unit test.
Clinical Decision Support Systems (CDSS) for preventive management of COPD patients.
Velickovski, Filip; Ceccaroni, Luigi; Roca, Josep; Burgos, Felip; Galdiz, Juan B; Marina, Nuria; Lluch-Ariet, Magí
2014-11-28
The use of information and communication technologies to manage chronic diseases allows the application of integrated care pathways, and the optimization and standardization of care processes. Decision support tools can assist in the adherence to best-practice medicine in critical decision points during the execution of a care pathway. The objectives are to design, develop, and assess a clinical decision support system (CDSS) offering a suite of services for the early detection and assessment of chronic obstructive pulmonary disease (COPD), which can be easily integrated into a healthcare providers' work-flow. The software architecture model for the CDSS, interoperable clinical-knowledge representation, and inference engine were designed and implemented to form a base CDSS framework. The CDSS functionalities were iteratively developed through requirement-adjustment/development/validation cycles using enterprise-grade software-engineering methodologies and technologies. Within each cycle, clinical-knowledge acquisition was performed by a health-informatics engineer and a clinical-expert team. A suite of decision-support web services for (i) COPD early detection and diagnosis, (ii) spirometry quality-control support, (iii) patient stratification, was deployed in a secured environment on-line. The CDSS diagnostic performance was assessed using a validation set of 323 cases with 90% specificity, and 96% sensitivity. Web services were integrated in existing health information system platforms. Specialized decision support can be offered as a complementary service to existing policies of integrated care for chronic-disease management. The CDSS was able to issue recommendations that have a high degree of accuracy to support COPD case-finding. Integration into healthcare providers' work-flow can be achieved seamlessly through the use of a modular design and service-oriented architecture that connect to existing health information systems.
Clinical Decision Support Systems (CDSS) for preventive management of COPD patients
2014-01-01
Background The use of information and communication technologies to manage chronic diseases allows the application of integrated care pathways, and the optimization and standardization of care processes. Decision support tools can assist in the adherence to best-practice medicine in critical decision points during the execution of a care pathway. Objectives The objectives are to design, develop, and assess a clinical decision support system (CDSS) offering a suite of services for the early detection and assessment of chronic obstructive pulmonary disease (COPD), which can be easily integrated into a healthcare providers' work-flow. Methods The software architecture model for the CDSS, interoperable clinical-knowledge representation, and inference engine were designed and implemented to form a base CDSS framework. The CDSS functionalities were iteratively developed through requirement-adjustment/development/validation cycles using enterprise-grade software-engineering methodologies and technologies. Within each cycle, clinical-knowledge acquisition was performed by a health-informatics engineer and a clinical-expert team. Results A suite of decision-support web services for (i) COPD early detection and diagnosis, (ii) spirometry quality-control support, (iii) patient stratification, was deployed in a secured environment on-line. The CDSS diagnostic performance was assessed using a validation set of 323 cases with 90% specificity, and 96% sensitivity. Web services were integrated in existing health information system platforms. Conclusions Specialized decision support can be offered as a complementary service to existing policies of integrated care for chronic-disease management. The CDSS was able to issue recommendations that have a high degree of accuracy to support COPD case-finding. Integration into healthcare providers' work-flow can be achieved seamlessly through the use of a modular design and service-oriented architecture that connect to existing health information systems. PMID:25471545
Tolaymat, Thabet; El Badawy, Amro; Sequeira, Reynold; Genaidy, Ash
2015-04-01
There is an urgent need for a trans-disciplinary approach for the collective evaluation of engineered nanomaterial (ENM) benefits and risks. Currently, research studies are mostly focused on examining effects at individual endpoints with emphasis on ENM risk effects. Less research work is pursuing the integration needed to advance the science of sustainable ENMs. Therefore, the primary objective of this article is to discuss the system-of-systems (SoS) approach as a broad and integrated paradigm to examine ENM benefits and risks to society, environment, and economy (SEE) within a sustainability context. The aims are focused on: (a) current approaches in the scientific literature and the need for a broad and integrated approach, (b) documentation of ENM SoS in terms of architecture and governing rules and practices within sustainability context, and (c) implementation plan for the road ahead. In essence, the SoS architecture is a communication vehicle offering the opportunity to track benefits and risks in an integrated fashion so as to understand the implications and make decisions about advancing the science of sustainable ENMs. In support of the SoS architecture, we propose using an analytic-based decision support system consisting of a knowledge base and analytic engine along the benefit and risk informatics routes in the SEE system to build sound decisions on what constitutes sustainable and unsustainable ENMs in spite of the existing uncertainties and knowledge gaps. The work presented herein is neither a systematic review nor a critical appraisal of the scientific literature. Rather, it is a position paper that largely expresses the views of the authors based on their expert opinion drawn from industrial and academic experience. Copyright © 2014. Published by Elsevier B.V.
Creating single-copy genetic circuits
Lee, Jeong Wook; Gyorgy, Andras; Cameron, D. Ewen; Pyenson, Nora; Choi, Kyeong Rok; Way, Jeffrey C.; Silver, Pamela A.; Del Vecchio, Domitilla; Collins, James J.
2017-01-01
SUMMARY Synthetic biology is increasingly used to develop sophisticated living devices for basic and applied research. Many of these genetic devices are engineered using multi-copy plasmids, but as the field progresses from proof-of-principle demonstrations to practical applications, it is important to develop single-copy synthetic modules that minimize consumption of cellular resources and can be stably maintained as genomic integrants. Here we use empirical design, mathematical modeling and iterative construction and testing to build single-copy, bistable toggle switches with improved performance and reduced metabolic load that can be stably integrated into the host genome. Deterministic and stochastic models led us to focus on basal transcription to optimize circuit performance and helped to explain the resulting circuit robustness across a large range of component expression levels. The design parameters developed here provide important guidance for future efforts to convert functional multi-copy gene circuits into optimized single-copy circuits for practical, real-world use. PMID:27425413
2010-08-19
UNCLASSIFIED Systems Engineering Processes Applied To Ground Vehicle Integration at US Army Tank Automotive Research, Development, and Engineering...DATES COVERED - 4. TITLE AND SUBTITLE Systems Engineering Processes Applied To Ground Vehicle Integration at US Army Tank Automotive Research...release, distribution unlimited 13. SUPPLEMENTARY NOTES Presented at NDIAs Ground Vehicle Systems Engineering and Technology Symposium (GVSETS), 17 22
The Hidden Job Requirements for a Software Engineer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marinovici, Maria C.; Kirkham, Harold; Glass, Kevin A.
In a world increasingly operated by computers, where innovation depends on software, the software engineer’s role is changing continuously and gaining new dimensions. In commercial software development as well as scientific research environments, the way software developers are perceived is changing, because they are more important to the business than ever before. Nowadays, their job requires skills extending beyond the regular job description posted by HR, and more is expected. To advance and thrive in their new roles, the software engineers must embrace change, and practice the themes of the new era (integration, collaboration and optimization). The challenges may bemore » somehow intimidating for freshly graduated software engineers. Through this paper the authors hope to set them on a path for success, by helping them relinquish their fear of the unknown.« less
Software engineering and Ada in design
NASA Technical Reports Server (NTRS)
Oneill, Don
1986-01-01
Modern software engineering promises significant reductions in software costs and improvements in software quality. The Ada language is the focus for these software methodology and tool improvements. The IBM FSD approach, including the software engineering practices that guide the systematic design and development of software products and the management of the software process are examined. The revised Ada design language adaptation is revealed. This four level design methodology is detailed including the purpose of each level, the management strategy that integrates the software design activity with the program milestones, and the technical strategy that maps the Ada constructs to each level of design. A complete description of each design level is provided along with specific design language recording guidelines for each level. Finally, some testimony is offered on education, tools, architecture, and metrics resulting from project use of the four level Ada design language adaptation.
HSCT Sector Combustor Evaluations for Demonstration Engine
NASA Technical Reports Server (NTRS)
Greenfield, Stuart; Heberling, Paul; Kastl, John; Matulaitis, John; Huff, Cynthia
2004-01-01
In LET Task 10, critical development issues of the HSCT lean-burn low emissions combustor were addressed with a range of engineering tools. Laser diagnostics and CFD analysis were applied to develop a clearer understanding of the fuel-air premixing process and premixed combustion. Subcomponent tests evaluated the emissions and operability performance of the fuel-air premixers. Sector combustor tests evaluated the performance of the integrated combustor system. A 3-cup sector was designed and procured for laser diagnostics studies at NASA Glenn. The results of these efforts supported the earlier selection of the Cyclone Swirler as the pilot stage premixer and the IMFH (Integrated Mixer Flame Holder) tube as the main stage premixer of the LPP combustor. In the combustor system preliminary design subtask, initial efforts to transform the sector combustor design into a practical subscale engine combustor met with significant challenges. Concerns about the durability of a stepped combustor dome and the need for a removable fuel injection system resulted in the invention and refinement of the MRA (Multistage Radial Axial) combustor system in 1994. The MRA combustor was selected for the HSR Phase II LPP subscale combustor testing in the CPC Program.
Application of monotone integrated large eddy simulation to Rayleigh-Taylor mixing.
Youngs, David L
2009-07-28
Rayleigh-Taylor (RT) instability occurs when a dense fluid rests on top of a light fluid in a gravitational field. It also occurs in an equivalent situation (in the absence of gravity) when an interface between fluids of different density is accelerated by a pressure gradient, e.g. in inertial confinement fusion implosions. Engineering models (Reynolds-averaged Navier-Stokes models) are needed to represent the effect of mixing in complex applications. However, large eddy simulation (LES) currently makes an essential contribution to understanding the mixing process and calibration or validation of the engineering models. In this paper, three cases are used to illustrate the current role of LES: (i) mixing at a plane boundary, (ii) break-up of a layer of dense fluid due to RT instability, and (iii) mixing in a simple spherical implosion. A monotone integrated LES approach is preferred because of the need to treat discontinuities in the flow, i.e. the initial density discontinuities or shock waves. Of particular interest is the influence of initial conditions and how this needs to be allowed for in engineering modelling. It is argued that loss of memory of the initial conditions is unlikely to occur in practical applications.
Next-Generation RS-25 Engines for the NASA Space Launch System
NASA Technical Reports Server (NTRS)
Ballard, Richard O.
2017-01-01
The utilization of heritage RS-25 engine, also known as the Space Shuttle Main Engine (SSME), has enabled rapid progress in the development and certification of the NASA Space Launch System (SLS) toward operational flight status. The RS-25 brings design maturity and extensive experience gained through 135 missions, 3000+ ground tests, and over a million seconds total accumulated hot-fire time. In addition, there were also over a dozen functional flight assets remaining from the Space Shuttle program that could be leveraged to support the first four flights. Beyond these initial SLS flights, NASA must have a renewed supply of RS-25 engines that must reflect program affordability imperatives as well as technical requirements imposed by the SLS Block-1B vehicle (i.e., 111% RPL power level, reduced service life). Recognizing the long lead times needed for the fabrication, assembly and acceptance testing of flight engines, design activities are underway at NASA and the RS-25 engine provider, Aerojet Rocketdyne, to improve system affordability and eliminate obsolescence concerns. This paper describes how the achievement of these key objectives are enabled largely by utilizing modern materials and fabrication technologies, but also by innovations in systems engineering and integration (SE&I) practices.
NASA Technical Reports Server (NTRS)
Jordan, Nicole; Falconi, Eric; Barido, Richard; Lewis, John
2009-01-01
Systems engineering could also be called the art of compromise. At its heart, systems engineering seeks to find that solution which maximizes the utility of the system, usually compromising the performance of each individual subsystem. While seemingly straightforward, systems engineering methodology is complicated when the utility to be maximized is unclear and the costs to each individual subsystem are not - or not easily - quantifiable. In this paper, we explore one such systems engineering problem within the Constellation Program as a case study in applied systems engineering. During suited operations, astronauts within Orion will be connected to an umbilical to receive and return breathing gas. The pressure drop associated with this umbilical must be overcome by the Orion vehicle. A smaller umbilical, which is desirable for crew operations, means a higher pressure drop, resulting in additional mass and power for the vehicle. We outline the technical considerations in the development of this integrated system and discuss the method by which we reached the ultimate solution. This paper, while just one example of the kind of problem solving that happens every day, offers insight into what happens when the theories of systems engineering are put into practice.
Integration of On-Line and Off-Line Diagnostic Algorithms for Aircraft Engine Health Management
NASA Technical Reports Server (NTRS)
Kobayashi, Takahisa; Simon, Donald L.
2007-01-01
This paper investigates the integration of on-line and off-line diagnostic algorithms for aircraft gas turbine engines. The on-line diagnostic algorithm is designed for in-flight fault detection. It continuously monitors engine outputs for anomalous signatures induced by faults. The off-line diagnostic algorithm is designed to track engine health degradation over the lifetime of an engine. It estimates engine health degradation periodically over the course of the engine s life. The estimate generated by the off-line algorithm is used to update the on-line algorithm. Through this integration, the on-line algorithm becomes aware of engine health degradation, and its effectiveness to detect faults can be maintained while the engine continues to degrade. The benefit of this integration is investigated in a simulation environment using a nonlinear engine model.
Summaries of the thematic conferences on remote sensing for exploration geology
NASA Technical Reports Server (NTRS)
1989-01-01
The Thematic Conference series was initiated to address the need for concentrated discussion of particular remote sensing applications. The program is primarily concerned with the application of remote sensing to mineral and hydrocarbon exploration, with special emphasis on data integration, methodologies, and practical solutions for geologists. Some fifty invited papers are scheduled for eleven plenary sessions, formulated to address such important topics as basement tectonics and their surface expressions, spectral geology, applications for hydrocarbon exploration, and radar applications and future systems. Other invited presentations will discuss geobotanical remote sensing, mineral exploration, engineering and environmental applications, advanced image processing, and integration and mapping.
Integrative Approach for a Transformative Freshman-Level STEM Curriculum
Curran, Kathleen L.; Olsen, Paul E.; Nwogbaga, Agashi P.; Stotts, Stephanie
2016-01-01
In 2014 Wesley College adopted a unified undergraduate program of evidence-based high-impact teaching practices. Through foundation and federal and state grant support, the college completely revised its academic core curriculum and strengthened its academic support structures by including a comprehensive early alert system for at-risk students. In this core, science, technology, engineering, and mathematics (STEM) faculty developed fresh manifestations of integrated concept-based introductory courses and revised upper-division STEM courses around student-centered learning. STEM majors can participate in specifically designed paid undergraduate research experiences in directed research elective courses. Such a college-wide multi-tiered approach results in institutional cultural change. PMID:27064213
Towards Integrated Pulse Detonation Propulsion and MHD Power
NASA Technical Reports Server (NTRS)
Litchford, Ron J.; Thompson, Bryan R.; Lineberry, John T.
1999-01-01
The interest in pulse detonation engines (PDE) arises primarily from the advantages that accrue from the significant combustion pressure rise that is developed in the detonation process. Conventional rocket engines, for example, must obtain all of their compression from the turbopumps, while the PDE provides additional compression in the combustor. Thus PDE's are expected to achieve higher I(sub sp) than conventional rocket engines and to require smaller turbopumps. The increase in I(sub sp) and the decrease in turbopump capacity must be traded off against each other. Additional advantages include the ability to vary thrust level by adjusting the firing rate rather than throttling the flow through injector elements. The common conclusion derived from these aggregated performance attributes is that PDEs should result in engines which are smaller, lower in cost, and lighter in weight than conventional engines. Unfortunately, the analysis of PDEs is highly complex due to their unsteady operation and non-ideal processes. Although the feasibility of the basic PDE concept has been proven in several experimental and theoretical efforts, the implied performance improvements have yet to be convincingly demonstrated. Also, there are certain developmental issues affecting the practical application of pulse detonation propulsion systems which are yet to be fully resolved. Practical detonation combustion engines, for example, require a repetitive cycle of charge induction, mixing, initiation/propagation of the detonation wave, and expulsion/scavenging of the combustion product gases. Clearly, the performance and power density of such a device depends upon the maximum rate at which this cycle can be successfully implemented. In addition, the electrical energy required for direct detonation initiation can be significant, and a means for direct electrical power production is needed to achieve self-sustained engine operation. This work addresses the technological issues associated with PDEs for integrated aerospace propulsion and MHD power. An effort is made to estimate the energy requirements for direct detonation initiation of potential fuel/oxidizer mixtures and to determine the electrical power requirements. This requirement is evaluated in terms of the possibility for MHD power generation using the combustion detonation wave. Small scale laboratory experiments were conducted using stoichiometric mixtures of acetylene and oxygen with an atomized spray of cesium hydroxide dissolved in alcohol as an ionization seed in the active MHD region. Time resolved thrust and MHD power generation measurements were performed. These results show that PDEs yield higher I(sub sp) levels than a comparable rocket engine and that MHD power generation is viable candidate for achieving self-excited engine operation.
Fostering Creative Engineers: A Key to Face the Complexity of Engineering Practice
ERIC Educational Resources Information Center
Zhou, Chunfang
2012-01-01
Recent studies have argued a shift of thinking about engineering practice from a linear conception to a system understanding. The complexity of engineering practice has been thought of as the root of challenges for engineers. Moreover, creativity has been emphasised as one key capability that engineering students should master. This paper aims to…
Case Studies in Application of System Engineering Practices to Capstone Projects
NASA Technical Reports Server (NTRS)
Murphy, Gloria; vanSusante, Paul; Carmen, Christina; Morris, Tommy; Schmidt, Peter; Zalewski, Janusz
2011-01-01
The Exploration Systems Mission Directorate (ESMD) of the National Aeronautics and Space Administration (NASA) sponsors a faculty fellowship program that engages researchers with interests aligned with current ESMD development programs. The faculty-members are committed to run a capstone senior design project based- on the materials and experience gained during the fellowship. For the 2010 - 2011 academic year, 5 projects were approved. These projects are in the areas of mechanical and electrical hardware design and optimization, fault prediction and extra planetary civil site preparation. This work summarizes the projects, describes the student teams performing the work, and comments on the integration of Systems Engineering principles into the projects, as well as the affected course curriculums.
Future of Chemical Engineering: Integrating Biology into the Undergraduate ChE Curriculum
ERIC Educational Resources Information Center
Mosto, Patricia; Savelski, Mariano; Farrell, Stephanie H.; Hecht, Gregory B.
2007-01-01
Integrating biology in the chemical engineering curriculum seems to be the future for chemical engineering programs nation and worldwide. Rowan University's efforts to address this need include a unique chemical engineering curriculum with an intensive biology component integrated throughout from freshman to senior years. Freshman and Sophomore…
Developing IVHM Requirements for Aerospace Systems
NASA Technical Reports Server (NTRS)
Rajamani, Ravi; Saxena, Abhinav; Kramer, Frank; Augustin, Mike; Schroeder, John B.; Goebel, Kai; Shao, Ginger; Roychoudhury, Indranil; Lin, Wei
2013-01-01
The term Integrated Vehicle Health Management (IVHM) describes a set of capabilities that enable sustainable and safe operation of components and subsystems within aerospace platforms. However, very little guidance exists for the systems engineering aspects of design with IVHM in mind. It is probably because of this that designers have to use knowledge picked up exclusively by experience rather than by established process. This motivated a group of leading IVHM practitioners within the aerospace industry under the aegis of SAE's HM-1 technical committee to author a document that hopes to give working engineers and program managers clear guidance on all the elements of IVHM that they need to consider before designing a system. This proposed recommended practice (ARP6883 [1]) will describe all the steps of requirements generation and management as it applies to IVHM systems, and demonstrate these with a "real-world" example related to designing a landing gear system. The team hopes that this paper and presentation will help start a dialog with the larger aerospace community and that the feedback can be used to improve the ARP and subsequently the practice of IVHM from a systems engineering point-of-view.
Highly integrated digital engine control system on an F-15 airplane
NASA Technical Reports Server (NTRS)
Burcham, F. W., Jr.; Haering, E. A., Jr.
1984-01-01
The Highly Integrated Digital Electronic Control (HIDEC) program will demonstrate and evaluate the improvements in performance and mission effectiveness that result from integrated engine/airframe control systems. This system is being used on the F-15 airplane. An integrated flightpath management mode and an integrated adaptive engine stall margin mode are implemented into the system. The adaptive stall margin mode is a highly integrated mode in which the airplane flight conditions, the resulting inlet distortion, and the engine stall margin are continuously computed; the excess stall margin is used to uptrim the engine for more thrust. The integrated flightpath management mode optimizes the flightpath and throttle setting to reach a desired flight condition. The increase in thrust and the improvement in airplane performance is discussed.
The McBride Honors Program in Public Affairs for Scientists and Engineers
NASA Astrophysics Data System (ADS)
Harrison, W. J.; Miller, R. L.; Olds, B. M.; Sacks, A. B.
2006-12-01
The McBride Honors Program in Public Affairs at The Colorado School of Mines (CSM), instituted in 1978, is an award-winning exemplar in the liberal arts which provides a select number of CSM engineering students an opportunity to cross the boundaries of their technical expertise in engineering and applied science, and to gain the understanding and appreciation of the contexts in which engineering and applied science and all human systems reside, and specifically to explore and integrate the social, cultural, ethical and environmental implications of their future professional judgments and their roles as citizens in varied and complex settings. The 27 semester-hour program of seminars, courses, and off-campus activities features small seminars; a cross-disciplinary approach; and opportunities for one-on-one faculty tutorials, instruction and practice in oral and written communication, a Washington, D.C. public policy seminar, a practicum experience (internship or foreign study). Circumstances external to the McBride Program itself, which include the development and growth of the field of Public Affairs nationally and the persistence of legacy courses, have created the need to revitalize and refocus the historically cross-departmental Program. A recent curriculum reform effort has achieved a more thoroughly interdisciplinary learning experience to educate engineers and scientists who, as called for in the National Academy of Engineering's The Engineer of 2020 "will assume leadership positions from which they can serve as positive influences in the making of public policy and in the administration of government and industry". In this presentation we showcase best practices in curriculum reform, exemplified by a seminar in National policy analysis where students and faculty have recently investigated federal science funding decisions in support of natural hazards including earthquakes, tsunamis, wildland fires, and pandemic disease.
Computer Aided Engineering of Semiconductor Integrated Circuits
1976-04-01
from that of the ideal charge-contrpl model. Application of the test developed here to a practical MOS NAND gate demonstrates marked violations of...defining properties: [31] J. E. Meyer, RCA Review, 321, 42 (1971). [32] R.S.C. Cobbold , Theory and Applications of Field-Effect Transistors...decrease of thxs dxs- I ’ [!] H.K.J. Ihantola and J. L. Moll, Solid State Electronics, 7, 423 (1964). [2] R.S.C. Cobbold , Theory and
Space-based Solar Power: Possible Defense Applications and Opportunities for NRL Contributions
2009-10-23
missions. At the spacecraft system level, a two-phase system can be used to transfer heat from a heat source (such as solar collectors and power...The solar arrays’ position allows them to radiate waste heat from both faces, as in conventional spacecraft practice. Both the antenna structure...Brayton cycle engine heated by a point-focus solar concentrator. NRL worked with NASA Glenn Research Center in developing means to integrate their
A psychological model that integrates ethics in engineering education.
Magun-Jackson, Susan
2004-04-01
Ethics has become an increasingly important issue within engineering as the profession has become progressively more complex. The need to integrate ethics into an engineering curriculum is well documented, as education does not often sufficiently prepare engineers for the ethical conflicts they experience. Recent research indicates that there is great diversity in the way institutions approach the problem of teaching ethics to undergraduate engineering students; some schools require students to take general ethics courses from philosophical or religious perspectives, while others integrate ethics in existing engineering courses. The purpose of this paper is to propose a method to implement the integration of ethics in engineering education that is pedagogically based on Kohlberg's stage theory of moral development.
Integrating rehabilitation engineering technology with biologics.
Collinger, Jennifer L; Dicianno, Brad E; Weber, Douglas J; Cui, Xinyan Tracy; Wang, Wei; Brienza, David M; Boninger, Michael L
2011-06-01
Rehabilitation engineers apply engineering principles to improve function or to solve challenges faced by persons with disabilities. It is critical to integrate the knowledge of biologics into the process of rehabilitation engineering to advance the field and maximize potential benefits to patients. Some applications in particular demonstrate the value of a symbiotic relationship between biologics and rehabilitation engineering. In this review we illustrate how researchers working with neural interfaces and integrated prosthetics, assistive technology, and biologics data collection are currently integrating these 2 fields. We also discuss the potential for further integration of biologics and rehabilitation engineering to deliver the best technologies and treatments to patients. Engineers and clinicians must work together to develop technologies that meet clinical needs and are accessible to the intended patient population. Copyright © 2011 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.
Decibel: The Relational Dataset Branching System
Maddox, Michael; Goehring, David; Elmore, Aaron J.; Madden, Samuel; Parameswaran, Aditya; Deshpande, Amol
2017-01-01
As scientific endeavors and data analysis become increasingly collaborative, there is a need for data management systems that natively support the versioning or branching of datasets to enable concurrent analysis, cleaning, integration, manipulation, or curation of data across teams of individuals. Common practice for sharing and collaborating on datasets involves creating or storing multiple copies of the dataset, one for each stage of analysis, with no provenance information tracking the relationships between these datasets. This results not only in wasted storage, but also makes it challenging to track and integrate modifications made by different users to the same dataset. In this paper, we introduce the Relational Dataset Branching System, Decibel, a new relational storage system with built-in version control designed to address these shortcomings. We present our initial design for Decibel and provide a thorough evaluation of three versioned storage engine designs that focus on efficient query processing with minimal storage overhead. We also develop an exhaustive benchmark to enable the rigorous testing of these and future versioned storage engine designs. PMID:28149668
The Cloud-Based Integrated Data Viewer (IDV)
NASA Astrophysics Data System (ADS)
Fisher, Ward
2015-04-01
Maintaining software compatibility across new computing environments and the associated underlying hardware is a common problem for software engineers and scientific programmers. While there are a suite of tools and methodologies used in traditional software engineering environments to mitigate this issue, they are typically ignored by developers lacking a background in software engineering. The result is a large body of software which is simultaneously critical and difficult to maintain. Visualization software is particularly vulnerable to this problem, given the inherent dependency on particular graphics hardware and software API's. The advent of cloud computing has provided a solution to this problem, which was not previously practical on a large scale; Application Streaming. This technology allows a program to run entirely on a remote virtual machine while still allowing for interactivity and dynamic visualizations, with little-to-no re-engineering required. Through application streaming we are able to bring the same visualization to a desktop, a netbook, a smartphone, and the next generation of hardware, whatever it may be. Unidata has been able to harness Application Streaming to provide a tablet-compatible version of our visualization software, the Integrated Data Viewer (IDV). This work will examine the challenges associated with adapting the IDV to an application streaming platform, and include a brief discussion of the underlying technologies involved. We will also discuss the differences between local software and software-as-a-service.
Building an Evaluation Strategy for an Integrated Curriculum in Chemical Engineering
ERIC Educational Resources Information Center
McCarthy, Joseph J.; Parker, Robert S.; Abatan, Adetola; Besterfield-Sacre, Mary
2011-01-01
Increasing knowledge integration has gained wide-spread support as an important goal in engineering education. The Chemical Engineering Pillars curriculum at the University of Pittsburgh, unique for its use of block scheduling, is one of the first four-year, integrated curricula in engineering, and is specifically designed to facilitate knowledge…
Inlet and Propulsion Integration of Scram Propelled Vehicles
NASA Technical Reports Server (NTRS)
Povinelli, Louis A.
1996-01-01
The material to be presented in these two lectures begins with cycle considerations of the turbojet engine combined with a ramjet engine to provide thrust over the range of Mach 0 to 5. We will then examine in some detail the aerodynamic behavior that occurs in the inlet operating near the peak speed. Following that, we shall view a numerical simulation through a baseline scramjet engine, starting at the entrance to the inlet, proceeding into the combustor and through the nozzle. In the next segment, we examine a combined rocket and ramjet propulsion system. Analysis and test results will be examined with a view toward evaluation of the concept as a practical device. Two other inlets will then be reviewed: a Mach 12 inlet and a Mach 18 configuration. Finally, we close our lectures with a discussion of the Detonation Wave engine, and inspect the physical and chemical behavior obtained from numerical simulation. A few final remarks will be made regarding the application of CFD for hypersonic propulsion components.
Integrating ecological and engineering concepts of resilience in microbial communities
Song, Hyun -Seob; Renslow, Ryan S.; Fredrickson, Jim K.; ...
2015-12-01
We note that many definitions of resilience have been proffered for natural and engineered ecosystems, but a conceptual consensus on resilience in microbial communities is still lacking. Here, we argue that the disconnect largely results from the wide variance in microbial community complexity, which range from simple synthetic consortia to complex natural communities, and divergence between the typical practical outcomes emphasized by ecologists and engineers. Viewing microbial communities as elasto-plastic systems, we argue that this gap between the engineering and ecological definitions of resilience stems from their respective emphases on elastic and plastic deformation, respectively. We propose that the twomore » concepts may be fundamentally united around the resilience of function rather than state in microbial communities and the regularity in the relationship between environmental variation and a community’s functional response. Furthermore, we posit that functional resilience is an intrinsic property of microbial communities, suggesting that state changes in response to environmental variation may be a key mechanism driving resilience in microbial communities.« less
Enhancing Critical Thinking Via a Clinical Scholar Approach.
Simpson, Vicki; McComb, Sara A; Kirkpatrick, Jane M
2017-11-01
Safety, quality improvement, and a systems perspective are vital for nurses to provide quality evidence-based care. Responding to the call to prepare nurses with these perspectives, one school of nursing used a clinical scholar approach, enhanced by systems engineering to more intentionally develop the ability to clinically reason and apply evidence-based practice. A two-group, repeated-measures control trial was used to determine the effects of systems engineering content and support on nursing students' clinical judgment and critical thinking skills. Findings indicated this approach had a positive effects on student's clinical judgment and clinical reasoning skills. This approach helped students view health care issues from a broader perspective and use evidence to guide solution development, enhancing the focus on evidence-based practice, and quality improvement. Intentional integration of an evidence-based, systems perspective by nursing faculty supports development of nurses who can function safely and effectively in the current health care system. [J Nurs Educ. 2017;56(11):679-682.]. Copyright 2017, SLACK Incorporated.
Highly integrated digital engine control system on an F-15 airplane
NASA Technical Reports Server (NTRS)
Burcham, F. W., Jr.; Haering, E. A., Jr.
1984-01-01
The highly integrated digital electronic control (HIDEC) program will demonstrate and evaluate the improvements in performance and mission effectiveness that result from integrated engine-airframe control systems. This system is being used on the F-15 airplane at the Dryden Flight Research Facility of NASA Ames Research Center. An integrated flightpath management mode and an integrated adaptive engine stall margin mode are being implemented into the system. The adaptive stall margin mode is a highly integrated mode in which the airplane flight conditions, the resulting inlet distortion, and the engine stall margin are continuously computed; the excess stall margin is used to uptrim the engine for more thrust. The integrated flightpath management mode optimizes the flightpath and throttle setting to reach a desired flight condition. The increase in thrust and the improvement in airplane performance is discussed in this paper.
Integrating the Dimensions of NGSS within a Collaborative Board Game about Honey Bees
Lauren, Hillary; Lutz, Claudia; Wallon, Robert C.; Hug, Barbara
2016-01-01
The current reform in U.S. science education calls for the integration of three dimensions of science learning in classroom teaching and learning: Science and Engineering Practices, Crosscutting Concepts, and Disciplinary Core Ideas. While the Next Generation Science Standards provide flexibility in how curriculum and instruction are structured to meet learning goals, there are few examples of existing curricula that portray the integration of these dimensions as “three-dimensional learning.” Here, we describe a collaborative board game about honey bees that incorporates scientific evidence on how genetic and environmental factors influence variations of traits and social behavior and requires students to collaboratively examine and use a system model. Furthermore, we show how students used and evaluated the game as a model in authentic classroom settings. PMID:27990024
Research on Visualization of Ground Laser Radar Data Based on Osg
NASA Astrophysics Data System (ADS)
Huang, H.; Hu, C.; Zhang, F.; Xue, H.
2018-04-01
Three-dimensional (3D) laser scanning is a new advanced technology integrating light, machine, electricity, and computer technologies. It can conduct 3D scanning to the whole shape and form of space objects with high precision. With this technology, you can directly collect the point cloud data of a ground object and create the structure of it for rendering. People use excellent 3D rendering engine to optimize and display the 3D model in order to meet the higher requirements of real time realism rendering and the complexity of the scene. OpenSceneGraph (OSG) is an open source 3D graphics engine. Compared with the current mainstream 3D rendering engine, OSG is practical, economical, and easy to expand. Therefore, OSG is widely used in the fields of virtual simulation, virtual reality, science and engineering visualization. In this paper, a dynamic and interactive ground LiDAR data visualization platform is constructed based on the OSG and the cross-platform C++ application development framework Qt. In view of the point cloud data of .txt format and the triangulation network data file of .obj format, the functions of 3D laser point cloud and triangulation network data display are realized. It is proved by experiments that the platform is of strong practical value as it is easy to operate and provides good interaction.
Teaching Engineering Practices
NASA Astrophysics Data System (ADS)
Cunningham, Christine M.; Carlsen, William S.
2014-03-01
Engineering is featured prominently in the Next Generation Science Standards (NGSS) and related reform documents, but how its nature and methods are described is problematic. This paper is a systematic review and critique of that representation, and proposes that the disciplinary core ideas of engineering (as described in the NGSS) can be disregarded safely if the practices of engineering are better articulated and modeled through student engagement in engineering projects. A clearer distinction between science and engineering practices is outlined, and prior research is described that suggests that precollege engineering design can strengthen children's understandings about scientific concepts. However, a piecemeal approach to teaching engineering practices is unlikely to result in students understanding engineering as a discipline. The implications for science teacher education are supplemented with lessons learned from a number of engineering education professional development projects.
NASA Astrophysics Data System (ADS)
Shi, Yu; Liang, Long; Ge, Hai-Wen; Reitz, Rolf D.
2010-03-01
Acceleration of the chemistry solver for engine combustion is of much interest due to the fact that in practical engine simulations extensive computational time is spent solving the fuel oxidation and emission formation chemistry. A dynamic adaptive chemistry (DAC) scheme based on a directed relation graph error propagation (DRGEP) method has been applied to study homogeneous charge compression ignition (HCCI) engine combustion with detailed chemistry (over 500 species) previously using an R-value-based breadth-first search (RBFS) algorithm, which significantly reduced computational times (by as much as 30-fold). The present paper extends the use of this on-the-fly kinetic mechanism reduction scheme to model combustion in direct-injection (DI) engines. It was found that the DAC scheme becomes less efficient when applied to DI engine simulations using a kinetic mechanism of relatively small size and the accuracy of the original DAC scheme decreases for conventional non-premixed combustion engine. The present study also focuses on determination of search-initiating species, involvement of the NOx chemistry, selection of a proper error tolerance, as well as treatment of the interaction of chemical heat release and the fuel spray. Both the DAC schemes were integrated into the ERC KIVA-3v2 code, and simulations were conducted to compare the two schemes. In general, the present DAC scheme has better efficiency and similar accuracy compared to the previous DAC scheme. The efficiency depends on the size of the chemical kinetics mechanism used and the engine operating conditions. For cases using a small n-heptane kinetic mechanism of 34 species, 30% of the computational time is saved, and 50% for a larger n-heptane kinetic mechanism of 61 species. The paper also demonstrates that by combining the present DAC scheme with an adaptive multi-grid chemistry (AMC) solver, it is feasible to simulate a direct-injection engine using a detailed n-heptane mechanism with 543 species with practical computer time.
A Feasibility Study for Advanced Technology Integration for General Aviation.
1980-05-01
154 4.5.9.4 Stratified Charge Reciprocating Engine ..... .. 155 4.5.9.5 Advanced Diesel Engine . ... 158 4.5.9.6 Liquid Cooling ... ........ 159... diesel , rotary combustion engine, advanced reciprocating engine concepts. (7) Powerplant control - integrated controls, microprocessor- based controls...Research Center Topics. (1) GATE (2) Positive displacement engines (a) Advanced reciprocating engines. (b) Alternative engine systems Diesel engines
Exploring Art and Science Integration in an Afterschool Program
NASA Astrophysics Data System (ADS)
Bolotta, Alanna
Science, technology, engineering, arts and math (STEAM) education integrates science with art, presenting a unique and interesting opportunity to increase accessibility in science for learners. This case study examines an afterschool program grounded in art and science integration. Specifically, I studied the goals of the program, it's implementation and the student experience (thinking, feeling and doing) as they participated in the program. My findings suggest that these programs can be powerful methods to nurture scientific literacy, creativity and emotional development in learners. To do so, this program made connections between disciplines and beyond, integrated holistic teaching and learning practices, and continually adapted programming while also responding to challenges. The program is therefore specially suited to engage the heads, hands and hearts of learners, and can make an important contribution to their learning and development. To conclude, I provide some recommendations for STEAM implementation in both formal and informal learning settings.
Retrospective Perceptions and Views of Engineering Students about Physics and Engineering Practicals
ERIC Educational Resources Information Center
Bhathal, R.
2011-01-01
Hands-on practical work in physics and engineering has a long and well-established tradition in Australian universities. Recently, however, the question of whether hands-on physics and engineering practicals are useful for engineering students and whether they could be deleted or whether these could be replaced with computer simulations has been…
Lebon, Nicolas; Tapie, Laurent; Duret, Francois; Attal, Jean-Pierre
2016-01-01
The dental milling machine is an important device in the dental CAD/CAM chain. Nowadays, dental numerical controlled (NC) milling machines are available for dental surgeries (chairside solution). This article provides a mechanical engineering approach to NC milling machines to help dentists understand the involvement of technology in digital dentistry practice. First, some technical concepts and definitions associated with NC milling machines are described from a mechanical engineering viewpoint. The technical and economic criteria of four chairside dental NC milling machines that are available on the market are then described. The technical criteria are focused on the capacities of the embedded technologies of these milling machines to mill both prosthetic materials and types of shape restorations. The economic criteria are focused on investment costs and interoperability with third-party software. The clinical relevance of the technology is assessed in terms of the accuracy and integrity of the restoration.
Translating Vision into Design: A Method for Conceptual Design Development
NASA Technical Reports Server (NTRS)
Carpenter, Joyce E.
2003-01-01
One of the most challenging tasks for engineers is the definition of design solutions that will satisfy high-level strategic visions and objectives. Even more challenging is the need to demonstrate how a particular design solution supports the high-level vision. This paper describes a process and set of system engineering tools that have been used at the Johnson Space Center to analyze and decompose high-level objectives for future human missions into design requirements that can be used to develop alternative concepts for vehicles, habitats, and other systems. Analysis and design studies of alternative concepts and approaches are used to develop recommendations for strategic investments in research and technology that support the NASA Integrated Space Plan. In addition to a description of system engineering tools, this paper includes a discussion of collaborative design practices for human exploration mission architecture studies used at the Johnson Space Center.
Independent technical review, handbook
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Purpose Provide an independent engineering review of the major projects being funded by the Department of Energy, Office of Environmental Restoration and Waste Management. The independent engineering review will address questions of whether the engineering practice is sufficiently developed to a point where a major project can be executed without significant technical problems. The independent review will focus on questions related to: (1) Adequacy of development of the technical base of understanding; (2) Status of development and availability of technology among the various alternatives; (3) Status and availability of the industrial infrastructure to support project design, equipment fabrication, facility construction,more » and process and program/project operation; (4) Adequacy of the design effort to provide a sound foundation to support execution of project; (5) Ability of the organization to fully integrate the system, and direct, manage, and control the execution of a complex major project.« less
NASA Astrophysics Data System (ADS)
Mitchell, Daniel Jon
2017-05-01
During the 1860s, the Committee on Electrical Standards convened by the British Association for the Advancement of Science (BAAS) attempted to articulate, refine, and realize a system of absolute electrical measurement. I describe how this context led to the invention of the dimensional formula by James Clerk Maxwell and subsequently shaped its interpretation, in particular through the attempts of William Thomson and Fleeming Jenkin to make absolute electrical measurement intelligible to telegraph engineers. I identify unit conversion as the canonical purpose for dimensional formulae during the remainder of the nineteenth century and go on to explain how an operational interpretation was developed by the French physicist Gabriel Lippmann. The focus on the dimensional formula reveals how various conceptual, theoretical, and material aspects of absolute electrical measurement were taken up or resisted in experimental physics, telegraphic engineering, and electrical practice more broadly, which leads to the conclusion that the integration of electrical theory and telegraphic practice was far harder to achieve and maintain than historians have previously thought. This ultimately left a confusing legacy of dimensional concepts and practices in physics.
The Tailoring of Traditional Systems Engineering for the Morpheus Project
NASA Technical Reports Server (NTRS)
Devolites, Jennifer L.; Hart, Jeremy J.
2013-01-01
NASA's Morpheus Project has developed and tested a prototype planetary lander capable of vertical takeoff and landing that is designed to serve as a testbed for advanced spacecraft technologies. The lander vehicle, propelled by a LOX/Methane engine and sized to carry a 500kg payload to the lunar surface, provides a platform for bringing technologies from the laboratory into an integrated flight system at relatively low cost. From the beginning, one of goals for the Morpheus Project was to streamline agency processes and practices. The Morpheus project accepted a challenge to tailor the traditional NASA systems engineering approach in a way that would be appropriate for a lower cost, rapid prototype engineering effort, but retain the essence of the guiding principles. The team has produced innovative ways to create an infrastructure and approach that would challenge existing systems engineering processes while still enabling successful implementation of the current Morpheus Project. This paper describes the tailored systems engineering approach for the Morpheus project, including the processes, tools, and amount of rigor employed over the project's multiple lifecycles since the project began in FY11. Lessons learned from these trials have the potential to be scaled up and improve efficiency on a larger projects or programs.
Robust In-Flight Sensor Fault Diagnostics for Aircraft Engine Based on Sliding Mode Observers
Chang, Xiaodong; Huang, Jinquan; Lu, Feng
2017-01-01
For a sensor fault diagnostic system of aircraft engines, the health performance degradation is an inevitable interference that cannot be neglected. To address this issue, this paper investigates an integrated on-line sensor fault diagnostic scheme for a commercial aircraft engine based on a sliding mode observer (SMO). In this approach, one sliding mode observer is designed for engine health performance tracking, and another for sensor fault reconstruction. Both observers are employed in in-flight applications. The results of the former SMO are analyzed for post-flight updating the baseline model of the latter. This idea is practical and feasible since the updating process does not require the algorithm to be regulated or redesigned, so that ground-based intervention is avoided, and the update process is implemented in an economical and efficient way. With this setup, the robustness of the proposed scheme to the health degradation is much enhanced and the latter SMO is able to fulfill sensor fault reconstruction over the course of the engine life. The proposed sensor fault diagnostic system is applied to a nonlinear simulation of a commercial aircraft engine, and its effectiveness is evaluated in several fault scenarios. PMID:28398255
Robust In-Flight Sensor Fault Diagnostics for Aircraft Engine Based on Sliding Mode Observers.
Chang, Xiaodong; Huang, Jinquan; Lu, Feng
2017-04-11
For a sensor fault diagnostic system of aircraft engines, the health performance degradation is an inevitable interference that cannot be neglected. To address this issue, this paper investigates an integrated on-line sensor fault diagnostic scheme for a commercial aircraft engine based on a sliding mode observer (SMO). In this approach, one sliding mode observer is designed for engine health performance tracking, and another for sensor fault reconstruction. Both observers are employed in in-flight applications. The results of the former SMO are analyzed for post-flight updating the baseline model of the latter. This idea is practical and feasible since the updating process does not require the algorithm to be regulated or redesigned, so that ground-based intervention is avoided, and the update process is implemented in an economical and efficient way. With this setup, the robustness of the proposed scheme to the health degradation is much enhanced and the latter SMO is able to fulfill sensor fault reconstruction over the course of the engine life. The proposed sensor fault diagnostic system is applied to a nonlinear simulation of a commercial aircraft engine, and its effectiveness is evaluated in several fault scenarios.
Vehicle/engine integration. [orbit transfer vehicles
NASA Technical Reports Server (NTRS)
Cooper, L. P.; Vinopal, T. J.; Florence, D. E.; Michel, R. W.; Brown, J. R.; Bergeron, R. P.; Weldon, V. A.
1984-01-01
VEHICLE/ENGINE Integration Issues are explored for orbit transfer vehicles (OTV's). The impact of space basing and aeroassist on VEHICLE/ENGINE integration is discussed. The AOTV structure and thermal protection subsystem weights were scaled as the vehicle length and surface was changed. It is concluded that for increased allowable payload lengths in a ground-based system, lower length-to-diameter (L/D) is as important as higher mixture ration (MR) in the range of mid L/D ATOV's. Scenario validity, geometry constraints, throttle levels, reliability, and servicing are discussed in the context of engine design and engine/vehicle integration.
New Technologies for Space Avionics, 1993
NASA Technical Reports Server (NTRS)
Aibel, David W.; Harris, David R.; Bartlett, Dave; Black, Steve; Campagna, Dave; Fernald, Nancy; Garbos, Ray
1993-01-01
The report reviews a 1993 effort that investigated issues associated with the development of requirements, with the practice of concurrent engineering and with rapid prototyping, in the development of a next-generation Reaction Jet Drive Controller. This report details lessons learned, the current status of the prototype, and suggestions for future work. The report concludes with a discussion of the vision of future avionics architectures based on the principles associated with open architectures and integrated vehicle health management.
Relative Importance of Professional Practice and Engineering Management Competencies
ERIC Educational Resources Information Center
Pons, Dirk
2016-01-01
Problem: The professional practice of engineering always involves engineering management, but it is difficult to know what specifically to include in the undergraduate curriculum. Approach: The population of New Zealand practising engineers was surveyed to determine the importance they placed on specific professional practice and engineering…
Integrated two-cylinder liquid piston Stirling engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Ning; Rickard, Robert; Pluckter, Kevin
2014-10-06
Heat engines utilizing the Stirling cycle may run on low temperature differentials with the capacity to function at high efficiency due to their near-reversible operation. However, current approaches to building Stirling engines are laborious and costly. Typically the components are assembled by hand and additional components require a corresponding increase in manufacturing complexity, akin to electronics before the integrated circuit. We present a simple and integrated approach to fabricating Stirling engines with precisely designed cylinders. We utilize computer aided design and one-step, planar machining to form all components of the engine. The engine utilizes liquid pistons and displacers to harnessmore » useful work from heat absorption and rejection. As a proof of principle of the integrated design, a two-cylinder engine is produced and characterized and liquid pumping is demonstrated.« less
Integrated two-cylinder liquid piston Stirling engine
NASA Astrophysics Data System (ADS)
Yang, Ning; Rickard, Robert; Pluckter, Kevin; Sulchek, Todd
2014-10-01
Heat engines utilizing the Stirling cycle may run on low temperature differentials with the capacity to function at high efficiency due to their near-reversible operation. However, current approaches to building Stirling engines are laborious and costly. Typically the components are assembled by hand and additional components require a corresponding increase in manufacturing complexity, akin to electronics before the integrated circuit. We present a simple and integrated approach to fabricating Stirling engines with precisely designed cylinders. We utilize computer aided design and one-step, planar machining to form all components of the engine. The engine utilizes liquid pistons and displacers to harness useful work from heat absorption and rejection. As a proof of principle of the integrated design, a two-cylinder engine is produced and characterized and liquid pumping is demonstrated.
NASA Technical Reports Server (NTRS)
Ray, R. J.; Myers, L. P.
1986-01-01
The highly integrated digital electronic control (HIDEC) program will demonstrate and evaluate the improvements in performance and mission effectiveness that result from integrated engine-airframe control systems. Performance improvements will result from an adaptive engine stall margin mode, a highly integrated mode that uses the airplane flight conditions and the resulting inlet distortion to continuously compute engine stall margin. When there is excessive stall margin, the engine is uptrimmed for more thrust by increasing engine pressure ratio (EPR). The EPR uptrim logic has been evaluated and implemente into computer simulations. Thrust improvements over 10 percent are predicted for subsonic flight conditions. The EPR uptrim was successfully demonstrated during engine ground tests. Test results verify model predictions at the conditions tested.
Using A Model-Based Systems Engineering Approach For Exploration Medical System Development
NASA Technical Reports Server (NTRS)
Hanson, A.; Mindock, J.; McGuire, K.; Reilly, J.; Cerro, J.; Othon, W.; Rubin, D.; Urbina, M.; Canga, M.
2017-01-01
NASA's Human Research Program's Exploration Medical Capabilities (ExMC) element is defining the medical system needs for exploration class missions. ExMC's Systems Engineering (SE) team will play a critical role in successful design and implementation of the medical system into exploration vehicles. The team's mission is to "Define, develop, validate, and manage the technical system design needed to implement exploration medical capabilities for Mars and test the design in a progression of proving grounds." Development of the medical system is being conducted in parallel with exploration mission architecture and vehicle design development. Successful implementation of the medical system in this environment will require a robust systems engineering approach to enable technical communication across communities to create a common mental model of the emergent engineering and medical systems. Model-Based Systems Engineering (MBSE) improves shared understanding of system needs and constraints between stakeholders and offers a common language for analysis. The ExMC SE team is using MBSE techniques to define operational needs, decompose requirements and architecture, and identify medical capabilities needed to support human exploration. Systems Modeling Language (SysML) is the specific language the SE team is utilizing, within an MBSE approach, to model the medical system functional needs, requirements, and architecture. Modeling methods are being developed through the practice of MBSE within the team, and tools are being selected to support meta-data exchange as integration points to other system models are identified. Use of MBSE is supporting the development of relationships across disciplines and NASA Centers to build trust and enable teamwork, enhance visibility of team goals, foster a culture of unbiased learning and serving, and be responsive to customer needs. The MBSE approach to medical system design offers a paradigm shift toward greater integration between vehicle and the medical system and directly supports the transition of Earth-reliant ISS operations to the Earth-independent operations envisioned for Mars. Here, we describe the methods and approach to building this integrated model.
NASA Astrophysics Data System (ADS)
Guzmán, Gema; Castillo, Carlos; Taguas, Encarnación
2013-04-01
One of the aims of 'The Bologna Process' is to promote among the students the acquisition of practical, social and creative skills to face real-life situations and to solve the difficulties they might find during their professional life. It involves an important change in the educational system, from a traditional approach focused on teaching, towards a new one that encourages learning. Under this context, University teaching implies the design of activities addressed to the dissemination of "know-how" to solve different problems associated with two technical disciplines: Forest and Agricultural Engineering. This study presents a preliminary experience where a group of information and communication technologies (ICT) such as, audiovisual resources (videos, reports and photo gallery), virtual visits to blogs and interactive activities have been used to provide a comprehensive knowledge of the environmental and sociocultural components of the landscape in order to facilitate the decision-making process in the engineering project context . With these tools, the students must study and characterize all these aspects in order to justify the chosen solutions and the project design. This approach was followed in the analysis of the limiting factors of practical cases in projects about forestation, landscape restoration and hydrological planning. This communication shows how this methodology has been applied in Forest and Agricultural Engineering and the students' experience with these innovative tools. The use of ICTs involved a friendly framework that stimulated students' interest and made subjects more attractive, since it allowed to assess the complex relationships between landscape, history and economy. Furthermore, this type of activities promotes the interdisciplinary training and the acquisition of creative and autonomous skills which are not included in many cases into the main objectives of the subjects.
The past, present and future of cyber-physical systems: a focus on models.
Lee, Edward A
2015-02-26
This paper is about better engineering of cyber-physical systems (CPSs) through better models. Deterministic models have historically proven extremely useful and arguably form the kingpin of the industrial revolution and the digital and information technology revolutions. Key deterministic models that have proven successful include differential equations, synchronous digital logic and single-threaded imperative programs. Cyber-physical systems, however, combine these models in such a way that determinism is not preserved. Two projects show that deterministic CPS models with faithful physical realizations are possible and practical. The first project is PRET, which shows that the timing precision of synchronous digital logic can be practically made available at the software level of abstraction. The second project is Ptides (programming temporally-integrated distributed embedded systems), which shows that deterministic models for distributed cyber-physical systems have practical faithful realizations. These projects are existence proofs that deterministic CPS models are possible and practical.
The Past, Present and Future of Cyber-Physical Systems: A Focus on Models
Lee, Edward A.
2015-01-01
This paper is about better engineering of cyber-physical systems (CPSs) through better models. Deterministic models have historically proven extremely useful and arguably form the kingpin of the industrial revolution and the digital and information technology revolutions. Key deterministic models that have proven successful include differential equations, synchronous digital logic and single-threaded imperative programs. Cyber-physical systems, however, combine these models in such a way that determinism is not preserved. Two projects show that deterministic CPS models with faithful physical realizations are possible and practical. The first project is PRET, which shows that the timing precision of synchronous digital logic can be practically made available at the software level of abstraction. The second project is Ptides (programming temporally-integrated distributed embedded systems), which shows that deterministic models for distributed cyber-physical systems have practical faithful realizations. These projects are existence proofs that deterministic CPS models are possible and practical. PMID:25730486
Predicted performance benefits of an adaptive digital engine control system of an F-15 airplane
NASA Technical Reports Server (NTRS)
Burcham, F. W., Jr.; Myers, L. P.; Ray, R. J.
1985-01-01
The highly integrated digital electronic control (HIDEC) program will demonstrate and evaluate the improvements in performance and mission effectiveness that result from integrating engine-airframe control systems. Currently this is accomplished on the NASA Ames Research Center's F-15 airplane. The two control modes used to implement the systems are an integrated flightpath management mode and in integrated adaptive engine control system (ADECS) mode. The ADECS mode is a highly integrated mode in which the airplane flight conditions, the resulting inlet distortion, and the available engine stall margin are continually computed. The excess stall margin is traded for thrust. The predicted increase in engine performance due to the ADECS mode is presented in this report.
Stable Beginnings in Engineering Design
ERIC Educational Resources Information Center
McCormick, Mary E.; Hammer, David
2016-01-01
Novel Engineering activities are premised on the integration of engineering and literacy: students identify and engineer solutions to problems that arise for fictional characters in stories they read for class. There are advantages to this integration, for both engineering and literacy goals of instruction: the stories provide ''clients'' to…
Exploration Medical Capability System Engineering Overview
NASA Technical Reports Server (NTRS)
Mindock, J.; McGuire, K.
2018-01-01
Deep Space Gateway and Transport missions will change the way NASA currently practices medicine. The missions will require more autonomous capability compared to current low Earth orbit operations. For the medical system, lack of consumable resupply, evacuation opportunities, and real-time ground support are key drivers toward greater autonomy. Recognition of the limited mission and vehicle resources available to carry out exploration missions motivates the Exploration Medical Capability (ExMC) Element's approach to enabling the necessary autonomy. The ExMC Systems Engineering team's mission is to "Define, develop, validate, and manage the technical system design needed to implement exploration medical capabilities for Mars and test the design in a progression of proving grounds." The Element's work must integrate with the overall exploration mission and vehicle design efforts to successfully provide exploration medical capabilities. ExMC is using Model-Based System Engineering (MBSE) to accomplish its integrative goals. The MBSE approach to medical system design offers a paradigm shift toward greater integration between vehicle and the medical system, and directly supports the transition of Earth-reliant ISS operations to the Earth-independent operations envisioned for Mars. This talk will discuss how ExMC is using MBSE to define operational needs, decompose requirements and architecture, and identify medical capabilities needed to support human exploration. How MBSE is being used to integrate across disciplines and NASA Centers will also be described. The medical system being discussed in this talk is one system within larger habitat systems. Data generated within the medical system will be inputs to other systems and vice versa. This talk will also describe the next steps in model development that include: modeling the different systems that comprise the larger system and interact with the medical system, understanding how the various systems work together, and developing tools to support trade studies.
Exploration Medical Cap Ability System Engineering Overview
NASA Technical Reports Server (NTRS)
McGuire, K.; Mindock, J.
2018-01-01
Deep Space Gateway and Transport missions will change the way NASA currently practices medicine. The missions will require more autonomous capability compared to current low Earth orbit operations. For the medical system, lack of consumable resupply, evacuation opportunities, and real-time ground support are key drivers toward greater autonomy. Recognition of the limited mission and vehicle resources available to carry out exploration missions motivates the Exploration Medical Capability (ExMC) Element's approach to enabling the necessary autonomy. The ExMC Systems Engineering team's mission is to "Define, develop, validate, and manage the technical system design needed to implement exploration medical capabilities for Mars and test the design in a progression of proving grounds." The Element's work must integrate with the overall exploration mission and vehicle design efforts to successfully provide exploration medical capabilities. ExMC is using Model-Based System Engineering (MBSE) to accomplish its integrative goals. The MBSE approach to medical system design offers a paradigm shift toward greater integration between vehicle and the medical system, and directly supports the transition of Earth-reliant ISS operations to the Earth-independent operations envisioned for Mars. This talk will discuss how ExMC is using MBSE to define operational needs, decompose requirements and architecture, and identify medical capabilities needed to support human exploration. How MBSE is being used to integrate across disciplines and NASA Centers will also be described. The medical system being discussed in this talk is one system within larger habitat systems. Data generated within the medical system will be inputs to other systems and vice versa. This talk will also describe the next steps in model development that include: modeling the different systems that comprise the larger system and interact with the medical system, understanding how the various systems work together, and developing tools to support trade studies.
Review of Reliability-Based Design Optimization Approach and Its Integration with Bayesian Method
NASA Astrophysics Data System (ADS)
Zhang, Xiangnan
2018-03-01
A lot of uncertain factors lie in practical engineering, such as external load environment, material property, geometrical shape, initial condition, boundary condition, etc. Reliability method measures the structural safety condition and determine the optimal design parameter combination based on the probabilistic theory. Reliability-based design optimization (RBDO) is the most commonly used approach to minimize the structural cost or other performance under uncertainty variables which combines the reliability theory and optimization. However, it cannot handle the various incomplete information. The Bayesian approach is utilized to incorporate this kind of incomplete information in its uncertainty quantification. In this paper, the RBDO approach and its integration with Bayesian method are introduced.
Salvador-Carulla, L; Hernández-Peña, P
2011-03-01
This paper discusses an integrated approach to mental health studies on Financing of Illness (FoI) and health accounting, Cost of Illness (CoI) and Burden of Disease (BoD). In order to expand the mental health policies, the following are suggested: (a) an international consensus on the standard scope, methods to collect and to analyse mental health data, as well as to report comparative information; (b) mathematical models are also to be validated and tested in an integrated approach, (c) a better knowledge transfer between clinicians and knowledge engineers, and between researchers and policy makers to translate economic analysis into practice and health planning.
APPLICATION OF THE 3D MODEL OF RAILWAY VIADUCTS TO COST ESTIMATION AND CONSTRUCTION
NASA Astrophysics Data System (ADS)
Fujisawa, Yasuo; Yabuki, Nobuyoshi; Igarashi, Zenichi; Yoshino, Hiroyuki
Three dimensional models of civil engineering structures are only partially used in either design or construction but not both. Research on integration of design, cost estimation and construction by 3Dmodels has not been heard in civil engineering domain yet. Using continuously a 3D product model of a structure from design to construction through estimation should improve the efficiency and decrease the occurrence of mistakes, hence enhancing the quality. In this research, we investigated the current practices of flow from design to construction, particularly focusing on cost estimation. Then, we identified advantages and issues on utilization of 3D design models to estimation and construction by applying 3D models to an actual railway construction project.
Computer graphics in architecture and engineering
NASA Technical Reports Server (NTRS)
Greenberg, D. P.
1975-01-01
The present status of the application of computer graphics to the building profession or architecture and its relationship to other scientific and technical areas were discussed. It was explained that, due to the fragmented nature of architecture and building activities (in contrast to the aerospace industry), a comprehensive, economic utilization of computer graphics in this area is not practical and its true potential cannot now be realized due to the present inability of architects and structural, mechanical, and site engineers to rely on a common data base. Future emphasis will therefore have to be placed on a vertical integration of the construction process and effective use of a three-dimensional data base, rather than on waiting for any technological breakthrough in interactive computing.
Stem cell bioprocessing: fundamentals and principles
Placzek, Mark R.; Chung, I-Ming; Macedo, Hugo M.; Ismail, Siti; Mortera Blanco, Teresa; Lim, Mayasari; Min Cha, Jae; Fauzi, Iliana; Kang, Yunyi; Yeo, David C.L.; Yip Joan Ma, Chi; Polak, Julia M.; Panoskaltsis, Nicki; Mantalaris, Athanasios
2008-01-01
In recent years, the potential of stem cell research for tissue engineering-based therapies and regenerative medicine clinical applications has become well established. In 2006, Chung pioneered the first entire organ transplant using adult stem cells and a scaffold for clinical evaluation. With this a new milestone was achieved, with seven patients with myelomeningocele receiving stem cell-derived bladder transplants resulting in substantial improvements in their quality of life. While a bladder is a relatively simple organ, the breakthrough highlights the incredible benefits that can be gained from the cross-disciplinary nature of tissue engineering and regenerative medicine (TERM) that encompasses stem cell research and stem cell bioprocessing. Unquestionably, the development of bioprocess technologies for the transfer of the current laboratory-based practice of stem cell tissue culture to the clinic as therapeutics necessitates the application of engineering principles and practices to achieve control, reproducibility, automation, validation and safety of the process and the product. The successful translation will require contributions from fundamental research (from developmental biology to the ‘omics’ technologies and advances in immunology) and from existing industrial practice (biologics), especially on automation, quality assurance and regulation. The timely development, integration and execution of various components will be critical—failures of the past (such as in the commercialization of skin equivalents) on marketing, pricing, production and advertising should not be repeated. This review aims to address the principles required for successful stem cell bioprocessing so that they can be applied deftly to clinical applications. PMID:19033137
Stem cell bioprocessing: fundamentals and principles.
Placzek, Mark R; Chung, I-Ming; Macedo, Hugo M; Ismail, Siti; Mortera Blanco, Teresa; Lim, Mayasari; Cha, Jae Min; Fauzi, Iliana; Kang, Yunyi; Yeo, David C L; Ma, Chi Yip Joan; Polak, Julia M; Panoskaltsis, Nicki; Mantalaris, Athanasios
2009-03-06
In recent years, the potential of stem cell research for tissue engineering-based therapies and regenerative medicine clinical applications has become well established. In 2006, Chung pioneered the first entire organ transplant using adult stem cells and a scaffold for clinical evaluation. With this a new milestone was achieved, with seven patients with myelomeningocele receiving stem cell-derived bladder transplants resulting in substantial improvements in their quality of life. While a bladder is a relatively simple organ, the breakthrough highlights the incredible benefits that can be gained from the cross-disciplinary nature of tissue engineering and regenerative medicine (TERM) that encompasses stem cell research and stem cell bioprocessing. Unquestionably, the development of bioprocess technologies for the transfer of the current laboratory-based practice of stem cell tissue culture to the clinic as therapeutics necessitates the application of engineering principles and practices to achieve control, reproducibility, automation, validation and safety of the process and the product. The successful translation will require contributions from fundamental research (from developmental biology to the 'omics' technologies and advances in immunology) and from existing industrial practice (biologics), especially on automation, quality assurance and regulation. The timely development, integration and execution of various components will be critical-failures of the past (such as in the commercialization of skin equivalents) on marketing, pricing, production and advertising should not be repeated. This review aims to address the principles required for successful stem cell bioprocessing so that they can be applied deftly to clinical applications.
NASA Astrophysics Data System (ADS)
Jing, Xiaoli; Cheng, Haobo; Wen, Yongfu
2018-04-01
A new local integration algorithm called quality map path integration (QMPI) is reported for shape reconstruction in the fringe reflection technique. A quality map is proposed to evaluate the quality of gradient data locally, and functions as a guideline for the integrated path. The presented method can be employed in wavefront estimation from its slopes over the general shaped surface with slope noise equivalent to that in practical measurements. Moreover, QMPI is much better at handling the slope data with local noise, which may be caused by the irregular shapes of the surface under test. The performance of QMPI is discussed by simulations and experiment. It is shown that QMPI not only improves the accuracy of local integration, but can also be easily implemented with no iteration compared to Southwell zonal reconstruction (SZR). From an engineering point-of-view, the proposed method may also provide an efficient and stable approach for different shapes with high-precise demand.
NASA Technical Reports Server (NTRS)
Baer-Riedhart, Jennifer L.; Landy, Robert J.
1987-01-01
The highly integrated digital electronic control (HIDEC) program at NASA Ames Research Center, Dryden Flight Research Facility is a multiphase flight research program to quantify the benefits of promising integrated control systems. McDonnell Aircraft Company is the prime contractor, with United Technologies Pratt and Whitney Aircraft, and Lear Siegler Incorporated as major subcontractors. The NASA F-15A testbed aircraft was modified by the HIDEC program by installing a digital electronic flight control system (DEFCS) and replacing the standard F100 (Arab 3) engines with F100 engine model derivative (EMD) engines equipped with digital electronic engine controls (DEEC), and integrating the DEEC's and DEFCS. The modified aircraft provides the capability for testing many integrated control modes involving the flight controls, engine controls, and inlet controls. This paper focuses on the first two phases of the HIDEC program, which are the digital flight control system/aircraft model identification (DEFCS/AMI) phase and the adaptive engine control system (ADECS) phase.
Integral Engine Inlet Particle Separator. Volume 2. Design Guide
1975-08-01
herein will be used in the design of integral inlet particle separators for future Army aircraft gas turbine engines . Apprupriate technical personnel...OF INTEGRAL GAS TURBINE ENGINE SOLID PARTICLE INLET SEPARATORS, PHASE I, FEASIBILITY STUDY AND DESIGN, Pratt and Whitney Aircraft ; USAAVLABS Technical...USAAVLABS Technical Report 70-36, U.S. Army Aviation Materiel Laboratories, Fort Eustis, Virginia, August 1970 AD 876 584. 13. ENGINES , AIRCRAFT
What Chemistry To Teach Engineers?
ERIC Educational Resources Information Center
Hawkes, Stephen J.
2000-01-01
Examines possible general chemistry topics that would be most relevant and practical for engineering majors. Consults the Accreditation Board for Engineering and Technology (ABET), engineering textbooks, texts from other required subjects, and practicing engineers for recommendations. (Contains 24 references.) (WRM)
Advanced general aviation comparative engine/airframe integration study
NASA Technical Reports Server (NTRS)
Huggins, G. L.; Ellis, D. R.
1981-01-01
The NASA Advanced Aviation Comparative Engine/Airframe Integration Study was initiated to help determine which of four promising concepts for new general aviation engines for the 1990's should be considered for further research funding. The engine concepts included rotary, diesel, spark ignition, and turboprop powerplants; a conventional state-of-the-art piston engine was used as a baseline for the comparison. Computer simulations of the performance of single and twin engine pressurized aircraft designs were used to determine how the various characteristics of each engine interacted in the design process. Comparisons were made of how each engine performed relative to the others when integrated into an airframe and required to fly a transportation mission.
Numerical methods for engine-airframe integration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murthy, S.N.B.; Paynter, G.C.
1986-01-01
Various papers on numerical methods for engine-airframe integration are presented. The individual topics considered include: scientific computing environment for the 1980s, overview of prediction of complex turbulent flows, numerical solutions of the compressible Navier-Stokes equations, elements of computational engine/airframe integrations, computational requirements for efficient engine installation, application of CAE and CFD techniques to complete tactical missile design, CFD applications to engine/airframe integration, and application of a second-generation low-order panel methods to powerplant installation studies. Also addressed are: three-dimensional flow analysis of turboprop inlet and nacelle configurations, application of computational methods to the design of large turbofan engine nacelles, comparison ofmore » full potential and Euler solution algorithms for aeropropulsive flow field computations, subsonic/transonic, supersonic nozzle flows and nozzle integration, subsonic/transonic prediction capabilities for nozzle/afterbody configurations, three-dimensional viscous design methodology of supersonic inlet systems for advanced technology aircraft, and a user's technology assessment.« less
Introducing WISDEM:An Integrated System Modeling for Wind Turbines and Plant (Presentation)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dykes, K.; Graf, P.; Scott, G.
2015-01-01
The National Wind Technology Center wind energy systems engineering initiative has developed an analysis platform to leverage its research capabilities toward integrating wind energy engineering and cost models across wind plants. This Wind-Plant Integrated System Design & Engineering Model (WISDEM) platform captures the important interactions between various subsystems to achieve a better National Wind Technology Center wind energy systems engineering initiative has developed an analysis platform to leverage its research capabilities toward integrating wind energy engineering and cost models across wind plants. This Wind-Plant Integrated System Design & Engineering Model (WISDEM) platform captures the important interactions between various subsystems tomore » achieve a better understanding of how to improve system-level performance and achieve system-level cost reductions. This work illustrates a few case studies with WISDEM that focus on the design and analysis of wind turbines and plants at different system levels.« less
NASA Astrophysics Data System (ADS)
Palo, S. E.; Li, X.; Woods, T. N.; Kohnert, R.
2014-12-01
There is a long history of cooperation between students at the University of Colorado, Boulder and professional engineers and scientists at LASP, which has led to many successful space missions with direct student involvement. The recent student-led missions include the Student Nitric Oxide Explorer (SNOE, 1998 - 2002), the Student Dust Counter (SDC) on New Horizons (2006 - present), the Colorado Student Space Weather Experiment (CSSWE), being a very successful NSF CubeSat that launched in September 2012, and the NASA Miniature X-ray Solar Spectrometer (MinXSS) CubeSat (launch will be in early 2015). Students are involved in all aspects of the design, and they experience the full scope of the mission process from concept, to fabrication and test, and mission operations. A significant part of the student involvement in the CubeSat projects is gained by using the CubeSat development as a focal point for an existing two-semester course sequence in CU's Aerospace Engineering Sciences (AES) Department: the Space Hardware Design section of Graduate Projects I & II (ASEN 5018 & ASEN 6028). The goal of these courses is to teach graduate students how to design and build systems using a requirement-based approach and fundamental systems engineering practices. The two-semester sequence takes teams of about 15 students from requirements definition and preliminary design through manufacturing, integration, and testing. In addition to the design process, students learn key professional skills such as working effectively in groups, finding solutions to open-ended problems, and actually building a system to their own set of specifications. The partnership between AES and LASP allows us to include engineering professionals in the mix, thus more effectively training science and engineering students for future roles in the civilian or commercial space industry. The mentoring process with LASP engineers helps to mitigate risk of the inexperience of the students and ensures consistent system engineer oversight for the multi-year CubeSat programs.
Lane, Tonisha B.
2016-01-01
The current study used a case study methodological approach, including document analysis, semistructured interviews, and participant observations, to investigate how a science, technology, engineering, and mathematics (STEM) enrichment program supported retention and degree attainment of underrepresented students at a large, public, predominantly white institution. From this study, a model emerged that encompassed four components: proactive care, holistic support, community building, and catalysts for STEM identity development. These components encompassed a number of strategies and practices that were instrumental in the outcomes of program participants. This paper concludes with implications for practice, such as using models to inform program planning, assessment, and evaluation. PMID:27543638
NASA Astrophysics Data System (ADS)
Corvo, Arthur Francis
Given the reality that active and competitive participation in the 21 st century requires American students to deepen their scientific and mathematical knowledge base, the National Research Council (NRC) proposed a new conceptual framework for K--12 science education. The framework consists of an integration of what the NRC report refers to as the three dimensions: scientific and engineering practices, crosscutting concepts, and core ideas in four disciplinary areas (physical, life and earth/spaces sciences, and engineering/technology). The Next Generation Science Standards (NGSS ), which are derived from this new framework, were released in April 2013 and have implications on teacher learning and development in Science, Technology, Engineering, and Mathematics (STEM). Given the NGSS's recent introduction, there is little research on how teachers can prepare for its release. To meet this research need, I implemented a self-study aimed at examining my teaching practices and classroom outcomes through the lens of the NRC's conceptual framework and the NGSS. The self-study employed design-based research (DBR) methods to investigate what happened in my secondary classroom when I designed, enacted, and reflected on units of study for my science, engineering, and mathematics classes. I utilized various best practices including Learning for Use (LfU) and Understanding by Design (UbD) models for instructional design, talk moves as a tool for promoting discourse, and modeling instruction for these designed units of study. The DBR strategy was chosen to promote reflective cycles, which are consistent with and in support of the self-study framework. A multiple case, mixed-methods approach was used for data collection and analysis. The findings in the study are reported by study phase in terms of unit planning, unit enactment, and unit reflection. The findings have implications for science teaching, teacher professional development, and teacher education.
Preface to the special issue on "Integrated Microwave Photonic Signal Processing"
NASA Astrophysics Data System (ADS)
Azaña, José; Yao, Jianping
2016-08-01
As Guest Editors, we are pleased to introduce this special issue on ;Integrated Microwave Photonic Signal Processing; published by the Elsevier journal Optics Communications. Microwave photonics is a field of growing importance from both scientific and practical application perspectives. The field of microwave photonics is devoted to the study, development and application of optics-based techniques and technologies aimed to the generation, processing, control, characterization and/or distribution of microwave signals, including signals well into the millimeter-wave frequency range. The use of photonic technologies for these microwave applications translates into a number of key advantages, such as the possibility of dealing with high-frequency, wide bandwidth signals with minimal losses and reduced electromagnetic interferences, and the potential for enhanced reconfigurability. The central purpose of this special issue is to provide an overview of the state of the art of generation, processing and characterization technologies for high-frequency microwave signals. It is now widely accepted that the practical success of microwave photonics at a large scale will essentially depend on the realization of high-performance microwave-photonic signal-processing engines in compact and integrated formats, preferably on a chip. Thus, the focus of the issue is on techniques implemented using integrated photonic technologies, with the goal of providing an update of the most recent advances toward realization of this vision.
Systems Engineering for Space Exploration Medical Capabilities
NASA Technical Reports Server (NTRS)
Mindock, Jennifer; Reilly, Jeffrey; Rubin, David; Urbina, Michelle; Hailey, Melinda; Hanson, Andrea; Burba, Tyler; McGuire, Kerry; Cerro, Jeffrey; Middour, Chris;
2017-01-01
Human exploration missions that reach destinations beyond low Earth orbit, such as Mars, will present significant new challenges to crew health management. For the medical system, lack of consumable resupply, evacuation opportunities, and real-time ground support are key drivers toward greater autonomy. Recognition of the limited mission and vehicle resources available to carry out exploration missions motivates the Exploration Medical Capability (ExMC) Element's approach to enabling the necessary autonomy. The Element's work must integrate with the overall exploration mission and vehicle design efforts to successfully provide exploration medical capabilities. ExMC is applying systems engineering principles and practices to accomplish its goals. This paper discusses the structured and integrative approach that is guiding the medical system technical development. Assumptions for the required levels of care on exploration missions, medical system goals, and a Concept of Operations are early products that capture and clarify stakeholder expectations. Model-Based Systems Engineering techniques are then applied to define medical system behavior and architecture. Interfaces to other flight and ground systems, and within the medical system are identified and defined. Initial requirements and traceability are established, which sets the stage for identification of future technology development needs. An early approach for verification and validation, taking advantage of terrestrial and near-Earth exploration system analogs, is also defined to further guide system planning and development.
Studying Science and Engineering Learning in Practice
ERIC Educational Resources Information Center
Penuel, William R.
2016-01-01
A key goal of science and engineering education is to provide opportunities for people to access, interpret, and make use of science and engineering to address practical human needs. Most education research, however, focuses on how best to prepare students in schools to participate in forms of science and engineering practices that resemble those…
40 CFR 86.098-23 - Required data.
Code of Federal Regulations, 2010 CFR
2010-07-01
... accordance with good engineering practice to assure that the engines covered by a certificate issued under... and conducted in accordance with good engineering practice to assure that the vehicles covered by a... systems are designed, using good engineering practice, to meet the standards of § 86.096-10 or § 86.098-11...
ERIC Educational Resources Information Center
Havice, William; Havice, Pamela; Waugaman, Chelsea; Walker, Kristin
2018-01-01
The integration of science, technology, engineering, and mathematics (STEM) education, also referred to as integrative STEM education, is a relatively new interdisciplinary teaching technique that incorporates an engineering design-based learning approach with mathematics, science, technology, and engineering education (Sanders, 2010, 2012, 2013;…
Integration of Sustainability in Engineering Education: Why Is PBL an Answer?
ERIC Educational Resources Information Center
Guerra, Aida
2017-01-01
Purpose: Education for sustainable development (ESD) is one of the challenges engineering education currently faces. Engineering education needs to revise and change its curriculum to integrate ESD principles and knowledge. Problem based learning (PBL) has been one of the main learning pedagogies used to integrate sustainability in engineering…
NASA Technical Reports Server (NTRS)
Litt, Jonathan S.
2004-01-01
The goal of the Autonomous Propulsion System Technology (APST) project is to reduce pilot workload under both normal and anomalous conditions. Ongoing work under APST develops and leverages technologies that provide autonomous engine monitoring, diagnosing, and controller adaptation functions, resulting in an integrated suite of algorithms that maintain the propulsion system's performance and safety throughout its life. Engine-to-engine performance variation occurs among new engines because of manufacturing tolerances and assembly practices. As an engine wears, the performance changes as operability limits are reached. In addition to these normal phenomena, other unanticipated events such as sensor failures, bird ingestion, or component faults may occur, affecting pilot workload as well as compromising safety. APST will adapt the controller as necessary to achieve optimal performance for a normal aging engine, and the safety net of APST algorithms will examine and interpret data from a variety of onboard sources to detect, isolate, and if possible, accommodate faults. Situations that cannot be accommodated within the faulted engine itself will be referred to a higher level vehicle management system. This system will have the authority to redistribute the faulted engine's functionality among other engines, or to replan the mission based on this new engine health information. Work is currently underway in the areas of adaptive control to compensate for engine degradation due to aging, data fusion for diagnostics and prognostics of specific sensor and component faults, and foreign object ingestion detection. In addition, a framework is being defined for integrating all the components of APST into a unified system. A multivariable, adaptive, multimode control algorithm has been developed that accommodates degradation-induced thrust disturbances during throttle transients. The baseline controller of the engine model currently being investigated has multiple control modes that are selected according to some performance or operational criteria. As the engine degrades, parameters shift from their nominal values. Thus, when a new control mode is swapped in, a variable that is being brought under control might have an excessive initial error. The new adaptive algorithm adjusts the controller gains on the basis of the level of degradation to minimize the disruptive influence of the large error on other variables and to recover the desired thrust response.
The Strutjet Rocket Based Combined Cycle Engine
NASA Technical Reports Server (NTRS)
Siebenhaar, A.; Bulman, M. J.; Bonnar, D. K.
1998-01-01
The multi stage chemical rocket has been established over many years as the propulsion System for space transportation vehicles, while, at the same time, there is increasing concern about its continued affordability and rather involved reusability. Two broad approaches to addressing this overall launch cost problem consist in one, the further development of the rocket motor, and two, the use of airbreathing propulsion to the maximum extent possible as a complement to the limited use of a conventional rocket. In both cases, a single-stage-to-orbit (SSTO) vehicle is considered a desirable goal. However, neither the "all-rocket" nor the "all-airbreathing" approach seems realizable and workable in practice without appreciable advances in materials and manufacturing. An affordable system must be reusable with minimal refurbishing on-ground, and large mean time between overhauls, and thus with high margins in design. It has been suggested that one may use different engine cycles, some rocket and others airbreathing, in a combination over a flight trajectory, but this approach does not lead to a converged solution with thrust-to-mass, specific impulse, and other performance and operational characteristics that can be obtained in the different engines. The reason is this type of engine is simply a combination of different engines with no commonality of gas flowpath or components, and therefore tends to have the deficiencies of each of the combined engines. A further development in this approach is a truly combined cycle that incorporates a series of cycles for different modes of propulsion along a flight path with multiple use of a set of components and an essentially single gas flowpath through the engine. This integrated approach is based on realizing the benefits of both a rocket engine and airbreathing engine in various combinations by a systematic functional integration of components in an engine class usually referred to as a rocket-based combined cycle (RBCC) engine. RBCC engines exhibit a high potential for lowering the operating cost of launching payloads into orbit. Two sources of cost reductions can be identified. First, RBCC powered vehicles require only 20% takeoff thrust compared to conventional rockets, thereby lowering the thrust requirements and the replacement cost of the engines. Second, due to the higher structural and thermal margins achievable with RBCC engines coupled with a higher degree of subsystem redundance lower maintenance and operating cost are obtainable.
Engineering Elegant Systems: Postulates, Principles, and Hypotheses of Systems Engineering
NASA Technical Reports Server (NTRS)
Watson, Michael D.
2018-01-01
Definition: System Engineering is the engineering discipline which integrates the system functions, system environment, and the engineering disciplines necessary to produce and/or operate an elegant system; Elegant System - A system that is robust in application, fully meeting specified and adumbrated intent, is well structured, and is graceful in operation. Primary Focus: System Design and Integration: Identify system couplings and interactions; Identify system uncertainties and sensitivities; Identify emergent properties; Manage the effectiveness of the system. Engineering Discipline Integration: Manage flow of information for system development and/or operations; Maintain system activities within budget and schedule. Supporting Activities: Process application and execution.
Integrated Sensitivity Analysis Workflow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedman-Hill, Ernest J.; Hoffman, Edward L.; Gibson, Marcus J.
2014-08-01
Sensitivity analysis is a crucial element of rigorous engineering analysis, but performing such an analysis on a complex model is difficult and time consuming. The mission of the DART Workbench team at Sandia National Laboratories is to lower the barriers to adoption of advanced analysis tools through software integration. The integrated environment guides the engineer in the use of these integrated tools and greatly reduces the cycle time for engineering analysis.
Systems Engineering and Integration for Advanced Life Support System and HST
NASA Technical Reports Server (NTRS)
Kamarani, Ali K.
2005-01-01
Systems engineering (SE) discipline has revolutionized the way engineers and managers think about solving issues related to design of complex systems: With continued development of state-of-the-art technologies, systems are becoming more complex and therefore, a systematic approach is essential to control and manage their integrated design and development. This complexity is driven from integration issues. In this case, subsystems must interact with one another in order to achieve integration objectives, and also achieve the overall system's required performance. Systems engineering process addresses these issues at multiple levels. It is a technology and management process dedicated to controlling all aspects of system life cycle to assure integration at all levels. The Advanced Integration Matrix (AIM) project serves as the systems engineering and integration function for the Human Support Technology (HST) program. AIM provides means for integrated test facilities and personnel for performance trade studies, analyses, integrated models, test results, and validated requirements of the integration of HST. The goal of AIM is to address systems-level integration issues for exploration missions. It will use an incremental systems integration approach to yield technologies, baselines for further development, and possible breakthrough concepts in the areas of technological and organizational interfaces, total information flow, system wide controls, technical synergism, mission operations protocols and procedures, and human-machine interfaces.
Project-oriented teaching model about specialized courses in the information age
NASA Astrophysics Data System (ADS)
Chen, Xiaodong; Wang, Jinjiang; Tian, Qingguo; Wang, Yi; Cai, Huaiyu
2017-08-01
Specialized courses play a significant role in the usage of basic knowledge in the practical application for engineering college students. The engineering data available has sharply increased since the beginning of the information age in the 20th century, providing much more approaches to study and practice. Therefore, how to guide students to make full use of resources for active engineering practice learning has become one of the key problems for specialized courses. This paper took the digital image processing course for opto-electronic information science and technology major as an example, discussed the teaching model of specialized course in the information age, put forward the "engineering resource oriented model", and fostered the ability of engineering students to use the basic knowledge to innovate and deal with specific project objectives. The fusion of engineering examples into practical training and teaching encourages students to practice independent engineering thinking.
Integrating medical informatics into the medical undergraduate curriculum.
Khonsari, L S; Fabri, P J
1997-01-01
The advent of healthcare reform and the rapid application of new technologies have resulted in a paradigm shift in medical practice. Integrating medical Informatics into the full spectrum of medical education is a viral step toward implementing this new instructional model, a step required for the understanding and practice of modern medicine. We have developed an informatics curriculum, a new educational paradigm, and an intranet-based teaching module which are designed to enhance adult-learning principles, life-long self education, and evidence-based critical thinking. Thirty two, fourth year medical students have participated in a one month, full time, independent study focused on but not limited to four topics: mastering the windows-based environment, understanding hospital based information management systems, developing competence in using the internet/intranet and world wide web/HTML, and experiencing distance communication and TeleVideo networks. Each student has completed a clinically relevant independent study project utilizing technology mastered during the course. This initial curriculum offering was developed in conjunction with faculty from the College of Medicine, College of Engineering, College of Education, College of Business, College of Public Health. Florida Center of Instructional Technology, James A. Haley Veterans Hospital, Moffitt Cancer Center, Tampa General Hospital, GTE, Westshore Walk-in Clinic (paperless office), and the Florida Engineering Education Delivery System. Our second step toward the distributive integration process was the introduction of Medical Informatics to first, second and third year medical students. To date, these efforts have focused on undergraduate medical education. Our next step is to offer workshops in Informatics to college of medicine faculty, to residents in post graduate training programs (GME), and ultimately as a method of distance learning in continuing medical education (CME).
The Roles of Engineering Notebooks in Shaping Elementary Engineering Student Discourse and Practice
ERIC Educational Resources Information Center
Hertel, Jonathan D.; Cunningham, Christine M.; Kelly, Gregory J.
2017-01-01
Engineering design challenges offer important opportunities for students to learn science and engineering knowledge and practices. This study examines how students' engineering notebooks across four units of the curriculum "Engineering is Elementary" (EiE) support student work during design challenges. Through educational ethnography and…
Flight and Integrated Testing: Blazing the Trail for the Ares Launch Vehicles
NASA Technical Reports Server (NTRS)
Taylor, James L.; Cockrell, Charlie; Robinson, Kimberly; Tuma, Margaret L.; Flynn, Kevin C.; Briscoe, Jeri M.
2007-01-01
It has been 30 years since the United States last designed and built a human-rated launch vehicle. The National Aeronautics and Space Administration (NASA) has marshaled unique resources from the government and private sectors that will carry the next generation of astronauts into space safer and more efficiently than ever and send them to the Moon to develop a permanent outpost. NASA's Flight and Integrated Test Office (FITO) located at Marshall Space Flight Center and the Ares I-X Mission Management Office have primary responsibility for developing and conducting critical ground and flight tests for the Ares I and Ares V launch vehicles. These tests will draw upon Saturn and the Space Shuttle experiences, which taught the value of using sound systems engineering practices, while also applying aerospace best practices such as "test as you fly" and other lessons learned. FITO will use a variety of methods to reduce the technical, schedule, and cost risks of flying humans safely aboard a launch vehicle.
Rushton, J A; Aldous, M; Himsworth, M D
2014-12-01
Experiments using laser cooled atoms and ions show real promise for practical applications in quantum-enhanced metrology, timing, navigation, and sensing as well as exotic roles in quantum computing, networking, and simulation. The heart of many of these experiments has been translated to microfabricated platforms known as atom chips whose construction readily lend themselves to integration with larger systems and future mass production. To truly make the jump from laboratory demonstrations to practical, rugged devices, the complex surrounding infrastructure (including vacuum systems, optics, and lasers) also needs to be miniaturized and integrated. In this paper we explore the feasibility of applying this approach to the Magneto-Optical Trap; incorporating the vacuum system, atom source and optical geometry into a permanently sealed micro-litre system capable of maintaining 10(-10) mbar for more than 1000 days of operation with passive pumping alone. We demonstrate such an engineering challenge is achievable using recent advances in semiconductor microfabrication techniques and materials.
NASA Astrophysics Data System (ADS)
Rushton, J. A.; Aldous, M.; Himsworth, M. D.
2014-12-01
Experiments using laser cooled atoms and ions show real promise for practical applications in quantum-enhanced metrology, timing, navigation, and sensing as well as exotic roles in quantum computing, networking, and simulation. The heart of many of these experiments has been translated to microfabricated platforms known as atom chips whose construction readily lend themselves to integration with larger systems and future mass production. To truly make the jump from laboratory demonstrations to practical, rugged devices, the complex surrounding infrastructure (including vacuum systems, optics, and lasers) also needs to be miniaturized and integrated. In this paper we explore the feasibility of applying this approach to the Magneto-Optical Trap; incorporating the vacuum system, atom source and optical geometry into a permanently sealed micro-litre system capable of maintaining 10-10 mbar for more than 1000 days of operation with passive pumping alone. We demonstrate such an engineering challenge is achievable using recent advances in semiconductor microfabrication techniques and materials.
Continuous integration for concurrent MOOSE framework and application development on GitHub
Slaughter, Andrew E.; Peterson, John W.; Gaston, Derek R.; ...
2015-11-20
For the past several years, Idaho National Laboratory’s MOOSE framework team has employed modern software engineering techniques (continuous integration, joint application/framework source code repos- itories, automated regression testing, etc.) in developing closed-source multiphysics simulation software (Gaston et al., Journal of Open Research Software vol. 2, article e10, 2014). In March 2014, the MOOSE framework was released under an open source license on GitHub, significantly expanding and diversifying the pool of current active and potential future contributors on the project. Despite this recent growth, the same philosophy of concurrent framework and application development continues to guide the project’s development roadmap. Severalmore » specific practices, including techniques for managing multiple repositories, conducting automated regression testing, and implementing a cascading build process are discussed in this short paper. Furthermore, special attention is given to describing the manner in which these practices naturally synergize with the GitHub API and GitHub-specific features such as issue tracking, Pull Requests, and project forks.« less
Continuous integration for concurrent MOOSE framework and application development on GitHub
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slaughter, Andrew E.; Peterson, John W.; Gaston, Derek R.
For the past several years, Idaho National Laboratory’s MOOSE framework team has employed modern software engineering techniques (continuous integration, joint application/framework source code repos- itories, automated regression testing, etc.) in developing closed-source multiphysics simulation software (Gaston et al., Journal of Open Research Software vol. 2, article e10, 2014). In March 2014, the MOOSE framework was released under an open source license on GitHub, significantly expanding and diversifying the pool of current active and potential future contributors on the project. Despite this recent growth, the same philosophy of concurrent framework and application development continues to guide the project’s development roadmap. Severalmore » specific practices, including techniques for managing multiple repositories, conducting automated regression testing, and implementing a cascading build process are discussed in this short paper. Furthermore, special attention is given to describing the manner in which these practices naturally synergize with the GitHub API and GitHub-specific features such as issue tracking, Pull Requests, and project forks.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rushton, J. A.; Aldous, M.; Himsworth, M. D., E-mail: m.d.himsworth@soton.ac.uk
2014-12-15
Experiments using laser cooled atoms and ions show real promise for practical applications in quantum-enhanced metrology, timing, navigation, and sensing as well as exotic roles in quantum computing, networking, and simulation. The heart of many of these experiments has been translated to microfabricated platforms known as atom chips whose construction readily lend themselves to integration with larger systems and future mass production. To truly make the jump from laboratory demonstrations to practical, rugged devices, the complex surrounding infrastructure (including vacuum systems, optics, and lasers) also needs to be miniaturized and integrated. In this paper we explore the feasibility of applyingmore » this approach to the Magneto-Optical Trap; incorporating the vacuum system, atom source and optical geometry into a permanently sealed micro-litre system capable of maintaining 10{sup −10} mbar for more than 1000 days of operation with passive pumping alone. We demonstrate such an engineering challenge is achievable using recent advances in semiconductor microfabrication techniques and materials.« less
Fiji: an open-source platform for biological-image analysis.
Schindelin, Johannes; Arganda-Carreras, Ignacio; Frise, Erwin; Kaynig, Verena; Longair, Mark; Pietzsch, Tobias; Preibisch, Stephan; Rueden, Curtis; Saalfeld, Stephan; Schmid, Benjamin; Tinevez, Jean-Yves; White, Daniel James; Hartenstein, Volker; Eliceiri, Kevin; Tomancak, Pavel; Cardona, Albert
2012-06-28
Fiji is a distribution of the popular open-source software ImageJ focused on biological-image analysis. Fiji uses modern software engineering practices to combine powerful software libraries with a broad range of scripting languages to enable rapid prototyping of image-processing algorithms. Fiji facilitates the transformation of new algorithms into ImageJ plugins that can be shared with end users through an integrated update system. We propose Fiji as a platform for productive collaboration between computer science and biology research communities.
Light in diagnosis, therapy and surgery
Yun, Seok Hyun; Kwok, Sheldon J. J.
2016-01-01
Light and optical techniques have made profound impacts on modern medicine, with numerous lasers and optical devices being currently used in clinical practice to assess health and treat disease. Recent advances in biomedical optics have enabled increasingly sophisticated technologies — in particular those that integrate photonics with nanotechnology, biomaterials and genetic engineering. In this Review, we revisit the fundamentals of light–matter interactions, describe the applications of light in imaging, diagnosis, therapy and surgery, overview their clinical use, and discuss the promise of emerging light-based technologies. PMID:28649464
Cyber security best practices for the nuclear industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Badr, I.
2012-07-01
When deploying software based systems, such as, digital instrumentation and controls for the nuclear industry, it is vital to include cyber security assessment as part of architecture and development process. When integrating and delivering software-intensive systems for the nuclear industry, engineering teams should make use of a secure, requirements driven, software development life cycle, ensuring security compliance and optimum return on investment. Reliability protections, data loss prevention, and privacy enforcement provide a strong case for installing strict cyber security policies. (authors)
The KSC Simulation Team practices for contingencies in Firing Room 1
NASA Technical Reports Server (NTRS)
1998-01-01
In Firing Room 1 at KSC, Shuttle launch team members put the Shuttle system through an integrated simulation. The control room is set up with software used to simulate flight and ground systems in the launch configuration. A Simulation Team, comprised of KSC engineers, introduce 12 or more major problems to prepare the launch team for worst-case scenarios. Such tests and simulations keep the Shuttle launch team sharp and ready for liftoff. The next liftoff is targeted for Oct. 29.
Role of System Architecture in Architecture in Developing New Drafting Tools
NASA Astrophysics Data System (ADS)
Sorguç, Arzu Gönenç
In this study, the impact of information technologies in architectural design process is discussed. In this discussion, first the differences/nuances between the concept of software engineering and system architecture are clarified. Then, the design process in engineering, and design process in architecture has been compared by considering 3-D models as the center of design process over which the other disciplines involve the design. It is pointed out that in many high-end engineering applications, 3-D solid models and consequently digital mock-up concept has become a common practice. But, architecture as one of the important customers of CAD systems employing these tools has not started to use these 3-D models. It is shown that the reason of this time lag between architecture and engineering lies behind the tradition of design attitude. Therefore, it is proposed a new design scheme a meta-model to develop an integrated design model being centered on 3-D model. It is also proposed a system architecture to achieve the transformation of architectural design process by replacing 2-D thinking with 3-D thinking. It is stated that in the proposed system architecture, the CAD systems are included and adapted for 3-D architectural design in order to provide interfaces for integration of all possible disciplines to design process. It is also shown that such a change will allow to elaborate the intelligent or smart building concept in future.
NASA Astrophysics Data System (ADS)
Lönngren, Johanna; Ingerman, Åke; Svanström, Magdalena
2017-08-01
Wicked sustainability problems (WSPs) are an important and particularly challenging type of problem. Science and engineering education can play an important role in preparing students to deal with such problems, but current educational practice may not adequately prepare students to do so. We address this gap by providing insights related to students' abilities to address WSPs. Specifically, we aim to (I) describe key constituents of engineering students' approaches to a WSP, (II) evaluate these approaches in relation to the normative context of education for sustainable development (ESD), and (III) identify relevant aspects of learning related to WSPs. Aim I is addressed through a phenomenographic study, while aims II and III are addressed by relating the results to research literature about human problem solving, sustainable development, and ESD. We describe four qualitatively different ways of approaching a specific WSP, as the outcome of the phenomenographic study: A. Simplify and avoid, B. Divide and control, C. Isolate and succumb, and D. Integrate and balance. We identify approach D as the most appropriate approach in the context of ESD, while A and C are not. On this basis, we identify three learning objectives related to students' abilities to address WSPs: learn to use a fully integrative approach, distinguish WSPs from tame and well-structured problems, and understand and consider the normative context of SD. Finally, we provide recommendations for how these learning objectives can be used to guide the design of science and engineering educational activities.
NASA Astrophysics Data System (ADS)
Kent, M.; Egger, A. E.; Bruckner, M. Z.; Manduca, C. A.
2014-12-01
Over 100,000 students obtain a bachelor's degree in education every year; these students most commonly encounter the geosciences through a general education course, and it may be the only geoscience course they ever take. However, the Next Generation Science Standards (NGSS) contain much more Earth science content than previous standards. In addition, the NGSS emphasize the use of science and engineering practices in the K-12 classroom. Future teachers need to experience learning science as a scientist, through a hands-on, activity-based learning process, in order to give them the skills they need to teach science that same way in the future. In order to be successful at teaching the NGSS, both current and future teachers will need more than a single course in geoscience or science methods. As a result, there is now a key opportunity for geoscience programs to play a vital role in strengthening teacher preparation programs, both through introductory courses and beyond. To help programs and individual faculty take advantage of this opportunity, we have developed a set of web-based resources, informed by participants in the InTeGrate program as well as by faculty in exemplary teacher preparation programs. The pages address the program-level task of creating engaging and effective courses for teacher preparation programs, with the goal of introducing education majors to the active pedagogies and geoscience methods they will later use in their own classrooms. A collection of exemplary Teacher Preparation programs is also included. Additional pages provide information on what it means to be an "expert thinker" in the geosciences and how individual faculty and teachers can explicitly teach these valuable skills that are reflected in the science and engineering practices of the NGSS. Learn more on the InTeGrate web site about preparing future teachers: serc.carleton.edu/integrate/programs/teacher_prep.htmland training expert thinkers: serc.carleton.edu/integrate/teaching_materials/expert_thinkers.html
Damage-Tolerant Fan Casings for Jet Engines
NASA Technical Reports Server (NTRS)
2006-01-01
All turbofan engines work on the same principle. A large fan at the front of the engine draws air in. A portion of the air enters the compressor, but a greater portion passes on the outside of the engine this is called bypass air. The air that enters the compressor then passes through several stages of rotating fan blades that compress the air more, and then it passes into the combustor. In the combustor, fuel is injected into the airstream, and the fuel-air mixture is ignited. The hot gasses produced expand rapidly to the rear, and the engine reacts by moving forward. If there is a flaw in the system, such as an unexpected obstruction, the fan blade can break, spin off, and harm other engine components. Fan casings, therefore, need to be strong enough to contain errant blades and damage-tolerant to withstand the punishment of a loose blade-turned-projectile. NASA has spearheaded research into improving jet engine fan casings, ultimately discovering a cost-effective approach to manufacturing damage-tolerant fan cases that also boast significant weight reduction. In an aircraft, weight reduction translates directly into fuel burn savings, increased payload, and greater aircraft range. This technology increases safety and structural integrity; is an attractive, viable option for engine manufacturers, because of the low-cost manufacturing; and it is a practical alternative for customers, as it has the added cost saving benefits of the weight reduction.
Product Lifecycle Management and the Quest for Sustainable Space Exploration Solutions
NASA Technical Reports Server (NTRS)
Caruso, Pamela W.; Dumbacher, Daniel L.
2010-01-01
Product Lifecycle Management (PLM) is an outcome of lean thinking to eliminate waste and increase productivity. PLM is inextricably tied to the systems engineering business philosophy, coupled with a methodology by which personnel, processes and practices, and information technology combine to form an architecture platform for product design, development, manufacturing, operations, and decommissioning. In this model, which is being implemented by the Engineering Directorate at the National Aeronautics and Space Administration's (NASA's) Marshall Space Flight Center, total lifecycle costs are important variables for critical decisionmaking. With the ultimate goal to deliver quality products that meet or exceed requirements on time and within budget, PLM is a powerful tool to shape everything from engineering trade studies and testing goals, to integrated vehicle operations and retirement scenarios. This paper will demonstrate how the Engineering Directorate is implementing PLM as part of an overall strategy to deliver safe, reliable, and affordable space exploration solutions. It has been 30 years since the United States fielded the Space Shuttle. The next generation space transportation system requires a paradigm shift such that digital tools and knowledge management, which are central elements of PLM, are used consistently to maximum effect. The outcome is a better use of scarce resources, along with more focus on stakeholder and customer requirements, as a new portfolio of enabling tools becomes second nature to the workforce. This paper will use the design and manufacturing processes, which have transitioned to digital-based activities, to show how PLM supports the comprehensive systems engineering and integration function. It also will go through a launch countdown scenario where an anomaly is detected to show how the virtual vehicle created from paperless processes will help solve technical challenges and improve the likelihood of launching on schedule, with less hands-on labor needed for processing and troubleshooting. Sustainable space exploration solutions demand that all lifecycle phases be optimized. Adopting PLM, which has been used by the automotive industry for many years, for aerospace applications provides a foundation for strong, disciplined systems engineering and accountable return on investment by making lifecycle considerations variables in an iterative decision-making process. This paper combines the perspectives of the founding father of PLM, along with the experience of Engineering leaders who are implementing these processes and practices real-time. As the nation moves from an industrial-based society to one where information is a valued commodity, future NASA programs and projects will benefit from the experience being gained today for the exploration missions of tomorrow.
GN&C Engineering Best Practices for Human-Rated Spacecraft Systems
NASA Technical Reports Server (NTRS)
Dennehy, Cornelius J.; Lebsock, Kenneth; West, John
2007-01-01
The NASA Engineering and Safety Center (NESC) recently completed an in-depth assessment to identify a comprehensive set of engineering considerations for the Design, Development, Test and Evaluation (DDT&E) of safe and reliable human-rated spacecraft systems. Reliability subject matter experts, discipline experts, and systems engineering experts were brought together to synthesize the current "best practices" both at the spacecraft system and subsystems levels. The objective of this paper is to summarize, for the larger Community of Practice, the initial set of Guidance, Navigation and Control (GN&C) engineering Best Practices as identified by this NESC assessment process.
GN&C Engineering Best Practices for Human-Rated Spacecraft System
NASA Technical Reports Server (NTRS)
Dennehy, Cornelius J.; Lebsock, Kenneth; West, John
2008-01-01
The NASA Engineering and Safety Center (NESC) recently completed an in-depth assessment to identify a comprehensive set of engineering considerations for the Design, Development, Test and Evaluation (DDT&E) of safe and reliable human-rated spacecraft systems. Reliability subject matter experts, discipline experts, and systems engineering experts were brought together to synthesize the current "best practices" both at the spacecraft system and subsystems levels. The objective of this paper is to summarize, for the larger Community of Practice, the initial set of Guidance, Navigation and Control (GN&C) engineering Best Practices as identified by this NESC assessment process.
GN&C Engineering Best Practices For Human-Rated Spacecraft Systems
NASA Technical Reports Server (NTRS)
Dennehy, Cornelius J.; Lebsock, Kenneth; West, John
2007-01-01
The NASA Engineering and Safety Center (NESC) recently completed an in-depth assessment to identify a comprehensive set of engineering considerations for the Design, Development, Test and Evaluation (DDT&E) of safe and reliable human-rated spacecraft systems. Reliability subject matter experts, discipline experts, and systems engineering experts were brought together to synthesize the current "best practices" both at the spacecraft system and subsystems levels. The objective of this paper is to summarize, for the larger Community of Practice, the initial set of Guidance, Navigation and Control (GN&C) engineering Best Practices as identified by this NESC assessment process.
An Integrated Neuroscience and Engineering Approach to Classifying Human Brain-States
2015-12-22
AFRL-AFOSR-VA-TR-2016-0037 An Integrated Neuroscience and Engineering Approach to Classifying Human Brain-States Adrian Lee UNIVERSITY OF WASHINGTON...to 14-09-2015 4. TITLE AND SUBTITLE An Integrated Neuroscience and Engineering Approach to Classifying Human Brain- States 5a. CONTRACT NUMBER 5b...specific cognitive states remains elusive, owing perhaps to limited crosstalk between the fields of neuroscience and engineering. Here, we report a
NASA Technical Reports Server (NTRS)
Myers, L. P.; Burcham, F. W., Jr.
1984-01-01
The highly integrated digital electronic control (HIDEC) program will integrate the propulsion and flight control systems on an F-15 airplane at NASA Ames Research Center's Dryden Flight Research Facility. Ames-Dryden has conducted several propulsion control programs that have contributed to the HIDEC program. The digital electronic engine control (DEEC) flight evaluation investigated the performance and operability of the F100 engine equipped with a full-authority digital electronic control system. Investigations of nozzle instability, fault detection and accommodation, and augmentor transient capability provided important information for the HIDEC program. The F100 engine model derivative (EMD) was also flown in the F-15 airplane, and airplane performance was significantly improved. A throttle response problem was found and solved with a software fix to the control logic. For the HIDEC program, the F100 EMD engines equipped with DEEC controls will be integrated with the digital flight control system. The control modes to be implemented are an integrated flightpath management mode and an integrated adaptive engine control system mode. The engine control experience that will be used in the HIDEC program is discussed.
An integrated knowledge system for wind tunnel testing - Project Engineers' Intelligent Assistant
NASA Technical Reports Server (NTRS)
Lo, Ching F.; Shi, George Z.; Hoyt, W. A.; Steinle, Frank W., Jr.
1993-01-01
The Project Engineers' Intelligent Assistant (PEIA) is an integrated knowledge system developed using artificial intelligence technology, including hypertext, expert systems, and dynamic user interfaces. This system integrates documents, engineering codes, databases, and knowledge from domain experts into an enriched hypermedia environment and was designed to assist project engineers in planning and conducting wind tunnel tests. PEIA is a modular system which consists of an intelligent user-interface, seven modules and an integrated tool facility. Hypermedia technology is discussed and the seven PEIA modules are described. System maintenance and updating is very easy due to the modular structure and the integrated tool facility provides user access to commercial software shells for documentation, reporting, or database updating. PEIA is expected to provide project engineers with technical information, increase efficiency and productivity, and provide a realistic tool for personnel training.
Integrated gas turbine engine-nacelle
NASA Technical Reports Server (NTRS)
Adamson, A. P.; Sargisson, D. F.; Stotler, C. L., Jr. (Inventor)
1977-01-01
A nacelle for use with a gas turbine engine is presented. An integral webbed structure resembling a spoked wheel for rigidly interconnecting the nacelle and engine, provides lightweight support. The inner surface of the nacelle defines the outer limits of the engine motive fluid flow annulus while the outer surface of the nacelle defines a streamlined envelope for the engine.
ERIC Educational Resources Information Center
Nam, Younkyeong; Lee, Sun-Ju; Paik, Seoung-Hey
2016-01-01
This study investigated how engineering integrated science (EIS) curricula affect first-year technical high school students' attitudes toward science and perceptions of engineering. The effect of the EIS participation period on students' attitudes toward science was also investigated via experimental study design. Two engineering integrated…
The responsibilities of engineers.
Smith, Justin; Gardoni, Paolo; Murphy, Colleen
2014-06-01
Knowledge of the responsibilities of engineers is the foundation for answering ethical questions about the work of engineers. This paper defines the responsibilities of engineers by considering what constitutes the nature of engineering as a particular form of activity. Specifically, this paper focuses on the ethical responsibilities of engineers qua engineers. Such responsibilities refer to the duties acquired in virtue of being a member of a group. We examine the practice of engineering, drawing on the idea of practices developed by philosopher Alasdair MacIntyre, and show how the idea of a practice is important for identifying and justifying the responsibilities of engineers. To demonstrate the contribution that knowledge of the responsibilities of engineers makes to engineering ethics, a case study from structural engineering is discussed. The discussion of the failure of the Sleipner A Platform off the coast of Norway in 1991 demonstrates how the responsibilities of engineers can be derived from knowledge of the nature of engineering and its context.
The use of moral dilemmas for teaching agricultural engineers.
Lozano, J Félix; Palau-Salvador, Guillermo; Gozálvez, Vincent; Boni, Alejandra
2006-04-01
Agricultural engineers' jobs are especially related to sustainability and earth life issues. They usually work with plants or animals, and the aim of their work is often linked to producing food to allow people to improve their quality of life. Taking into account this dual function, the moral requirements of their day-to-day professional practice are arguably greater than those of other professions. Agricultural engineers can develop their ability to live up to this professional responsibility by receiving ethical training during their university studies, not only by taking courses specifically devoted to ethics, but also by having to deal with moral questions that are integrated into their technical courses through a program of Ethics Across the Curriculum (EAC). The authors feel that a suitable pedagogical technique for achieving this goal is the use of moral dilemmas, following Kohlberg's theory of levels of morality (1981), with the final objective of attaining a post-conventional level. This paper examines the possibilities and limitations of using moral dilemmas as a pedagogical technique for training agricultural engineers. The cases, discussions, and evaluation used in the Agricultural Engineering Department of the Technical University of Valencia (Spain) are also presented.
RadSearch: a RIS/PACS integrated query tool
NASA Astrophysics Data System (ADS)
Tsao, Sinchai; Documet, Jorge; Moin, Paymann; Wang, Kevin; Liu, Brent J.
2008-03-01
Radiology Information Systems (RIS) contain a wealth of information that can be used for research, education, and practice management. However, the sheer amount of information available makes querying specific data difficult and time consuming. Previous work has shown that a clinical RIS database and its RIS text reports can be extracted, duplicated and indexed for searches while complying with HIPAA and IRB requirements. This project's intent is to provide a software tool, the RadSearch Toolkit, to allow intelligent indexing and parsing of RIS reports for easy yet powerful searches. In addition, the project aims to seamlessly query and retrieve associated images from the Picture Archiving and Communication System (PACS) in situations where an integrated RIS/PACS is in place - even subselecting individual series, such as in an MRI study. RadSearch's application of simple text parsing techniques to index text-based radiology reports will allow the search engine to quickly return relevant results. This powerful combination will be useful in both private practice and academic settings; administrators can easily obtain complex practice management information such as referral patterns; researchers can conduct retrospective studies with specific, multiple criteria; teaching institutions can quickly and effectively create thorough teaching files.
ERIC Educational Resources Information Center
Love, Tyler S.
2015-01-01
With the recent release of the "Next Generation Science Standards" (NGSS) (NGSS Lead States, 2014b) science educators were expected to teach engineering content and practices within their curricula. However, technology and engineering (T&E) educators have been expected to teach content and practices from engineering and other…
A Study on Aircraft Engine Control Systems for Integrated Flight and Propulsion Control
NASA Astrophysics Data System (ADS)
Yamane, Hideaki; Matsunaga, Yasushi; Kusakawa, Takeshi
A flyable FADEC system engineering model incorporating Integrated Flight and Propulsion Control (IFPC) concept is developed for a highly maneuverable aircraft and a fighter-class engine. An overview of the FADEC system and functional assignments for its components such as the Engine Control Unit (ECU) and the Integrated Control Unit (ICU) are described. Overall system reliability analysis, convex analysis and multivariable controller design for the engine, fault detection/redundancy management, and response characteristics of a fuel system are addressed. The engine control performance of the FADEC is demonstrated by hardware-in-the-loop simulation for fast acceleration and thrust transient characteristics.
An, Gary; Faeder, James; Vodovotz, Yoram
2008-01-01
The pathophysiology of the burn patient manifests the full spectrum of the complexity of the inflammatory response. In the acute phase, inflammation may have negative effects via capillary leak, the propagation of inhalation injury, and development of multiple organ failure. Attempts to mediate these processes remain a central subject of burn care research. Conversely, inflammation is a necessary prologue and component in the later stage processes of wound healing. Despite the volume of information concerning the cellular and molecular processes involved in inflammation, there exists a significant gap between the knowledge of mechanistic pathophysiology and the development of effective clinical therapeutic regimens. Translational systems biology (TSB) is the application of dynamic mathematical modeling and certain engineering principles to biological systems to integrate mechanism with phenomenon and, importantly, to revise clinical practice. This study will review the existing applications of TSB in the areas of inflammation and wound healing, relate them to specific areas of interest to the burn community, and present an integrated framework that links TSB with traditional burn research.
29 CFR 1910.1017 - Vinyl chloride.
Code of Federal Regulations, 2011 CFR
2011-07-01
... this section by engineering, work practice, and personal protective controls as follows: (1) Feasible engineering and work practice controls shall immediately be used to reduce exposures to at or below the permissible exposure limit. (2) Wherever feasible engineering and work practice controls which can be...
29 CFR 1910.1017 - Vinyl chloride.
Code of Federal Regulations, 2010 CFR
2010-07-01
... this section by engineering, work practice, and personal protective controls as follows: (1) Feasible engineering and work practice controls shall immediately be used to reduce exposures to at or below the permissible exposure limit. (2) Wherever feasible engineering and work practice controls which can be...
Epistemic Practices of Engineering for Education
ERIC Educational Resources Information Center
Cunningham, Christine M.; Kelly, Gregory J.
2017-01-01
Engineering offers new educational opportunities for students, yet also poses challenges about how to conceptualize the disciplinary core ideas, crosscutting concepts, and science and engineering practices of the disciplinary fields of engineering. In this paper, we draw from empirical studies of engineering in professional and school settings to…
Energy Systems Integration News | Energy Systems Integration Facility |
NREL News Energy Systems Integration News A monthly recap of the latest happenings at the Energy Systems Integration Facility and developments in energy systems integration (ESI) research at NREL ; said Vahan Gevorgian, chief engineer with NREL's Power Systems Engineering Center. "Results of
Line integral on engineering mathematics
NASA Astrophysics Data System (ADS)
Wiryanto, L. H.
2018-01-01
Definite integral is a basic material in studying mathematics. At the level of calculus, calculating of definite integral is based on fundamental theorem of calculus, related to anti-derivative, as the inverse operation of derivative. At the higher level such as engineering mathematics, the definite integral is used as one of the calculating tools of line integral. the purpose of this is to identify if there is a question related to line integral, we can use definite integral as one of the calculating experience. The conclusion of this research says that the teaching experience in introducing the relation between both integrals through the engineer way of thinking can motivate and improve students in understanding the material.
Benchmarking Gas Path Diagnostic Methods: A Public Approach
NASA Technical Reports Server (NTRS)
Simon, Donald L.; Bird, Jeff; Davison, Craig; Volponi, Al; Iverson, R. Eugene
2008-01-01
Recent technology reviews have identified the need for objective assessments of engine health management (EHM) technology. The need is two-fold: technology developers require relevant data and problems to design and validate new algorithms and techniques while engine system integrators and operators need practical tools to direct development and then evaluate the effectiveness of proposed solutions. This paper presents a publicly available gas path diagnostic benchmark problem that has been developed by the Propulsion and Power Systems Panel of The Technical Cooperation Program (TTCP) to help address these needs. The problem is coded in MATLAB (The MathWorks, Inc.) and coupled with a non-linear turbofan engine simulation to produce "snap-shot" measurements, with relevant noise levels, as if collected from a fleet of engines over their lifetime of use. Each engine within the fleet will experience unique operating and deterioration profiles, and may encounter randomly occurring relevant gas path faults including sensor, actuator and component faults. The challenge to the EHM community is to develop gas path diagnostic algorithms to reliably perform fault detection and isolation. An example solution to the benchmark problem is provided along with associated evaluation metrics. A plan is presented to disseminate this benchmark problem to the engine health management technical community and invite technology solutions.
47 CFR 73.508 - Standards of good engineering practice.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 4 2010-10-01 2010-10-01 false Standards of good engineering practice. 73.508 Section 73.508 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES... engineering practice. (a) All noncommercial educational stations and LPFM stations operating with more than 10...
47 CFR 73.508 - Standards of good engineering practice.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 4 2014-10-01 2014-10-01 false Standards of good engineering practice. 73.508 Section 73.508 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES... engineering practice. (a) All noncommercial educational stations and LPFM stations operating with more than 10...
47 CFR 73.508 - Standards of good engineering practice.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 4 2012-10-01 2012-10-01 false Standards of good engineering practice. 73.508 Section 73.508 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES... engineering practice. (a) All noncommercial educational stations and LPFM stations operating with more than 10...
47 CFR 73.508 - Standards of good engineering practice.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 4 2013-10-01 2013-10-01 false Standards of good engineering practice. 73.508 Section 73.508 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES... engineering practice. (a) All noncommercial educational stations and LPFM stations operating with more than 10...
47 CFR 73.508 - Standards of good engineering practice.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 4 2011-10-01 2011-10-01 false Standards of good engineering practice. 73.508 Section 73.508 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES... engineering practice. (a) All noncommercial educational stations and LPFM stations operating with more than 10...
ERIC Educational Resources Information Center
Heylen, Christel; Smet, Marc; Buelens, Hermans; Sloten, Jos Vander
2007-01-01
A present-day engineer has a large scientific knowledge; he is a team-player, eloquent communicator and life-long learner. At the Katholieke Universiteit Leuven, the course "Problem Solving and Engineering Design" introduces engineering students from the first semester onwards into real engineering practice and teamwork. Working in small…
Niche construction theory: a practical guide for ecologists.
Odling-Smee, John; Erwin, Douglas H; Palkovacs, Eric P; Feldman, Marcus W; Laland, Kevin N
2013-03-01
Niche construction theory (NCT) explicitly recognizes environmental modication by organisms ("niche construction") and their legacy overtime ("ecological inheritance") to be evolutionary processes in their own right. Here we illustrate how niche construction theory provides usedl conceptual tools and theoretical insights for integrating ecosystem ecology and evolutionary theory. We begin by briefly describing NCT, and illustrating how it deifers from conventional evolutionary approaches. We then distinguish between two aspects ofniche construction--environment alteration and subsequent evolution in response to constructed environments--equating the first of these with "ecosystem engineering." We describe some of the ecological and evolutionary impacts on ecosystems of niche construction, ecosystem engineering and ecological inheritance, and illustrate how these processes trigger ecological and evolutionary feedbacks and leave detectable ecological signatures that are open to investigation. FIinally, we provide a practical guide to how NCT could be deployed by ecologists and evolutionary biologists to aeplore ecoeoolutionay dynamics. We suggest that, by highlighting the ecological and evolutionay ramifications of changes that organisms bring about in ecosystems, NCT helps link ecosystem ecology to evolutionary biology, potentially leading to a deeper understanding of how ecosystems change over time.
Test and evaluation of the HIDEC engine uptrim algorithm
NASA Technical Reports Server (NTRS)
Ray, R. J.; Myers, L. P.
1986-01-01
The highly integrated digital electronic control (HIDEC) program will demonstrate and evaluate the improvements in performance and mission effectiveness that result from integrated engine-airframe control systems. Performance improvements will result from an adaptive engine stall margin mode, a highly integrated mode that uses the airplane flight conditions and the resulting inlet distortion to continuously compute engine stall margin. When there is excessive stall margin, the engine is uptrimmed for more thrust by increasing engine pressure ratio (EPR). The EPR uptrim logic has been evaluated and implemented into computer simulations. Thrust improvements over 10 percent are predicted for subsonic flight conditions. The EPR uptrim was successfully demonstrated during engine ground tests. Test results verify model predictions at the conditions tested.
NASA Technical Reports Server (NTRS)
Bolton, Matthew L.; Bass, Ellen J.
2009-01-01
Both the human factors engineering (HFE) and formal methods communities are concerned with finding and eliminating problems with safety-critical systems. This work discusses a modeling effort that leveraged methods from both fields to use model checking with HFE practices to perform formal verification of a human-interactive system. Despite the use of a seemingly simple target system, a patient controlled analgesia pump, the initial model proved to be difficult for the model checker to verify in a reasonable amount of time. This resulted in a number of model revisions that affected the HFE architectural, representativeness, and understandability goals of the effort. If formal methods are to meet the needs of the HFE community, additional modeling tools and technological developments are necessary.
NASA Astrophysics Data System (ADS)
Friesen, Marcia R.
Immigration, economic, and regulatory trends in Canada have challenged all professions to examine the processes by which immigrant professionals (international graduates) achieve professional licensure and meaningful employment in Canada. The Internationally Educated Engineers Qualification Program (IEEQ) at the University of Manitoba was developed as an alternate pathway to integrate international engineering graduates into the engineering profession in Manitoba. However, universities have the neither mandate nor the historical practice to facilitate licensure for immigrant professionals and, thus, the knowledge base for program development and delivery is predominantly experiential. This study was developed to address the void in the knowledge base and support the program's ongoing development by conducting a critical, exploratory, participant-oriented evaluation of the IEEQ Program for both formative and summative purposes. The research questions focussed on how the IEEQ participants perceived and described their experiences in the IEEQ Program, and how the participants' outcomes in the IEEQ Program compared to international engineering graduates pursuing other licensing pathways. The study was built on an interpretivist theoretical approach that supported a primarily qualitative methodology with selected quantitative elements. Data collection was grounded in focus group interviews, written questionnaires, student reports, and program records for data collection, with inductive data analysis for qualitative data and descriptive statistics for quantitative data. The findings yielded rich understandings of participants' experiences in the IEEQ Program, their outcomes relative to international engineering graduates (IEGs) pursuing other licensing pathways, and their perceptions of their own adaptation to the Canadian engineering profession. Specifically, the study suggests that foreign credentials recognition processes have tended to focus on the recognition and translation of human and/or institutional capital. Yet, access to and acquisition of social and cultural capital need to receive equal attention. Further, the study suggested that, while it is reasonable that language fluency is a pre-requisite for successful professional integration, there is also a fundamental link between language and cognition in that international engineering graduates are challenged to understand and assimilate information for which they may not possess useful language or the underlying mental constructs. The findings have implications for our collective understanding of the scope of the professional engineering body of knowledge.
Exploring the Concept of HIV-Related Stigma
Florom-Smith, Aubrey L.; De Santis, Joseph P.
2013-01-01
BACKGROUND HIV infection is a chronic, manageable illness. Despite advances in the care and treatment of people living with HIV infection, HIV-related stigma remains a challenge to HIV testing, care, and prevention. Numerous studies have documented the impact of HIV-related stigma among various groups of people living with HIV infection, but the concept of HIV-related stigma remains unclear. PURPOSE Concept exploration of HIV-related stigma via an integrative literature review was conducted in order to examine the existing knowledge base of this concept. METHODS Search engines were employed to review the existing knowledge base of this concept. CONCLUSION After the integrative literature review, an analysis of HIV-related stigma emerged. Implications for future concept analysis, research, and practice are included. PMID:22861652
Limits on fundamental limits to computation.
Markov, Igor L
2014-08-14
An indispensable part of our personal and working lives, computing has also become essential to industries and governments. Steady improvements in computer hardware have been supported by periodic doubling of transistor densities in integrated circuits over the past fifty years. Such Moore scaling now requires ever-increasing efforts, stimulating research in alternative hardware and stirring controversy. To help evaluate emerging technologies and increase our understanding of integrated-circuit scaling, here I review fundamental limits to computation in the areas of manufacturing, energy, physical space, design and verification effort, and algorithms. To outline what is achievable in principle and in practice, I recapitulate how some limits were circumvented, and compare loose and tight limits. Engineering difficulties encountered by emerging technologies may indicate yet unknown limits.
NASA Astrophysics Data System (ADS)
Tank, Kristina Maruyama
In recent years there has been an increasing emphasis on the integration of multiple disciplines in order to help prepare more students to better address the complex challenges they will face in the 21st century. Exposing students to an integrated and multidisciplinary approach will help them to better understand the connections between subjects instead of as individual and separate subjects. Science, Technology, Engineering and Mathematics (STEM) Integration has been suggested as an approach that would model a multidisciplinary approach while also offering authentic and meaningful learning experiences to students. However, there is limited research on STEM integration in the elementary classroom and additional research is needed to better define and explore the effects of this integration for both students and science educators. With the recent recommendations for teaching both science and engineering in elementary classrooms (NRC, 2012), two common models include teaching science through inquiry and teaching science through engineering-design pedagogies. This study will explore both of these models as it seeks to better understand one piece of the larger issue of STEM and STEM integration by examining how the integration of science, engineering, and nonfiction literature affects students learning in elementary classrooms. This study employed an embedded mixed methods design to measure the effects of this integration on student learning in four fifth grade classrooms from the same elementary school. The findings revealed that the students who participated in the nonfiction reading instruction that was integrated with their science instruction showed a greater increase in all measures of student learning in both science and reading when compared to the control students. The findings from the integrated science, engineering and nonfiction literature revealed similar findings with the treatment students showing a greater increase in the measures of student learning in all three of the content areas. These results suggest that integrating nonfiction literature with science or science and engineering instruction can be an effective strategy in improving student learning in elementary classrooms.
The Robert E. Hopkins Center for Optical Design and Engineering
NASA Astrophysics Data System (ADS)
Zavislan, James M.; Brown, Thomas G.
2008-08-01
In 1929, a grant from Eastman Kodak and Bausch and Lomb established The Institute of Optics as the nation's first academic institution devoted to training optical scientists and engineers. The mission was 'to study light in all its phases', and the curriculum was designed to educate students in the fundamentals of optical science and build essential skills in applied optics and optical engineering. Indeed, our historic strength has been a balance between optical science and engineering--we have alumni who are carrying out prize-winning research in optical physics, alumni who are innovative optical engineers, and still other alumni who are leaders in the business community. Faculty who are top-notch optical engineers are an important resource to optical physics research groups -- likewise, teaching and modeling excellent optical science provides a strong underpinning for students on the applied/engineering end of the spectrum. This model -an undergraduate and graduate program that balances fundamental optics, applied optics, and optical engineering- has served us well. The impressive and diverse range of opportunities for our BS graduates has withstood economic cycles, and the students graduate with a healthy dose of practical experience. Undergraduate advisors, with considerable initiative from the program coordinator, are very aggressive in pointing students toward summer research and engineering opportunities. The vast majority of our undergraduate students graduate with at least one summer of experience in a company or a research laboratory. For example, 95% of the class of 2008 spent the summer of 2007 at companies and/or research laboratories: These include Zygo, NRL, Bausch and Lomb, The University of Rochester(The Institute of Optics, Medical Center, and Laboratory for Laser Energetics), QED, ARL Night Vision laboratories, JPL, Kollsman, OptiMax, Northrup Grumman, and at least two other companies. It is an impressive list, and bodes well for the career preparation for these students. While this extracurricular experience is truly world-class, an integrated design experience defined within our academic program is increasingly necessary for those going on to professional careers in engineering. This paper describes the philosophy behind a revision to our undergraduate curriculum that integrates a design experience and describes the engineering laboratory that has been established to make it a reality. The laboratory and design center has been named in honor of Robert E. Hopkins, former director and professor, co-founder of Tropel corporation, and a lifelong devotee to engineering innovation.
CanSat Competition: Contributing to the Development of NASA's Vision for Robotic Space Exploration
NASA Technical Reports Server (NTRS)
Berman, Joshua; Berman, Timothy; Billheimer, Thomas; Biclmer. Elizabeth; Hood, Stuart; Neas, Charles
2007-01-01
CanSat is an international student design-build-launch competition organized by the American Astronautical Society (AAS) and American Institute of Aeronautics and Astronautics (AIAA). The competition is also sponsored by the Naval Research Laboratory (NRL) and the National Aeronautics and Space Administration (NASA). The CanSat competition is designed for college, university and high school students wanting to participate in an applicable space-related competition. The objective of the CanSat competition is to complete space exploration missions by designing a specific system for a small sounding rocket payload which will follow and perform to a specific set of rules and guidelines for each year's competition. The competition encompasses a complete life-cycle of one year which includes all phases of design, integration, testing, judging and competition. The mission guidelines are based from space exploration missions and include bonus requirement options which teams may choose to participate in. The fundamental goal of the competition is to educate future engineers and scientists. This is accomplished by students applying systems engineering practices to a development project that incorporates an end-to-end life cycle, from requirements analysis, through preliminary design, integration and testing, an actual flight of the CanSat, and concluding with a post-mission debrief. This is done specifically with space related missions to bring a unique aspect of engineering and design to the competition. The competition has been progressing since its creation in 2005. The competition was originally meant to purely convey the engineering and design process to its participants, but through many experiences the competition has also undergone a learning experience with respect to systems engineering process and design. According
Product Lifecycle Management and the Quest for Sustainable Space Explorations
NASA Technical Reports Server (NTRS)
Caruso, Pamela W.; Dumbacher, Daniel L.
2010-01-01
Product Lifecycle Management (PLM) is an outcome of lean thinking to eliminate waste and increase productivity. PLM is inextricably tied to the systems engineering business philosophy, coupled with a methodology by which personnel, processes and practices, and information technology combine to form an architecture platform for product design, development, manufacturing, operations, and decommissioning. In this model, which is being implemented by the Engineering Directorate at the National Aeronautics and Space Administration's (NASA's) Marshall Space Flight Center, total lifecycle costs are important variables for critical decision-making. With the ultimate goal to deliver quality products that meet or exceed requirements on time and within budget, PLM is a powerful concept to shape everything from engineering trade studies and testing goals, to integrated vehicle operations and retirement scenarios. This paper will demonstrate how the Engineering Directorate is implementing PLM as part of an overall strategy to deliver safe, reliable, and affordable space exploration solutions. It has been 30 years since the United States fielded the Space Shuttle. The next generation space transportation system requires a paradigm shift such that digital tools and knowledge management, which are central elements of PLM, are used consistently to maximum effect. The outcome is a better use of scarce resources, along with more focus on stakeholder and customer requirements, as a new portfolio of enabling tools becomes second nature to the workforce. This paper will use the design and manufacturing processes, which have transitioned to digital-based activities, to show how PLM supports the comprehensive systems engineering and integration function. It also will go through a launch countdown scenario where an anomaly is detected to show how the virtual vehicle created from paperless processes will help solve technical challenges and improve the likelihood of launching on schedule, with less hands-on labor needed for processing and troubleshooting.
Engineers' Professional Learning: A Practice-Theory Perspective
ERIC Educational Resources Information Center
Reich, Ann; Rooney, Donna; Gardner, Anne; Willey, Keith; Boud, David; Fitzgerald, Terry
2015-01-01
With the increasing challenges facing professional engineers working in more complex, global and interdisciplinary contexts, different approaches to understanding how engineers practice and learn are necessary. This paper draws on recent research in the social sciences from the field of workplace learning, to suggest that a practice-theory…
Integrated gas turbine engine-nacelle
NASA Technical Reports Server (NTRS)
Adamson, A. P.; Sargisson, D. F.; Stotler, C. L., Jr. (Inventor)
1979-01-01
A nacelle for use with a gas turbine engine is provided with an integral webbed structure resembling a spoked wheel for rigidly interconnecting the nacelle and engine. The nacelle is entirely supported in its spacial relationship with the engine by means of the webbed structure. The inner surface of the nacelle defines the outer limits of the engine motive fluid flow annulus, while the outer surface of the nacelle defines a streamlined envelope for the engine.
NASA Astrophysics Data System (ADS)
Ding, Zhe; Li, Li; Hu, Yujin
2018-01-01
Sophisticated engineering systems are usually assembled by subcomponents with significantly different levels of energy dissipation. Therefore, these damping systems often contain multiple damping models and lead to great difficulties in analyzing. This paper aims at developing a time integration method for structural systems with multiple damping models. The dynamical system is first represented by a generally damped model. Based on this, a new extended state-space method for the damped system is derived. A modified precise integration method with Gauss-Legendre quadrature is then proposed. The numerical stability and accuracy of the proposed integration method are discussed in detail. It is verified that the method is conditionally stable and has inherent algorithmic damping, period error and amplitude decay. Numerical examples are provided to assess the performance of the proposed method compared with other methods. It is demonstrated that the method is more accurate than other methods with rather good efficiency and the stable condition is easy to be satisfied in practice.
NASA Astrophysics Data System (ADS)
Yinghao, Cui; He, Xue; Lingyan, Zhao
2017-12-01
It’s important to obtain accurate stress corrosion crack(SCC) growth rate for quantitative life prediction of components in nuclear power plants. However, the engineering practice shows that the crack tip constraint effect has a great influence on the mechanical properties and crack growth rate of SCC at crack tip. To study the influence of the specimen thickness on the crack tip mechanical properties of SCC, the stress, strain and C integral at creep crack tip are analyzed under different specimens thickness. Results show that the cracked specimen is less likely to crack due to effect of crack tip constraint. When the thickness ratio B/W is larger than 0.1, the crack tip constraint is almost ineffective. Value of C integral is the largest when B/W is 0.25. Then specimen thickness has little effect on the value of C integral. The effect of specimen thickness on the value of C integral is less significant at higher thickness ratio.
Implementation of Enterprise Imaging Strategy at a Chinese Tertiary Hospital.
Li, Shanshan; Liu, Yao; Yuan, Yifang; Li, Jia; Wei, Lan; Wang, Yuelong; Fei, Xiaolu
2018-01-04
Medical images have become increasingly important in clinical practice and medical research, and the need to manage images at the hospital level has become urgent in China. To unify patient identification in examinations from different medical specialties, increase convenient access to medical images under authentication, and make medical images suitable for further artificial intelligence investigations, we implemented an enterprise imaging strategy by adopting an image integration platform as the main tool at Xuanwu Hospital. Workflow re-engineering and business system transformation was also performed to ensure the quality and content of the imaging data. More than 54 million medical images and approximately 1 million medical reports were integrated, and uniform patient identification, images, and report integration were made available to the medical staff and were accessible via a mobile application, which were achieved by implementing the enterprise imaging strategy. However, to integrate all medical images of different specialties at a hospital and ensure that the images and reports are qualified for data mining, some further policy and management measures are still needed.
Research on rebuilding the data information environment for aeronautical manufacturing enterprise
NASA Astrophysics Data System (ADS)
Feng, Xilan; Jiang, Zhiqiang; Zong, Xuewen; Shi, Jinfa
2005-12-01
The data environment on integrated information system and the basic standard on information resource management are the key effectively of the remote collaborative designing and manufacturing for complex product. A study project on rebuilding the data information environment for aeronautical manufacturing enterprise (Aero-ME) is put forwarded. Firstly, the data environment on integrated information system, the basic standard on information resource management, the basic establishment on corporation's information, the development on integrated information system, and the information education are discussed profoundly based on the practical requirement of information resource and technique for contemporary Aero-ME. Then, the idea and method with the data environment rebuilding based on I-CASE in the corporation is put forward, and the effective method and implement approach for manufacturing enterprise information is brought forwards. It will also the foundation and assurance that rebuilding the corporation data-environment and promoting standardizing information resource management for the development of Aero-ME information engineering.
Integration and Test of Shuttle Small Payloads
NASA Technical Reports Server (NTRS)
Wright, Michael R.
2003-01-01
Recommended approaches for space shuttle small payload integration and test (I&T) are presented. The paper is intended for consideration by developers of shuttle small payloads, including I&T managers, project managers, and system engineers. Examples and lessons learned are presented based on the extensive history of NASA's Hitchhiker project. All aspects of I&T are presented, including: (1) I&T team responsibilities, coordination, and communication; (2) Flight hardware handling practices; (3) Documentation and configuration management; (4) I&T considerations for payload development; (5) I&T at the development facility; (6) Prelaunch operations, transfer, orbiter integration and interface testing; (7) Postflight operations. This paper is of special interest to those payload projects that have small budgets and few resources: that is, the truly faster, cheaper, better projects. All shuttle small payload developers are strongly encouraged to apply these guidelines during I&T planning and ground operations to take full advantage of today's limited resources and to help ensure mission success.
Zhang, Wei; Zhang, Gengxin; Dong, Feihong; Xie, Zhidong; Bian, Dongming
2015-01-01
This article investigates the capacity problem of an integrated remote wireless sensor and satellite network (IWSSN) in emergency scenarios. We formulate a general model to evaluate the remote sensor and satellite network capacity. Compared to most existing works for ground networks, the proposed model is time varying and space oriented. To capture the characteristics of a practical network, we sift through major capacity-impacting constraints and analyze the influence of these constraints. Specifically, we combine the geometric satellite orbit model and satellite tool kit (STK) engineering software to quantify the trends of the capacity constraints. Our objective in analyzing these trends is to provide insights and design guidelines for optimizing the integrated remote wireless sensor and satellite network schedules. Simulation results validate the theoretical analysis of capacity trends and show the optimization opportunities of the IWSSN. PMID:26593919
Model-based reconfiguration: Diagnosis and recovery
NASA Technical Reports Server (NTRS)
Crow, Judy; Rushby, John
1994-01-01
We extend Reiter's general theory of model-based diagnosis to a theory of fault detection, identification, and reconfiguration (FDIR). The generality of Reiter's theory readily supports an extension in which the problem of reconfiguration is viewed as a close analog of the problem of diagnosis. Using a reconfiguration predicate 'rcfg' analogous to the abnormality predicate 'ab,' we derive a strategy for reconfiguration by transforming the corresponding strategy for diagnosis. There are two obvious benefits of this approach: algorithms for diagnosis can be exploited as algorithms for reconfiguration and we have a theoretical framework for an integrated approach to FDIR. As a first step toward realizing these benefits we show that a class of diagnosis engines can be used for reconfiguration and we discuss algorithms for integrated FDIR. We argue that integrating recovery and diagnosis is an essential next step if this technology is to be useful for practical applications.
Zhang, Wei; Zhang, Gengxin; Dong, Feihong; Xie, Zhidong; Bian, Dongming
2015-11-17
This article investigates the capacity problem of an integrated remote wireless sensor and satellite network (IWSSN) in emergency scenarios. We formulate a general model to evaluate the remote sensor and satellite network capacity. Compared to most existing works for ground networks, the proposed model is time varying and space oriented. To capture the characteristics of a practical network, we sift through major capacity-impacting constraints and analyze the influence of these constraints. Specifically, we combine the geometric satellite orbit model and satellite tool kit (STK) engineering software to quantify the trends of the capacity constraints. Our objective in analyzing these trends is to provide insights and design guidelines for optimizing the integrated remote wireless sensor and satellite network schedules. Simulation results validate the theoretical analysis of capacity trends and show the optimization opportunities of the IWSSN.
Practical Application of Model-based Programming and State-based Architecture to Space Missions
NASA Technical Reports Server (NTRS)
Horvath, Gregory; Ingham, Michel; Chung, Seung; Martin, Oliver; Williams, Brian
2006-01-01
A viewgraph presentation to develop models from systems engineers that accomplish mission objectives and manage the health of the system is shown. The topics include: 1) Overview; 2) Motivation; 3) Objective/Vision; 4) Approach; 5) Background: The Mission Data System; 6) Background: State-based Control Architecture System; 7) Background: State Analysis; 8) Overview of State Analysis; 9) Background: MDS Software Frameworks; 10) Background: Model-based Programming; 10) Background: Titan Model-based Executive; 11) Model-based Execution Architecture; 12) Compatibility Analysis of MDS and Titan Architectures; 13) Integrating Model-based Programming and Execution into the Architecture; 14) State Analysis and Modeling; 15) IMU Subsystem State Effects Diagram; 16) Titan Subsystem Model: IMU Health; 17) Integrating Model-based Programming and Execution into the Software IMU; 18) Testing Program; 19) Computationally Tractable State Estimation & Fault Diagnosis; 20) Diagnostic Algorithm Performance; 21) Integration and Test Issues; 22) Demonstrated Benefits; and 23) Next Steps
NASA Astrophysics Data System (ADS)
Fu, Youzhi; Gao, Hang; Wang, Xuanping; Guo, Dongming
2017-05-01
The integral impeller and blisk of an aero-engine are high performance parts with complex structure and made of difficult-to-cut materials. The blade surfaces of the integral impeller and blisk are functional surfaces for power transmission, and their surface integrity has significant effects on the aerodynamic efficiency and service life of an aero-engine. Thus, it is indispensable to finish and strengthen the blades before use. This paper presents a comprehensive literature review of studies on finishing and strengthening technologies for the impeller and blisk of aero-engines. The review includes independent and integrated finishing and strengthening technologies and discusses advanced rotational abrasive flow machining with back-pressure used for finishing the integral impeller and blisk. A brief assessment of future research problems and directions is also presented.
Energy efficient engine preliminary design and integration study
NASA Technical Reports Server (NTRS)
Gray, D. E.
1978-01-01
The technology and configurational requirements of an all new 1990's energy efficient turbofan engine having a twin spool arrangement with a directly coupled fan and low-pressure turbine, a mixed exhaust nacelle, and a high 38.6:1 overall pressure ratio were studied. Major advanced technology design features required to provide the overall benefits were a high pressure ratio compression system, a thermally actuated advanced clearance control system, lightweight shroudless fan blades, a low maintenance cost one-stage high pressure turbine, a short efficient mixer and structurally integrated engine and nacelle. A conceptual design analysis was followed by integration and performance analyses of geared and direct-drive fan engines with separate or mixed exhaust nacelles to refine previously designed engine cycles. Preliminary design and more detailed engine-aircraft integration analysis were then conducted on the more promising configurations. Engine and aircraft sizing, fuel burned, and airframe noise studies on projected 1990's domestic and international aircraft produced sufficient definition of configurational and advanced technology requirements to allow immediate initiation of component technology development.
Flight-determined benefits of integrated flight-propulsion control systems
NASA Technical Reports Server (NTRS)
Stewart, James F.; Burcham, Frank W., Jr.; Gatlin, Donald H.
1992-01-01
Over the last two decades, NASA has conducted several experiments in integrated flight-propulsion control. Benefits have included improved maneuverability; increased thrust, range, and survivability; reduced fuel consumption; and reduced maintenance. This paper presents the basic concepts for control integration, examples of implementation, and benefits. The F-111E experiment integrated the engine and inlet control systems. The YF-12C incorporated an integral control system involving the inlet, autopilot, autothrottle, airdata, navigation, and stability augmentation systems. The F-15 research involved integration of the engine, flight, and inlet control systems. Further extension of the integration included real-time, onboard optimization of engine, inlet, and flight control variables; a self-repairing flight control system; and an engines-only control concept for emergency control. The F-18A aircraft incorporated thrust vectoring integrated with the flight control system to provide enhanced maneuvering at high angles of attack. The flight research programs and the resulting benefits of each program are described.
ERIC Educational Resources Information Center
Dare, Emily A.; Ellis, Joshua A.; Roehrig, Gillian H.
2014-01-01
It is difficult to ignore the increased use of technological innovations in today's world, which has led to various calls for the integration of engineering into K-12 science standards. The need to understand how engineering is currently being brought to science classrooms is apparent and necessary in order to address these calls for integration.…
Tactical Airspace Integration System Situation Awareness Integration Into the Cockpit: Phase 2
2013-03-01
ARL-TR-6371 March 2013 prepared by U.S. Army Research Laboratory Human Research and Engineering Directorate (AMCOM Field...Situation Awareness Integration Into the Cockpit: Phase II Michael Sage Jessee and Anthony Morris Human Research and Engineering Directorate, ARL...prepared by U.S. Army Research Laboratory Human Research and Engineering Directorate (AMCOM Field Element) Bldg 5400, Room C236
Integrating ergonomics in design processes: a case study within an engineering consultancy firm.
Sørensen, Lene Bjerg; Broberg, Ole
2012-01-01
This paper reports on a case study within an engineering consultancy firm, where engineering designers and ergonomists were working together on the design of a new hospital sterile processing plant. The objective of the paper is to gain a better understanding of the premises for integrating ergonomics into engineering design processes and how different factors either promote or limit the integration. Based on a grounded theory approach a model illustrating these factors is developed and different hypotheses about how these factors either promote and/or limit the integration of ergonomics into design processes is presented along with the model.
Core Ideas of Engineering and Technology
ERIC Educational Resources Information Center
Sneider, Cary
2012-01-01
Last month, Rodger Bybee's article, "Scientific and Engineering Practices in K-12 Classrooms," provided an overview of Chapter 3 in "A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas" (NRC 2011). Chapter 3 describes the practices of science and engineering that students are expected to develop during 13 years…
Evolving technologies drive the new roles of Biomedical Engineering.
Frisch, P H; St Germain, J; Lui, W
2008-01-01
Rapidly changing technology coupled with the financial impact of organized health care, has required hospital Biomedical Engineering organizations to augment their traditional operational and business models to increase their role in developing enhanced clinical applications utilizing new and evolving technologies. The deployment of these technology based applications has required Biomedical Engineering organizations to re-organize to optimize the manner in which they provide and manage services. Memorial Sloan-Kettering Cancer Center has implemented a strategy to explore evolving technologies integrating them into enhanced clinical applications while optimally utilizing the expertise of the traditional Biomedical Engineering component (Clinical Engineering) to provide expanded support in technology / equipment management, device repair, preventive maintenance and integration with legacy clinical systems. Specifically, Biomedical Engineering is an integral component of the Medical Physics Department which provides comprehensive and integrated support to the Center in advanced physical, technical and engineering technology. This organizational structure emphasizes the integration and collaboration between a spectrum of technical expertise for clinical support and equipment management roles. The high cost of clinical equipment purchases coupled with the increasing cost of service has driven equipment management responsibilities to include significant business and financial aspects to provide a cost effective service model. This case study details the dynamics of these expanded roles, future initiatives and benefits for Biomedical Engineering and Memorial Sloan Kettering Cancer Center.
ERIC Educational Resources Information Center
Li, Jing; Zhang, Yu; Tsang, Mun; Li, Manli
2015-01-01
With the increasing attention to STEM (Science, Technology, Engineering, and Math), hands-on Curriculum Practical Training (CPT) has been expanding rapidly worldwide as a requirement of the undergraduate engineering education. In China, a typical CPT for undergraduate engineering students requires several weeks of hands-on training in the…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peck, T; Sparkman, D; Storch, N
''The LLNL Site-Specific Advanced Simulation and Computing (ASCI) Software Quality Engineering Recommended Practices VI.I'' document describes a set of recommended software quality engineering (SQE) practices for ASCI code projects at Lawrence Livermore National Laboratory (LLNL). In this context, SQE is defined as the process of building quality into software products by applying the appropriate guiding principles and management practices. Continual code improvement and ongoing process improvement are expected benefits. Certain practices are recommended, although projects may select the specific activities they wish to improve, and the appropriate time lines for such actions. Additionally, projects can rely on the guidance ofmore » this document when generating ASCI Verification and Validation (VSrV) deliverables. ASCI program managers will gather information about their software engineering practices and improvement. This information can be shared to leverage the best SQE practices among development organizations. It will further be used to ensure the currency and vitality of the recommended practices. This Overview is intended to provide basic information to the LLNL ASCI software management and development staff from the ''LLNL Site-Specific ASCI Software Quality Engineering Recommended Practices VI.I'' document. Additionally the Overview provides steps to using the ''LLNL Site-Specific ASCI Software Quality Engineering Recommended Practices VI.I'' document. For definitions of terminology and acronyms, refer to the Glossary and Acronyms sections in the ''LLNL Site-Specific ASCI Software Quality Engineering Recommended Practices VI.I''.« less
The Department of Defense Human factors standardization program.
Chaikin, G
1984-09-01
The Department of Defense (DoD) Human Factors Standardization Program is the most far-reaching standardization programme in the USA. It is an integrated component of the overall DoD Standardization Program. While only ten major documents are contained in the human factors standardization area, their effects on human factors engineering programmes are profound and wide-ranging. Preparation and updating of the human engineering standardisation documents have grown out of the efforts of several military agencies, contractors, consultants, universities and individuals. New documents, engineering practice studies and revision efforts are continuously planned by the Tri-Service (Army, Navy, Air Force) Human Factors Standardization Steering Committee in collaboration with industry groups and technical societies. The present five-year plan and other standardisation documents are readily available for review and input by anyone with relevant interests. Human factors specialists and other readers of this journal may therefore influence the direction of the human factors standardisation programme and the content of its military specifications, standards and handbooks.
Shape Memory Alloy Actuator Design: CASMART Collaborative Best Practices
NASA Technical Reports Server (NTRS)
Benafan, Othmane; Brown, Jeff; Calkins, F. Tad; Kumar, Parikshith; Stebner, Aaron; Turner, Travis; Vaidyanathan, Raj; Webster, John; Young, Marcus L.
2011-01-01
Upon examination of shape memory alloy (SMA) actuation designs, there are many considerations and methodologies that are common to them all. A goal of CASMART's design working group is to compile the collective experiences of CASMART's member organizations into a single medium that engineers can then use to make the best decisions regarding SMA system design. In this paper, a review of recent work toward this goal is presented, spanning a wide range of design aspects including evaluation, properties, testing, modeling, alloy selection, fabrication, actuator processing, design optimization, controls, and system integration. We have documented each aspect, based on our collective experiences, so that the design engineer may access the tools and information needed to successfully design and develop SMA systems. Through comparison of several case studies, it is shown that there is not an obvious single, linear route a designer can adopt to navigate the path of concept to product. SMA engineering aspects will have different priorities and emphasis for different applications.
Integral Engine Inlet Particle Separator. Volume 1. Technology Program
1975-07-01
inlet particle separators for future Army aircraft gas turbine engines . Appropriate technical personnel of this Directorate have reviewed this report...USAAMRDL-TR-75-31A I - / INTEGRAL ENGINE INLET PARTICLE SEPARATOR Volume I-- Technology Program General Electric Company Aircraft Engine Group...N1 i 9ap mm tm~qu INTRODUCTION The adverse environments in which Army equipment operates impose severe )enalties upon gas turbine engine performance
NASA Astrophysics Data System (ADS)
Yasui, Yoshiaki
The issue of economic globalization and JABEE (Japan Accreditation Board for Engineering Education) mean that education on engineering ethics has now become increasingly important for science-engineering students who will become the next generation of engineers. This is clearly indicated when engineers are made professionally responsible for various unfortunate accidents that happen during daily life in society. Learning hybrid engineering ethics is an essential part of the education of the humanities and sciences. This paper treats the contents for the subject of “Science and Ethics” drawing on several years of practice and the fruits of studying science and engineering ethics at the faculty of science-engineering in university. This paper can be considered to be a practical strategy to the formation of morality.
Multi-material optoelectronic fiber devices
NASA Astrophysics Data System (ADS)
Sorin, F.; Yan, Wei; Volpi, Marco; Page, Alexis G.; Nguyen Dang, Tung; Qu, Y.
2017-05-01
The recent ability to integrate materials with different optical and optoelectronic properties in prescribed architectures within flexible fibers is enabling novel opportunities for advanced optical probes, functional surfaces and smart textiles. In particular, the thermal drawing process has known a series of breakthroughs in recent years that have expanded the range of materials and architectures that can be engineered within uniform fibers. Of particular interest in this presentation will be optoelectronic fibers that integrate semiconductors electrically addressed by conducting materials. These long, thin and flexible fibers can intercept optical radiation, localize and inform on a beam direction, detect its wavelength and even harness its energy. They hence constitute ideal candidates for applications such as remote and distributed sensing, large-area optical-detection arrays, energy harvesting and storage, innovative health care solutions, and functional fabrics. To improve performance and device complexity, tremendous progresses have been made in terms of the integrated semiconductor architectures, evolving from large fiber solid-core, to sub-hundred nanometer thin-films, nano-filaments and even nanospheres. To bridge the gap between the optoelectronic fiber concept and practical applications however, we still need to improve device performance and integration. In this presentation we will describe the materials and processing approaches to realize optoelectronic fibers, as well as give a few examples of demonstrated systems for imaging as well as light and chemical sensing. We will then discuss paths towards practical applications focusing on two main points: fiber connectivity, and improving the semiconductor microstructure by developing scalable approaches to make fiber-integrated single-crystal nanowire based devices.
Engineering and Language Discourse Collaboration: Practice Realities
ERIC Educational Resources Information Center
Harran, Marcelle
2011-01-01
This article describes a situated engineering project at a South African HE institution which is underpinned by collaboration between Applied Language Studies (DALS) and Mechanical Engineering. The collaboration requires language practitioners and engineering experts to negotiate and collaborate on academic literacies practices, discourse…
Activist engineering: changing engineering practice by deploying praxis.
Karwat, Darshan M A; Eagle, Walter E; Wooldridge, Margaret S; Princen, Thomas E
2015-02-01
In this paper, we reflect on current notions of engineering practice by examining some of the motives for engineered solutions to the problem of climate change. We draw on fields such as science and technology studies, the philosophy of technology, and environmental ethics to highlight how dominant notions of apoliticism and ahistoricity are ingrained in contemporary engineering practice. We argue that a solely technological response to climate change does not question the social, political, and cultural tenet of infinite material growth, one of the root causes of climate change. In response to the contemporary engineering practice, we define an activist engineer as someone who not only can provide specific engineered solutions, but who also steps back from their work and tackles the question, What is the real problem and does this problem "require" an engineering intervention? Solving complex problems like climate change requires radical cultural change, and a significant obstacle is educating engineers about how to conceive of and create "authentic alternatives," that is, solutions that differ from the paradigm of "technologically improving" our way out of problems. As a means to realize radically new solutions, we investigate how engineers might (re)deploy the concept of praxis, which raises awareness in engineers of the inherent politics of technological design. Praxis empowers engineers with a more comprehensive understanding of problems, and thus transforms technologies, when appropriate, into more socially just and ecologically sensitive interventions. Most importantly, praxis also raises a radical alternative rarely considered-not "engineering a solution." Activist engineering offers a contrasting method to contemporary engineering practice and leads toward social justice and ecological protection through problem solving by asking not, How will we technologize our way out of the problems we face? but instead, What really needs to be done?
Integrating International Engineering Organizations For Successful ISS Operations
NASA Technical Reports Server (NTRS)
Blome, Elizabeth; Duggan, Matt; Patten, L.; Pieterek, Hhtrud
2006-01-01
The International Space Station (ISS) is a multinational orbiting space laboratory that is built in cooperation with 16 nations. The design and sustaining engineering expertise is spread worldwide. As the number of Partners with orbiting elements on the ISS grows, the challenge NASA is facing as the ISS integrator is to ensure that engineering expertise and data are accessible in a timely fashion to ensure ongoing operations and mission success. Integrating international engineering teams requires definition and agreement on common processes and responsibilities, joint training and the emergence of a unique engineering team culture. ISS engineers face daunting logistical and political challenges regarding data sharing requirements. To assure systematic information sharing and anomaly resolution of integrated anomalies, the ISS Partners are developing multi-lateral engineering interface procedures. Data sharing and individual responsibility are key aspects of this plan. This paper describes several examples of successful multilateral anomaly resolution. These successes were used to form the framework of the Partner to Partner engineering interface procedures, and this paper describes those currently documented multilateral engineering processes. Furthermore, it addresses the challenges experienced to date, and the forward work expected in establishing a successful working relationship with Partners as their hardware is launched.
NASA Astrophysics Data System (ADS)
Grusenmeyer, Linda Huey
This study examines the personal and curricular resources available to Delaware's elementary teachers during a time of innovative curriculum change, i.e., their knowledge, goals and beliefs regarding elementary engineering curriculum and the pedagogical support to teach two Science and Engineering Practices provided by science teaching materials. Delaware was at the forefront of K-12 STEM movement, first to adopt statewide elementary curriculum materials to complement existing science units, and one of the first to adopt the new science standards--Next Generation Science Standards. What supports were available to teachers as they adapted and adopted this new curriculum? To investigate this question, I examined (1) teachers' beliefs about engineering and the engineering curriculum, and (2) the pedagogical supports available to teachers in selected science and engineering curriculum. Teachers' knowledge, goals, and beliefs regarding Delaware's adoption of new elementary engineering curriculum were surveyed using an adapted version of the Design, Engineering, and Technology Survey (Hong, Purser, & Gardella, 2011; Yaser, Baker, Carpius, Krauss, & Roberts, 2006). Also, three open ended questions sought to reveal deeper understanding of teacher knowledge and understanding of engineering; their concerns about personal and systemic resources related to the new curriculum, its logistics, and feasibility; and their beliefs about the potential positive impact presented by the engineering education initiative. Teacher concerns were analyzed using the Concerns-Based Adoption Model (Hall & Hord, 2010). Lay understandings of engineering were analyzed by contrasting naive representations of engineering with three key characteristics of engineering adapted from an earlier study (Capobianco Diefes-Dux, Mena, & Weller, 2011). Survey findings for teachers who had attended training and those who have not yet attended professional development in the new curriculum were compared with few notable differences. Almost all elementary teacher respondents were familiar with engineering and able to define it using one or more key characteristics. They valued the inclusion of engineering in the elementary curriculum; however trained and untrained teachers reported they were not confident about teaching it and were unaware of the new standards related to engineering. Teachers saw potential advantages or benefits of the new curriculum as helping improve science and math understanding, an opportunity to increase vocational awareness, and engaging students and motivating them to learn. Most teachers saw similar barriers to implementation- lack of teacher knowledge, lack of time to learn about engineering and how to teach engineering, and lack of administrative support. Almost all were open to additional in-service training to learn more about this new curriculum. Three fifth grade science units were examined for evidence of teacher pedagogical support in teaching two Science and Engineering Practices (SEP) advocated by the Next Generation Science Standards. An analytic framework was developed based upon two NGSS SEPs: Asking questions, defining problems and Engaging in argument from evidence. Findings revealed that the kits varied greatly in their pedagogical approaches to the two SEPs and differences might be explained by each kit's underlying orientations to the teaching-learning process. Findings from these investigations have implications for the design of professional development and for engineering curricula. They highlight the importance of considering teacher beliefs about curriculum implementation and subject matter, as well as the importance of creating curriculum materials that focus teacher attention toward student thinking and the language rich science and engineering practices. Recommendations also include ongoing professional development to allow teachers time to try out and revise pedagogical routines that support the SEPs studied here.
Samarium Cobalt (SmCo) Generator/Engine Integration Study
1980-04-01
110o1110 (Cole Ms -W~ Daiwa. to* J11 tuo.in Wfi wee -004"ni Aircraft Generator/starter Samarium Cobalt Turbine Engine , Feasibility Secondary Power...integration into the main rotor system of typical aircraft gas turbine engines . A major objective is the definition of the engine interface for such... Engine The F404 is a low bypass, augmented turbofan Pngine developed for application in advanced fighter aircraft (F-18). This type of engine benefits most
Towards adaptive and integrated management paradigms to meet the challenges of water governance.
Halbe, J; Pahl-Wostl, C; Sendzimir, J; Adamowski, J
2013-01-01
Integrated Water Resource Management (IWRM) aims at finding practical and sustainable solutions to water resource issues. Research and practice have shown that innovative methods and tools are not sufficient to implement IWRM - the concept needs to also be integrated in prevailing management paradigms and institutions. Water governance science addresses this human dimension by focusing on the analysis of regulatory processes that influence the behavior of actors in water management systems. This paper proposes a new methodology for the integrated analysis of water resources management and governance systems in order to elicit and analyze case-specific management paradigms. It builds on the Management and Transition Framework (MTF) that allows for the examination of structures and processes underlying water management and governance. The new methodology presented in this paper combines participatory modeling and analysis of the governance system by using the MTF to investigate case-specific management paradigms. The linking of participatory modeling and research on complex management and governance systems allows for the transfer of knowledge between scientific, policy, engineering and local communities. In this way, the proposed methodology facilitates assessment and implementation of transformation processes towards IWRM that require also the adoption of adaptive management principles. A case study on flood management in the Tisza River Basin in Hungary is provided to illustrate the application of the proposed methodology.
Reynolds, Julie A; Thaiss, Christopher; Katkin, Wendy; Thompson, Robert J
2012-01-01
Despite substantial evidence that writing can be an effective tool to promote student learning and engagement, writing-to-learn (WTL) practices are still not widely implemented in science, technology, engineering, and mathematics (STEM) disciplines, particularly at research universities. Two major deterrents to progress are the lack of a community of science faculty committed to undertaking and applying the necessary pedagogical research, and the absence of a conceptual framework to systematically guide study designs and integrate findings. To address these issues, we undertook an initiative, supported by the National Science Foundation and sponsored by the Reinvention Center, to build a community of WTL/STEM educators who would undertake a heuristic review of the literature and formulate a conceptual framework. In addition to generating a searchable database of empirically validated and promising WTL practices, our work lays the foundation for multi-university empirical studies of the effectiveness of WTL practices in advancing student learning and engagement.
Space Launch System Resource Reel 2017
2017-12-01
NASA's new heavy-lift rocket, the Space Launch System, will be the most powerful rocket every built, launching astronauts in NASA's Orion spacecraft on missions into deep space. Two solid rocket boosters and four RS-25 engines will power the massive rocket, providing 8 million pounds of thrust during launch. Production and testing are underway for much of the rocket's critical hardware. With major welding complete on core stage hardware for the first integrated flight of SLS and Orion, the liquid hydrogen tank, intertank and liquid oxygen tank are ready for further outfitting. NASA's barge Pegasus has transported test hardware the first SLS hardware, the engine section to NASA's Marshall Space Flight Center in Huntsville, Alabama, for testing. In preparation for testing and handling operations, engineers have built the core stage pathfinder, to practice transport without the risk of damaging flight hardware. Integrated structural testing is complete on the top part of the rocket, including the Orion stage adapter, launch vehicle stage adapter and interim cryogenic propulsion stage. The Orion Stage Adapter for SLS's first flight, which will carry 13 CubeSats as secondary payloads, is ready to be outfitted with wiring and brackets. Once structural testing and flight hardware production are complete, the core stage will undergo "green run" testing in the B-2 test stand at NASA's Stennis Space Center in Bay St. Louis, Mississippi. For more information about SLS, visit nasa.gov/sls.
Machine learning for fab automated diagnostics
NASA Astrophysics Data System (ADS)
Giollo, Manuel; Lam, Auguste; Gkorou, Dimitra; Liu, Xing Lan; van Haren, Richard
2017-06-01
Process optimization depends largely on field engineer's knowledge and expertise. However, this practice turns out to be less sustainable due to the fab complexity which is continuously increasing in order to support the extreme miniaturization of Integrated Circuits. On the one hand, process optimization and root cause analysis of tools is necessary for a smooth fab operation. On the other hand, the growth in number of wafer processing steps is adding a considerable new source of noise which may have a significant impact at the nanometer scale. This paper explores the ability of historical process data and Machine Learning to support field engineers in production analysis and monitoring. We implement an automated workflow in order to analyze a large volume of information, and build a predictive model of overlay variation. The proposed workflow addresses significant problems that are typical in fab production, like missing measurements, small number of samples, confounding effects due to heterogeneity of data, and subpopulation effects. We evaluate the proposed workflow on a real usecase and we show that it is able to predict overlay excursions observed in Integrated Circuits manufacturing. The chosen design focuses on linear and interpretable models of the wafer history, which highlight the process steps that are causing defective products. This is a fundamental feature for diagnostics, as it supports process engineers in the continuous improvement of the production line.
DOT National Transportation Integrated Search
1977-02-01
This report contains the results of a study to evaluate automobile engine control parameters and their effects on vehicle fuel economy and emissions. Volume I presents detailed technical information on the engine control practices used by selected do...
Development of a Practical Methodology for Elastic-Plastic and Fully Plastic Fatigue Crack Growth
NASA Technical Reports Server (NTRS)
McClung, R. C.; Chell, G. G.; Lee, Y. -D.; Russell, D. A.; Orient, G. E.
1999-01-01
A practical engineering methodology has been developed to analyze and predict fatigue crack growth rates under elastic-plastic and fully plastic conditions. The methodology employs the closure-corrected effective range of the J-integral, delta J(sub eff) as the governing parameter. The methodology contains original and literature J and delta J solutions for specific geometries, along with general methods for estimating J for other geometries and other loading conditions, including combined mechanical loading and combined primary and secondary loading. The methodology also contains specific practical algorithms that translate a J solution into a prediction of fatigue crack growth rate or life, including methods for determining crack opening levels, crack instability conditions, and material properties. A critical core subset of the J solutions and the practical algorithms has been implemented into independent elastic-plastic NASGRO modules. All components of the entire methodology, including the NASGRO modules, have been verified through analysis and experiment, and limits of applicability have been identified.
Development of a Practical Methodology for Elastic-Plastic and Fully Plastic Fatigue Crack Growth
NASA Technical Reports Server (NTRS)
McClung, R. C.; Chell, G. G.; Lee, Y.-D.; Russell, D. A.; Orient, G. E.
1999-01-01
A practical engineering methodology has been developed to analyze and predict fatigue crack growth rates under elastic-plastic and fully plastic conditions. The methodology employs the closure-corrected effective range of the J-integral, (Delta)J(sub eff), as the governing parameter. The methodology contains original and literature J and (Delta)J solutions for specific geometries, along with general methods for estimating J for other geometries and other loading conditions, including combined mechanical loading and combined primary and secondary loading. The methodology also contains specific practical algorithms that translate a J solution into a prediction of fatigue crack growth rate or life, including methods for determining crack opening levels, crack instability conditions, and material properties. A critical core subset of the J solutions and the practical algorithms has been implemented into independent elastic-plastic NASGRO modules. All components of the entire methodology, including the NASGRO modules, have been verified through analysis and experiment, and limits of applicability have been identified.
NASA Technical Reports Server (NTRS)
Andrews, E. H., Jr.; Mackley, E. A.
1976-01-01
The NASA Hypersonic Research Engine Project was undertaken to design, develop, and construct a hypersonic research ramjet engine for high performance and to flight test the developed concept on the X-15-2A airplane over the speed range from Mach 3 to 8. Computer program results are presented here for the Mach 7 component integration and performance tests.
NASA Astrophysics Data System (ADS)
Buxner, Sanlyn
2013-06-01
The Next Generation Science Standards will have a profound impact on the future science education of students and professional development for teachers. The science and engineering practices, crosscutting concepts, and disciplinary core ideas laid out in the Framework for K-12 Science Education (NRC, 2011) will change the focus and methods of how we prepare teachers to meet these new standards. Extending beyond just the use of inquiry in the classroom, teachers will need support designing and implementing integrated experiences for students that require them to apply knowledge of content and practices. Integrating the three dimensions central to the new standards will pose curricular challenges and create opportunities for innovative space science projects and instruction. The science research and technology community will have an important role in supporting authentic classroom practices as well as training and support of teachers in these new ways of presenting science and technology. These changes will require a new focus for teacher professional development and new ways to research impacts of teacher training and changes in classroom practice. In addition, new and innovative tools will be needed to assess mastery of students’ knowledge of practices and the ways teachers effectively help students achieve these new goals. The astronomy education community has much to offer as K-12 and undergraduate level science educators rethink and redefine what it means to be scientifically literate and figure out how to truly measure the success of these new ways of teaching science.
P-12 Engineering Education Research and Practice
ERIC Educational Resources Information Center
Moore, Tamara; Richards, Larry G.
2012-01-01
This special issue of "Advances in Engineering Education" explores recent developments in P-12 Engineering Education. It includes papers devoted to research and practice, and reports some of the most exciting work in the field today. In our Call of Papers, we solicited two types of papers: Research papers and Practice papers. The former…
NASA Technical Reports Server (NTRS)
McGowan, Anna-Maria R.; Seifert, Colleen M.; Papalambros, Panos Y.
2012-01-01
The design of large-scale complex engineered systems (LaCES) such as an aircraft is inherently interdisciplinary. Multiple engineering disciplines, drawing from a team of hundreds to thousands of engineers and scientists, are woven together throughout the research, development, and systems engineering processes to realize one system. Though research and development (R&D) is typically focused in single disciplines, the interdependencies involved in LaCES require interdisciplinary R&D efforts. This study investigates the interdisciplinary interactions that take place during the R&D and early conceptual design phases in the design of LaCES. Our theoretical framework is informed by both engineering practices and social science research on complex organizations. This paper provides preliminary perspective on some of the organizational influences on interdisciplinary interactions based on organization theory (specifically sensemaking), data from a survey of LaCES experts, and the authors experience in the research and design. The analysis reveals couplings between the engineered system and the organization that creates it. Survey respondents noted the importance of interdisciplinary interactions and their significant benefit to the engineered system, such as innovation and problem mitigation. Substantial obstacles to interdisciplinarity are uncovered beyond engineering that include communication and organizational challenges. Addressing these challenges may ultimately foster greater efficiencies in the design and development of LaCES and improved system performance by assisting with the collective integration of interdependent knowledge bases early in the R&D effort. This research suggests that organizational and human dynamics heavily influence and even constrain the engineering effort for large-scale complex systems.
Engineering Employment Characteristics. Engineering Education and Practice in the United States.
ERIC Educational Resources Information Center
National Academy of Sciences - National Research Council, Washington, DC. Commission on Engineering and Technical Systems.
This panel report was prepared as part of the study of engineering education and practice conducted under the guidance of the National Research Council's Committee on the Education and Utilization of the Engineer. The panel's goal was to provide a data base that describes the engineering work force, its main activities, capabilities, and principal…
System Engineering of Photonic Systems for Space Application
NASA Technical Reports Server (NTRS)
Watson, Michael D.; Pryor, Jonathan E.
2014-01-01
The application of photonics in space systems requires tight integration with the spacecraft systems to ensure accurate operation. This requires some detailed and specific system engineering to properly incorporate the photonics into the spacecraft architecture and to guide the spacecraft architecture in supporting the photonics devices. Recent research in product focused, elegant system engineering has led to a system approach which provides a robust approach to this integration. Focusing on the mission application and the integration of the spacecraft system physics incorporation of the photonics can be efficiently and effectively accomplished. This requires a clear understanding of the driving physics properties of the photonics device to ensure proper integration with no unintended consequences. The driving physics considerations in terms of optical performance will be identified for their use in system integration. Keywords: System Engineering, Optical Transfer Function, Optical Physics, Photonics, Image Jitter, Launch Vehicle, System Integration, Organizational Interaction
Engine management during NTRE start up
NASA Technical Reports Server (NTRS)
Bulman, Mel; Saltzman, Dave
1993-01-01
The topics are presented in viewgraph form and include the following: total engine system management critical to successful nuclear thermal rocket engine (NTRE) start up; NERVA type engine start windows; reactor power control; heterogeneous reactor cooling; propellant feed system dynamics; integrated NTRE start sequence; moderator cooling loop and efficient NTRE starting; analytical simulation and low risk engine development; accurate simulation through dynamic coupling of physical processes; and integrated NTRE and mission performance.
Intertwining Risk Insights and Design Decisions
NASA Technical Reports Server (NTRS)
Cornford, Steven L.; Feather, Martin S.; Jenkins, J. Steven
2006-01-01
The state of systems engineering is such that a form of early and continued use of risk assessments is conducted (as evidenced by NASA's adoption and use of the 'Continuous Risk Management' paradigm developed by SEI). ... However, these practices fall short of theideal: (1) Integration between risk assessment techniques and other systems engineering tools is weak. (2) Risk assessment techniques and the insights they yield are only informally coupled to design decisions. (3) Individual riskassessment techniques lack the mix of breadth, fidelity and agility required to span the gamut of the design space. In this paper we present an approach that addresses these shortcomings. The hallmark of our approach is a simple representation comprising objectives (what the system is to do), risks (whose occurrence would detract from attainment of objectives) and activities (a.k.a. 'mitigations') that, if performed, will decrease those risks. These are linked to indicate by how much a risk would detract from attainment of an objective, and by how much an activity would reduce a risk. The simplicity of our representational framework gives it the breadth to encompass the gamut of the design space concerns, the agility to be utilized in even the earliest phases of designs, and the capability to connect to system engineering models and higher-fidelity risk tools. It is through this integration that we address the shortcomings listed above, and so achieve the intertwining between risk insights and design decisions needed to guide systems engineering towards superior final designs while avoiding costly rework to achieve them. The paper will use an example, constructed to be representative of space mission design, to illustrate our approach.
Cooperative control theory and integrated flight and propulsion control
NASA Technical Reports Server (NTRS)
Schmidt, David K.; Schierman, John D.
1995-01-01
The major contribution of this research was the exposition of the fact that airframe and engine interactions could be present, and their effects could include loss of stability and performance of the control systems. Also, the significance of two directional, as opposed to one-directional, coupling was identified and explained. A multivariable stability and performance analysis methodology was developed, and applied to several candidate aircraft configurations. In these example evaluations, the significance of these interactions was underscored. Also exposed was the fact that with interactions present along with some integrated control approaches, the engine command/limiting logic (which represents an important nonlinear component of the engine control system) can impact closed-loop airframe/engine system stability. Finally, a brief investigation of control-law synthesis techniques appropriate for the class of systems was pursued, and it was determined that multivariable techniques, including model-following formulations of LQG and/or H infinity methods, showed promise. However, for practical reasons, decentralized control architectures are preferred, which is an architecture incompatible with these synthesis methods. The major contributions of the second phase of the grant was the development of conditions under which no decentralized controller could achieve closed loop system requirements on stability and/or performance. Sought were conditions that depended only on properties of the plant and the requirement, and independent of any particular control law or synthesis approach. Therefore, they could be applied a priori, before synthesis of a candidate control law. Under this grant, such conditions were found regarding stability, and encouraging initial results were obtained regarding performance.
Čorović, Selma; Mahnič-Kalamiza, Samo; Miklavčič, Damijan
2016-04-07
Electroporation-based applications require multidisciplinary expertise and collaboration of experts with different professional backgrounds in engineering and science. Beginning in 2003, an international scientific workshop and postgraduate course electroporation based technologies and treatments (EBTT) has been organized at the University of Ljubljana to facilitate transfer of knowledge from leading experts to researches, students and newcomers in the field of electroporation. In this paper we present one of the integral parts of EBTT: an e-learning practical work we developed to complement delivery of knowledge via lectures and laboratory work, thus providing a blended learning approach on electrical phenomena involved in electroporation-based therapies and treatments. The learning effect was assessed via a pre- and post e-learning examination test composed of 10 multiple choice questions (i.e. items). The e-learning practical work session and both of the e-learning examination tests were carried out after the live EBTT lectures and other laboratory work. Statistical analysis was performed to compare and evaluate the learning effect measured in two groups of students: (1) electrical engineers and (2) natural scientists (i.e. medical doctors, biologists and chemists) undergoing the e-learning practical work in 2011-2014 academic years. Item analysis was performed to assess the difficulty of each item of the examination test. The results of our study show that the total score on the post examination test significantly improved and the item difficulty in both experimental groups decreased. The natural scientists reached the same level of knowledge (no statistical difference in total post-examination test score) on the post-course test take, as do electrical engineers, although the engineers started with statistically higher total pre-test examination score, as expected. The main objective of this study was to investigate whether the educational content the e-learning practical work presented to the students with different professional backgrounds enhanced their knowledge acquired via lectures during EBTT. We compared the learning effect assessed in two experimental groups undergoing the e-learning practical work: electrical engineers and natural scientists. The same level of knowledge on the post-course examination was reached in both groups. The results indicate that our e-learning platform supported by blended learning approach provides an effective learning tool for populations with mixed professional backgrounds and thus plays an important role in bridging the gap between scientific domains involved in electroporation-based technologies and treatments.
ERIC Educational Resources Information Center
Ford, Julie Dyke
2012-01-01
This program profile describes a new approach towards integrating communication within Mechanical Engineering curricula. The author, who holds a joint appointment between Technical Communication and Mechanical Engineering at New Mexico Institute of Mining and Technology, has been collaborating with Mechanical Engineering colleagues to establish a…
ERIC Educational Resources Information Center
Sengupta-Irving, Tesha; Mercado, Janet
2017-01-01
While integrating engineering into science education is not new in the United States, technology and engineering have not been well emphasized in the preparation and professional development of science teachers. Recent science education reforms integrate science and engineering throughout K-12 education, making it imperative to explore the…
High School Engineering and Technology Education Integration through Design Challenges
ERIC Educational Resources Information Center
Mentzer, Nathan
2011-01-01
This study contextualized the use of the engineering design process by providing descriptions of how each element in a design process was integrated in an eleventh grade industry and engineering systems course. The guiding research question for this inquiry was: How do students engage in the engineering design process in a course where technology…
ERIC Educational Resources Information Center
Buelin, Jennifer; Clark, Aaron C.; Ernst, Jeremy V.
2016-01-01
In this study, the 14 Grand Challenges for Engineering in the 21st Century identified by the National Academy of Engineering were examined by a panel of experts in an effort to identify prospective curricular integration opportunities in the field of technology and engineering education. The study utilized a three-round modified Delphi methodology…
Structural Oil Pan With Integrated Oil Filtration And Cooling System
Freese, V, Charles Edwin
2000-05-09
An oil pan for an internal combustion engine includes a body defining a reservoir for collecting engine coolant. The reservoir has a bottom and side walls extending upwardly from the bottom to present a flanged lip through which the oil pan may be mounted to the engine. An oil cooler assembly is housed within the body of the oil pan for cooling lubricant received from the engine. The body includes an oil inlet passage formed integrally therewith for receiving lubricant from the engine and delivering lubricant to the oil cooler. In addition, the body also includes an oil pick up passage formed integrally therewith for providing fluid communication between the reservoir and the engine through the flanged lip.
NASA Technical Reports Server (NTRS)
Gallaway, Glen R.
1987-01-01
Human Engineering in many projects is at best a limited support function. In this Navy project the Human Engineering function is an integral component of the systems design and development process. Human Engineering is a member of the systems design organization. This ensures that people considerations are: (1) identified early in the project; (2) accounted for in the specifications; (3) incorporated into the design; and (4) the tested product meets the needs and expectations of the people while meeting the overall systems requirements. The project exemplifies achievements that can be made by the symbiosis between systems designers, engineers and Human Engineering. This approach increases Human Engineering's effectiveness and value to a project because it becomes an accepted, contributing team member. It is an approach to doing Human Engineering that should be considered for most projects. The functional and organizational issues giving this approach strength are described.
Linking engineering and medicine: fostering collaboration skills in interdisciplinary teams.
Khoo, Michael C K
2012-07-01
Biomedical engineering embodies the spirit of combining disciplines. The engineer's pragmatic approach to--and appetite for--solving problems is matched by a bounty of technical challenges generated in medical domains. From nanoscale diagnostics to the redesign of systems of health-care delivery, engineers have been connecting advances in basic and applied science with applications that have helped to improve medical care and outcomes. Increasingly, however, integrating these areas of knowledge and application is less individualistic and more of a team sport. Success increasingly relies on a direct focus on practicing and developing collaboration skills in interdisciplinary teams. Such an approach does not fit easily into individual-focused, discipline-based programs. Biomedical engineering has done its fair share of silo busting, but new approaches are needed to inspire interdisciplinary teams to form around challenges in particular areas. Health care offers a wide variety of complex challenges across an array of delivery settings that can call for new interdisciplinary approaches. This was recognized by the deans of the University of Southern California's (USC's) Medical and Engineering Schools when they began the planning process, leading to the creation of the Health, Technology, and Engineering (HTE@USC or HTE for short) program. “Health care and technology are changing rapidly, and future physicians and engineers need intellectual tools to stay ahead of this change,” says Carmen A. Puliafito, dean of the Keck School of Medicine. His goal is to train national leaders in the quest for devices and processes to improve health care.
Engineers' professional learning: a practice-theory perspective
NASA Astrophysics Data System (ADS)
Reich, Ann; Rooney, Donna; Gardner, Anne; Willey, Keith; Boud, David; Fitzgerald, Terry
2015-07-01
With the increasing challenges facing professional engineers working in more complex, global and interdisciplinary contexts, different approaches to understanding how engineers practice and learn are necessary. This paper draws on recent research in the social sciences from the field of workplace learning, to suggest that a practice-theory perspective on engineers' professional learning is fruitful. It shifts the focus from the attributes of the individual learner (knowledge, skills and attitudes) to the attributes of the practice (interactions, materiality, opportunities and challenges). Learning is thus more than the technical acquisition and transfer of knowledge, but a complex bundle of activities, that is, social, material, embodied and emerging. The paper is illustrated with examples from a research study of the learning of experienced engineers in the construction industry to demonstrate common practices - site walks and design review meetings - in which learning takes place.
Prediction of sound radiation from different practical jet engine inlets
NASA Technical Reports Server (NTRS)
Zinn, B. T.; Meyer, W. L.
1981-01-01
Computer codes, capable of producing accurate results for nondimensional wave numbers (based on duct radius) of up to 20, were developed and used to generate results for various other inlet configurations. Both reflection coefficients and radiation patterns were calculated by the integral solution procedure for the following five inlet configurations: the NASA Langley Bellmouth, the NASA Lewis JT-15D-1 ground test nacelle, and three hyperbolic inlets of 50, 70, and 90 degrees. Results obtained are compared with results from other experimental and theoretical studies.
Reverse engineering biological networks :applications in immune responses to bio-toxins.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martino, Anthony A.; Sinclair, Michael B.; Davidson, George S.
Our aim is to determine the network of events, or the regulatory network, that defines an immune response to a bio-toxin. As a model system, we are studying T cell regulatory network triggered through tyrosine kinase receptor activation using a combination of pathway stimulation and time-series microarray experiments. Our approach is composed of five steps (1) microarray experiments and data error analysis, (2) data clustering, (3) data smoothing and discretization, (4) network reverse engineering, and (5) network dynamics analysis and fingerprint identification. The technological outcome of this study is a suite of experimental protocols and computational tools that reverse engineermore » regulatory networks provided gene expression data. The practical biological outcome of this work is an immune response fingerprint in terms of gene expression levels. Inferring regulatory networks from microarray data is a new field of investigation that is no more than five years old. To the best of our knowledge, this work is the first attempt that integrates experiments, error analyses, data clustering, inference, and network analysis to solve a practical problem. Our systematic approach of counting, enumeration, and sampling networks matching experimental data is new to the field of network reverse engineering. The resulting mathematical analyses and computational tools lead to new results on their own and should be useful to others who analyze and infer networks.« less
The roles of engineering notebooks in shaping elementary engineering student discourse and practice
NASA Astrophysics Data System (ADS)
Hertel, Jonathan D.; Cunningham, Christine M.; Kelly, Gregory J.
2017-06-01
Engineering design challenges offer important opportunities for students to learn science and engineering knowledge and practices. This study examines how students' engineering notebooks across four units of the curriculum Engineering is Elementary (EiE) support student work during design challenges. Through educational ethnography and discourse analysis, transcripts of student talk and action were created and coded around the uses of notebooks in the accomplishment of engineering tasks. Our coding process identified two broad categories of roles of the notebooks: they scaffold student activity and support epistemic practices of engineering. The study showed the importance of prompts to engage students in effective uses of writing, the roles the notebook assumes in the students' small groups, and the ways design challenges motivate children to write and communicate.
Education of Sustainability Engineers
NASA Astrophysics Data System (ADS)
Oleschko, K.; Perrier, E.; Tarquis, A. M.
2010-05-01
It's not the same to educate the sustainable engineers as to prepare the engineers of Sustainability. In the latter case all existing methods of inventive creativity (Altshuller, 1988) should be introduced in the teaching and research processes in order to create a culture of innovation at a group. The Theory of Inventing Problem Solving (TRIZ) is based on the pioneer works of Genrich Altshuller (1988) and his associated. Altshuller reviewed over 2 million patents beginning in 1946 (Orlov, 2006) and developed the Laws of Evolution of Technological Systems; An Algorithm for Inventive Problem Solving (ARIZ); forty typical Techniques for Overcoming System Conflicts (TOSC); a system of 76 Standard Approaches to Inventive Problems (Standards) etc. (Fey and Rivin, 1997). Nowadays, "a theory and constructive instrument package for the controlled synthesis of ideas and the focused transformation of the object to be improved" (Orlov, 2006) are used with high efficacy as the teaching and thinking inventive problem-solving methods in some high schools (Barak and Mesika, 2006; Sokoi et al., 2008) as well as a framework for research (Moehrle, 2005) in construction industry (Zhang et al., 2009); chemical engineering (Cortes Robles et al., 2008) etc. In 2005 US Congress passed the innovation act with the intent of increasing research investment (Gupta, 2007), while China had included inventive principles of TRIZ in strategy and decision making structure design (Kai Yang, 2010). The integrating of TRIZ into eco-innovation diminishes the common conflicts between technology and environment (Chang and Chen, 2004). In our presentation we show discuss some examples of future patents elaborated by the master degree students of Queretaro University, Faculty of Engineering, Mexico using TRIZ methods. References 1. Altshuller, G., 1988. Creativity as an Exact Science. Gordon and Breach, New York. 2. Chang, Hsiang-Tang and Chen, Jahau Lewis, 2004. The conflict-problem-solving CAD software integrating TRIZ into eco-innovation. Advances in Engineering Software, 35: 553-566. 3. Cortes Robles, G., Negny, S. and Le Lann, J.M., 2008. Case-based reasoning and TRIZ: A coupling for innovative conception in Chemical Engineering. Chemical Engineering and Processing: Process Intensification, 48 (1): 239-249. 4. Gupta, P., 2007. Real Innovation Commentary. http://www. RealInnovation.com. 5. Kai Yang, 2010. Inventive principles of TRIZ with Chinás 36 strategies. TRIZ J., 1-20. 6. Moehrle, M. G., 2005. What is TRIZ? From conceptual basics to a framework for research. Social Science research Network, http://papers.ssrn.com/sol13/papers.cfm?abstract_id=674062. 7. Orlov, M., 2006. Inventive Thinking through TRIZ. A practical Guide, Springer, Berlin, 351. 8. Zhang, X., Mao, X. and AbouRizk, S.M, 2009. Developing a knowledge management system for improved value engineering practices in the construction industry. Automation in Construction, 18 (6): 777-789. 9. Sokol, A., Oget, D., Sonntag, M. and Khomenko, N., 2008. The development of inventive thinking skills in the upper secondary language classroom. Thinking Skills and Creativity, 3 (1): 34-46.
Comparison of Physics Frameworks for WebGL-Based Game Engine
NASA Astrophysics Data System (ADS)
Yogya, Resa; Kosala, Raymond
2014-03-01
Recently, a new technology called WebGL shows a lot of potentials for developing games. However since this technology is still new, there are still many potentials in the game development area that are not explored yet. This paper tries to uncover the potential of integrating physics frameworks with WebGL technology in a game engine for developing 2D or 3D games. Specifically we integrated three open source physics frameworks: Bullet, Cannon, and JigLib into a WebGL-based game engine. Using experiment, we assessed these frameworks in terms of their correctness or accuracy, performance, completeness and compatibility. The results show that it is possible to integrate open source physics frameworks into a WebGLbased game engine, and Bullet is the best physics framework to be integrated into the WebGL-based game engine.
ERIC Educational Resources Information Center
Clary, Renee; Wandersee, James
2014-01-01
The "Next Generation Science Standards" (NGSS) focus attention on integrating engineering and math in science instruction. The dinosaur trackway project described in this article shows that it is possible to assign engineering applications to students in disciplines other than physics and to integrate math and engineering applications in…
The impact of the European health and safety directives on engineering in higher education
NASA Astrophysics Data System (ADS)
Crisp, Alan Roy
This thesis examines the effect that six sets of Health and Safety legislation introduced in 1993 have had on working practices at the University, particularly within the Engineering Departments. The legislation, collectively known colloquially as "the six pack", had much in common with extant United Kingdom (UK) law but, because it emanated from the European Union (EU), it appears to be viewed in the UK as unduly restrictive and time consuming. Much of the thesis is therefore devoted to examining this suspicion in which the EU and its legislation is held by UK employers and employees. The thesis begins by examining the general background and recent history of the EU, before going on to look in greater detail at the development of Health and Safety legislation in particular. The area of interest is then further narrowed to look at the impact of this legislation on Higher Education Institutions by comparing recent accident statistics with those for industry and commerce. The main outcome of this section is that Higher Education has a similar accident profile by 'type' to industry and commerce and therefore would act in a similar manner when implementing the legislation. It is argued that industry and commerce can benefit from this similarity by emulating two case studies at the University where legislation is applied to some engineering equipment and procedures. These are described in detail and the point is made that safety is an approach that pervades all stages of an engineering process, commencing with the design or ordering of equipment. This is reinforced with the results of a primary survey of purchasing at similar institutions with regards to observance of current safety practices. It is concluded that suspicion of the "six pack" legislation is largely the result of overloading of those people responsible for safety by the arrival of a plethora of legislation all at once. Ironically this overloading appears to have influenced safety officers to pay attention to one part of the legislation at a time rather than take the integrated approach that was intended. This has further increased the workload with much testing and replacement of equipment taking place unnecessarily, as would be realised if all legislation were being applied simultaneously. The usefulness of this thesis therefore lies in showing that an integrated approach to Health and Safety is simply part of an overall integrated approach by the EU to increasing prosperity through responsible, sustainable economic development and is not intended to restrict productivity.