Sample records for integrated basin simulator

  1. Integrated water system simulation by considering hydrological and biogeochemical processes: model development, with parameter sensitivity and autocalibration

    NASA Astrophysics Data System (ADS)

    Zhang, Y. Y.; Shao, Q. X.; Ye, A. Z.; Xing, H. T.; Xia, J.

    2016-02-01

    Integrated water system modeling is a feasible approach to understanding severe water crises in the world and promoting the implementation of integrated river basin management. In this study, a classic hydrological model (the time variant gain model: TVGM) was extended to an integrated water system model by coupling multiple water-related processes in hydrology, biogeochemistry, water quality, and ecology, and considering the interference of human activities. A parameter analysis tool, which included sensitivity analysis, autocalibration and model performance evaluation, was developed to improve modeling efficiency. To demonstrate the model performances, the Shaying River catchment, which is the largest highly regulated and heavily polluted tributary of the Huai River basin in China, was selected as the case study area. The model performances were evaluated on the key water-related components including runoff, water quality, diffuse pollution load (or nonpoint sources) and crop yield. Results showed that our proposed model simulated most components reasonably well. The simulated daily runoff at most regulated and less-regulated stations matched well with the observations. The average correlation coefficient and Nash-Sutcliffe efficiency were 0.85 and 0.70, respectively. Both the simulated low and high flows at most stations were improved when the dam regulation was considered. The daily ammonium-nitrogen (NH4-N) concentration was also well captured with the average correlation coefficient of 0.67. Furthermore, the diffuse source load of NH4-N and the corn yield were reasonably simulated at the administrative region scale. This integrated water system model is expected to improve the simulation performances with extension to more model functionalities, and to provide a scientific basis for the implementation in integrated river basin managements.

  2. The Saale-Project -A multidisciplinary approach towards sustainable integrative catchment management -

    NASA Astrophysics Data System (ADS)

    Bongartz, K.; Flügel, W. A.

    2003-04-01

    In the joint research project “Development of an integrated methodology for the sustainable management of river basins The Saale River Basin example”, coordinated by the Centre of Environmental Research (UFZ), concepts and tools for an integrated management of large river basins are developed and applied for the Saale river basin. The ultimate objective of the project is to contribute to the holistic assessment and benchmarking approaches in water resource planning, as required by the European Water Framework Directive. The study presented here deals (1) with the development of a river basin information and modelling system, (2) with the refinement of a regionalisation approach adapted for integrated basin modelling. The approach combines a user friendly basin disaggregation method preserving the catchment’s physiographic heterogeneity with a process oriented hydrological basin assessment for scale bridging integrated modelling. The well tested regional distribution concept of Response Units (RUs) will be enhanced by landscape metrics and decision support tools for objective, scale independent and problem oriented RU delineation to provide the spatial modelling entities for process oriented and distributed simulation of vertical and lateral hydrological transport processes. On basis of this RUs suitable hydrological modelling approaches will be further developed with strong respect to a more detailed simulation of the lateral surface and subsurface flows as well as the channel flow. This methodical enhancement of the well recognised RU-concept will be applied to the river basin of the Saale (Ac: 23 179 km2) and validated by a nested catchment approach, which allows multi-response-validation and estimation of uncertainties of the modelling results. Integrated modelling of such a complex basin strongly influenced by manifold human activities (reservoirs, agriculture, urban areas and industry) can only be achieved by coupling the various modelling approaches within a well defined model framework system. The latter is interactively linked with a sophisticated geo-relational database (DB) serving all research teams involved in the project. This interactive linkage is a core element comprising an object-oriented, internet-based modelling framework system (MFS) for building interdisciplinary modelling applications and offering different analysis and visualisation tools.

  3. An integrated fuzzy-based advanced eutrophication simulation model to develop the best management scenarios for a river basin.

    PubMed

    Srinivas, Rallapalli; Singh, Ajit Pratap

    2018-03-01

    Assessment of water quality status of a river with respect to its discharge has become prerequisite to sustainable river basin management. The present paper develops an integrated model for simulating and evaluating strategies for water quality management in a river basin management by controlling point source pollutant loadings and operations of multi-purpose projects. Water Quality Analysis and Simulation Program (WASP version 8.0) has been used for modeling the transport of pollutant loadings and their impact on water quality in the river. The study presents a novel approach of integrating fuzzy set theory with an "advanced eutrophication" model to simulate the transmission and distribution of several interrelated water quality variables and their bio-physiochemical processes in an effective manner in the Ganges river basin, India. After calibration, simulated values are compared with the observed values to validate the model's robustness. Fuzzy technique of order preference by similarity to ideal solution (F-TOPSIS) has been used to incorporate the uncertainty associated with the water quality simulation results. The model also simulates five different scenarios for pollution reduction, to determine the maximum pollutant loadings during monsoon and dry periods. The final results clearly indicate how modeled reduction in the rate of wastewater discharge has reduced impacts of pollutants in the downstream. Scenarios suggesting a river discharge rate of 1500 m 3 /s during the lean period, in addition to 25 and 50% reduction in the load rate, are found to be the most effective option to restore quality of river Ganges. Thus, the model serves as an important hydrologic tool to the policy makers by suggesting appropriate remediation action plans.

  4. Integrated modelling of nitrate loads to coastal waters and land rent applied to catchment-scale water management.

    PubMed

    Refsgaard, A; Jacobsen, T; Jacobsen, B; Ørum, J-E

    2007-01-01

    The EU Water Framework Directive (WFD) requires an integrated approach to river basin management in order to meet environmental and ecological objectives. This paper presents concepts and full-scale application of an integrated modelling framework. The Ringkoebing Fjord basin is characterized by intensive agricultural production and leakage of nitrate constitute a major pollution problem with respect groundwater aquifers (drinking water), fresh surface water systems (water quality of lakes) and coastal receiving waters (eutrophication). The case study presented illustrates an advanced modelling approach applied in river basin management. Point sources (e.g. sewage treatment plant discharges) and distributed diffuse sources (nitrate leakage) are included to provide a modelling tool capable of simulating pollution transport from source to recipient to analyse the effects of specific, localized basin water management plans. The paper also includes a land rent modelling approach which can be used to choose the most cost-effective measures and the location of these measures. As a forerunner to the use of basin-scale models in WFD basin water management plans this project demonstrates the potential and limitations of comprehensive, integrated modelling tools.

  5. Assessing regional climate simulations of the last 30 years (1982-2012) over Ganges-Brahmaputra-Meghna River Basin

    NASA Astrophysics Data System (ADS)

    Khandu; Awange, Joseph L.; Anyah, Richard; Kuhn, Michael; Fukuda, Yoichi

    2017-10-01

    The Ganges-Brahmaputra-Meghna (GBM) River Basin presents a spatially diverse hydrological regime due to it's complex topography and escalating demand for freshwater resources. This presents a big challenge in applying the current state-of-the-art regional climate models (RCMs) for climate change impact studies in the GBM River Basin. In this study, several RCM simulations generated by RegCM4.4 and PRECIS are assessed for their seasonal and interannual variations, onset/withdrawal of the Indian monsoon, and long-term trends in precipitation and temperature from 1982 to 2012. The results indicate that in general, RegCM4.4 and PRECIS simulations appear to reasonably reproduce the mean seasonal distribution of precipitation and temperature across the GBM River Basin, although the two RCMs are integrated over a different domain size. On average, the RegCM4.4 simulations overestimate monsoon precipitation by {˜ }26 and {˜ }5% in the Ganges and Brahmaputra-Meghna River Basin, respectively, while PRECIS simulations underestimate (overestimate) the same by {˜ }7% ({˜ }16%). Both RegCM4.4 and PRECIS simulations indicate an intense cold bias (up to 10° C) in the Himalayas, and are generally stronger in the RegCM4.4 simulations. Additionally, they tend to produce high precipitation between April and May in the Ganges (RegCM4.4 simulations) and Brahmaputra-Meghna (PRECIS simulations) River Basins, resulting in early onset of the Indian monsoon in the Ganges River Basin. PRECIS simulations exhibit a delayed monsoon withdrawal in the Brahmaputra-Meghna River Basin. Despite large spatial variations in onset and withdrawal periods across the GBM River Basin, the basin-averaged results agree reasonably well with the observed periods. Although global climate model (GCM) driven simulations are generally poor in representing the interannual variability of precipitation and winter temperature variations, they tend to agree well with observed precipitation anomalies when driven by perfect boundary conditions. It is also seen that all GCM driven simulations feature significant positive surface temperature trends consistent with the observed datasets.

  6. Development of the Hydrological-Ecological Integrated watershed Flow Model (HEIFLOW): an application to the Heihe River Basin

    NASA Astrophysics Data System (ADS)

    Tian, Y.; Zheng, Y.; Zheng, C.; Han, F., Sr.

    2017-12-01

    Physically based and fully-distributed integrated hydrological models (IHMs) can quantitatively depict hydrological processes, both surface and subsurface, with sufficient spatial and temporal details. However, the complexity involved in pre-processing data and setting up models seriously hindered the wider application of IHMs in scientific research and management practice. This study introduces our design and development of Visual HEIFLOW, hereafter referred to as VHF, a comprehensive graphical data processing and modeling system for integrated hydrological simulation. The current version of VHF has been structured to accommodate an IHM named HEIFLOW (Hydrological-Ecological Integrated watershed-scale FLOW model). HEIFLOW is a model being developed by the authors, which has all typical elements of physically based and fully-distributed IHMs. It is based on GSFLOW, a representative integrated surface water-groundwater model developed by USGS. HEIFLOW provides several ecological modules that enable to simulate growth cycle of general vegetation and special plants (maize and populus euphratica). VHF incorporates and streamlines all key steps of the integrated modeling, and accommodates all types of GIS data necessary to hydrological simulation. It provides a GIS-based data processing framework to prepare an IHM for simulations, and has functionalities to flexibly display and modify model features (e.g., model grids, streams, boundary conditions, observational sites, etc.) and their associated data. It enables visualization and various spatio-temporal analyses of all model inputs and outputs at different scales (i.e., computing unit, sub-basin, basin, or user-defined spatial extent). The above system features, as well as many others, can significantly reduce the difficulty and time cost of building and using a complex IHM. The case study in the Heihe River Basin demonstrated the applicability of VHF for large scale integrated SW-GW modeling. Visualization and spatial-temporal analysis of the modeling results by HEIFLOW greatly facilitates our understanding on the complicated hydrologic cycle and relationship among the hydrological and ecological variables in the study area, and provides insights into the regional water resources management.

  7. Collaborative modelling and integrated decision support system analysis of a developed terminal lake basin

    USGS Publications Warehouse

    Niswonger, Richard G.; Allander, Kip K.; Jeton, Anne E.

    2014-01-01

    A terminal lake basin in west-central Nevada, Walker Lake, has undergone drastic change over the past 90 yrs due to upstream water use for agriculture. Decreased inflows to the lake have resulted in 100 km2 decrease in lake surface area and a total loss of fisheries due to salinization. The ecologic health of Walker Lake is of great concern as the lake is a stopover point on the Pacific route for migratory birds from within and outside the United States. Stakeholders, water institutions, and scientists have engaged in collaborative modeling and the development of a decision support system that is being used to develop and analyze management change options to restore the lake. Here we use an integrated management and hydrologic model that relies on state-of-the-art simulation capabilities to evaluate the benefits of using integrated hydrologic models as components of a decision support system. Nonlinear feedbacks among climate, surface-water and groundwater exchanges, and water use present challenges for simulating realistic outcomes associated with management change. Integrated management and hydrologic modeling provides a means of simulating benefits associated with management change in the Walker River basin where drastic changes in the hydrologic landscape have taken place over the last century. Through the collaborative modeling process, stakeholder support is increasing and possibly leading to management change options that result in reductions in Walker Lake salt concentrations, as simulated by the decision support system.

  8. An integrated water system model considering hydrological and biogeochemical processes at basin scale: model construction and application

    NASA Astrophysics Data System (ADS)

    Zhang, Y. Y.; Shao, Q. X.; Ye, A. Z.; Xing, H. T.

    2014-08-01

    Integrated water system modeling is a reasonable approach to provide scientific understanding and possible solutions to tackle the severe water crisis faced over the world and to promote the implementation of integrated river basin management. Such a modeling practice becomes more feasible nowadays due to better computing facilities and available data sources. In this study, the process-oriented water system model (HEXM) is developed by integrating multiple water related processes including hydrology, biogeochemistry, environment and ecology, as well as the interference of human activities. The model was tested in the Shaying River Catchment, the largest, highly regulated and heavily polluted tributary of Huai River Basin in China. The results show that: HEXM is well integrated with good performance on the key water related components in the complex catchments. The simulated daily runoff series at all the regulated and less-regulated stations matches observations, especially for the high and low flow events. The average values of correlation coefficient and coefficient of efficiency are 0.81 and 0.63, respectively. The dynamics of observed daily ammonia-nitrogen (NH4N) concentration, as an important index to assess water environmental quality in China, are well captured with average correlation coefficient of 0.66. Furthermore, the spatial patterns of nonpoint source pollutant load and grain yield are also simulated properly, and the outputs have good agreements with the statistics at city scale. Our model shows clear superior performance in both calibration and validation in comparison with the widely used SWAT model. This model is expected to give a strong reference for water system modeling in complex basins, and provide the scientific foundation for the implementation of integrated river basin management all over the world as well as the technical guide for the reasonable regulation of dams and sluices and environmental improvement in river basins.

  9. Watershed scale response to climate change--Yampa River Basin, Colorado

    USGS Publications Warehouse

    Hay, Lauren E.; Battaglin, William A.; Markstrom, Steven L.

    2012-01-01

    General Circulation Model simulations of future climate through 2099 project a wide range of possible scenarios. To determine the sensitivity and potential effect of long-term climate change on the freshwater resources of the United States, the U.S. Geological Survey Global Change study, "An integrated watershed scale response to global change in selected basins across the United States" was started in 2008. The long-term goal of this national study is to provide the foundation for hydrologically based climate change studies across the nation. Fourteen basins for which the Precipitation Runoff Modeling System has been calibrated and evaluated were selected as study sites. Precipitation Runoff Modeling System is a deterministic, distributed parameter watershed model developed to evaluate the effects of various combinations of precipitation, temperature, and land use on streamflow and general basin hydrology. Output from five General Circulation Model simulations and four emission scenarios were used to develop an ensemble of climate-change scenarios for each basin. These ensembles were simulated with the corresponding Precipitation Runoff Modeling System model. This fact sheet summarizes the hydrologic effect and sensitivity of the Precipitation Runoff Modeling System simulations to climate change for the Yampa River Basin at Steamboat Springs, Colorado.

  10. An integrated model of water resources optimization allocation based on projection pursuit model - Grey wolf optimization method in a transboundary river basin

    NASA Astrophysics Data System (ADS)

    Yu, Sen; Lu, Hongwei

    2018-04-01

    Under the effects of global change, water crisis ranks as the top global risk in the future decade, and water conflict in transboundary river basins as well as the geostrategic competition led by it is most concerned. This study presents an innovative integrated PPMGWO model of water resources optimization allocation in a transboundary river basin, which is integrated through the projection pursuit model (PPM) and Grey wolf optimization (GWO) method. This study uses the Songhua River basin and 25 control units as examples, adopting the PPMGWO model proposed in this study to allocate the water quantity. Using water consumption in all control units in the Songhua River basin in 2015 as reference to compare with optimization allocation results of firefly algorithm (FA) and Particle Swarm Optimization (PSO) algorithms as well as the PPMGWO model, results indicate that the average difference between corresponding allocation results and reference values are 0.195 bil m3, 0.151 bil m3, and 0.085 bil m3, respectively. Obviously, the average difference of the PPMGWO model is the lowest and its optimization allocation result is closer to reality, which further confirms the reasonability, feasibility, and accuracy of the PPMGWO model. And then the PPMGWO model is adopted to simulate allocation of available water quantity in Songhua River basin in 2018, 2020, and 2030. The simulation results show water quantity which could be allocated in all controls demonstrates an overall increasing trend with reasonable and equal exploitation and utilization of water resources in the Songhua River basin in future. In addition, this study has a certain reference value and application meaning to comprehensive management and water resources allocation in other transboundary river basins.

  11. Flash Floods Simulation using a Physical-Based Hydrological Model at Different Hydroclimatic Regions

    NASA Astrophysics Data System (ADS)

    Saber, Mohamed; Kamil Yilmaz, Koray

    2016-04-01

    Currently, flash floods are seriously increasing and affecting many regions over the world. Therefore, this study will focus on two case studies; Wadi Abu Subeira, Egypt as arid environment, and Karpuz basin, Turkey as Mediterranean environment. The main objective of this work is to simulate flash floods at both catchments considering the hydrometeorological differences between them which in turn effect their flash flood behaviors. An integrated methodology incorporating Hydrological River Basin Environmental Assessment Model (Hydro-BEAM) and remote sensing observations was devised. Global Satellite Mapping of Precipitation (GSMAP) were compared with the rain gauge network at the target basins to estimate the bias in an effort to further use it effectively in simulation of flash floods. Based on the preliminary results of flash floods simulation on both basins, we found that runoff behaviors of flash floods are different due to the impacts of climatology, hydrological and topographical conditions. Also, the simulated surface runoff hydrographs are reasonably coincide with the simulated ones. Consequently, some mitigation strategies relying on this study could be introduced to help in reducing the flash floods disasters at different climate regions. This comparison of different climatic basins would be a reasonable implication for the potential impact of climate change on the flash floods frequencies and occurrences.

  12. Parallelization of a Fully-Distributed Hydrologic Model using Sub-basin Partitioning

    NASA Astrophysics Data System (ADS)

    Vivoni, E. R.; Mniszewski, S.; Fasel, P.; Springer, E.; Ivanov, V. Y.; Bras, R. L.

    2005-12-01

    A primary obstacle towards advances in watershed simulations has been the limited computational capacity available to most models. The growing trend of model complexity, data availability and physical representation has not been matched by adequate developments in computational efficiency. This situation has created a serious bottleneck which limits existing distributed hydrologic models to small domains and short simulations. In this study, we present novel developments in the parallelization of a fully-distributed hydrologic model. Our work is based on the TIN-based Real-time Integrated Basin Simulator (tRIBS), which provides continuous hydrologic simulation using a multiple resolution representation of complex terrain based on a triangulated irregular network (TIN). While the use of TINs reduces computational demand, the sequential version of the model is currently limited over large basins (>10,000 km2) and long simulation periods (>1 year). To address this, a parallel MPI-based version of the tRIBS model has been implemented and tested using high performance computing resources at Los Alamos National Laboratory. Our approach utilizes domain decomposition based on sub-basin partitioning of the watershed. A stream reach graph based on the channel network structure is used to guide the sub-basin partitioning. Individual sub-basins or sub-graphs of sub-basins are assigned to separate processors to carry out internal hydrologic computations (e.g. rainfall-runoff transformation). Routed streamflow from each sub-basin forms the major hydrologic data exchange along the stream reach graph. Individual sub-basins also share subsurface hydrologic fluxes across adjacent boundaries. We demonstrate how the sub-basin partitioning provides computational feasibility and efficiency for a set of test watersheds in northeastern Oklahoma. We compare the performance of the sequential and parallelized versions to highlight the efficiency gained as the number of processors increases. We also discuss how the coupled use of TINs and parallel processing can lead to feasible long-term simulations in regional watersheds while preserving basin properties at high-resolution.

  13. Integrated water flow model and modflow-farm process: A comparison of theory, approaches, and features of two integrated hydrologic models

    USGS Publications Warehouse

    Dogrul, Emin C.; Schmid, Wolfgang; Hanson, Randall T.; Kadir, Tariq; Chung, Francis

    2016-01-01

    Effective modeling of conjunctive use of surface and subsurface water resources requires simulation of land use-based root zone and surface flow processes as well as groundwater flows, streamflows, and their interactions. Recently, two computer models developed for this purpose, the Integrated Water Flow Model (IWFM) from the California Department of Water Resources and the MODFLOW with Farm Process (MF-FMP) from the US Geological Survey, have been applied to complex basins such as the Central Valley of California. As both IWFM and MFFMP are publicly available for download and can be applied to other basins, there is a need to objectively compare the main approaches and features used in both models. This paper compares the concepts, as well as the method and simulation features of each hydrologic model pertaining to groundwater, surface water, and landscape processes. The comparison is focused on the integrated simulation of water demand and supply, water use, and the flow between coupled hydrologic processes. The differences in the capabilities and features of these two models could affect the outcome and types of water resource problems that can be simulated.

  14. Modeling the spatial-temporal dynamics of net primary production in Yangtze River Basin using IBIS model

    USGS Publications Warehouse

    Zhang, Z.; Jiang, H.; Liu, J.; Zhu, Q.; Wei, X.; Jiang, Z.; Zhou, G.; Zhang, X.; Han, J.

    2011-01-01

    The climate change has significantly affected the carbon cycling in Yangtze River Basin. To better understand the alternation pattern for the relationship between carbon cycling and climate change, the net primary production (NPP) were simulated in the study area from 1956 to 2006 by using the Integrated Biosphere Simulator (IBIS). The results showed that the average annual NPP per square meter was about 0.518 kg C in Yangtze River Basin. The high NPP levels were mainly distributed in the southeast area of Sichuan, and the highest value reached 1.05 kg C/m2. The NPP increased based on the simulated temporal trends. The spatiotemporal variability of the NPP in the vegetation types was obvious, and it was depended on the climate and soil condition. We found the drought climate was one of critical factor that impacts the alterations of the NPP in the area by the simulation. ?? 2011 IEEE.

  15. GIS/RS-based Integrated Eco-hydrologic Modeling in the East River Basin, South China

    NASA Astrophysics Data System (ADS)

    Wang, Kai

    Land use/cover change (LUCC) has significantly altered the hydrologic system in the East River (Dongjiang) Basin. Quantitative modeling of hydrologic impacts of LUCC is of great importance for water supply, drought monitoring and integrated water resources management. An integrated eco-hydrologic modeling system of Distributed Monthly Water Balance Model (DMWBM), Surface Energy Balance System (SEBS) was developed with aid of GIS/RS to quantify LUCC, to conduct physically-based ET (evapotranspiration) mapping and to predict hydrologic impacts of LUCC. To begin with, in order to evaluate LUCC, understand implications of LUCC and provide boundary condition for the integrated eco-hydrologic modeling, firstly the long-term vegetation dynamics was investigated based on Normalized Difference Vegetation Index (NDVI) data, and then LUCC was analyzed with post-classification methods and finally LUCC prediction was conducted based on Markov chain model. The results demonstrate that the vegetation activities decreased significantly in summer over the years. Moreover, there were significant changes in land use/cover over the past two decades. Particularly there was a sharp increase of urban and built-up area and a significant decrease of grassland and cropland. All these indicate that human activities are intensive in the East River Basin and provide valuable information for constructing scenarios for studying hydrologic impacts of LUCC. The physically-remote-sensing-based Surface Energy Balance System (SEBS) was employed to estimate areal actual ET for a large area rather than traditional point measurements . The SEBS was enhanced for application in complex vegetated area. Then the inter-comparison with complimentary ET model and distributed monthly water balance model was made to validate the enhanced SEBS (ESEBS). The application and test of ESEBS show that it has a good accuracy both monthly and annually and can be effectively applied in the East River Basin. The results of ET mapping based on ESEBS demonstrate that actual ET in the East River Basin decreases significantly in the last two decades, which is probably caused by decrease of sunshine duration. In order to effectively simulate hydrologic impact of LUCC, an integrated model of ESEBS and distributed monthly water balance model has been developed in this study. The model is capable of considering basin terrain and the spatial distribution of precipitation and soil moisture. Particularly, the model is unique in accounting for spatial and temporal variations of vegetation cover and ET, which provides a powerful tool for studying the hydrologic impacts of LUCC. The model was applied to simulate the monthly runoff for the period of 1980-1994 for model calibration and for the period of 1995-2000 for validation. The calibration and validation results show that the newly integrated model is suitable for simulating monthly runoff and studying hydrologic impacts ofLUCC in the East River Basin. Finally, the newly integrated model was firstly applied to analyze the relationship of land use and hydrologic regimes based on the land use maps in 1980 and 2000. Then the newly integrated model was applied to simulate the potential impacts of land use change on hydrologic regimes in the East River Basin under a series of hypothetical scenarios. The results show that ET has a positive relationship with Leaf Area Index (LAI) while runoff has a negative relationship with LAI in the same climatic zone, which can be elaborated by surface energy balance and water balance equation. Specifically, on an annual basis, ET of forest scenarios is larger than that of grassland or cropland scenarios. On the contrary, runoff of forest scenarios is less than that of grassland or cropland scenarios. On a monthly basis, for most of the scenarios, particularly the grassland and cropland scenarios, the most significant changes occurred in the rainy season. The results indicate that deforestation would cause increase of runoff and decrease of ET on an annual basis in the East River Basin. On a monthly basis, deforestation would cause significant decrease of ET and increase of runoff in the rainy season in the East River Basin. These results are not definitive statements as to what will happen to runoff, ET and soil moisture regimes in the East River Basin, but rather offer an insight into the plausible changes in basin hydrology due to land use change. The integrated model developed in this study and these results have significant implications for integrated water resources management and sustainable development in the East River Basin.

  16. Anatomy of the petroleum geology in Chukchi Sea basin: Two-dimensional simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei Zengpu; Lerche, I.

    1991-03-01

    The Chukchi Sea basin is located offshore from the National Petroleum Reserve in Alaska (NPRA). The petroleum exploration history of the Chukchi Sea basin goes back to 1969. Although several wells were drilled, none of them revealed encouraging amounts of oil and gas accumulations. Exploration efforts have been limited mainly to geophysical exploratory work. Increasing recent interest in this area has led to a basin analysis study using available data acquired over the past two decades, in relation to petroleum evolution. This study applies a two-dimensional computer simulation model to the Chukchi Sea basin. An automatic procedure, termed dynamical tomography,more » uses available measured data to search for the best parameters within a specified range. In an integrated manner the model then simulates (1) geohistory and structural development, (2) thermal history, and (3) organic matter evolution. The outputs include both data tables and plots (in both one and two dimensions). These outputs provide detailed information on the spatial evolution with time of fluid pressure, formation temperature, thermal indicator indices (like Waples' TTI and vitrinite reflectance), porosity, and hydrocarbon generation, migration, and accumulation. In this way the hydrocarbon proneness of various parts of the basin can be evaluated.« less

  17. Estimation of dynamic load of mercury in a river with BASINS-HSPF model

    Treesearch

    Ying Ouyang; John Higman; Jeff Hatten

    2012-01-01

    Purpose Mercury (Hg) is a naturally occurring element and a pervasive toxic pollutant. This study investigated the dynamic loads of Hg from the Cedar-Ortega Rivers watershed into the Lower St. Johns River (LSJR), Florida, USA, using the better assessment science integrating point and nonpoint sources (BASINS)-hydrologic simulation program - FORTRAN (HSPF) model....

  18. The Influence of African Dust on Air Quality in the Caribbean Basin: An Integrated Analysis of Satellite Retrievals, Ground Observations, and Model Simulations

    NASA Astrophysics Data System (ADS)

    Yu, H.; Prospero, J. M.; Chin, M.; Randles, C. A.; da Silva, A.; Bian, H.

    2015-12-01

    Long-term surface measurements in several locations extending from northeastern coast of South America to Miami in Florida have shown that African dust arrives in the Greater Caribbean Basin throughout a year. This long-range transported dust frequently elevates the level of particulate matter (PM) above the WHO guideline for PM10, which raises a concern of possible adverse impact of African dust on human health in the region. There is also concern about how future climate change might affect dust transport and its influence on regional air quality. In this presentation we provide a comprehensive characterization of the influence of African dust on air quality in the Caribbean Basin via integrating the ground observations with satellite retrievals and model simulations. The ground observations are used to validate and evaluate satellite retrievals and model simulations of dust, while satellite measurements and model simulations are used to extend spatial coverage of the ground observations. An analysis of CALIPSO lidar measurements of three-dimensional distribution of aerosols over 2007-2014 yields altitude-resolved dust mass flux into the region. On a basis of 8-year average and integration over the latitude zone of 0°-30°N, a total of 76 Tg dust is imported to the air above the Greater Caribbean Basin, of which 34 Tg (or 45%) is within the lowest 1 km layer and most relevant to air quality concern. The seasonal and interannual variations of the dust import are well correlated with ground observations of dust in Cayenne, Barbados, Puerto Rico, and Miami. We will also show comparisons of the size-resolved dust amount from both NASA GEOS-5 aerosol simulation and MERRA-2 aerosol reanalysis (i.e., column aerosol loading being constrained by satellite measurements of radiance at the top of atmosphere) with the ground observations and satellite measurement.

  19. Combining Mechanistic Approaches for Studying Eco-Hydro-Geomorphic Coupling

    NASA Astrophysics Data System (ADS)

    Francipane, A.; Ivanov, V.; Akutina, Y.; Noto, V.; Istanbullouglu, E.

    2008-12-01

    Vegetation interacts with hydrology and geomorphic form and processes of a river basin in profound ways. Despite recent advances in hydrological modeling, the dynamic coupling between these processes is yet to be adequately captured at the basin scale to elucidate key features of process interaction and their role in the organization of vegetation and landscape morphology. In this study, we present a blueprint for integrating a geomorphic component into the physically-based, spatially distributed ecohydrological model, tRIBS- VEGGIE, which reproduces essential water and energy processes over the complex topography of a river basin and links them to the basic plant life regulatory processes. We present a preliminary design of the integrated modeling framework in which hillslope and channel erosion processes at the catchment scale, will be coupled with vegetation-hydrology dynamics. We evaluate the developed framework by applying the integrated model to Lucky Hills basin, a sub-catchment of the Walnut Gulch Experimental Watershed (Arizona). The evaluation is carried out by comparing sediment yields at the basin outlet, that follows a detailed verification of simulated land-surface energy partition, biomass dynamics, and soil moisture states.

  20. System Dynamics Modeling of Transboundary Systems: The Bear River Basin Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerald Sehlke; Jake Jacobson

    2005-09-01

    System dynamics is a computer-aided approach to evaluating the interrelationships of different components and activities within complex systems. Recently, system dynamics models have been developed in areas such as policy design, biological and medical modeling, energy and the environmental analysis, and in various other areas in the natural and social sciences. The Idaho National Engineering and Environmental Laboratory, a multi-purpose national laboratory managed by the Department of Energy, has developed a systems dynamics model in order to evaluate its utility for modeling large complex hydrological systems. We modeled the Bear River Basin, a transboundary basin that includes portions of Idaho,more » Utah and Wyoming. We found that system dynamics modeling is very useful for integrating surface water and groundwater data and for simulating the interactions between these sources within a given basin. In addition, we also found system dynamics modeling is useful for integrating complex hydrologic data with other information (e.g., policy, regulatory and management criteria) to produce a decision support system. Such decision support systems can allow managers and stakeholders to better visualize the key hydrologic elements and management constraints in the basin, which enables them to better understand the system via the simulation of multiple “what-if” scenarios. Although system dynamics models can be developed to conduct traditional hydraulic/hydrologic surface water or groundwater modeling, we believe that their strength lies in their ability to quickly evaluate trends and cause–effect relationships in large-scale hydrological systems; for integrating disparate data; for incorporating output from traditional hydraulic/hydrologic models; and for integration of interdisciplinary data, information and criteria to support better management decisions.« less

  1. System Dynamics Modeling of Transboundary Systems: the Bear River Basin Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerald Sehlke; Jacob J. Jacobson

    2005-09-01

    System dynamics is a computer-aided approach to evaluating the interrelationships of different components and activities within complex systems. Recently, system dynamics models have been developed in areas such as policy design, biological and medical modeling, energy and the environmental analysis, and in various other areas in the natural and social sciences. The Idaho National Engineering and Environmental Laboratory, a multi-purpose national laboratory managed by the Department of Energy, has developed a systems dynamics model in order to evaluate its utility for modeling large complex hydrological systems. We modeled the Bear River Basin, a transboundary basin that includes portions of Idaho,more » Utah and Wyoming. We found that system dynamics modeling is very useful for integrating surface water and ground water data and for simulating the interactions between these sources within a given basin. In addition, we also found system dynamics modeling is useful for integrating complex hydrologic data with other information (e.g., policy, regulatory and management criteria) to produce a decision support system. Such decision support systems can allow managers and stakeholders to better visualize the key hydrologic elements and management constraints in the basin, which enables them to better understand the system via the simulation of multiple “what-if” scenarios. Although system dynamics models can be developed to conduct traditional hydraulic/hydrologic surface water or ground water modeling, we believe that their strength lies in their ability to quickly evaluate trends and cause–effect relationships in large-scale hydrological systems; for integrating disparate data; for incorporating output from traditional hydraulic/hydrologic models; and for integration of interdisciplinary data, information and criteria to support better management decisions.« less

  2. Continuous hydrologic simulation of runoff for the Middle Fork and South Fork of the Beargrass Creek basin in Jefferson County, Kentucky

    USGS Publications Warehouse

    Jarrett, G. Lynn; Downs, Aimee C.; Grace-Jarrett, Patricia A.

    1998-01-01

    The Hydrological Simulation Pro-gram-FORTRAN (HSPF) was applied to an urban drainage basin in Jefferson County, Ky to integrate the large amounts of information being collected on water quantity and quality into an analytical framework that could be used as a management and planning tool. Hydrologic response units were developed using geographic data and a K-means analysis to characterize important hydrologic and physical factors in the basin. The Hydrological Simulation Program FORTRAN Expert System (HSPEXP) was used to calibrate the model parameters for the Middle Fork Beargrass Creek Basin for 3 years (June 1, 1991, to May 31, 1994) of 5-minute streamflow and precipitation time series, and 3 years of hourly pan-evaporation time series. The calibrated model parameters were applied to the South Fork Beargrass Creek Basin for confirmation. The model confirmation results indicated that the model simulated the system within acceptable tolerances. The coefficient of determination and coefficient of model-fit efficiency between simulated and observed daily flows were 0.91 and 0.82, respectively, for model calibration and 0.88 and 0.77, respectively, for model confirmation. The model is most sensitive to estimates of the area of effective impervious land in the basin; the spatial distribution of rain-fall; and the lower-zone evapotranspiration, lower-zone nominal storage, and infiltration-capacity parameters during recession and low-flow periods. The error contribution from these sources varies with season and antecedent conditions.

  3. Real-world hydrologic assessment of a fully-distributed hydrological model in a parallel computing environment

    NASA Astrophysics Data System (ADS)

    Vivoni, Enrique R.; Mascaro, Giuseppe; Mniszewski, Susan; Fasel, Patricia; Springer, Everett P.; Ivanov, Valeriy Y.; Bras, Rafael L.

    2011-10-01

    SummaryA major challenge in the use of fully-distributed hydrologic models has been the lack of computational capabilities for high-resolution, long-term simulations in large river basins. In this study, we present the parallel model implementation and real-world hydrologic assessment of the Triangulated Irregular Network (TIN)-based Real-time Integrated Basin Simulator (tRIBS). Our parallelization approach is based on the decomposition of a complex watershed using the channel network as a directed graph. The resulting sub-basin partitioning divides effort among processors and handles hydrologic exchanges across boundaries. Through numerical experiments in a set of nested basins, we quantify parallel performance relative to serial runs for a range of processors, simulation complexities and lengths, and sub-basin partitioning methods, while accounting for inter-run variability on a parallel computing system. In contrast to serial simulations, the parallel model speed-up depends on the variability of hydrologic processes. Load balancing significantly improves parallel speed-up with proportionally faster runs as simulation complexity (domain resolution and channel network extent) increases. The best strategy for large river basins is to combine a balanced partitioning with an extended channel network, with potential savings through a lower TIN resolution. Based on these advances, a wider range of applications for fully-distributed hydrologic models are now possible. This is illustrated through a set of ensemble forecasts that account for precipitation uncertainty derived from a statistical downscaling model.

  4. Modeling basin- and plume-scale processes of CO2 storage for full-scale deployment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Q.; Birkholzer, J.T.; Mehnert, E.

    Integrated modeling of basin- and plume-scale processes induced by full-scale deployment of CO{sub 2} storage was applied to the Mt. Simon Aquifer in the Illinois Basin. A three-dimensional mesh was generated with local refinement around 20 injection sites, with approximately 30 km spacing. A total annual injection rate of 100 Mt CO{sub 2} over 50 years was used. The CO{sub 2}-brine flow at the plume scale and the single-phase flow at the basin scale were simulated. Simulation results show the overall shape of a CO{sub 2} plume consisting of a typical gravity-override subplume in the bottom injection zone of highmore » injectivity and a pyramid-shaped subplume in the overlying multilayered Mt. Simon, indicating the important role of a secondary seal with relatively low-permeability and high-entry capillary pressure. The secondary-seal effect is manifested by retarded upward CO{sub 2} migration as a result of multiple secondary seals, coupled with lateral preferential CO{sub 2} viscous fingering through high-permeability layers. The plume width varies from 9.0 to 13.5 km at 200 years, indicating the slow CO{sub 2} migration and no plume interference between storage sites. On the basin scale, pressure perturbations propagate quickly away from injection centers, interfere after less than 1 year, and eventually reach basin margins. The simulated pressure buildup of 35 bar in the injection area is not expected to affect caprock geomechanical integrity. Moderate pressure buildup is observed in Mt. Simon in northern Illinois. However, its impact on groundwater resources is less than the hydraulic drawdown induced by long-term extensive pumping from overlying freshwater aquifers.« less

  5. Summary of hydrologic modeling for the Delaware River Basin using the Water Availability Tool for Environmental Resources (WATER)

    USGS Publications Warehouse

    Williamson, Tanja N.; Lant, Jeremiah G.; Claggett, Peter; Nystrom, Elizabeth A.; Milly, Paul C.D.; Nelson, Hugh L.; Hoffman, Scott A.; Colarullo, Susan J.; Fischer, Jeffrey M.

    2015-11-18

    The Water Availability Tool for Environmental Resources (WATER) is a decision support system for the nontidal part of the Delaware River Basin that provides a consistent and objective method of simulating streamflow under historical, forecasted, and managed conditions. In order to quantify the uncertainty associated with these simulations, however, streamflow and the associated hydroclimatic variables of potential evapotranspiration, actual evapotranspiration, and snow accumulation and snowmelt must be simulated and compared to long-term, daily observations from sites. This report details model development and optimization, statistical evaluation of simulations for 57 basins ranging from 2 to 930 km2 and 11.0 to 99.5 percent forested cover, and how this statistical evaluation of daily streamflow relates to simulating environmental changes and management decisions that are best examined at monthly time steps normalized over multiple decades. The decision support system provides a database of historical spatial and climatic data for simulating streamflow for 2001–11, in addition to land-cover and general circulation model forecasts that focus on 2030 and 2060. WATER integrates geospatial sampling of landscape characteristics, including topographic and soil properties, with a regionally calibrated hillslope-hydrology model, an impervious-surface model, and hydroclimatic models that were parameterized by using three hydrologic response units: forested, agricultural, and developed land cover. This integration enables the regional hydrologic modeling approach used in WATER without requiring site-specific optimization or those stationary conditions inferred when using a statistical model.

  6. Integrated watershed-scale response to climate change for selected basins across the United States

    USGS Publications Warehouse

    Markstrom, Steven L.; Hay, Lauren E.; Ward-Garrison, D. Christian; Risley, John C.; Battaglin, William A.; Bjerklie, David M.; Chase, Katherine J.; Christiansen, Daniel E.; Dudley, Robert W.; Hunt, Randall J.; Koczot, Kathryn M.; Mastin, Mark C.; Regan, R. Steven; Viger, Roland J.; Vining, Kevin C.; Walker, John F.

    2012-01-01

    A study by the U.S. Geological Survey (USGS) evaluated the hydrologic response to different projected carbon emission scenarios of the 21st century using a hydrologic simulation model. This study involved five major steps: (1) setup, calibrate and evaluated the Precipitation Runoff Modeling System (PRMS) model in 14 basins across the United States by local USGS personnel; (2) acquire selected simulated carbon emission scenarios from the World Climate Research Programme's Coupled Model Intercomparison Project; (3) statistical downscaling of these scenarios to create PRMS input files which reflect the future climatic conditions of these scenarios; (4) generate PRMS projections for the carbon emission scenarios for the 14 basins; and (5) analyze the modeled hydrologic response. This report presents an overview of this study, details of the methodology, results from the 14 basin simulations, and interpretation of these results. A key finding is that the hydrological response of the different geographical regions of the United States to potential climate change may be different, depending on the dominant physical processes of that particular region. Also considered is the tremendous amount of uncertainty present in the carbon emission scenarios and how this uncertainty propagates through the hydrologic simulations.

  7. Water-budgets and recharge-area simulations for the Spring Creek and Nittany Creek Basins and parts of the Spruce Creek Basin, Centre and Huntingdon Counties, Pennsylvania, Water Years 2000–06

    USGS Publications Warehouse

    Fulton, John W.; Risser, Dennis W.; Regan, R. Steve; Walker, John F.; Hunt, Randall J.; Niswonger, Richard G.; Hoffman, Scott A.; Markstrom, Steven

    2015-08-17

    This report describes the results of a study by the U.S. Geological Survey in cooperation with ClearWater Conservancy and the Pennsylvania Department of Environmental Protection to develop a hydrologic model to simulate a water budget and identify areas of greater than average recharge for the Spring Creek Basin in central Pennsylvania. The model was developed to help policy makers, natural resource managers, and the public better understand and manage the water resources in the region. The Groundwater and Surface-water FLOW model (GSFLOW), which is an integration of the Precipitation-Runoff Modeling System (PRMS) and the Modular Groundwater Flow Model (MODFLOW-NWT), was used to simulate surface water and groundwater in the Spring Creek Basin for water years 2000–06. Because the groundwater and surface-water divides for the Spring Creek Basin do not coincide, the study area includes the Nittany Creek Basin and headwaters of the Spruce Creek Basin. The hydrologic model was developed by the use of a stepwise process: (1) develop and calibrate a PRMS model and steady-state MODFLOW-NWT model; (2) re-calibrate the steady-state MODFLOW-NWT model using potential recharge estimates simulated from the PRMS model, and (3) integrate the PRMS and MODFLOW-NWT models into GSFLOW. The individually calibrated PRMS and MODFLOW-NWT models were used as a starting point for the calibration of the fully coupled GSFLOW model. The GSFLOW model calibration was done by comparing observations and corresponding simulated values of streamflow from 11 streamgages and groundwater levels from 16 wells. The cumulative water budget and individual water budgets for water years 2000–06 were simulated by using GSFLOW. The largest source and sink terms are represented by precipitation and evapotranspiration, respectively. For the period simulated, a net surplus in the water budget was computed where inflows exceeded outflows by about 1.7 billion cubic feet (0.47 inches per year over the basin area); storage increased by about the same amount to balance the budget. The rate and distribution of recharge throughout the Spring Creek, Nittany Creek, and Spruce Creek Basins is variable as a result of the high degree of hydrogeologic heterogeneity and karst features. The greatest amount of recharge was simulated in the carbonate-bedrock valley, near the toe slopes of Nittany and Tussey Mountains, in the Scotia Barrens, and along the area coinciding with the Gatesburg Formation. Runoff extremes were observed for water years 2001 (dry year) and 2004 (wet year). Simulated average recharge rates (water reaching the saturated zone as defined in GSFLOW) for 2001 and 2004 were 5.4 in/yr and 22.0 in/yr, respectively. Areas where simulations show large variations in annual recharge between wet and dry years are the same areas where simulated recharge was large. Those areas where rates of groundwater recharge are much higher than average, and are capable of accepting substantially greater quantities of recharge during wet years, might be considered critical for maintaining the flow of springs, stream base flow, or the source of water to supply wells. The slopes of the Bald Eagle, Tussey, and Nittany Mountains are relatively insensitive to variations in recharge, primarily because of reduced infiltration rates and steep slopes.

  8. Mathematic simulation of soil-vegetation condition and land use structure applying basin approach

    NASA Astrophysics Data System (ADS)

    Mishchenko, Natalia; Shirkin, Leonid; Krasnoshchekov, Alexey

    2016-04-01

    Ecosystems anthropogenic transformation is basically connected to the changes of land use structure and human impact on soil fertility. The Research objective is to simulate the stationary state of river basins ecosystems. Materials and Methods. Basin approach has been applied in the research. Small rivers basins of the Klyazma river have been chosen as our research objects. They are situated in the central part of the Russian plain. The analysis is carried out applying integrated characteristics of ecosystems functioning and mathematic simulation methods. To design mathematic simulator functional simulation methods and principles on the basis of regression, correlation and factor analysis have been applied in the research. Results. Mathematic simulation resulted in defining possible permanent conditions of "phytocenosis-soil" system in coordinates of phytomass, phytoproductivity, humus percentage in soil. Ecosystem productivity is determined not only by vegetation photosynthesis activity but also by the area ratio of forest and meadow phytocenosis. Local maximums attached to certain phytomass areas and humus content in soil have been defined on the basin phytoproductivity distribution diagram. We explain the local maximum by synergetic effect. It appears with the definite ratio of forest and meadow phytocenosis. In this case, utmost values of phytomass for the whole area are higher than just a sum of utmost values of phytomass for the forest and meadow phytocenosis. Efficient correlation of natural forest and meadow phytocenosis has been defined for the Klyazma river. Conclusion. Mathematic simulation methods assist in forecasting the ecosystem conditions under various changes of land use structure. Nowadays overgrowing of the abandoned agricultural lands is very actual for the Russian Federation. Simulation results demonstrate that natural ratio of forest and meadow phytocenosis for the area will restore during agricultural overgrowing.

  9. Long-period Ground Motion Simulation in the Osaka Basin during the 2011 Great Tohoku Earthquake

    NASA Astrophysics Data System (ADS)

    Iwata, T.; Kubo, H.; Asano, K.; Sato, K.; Aoi, S.

    2014-12-01

    Large amplitude long-period ground motions (1-10s) with long duration were observed in the Osaka sedimentary basin during the 2011 Tohoku earthquake (Mw9.0) and its aftershock (Ibaraki-Oki, Mw7.7), which is about 600 km away from the source regions. Sato et al. (2013) analyzed strong ground motion records from the source region to the Osaka basin and showed the following characteristics. (1) In the period range of 1 to 10s, the amplitude of horizontal components of the ground motion at the site-specific period is amplified in the Osaka basin sites. The predominant period is about 7s in the bay area where the largest pSv were observed. (2) The velocity Fourier amplitude spectra with their predominant period of around 7s are observed at the bedrock sites surrounding the Osaka basin. Those characteristics were observed during both of the mainshock and the largest aftershock. Therefore, large long-period ground motions in the Osaka basin are generated by the combination of propagation-path and basin effects. They simulated ground motions due to the largest aftershock as a simple point source model using three-dimensional FDM (GMS; Aoi and Fujiwara, 1999). They used a three-dimensional velocity structure based on the Japan Integrated Velocity Structure Model (JIVSM, Koketsu et al., 2012), with the minimum effective period of the computation of 3s. Their simulation result reproduced the observation characteristics well and it validates the applicability of the JIVSM for the long period ground motion simulation. In this study, we try to simulate long-period ground motions during the mainshock. The source model we used for the simulation is based on the SMGA model obtained by Asano and Iwata (2012). We succeed to simulate long-period ground motion propagation from Kanto area to the Osaka basin fairly well. The long-period ground motion simulations with the several Osaka basin velocity structure models are done for improving the model applicability. We used strong motion data recorded by K-NET, KiK-net and F-net of NIED, CEORKA, BRI, JMA, Osaka city waterworks bureau, and Osaka prefecture. GMS provided by NIED is used for the computation.

  10. A framework for human-hydrologic system model development integrating hydrology and water management: application to the Cutzamala water system in Mexico

    NASA Astrophysics Data System (ADS)

    Wi, S.; Freeman, S.; Brown, C.

    2017-12-01

    This study presents a general approach to developing computational models of human-hydrologic systems where human modification of hydrologic surface processes are significant or dominant. A river basin system is represented by a network of human-hydrologic response units (HHRUs) identified based on locations where river regulations happen (e.g., reservoir operation and diversions). Natural and human processes in HHRUs are simulated in a holistic framework that integrates component models representing rainfall-runoff, river routing, reservoir operation, flow diversion and water use processes. We illustrate the approach in a case study of the Cutzamala water system (CWS) in Mexico, a complex inter-basin water transfer system supplying the Mexico City Metropolitan Area (MCMA). The human-hydrologic system model for CWS (CUTZSIM) is evaluated in terms of streamflow and reservoir storages measured across the CWS and to water supplied for MCMA. The CUTZSIM improves the representation of hydrology and river-operation interaction and, in so doing, advances evaluation of system-wide water management consequences under altered climatic and demand regimes. The integrated modeling framework enables evaluation and simulation of model errors throughout the river basin, including errors in representation of the human component processes. Heretofore, model error evaluation, predictive error intervals and the resultant improved understanding have been limited to hydrologic processes. The general framework represents an initial step towards fuller understanding and prediction of the many and varied processes that determine the hydrologic fluxes and state variables in real river basins.

  11. Assessment of effectiveness of geologic isolation systems. Geologic-simulation model for a hypothetical site in the Columbia Plateau. Volume 2: results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foley, M.G.; Petrie, G.M.; Baldwin, A.J.

    1982-06-01

    This report contains the input data and computer results for the Geologic Simulation Model. This model is described in detail in the following report: Petrie, G.M., et. al. 1981. Geologic Simulation Model for a Hypothetical Site in the Columbia Plateau, Pacific Northwest Laboratory, Richland, Washington. The Geologic Simulation Model is a quasi-deterministic process-response model which simulates, for a million years into the future, the development of the geologic and hydrologic systems of the ground-water basin containing the Pasco Basin. Effects of natural processes on the ground-water hydrologic system are modeled principally by rate equations. The combined effects and synergistic interactionsmore » of different processes are approximated by linear superposition of their effects during discrete time intervals in a stepwise-integration approach.« less

  12. An integrated modeling approach to predict flooding on urban basin.

    PubMed

    Dey, Ashis Kumar; Kamioka, Seiji

    2007-01-01

    Correct prediction of flood extents in urban catchments has become a challenging issue. The traditional urban drainage models that consider only the sewerage-network are able to simulate the drainage system correctly until there is no overflow from the network inlet or manhole. When such overflows exist due to insufficient drainage capacity of downstream pipes or channels, it becomes difficult to reproduce the actual flood extents using these traditional one-phase simulation techniques. On the other hand, the traditional 2D models that simulate the surface flooding resulting from rainfall and/or levee break do not consider the sewerage network. As a result, the correct flooding situation is rarely addressed from those available traditional 1D and 2D models. This paper presents an integrated model that simultaneously simulates the sewerage network, river network and 2D mesh network to get correct flood extents. The model has been successfully applied into the Tenpaku basin (Nagoya, Japan), which experienced severe flooding with a maximum flood depth more than 1.5 m on September 11, 2000 when heavy rainfall, 580 mm in 28 hrs (return period > 100 yr), occurred over the catchments. Close agreements between the simulated flood depths and observed data ensure that the present integrated modeling approach is able to reproduce the urban flooding situation accurately, which rarely can be obtained through the traditional 1D and 2D modeling approaches.

  13. Simulation of groundwater and surface-water flow in the upper Deschutes Basin, Oregon

    USGS Publications Warehouse

    Gannett, Marshall W.; Lite, Kenneth E.; Risley, John C.; Pischel, Esther M.; La Marche, Jonathan L.

    2017-10-20

    This report describes a hydrologic model for the upper Deschutes Basin in central Oregon developed using the U.S. Geological Survey (USGS) integrated Groundwater and Surface-Water Flow model (GSFLOW). The upper Deschutes Basin, which drains much of the eastern side of the Cascade Range in Oregon, is underlain by large areas of permeable volcanic rock. That permeability, in combination with the large annual precipitation at high elevations, results in a substantial regional aquifer system and a stream system that is heavily groundwater dominated.The upper Deschutes Basin is also an area of expanding population and increasing water demand for public supply and agriculture. Surface water was largely developed for agricultural use by the mid-20th century, and is closed to additional appropriations. Consequently, water users look to groundwater to satisfy the growing demand. The well‑documented connection between groundwater and the stream system, and the institutional and legal restrictions on streamflow depletion by wells, resulted in the Oregon Water Resources Department (OWRD) instituting a process whereby additional groundwater pumping can be permitted only if the effects to streams are mitigated, for example, by reducing permitted surface-water diversions. Implementing such a program requires understanding of the spatial and temporal distribution of effects to streams from groundwater pumping. A groundwater model developed in the early 2000s by the USGS and OWRD has been used to provide insights into the distribution of streamflow depletion by wells, but lacks spatial resolution in sensitive headwaters and spring areas.The integrated model developed for this project, based largely on the earlier model, has a much finer grid spacing allowing resolution of sensitive headwater streams and important spring areas, and simulates a more complete set of surface processes as well as runoff and groundwater flow. In addition, the integrated model includes improved representation of subsurface geology and explicitly simulates the effects of hydrologically important fault zones not included in the previous model.The upper Deschutes Basin GSFLOW model was calibrated using an iterative trial and error approach using measured water-level elevations (water levels) from 800 wells, 144 of which have time series of 10 or more measurements. Streamflow was calibrated using data from 21 gage locations. At 14 locations where measured flows are heavily influenced by reservoir operations and irrigation diversions, so called “naturalized” flows, with the effects of reservoirs and diversion removed, developed by the Bureau of Reclamation, were used for calibration. Surface energy and moisture processes such as solar radiation, snow accumulation and melting, and evapotranspiration were calibrated using national datasets as well as data from long-term measurement sites in the basin. The calibrated Deschutes GSFLOW model requires daily precipitation, minimum and maximum air temperature data, and monthly data describing groundwater pumping and artificial recharge from leaking irrigation canals (which are a significant source of groundwater recharge).The calibrated model simulates the geographic distribution of hydraulic head over the 5,000 ft range measured in the basin, with a median absolute residual of about 53 ft. Temporal variations in head resulting from climate cycles, pumping, and canal leakage are well simulated over the model area. Simulated daily streamflow matches gaged flows or calculated naturalized flows for streams including the Crooked and Metolius Rivers, and lower parts of the mainstem Deschutes River. Seasonal patterns of runoff are less well fit in some upper basin streams. Annual water balances of streamflow are good over most of the model domain. Model fit and overall capabilities are appropriate for the objectives of the project.The integrated model results confirm findings from other studies and models indicating that most streamflow in the upper Deschutes Basin comes directly from groundwater discharge. The integrated model provides additional insights about the components of streamflow including direct groundwater discharge to streams, interflow, groundwater discharge to the land surface (Dunnian flow), and direct runoff (Hortonian flow). The new model provides improved capability for exploring the timing and distribution of streamflow capture by wells, and the hydrologic response to changes in other external stresses such as canal operation, irrigation, and drought. Because the model uses basic meteorological data as the primary input; and simulates surface energy and moisture balances, groundwater recharge and flow, and all components of streamflow; it is well suited for exploring the hydrologic response to climate change, although no such simulations are included in this report.The model was developed as a tool for future application; however, example simulations are provided in this report. In the example simulations, the model is used to explore the influence of well location and geologic structure on stream capture by pumping wells. Wells were simulated at three locations within a 12-mi area close to known groundwater discharge areas and crossed by a regional fault zone. Simulations indicate that the magnitude and timing of stream capture from pumping is largely controlled by the geographic location of the wells, but that faults can have a large influence on the propagation of pumping stresses.

  14. Achieving Sustainability in a Semi-Arid Basin in Northwest Mexico through an Integrated Hydrologic-Economic-Institutional Model

    NASA Astrophysics Data System (ADS)

    Munoz-Hernandez, A.; Mayer, A. S.

    2008-12-01

    The hydrologic systems in Northwest Mexico are at risk of over exploitation due to poor management of the water resources and adverse climatic conditions. The purpose of this work is to create and Integrated Hydrologic-Economic-Institutional Model to support future development in the Yaqui River basin, well known by its agricultural productivity, by directing the water management practices toward sustainability. The Yaqui River basin is a semi-arid basin with an area of 72,000 square kilometers and an average precipitation of 527 mm per year. The primary user of water is agriculture followed by domestic use and industry. The water to meet user demands comes from three reservoirs constructed, in series, along the river. The main objective of the integrated simulation-optimization model is to maximize the economic benefit within the basin, subject to physical and environmental constraints. Decision variables include the water allocation to major users and reservoirs as well as aquifer releases. Economic and hydrologic (including the interaction of the surface water and groundwater) simulation models were both included in the integrated model. The surface water model refers to a rainfall-runoff model created, calibrated, and incorporated into a MATLAB code that estimates the monthly storage in the main reservoirs by solving a water balance. The rainfall-runoff model was coupled with a groundwater model of the Yaqui Valley which was previously developed (Addams, 2004). This model includes flow in the main canals and infiltration to the aquifer. The economic benefit of water for some activities such as agricultural use, domestic use, hydropower generation, and environmental value was determined. Sensitivity analysis was explored for those parameters that are not certain such as price elasticities or population growth. Different water allocation schemes were created based on climate change, climate variability, and socio-economic scenarios. Addams L. 2004. Water resource policy evaluation using a combined hydrologic-economic-agronomic modeling framework: Yaqui Valley, Sonora, Mexico. Ph.D.dissertation, Stanford University.

  15. Effects of groundwater levels and headwater wetlands on streamflow in the Charlie Creek basin, Peace River watershed, west-central Florida

    USGS Publications Warehouse

    Lee, T.M.; Sacks, L.A.; Hughes, J.D.

    2010-01-01

    The Charlie Creek basin was studied from April 2004 to December 2005 to better understand how groundwater levels in the underlying aquifers and storage and overflow of water from headwater wetlands preserve the streamflows exiting this least-developed tributary basin of the Peace River watershed. The hydrogeologic framework, physical characteristics, and streamflow were described and quantified for five subbasins of the 330-square mile Charlie Creek basin, allowing the contribution of its headwaters area and tributary subbasins to be separately quantified. A MIKE SHE model simulation of the integrated surface-water and groundwater flow processes in the basin was used to simulate daily streamflow observed over 21 months in 2004 and 2005 at five streamflow stations, and to quantify the monthly and annual water budgets for the five subbasins including the changing amount of water stored in wetlands. Groundwater heads were mapped in Zone 2 of the intermediate aquifer system and in the Upper Floridan aquifer, and were used to interpret the location of artesian head conditions in the Charlie Creek basin and its relation to streamflow. Artesian conditions in the intermediate aquifer system induce upward groundwater flow into the surficial aquifer and help sustain base flow which supplies about two-thirds of the streamflow from the Charlie Creek basin. Seepage measurements confirmed seepage inflow to Charlie Creek during the study period. The upper half of the basin, comprised largely of the Upper Charlie Creek subbasin, has lower runoff potential than the lower basin, more storage of runoff in wetlands, and periodically generates no streamflow. Artesian head conditions in the intermediate aquifer system were widespread in the upper half of the Charlie Creek basin, preventing downward leakage from expansive areas of wetlands and enabling them to act as headwaters to Charlie Creek once their storage requirements were met. Currently, the dynamic balance between wetland storage, rainfall-runoff processes, and groundwater-level differences in the upper basin allow it to generate approximately half of the streamflow from the Charlie Creek basin. Therefore, future development in the upper basin that would alter the hydraulic connectivity of wetlands during high flow conditions or expand recharging groundwater conditions could substantially affect streamflow in Charlie Creek. LIDAR (Light detection and ranging) based topographic maps and integrated modeling results were used to quantify the water stored in wetlands and other topographic depressions, and to describe the network of shallow stream channels connecting wetlands to Charlie Creek and its tributaries over distances of several thousand feet. Peak flows at all but one streamflow station were underpredicted in MIKE SHE simulations, possibly because the hydraulics of surface channels connecting wetlands to stream channels were not explicitly simulated in the model. Explicitly simulating the smaller channels connecting wetlands and stream channels should improve the ability of future watershed models to simulate peak flows in streams with headwater wetlands. The runoff potential was greater in the lower half of the Charlie Creek basin than in the upper half, and the streambed of Charlie Creek had greater potential to both directly gain streamflow from groundwater and lose streamflow to groundwater. Charlie Creek is more incised into the surficial aquifer in the lower basin than in the upper basin, and the streambed intersects the top of the intermediate aquifer system at two known locations. Groundwater levels in the intermediate aquifer system varied widely in the lower half of the basin from artesian conditions inducing upward flow toward the surficial aquifer and streams, to recharging conditions allowing downward flow and stream leakage. Recharge areas were greatest in May 2004 when rainfall was at a seasonal low and irrigation pumping was at a seasonal high. Recharge conditions

  16. Using Landsat to provide potato production estimates to Columbia Basin farmers and processors

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A summary of project activities relative to the estimation of potato yields in the Columbia Basin is given. Oregon State University is using a two-pronged approach to yield estimation, one using simulation models and the other using purely empirical models. The simulation modeling approach has used satellite observations to determine key dates in the development of the crop for each field identified as potatoes. In particular, these include planting dates, emergence dates, and harvest dates. These critical dates are fed into simulation models of crop growth and development to derive yield forecasts. Two empirical modeling approaches are illustrated. One relates tuber yield to estimates of cumulative intercepted solar radiation; the other relates tuber yield to the integral under the GVI curve.

  17. Multi-Scale Simulations of Past and Future Projections of Hydrology in Lake Tahoe Basin, California-Nevada (Invited)

    NASA Astrophysics Data System (ADS)

    Niswonger, R. G.; Huntington, J. L.; Dettinger, M. D.; Rajagopal, S.; Gardner, M.; Morton, C. G.; Reeves, D. M.; Pohll, G. M.

    2013-12-01

    Water resources in the Tahoe basin are susceptible to long-term climate change and extreme events because it is a middle-altitude, snow-dominated basin that experiences large inter-annual climate variations. Lake Tahoe provides critical water supply for its basin and downstream populations, but changes in water supply are obscured by complex climatic and hydrologic gradients across the high relief, geologically complex basin. An integrated surface and groundwater model of the Lake Tahoe basin has been developed using GSFLOW to assess the effects of climate change and extreme events on surface and groundwater resources. Key hydrologic mechanisms are identified with this model that explains recent changes in water resources of the region. Critical vulnerabilities of regional water-supplies and hazards also were explored. Maintaining a balance between (a) accurate representation of spatial features (e.g., geology, streams, and topography) and hydrologic response (i.e., groundwater, stream, lake, and wetland flows and storages), and (b) computational efficiency, is a necessity for the desired model applications. Potential climatic influences on water resources are analyzed here in simulations of long-term water-availability and flood responses to selected 100-year climate-model projections. GSFLOW is also used to simulate a scenario depicting an especially extreme storm event that was constructed from a combination of two historical atmospheric-river storm events as part of the USGS MultiHazards Demonstration Project. Historical simulated groundwater levels, streamflow, wetlands, and lake levels compare well with measured values for a 30-year historical simulation period. Results are consistent for both small and large model grid cell sizes, due to the model's ability to represent water table altitude, streams, and other hydrologic features at the sub-grid scale. Simulated hydrologic responses are affected by climate change, where less groundwater resources will be available during more frequent droughts. Simulated floods for the region indicate issues related to drainage in the developed areas around Lake Tahoe, and necessary dam releases that create downstream flood risks.

  18. Comparison and evaluation of model structures for the simulation of pollution fluxes in a tile-drained river basin.

    PubMed

    Hoang, Linh; van Griensven, Ann; van der Keur, Peter; Refsgaard, Jens Christian; Troldborg, Lars; Nilsson, Bertel; Mynett, Arthur

    2014-01-01

    The European Union Water Framework Directive requires an integrated pollution prevention plan at the river basin level. Hydrological river basin modeling tools are therefore promising tools to support the quantification of pollution originating from different sources. A limited number of studies have reported on the use of these models to predict pollution fluxes in tile-drained basins. This study focused on evaluating different modeling tools and modeling concepts to quantify the flow and nitrate fluxes in the Odense River basin using DAISY-MIKE SHE (DMS) and the Soil and Water Assessment Tool (SWAT). The results show that SWAT accurately predicted flow for daily and monthly time steps, whereas simulation of nitrate fluxes were more accurate at a monthly time step. In comparison to the DMS model, which takes into account the uncertainty of soil hydraulic and slurry parameters, SWAT results for flow and nitrate fit well within the range of DMS simulated values in high-flow periods but were slightly lower in low-flow periods. Despite the similarities of simulated flow and nitrate fluxes at the basin outlet, the two models predicted very different separations into flow components (overland flow, tile drainage, and groundwater flow) as well as nitrate fluxes from flow components. It was concluded that the assessment on which the model provides a better representation of the reality in terms of flow paths should not only be based on standard statistical metrics for the entire river basin but also needs to consider additional data, field experiments, and opinions of field experts. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  19. Integrating Remote Sensing Information Into A Distributed Hydrological Model for Improving Water Budget Predictions in Large-scale Basins through Data Assimilation.

    PubMed

    Qin, Changbo; Jia, Yangwen; Su, Z; Zhou, Zuhao; Qiu, Yaqin; Suhui, Shen

    2008-07-29

    This paper investigates whether remote sensing evapotranspiration estimates can be integrated by means of data assimilation into a distributed hydrological model for improving the predictions of spatial water distribution over a large river basin with an area of 317,800 km2. A series of available MODIS satellite images over the Haihe River basin in China are used for the year 2005. Evapotranspiration is retrieved from these 1×1 km resolution images using the SEBS (Surface Energy Balance System) algorithm. The physically-based distributed model WEP-L (Water and Energy transfer Process in Large river basins) is used to compute the water balance of the Haihe River basin in the same year. Comparison between model-derived and remote sensing retrieval basin-averaged evapotranspiration estimates shows a good piecewise linear relationship, but their spatial distribution within the Haihe basin is different. The remote sensing derived evapotranspiration shows variability at finer scales. An extended Kalman filter (EKF) data assimilation algorithm, suitable for non-linear problems, is used. Assimilation results indicate that remote sensing observations have a potentially important role in providing spatial information to the assimilation system for the spatially optical hydrological parameterization of the model. This is especially important for large basins, such as the Haihe River basin in this study. Combining and integrating the capabilities of and information from model simulation and remote sensing techniques may provide the best spatial and temporal characteristics for hydrological states/fluxes, and would be both appealing and necessary for improving our knowledge of fundamental hydrological processes and for addressing important water resource management problems.

  20. Integrating Remote Sensing Information Into A Distributed Hydrological Model for Improving Water Budget Predictions in Large-scale Basins through Data Assimilation

    PubMed Central

    Qin, Changbo; Jia, Yangwen; Su, Z.(Bob); Zhou, Zuhao; Qiu, Yaqin; Suhui, Shen

    2008-01-01

    This paper investigates whether remote sensing evapotranspiration estimates can be integrated by means of data assimilation into a distributed hydrological model for improving the predictions of spatial water distribution over a large river basin with an area of 317,800 km2. A series of available MODIS satellite images over the Haihe River basin in China are used for the year 2005. Evapotranspiration is retrieved from these 1×1 km resolution images using the SEBS (Surface Energy Balance System) algorithm. The physically-based distributed model WEP-L (Water and Energy transfer Process in Large river basins) is used to compute the water balance of the Haihe River basin in the same year. Comparison between model-derived and remote sensing retrieval basin-averaged evapotranspiration estimates shows a good piecewise linear relationship, but their spatial distribution within the Haihe basin is different. The remote sensing derived evapotranspiration shows variability at finer scales. An extended Kalman filter (EKF) data assimilation algorithm, suitable for non-linear problems, is used. Assimilation results indicate that remote sensing observations have a potentially important role in providing spatial information to the assimilation system for the spatially optical hydrological parameterization of the model. This is especially important for large basins, such as the Haihe River basin in this study. Combining and integrating the capabilities of and information from model simulation and remote sensing techniques may provide the best spatial and temporal characteristics for hydrological states/fluxes, and would be both appealing and necessary for improving our knowledge of fundamental hydrological processes and for addressing important water resource management problems. PMID:27879946

  1. Soil and Land Resources Information System (SLISYS-Tarim) for Sustainable Management of River Oases along the Tarim River, China

    NASA Astrophysics Data System (ADS)

    Othmanli, Hussein; Zhao, Chengyi; Stahr, Karl

    2017-04-01

    The Tarim River Basin is the largest continental basin in China. The region has extremely continental desert climate characterized by little rainfall <50 mm/a and high potential evaporation >3000 mm/a. The climate change is affecting severely the basin causing soil salinization, water shortage, and regression in crop production. Therefore, a Soil and Land Resources Information System (SLISYS-Tarim) for the regional simulation of crop yield production in the basin was developed. The SLISYS-Tarim consists of a database and an agro-ecological simulation model EPIC (Environmental Policy Integrated Climate). The database comprises relational tables including information about soils, terrain conditions, land use, and climate. The soil data implicate information of 50 soil profiles which were dug, analyzed, described and classified in order to characterize the soils in the region. DEM data were integrated with geological maps to build a digital terrain structure. Remote sensing data of Landsat images were applied for soil mapping, and for land use and land cover classification. An additional database for climate data, land management and crop information were linked to the system, too. Construction of the SLISYS-Tarim database was accomplished by integrating and overlaying the recommended thematic maps within environment of the geographic information system (GIS) to meet the data standard of the global and national SOTER digital database. This database forms appropriate input- and output data for the crop modelling with the EPIC model at various scales in the Tarim Basin. The EPIC model was run for simulating cotton production under a constructed scenario characterizing the current management practices, soil properties and climate conditions. For the EPIC model calibration, some parameters were adjusted so that the modeled cotton yield fits to the measured yield on the filed scale. The validation of the modeling results was achieved in a later step based on remote sensing data. The simulated cotton yield varied according to field management, soil type and salinity level, where soil salinity was the main limiting factor. Furthermore, the calibrated and validated EPIC model was run under several scenarios of climate conditions and land management practices to estimate the effect of climate change on cotton production and sustainability of agriculture systems in the basin. The application of SLISYS-Tarim showed that this database can be a suitable framework for storage and retrieval of soil and terrain data at various scales. The simulation with the EPIC model can assess the impact of climate change and management strategies. Therefore, SLISYS-Tarim can be a good tool for regional planning and serve the decision support system on regional and national scale.

  2. Distributed Soil Moisture Estimation in a Mountainous Semiarid Basin: Constraining Soil Parameter Uncertainty through Field Studies

    NASA Astrophysics Data System (ADS)

    Yatheendradas, S.; Vivoni, E.

    2007-12-01

    A common practice in distributed hydrological modeling is to assign soil hydraulic properties based on coarse textural datasets. For semiarid regions with poor soil information, the performance of a model can be severely constrained due to the high model sensitivity to near-surface soil characteristics. Neglecting the uncertainty in soil hydraulic properties, their spatial variation and their naturally-occurring horizonation can potentially affect the modeled hydrological response. In this study, we investigate such effects using the TIN-based Real-time Integrated Basin Simulator (tRIBS) applied to the mid-sized (100 km2) Sierra Los Locos watershed in northern Sonora, Mexico. The Sierra Los Locos basin is characterized by complex mountainous terrain leading to topographic organization of soil characteristics and ecosystem distributions. We focus on simulations during the 2004 North American Monsoon Experiment (NAME) when intensive soil moisture measurements and aircraft- based soil moisture retrievals are available in the basin. Our experiments focus on soil moisture comparisons at the point, topographic transect and basin scales using a range of different soil characterizations. We compare the distributed soil moisture estimates obtained using (1) a deterministic simulation based on soil texture from coarse soil maps, (2) a set of ensemble simulations that capture soil parameter uncertainty and their spatial distribution, and (3) a set of simulations that conditions the ensemble on recent soil profile measurements. Uncertainties considered in near-surface soil characterization provide insights into their influence on the modeled uncertainty, into the value of soil profile observations, and into effective use of on-going field observations for constraining the soil moisture response uncertainty.

  3. Simulating Spatial Variability of Fluvial Sediment Fluxes Within the Magdalena Drainage Basin, Colombia.

    NASA Astrophysics Data System (ADS)

    Kettner, A. J.; Syvitski, J. P.; Restrepo, J. D.

    2008-12-01

    This study explores the application of an empirical sediment flux model BQART, to simulate long-term sediment fluxes of major tributaries of a river system based on a limited number of input parameters. We validate model results against data of the 1612 km long Magdalena River, Colombia, South America, which is well monitored. The Magdalena River, draining a hinterland area of 257,438 km2, of which the majority lies in the Andes before reaching the Atlantic coast, is known for its high sediment yield, 560 t kg- 2 yr-1; higher than nearby South American rivers like the Amazon or the Orinoco River. Sediment fluxes of 32 tributary basins of the Magdalena River were simulated based on the following controlling factors: geomorphic influences (tributary-basin area and relief) derived from high-resolution Shuttle Radar Topography Mission data, tributary basin-integrated lithology based on GIS analysis of lithology data, 30year temperature data, and observed monthly mean discharge data records (varying in record length of 15 to 60 years). Preliminary results indicate that the simulated sediment flux of all 32 tributaries matches the observational record, given the observational error and the annual variability. These simulations did not take human influences into account yet, which often increases sediment fluxes by accelerating erosion, especially in steep mountainous area similar to the Magdalena. Simulations indicate that, with relatively few input parameters, mostly derived from remotely-sensed data or existing compiled GIS datasets, it is possible to predict: which tributaries in an arbitrary river drainage produce relatively high contributions to sediment yields, and where in the drainage basin you might expect conveyance loss.

  4. Unraveling the Hydrology of the Glacierized Kaidu Basin by Integrating Multisource Data in the Tianshan Mountains, Northwestern China

    NASA Astrophysics Data System (ADS)

    Shen, Yan-Jun; Shen, Yanjun; Fink, Manfred; Kralisch, Sven; Brenning, Alexander

    2018-01-01

    Understanding the water balance, especially as it relates to the distribution of runoff components, is crucial for water resource management and coping with the impacts of climate change. However, hydrological processes are poorly known in mountainous regions due to data scarcity and the complex dynamics of snow and glaciers. This study aims to provide a quantitative comparison of gridded precipitation products in the Tianshan Mountains, located in Central Asia and in order to further understand the mountain hydrology and distribution of runoff components in the glacierized Kaidu Basin. We found that gridded precipitation products are affected by inconsistent biases based on a spatiotemporal comparison with the nearest weather stations and should be evaluated with caution before using them as boundary conditions in hydrological modeling. Although uncertainties remain in this data-scarce basin, driven by field survey data and bias-corrected gridded data sets (ERA-Interim and APHRODITE), the water balance and distribution of runoff components can be plausibly quantified based on the distributed hydrological model (J2000). We further examined parameter sensitivity and uncertainty with respect to both simulated streamflow and different runoff components based on an ensemble of simulations. This study demonstrated the possibility of integrating gridded products in hydrological modeling. The methodology used can be important for model applications and design in other data-scarce mountainous regions. The model-based simulation quantified the water balance and how the water resources are partitioned throughout the year in Tianshan Mountain basins, although the uncertainties present in this study result in important limitations.

  5. Strategies for Large Scale Implementation of a Multiscale, Multiprocess Integrated Hydrologic Model

    NASA Astrophysics Data System (ADS)

    Kumar, M.; Duffy, C.

    2006-05-01

    Distributed models simulate hydrologic state variables in space and time while taking into account the heterogeneities in terrain, surface, subsurface properties and meteorological forcings. Computational cost and complexity associated with these model increases with its tendency to accurately simulate the large number of interacting physical processes at fine spatio-temporal resolution in a large basin. A hydrologic model run on a coarse spatial discretization of the watershed with limited number of physical processes needs lesser computational load. But this negatively affects the accuracy of model results and restricts physical realization of the problem. So it is imperative to have an integrated modeling strategy (a) which can be universally applied at various scales in order to study the tradeoffs between computational complexity (determined by spatio- temporal resolution), accuracy and predictive uncertainty in relation to various approximations of physical processes (b) which can be applied at adaptively different spatial scales in the same domain by taking into account the local heterogeneity of topography and hydrogeologic variables c) which is flexible enough to incorporate different number and approximation of process equations depending on model purpose and computational constraint. An efficient implementation of this strategy becomes all the more important for Great Salt Lake river basin which is relatively large (~89000 sq. km) and complex in terms of hydrologic and geomorphic conditions. Also the types and the time scales of hydrologic processes which are dominant in different parts of basin are different. Part of snow melt runoff generated in the Uinta Mountains infiltrates and contributes as base flow to the Great Salt Lake over a time scale of decades to centuries. The adaptive strategy helps capture the steep topographic and climatic gradient along the Wasatch front. Here we present the aforesaid modeling strategy along with an associated hydrologic modeling framework which facilitates a seamless, computationally efficient and accurate integration of the process model with the data model. The flexibility of this framework leads to implementation of multiscale, multiresolution, adaptive refinement/de-refinement and nested modeling simulations with least computational burden. However, performing these simulations and related calibration of these models over a large basin at higher spatio- temporal resolutions is computationally intensive and requires use of increasing computing power. With the advent of parallel processing architectures, high computing performance can be achieved by parallelization of existing serial integrated-hydrologic-model code. This translates to running the same model simulation on a network of large number of processors thereby reducing the time needed to obtain solution. The paper also discusses the implementation of the integrated model on parallel processors. Also will be discussed the mapping of the problem on multi-processor environment, method to incorporate coupling between hydrologic processes using interprocessor communication models, model data structure and parallel numerical algorithms to obtain high performance.

  6. Assimilation of snow covered area information into hydrologic and land-surface models

    USGS Publications Warehouse

    Clark, M.P.; Slater, A.G.; Barrett, A.P.; Hay, L.E.; McCabe, G.J.; Rajagopalan, B.; Leavesley, G.H.

    2006-01-01

    This paper describes a data assimilation method that uses observations of snow covered area (SCA) to update hydrologic model states in a mountainous catchment in Colorado. The assimilation method uses SCA information as part of an ensemble Kalman filter to alter the sub-basin distribution of snow as well as the basin water balance. This method permits an optimal combination of model simulations and observations, as well as propagation of information across model states. Sensitivity experiments are conducted with a fairly simple snowpack/water-balance model to evaluate effects of the data assimilation scheme on simulations of streamflow. The assimilation of SCA information results in minor improvements in the accuracy of streamflow simulations near the end of the snowmelt season. The small effect from SCA assimilation is initially surprising. It can be explained both because a substantial portion of snowmelts before any bare ground is exposed, and because the transition from 100% to 0% snow coverage occurs fairly quickly. Both of these factors are basin-dependent. Satellite SCA information is expected to be most useful in basins where snow cover is ephemeral. The data assimilation strategy presented in this study improved the accuracy of the streamflow simulation, indicating that SCA is a useful source of independent information that can be used as part of an integrated data assimilation strategy. ?? 2005 Elsevier Ltd. All rights reserved.

  7. Estimating tectonic history through basin simulation-enhanced seismic inversion: Geoinformatics for sedimentary basins

    USGS Publications Warehouse

    Tandon, K.; Tuncay, K.; Hubbard, K.; Comer, J.; Ortoleva, P.

    2004-01-01

    A data assimilation approach is demonstrated whereby seismic inversion is both automated and enhanced using a comprehensive numerical sedimentary basin simulator to study the physics and chemistry of sedimentary basin processes in response to geothermal gradient in much greater detail than previously attempted. The approach not only reduces costs by integrating the basin analysis and seismic inversion activities to understand the sedimentary basin evolution with respect to geodynamic parameters-but the technique also has the potential for serving as a geoinfomatics platform for understanding various physical and chemical processes operating at different scales within a sedimentary basin. Tectonic history has a first-order effect on the physical and chemical processes that govern the evolution of sedimentary basins. We demonstrate how such tectonic parameters may be estimated by minimizing the difference between observed seismic reflection data and synthetic ones constructed from the output of a reaction, transport, mechanical (RTM) basin model. We demonstrate the method by reconstructing the geothermal gradient. As thermal history strongly affects the rate of RTM processes operating in a sedimentary basin, variations in geothermal gradient history alter the present-day fluid pressure, effective stress, porosity, fracture statistics and hydrocarbon distribution. All these properties, in turn, affect the mechanical wave velocity and sediment density profiles for a sedimentary basin. The present-day state of the sedimentary basin is imaged by reflection seismology data to a high degree of resolution, but it does not give any indication of the processes that contributed to the evolution of the basin or causes for heterogeneities within the basin that are being imaged. Using texture and fluid properties predicted by our Basin RTM simulator, we generate synthetic seismograms. Linear correlation using power spectra as an error measure and an efficient quadratic optimization technique are found to be most effective in determining the optimal value of the tectonic parameters. Preliminary 1-D studies indicate that one can determine the geothermal gradient even in the presence of observation and numerical uncertainties. The algorithm succeeds even when the synthetic data has detailed information only in a limited depth interval and has a different dominant frequency in the synthetic and observed seismograms. The methodology presented here even works when the basin input data contains only 75 per cent of the stratigraphic layering information compared with the actual basin in a limited depth interval.

  8. Debris flow-induced topographic changes: effects of recurrent debris flow initiation.

    PubMed

    Chen, Chien-Yuan; Wang, Qun

    2017-08-12

    Chushui Creek in Shengmu Village, Nantou County, Taiwan, was analyzed for recurrent debris flow using numerical modeling and geographic information system (GIS) spatial analysis. The two-dimensional water flood and mudflow simulation program FLO-2D were used to simulate debris flow induced by rainfall during typhoon Herb in 1996 and Mindulle in 2004. Changes in topographic characteristics after the debris flows were simulated for the initiation of hydrological characteristics, magnitude, and affected area. Changes in topographic characteristics included those in elevation, slope, aspect, stream power index (SPI), topographic wetness index (TWI), and hypsometric curve integral (HI), all of which were analyzed using GIS spatial analysis. The results show that the SPI and peak discharge in the basin increased after a recurrence of debris flow. The TWI was higher in 2003 than in 2004 and indicated higher potential of landslide initiation when the slope of the basin was steeper. The HI revealed that the basin was in its mature stage and was shifting toward the old stage. Numerical simulation demonstrated that the parameters' mean depth, maximum depth, affected area, mean flow rate, maximum flow rate, and peak flow discharge were increased after recurrent debris flow, and peak discharge occurred quickly.

  9. Intercomparison of numerical simulations, satellite altimetry and glider observations in the Algerian Basin during fall 2014 and 2015: focus on a SARAL/AltiKa track

    NASA Astrophysics Data System (ADS)

    Aulicino, Giuseppe; Cotroneo, Yuri; Ruiz, Simon; Sanchez Roman, Antonio; Pascual, Ananda; Fusco, Giannetta; Tintoré, Joaquin; Budillon, Giorgio

    2017-04-01

    The Algerian Basin is a key-place for the study of the general circulation of the Western Mediterranean Sea and its role in reaction to climate change. The presence of both fresh Atlantic waters and more saline resident Mediterranean ones characterizes the basin with an intense inflow/outflow regime and complex circulation patterns. Very energetic mesoscale structures, that evolve from meander of the Algerian Current to isolated cyclonic and anti-cyclonic eddies, dominate the area with marked repercussions on the biological activity. Despite their remarkable importance, this region and its variability are still poorly known and basin-wide high resolution knowledge of its mesoscale and sub-mesoscale features is still incomplete. The monitoring of such complex processes requires a synergic approach that involves integrated observing systems. In recent years, several studies proved the advantages of the combined use of autonomous underwater vehicles, such as gliders, with a new generation of satellite altimeters. In this context, we present the first results of a new integrated oceanographic observing system built up in the Algerian Basin during fall 2014 and 2015, aiming at advancing our knowledge on its main features. The study was realized through the analysis of glider high resolutions three-dimensional observations, collected along the Algerian BAsin Circulation Unmanned Survey (ABACUS) monitoring line, in synergy with co-located SARAL/AltiKa altimetric products and CMEMS numerical simulations. The achieved results confirm that glider derived dynamic height and SARAL/AltiKa absolute dynamic topography present similar patterns, with RMS of the differences ranging between 1.11 and 2.90 cm. Generally, the maximum discrepancies are located nearby the Balearic Islands and the Algerian Coast, but it is important to remark that the correlation coefficients seem to mostly depend on the synopticity between in situ and satellite measurements. Still, this study confirm that the numerical simulations derived from the analyzed CMEMS products agree well with the high resolution glider measurements and provide valuable information for multiplatform observatories that strongly complement in situ and remote sensed observations.

  10. Simulating Water Resource Disputes of Transboundary River: A Case Study of the Zhanghe River Basin, China

    NASA Astrophysics Data System (ADS)

    Yuan, Liang; He, Weijun; Liao, Zaiyi; Mulugeta Degefu, Dagmawi; An, Min; Zhang, Zhaofang

    2018-01-01

    Water resource disputes within transboundary river basin has been hindering the sustainable use of water resources and efficient management of environment. The problem is characterized by a complex information feedback loop that involves socio-economic and environmental systems. This paper presents a system dynamics based model that can simulate the dynamics of water demand, water supply, water adequacy and water allocation instability within a river basin. It was used for a case study in the Zhanghe River basin of China. The base scenario has been investigated for the time period between 2000 and 2050. The result shows that the Chinese national government should change the water allocation scheme of downstream Zhanghe River established in 1989, more water need to be allocated to the downstream cities and the actual allocation should be adjusted to reflect the need associated with the socio-economic and environmental changes within the region, and system dynamics improves the understanding of concepts and system interactions by offering a comprehensive and integrated view of the physical, social, economic, environmental, and political systems.

  11. Impacts of Oil and Gas Production on Winter Ozone Pollution in the Uintah Basin Using Model Source Apportionment

    NASA Astrophysics Data System (ADS)

    Tran, H. N. Q.; Tran, T. T.; Mansfield, M. L.; Lyman, S. N.

    2014-12-01

    Contributions of emissions from oil and gas activities to elevated ozone concentrations in the Uintah Basin - Utah were evaluated using the CMAQ Integrated Source Apportionment Method (CMAQ-ISAM) technique, and were compared with the results of traditional budgeting methods. Unlike the traditional budgeting method, which compares simulations with and without emissions of the source(s) in question to quantify its impacts, the CMAQ-ISAM technique assigns tags to emissions of each source and tracks their evolution through physical and chemical processes to quantify the final ozone product yield from the source. Model simulations were performed for two episodes in winter 2013 of low and high ozone to provide better understanding of source contributions under different weather conditions. Due to the highly nonlinear ozone chemistry, results obtained from the two methods differed significantly. The growing oil and gas industry in the Uintah Basin is the largest contributor to the elevated zone (>75 ppb) observed in the Basin. This study therefore provides an insight into the impact of oil and gas industry on the ozone issue, and helps in determining effective control strategies.

  12. Development of river flood model in lower reach of urbanized river basin

    NASA Astrophysics Data System (ADS)

    Yoshimura, Kouhei; Tajima, Yoshimitsu; Sanuki, Hiroshi; Shibuo, Yoshihiro; Sato, Shinji; Lee, SungAe; Furumai, Hiroaki; Koike, Toshio

    2014-05-01

    Japan, with its natural mountainous landscape, has demographic feature that population is concentrated in lower reach of elevation close to the coast, and therefore flood damage with large socio-economic value tends to occur in low-lying region. Modeling of river flood in such low-lying urbanized river basin is complex due to the following reasons. In upstream it has been experienced urbanization, which changed land covers from natural forest or agricultural fields to residential or industrial area. Hence rate of infiltration and runoff are quite different from natural hydrological settings. In downstream, paved covers and construct of sewerage system in urbanized areas affect direct discharges and it enhances higher and faster flood peak arrival. Also tidal effect from river mouth strongly affects water levels in rivers, which must be taken into account. We develop an integrated river flood model in lower reach of urbanized areas to be able to address above described complex feature, by integrating model components: LSM coupled distributed hydrological model that models anthropogenic influence on river discharges to downstream; urban hydrological model that simulates run off response in urbanized areas; Saint Venant's equation approximated river model that integrates upstream and urban hydrological models with considering tidal effect from downstream. These features are integrated in a common modeling framework so that model interaction can be directly performed. The model is applied to the Tsurumi river basin, urbanized low-lying river basin in Yokohama and model results show that it can simulate water levels in rivers with acceptable model errors. Furthermore the model is able to install miscellaneous water planning constructs, such as runoff reduction pond in urbanized area, flood control field along the river channel, levee, etc. This can be a useful tool to investigate cost performance of hypothetical water management plan against impact of climate change in the region.

  13. From Sub-basin to Grid Scale Soil Moisture Disaggregation in SMART, A Semi-distributed Hydrologic Modeling Framework

    NASA Astrophysics Data System (ADS)

    Ajami, H.; Sharma, A.

    2016-12-01

    A computationally efficient, semi-distributed hydrologic modeling framework is developed to simulate water balance at a catchment scale. The Soil Moisture and Runoff simulation Toolkit (SMART) is based upon the delineation of contiguous and topologically connected Hydrologic Response Units (HRUs). In SMART, HRUs are delineated using thresholds obtained from topographic and geomorphic analysis of a catchment, and simulation elements are distributed cross sections or equivalent cross sections (ECS) delineated in first order sub-basins. ECSs are formulated by aggregating topographic and physiographic properties of the part or entire first order sub-basins to further reduce computational time in SMART. Previous investigations using SMART have shown that temporal dynamics of soil moisture are well captured at a HRU level using the ECS delineation approach. However, spatial variability of soil moisture within a given HRU is ignored. Here, we examined a number of disaggregation schemes for soil moisture distribution in each HRU. The disaggregation schemes are either based on topographic based indices or a covariance matrix obtained from distributed soil moisture simulations. To assess the performance of the disaggregation schemes, soil moisture simulations from an integrated land surface-groundwater model, ParFlow.CLM in Baldry sub-catchment, Australia are used. ParFlow is a variably saturated sub-surface flow model that is coupled to the Common Land Model (CLM). Our results illustrate that the statistical disaggregation scheme performs better than the methods based on topographic data in approximating soil moisture distribution at a 60m scale. Moreover, the statistical disaggregation scheme maintains temporal correlation of simulated daily soil moisture while preserves the mean sub-basin soil moisture. Future work is focused on assessing the performance of this scheme in catchments with various topographic and climate settings.

  14. a Matlab Toolbox for Basin Scale Fluid Flow Modeling Applied to Hydrology and Geothermal Energy

    NASA Astrophysics Data System (ADS)

    Alcanie, M.; Lupi, M.; Carrier, A.

    2017-12-01

    Recent boosts in the development of geothermal energy were fostered by the latest oil crises and by the need of reducing CO2 emissions generated by the combustion of fossil fuels. Various numerical codes (e.g. FEHM, CSMP++, HYDROTHERM, TOUGH) have thus been implemented for the simulation and quantification of fluid flow in the upper crust. One possible limitation of such codes is the limited accessibility and the complex structure of the simulators. For this reason, we began to develop a Hydrothermal Fluid Flow Matlab library as part of MRST (Matlab Reservoir Simulation Toolbox). MRST is designed for the simulation of oil and gas problems including carbon capture storage. However, a geothermal module is still missing. We selected the Geneva Basin as a natural laboratory because of the large amount of data available in the region. The Geneva Basin has been intensely investigated in the past with exploration wells, active seismic and gravity surveys. In addition, the energy strategy of Switzerland promotes the development of geothermal energy that lead to recent geophysical prospections. Previous and ongoing projects have shown the geothermal potential of the Geneva Basin but a consistent fluid flow model assessing the deep circulation in the region is yet to be defined. The first step of the study was to create the basin-scale static model. We integrated available active seismic, gravity inversions and borehole data to describe the principal geologic and tectonic features of the Geneva Basin. Petrophysical parameters were obtained from available and widespread well logs. This required adapting MRST to standard text format file imports and outline a new methodology for quick static model creation in an open source environment. We implemented several basin-scale fluid flow models to test the effects of petrophysical properties on the circulation dynamics of deep fluids in the Geneva Basin. Preliminary results allow the identification of preferential fluid flow pathways, which are critical information to define geothermal exploitation locations. The next step will be the implementation of the equation of state for pure water, CO2 - H2O and H2O - CH4 fluid mixtures.

  15. An integrated multiscale river basin observing system in the Heihe River Basin, northwest China

    NASA Astrophysics Data System (ADS)

    Li, X.; Liu, S.; Xiao, Q.; Ma, M.; Jin, R.; Che, T.

    2015-12-01

    Using the watershed as the unit to establish an integrated watershed observing system has been an important trend in integrated eco-hydrologic studies in the past ten years. Thus far, a relatively comprehensive watershed observing system has been established in the Heihe River Basin, northwest China. In addition, two comprehensive remote sensing hydrology experiments have been conducted sequentially in the Heihe River Basin, including the Watershed Allied Telemetry Experimental Research (WATER) (2007-2010) and the Heihe Watershed Allied Telemetry Experimental Research (HiWATER) (2012-2015). Among these two experiments, an important result of WATER has been the generation of some multi-scale, high-quality comprehensive datasets, which have greatly supported the development, improvement and validation of a series of ecological, hydrological and quantitative remote-sensing models. The goal of a breakthrough for solving the "data bottleneck" problem has been achieved. HiWATER was initiated in 2012. This project has established a world-class hydrological and meteorological observation network, a flux measurement matrix and an eco-hydrological wireless sensor network. A set of super high-resolution airborne remote-sensing data has also been obtained. In addition, there has been important progress with regard to the scaling research. Furthermore, the automatic acquisition, transmission, quality control and remote control of the observational data has been realized through the use of wireless sensor network technology. The observation and information systems have been highly integrated, which will provide a solid foundation for establishing a research platform that integrates observation, data management, model simulation, scenario analysis and decision-making support to foster 21st-century watershed science in China.

  16. Towards improved parameterization of a macroscale hydrologic model in a discontinuous permafrost boreal forest ecosystem

    DOE PAGES

    Endalamaw, Abraham; Bolton, W. Robert; Young-Robertson, Jessica M.; ...

    2017-09-14

    Modeling hydrological processes in the Alaskan sub-arctic is challenging because of the extreme spatial heterogeneity in soil properties and vegetation communities. Nevertheless, modeling and predicting hydrological processes is critical in this region due to its vulnerability to the effects of climate change. Coarse-spatial-resolution datasets used in land surface modeling pose a new challenge in simulating the spatially distributed and basin-integrated processes since these datasets do not adequately represent the small-scale hydrological, thermal, and ecological heterogeneity. The goal of this study is to improve the prediction capacity of mesoscale to large-scale hydrological models by introducing a small-scale parameterization scheme, which bettermore » represents the spatial heterogeneity of soil properties and vegetation cover in the Alaskan sub-arctic. The small-scale parameterization schemes are derived from observations and a sub-grid parameterization method in the two contrasting sub-basins of the Caribou Poker Creek Research Watershed (CPCRW) in Interior Alaska: one nearly permafrost-free (LowP) sub-basin and one permafrost-dominated (HighP) sub-basin. The sub-grid parameterization method used in the small-scale parameterization scheme is derived from the watershed topography. We found that observed soil thermal and hydraulic properties – including the distribution of permafrost and vegetation cover heterogeneity – are better represented in the sub-grid parameterization method than the coarse-resolution datasets. Parameters derived from the coarse-resolution datasets and from the sub-grid parameterization method are implemented into the variable infiltration capacity (VIC) mesoscale hydrological model to simulate runoff, evapotranspiration (ET), and soil moisture in the two sub-basins of the CPCRW. Simulated hydrographs based on the small-scale parameterization capture most of the peak and low flows, with similar accuracy in both sub-basins, compared to simulated hydrographs based on the coarse-resolution datasets. On average, the small-scale parameterization scheme improves the total runoff simulation by up to 50 % in the LowP sub-basin and by up to 10 % in the HighP sub-basin from the large-scale parameterization. This study shows that the proposed sub-grid parameterization method can be used to improve the performance of mesoscale hydrological models in the Alaskan sub-arctic watersheds.« less

  17. Towards improved parameterization of a macroscale hydrologic model in a discontinuous permafrost boreal forest ecosystem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Endalamaw, Abraham; Bolton, W. Robert; Young-Robertson, Jessica M.

    Modeling hydrological processes in the Alaskan sub-arctic is challenging because of the extreme spatial heterogeneity in soil properties and vegetation communities. Nevertheless, modeling and predicting hydrological processes is critical in this region due to its vulnerability to the effects of climate change. Coarse-spatial-resolution datasets used in land surface modeling pose a new challenge in simulating the spatially distributed and basin-integrated processes since these datasets do not adequately represent the small-scale hydrological, thermal, and ecological heterogeneity. The goal of this study is to improve the prediction capacity of mesoscale to large-scale hydrological models by introducing a small-scale parameterization scheme, which bettermore » represents the spatial heterogeneity of soil properties and vegetation cover in the Alaskan sub-arctic. The small-scale parameterization schemes are derived from observations and a sub-grid parameterization method in the two contrasting sub-basins of the Caribou Poker Creek Research Watershed (CPCRW) in Interior Alaska: one nearly permafrost-free (LowP) sub-basin and one permafrost-dominated (HighP) sub-basin. The sub-grid parameterization method used in the small-scale parameterization scheme is derived from the watershed topography. We found that observed soil thermal and hydraulic properties – including the distribution of permafrost and vegetation cover heterogeneity – are better represented in the sub-grid parameterization method than the coarse-resolution datasets. Parameters derived from the coarse-resolution datasets and from the sub-grid parameterization method are implemented into the variable infiltration capacity (VIC) mesoscale hydrological model to simulate runoff, evapotranspiration (ET), and soil moisture in the two sub-basins of the CPCRW. Simulated hydrographs based on the small-scale parameterization capture most of the peak and low flows, with similar accuracy in both sub-basins, compared to simulated hydrographs based on the coarse-resolution datasets. On average, the small-scale parameterization scheme improves the total runoff simulation by up to 50 % in the LowP sub-basin and by up to 10 % in the HighP sub-basin from the large-scale parameterization. This study shows that the proposed sub-grid parameterization method can be used to improve the performance of mesoscale hydrological models in the Alaskan sub-arctic watersheds.« less

  18. Using LANDSAT to provide potato production estimates to Columbia Basin farmers and processors

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The estimation of potato yields in the Columbia basin is described. The fundamental objective is to provide CROPIX with working models of potato production. A two-pronged approach was used to yield estimation: (1) using simulation models, and (2) using purely empirical models. The simulation modeling approach used satellite observations to determine certain key dates in the development of the crop for each field identified as potatoes. In particular, these include planting dates, emergence dates, and harvest dates. These critical dates are fed into simulation models of crop growth and development to derive yield forecasts. Purely empirical models were developed to relate yield to some spectrally derived measure of crop development. Two empirical approaches are presented: one relates tuber yield to estimates of cumulative intercepted solar radiation, the other relates tuber yield to the integral under GVI (Global Vegetation Index) curve.

  19. Simulation of Ground-Water Flow in the Middle Rio Grande Basin Between Cochiti and San Acacia, New Mexico

    USGS Publications Warehouse

    McAda, Douglas P.; Barroll, Peggy

    2002-01-01

    This report describes a three-dimensional, finite difference, ground-water-flow model of the Santa Fe Group aquifer system within the Middle Rio Grande Basin between Cochiti and San Acacia, New Mexico. The aquifer system is composed of the Santa Fe Group of middle Tertiary to Quaternary age and post-Santa Fe Group valley and basin-fill deposits of Quaternary age. Population increases in the basin since the 1940's have caused dramatic increases in ground-water withdrawals from the aquifer system, resulting in large ground-water-level declines. Because the Rio Grande is hydraulically connected to the aquifer system, these ground-water withdrawals have also decreased flow in the Rio Grande. Concern about water resources in the basin led to the development of a research plan for the basin focused on the hydrologic interaction of ground water and surface water (McAda, D.P., 1996, Plan of study to quantify the hydrologic relation between the Rio Grande and the Santa Fe Group aquifer system near Albuquerque, central New Mexico: U.S. Geological Survey Water-Resources Investigations Report 96-4006, 58 p.). A multiyear research effort followed, funded and conducted by the U.S. Geological Survey and other agencies (Bartolino, J.R., and Cole, J.C., 2002, Ground-water resources of the Middle Rio Grande Basin, New Mexico: U.S. Geological Survey Circular 1222, 132 p.). The modeling work described in this report incorporates the results of much of this work and is the culmination of this multiyear study. The purpose of the model is (1) to integrate the components of the ground-water-flow system, including the hydrologic interaction between the surface-water systems in the basin, to better understand the geohydrology of the basin and (2) to provide a tool to help water managers plan for and administer the use of basin water resources. The aquifer system is represented by nine model layers extending from the water table to the pre-Santa Fe Group basement rocks, as much as 9,000 feet below the NGVD 29. The horizontal grid contains 156 rows and 80 columns, each spaced 3,281 feet (1 kilometer) apart. The model simulates predevelopment steady-state conditions and historical transient conditions from 1900 to March 2000 in 1 steady-state and 52 historical stress periods. Average annual conditions are simulated prior to 1990, and seasonal (winter and irrigation season) conditions are simulated from 1990 to March 2000. The model simulates mountain-front, tributary, and subsurface recharge; canal, irrigation, and septic-field seepage; and ground-water withdrawal as specified-flow boundaries. The model simulates the Rio Grande, riverside drains, Jemez River, Jemez Canyon Reservoir, Cochiti Lake, riparian evapotranspiration, and interior drains as head-dependent flow boundaries. Hydrologic properties representing the Santa Fe Group aquifer system in the ground-water-flow model are horizontal hydraulic conductivity, vertical hydraulic conductivity, specific storage, and specific yield. Variable horizontal anisotropy is applied to the model so that hydraulic conductivity in the north-south direction (along model columns) is greater than hydraulic conductivity in the east-west direction (along model rows) over much of the model. This pattern of horizontal anisotropy was simulated to reflect the generally north-south orientation of faulting over much of the modeled area. With variable horizontal anisotropy, horizontal hydraulic conductivities in the model range from 0.05 to 60 feet per day. Vertical hydraulic conductivity is specified in the model as a horizontal to vertical anisotropy ratio (calculated to be 150:1 in the model) multiplied by the horizontal hydraulic conductivity along rows. Specific storage was estimated to be 2 x 10-6 per foot in the model. Specific yield was estimated to be 0.2 (dimensionless). A ground-water-flow model is a tool that can integrate the complex interactions of hydrologic boundary conditions, aquifer materials

  20. Spatio-temporal patterns of soil erosion and suspended sediment dynamics in the Mekong River Basin.

    PubMed

    Suif, Zuliziana; Fleifle, Amr; Yoshimura, Chihiro; Saavedra, Oliver

    2016-10-15

    Understanding of the distribution patterns of sediment erosion, concentration and transport in river basins is critically important as sediment plays a major role in river basin hydrophysical and ecological processes. In this study, we proposed an integrated framework for the assessment of sediment dynamics, including soil erosion (SE), suspended sediment load (SSL) and suspended sediment concentration (SSC), and applied this framework to the Mekong River Basin. The Revised Universal Soil Loss Equation (RUSLE) model was adopted with a geographic information system to assess SE and was coupled with a sediment accumulation and a routing scheme to simulate SSL. This framework also analyzed Landsat imagery captured between 1987 and 2000 together with ground observations to interpolate spatio-temporal patterns of SSC. The simulated SSL results from 1987 to 2000 showed the relative root mean square error of 41% and coefficient of determination (R(2)) of 0.89. The polynomial relationship of the near infrared exoatmospheric reflectance and the band 4 wavelength (760-900nm) to the observed SSC at 9 sites demonstrated the good agreement (overall relative RMSE=5.2%, R(2)=0.87). The result found that the severe SE occurs in the upper (China and Lao PDR) and lower (western part of Vietnam) regions. The SSC in the rainy season (June-November) showed increasing and decreasing trends longitudinally in the upper (China and Lao PDR) and lower regions (Cambodia), respectively, while the longitudinal profile of SSL showed a fluctuating trend along the river in the early rainy season. Overall, the results described the unique spatio-temporal patterns of SE, SSL and SSC in the Mekong River Basin. Thus, the proposed integrated framework is useful for elucidating complex process of sediment generation and transport in the land and river systems of large river basins. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Integrated numerical modeling for basin-wide water management: The case of the Rattlesnake Creek basin in south-central Kansas

    USGS Publications Warehouse

    Sophocleous, M.A.; Koelliker, J.K.; Govindaraju, R.S.; Birdie, T.; Ramireddygari, S.R.; Perkins, S.P.

    1999-01-01

    The objective of this article is to develop and implement a comprehensive computer model that is capable of simulating the surface-water, ground-water, and stream-aquifer interactions on a continuous basis for the Rattlesnake Creek basin in south-central Kansas. The model is to be used as a tool for evaluating long-term water-management strategies. The agriculturally-based watershed model SWAT and the ground-water model MODFLOW with stream-aquifer interaction routines, suitably modified, were linked into a comprehensive basin model known as SWATMOD. The hydrologic response unit concept was implemented to overcome the quasi-lumped nature of SWAT and represent the heterogeneity within each subbasin of the basin model. A graphical user-interface and a decision support system were also developed to evaluate scenarios involving manipulation of water fights and agricultural land uses on stream-aquifer system response. An extensive sensitivity analysis on model parameters was conducted, and model limitations and parameter uncertainties were emphasized. A combination of trial-and-error and inverse modeling techniques were employed to calibrate the model against multiple calibration targets of measured ground-water levels, streamflows, and reported irrigation amounts. The split-sample technique was employed for corroborating the calibrated model. The model was run for a 40 y historical simulation period, and a 40 y prediction period. A number of hypothetical management scenarios involving reductions and variations in withdrawal rates and patterns were simulated. The SWATMOD model was developed as a hydrologically rational low-flow model for analyzing, in a user-friendly manner, the conditions in the basin when there is a shortage of water.

  2. Indo-Pacific ENSO modes in a double-basin Zebiak-Cane model

    NASA Astrophysics Data System (ADS)

    Wieners, Claudia; de Ruijter, Will; Dijkstra, Henk

    2016-04-01

    We study Indo-Pacific interactions on ENSO timescales in a double-basin version of the Zebiak-Cane ENSO model, employing both time integrations and bifurcation analysis (continuation methods). The model contains two oceans (the Indian and Pacific Ocean) separated by a meridional wall. Interaction between the basins is possible via the atmosphere overlaying both basins. We focus on the effect of the Indian Ocean (both its mean state and its variability) on ENSO stability. In addition, inspired by analysis of observational data (Wieners et al, Coherent tropical Indo-Pacific interannual climate variability, in review), we investigate the effect of state-dependent atmospheric noise. Preliminary results include the following: 1) The background state of the Indian Ocean stabilises the Pacific ENSO (i.e. the Hopf bifurcation is shifted to higher values of the SST-atmosphere coupling), 2) the West Pacific cooling (warming) co-occurring with El Niño (La Niña) is essential to simulate the phase relations between Pacific and Indian SST anomalies, 3) a non-linear atmosphere is needed to simulate the effect of the Indian Ocean variability onto the Pacific ENSO that is suggested by observations.

  3. A system dynamics simulation model for sustainable water resources management and agricultural development in the Volta River Basin, Ghana.

    PubMed

    Kotir, Julius H; Smith, Carl; Brown, Greg; Marshall, Nadine; Johnstone, Ron

    2016-12-15

    In a rapidly changing water resources system, dynamic models based on the notion of systems thinking can serve as useful analytical tools for scientists and policy-makers to study changes in key system variables over time. In this paper, an integrated system dynamics simulation model was developed using a system dynamics modelling approach to examine the feedback processes and interaction between the population, the water resource, and the agricultural production sub-sectors of the Volta River Basin in West Africa. The objective of the model is to provide a learning tool for policy-makers to improve their understanding of the long-term dynamic behaviour of the basin, and as a decision support tool for exploring plausible policy scenarios necessary for sustainable water resource management and agricultural development. Structural and behavioural pattern tests, and statistical test were used to evaluate and validate the performance of the model. The results showed that the simulated outputs agreed well with the observed reality of the system. A sensitivity analysis also indicated that the model is reliable and robust to uncertainties in the major parameters. Results of the business as usual scenario showed that total population, agricultural, domestic, and industrial water demands will continue to increase over the simulated period. Besides business as usual, three additional policy scenarios were simulated to assess their impact on water demands, crop yield, and net-farm income. These were the development of the water infrastructure (scenario 1), cropland expansion (scenario 2) and dry conditions (scenario 3). The results showed that scenario 1 would provide the maximum benefit to people living in the basin. Overall, the model results could help inform planning and investment decisions within the basin to enhance food security, livelihoods development, socio-economic growth, and sustainable management of natural resources. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Simulating the Effects of Drainage and Agriculture on Hydrology and Sediment in the Minnesota River Basin

    NASA Astrophysics Data System (ADS)

    Downer, C. W.; Pradhan, N. R.; Skahill, B. E.; Banitt, A. M.; Eggers, G.; Pickett, R. E.

    2014-12-01

    Throughout the Midwest region of the United States, slopes are relatively flat, soils tend to have low permeability, and local water tables are high. In order to make the region suitable for agriculture, farmers have installed extensive networks of ditches to drain off excess surface water and subsurface tiles to lower the water table and remove excess soil water in the root zone that can stress common row crops, such as corn and soybeans. The combination of tiles, ditches, and intensive agricultural land practices radically alters the landscape and hydrology. Within the watershed, tiles have outlets to both the ditch/stream network as well as overland locations, where the tile discharge appears to initiate gullies and exacerbate overland erosion. As part of the Minnesota River Basin Integrated Study we are explicitly simulating the tile and drainage systems in the watershed at multiple scales using the physics-based watershed model GSSHA (Gridded Surface Subsurface Hydrologic Analysis). The tile drainage system is simulated as a network of pipes that collect water from the local water table. Within the watershed, testing of the methods on smaller basins shows the ability of the model to simulate tile flow, however, application at the larger scale is hampered by the computational burden of simulating the flow in the complex tile drain networks that drain the agricultural fields. Modeling indicates the subsurface drains account for approximately 40% of the stream flow in the Seven Mile Creek sub-basin account in the late spring and early summer when the tile is flowing. Preliminary results indicate that agricultural tile drains increase overland erosion in the Seven Mile Creek watershed.

  5. SimBasin: A serious gaming framework for integrated and cooperative decision-making in water management

    NASA Astrophysics Data System (ADS)

    Angarita, H.; Craven, J.; Caggiano, F.; Corzo, G.

    2016-12-01

    An Integrated approach involving extensive stakeholder dialogue is widely advocated in sustainable water management. However, it requires a social learning process in which scientist and stakeholders become aware of the relationship between their own frames of reference and those of others, differences can be dealt with constructively, and shared ideas can be used to facilitate cooperation. Key obstacles in this process are heritage systems, attitudes and processes, factually wrong, incomplete or unshared mental models, and lack of science-policy dialogue (Pahl-Wostl et al., 2005) To overcome these barriers, a space is required which is free of heritage systems, where mental models can be safely and easily compared and corrected, and where scientists and policy-makers can come together. A "serious game" can serve as such a space - Serious games are games or simulations used to achieve an organizational or educational goal, and such games have already been used to facilitate stakeholder cooperation in the water management sector (Rusca et al., 2005). As well as bringing stakeholders together, they can be an accessible interface between scientific models and non-experts. Here we present SimBasin, a multiplayer serious game framework and development engine. The engine allows to easily create a simulated multiplayer basin management game using WEAP water resources modelling software (SEI, 1992-2015), to facilitate the communication of the complex, long term and wide range relationships between hydrologic, climate, and human systems present in river basins, and enable dialogue between policy-makers and scientists. Different games have been created using the Sim-Basin engine and used in various contexts. Here are discussed experiences with stakeholders at a national forum in Bogotá, flood risk management agencies in the lower Magdalena River Basin in Colombia and with water professionals in Bangkok. The experience shows that the game is a useful tool for enabling dialogue and provides interesting insights into the way computer models and stakeholders' mental models can interact with and enrich each other. SimBasin software and supporting materials are freely available online for download at http://simbasin.hilab.nl.

  6. Impacts of Recent Climatic Wetting on Distributed Snow and Streamflow Responses in a Terminal Lake Basin.

    NASA Astrophysics Data System (ADS)

    Van Hoy, D.; Mahmood, T. H.; Jeannotte, T.; Todhunter, P. E.

    2017-12-01

    The recent shift in hydroclimatic conditions in the Northern Great Plains (NGP) has led to an increase in precipitation, rainfall rate, and wetland connectivity over the last few decades. These changes yield an integrated response resulting in high mean annual streamflow and subsequent flooding in many NGP basins such as the terminal Devils Lake Basin (DLB). In this study, we investigate the impacts of recent climatic wetting on distributed hydrologic responses such as snow processes and streamflow using a field-tested and physically-based cold region hydrologic model (CRHM). CHRM is designed for cold prairie regions and has modules to simulate major processes such as blowing snow transport, sublimation, interception, frozen soil infiltration, snowmelt and subsequent streamflow generation. Our modeling focuses on a tributary basin of the DLB known as the Mauvais Coulee Basin (MCB). Since there were no snow observations in the MCB, we conducted a detailed snow survey at distributed locations estimating snow depth, density, and snow water equivalent (SWE) using a prairie snow tube four times during winter of 2016-17. The MCB model was evaluated against distributed snow observations and streamflow measured at the basin outlet (USGS) for the year 2016-2017. Preliminary results indicate that the simulated SWEs at distributed locations and streamflow (NSE ≈ 0.70) are in good agreement with observations. The simulated SWE maps exhibit large spatiotemporal variation during 2016-17 winter due to spatial variability in precipitation, snow redistribution from stubble field to wooded areas, and snow accumulations in small depressions across the subbasins. The main source of snow appears to be the hills and ridges of the eastern and western edges of the basin, while the main sink is the large flat central valleys. The model will be used to examine the effect of recent changes to precipitation and temperature on snow processes and subsequent streamflow for 2004-2017 season. We will also investigate the hydrologic sensitivity to precipitation and temperature changes by altering input temperature and precipitation. Finally, our findings will point toward future process-based studies and simulated hydrologic responses that can be used to prepare flood hazard maps for cities around Devils Lake.

  7. Using a Process Based Model to Simulate the Effects of Drainage and Land Use Change on Hydrology, and Sediment and Nutrient Transport in the Midwestern United States

    NASA Astrophysics Data System (ADS)

    Downer, C. W.; Pradhan, N. R.; Skahill, B. E.; Wahl, M.; Turnbull, S. J.

    2015-12-01

    Historically the Midwestern United State was a region dominated by prairie grasses and wetlands. To make use of the rich soils underlying these fertile environments, farmers converted the land to agriculture and currently the Midwest is a region of intensive agricultural production, with agriculture being a predominant land use. The Midwest is a region of gentle slopes, tight soils, and high water tables, and in order to make the lands suitable for agriculture, farmers have installed extensive networks of ditches to drain off excess surface water and subsurface tiles to lower the water table and remove excess soil water in the root zone that can stress common row crops, such as corn and soybeans. The combination of tiles, ditches, and intensive agricultural land practices radically alters the landscape and hydrology. As part of the Minnesota River Basin Integrated Study we are simulating nested watersheds in a sub-basin of the Minnesota River Basin, Seven Mile Creek, using the physics-based watershed model GSSHA (Gridded Surface Subsurface Hydrologic Analysis) to simulate water, sediment, and nutrients. Representative of the larger basin, more than 80% of the land in the watershed is dedicated to agricultural practices. From a process perspective, the hydrology is complicated, with snow accumulation and melt, frozen soil, and tile drains all being important processes within the watershed. In this study we attempt to explicitly simulate these processes, including the tile drains, which are simulated as a network of subsurface pipes that collect water from the local water table. Within the watershed, tiles discharge to both the ditch/stream network as well as overland locations, where the tile discharge appears to initiate gullies and exacerbate overland erosion. Testing of the methods on smaller basins demonstrates the ability of the model to simulate measured tile flow. At the larger scale, the model demonstrates ability to simulate flow and sediments. Sparse nutrient data limit the assessment of nutrient simulations. The models are being used to asses an array of potential future land use scenarios, including predevelopment and increased agricultural use. Results from these simulations will be presented. Preliminary results indicate that tile drains increase discharge and erosion in the watershed.

  8. Sahra integrated modeling approach to address water resources management in semi-arid river basins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Springer, E. P.; Gupta, Hoshin V.; Brookshire, David S.

    Water resources decisions in the 21Sf Century that will affect allocation of water for economic and environmental will rely on simulations from integrated models of river basins. These models will not only couple natural systems such as surface and ground waters, but will include economic components that can assist in model assessments of river basins and bring the social dimension to the decision process. The National Science Foundation Science and Technology Center for Sustainability of semi-Arid Hydrology and Riparian Areas (SAHRA) has been developing integrated models to assess impacts of climate variability and land use change on water resources inmore » semi-arid river basins. The objectives of this paper are to describe the SAHRA integrated modeling approach and to describe the linkage between social and natural sciences in these models. Water resources issues that arise from climate variability or land use change may require different resolution models to answer different questions. For example, a question related to streamflow may not need a high-resolution model whereas a question concerning the source and nature of a pollutant will. SAHRA has taken a multiresolution approach to integrated model development because one cannot anticipate the questions in advance, and the computational and data resources may not always be available or needed for the issue to be addressed. The coarsest resolution model is based on dynamic simulation of subwatersheds or river reaches. This model resolution has the advantage of simplicity and social factors are readily incorporated. Users can readily take this model (and they have) and examine the effects of various management strategies such as increased cost of water. The medium resolution model is grid based and uses variable grid cells of 1-12 km. The surface hydrology is more physically based using basic equations for energy and water balance terms, and modules are being incorporated that will simulate engineering components such as reservoirs or irrigation diversions and economic features such as variable demand. The fine resolution model is viewed as a tool to examine basin response using best available process models. The fine resolution model operates on a grid cell size of 100 m or less, which is consistent with the scale that our process knowledge has developed. The fine resolution model couples atmosphere, surface water and groundwater modules using high performance computing. The medium and fine resolution models are not expected at this time to be operated by users as opposed to the coarse resolution model. One of the objectives of the SAHRA integrated modeling task is to present results in a manner that can be used by those making decisions. The application of these models within SAHRA is driven by a scenario analysis and a place location. The place is the Rio Grande from its headwaters in Colorado to the New Mexico-Texas border. This provides a focus for model development and an attempt to see how the results from the various models relate. The scenario selected by SAHRA is the impact of a 1950's style drought using 1990's population and land use on Rio Grande water resources including surface and groundwater. The same climate variables will be used to drive all three models so that comparison will be based on how the three resolutions partition and route water through the river basin. Aspects of this scenario will be discussed and initial model simulation will be presented. The issue of linking economic modules into the modeling effort will be discussed and the importance of feedback from the social and economic modules to the natural science modules will be reviewed.« less

  9. Combined Effects of Deforestation and Doubled Atmospheric CO2 Concentrations on the Climate of Amazonia.

    NASA Astrophysics Data System (ADS)

    Costa, Marcos Heil; Foley, Jonathan A.

    2000-01-01

    It is generally expected that the Amazon basin will experience at least two major environmental changes during the next few decades and centuries: 1) increasing areas of forest will be converted to pasture and cropland, and 2) concentrations of atmospheric CO2 will continue to rise. In this study, the authors use the National Center for Atmospheric Research GENESIS atmospheric general circulation model, coupled to the Integrated Biosphere Simulator, to determine the combined effects of large-scale deforestation and increased CO2 concentrations (including both physiological and radiative effects) on Amazonian climate.In these simulations, deforestation decreases basin-average precipitation by 0.73 mm day1 over the basin, as a consequence of the general reduction in vertical motion above the deforested area (although there are some small regions with increased vertical motion). The overall effect of doubled CO2 concentrations in Amazonia is an increase in basin-average precipitation of 0.28 mm day1. The combined effect of deforestation and doubled CO2, including the interactions among the processes, is a decrease in the basin-average precipitation of 0.42 mm day1. While the effects of deforestation and increasing CO2 concentrations on precipitation tend to counteract one another, both processes work to warm the Amazon basin. The effect of deforestation and increasing CO2 concentrations both tend to increase surface temperature, mainly because of decreases in evapotranspiration and the radiative effect of CO2. The combined effect of deforestation and doubled CO2, including the interactions among the processes, increases the basin-average temperature by roughly 3.5°C.

  10. Soil erosion and sediment yield and their relationships with vegetation cover in upper stream of the Yellow River.

    PubMed

    Ouyang, Wei; Hao, Fanghua; Skidmore, Andrew K; Toxopeus, A G

    2010-12-15

    Soil erosion is a significant concern when considering regional environmental protection, especially in the Yellow River Basin in China. This study evaluated the temporal-spatial interaction of land cover status with soil erosion characteristics in the Longliu Catchment of China, using the Soil and Water Assessment Tool (SWAT) model. SWAT is a physical hydrological model which uses the RUSLE equation as a sediment algorithm. Considering the spatial and temporal scale of the relationship between soil erosion and sediment yield, simulations were undertaken at monthly and annual temporal scales and basin and sub-basin spatial scales. The corresponding temporal and spatial Normalized Difference Vegetation Index (NDVI) information was summarized from MODIS data, which can integrate regional land cover and climatic features. The SWAT simulation revealed that the annual soil erosion and sediment yield showed similar spatial distribution patterns, but the monthly variation fluctuated significantly. The monthly basin soil erosion varied from almost no erosion load to 3.92 t/ha and the maximum monthly sediment yield was 47,540 tones. The inter-annual simulation focused on the spatial difference and relationship with the corresponding vegetation NDVI value for every sub-basin. It is concluded that, for this continental monsoon climate basin, the higher NDVI vegetation zones prevented sediment transport, but at the same time they also contributed considerable soil erosion. The monthly basin soil erosion and sediment yield both correlated with NDVI, and the determination coefficients of their exponential correlation model were 0.446 and 0.426, respectively. The relationships between soil erosion and sediment yield with vegetation NDVI indicated that the vegetation status has a significant impact on sediment formation and transport. The findings can be used to develop soil erosion conservation programs for the study area. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Numerical simulation of the generation, propagation, and diffraction of nonlinear waves in a rectangular basin: A three-dimensional numerical wave tank

    NASA Astrophysics Data System (ADS)

    Darwiche, Mahmoud Khalil M.

    The research presented herein is a contribution to the understanding of the numerical modeling of fully nonlinear, transient water waves. The first part of the work involves the development of a time-domain model for the numerical generation of fully nonlinear, transient waves by a piston type wavemaker in a three-dimensional, finite, rectangular tank. A time-domain boundary-integral model is developed for simulating the evolving fluid field. A robust nonsingular, adaptive integration technique for the assembly of the boundary-integral coefficient matrix is developed and tested. A parametric finite-difference technique for calculating the fluid- particle kinematics is also developed and tested. A novel compatibility and continuity condition is implemented to minimize the effect of the singularities that are inherent at the intersections of the various Dirichlet and/or Neumann subsurfaces. Results are presented which demonstrate the accuracy and convergence of the numerical model. The second portion of the work is a study of the interaction of the numerically-generated, fully nonlinear, transient waves with a bottom-mounted, surface-piercing, vertical, circular cylinder. The numerical model developed in the first part of this dissertation is extended to include the presence of the cylinder at the centerline of the basin. The diffraction of the numerically generated waves by the cylinder is simulated, and the particle kinematics of the diffracted flow field are calculated and reported. Again, numerical results showing the accuracy and convergence of the extended model are presented.

  12. Monitoring and Simulating Water, Carbon and Nitrogen Dynamics over Catchments in Eastern Asia

    NASA Astrophysics Data System (ADS)

    Wang, Q.; Xiao, Q.; Liu, C.; Watanabe, M.

    2006-05-01

    There is an emergency need to support decision-making in water environment management in Eastern Asia. For sound management and decision making of sustainable water use, the catchment ecosystem assessment, emphasizing biophysical and biogeochemical processes and human interactions, is a key task. For this task, an integrated ecosystem model has been developed to estimate the spatial and temporal distributions of the water, carbon and nutrient cycles over catchment scales. The model integrated both a distributed hydrologic model (Nakayama and Watanabe, 2004) and an ecosystem model, BIOME-BGC (Running and Coughlan, 1988), which has been modified and validated for various ecosystems by using the APEIS-FLUX datasets in China (Wang and Watanabe, 2005). The model has been applied to catchments in China, such as the Changjiang River and the Yellow River. The MODIS satellite data products, such as leaf area index (LAI), vegetation index (VI) and land surface temperature (LST) were used as the input parameters. By using the integrated model, the future changes in water, carbon and nitrogen cycle can be predicted based on scenarios, such as the decrease in crop production due to water shortage, and the increase in temperature and CO2 concentration, as well as the land use/cover changes. The model was validated by the measured values of soil moisture, and river flow discharge throughout the year, showing that this model achieves a fairly high accuracy. As an example, we applied the integrated model to simulate the daily water vapor, carbon and nitrogen fluxes over the Changjiang River Basin. The Changjiang River is ranked third in length and is the largest river in terms of water discharge over the Euro-Asian continent. The drainage basin of the Changjiang supplies 5-10% of the total world population with water resources and nutrition and irrigates 40% of China's national crop production. Moreover, the materials carried by the Changjiang River have a significant influence on the coastal environment. Simulation results showed that enhanced atmospheric CO2 concentrations and especially increased nitrogen application had a marked effect on the simulated water and carbon sequestration capacity and played a prominent role in increasing this capacity. Finally, the model has been applied to evaluate the impact of land cover change from 1980 to 2000 on water, carbon and nitrogen fluxes over larger river basins in China.

  13. Flood risk analysis and adaptive strategy in context of uncertainties: a case study of Nhieu Loc Thi Nghe Basin, Ho Chi Minh City

    NASA Astrophysics Data System (ADS)

    Ho, Long-Phi; Chau, Nguyen-Xuan-Quang; Nguyen, Hong-Quan

    2013-04-01

    The Nhieu Loc - Thi Nghe basin is the most important administrative and business area of Ho Chi Minh City. Due to system complexity of the basin such as the increasing trend of rainfall intensity, (tidal) water level and land subsidence, the simulation of hydrological, hydraulic variables for flooding prediction seems rather not adequate in practical projects. The basin is still highly vulnerable despite of multi-million USD investment for urban drainage improvement projects since the last decade. In this paper, an integrated system analysis in both spatial and temporal aspects based on statistical, GIS and modelling approaches has been conducted in order to: (1) Analyse risks before and after projects, (2) Foresee water-related risk under uncertainties of unfavourable driving factors and (3) Develop a sustainable flood risk management strategy for the basin. The results show that given the framework of risk analysis and adaptive strategy, certain urban developing plans in the basin must be carefully revised and/or checked in order to reduce the highly unexpected loss in the future

  14. An integrated approach to investigate the hydrological behavior of the Santa Fe River Basin, north central Florida

    NASA Astrophysics Data System (ADS)

    Vibhava, F.; Graham, W. D.; De Rooij, R.; Maxwell, R. M.; Martin, J. B.; Cohen, M. J.

    2011-12-01

    The Santa Fe River Basin (SFRB) consists of three linked hydrologic units: the upper confined region (UCR), semi-confined transitional region (Cody Escarpment, CE) and lower unconfined region (LUR). Contrasting geological characteristics among these units affect streamflow generation processes. In the UCR, surface runoff and surficial stores dominate whereas in the LCR minimal surface runoff occurs and flow is dominated by groundwater sources and sinks. In the CE region the Santa Fe River (SFR) is captured entirely by a sinkhole into the Floridan aquifer, emerging as a first magnitude spring 6 km to the south. In light of these contrasting hydrological settings, developing a predictive, basin scale, physically-based hydrologic simulation model remains a research challenge. This ongoing study aims to assess the ability of a fully-coupled, physically-based three-dimensional hydrologic model (PARFLOW-CLM), to predict hydrologic conditions in the SFRB. The assessment will include testing the model's ability to adequately represent surface and subsurface flow sources, flow paths, and travel times within the basin as well as the surface-groundwater exchanges throughout the basin. In addition to simulating water fluxes, we also are collecting high resolution specific conductivity data at 10 locations throughout the river. Our objective is to exploit hypothesized strong end-member separation between riverine source water geochemistry to further refine the PARFLOW-CLM representation of riverine mixing and delivery dynamics.

  15. Characterization of rainfall-runoff response and estimation of the effect of wetland restoration on runoff, Heron Lake Basin, southwestern Minnesota, 1991-97

    USGS Publications Warehouse

    Jones, Perry M.; Winterstein, Thomas A.

    2000-01-01

    The U.S. Geological Survey (USGS), in cooperation with the Minnesota Department of Natural Resources and the Heron Lake Watershed District, conducted a study to characterize the rainfall-runoff response and to examine the effects of wetland restoration on the rainfall-runoff response within the Heron Lake Basin in southwestern Minnesota. About 93 percent of the land cover in the Heron Lake Basin consists of agricultural lands, consisting almost entirely of row crops, with less than one percent consisting of wetlands. The Hydrological Simulation Program – Fortran (HSPF), Version 10, was calibrated to continuous discharge data and used to characterize rainfall-runoff responses in the Heron Lake Basin between May 1991 and August 1997. Simulation of the Heron Lake Basin was done as a two-step process: (1) simulations of five small subbasins using data from August 1995 through August 1997, and (2) simulations of the two large basins, Jack and Okabena Creek Basins, using data from May 1991 through September 1996. Simulations of the five small subbasins was done to determine basin parameters for the land segments and assess rainfall-runoff response variability in the basin. Simulations of the two larger basins were done to verify the basin parameters and assess rainfall-runoff responses over a larger area and for a longer time period. Best-fit calibrations of the five subbasin simulations indicate that the rainfall-runoff response is uniform throughout the Heron Lake Basin, and 48 percent of the total rainfall for storms becomes direct (surface and interflow) runoff. Rainfall-runoff response variations result from variations in the distribution, intensity, timing, and duration of rainfall; soil moisture; evapotranspiration rates; and the presence of lakes in the basin. In the spring, the amount and distribution of rainfall tends to govern the runoff response. High evapotranspiration rates in the summer result in a depletion of moisture from the soils, substantially affecting the rainfall-runoff relation. Five wetland restoration simulations were run for each of five subbasins using data from August 1995 through August 1997, and for the two larger basins, Jack and Okabena Creek Basins, using data from May 1991 through September 1996. Results from linear regression analysis of total simulated direct runoff and total rainfall data for simulated storms in the wetland-restoration simulations indicate that the portion of total rainfall that becomes runoff will be reduced by 46 percent if 45 percent of current cropland is converted to wetland. The addition of wetlands reduced peak runoff in most of the simulations, but the reduction varied with antecedent soil moisture, the magnitude of the peak flow, and the presence of current wetlands and lakes. Reductions in the simulated total and peak runoff from the Jack Creek Basin for most of the simulated storms were greatest when additional wetlands were simulated in the North Branch Jack Creek or the Upper Jack Creek Subbasins. In the Okabena Creek Basin, reductions in simulated peak runoff for most of the storms were greatest when additional wetlands were simulated in the Lower Okabena Creek Subbasin.

  16. Aquifer recharge from infiltration basins in a highly urbanized area: the river Po Plain (Italy)

    NASA Astrophysics Data System (ADS)

    Masetti, M.; Nghiem, S. V.; Sorichetta, A.; Stevenazzi, S.; Santi, E. S.; Pettinato, S.; Bonfanti, M.; Pedretti, D.

    2015-12-01

    Due to the extensive urbanization in the Po Plain in northern Italy, rivers need to be managed to alleviate flooding problems while maintaining an appropriate aquifer recharge under an increasing percentage of impermeable surfaces. During the PO PLain Experiment field campaign in July 2015 (POPLEX 2015), both active and under-construction infiltration basins have been surveyed and analyzed to identify appropriate satellite observations that can be integrated to ground based monitoring techniques. A key strategy is to have continuous data time series on water presence and level within the basin, for which ground based monitoring can be costly and difficult to be obtained consistently.One of the major and old infiltration basin in the central Po Plain has been considered as pilot area. The basin is active from 2003 with ground based monitoring available since 2009 and supporting the development of a calibrated unsaturated-saturated two-dimensional numerical model simulating the infiltration dynamics through the basin.A procedure to use satellite data to detect surface water change is under development based on satellite radar backscatter data with an appropriate incidence angle and polarization combination. An advantage of satellite radar is that it can observe surface water regardless of cloud cover, which can be persistent during rainy seasons. Then, the surface water change is correlated to the reservoir water stage to determine water storage in the basin together with integrated ground data and to give quantitative estimates of variations in the local water cycle.We evaluated the evolution of the infiltration rate, to obtain useful insights about the general recharge behavior of basins that can be used for informed design and maintenance. Results clearly show when the basin becomes progressively clogged by biofilms that can reduce the infiltration capacity of the basin by as much as 50 times compared to when it properly works under clean conditions.

  17. Development of a Reservoir System Operation Model for Water Sustainability in the Yaqui River Basin

    NASA Astrophysics Data System (ADS)

    Mounir, A.; Che, D.; Robles-Morua, A.; Kauneckis, D.

    2017-12-01

    The arid state of Sonora, Mexico underwent the Sonora SI project to provide additional water supply to the capital of Hermosillo. The main component of the project involves an interbasin transfer from the Yaqui River Basin (YRB) to the Sonora River Basin via the Independencia aqueduct. This project has generated conflicts over water among different social sectors in the YRB. To improve the management of the Yaqui reservoir system, we developed a daily watershed model. This model allowed us to predict the amount of water available in different regions of the basin. We integrated this simulation to an optimization model which calculates the best water allocation according to water rights established in Mexico's National Water Law. We compared different precipitation forcing scenarios: (1) a network of ground observations from Mexican water agencies during the historical period of 1980-2013, (2) gridded fields from the North America Land Data Assimilation System (NLDAS) at 12 km resolution, and (3) we will be studying a future forecast scenario. The simulation results were compared to historical observations at the three reservoirs existing in the YRB to generate confidence in the simulation tools. Our results are presented in the form of flow duration, reliability and exceedance frequency curves that are commonly used in the water management agencies. Through this effort, we anticipate building confidence among regional stakeholders in utilizing hydrological models in the development of reservoir operation policies.

  18. Towards an integrated model of floodplain hydrology representing feedbacks and anthropogenic effects

    NASA Astrophysics Data System (ADS)

    Andreadis, K.; Schumann, G.; Voisin, N.; O'Loughlin, F.; Tesfa, T. K.; Bates, P.

    2017-12-01

    The exchange of water between hillslopes, river channels and floodplain can be quite complex and the difficulty in capturing the mechanisms behind it is exacerbated by the impact of human activities such as irrigation and reservoir operations. Although there has been a vast body of work on modeling hydrological processes, most of the resulting models have been limited with regards to aspects of the coupled human-natural system. For example, hydrologic models that represent processes such as evapotranspiration, infiltration, interception and groundwater dynamics often neglect anthropogenic effects or do not adequately represent the inherently two-dimensional floodplain flow. We present an integrated modeling framework that is comprised of the Variable Infiltration Capacity (VIC) hydrology model, the LISFLOOD-FP hydrodynamic model, and the Water resources Management (WM) model. The VIC model solves the energy and water balance over a gridded domain and simulates a number of hydrologic features such as snow, frozen soils, lakes and wetlands, while also representing irrigation demand from cropland areas. LISFLOOD-FP solves an approximation of the Saint-Venant equations to efficiently simulate flow in river channels and the floodplain. The implementation of WM accommodates a variety of operating rules in reservoirs and withdrawals due to consumptive demands, allowing the successful simulation of regulated flow. The models are coupled so as to allow feedbacks between their corresponding processes, therefore providing the ability to test different hypotheses about the floodplain hydrology of large-scale basins. We test this integrated framework over the Zambezi River basin by simulating its hydrology from 2000-2010, and evaluate the results against remotely sensed observations. Finally, we examine the sensitivity of streamflow and water inundation to changes in reservoir operations, precipitation and temperature.

  19. Observed and simulated ground motions in the San Bernardino basin region for the Hector Mine, California, earthquake

    USGS Publications Warehouse

    Graves, R.W.; Wald, D.J.

    2004-01-01

    During the MW 7.1 Hector Mine earthquake, peak ground velocities recorded at sites in the central San Bernardino basin region were up to 2 times larger and had significantly longer durations of strong shaking than sites just outside the basin. To better understand the effects of 3D structure on the long-period ground-motion response in this region, we have performed finite-difference simulations for this earthquake. The simulations are numerically accurate for periods of 2 sec and longer and incorporate the detailed spatial and temporal heterogeneity of source rupture, as well as complex 3D basin structure. Here, we analyze three models of the San Bernardino basin: model A (with structural constraints from gravity and seismic reflection data), model F (water well and seismic refraction data), and the Southern California Earthquake Center version 3 model (hydrologic and seismic refraction data). Models A and F are characterized by a gradual increase in sediment thickness toward the south with an abrupt step-up in the basement surface across the San Jacinto fault. The basin structure in the SCEC version 3 model has a nearly uniform sediment thickness of 1 km with little basement topography along the San Jacinto fault. In models A and F, we impose a layered velocity structure within the sediments based on the seismic refraction data and an assumed depth-dependent Vp/Vs ratio. Sediment velocities within the SCEC version 3 model are given by a smoothly varying rule-based function that is calibrated to the seismic refraction measurements. Due to computational limitations, the minimum shear-wave velocity is fixed at 600 m/sec in all of the models. Ground-motion simulations for both models A and F provide a reasonably good match to the amplitude and waveform characteristics of the recorded motions. In these models, surface waves are generated as energy enters the basin through the gradually sloping northern margin. Due to the basement step along the San Jacinto fault, the surface wave energy is confined to the region north of this structure, consistent with the observations. The SCEC version 3 model, lacking the basin geometry complexity present in the other two models, fails to provide a satisfactory match to the characteristics of the observed motions. Our study demonstrates the importance of using detailed and accurate basin geometry for predicting ground motions and also highlights the utility of integrating geological, geophysical, and seismological observations in the development and validation of 3D velocity models.

  20. Combined effects of deforestation and doubled atmospheric CO{sub 2} concentrations on the climate of Amazonia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costa, M.H.; Foley, J.A.

    2000-01-01

    It is generally expected that the Amazon basin will experience at least two major environmental changes during the next few decades and centuries: (1) increasing areas of forest will be converted to pasture and cropland, and (2) concentrations of atmospheric CO{sub 2} will continue to rise. In this study, the authors use the National Center for Atmospheric Research GENESIS atmospheric general circulation model, coupled to the Integrated Biosphere Simulator, to determine the combined effects of large-scale deforestation and increased CO{sub 2} concentrations (including both physiological and radiative effects) on Amazonian climate. In these simulations, deforestation decreases basin-average precipitation by 0.73more » mm day{sup {minus}1} over the basin, as a consequence of the general reduction in vertical motion above the deforested area (although there are some small regions with increased vertical motion). The overall effect of doubled CO{sub 2} concentrations in Amazonia is an increase in basin-average precipitation of 0.28 mm day{sup {minus}1}. The combined effect of deforestation and doubled CO{sub 2}, including the interactions among the processes, is a decrease in the basin-average precipitation of 0.42 mm day{sup {minus}1}. While the effects of deforestation and increasing CO{sub 2} concentrations on precipitation tend to counteract one another, both processes work to warm the Amazon basin. The effect of deforestation and increasing CO{sub 2} concentrations both tent to increase surface temperature, mainly because of decreases in evapotranspiration and the radiative effect of CO{sub 2}. The combined effect of deforestation and doubled CO{sub 2}, including the interactions among the processes, increases the basin-average temperature by roughly 3.5 C.« less

  1. An integrated modeling approach for estimating the water quality benefits of conservation practices at the river basin scale.

    PubMed

    Santhi, C; Kannan, N; White, M; Di Luzio, M; Arnold, J G; Wang, X; Williams, J R

    2014-01-01

    The USDA initiated the Conservation Effects Assessment Project (CEAP) to quantify the environmental benefits of conservation practices at regional and national scales. For this assessment, a sampling and modeling approach is used. This paper provides a technical overview of the modeling approach used in CEAP cropland assessment to estimate the off-site water quality benefits of conservation practices using the Ohio River Basin (ORB) as an example. The modeling approach uses a farm-scale model, Agricultural Policy Environmental Extender (APEX), and a watershed scale model (the Soil and Water Assessment Tool [SWAT]) and databases in the Hydrologic Unit Modeling for the United States system. Databases of land use, soils, land use management, topography, weather, point sources, and atmospheric depositions were developed to derive model inputs. APEX simulates the cultivated cropland, Conserve Reserve Program land, and the practices implemented on them, whereas SWAT simulates the noncultivated land (e.g., pasture, range, urban, and forest) and point sources. Simulation results from APEX are input into SWAT. SWAT routes all sources, including APEX's, to the basin outlet through each eight-digit watershed. Each basin is calibrated for stream flow, sediment, and nutrient loads at multiple gaging sites and turned in for simulating the effects of conservation practice scenarios on water quality. Results indicate that sediment, nitrogen, and phosphorus loads delivered to the Mississippi River from ORB could be reduced by 16, 15, and 23%, respectively, due to current conservation practices. Modeling tools are useful to provide science-based information for assessing existing conservation programs, developing future programs, and developing insights on load reductions necessary for hypoxia in the Gulf of Mexico. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  2. Using High Resolution Satellite Precipitation fields to Assess the Impacts of Climate Change on the Santa Cruz and San Pedro River Basins

    NASA Astrophysics Data System (ADS)

    Robles-Morua, A.; Vivoni, E.; Rivera-Fernandez, E. R.; Dominguez, F.; Meixner, T.

    2013-05-01

    Hydrologic modeling using high spatiotemporal resolution satellite precipitation products in the southwestern United States and northwest Mexico is important given the sparse nature of available rain gauges. In addition, the bimodal distribution of annual precipitation also presents a challenge as differential climate impacts during the winter and summer seasons are not currently well understood. In this work, we focus on hydrological comparisons using rainfall forcing from a satellite-based product, downscaled GCM precipitation estimates and available ground observations. The simulations are being conducted in the Santa Cruz and San Pedro river basins along the Arizona-Sonora border at high spatiotemporal resolutions (~100 m and ~1 hour). We use a distributed hydrologic model, known as the TIN-based Real-time Integrated Basin Simulator (tRIBS), to generate simulated hydrological fields under historical (1991-2000) and climate change (2031-2040) scenarios obtained from an application of the Weather Research and Forecast (WRF) model. Using the distributed model, we transform the meteorological scenarios at 10-km, hourly resolution into predictions of the annual water budget, seasonal land surface fluxes and individual hydrographs of flood and recharge events. We compare the model outputs and rainfall fields of the WRF products against the forcing from the North American Land Data Assimilation System (NLDAS) and available ground observations from the National Climatic Data Center (NCDC) and Arizona Meteorological Network (AZMET). For this contribution, we selected two full years in the historical period and in the future scenario that represent wet and dry conditions for each decade. Given the size of the two basins, we rely on a high performance computing platform and a parallel domain discretization with higher resolutions maintained at experimental catchments in each river basin. Model simulations utilize best-available data across the Arizona-Sonora border on topography, land cover and soils obtained from analysis of remotely-sensed imagery and government databases. In addition, for the historical period, we build confidence in the model simulations through comparisons with streamflow estimates in the region. The model comparisons during the historical and future periods will yield a first-of-its-kind assessment on the impacts of climate change on the hydrology of two large semiarid river basins of the southwestern United States

  3. Fine-Resolution Modeling of the Santa Cruz and San Pedro River Basins for Climate Change and Riparian System Studies

    NASA Astrophysics Data System (ADS)

    Robles-Morua, A.; Vivoni, E. R.; Volo, T. J.; Rivera, E. R.; Dominguez, F.; Meixner, T.

    2011-12-01

    This project is part of a multidisciplinary effort aimed at understanding the impacts of climate variability and change on the ecological services provided by riparian ecosystems in semiarid watersheds of the southwestern United States. Valuing the environmental and recreational services provided by these ecosystems in the future requires a numerical simulation approach to estimate streamflow in ungauged tributaries as well as diffuse and direct recharge to groundwater basins. In this work, we utilize a distributed hydrologic model known as the TIN-based Real-time Integrated Basin Simulator (tRIBS) in the upper Santa Cruz and San Pedro basins with the goal of generating simulated hydrological fields that will be coupled to a riparian groundwater model. With the distributed model, we will evaluate a set of climate change and population scenarios to quantify future conditions in these two river systems and their impacts on flood peaks, recharge events and low flows. Here, we present a model confidence building exercise based on high performance computing (HPC) runs of the tRIBS model in both basins during the period of 1990-2000. Distributed model simulations utilize best-available data across the US-Mexico border on topography, land cover and soils obtained from analysis of remotely-sensed imagery and government databases. Meteorological forcing over the historical period is obtained from a combination of sparse ground networks and weather radar rainfall estimates. We then focus on a comparison between simulation runs using ground-based forcing to cases where the Weather Research Forecast (WRF) model is used to specify the historical conditions. Two spatial resolutions are considered from the WRF model fields - a coarse (35-km) and a downscaled (10- km) forcing. Comparisons will focus on the distribution of precipitation, soil moisture, runoff generation and recharge and assess the value of the WRF coarse and downscaled products. These results provide confidence in the model application and a measure of modeling uncertainty that will help set the foundation for forthcoming climate change studies.

  4. Effects of land-use changes and stormflow-detention basins on flooding and nonpoint-source pollution, in Irondequoit Creek basin, Monroe and Ontario counties, New York--application of a precipitation-runoff model

    USGS Publications Warehouse

    Coon, William F.; Johnson, Mark S.

    2005-01-01

    Urbanization of the 150-square-mile Irondequoit Creek basin in Monroe and Ontario Counties, N.Y., continues to spread southward and eastward from the City of Rochester, on the shore of Lake Ontario. Conversion of forested land to other uses over the past 40 years has increased to the extent that more than 50 percent of the basin is now developed. This expansion has increased flooding and impaired stream-water quality in the northern (downstream) half of the basin. A precipitation-runoff model of the Irondequoit Creek basin was developed with the model code HSPF (Hydrological Simulation Program--FORTRAN) to simulate the effects of land-use changes and stormflow-detention basins on flooding and nonpoint-source pollution on the basin. Model performance was evaluated through a combination of graphical comparisons and statistical tests, and indicated 'very good' agreement (mean error less than 10 percent) between observed and simulated daily and monthly streamflows, between observed and simulated monthly water temperatures, and between observed total suspended solids loads and simulated sediment loads. Agreement between monthly observed and simulated nutrient loads was 'very good' (mean error less than 15 percent) or 'good' (mean error between 15 and 25 percent). Results of model simulations indicated that peak flows and loads of sediment and total phosphorus would increase in a rural subbasin, where 10 percent of the basin was converted from forest and grassland to pervious and impervious developed areas. Subsequent simulation of a stormflow-detention basin at the mouth of this subbasin indicated that peak flows and constituent loads would decrease below those that were generated by the land-use-change scenario, and, in some cases, below those that were simulated by the original land-use scenario. Other results from model simulations of peak flows over a 30-year period (1970-2000), with and without simulation of 50-percent flow reductions at one existing and nine hypothetical stormflow-detention basins, indicated that stormflow-detention basins would likely decrease peak flows 14 to 17 percent on Allen Creek and 17 to 18 percent on Irondequoit Creek at Blossom Road. The model is intended as a management tool that water-resource managers can use to guide decisions regarding future development in the basin. The model and associated files are designed to permit (1) creation of scenarios that represent planned or hypothetical development in the basin, and (2) assessment of the flooding and chemical loads that are likely to result. Instream stormflow-detention basins can be simulated in separate scenarios to assess their effect on flooding and chemical loads. This report (1) provides examples of how the model can be applied to address these issues, (2) discusses the model revisions required to simulate land-use changes and detention basins, and (3) describes the analytical steps necessary to evaluate the model results.

  5. SUBSURFACE RESIDENCE TIMES AS AN ALGORITHM FOR AQUIFER SENSITIVITY MAPPING: TESTING THE CONCEPT WITH ANALYTIC ELEMENT GROUND WATER MODELS IN THE CONTENTNEA CREEK BASIN, NORTH CAROLINA, USA

    EPA Science Inventory

    The objective of this research is to test the utility of simple functions of spatially integrated and temporally averaged ground water residence times in shallow "groundwatersheds" with field observations and more detailed computer simulations. The residence time of water in the...

  6. Exploring the impact of multiple grain sizes in numerical landscape evolution model

    NASA Astrophysics Data System (ADS)

    Guerit, Laure; Braun, Jean; Yuan, Xiaoping; Rouby, Delphine

    2017-04-01

    Numerical evolution models have been widely developed in order to understand the evolution of landscape over different time-scales, but also the response of the topography to changes in external conditions, such as tectonics or climate, or to changes in the bedrock characteristics, such as its density or its erodability. Few models have coupled the evolution of the relief in erosion to the evolution of the related area in deposition, and in addition, such models generally do not consider the role of the size of the sediments reached the depositional domain. Here, we present a preliminary work based on an enhanced version of Fastscape, a very-efficient model solving the stream power equation, which now integrates a sedimentary basin at the front of a relief, together with the integration of multiple grain sizes in the system. Several simulations were performed in order to explore the impact of several grain sizes in terms of stratigraphy in the marine basin. A simple setting is considered, with uniform uplift rate, precipitation rate, and rock properties onshore. The pros and cons of this approach are discussed with respect to similar simulations performed considering only flux.

  7. A riddled basin escaping crisis and the universality in an integrate-and-fire circuit

    NASA Astrophysics Data System (ADS)

    Dai, Jun; He, Da-Ren; Xu, Xiu-Lian; Hu, Chin-Kun

    2018-06-01

    We investigate an integrate-and-fire model of an electronic relaxation oscillator, which can be described by the discontinuous and non-invertible composition of two mapping functions f1 and f2, with f1 being dissipative. Depending on a control parameter d, f2 can be conservative (for d =dc = 1) or dissipative (for d >dc). We find a kind of crisis, which is induced by the escape from a riddled-like attraction basin sea in the phase space. The averaged crisis transient lifetime (〈 τ 〉), the relative measure of the fat fractal forbidden network (η), and the measure of the escaping hole (Δ) show clear scaling behaviors: 〈 τ 〉 ∝(d -dc) - γ, η ∝(d -dc) σ, and Δ ∝(d -dc) α. Extending an argument by Jiang et al. (2004), we derive γ = σ + α, which agrees well with numerical simulation data.

  8. Improving Watershed-Scale Hydrodynamic Models by Incorporating Synthetic 3D River Bathymetry Network

    NASA Astrophysics Data System (ADS)

    Dey, S.; Saksena, S.; Merwade, V.

    2017-12-01

    Digital Elevation Models (DEMs) have an incomplete representation of river bathymetry, which is critical for simulating river hydrodynamics in flood modeling. Generally, DEMs are augmented with field collected bathymetry data, but such data are available only at individual reaches. Creating a hydrodynamic model covering an entire stream network in the basin requires bathymetry for all streams. This study extends a conceptual bathymetry model, River Channel Morphology Model (RCMM), to estimate the bathymetry for an entire stream network for application in hydrodynamic modeling using a DEM. It is implemented at two large watersheds with different relief and land use characterizations: coastal Guadalupe River basin in Texas with flat terrain and a relatively urban White River basin in Indiana with more relief. After bathymetry incorporation, both watersheds are modeled using HEC-RAS (1D hydraulic model) and Interconnected Pond and Channel Routing (ICPR), a 2-D integrated hydrologic and hydraulic model. A comparison of the streamflow estimated by ICPR at the outlet of the basins indicates that incorporating bathymetry influences streamflow estimates. The inundation maps show that bathymetry has a higher impact on flat terrains of Guadalupe River basin when compared to the White River basin.

  9. Simulation of streamflow in small drainage basins in the southern Yampa River basin, Colorado

    USGS Publications Warehouse

    Parker, R.S.; Norris, J.M.

    1989-01-01

    Coal mining operations in northwestern Colorado commonly are located in areas that have minimal available water-resource information. Drainage-basin models can be a method for extending water-resource information to include periods for which there are no records or to transfer the information to areas that have no streamflow-gaging stations. To evaluate the magnitude and variability of the components of the water balance in the small drainage basins monitored, and to provide some method for transfer of hydrologic data, the U.S. Geological Survey 's Precipitation-Runoff Modeling System was used for small drainage basins in the southern Yampa River basin to simulate daily mean streamflow using daily precipitation and air-temperature data. The study area was divided into three hydrologic regions, and in each of these regions, three drainage basins were monitored. Two of the drainage basins in each region were used to calibrate the Precipitation-Runoff Modeling System. The model was not calibrated for the third drainage basin in each region; instead, parameter values were transferred from the model that was calibrated for the two drainage basins. For all of the drainage basins except one, period of record used for calibration and verification included water years 1976-81. Simulated annual volumes of streamflow for drainage basins used in calibration compared well with observed values; individual hydrographs indicated timing differences between the observed and simulated daily mean streamflow. Observed and simulated annual average streamflows compared well for the periods of record, but values of simulated high and low streamflows were different than observed values. Similar results were obtained when calibrated model parameter values were transferred to drainage basins that were uncalibrated. (USGS)

  10. Application of the Precipitation-Runoff Modeling System (PRMS) in the Apalachicola-Chattahoochee-Flint River Basin in the southeastern United States

    USGS Publications Warehouse

    LaFontaine, Jacob H.; Hay, Lauren E.; Viger, Roland J.; Markstrom, Steve L.; Regan, R. Steve; Elliott, Caroline M.; Jones, John W.

    2013-01-01

    A hydrologic model of the Apalachicola–Chattahoochee–Flint River Basin (ACFB) has been developed as part of a U.S. Geological Survey (USGS) National Climate Change and Wildlife Science Center effort to provide integrated science that helps resource managers understand the effect of climate change on a range of ecosystem responses. The hydrologic model was developed as part of the Southeast Regional Assessment Project using the Precipitation Runoff Modeling System (PRMS), a deterministic, distributed-parameter, process-based system that simulates the effects of precipitation, temperature, and land use on basin hydrology. The ACFB PRMS model simulates streamflow throughout the approximately 50,700 square-kilometer basin on a daily time step for the period 1950–99 using gridded climate forcings of air temperature and precipitation, and parameters derived from spatial data layers of altitude, land cover, soils, surficial geology, depression storage (small water bodies), and data from 56 USGS streamgages. Measured streamflow data from 35 of the 56 USGS streamgages were used to calibrate and evaluate simulated basin streamflow; the remaining gage locations were used for model delineation only. The model matched measured daily streamflow at 31 of the 35 calibration gages with Nash-Sutcliffe Model Efficiency Index (NS) greater than 0.6. Streamflow data for some calibration gages were augmented for regulation and water use effects to represent more natural flow volumes. Time-static parameters describing land cover limited the ability of the simulation to match historical runoff in the more developed subbasins. Overall, the PRMS simulation of the ACFB provides a good representation of basin hydrology on annual and monthly time steps. Calibration subbasins were analyzed by separating the 35 subbasins into five classes based on physiography, land use, and stream type (tributary or mainstem). The lowest NS values were rarely below 0.6, whereas the median NS for all five classes was within 0.74 to 0.96 for annual mean streamflow, 0.89 to 0.98 for mean monthly streamflow, and 0.82 to 0.98 for monthly mean streamflow. The median bias for all five classes was within –4.3 to 0.8 percent for annual mean streamflow, –6.3 to 0.5 percent for mean monthly streamflow, and –9.3 to 1.3 percent for monthly mean streamflow. The NS results combined with the percent bias results indicated a good to very good streamflow volume simulation for all subbasins. This simulation of the ACFB provides a foundation for future modeling and interpretive studies. Streamflow and other components of the hydrologic cycle simulated by PRMS can be used to inform other types of simulations; water-temperature, hydrodynamic, and ecosystem-dynamics simulations are three examples. In addition, possible future hydrologic conditions could be studied using this model in combination with land cover projections and downscaled general circulation model results.

  11. High Performance Computing-based Assessment of the Impacts of Climate Change on the Santa Cruz and San Pedro River Basin at Very High Resolution

    NASA Astrophysics Data System (ADS)

    Robles-Morua, A.; Vivoni, E. R.; Rivera-Fernandez, E. R.; Dominguez, F.; Meixner, T.

    2012-12-01

    Assessing the impact of climate change on large river basins in the southwestern United States is important given the natural water scarcity in the region. The bimodal distribution of annual precipitation also presents a challenge as differential climate impacts during the winter and summer seasons are not currently well understood. In this work, we focus on the hydrological consequences of climate change in the Santa Cruz and San Pedro river basins along the Arizona-Sonora border at high spatiotemporal resolutions (~100 m and ~1 hour). These river systems support rich ecological communities along riparian corridors that provide habitat to migratory birds and support recreational and economic activities. Determining the climate impacts on riparian communities involves assessing how river flows and groundwater recharge will change with altered temperature and precipitation regimes. In this study, we use a distributed hydrologic model, known as the TIN-based Real-time Integrated Basin Simulator (tRIBS), to generate simulated hydrological fields under historical (1991-2000) and climate change (2031-2040) scenarios obtained from an application of the Weather Research and Forecast (WRF) model. Using the distributed model, we transform the meteorological scenarios from WRF at 10-km, hourly resolution into predictions of the annual water budget, seasonal land surface fluxes and individual hydrographs of flood and recharge events. For this contribution, we selected two full years in the historical period and in the future scenario that represent wet and dry conditions for each decade. Given the size of the two basins, we rely on a high performance computing platform and a parallel domain discretization using sub-basin partitioning with higher resolutions maintained at experimental catchments in each river basin. Model simulations utilize best-available data across the Arizona-Sonora border on topography, land cover and soils obtained from analysis of remotely-sensed imagery and government databases. For the historical period, we build confidence in the model simulations through comparisons with streamflow estimates in the region. We also evaluate the WRF forcing outcomes with respect to meteorological inputs from ground rain gauges and the North American Land Data Assimilation System (NLDAS). We then analyze the high-resolution spatiotemporal predictions of soil moisture, evapotranspiration, runoff generation and recharge under past conditions and for the climate change scenario. A comparison with the historical period will yield a first-of-its-kind assessment at very high spatiotemporal resolution on the impacts of climate change on the hydrologic response of two large semiarid river basins of the southwestern United States.

  12. Digital Earth system based river basin data integration

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Li, Wanqing; Lin, Chao

    2014-12-01

    Digital Earth is an integrated approach to build scientific infrastructure. The Digital Earth systems provide a three-dimensional visualization and integration platform for river basin data which include the management data, in situ observation data, remote sensing observation data and model output data. This paper studies the Digital Earth system based river basin data integration technology. Firstly, the construction of the Digital Earth based three-dimensional river basin data integration environment is discussed. Then the river basin management data integration technology is presented which is realized by general database access interface, web service and ActiveX control. Thirdly, the in situ data stored in database tables as records integration is realized with three-dimensional model of the corresponding observation apparatus display in the Digital Earth system by a same ID code. In the next two parts, the remote sensing data and the model output data integration technologies are discussed in detail. The application in the Digital Zhang River basin System of China shows that the method can effectively improve the using efficiency and visualization effect of the data.

  13. Effective use of integrated hydrological models in basin-scale water resources management: surrogate modeling approaches

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Wu, B.; Wu, X.

    2015-12-01

    Integrated hydrological models (IHMs) consider surface water and subsurface water as a unified system, and have been widely adopted in basin-scale water resources studies. However, due to IHMs' mathematical complexity and high computational cost, it is difficult to implement them in an iterative model evaluation process (e.g., Monte Carlo Simulation, simulation-optimization analysis, etc.), which diminishes their applicability for supporting decision-making in real-world situations. Our studies investigated how to effectively use complex IHMs to address real-world water issues via surrogate modeling. Three surrogate modeling approaches were considered, including 1) DYCORS (DYnamic COordinate search using Response Surface models), a well-established response surface-based optimization algorithm; 2) SOIM (Surrogate-based Optimization for Integrated surface water-groundwater Modeling), a response surface-based optimization algorithm that we developed specifically for IHMs; and 3) Probabilistic Collocation Method (PCM), a stochastic response surface approach. Our investigation was based on a modeling case study in the Heihe River Basin (HRB), China's second largest endorheic river basin. The GSFLOW (Coupled Ground-Water and Surface-Water Flow Model) model was employed. Two decision problems were discussed. One is to optimize, both in time and in space, the conjunctive use of surface water and groundwater for agricultural irrigation in the middle HRB region; and the other is to cost-effectively collect hydrological data based on a data-worth evaluation. Overall, our study results highlight the value of incorporating an IHM in making decisions of water resources management and hydrological data collection. An IHM like GSFLOW can provide great flexibility to formulating proper objective functions and constraints for various optimization problems. On the other hand, it has been demonstrated that surrogate modeling approaches can pave the path for such incorporation in real-world situations, since they can dramatically reduce the computational cost of using IHMs in an iterative model evaluation process. In addition, our studies generated insights into the human-nature water conflicts in the specific study area and suggested potential solutions to address them.

  14. Linking Hydrologic Alteration to Biological Impairment in Urbanizing Streams of the Puget Lowland, Washington, USA1

    PubMed Central

    DeGasperi, Curtis L; Berge, Hans B; Whiting, Kelly R; Burkey, Jeff J; Cassin, Jan L; Fuerstenberg, Robert R

    2009-01-01

    We used a retrospective approach to identify hydrologic metrics with the greatest potential for ecological relevance for use as resource management tools (i.e., hydrologic indicators) in rapidly urbanizing basins of the Puget Lowland. We proposed four criteria for identifying useful hydrologic indicators: (1) sensitive to urbanization consistent with expected hydrologic response, (2) demonstrate statistically significant trends in urbanizing basins (and not in undeveloped basins), (3) be correlated with measures of biological response to urbanization, and (4) be relatively insensitive to potentially confounding variables like basin area. Data utilized in the analysis included gauged flow and benthic macroinvertebrate data collected at 16 locations in 11 King County stream basins. Fifteen hydrologic metrics were calculated from daily average flow data and the Pacific Northwest Benthic Index of Biological Integrity (B-IBI) was used to represent the gradient of response of stream macroinvertebrates to urbanization. Urbanization was represented by percent Total Impervious Area (%TIA) and percent urban land cover (%Urban). We found eight hydrologic metrics that were significantly correlated with B-IBI scores (Low Pulse Count and Duration; High Pulse Count, Duration, and Range; Flow Reversals, TQmean, and R-B Index). Although there appeared to be a great deal of redundancy among these metrics with respect to their response to urbanization, only two of the metrics tested – High Pulse Count and High Pulse Range – best met all four criteria we established for selecting hydrologic indicators. The increase in these high pulse metrics with respect to urbanization is the result of an increase in winter high pulses and the occurrence of high pulse events during summer (increasing the frequency and range of high pulses), when practically none would have occurred prior to development. We performed an initial evaluation of the usefulness of our hydrologic indicators by calculating and comparing hydrologic metrics derived from continuous hydrologic simulations of selected basin management alternatives for Miller Creek, one of the most highly urbanized basins used in our study. We found that the preferred basin management alternative appeared to be effective in restoring some flow metrics close to simulated fully forested conditions (e.g., TQmean), but less effective in restoring other metrics such as High Pulse Count and Range. If future research continues to support our hypothesis that the flow regime, particularly High Pulse Count and Range, is an important control of biotic integrity in Puget Lowland streams, it would have significant implications for stormwater management. PMID:22457566

  15. An Integrated Decision Support System with Hydrological Processes and Socio-economic Assessments

    NASA Astrophysics Data System (ADS)

    Yu, Yang; Disse, Markus; Yu, Ruide

    2017-04-01

    The debate over the effectiveness of Integrated Water Resources Management (IWRM) in practice has lasted for years. As the complexity and scope of IWRM increases, the difficulties of hydrological modeling is shifting from the model itself into the links with other cognate sciences, to understand the interactions among water, earth, ecosystem and humans. This work presents the design and development of a decision support system (DSS) that links the outputs of hydrological models with real-time decision making on social-economic assessments and land use changes. Discharge and glacier geometry changes were simulated with hydrological model WASA. Irrigation and ecological water were simulated by a new commercial software MIKE HYDRO. Groundwater was simulated by MODFLOW. All the outputs of theses hydrological models were integrated as inputs into the DSS in three types of links: regression equations, stationary data inputs, or dynamic data inputs into DSS as the models running parallel in the simulation periods. Within DSS, three types of logics were established: equations, conditional statements and fuzzy logics. The programming was realized in C++. The implementation of DSS takes place in the Tarim River Basin. With the mainstream of 1,321km and located in an arid area in northwest China, the Tarim River is China's longest inland river. The Tarim basin on the northern edge of the Taklamakan desert is an extremely arid region. In this region, agricultural water consumption and allocation management are crucial to address the conflicts among irrigation water users from upstream to downstream. Since 2011, the German Ministry of Science and Education BMBF established the Sino-German SuMaRiO project, for the sustainable management of river oases along the Tarim River. Project SuMaRiO focus on realizable management strategies, considering social, economic and ecological criteria. This will have positive effects for nearly 10 million inhabitants of different ethnic groups. DSS is the main outcome of SuMaRiO. The overall goal of the DSS is to integrate all crucial research results of SuMaRiO, also including stakeholder perspectives, into a model based decision support system, which allows a Sustainability Impact Assessment (SIA) within regional planning. This SIA will take into account the perspectives of all relevant actors in the problem field of land and water management in the Tarim River Basin, to understand ecosystem services (ESS) and integrating them into land and water management. Under scenario assumptions, possible actions and their impacts are estimated in a semi-quantitative way with the help of sustainable indicators, which includes climate indicators, socio-economic Indicators, management Indicators, and ESS Indicators. A user-friendly graphical user interface (GUI) was developed to assist the decision-makers and common users, with Chinese and English versions available at the moment.

  16. Monitoring the Algerian Basin through glider observations, satellite altimetry and numerical simulations along a SARAL/AltiKa track

    NASA Astrophysics Data System (ADS)

    Aulicino, G.; Cotroneo, Y.; Ruiz, S.; Sánchez Román, A.; Pascual, A.; Fusco, G.; Tintoré, J.; Budillon, G.

    2018-03-01

    The Algerian Basin is a key component of the general circulation in the Western Mediterranean Sea. The presence of both fresh Atlantic water and more saline Mediterranean water gives the basin an intense inflow/outflow regime and complex circulation patterns. Energetic mesoscale structures that evolve from meanders of the Algerian Current into isolated cyclonic and anticyclonic eddies dominate the area, with marked repercussions on biological activity. Despite its remarkable importance, this region and its variability are still poorly known and basin-wide knowledge of its meso- and submesoscale features is still incomplete. Studying such complex processes requires a synergistic approach that involves integrated observing systems. In recent years, several studies have demonstrated the advantages of combined use of autonomous underwater vehicles, such as gliders, with a new generation of satellite altimetry. In this context, we present results of an observational program conducted in the Algerian Basin during fall 2014 and 2015 that aimed to advance our knowledge of its main features. The study was carried out through analysis of high resolution glider observations, collected along the Algerian BAsin Circulation Unmanned Survey (ABACUS) chokepoint, in synergy with co-located SARAL/AltiKa altimetric products and CMEMS numerical simulations. Results show that glider-derived dynamic height and SARAL/AltiKa absolute dynamic topography have similar patterns, with RMS of the differences ranging between 1.11 and 2.90 cm. Even though larger discrepancies are observed near the Balearic and Algerian coasts, correlation coefficients between glider and satellite observations seem mostly to be affected by reduced synopticity between the measurements. Glider observations acquired during the four surveys reveal the presence of several water masses of Atlantic and Mediterranean origin (i.e., AW and LIW at different modification levels) with marked seasonal variability.

  17. The effects of increased stream temperatures on juvenile steelhead growth in the Yakima River Basin based on projected climate change scenarios

    USGS Publications Warehouse

    Hardiman, Jill M.; Mesa, Matthew G.

    2013-01-01

    Stakeholders within the Yakima River Basin expressed concern over impacts of climate change on mid-Columbia River steelhead (Oncorhynchus mykiss), listed under the Endangered Species Act. We used a bioenergetics model to assess the impacts of changing stream temperatures—resulting from different climate change scenarios—on growth of juvenile steelhead in the Yakima River Basin. We used diet and fish size data from fieldwork in a bioenergetics model and integrated baseline and projected stream temperatures from down-scaled air temperature climate modeling into our analysis. The stream temperature models predicted that daily mean temperatures of salmonid-rearing streams in the basin could increase by 1–2°C and our bioenergetics simulations indicated that such increases could enhance the growth of steelhead in the spring, but reduce it during the summer. However, differences in growth rates of fish living under different climate change scenarios were minor, ranging from about 1–5%. Because our analysis focused mostly on the growth responses of steelhead to changes in stream temperatures, further work is needed to fully understand the potential impacts of climate change. Studies should include evaluating changing stream flows on fish activity and energy budgets, responses of aquatic insects to climate change, and integration of bioenergetics, population dynamics, and habitat responses to climate change.

  18. Integrated monitoring and assessment of soil restoration treatments in the Lake Tahoe Basin.

    PubMed

    Grismer, M E; Schnurrenberger, C; Arst, R; Hogan, M P

    2009-03-01

    Revegetation and soil restoration efforts, often associated with erosion control measures on disturbed soils, are rarely monitored or otherwise evaluated in terms of improved hydrologic, much less, ecologic function and longer term sustainability. As in many watersheds, sediment is a key parameter of concern in the Tahoe Basin, particularly fine sediments less than about ten microns. Numerous erosion control measures deployed in the Basin during the past several decades have under-performed, or simply failed after a few years and new soil restoration methods of erosion control are under investigation. We outline a comprehensive, integrated field-based evaluation and assessment of the hydrologic function associated with these soil restoration methods with the hypothesis that restoration of sustainable function will result in longer term erosion control benefits than that currently achieved with more commonly used surface treatment methods (e.g. straw/mulch covers and hydroseeding). The monitoring includes cover-point and ocular assessments of plant cover, species type and diversity; soil sampling for nutrient status; rainfall simulation measurement of infiltration and runoff rates; cone penetrometer measurements of soil compaction and thickness of mulch layer depths. Through multi-year hydrologic and vegetation monitoring at ten sites and 120 plots, we illustrate the results obtained from the integrated monitoring program and describe how it might guide future restoration efforts and monitoring assessments.

  19. The Modular Modeling System (MMS): A toolbox for water- and environmental-resources management

    USGS Publications Warehouse

    Leavesley, G.H.; Markstrom, S.L.; Viger, R.J.; Hay, L.E.; ,

    2005-01-01

    The increasing complexity of water- and environmental-resource problems require modeling approaches that incorporate knowledge from a broad range of scientific and software disciplines. To address this need, the U.S. Geological Survey (USGS) has developed the Modular Modeling System (MMS). MMS is an integrated system of computer software for model development, integration, and application. Its modular design allows a high level of flexibility and adaptability to enable modelers to incorporate their own software into a rich array of built-in models and modeling tools. These include individual process models, tightly coupled models, loosely coupled models, and fully- integrated decision support systems. A geographic information system (GIS) interface, the USGS GIS Weasel, has been integrated with MMS to enable spatial delineation and characterization of basin and ecosystem features, and to provide objective parameter-estimation methods for models using available digital data. MMS provides optimization and sensitivity-analysis tools to analyze model parameters and evaluate the extent to which uncertainty in model parameters affects uncertainty in simulation results. MMS has been coupled with the Bureau of Reclamation object-oriented reservoir and river-system modeling framework, RiverWare, to develop models to evaluate and apply optimal resource-allocation and management strategies to complex, operational decisions on multipurpose reservoir systems and watersheds. This decision support system approach has been developed, tested, and implemented in the Gunnison, Yakima, San Joaquin, Rio Grande, and Truckee River basins of the western United States. MMS is currently being coupled with the U.S. Forest Service model SIMulating Patterns and Processes at Landscape Scales (SIMPPLLE) to assess the effects of alternative vegetation-management strategies on a variety of hydrological and ecological responses. Initial development and testing of the MMS-SIMPPLLE integration is being conducted on the Colorado Plateau region of the western United Sates.

  20. Using an integrated approach between hydrological and crop models to assess surface water balance in ungauged basin

    NASA Astrophysics Data System (ADS)

    Negm, Amro; D'Agostino, Daniela; Lamaddalena, Nicola; Bacchi, Baldassare; Iacobellis, Vito

    2013-04-01

    In the last decades hydrological models have been extensively used in research fields in order to improve water balance assessment and to support integrated water resources management by quantifying the soil-plant-atmosphere interface. Due to complexity of the physical system, the mathematical models can generally represent and simulate only the basic components of the system. On the other hand, calibration and validation processes of the hydrological models in ungauged basins are still complex tasks, due to the lack of reliable methods and the uncertainty in representing the hydrological processes and the physical features of a basin. Therefore, in order to practically apply model's results, there is a continuous needing to assess their accuracy through the calibration and validation processes at gauged sites. In this context, an integrated approach is presented that couples a semi-distributed hydrological model called Distributed model for Runoff, Evapotranspiration, and Antecedent soil Moisture simulation (DREAM) with the FAO's Crop Water Productivity Simulation Model (AQUACROP). DREAM uses rainfall, Leaf Area Index (LAI) and potential evapotranspiration as inputs and streamflow, infiltration, real evapotranspiration, subsurface flow and deep percolation as outputs. Soil moisture content is accounted for as an internal variable. The simulations were done for Lama San Giorgio, a basin located in a wadi area in the central part of Apulia region (Southern Italy) for the period 2001-2005 and the meadow is mainly covered by durum wheat. According to ACLA2 project survey (Caliandro et al., 2005), the depth of the soil upper layers is about 80 cm. Calibration and validation of the DREAM model were carried out by assessing an accurate estimation of soil water content using AQUACROP model which is a more detailed model in terms of soil water dynamics. Instead, one of the most significant features of DREAM model is the evaluation of lateral flow exchanges by means of a redistribution function weighted by the wetness index. The calibration process was done by adjusting a specific parameter of the water balance, the subsurface flow (through a subsurface flow coefficient C), by exploiting the results of soil moisture content provided by AQUACROP model. Then, the outputs of daily soil water content obtained by DREAM model were compared with the estimations of soil behaviour provided by the AQUACROP model. The simulations were done for a certain number of cells in the study area, for different years. The chosen factors were used to obtain an average value of C in time and space, which in this study is equal to 0.5. Finally, the results of the DREAM model in terms of evapotranspiration provided a satisfactory approximation of those obtained by AQUACROP model, while the Canopy Cover, an output of AQUACROP, was compared with the LAI used as input for the DREAM model.

  1. Sedimentary basin effects in Seattle, Washington: Ground-motion observations and 3D simulations

    USGS Publications Warehouse

    Frankel, Arthur; Stephenson, William; Carver, David

    2009-01-01

    Seismograms of local earthquakes recorded in Seattle exhibit surface waves in the Seattle basin and basin-edge focusing of S waves. Spectral ratios of Swaves and later arrivals at 1 Hz for stiff-soil sites in the Seattle basin show a dependence on the direction to the earthquake, with earthquakes to the south and southwest producing higher average amplification. Earthquakes to the southwest typically produce larger basin surface waves relative to S waves than earthquakes to the north and northwest, probably because of the velocity contrast across the Seattle fault along the southern margin of the Seattle basin. S to P conversions are observed for some events and are likely converted at the bottom of the Seattle basin. We model five earthquakes, including the M 6.8 Nisqually earthquake, using 3D finite-difference simulations accurate up to 1 Hz. The simulations reproduce the observed dependence of amplification on the direction to the earthquake. The simulations generally match the timing and character of basin surface waves observed for many events. The 3D simulation for the Nisqually earth-quake produces focusing of S waves along the southern margin of the Seattle basin near the area in west Seattle that experienced increased chimney damage from the earthquake, similar to the results of the higher-frequency 2D simulation reported by Stephenson et al. (2006). Waveforms from the 3D simulations show reasonable agreement with the data at low frequencies (0.2-0.4 Hz) for the Nisqually earthquake and an M 4.8 deep earthquake west of Seattle.

  2. Integrated Hydrographical Basin Management. Study Case - Crasna River Basin

    NASA Astrophysics Data System (ADS)

    Visescu, Mircea; Beilicci, Erika; Beilicci, Robert

    2017-10-01

    Hydrographical basins are important from hydrological, economic and ecological points of view. They receive and channel the runoff from rainfall and snowmelt which, when adequate managed, can provide fresh water necessary for water supply, irrigation, food industry, animal husbandry, hydrotechnical arrangements and recreation. Hydrographical basin planning and management follows the efficient use of available water resources in order to satisfy environmental, economic and social necessities and constraints. This can be facilitated by a decision support system that links hydrological, meteorological, engineering, water quality, agriculture, environmental, and other information in an integrated framework. In the last few decades different modelling tools for resolving problems regarding water quantity and quality were developed, respectively water resources management. Watershed models have been developed to the understanding of water cycle and pollution dynamics, and used to evaluate the impacts of hydrotechnical arrangements and land use management options on water quantity, quality, mitigation measures and possible global changes. Models have been used for planning monitoring network and to develop plans for intervention in case of hydrological disasters: floods, flash floods, drought and pollution. MIKE HYDRO Basin is a multi-purpose, map-centric decision support tool for integrated hydrographical basin analysis, planning and management. MIKE HYDRO Basin is designed for analyzing water sharing issues at international, national and local hydrographical basin level. MIKE HYDRO Basin uses a simplified mathematical representation of the hydrographical basin including the configuration of river and reservoir systems, catchment hydrology and existing and potential water user schemes with their various demands including a rigorous irrigation scheme module. This paper analyzes the importance and principles of integrated hydrographical basin management and develop a case study for Crasna river basin, with the use of MIKE HYDRO Basin advanced hydroinformatic tool for integrated hydrographical basin analysis, planning and management.

  3. River and Reservoir Operations Model, Truckee River basin, California and Nevada, 1998

    USGS Publications Warehouse

    Berris, Steven N.; Hess, Glen W.; Bohman, Larry R.

    2001-01-01

    The demand for all uses of water in the Truckee River Basin, California and Nevada, commonly is greater than can be supplied. Storage reservoirs in the system have a maximum effective total capacity equivalent to less than two years of average river flows, so longer-term droughts can result in substantial water-supply shortages for irrigation and municipal users and may stress fish and wildlife ecosystems. Title II of Public Law (P.L.) 101-618, the Truckee?Carson?Pyramid Lake Water Rights Settlement Act of 1990, provides a foundation for negotiating and developing operating criteria, known as the Truckee River Operating Agreement (TROA), to balance interstate and interbasin allocation of water rights among the many interests competing for water from the Truckee River. In addition to TROA, the Truckee River Water Quality Settlement Agreement (WQSA), signed in 1996, provides for acquisition of water rights to resolve water-quality problems during low flows along the Truckee River in Nevada. Efficient execution of many of the planning, management, or environmental assessment requirements of TROA and WQSA will require detailed water-resources data coupled with sound analytical tools. Analytical modeling tools constructed and evaluated with such data could help assess effects of alternative operational scenarios related to reservoir and river operations, water-rights transfers, and changes in irrigation practices. The Truckee?Carson Program of the U.S. Geological Survey, to support U.S. Department of the Interior implementation of P.L. 101-618, is developing a modeling system to support efficient water-resources planning, management, and allocation. The daily operations model documented herein is a part of the modeling system that includes a database management program, a graphical user interface program, and a program with modules that simulate river/reservoir operations and a variety of hydrologic processes. The operations module is capable of simulating lake/ reservoir and river operations including diversion of Truckee River water to the Truckee Canal for transport to the Carson River Basin. In addition to the operations and streamflow-routing modules, the modeling system is structured to allow integration of other modules, such as water-quality and precipitation-runoff modules. The USGS Truckee River Basin operations model was designed to provide simulations that allow comparison of the effects of alternative management practices or allocations on streamflow or reservoir storages in the Truckee River Basin over long periods of time. Because the model was not intended to reproduce historical streamflow or reservoir storage values, a traditional calibration that includes statistical comparisons of observed and simulated values would be problematic with this model and database. This report describes a chronology and background of decrees, agreements, and laws that affect Truckee River operational practices; the construction of the Truckee River daily operations model; the simulation of Truckee River Basin operations, both current and proposed under the draft TROA and WQSA; and suggested model improvements and limitations. The daily operations model uses Hydrological Simulation Program?FORTRAN (HSPF) to simulate flow-routing and reservoir and river operations. The operations model simulates reservoir and river operations that govern streamflow in the Truckee River from Lake Tahoe to Pyramid Lake, including diversions through the Truckee Canal to Lahontan Reservoir in the Carson River Basin. A general overview is provided of daily operations and their simulation. Supplemental information that documents the extremely complex operating rules simulated by the model is available.

  4. Numerical Simulation of Ground-Water Flow and Assessment of the Effects of Artificial Recharge in the Rialto-Colton Basin, San Bernardino County, California

    USGS Publications Warehouse

    Woolfenden, Linda R.; Koczot, Kathryn M.

    2001-01-01

    The Rialto?Colton Basin, in western San Bernardino County, California, was chosen for storage of imported water because of the good quality of native ground water, the known storage capacity for additional ground-water storage in the basin, and the availability of imported water. To supplement native ground-water resources and offset overdraft conditions in the basin during dry periods, artificial-recharge operations during wet periods in the Rialto?Colton Basin were begun in 1982 to store surplus imported water. Local water purveyors recognized that determining the movement and ultimate disposition of the artificially recharged imported water would require a better understanding of the ground-water flow system. In this study, a finite-difference model was used to simulate ground-water flow in the Rialto?Colton Basin to gain a better understanding of the ground-water flow system and to evaluate the hydraulic effects of artificial recharge of imported water. The ground-water basin was simulated as four horizontal layers representing the river- channel deposits and the upper, middle, and lower water-bearing units. Several flow barriers bordering and internal to the Rialto?Colton Basin influence the direction of ground-water flow. Ground water may flow relatively unrestricted in the shallow parts of the flow system; however, the faults generally become more restrictive at depth. A particle-tracking model was used to simulate advective transport of imported water within the ground-water flow system and to evaluate three artificial-recharge alternatives. The ground-water flow model was calibrated to transient conditions for 1945?96. Initial conditions for the transient-state simulation were established by using 1945 recharge and discharge rates, and assuming no change in storage in the basin. Average hydrologic conditions for 1945?96 were used for the predictive simulations (1997?2027). Ground-water-level measurements made during 1945 were used for comparison with the initial-conditions simulation to determine if there was a reasonable match, and thus reasonable starting heads, for the transient simulation. The comparison between simulated head and measured water levels indicates that, overall, the simulated heads match measured water levels well; the goodness-of-fit value is 0.99. The largest differences between simulated head and measured water level occurred between Barrier H and the Rialto?Colton Fault. Simulated heads near the Santa Ana River and Warm Creek, and simulated heads northwest of Barrier J, generally are within 30 feet of measured water levels and five are within 20 feet. Model-simulated heads were compared with measured long-term changes in hydrographs of composite water levels in selected wells, and with measured short-term changes in hydrographs of water levels in multiple-depth observation wells installed for this project. Simulated hydraulic heads generally matched measured water levels in wells northwest of Barrier J (in the northwestern part of the basin) and in the central part of the basin during 1945?96. In addition, the model adequately simulated water levels in the southeastern part of the basin near the Santa Ana River and Warm Creek and east of an unnamed fault that subparallels the San Jacinto Fault. Simulated heads and measured water levels in the central part of the basin generally are within 10 feet until about 1982?85 when differences become greater. In the northwestern part of the basin southeast of Barrier J, simulated heads were as much as 50 feet higher than measured water levels during 1945?82 but matched measured water levels well after 1982. In the compartment between Barrier H and the Rialto?Colton Fault, simulated heads match well during 1945?82 but are comparatively low during 1982?96. Near the Santa Ana River and Warm Creek, simulated heads generally rose above measured water levels except during 1965?72 when simulated heads compared well with measured water levels. Average

  5. Impact of dynamically changing land cover on runoff process: the case of Iligan river basin

    NASA Astrophysics Data System (ADS)

    Salcedo, Stephanie Mae B.; Suson, Peter D.; Milano, Alan E.; Ignacio, Ma. Teresa T.

    2016-10-01

    Iligan river basin located in Northern Mindanao, Philippines covers 165.7 km2 of basin area. In December 2011, tropical storm Sendong (Washi) hit Iligan City, leaving a trail of wrecked infrastructures and about 490 persons reported dead. What transpired was a wake up call to mitigate future flood disasters. Fundamental to mitigation is understanding runoff behavior inside a basin considering that this is the main source of flooding. For this reason, the present study evaluated total runoff volume, peak discharge and lag time given land cover scenarios in four different years- 1973, 1989, 1998 and 2008. IFSAR and LIDAR DEM were integrated to generate the basin model in ArcGIS. HEC-HMS was used in simulating models for each scenario with Soil Conservation Service Curve Number (SCS CN) as the loss parameter method. Four simulation models of the runoff with varying CN values were established using RIDF as rainfall input with 5 year, 10 year, 25 year, 50 year and 100 year Rainfall Return Period (RRP). Total Runoff volume, peak discharge and lag time were progressively higher from 1973 to 2008 with 1989 land cover as exception where runoff parameters was its lowest. The total runoff volume, peak discharge and lag time is governed by vegetation type. When vegetation is characterized predominantly with woody perennials, runoff volume and peak time is lower. Conversely, when the presence of woody perennials is minimal, these parameters are higher. This study shows that an important way to mitigate flooding is to reduce surface runoff by maintaining vegetation predominantly composed of woody perennials.

  6. Reservoirs operation and water resources utilization coordination in Hongshuihe basin

    NASA Astrophysics Data System (ADS)

    Li, Chonghao; Chi, Kaige; Pang, Bo; Tang, Hongbin

    2018-06-01

    In the recent decade, the demand for water resources has been increasing with the economic development. The reservoirs of cascade hydropower stations in Hongshuihe basin, which are constructed with a main purpose of power generation, are facing more integrated water resources utilization problem. The conflict between power generation of cascade reservoirs and flood control, shipping, environmental protection and water supply has become increasingly prominent. This paper introduces the general situation and integrated water demand of cascade reservoirs in Hongshuihe basin, and it analyses the impact of various types of integrated water demand on power generation and supply. It establishes mathematic models, constrained by various types of integrated water demand, to guide the operation and water resources utilization management of cascade reservoirs in Hongshuihe basin. Integrated water coordination mechanism of Hongshuihe basin is also introduced. It provides a technical and management guide and demonstration for cascade reservoirs operation and integrated water management at home and abroad.

  7. Modelling hydrologic and hydrodynamic processes in basins with large semi-arid wetlands

    NASA Astrophysics Data System (ADS)

    Fleischmann, Ayan; Siqueira, Vinícius; Paris, Adrien; Collischonn, Walter; Paiva, Rodrigo; Pontes, Paulo; Crétaux, Jean-François; Bergé-Nguyen, Muriel; Biancamaria, Sylvain; Gosset, Marielle; Calmant, Stephane; Tanimoun, Bachir

    2018-06-01

    Hydrological and hydrodynamic models are core tools for simulation of large basins and complex river systems associated to wetlands. Recent studies have pointed towards the importance of online coupling strategies, representing feedbacks between floodplain inundation and vertical hydrology. Especially across semi-arid regions, soil-floodplain interactions can be strong. In this study, we included a two-way coupling scheme in a large scale hydrological-hydrodynamic model (MGB) and tested different model structures, in order to assess which processes are important to be simulated in large semi-arid wetlands and how these processes interact with water budget components. To demonstrate benefits from this coupling over a validation case, the model was applied to the Upper Niger River basin encompassing the Niger Inner Delta, a vast semi-arid wetland in the Sahel Desert. Simulation was carried out from 1999 to 2014 with daily TMPA 3B42 precipitation as forcing, using both in-situ and remotely sensed data for calibration and validation. Model outputs were in good agreement with discharge and water levels at stations both upstream and downstream of the Inner Delta (Nash-Sutcliffe Efficiency (NSE) >0.6 for most gauges), as well as for flooded areas within the Delta region (NSE = 0.6; r = 0.85). Model estimates of annual water losses across the Delta varied between 20.1 and 30.6 km3/yr, while annual evapotranspiration ranged between 760 mm/yr and 1130 mm/yr. Evaluation of model structure indicated that representation of both floodplain channels hydrodynamics (storage, bifurcations, lateral connections) and vertical hydrological processes (floodplain water infiltration into soil column; evapotranspiration from soil and vegetation and evaporation of open water) are necessary to correctly simulate flood wave attenuation and evapotranspiration along the basin. Two-way coupled models are necessary to better understand processes in large semi-arid wetlands. Finally, such coupled hydrologic and hydrodynamic modelling proves to be an important tool for integrated evaluation of hydrological processes in such poorly gauged, large scale basins. We hope that this model application provides new ways forward for large scale model development in such systems, involving semi-arid regions and complex floodplains.

  8. A Decision Support System for Demand Management of the Rio Conchos Basin, Mexico

    NASA Astrophysics Data System (ADS)

    Stewart, S.; Valdes, J.; Gastelum, J.; Brookshire, D.; Aparicio, J.; Hidalgo, J.; Velazco, I.

    2003-12-01

    There is a need for integrated models of transboundary watersheds such as that of the Rio Grande/Rio Bravo (RGRB) along the US/Mexico border. We present the first stage an interdisciplinary effort to develop a semi-distributed regional dynamic simulation model (DSM) for examining water issues in the Lower RGRB basin. The RGRB serves as the border between the U.S. and Mexico. We focus first on the Conchos River basin, which contributes approximately 70-80% of the surface flow in the lower RGRB basin. Irrigated agriculture has historically been the major user of water and irrigated acreage continues to expand, but it faces increasing competition from industrial development, maquiladoras, and increasing residential water demand. International agreements such as the Treaty of 1944 between the US and Mexico stipulate that the flows in the RGRB are equally split. Yet uncertainties remain due to vagaries in the legislation. For example, Mexico is required to provide an average of 350,000 AF/yr over a five-year cycle, unless "extraordinary drought" occurs, although the Treaty does not define extraordinary. The characterization of droughts poses a significant problem for hydrometeorologists and water resource engineers. Our simulation model incorporates drought indices developed to characterize droughts in semi-arid and arid regions and statistical approaches to examine the spatial influence of droughts. To examine the effects of various structural and institutional changes to water use in the basin to meet the requirements of the Treaty and simulate climactic issues, we model agricultural, municipal, and industrial water demands that are directly linked to sectors of the regional economy using input output (IO) models. IO models can be used to examine how changes in water deliveries to the agricultural or manufacturing sectors affect the level of output, employment, and wages in the regional economy. All model outputs will be incorporated into a decision support system that will provide a tool to simulate hydrological profiles, ecosystem variability, changes in irrigation technology, and changes in management regimes within the basin and will serve to inform decision-makers of the water demand and supply changes necessary to meet the needs of international obligations and growing populations in the short and long term. The initial set of available management options include water banking and water trading within each country as well as irrigation standards, application efficiency, and water banking across borders.

  9. Stratigraphic Signatures of Forearc Basin Formation Mechanisms

    NASA Astrophysics Data System (ADS)

    Mannu, U.; Ueda, K.; Gerya, T.; Willett, S.; Strasser, M.

    2014-12-01

    Forearc basins are loci of active sedimentation above the landward portion of accretionary prisms. Although these basins typically remain separated from the frontal prism by a forearc high, their evolution has a significant impact on the structure and deformation of the entire wedge. Formation of forearc basins has been proposed as a consequence of changes in wedge stability due to an increase of slab dip in subduction zones. Another hypothesis attributes this to higher hinterland sedimentation, which causes the rear of the wedge to stabilize and eventually develop a forearc basin. Basin stratigraphic architecture, revealed by high-resolution reflection seismic data and borehole data allows interpretation of structural development of the accretionary prism and associated basins with the goal of determining the underlying driving mechanism(s) of basin formation. In this study we supplement data interpretation with thermo-mechanical numerical models including high-resolution isochronal surface tracking to visualize the developing stratigraphy of basins that develop in subduction zone and wedge dynamic models. We use a dynamic 2D thermo mechanical model incorporating surface processes, strain weakening and sediment subduction. The model is a modification of I2VIS model, which is based on conservative, fully staggered finite differences and a non-diffusive marker- in-cell technique capable of modelling mantle convection. In the model different driving mechanisms for basin formation can be explored. Stratigraphic simulations obtained by isochronal surface tracking are compared to reflection pattern and stratigraphy of seismic and borehole data, respectively. Initial results from a model roughly representing the Nankai Trough Subduction Zone offshore Japan are compared to available seismic and Integrated Ocean Drilling (IODP) data. A calibrated model predicting forearc basin stratigraphy will be used to discern the underlying process of basins formation and wedge dynamics.

  10. Integrated surface and groundwater modelling in the Thames Basin, UK using the Open Modelling Interface

    NASA Astrophysics Data System (ADS)

    Mackay, Jonathan; Abesser, Corinna; Hughes, Andrew; Jackson, Chris; Kingdon, Andrew; Mansour, Majdi; Pachocka, Magdalena; Wang, Lei; Williams, Ann

    2013-04-01

    The River Thames catchment is situated in the south-east of England. It covers approximately 16,000 km2 and is the most heavily populated river basin in the UK. It is also one of the driest and has experienced severe drought events in the recent past. With the onset of climate change and human exploitation of our environment, there are now serious concerns over the sustainability of water resources in this basin with 6 million m3 consumed every day for public water supply alone. Groundwater in the Thames basin is extremely important, providing 40% of water for public supply. The principal aquifer is the Chalk, a dual permeability limestone, which has been extensively studied to understand its hydraulic properties. The fractured Jurassic limestone in the upper catchment also forms an important aquifer, supporting baseflow downstream during periods of drought. These aquifers are unconnected other than through the River Thames and its tributaries, which provide two-thirds of London's drinking water. Therefore, to manage these water resources sustainably and to make robust projections into the future, surface and groundwater processes must be considered in combination. This necessitates the simulation of the feedbacks and complex interactions between different parts of the water cycle, and the development of integrated environmental models. The Open Modelling Interface (OpenMI) standard provides a method through which environmental models of varying complexity and structure can be linked, allowing them to run simultaneously and exchange data at each timestep. This architecture has allowed us to represent the surface and subsurface flow processes within the Thames basin at an appropriate level of complexity based on our understanding of particular hydrological processes and features. We have developed a hydrological model in OpenMI which integrates a process-driven, gridded finite difference groundwater model of the Chalk with a more simplistic, semi-distributed conceptual model of the Jurassic limestone. A distributed river routing model of the Thames has also been integrated to connect the surface and subsurface hydrological processes. This application demonstrates the potential benefits and issues associated with implementing this approach.

  11. Methodology and application of combined watershed and ground-water models in Kansas

    USGS Publications Warehouse

    Sophocleous, M.; Perkins, S.P.

    2000-01-01

    Increased irrigation in Kansas and other regions during the last several decades has caused serious water depletion, making the development of comprehensive strategies and tools to resolve such problems increasingly important. This paper makes the case for an intermediate complexity, quasi-distributed, comprehensive, large-watershed model, which falls between the fully distributed, physically based hydrological modeling system of the type of the SHE model and the lumped, conceptual rainfall-runoff modeling system of the type of the Stanford watershed model. This is achieved by integrating the quasi-distributed watershed model SWAT with the fully-distributed ground-water model MODFLOW. The advantage of this approach is the appreciably smaller input data requirements and the use of readily available data (compared to the fully distributed, physically based models), the statistical handling of watershed heterogeneities by employing the hydrologic-response-unit concept, and the significantly increased flexibility in handling stream-aquifer interactions, distributed well withdrawals, and multiple land uses. The mechanics of integrating the component watershed and ground-water models are outlined, and three real-world management applications of the integrated model from Kansas are briefly presented. Three different aspects of the integrated model are emphasized: (1) management applications of a Decision Support System for the integrated model (Rattlesnake Creek subbasin); (2) alternative conceptual models of spatial heterogeneity related to the presence or absence of an underlying aquifer with shallow or deep water table (Lower Republican River basin); and (3) the general nature of the integrated model linkage by employing a watershed simulator other than SWAT (Wet Walnut Creek basin). These applications demonstrate the practicality and versatility of this relatively simple and conceptually clear approach, making public acceptance of the integrated watershed modeling system much easier. This approach also enhances model calibration and thus the reliability of model results. (C) 2000 Elsevier Science B.V.Increased irrigation in Kansas and other regions during the last several decades has caused serious water depletion, making the development of comprehensive strategies and tools to resolve such problems increasingly important. This paper makes the case for an intermediate complexity, quasi-distributed, comprehensive, large-watershed model, which falls between the fully distributed, physically based hydrological modeling system of the type of the SHE model and the lumped, conceptual rainfall-runoff modeling system of the type of the Stanford watershed model. This is achieved by integrating the quasi-distributed watershed model SWAT with the fully-distributed ground-water model MODFLOW. The advantage of this approach is the appreciably smaller input data requirements and the use of readily available data (compared to the fully distributed, physically based models), the statistical handling of watershed heterogeneities by employing the hydrologic-response-unit concept, and the significantly increased flexibility in handling stream-aquifer interactions, distributed well withdrawals, and multiple land uses. The mechanics of integrating the component watershed and ground-water models are outlined, and three real-world management applications of the integrated model from Kansas are briefly presented. Three different aspects of the integrated model are emphasized: (1) management applications of a Decision Support System for the integrated model (Rattlesnake Creek subbasin); (2) alternative conceptual models of spatial heterogeneity related to the presence or absence of an underlying aquifer with shallow or deep water table (Lower Republican River basin); and (3) the general nature of the integrated model linkage by employing a watershed simulator other than SWAT (Wet Walnut Creek basin). These applications demonstrate the practicality and ve

  12. Building Adaptive Capacity with the Delphi Method and Mediated Modeling for Water Quality and Climate Change Adaptation in Lake Champlain Basin

    NASA Astrophysics Data System (ADS)

    Coleman, S.; Hurley, S.; Koliba, C.; Zia, A.; Exler, S.

    2014-12-01

    Eutrophication and nutrient pollution of surface waters occur within complex governance, social, hydrologic and biophysical basin contexts. The pervasive and perennial nutrient pollution in Lake Champlain Basin, despite decades of efforts, exemplifies problems found across the world's surface waters. Stakeholders with diverse values, interests, and forms of explicit and tacit knowledge determine water quality impacts through land use, agricultural and water resource decisions. Uncertainty, ambiguity and dynamic feedback further complicate the ability to promote the continual provision of water quality and ecosystem services. Adaptive management of water resources and land use requires mechanisms to allow for learning and integration of new information over time. The transdisciplinary Research on Adaptation to Climate Change (RACC) team is working to build regional adaptive capacity in Lake Champlain Basin while studying and integrating governance, land use, hydrological, and biophysical systems to evaluate implications for adaptive management. The RACC team has engaged stakeholders through mediated modeling workshops, online forums, surveys, focus groups and interviews. In March 2014, CSS2CC.org, an interactive online forum to source and identify adaptive interventions from a group of stakeholders across sectors was launched. The forum, based on the Delphi Method, brings forward the collective wisdom of stakeholders and experts to identify potential interventions and governance designs in response to scientific uncertainty and ambiguity surrounding the effectiveness of any strategy, climate change impacts, and the social and natural systems governing water quality and eutrophication. A Mediated Modeling Workshop followed the forum in May 2014, where participants refined and identified plausible interventions under different governance, policy and resource scenarios. Results from the online forum and workshop can identify emerging consensus across scales and sectors and be simulated in adaptation scenarios within integrated models. Comparing interventions and scenarios to existing and planned policy and governance systems in Lake Champlain Basin allows for new feedback to build adaptive capacity to identify key leverage points in the coupled natural and human system.

  13. Simulating landscape change in the Olympic Peninsula using spatial ecological and socioeconomic data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flamm, R.O.; Gottfried, R.; Lee, R.G.

    1994-06-01

    Ecological and socioeconomic data were integrated to study landscape change for the Dungeness River basin in the Olympic Peninsula, Washington State. A multinomial logit procedure was used to evaluate twenty-two maps representing various data themes to derive transition probabilities of land cover change. Probabilities of forest disturbance were greater on private land than public. Between 1975 and 1988, forest cover increased, grassy/brushy covers decreased, and the number of forest patches increased about 30%. Simulations were run to estimate future land cover. These results were represented as frequency distributions for proportion cover and patch characteristics.

  14. A Conceptual Framework for SAHRA Integrated Multi-resolution Modeling in the Rio Grande Basin

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Gupta, H.; Springer, E.; Wagener, T.; Brookshire, D.; Duffy, C.

    2004-12-01

    The sustainable management of water resources in a river basin requires an integrated analysis of the social, economic, environmental and institutional dimensions of the problem. Numerical models are commonly used for integration of these dimensions and for communication of the analysis results to stakeholders and policy makers. The National Science Foundation Science and Technology Center for Sustainability of semi-Arid Hydrology and Riparian Areas (SAHRA) has been developing integrated multi-resolution models to assess impacts of climate variability and land use change on water resources in the Rio Grande Basin. These models not only couple natural systems such as surface and ground waters, but will also include engineering, economic and social components that may be involved in water resources decision-making processes. This presentation will describe the conceptual framework being developed by SAHRA to guide and focus the multiple modeling efforts and to assist the modeling team in planning, data collection and interpretation, communication, evaluation, etc. One of the major components of this conceptual framework is a Conceptual Site Model (CSM), which describes the basin and its environment based on existing knowledge and identifies what additional information must be collected to develop technically sound models at various resolutions. The initial CSM is based on analyses of basin profile information that has been collected, including a physical profile (e.g., topographic and vegetative features), a man-made facility profile (e.g., dams, diversions, and pumping stations), and a land use and ecological profile (e.g., demographics, natural habitats, and endangered species). Based on the initial CSM, a Conceptual Physical Model (CPM) is developed to guide and evaluate the selection of a model code (or numerical model) for each resolution to conduct simulations and predictions. A CPM identifies, conceptually, all the physical processes and engineering and socio-economic activities occurring (or to occur) in the real system that the corresponding numerical models are required to address, such as riparian evapotranspiration responses to vegetation change and groundwater pumping impacts on soil moisture contents. Simulation results from different resolution models and observations of the real system will then be compared to evaluate the consistency among the CSM, the CPMs, and the numerical models, and feedbacks will be used to update the models. In a broad sense, the evaluation of the models (conceptual or numerical), as well as the linkages between them, can be viewed as a part of the overall conceptual framework. As new data are generated and understanding improves, the models will evolve, and the overall conceptual framework is refined. The development of the conceptual framework becomes an on-going process. We will describe the current state of this framework and the open questions that have to be addressed in the future.

  15. Human-induced Terrestrial Water Storage Change: A Global Analysis using Hydrological Models and GRACE

    NASA Astrophysics Data System (ADS)

    Felfelani, F.; Pokhrel, Y. N.

    2016-12-01

    Hydrological models and data derived from the Gravity Recovery and Climate Experiment (GRACE) satellite mission are used to study terrestrial water storage (TWS) change; however, both have disadvantages that necessitate the integrated use of them. While GRACE doesn't disintegrate the vertical storage into its components, most models do not account for human activities. Here we use two Land Surface Models (LSMs), i.e., HiGW-MAT and PCRGLOBWB that fully couple natural and human drivers of changes in water cycle, explicitly simulating the changes in various TWS compartments. We first evaluate the models performance with GRACE observations. Then, we quantify the human footprint over global river basins located in different geographic and climate regions. To quantify human impacts, a new framework is proposed based on the GRACE observations (representing both climate variability and human activities) together with the natural simulation of LSMs using water budget equation (P-ET-R; P for precipitation, ET for evapotranspiration, and R for runoff). Finally, we examine the uncertainty in TWS simulations arising from the uncertainties in forcing data. Results indicate that, in snow-dominated regions, PCRGLOBWB generally fails to reproduce neither the interannual variability of observed TWS nor the seasonal cycle, while HiGW-MAT model shows significantly better results. In basins with human signatures, PCRGLOBWB generally shows better agreement with GRACE compared to HiGW-MAT. It is found that HiGW-MAT tends to overestimate groundwater depletion in basins with human impacts (e.g., Amudarya, Colorado, Euphrates and Indus), which results in larger negative interannual TWS trend compared to GRACE. Euphrates and Ganges river basins experience the highest human-induced TWS deficit rates (2.08 cm/yr and 1.94 cm/yr, respectively) during the simulation period of 2002-2010. Uncertainty analysis of results from the same model but with different forcing data suggests a high standard deviation in the order of 10 cm/yr.

  16. A comparison of integrated river basin management strategies: A global perspective

    NASA Astrophysics Data System (ADS)

    Zhao, Chunhong; Wang, Pei; Zhang, Guanghong

    In order to achieve the integrated river basin management in the arid and rapid developing region, the Heihe River Basin (HRB) in Northwestern China, one of critical river basins were selected as a representative example, while the Murray-Darling Basin (MDB) in Australia and the Colorado River Basin (CRB) in the USA were selected for comparative analysis in this paper. Firstly, the comparable characters and hydrological contexts of these three watersheds were introduced in this paper. Then, based on comparative studies on the river basin challenges in terms of the drought, intensive irrigation, and rapid industrialization, the hydrological background of the MDB, the CRB and the HRB was presented. Subsequently, the river management strategies were compared in three aspects: water allocation, water organizations, and water act and scientific projects. Finally, we proposed recommendations for integrated river basin management for the HRB: (1) Water allocation strategies should be based on laws and markets on the whole basin; (2) Public participation should be stressed by the channels between governance organizations and local communities; (3) Scientific research should be integrated into river management to understand the interactions between the human and nature.

  17. Phase II modification of the Water Availability Tool for Environmental Resources (WATER) for Kentucky: The sinkhole-drainage process, point-and-click basin delineation, and results of karst test-basin simulations

    USGS Publications Warehouse

    Taylor, Charles J.; Williamson, Tanja N.; Newson, Jeremy K.; Ulery, Randy L.; Nelson, Hugh L.; Cinotto, Peter J.

    2012-01-01

    This report describes Phase II modifications made to the Water Availability Tool for Environmental Resources (WATER), which applies the process-based TOPMODEL approach to simulate or predict stream discharge in surface basins in the Commonwealth of Kentucky. The previous (Phase I) version of WATER did not provide a means of identifying sinkhole catchments or accounting for the effects of karst (internal) drainage in a TOPMODEL-simulated basin. In the Phase II version of WATER, sinkhole catchments are automatically identified and delineated as internally drained subbasins, and a modified TOPMODEL approach (called the sinkhole drainage process, or SDP-TOPMODEL) is applied that calculates mean daily discharges for the basin based on summed area-weighted contributions from sinkhole drain-age (SD) areas and non-karstic topographically drained (TD) areas. Results obtained using the SDP-TOPMODEL approach were evaluated for 12 karst test basins located in each of the major karst terrains in Kentucky. Visual comparison of simulated hydrographs and flow-duration curves, along with statistical measures applied to the simulated discharge data (bias, correlation, root mean square error, and Nash-Sutcliffe efficiency coefficients), indicate that the SDPOPMODEL approach provides acceptably accurate estimates of discharge for most flow conditions and typically provides more accurate simulation of stream discharge in karstic basins compared to the standard TOPMODEL approach. Additional programming modifications made to the Phase II version of WATER included implementation of a point-and-click graphical user interface (GUI), which fully automates the delineation of simulation-basin boundaries and improves the speed of input-data processing. The Phase II version of WATER enables the user to select a pour point anywhere on a stream reach of interest, and the program will automatically delineate all upstream areas that contribute drainage to that point. This capability enables automatic delineation of a simulation basin of any size (area) and having any level of stream-network complexity. WATER then automatically identifies the presence of sinkholes catchments within the simulation basin boundaries; extracts and compiles the necessary climatic, topographic, and basin characteristics datasets; and runs the SDP-TOPMODEL approach to estimate daily mean discharges (streamflow).

  18. A water resources simulation gaming model for the Invitational Drought Tournament.

    PubMed

    Wang, K; Davies, E G R

    2015-09-01

    A system dynamics-based simulation gaming model, developed as a component of Agriculture and Agri-Food Canada's Invitational Drought Tournament (IDT; Hill et al., 2014), is introduced in this paper as a decision support tool for drought management at the river-basin scale. This IDT Model provides a comprehensive and integrated overview of drought conditions, and illustrates the broad effects of socio-economic drought and mitigation strategies. It is intended to provide a safe, user-friendly experimental environment with fast run-times for testing management options, and to promote collaborative decision-making and consensus building. Examples of model results from several recent IDT events demonstrate potential effects of drought and the short-to longer-term effectiveness of policies selected by IDT teams; such results have also improved teams' understanding of the complexity of water resources systems and their management trade-offs. The IDT Model structure and framework can also be reconfigured quickly for application to different river basins. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Hydrogeology and ground-water flow in the carbonate rocks of the Little Lehigh Creek basin, Lehigh County, Pennsylvania

    USGS Publications Warehouse

    Sloto, R.A.; Cecil, L.D.; Senior, L.A.

    1991-01-01

    The Little Lehigh Creek basin is underlain mainly by a complex assemblage of highly-deformed Cambrian and Ordovician carbonate rocks. The Leithsville Formation, Allentown Dolomite, Beekmantown Group, and Jacksonburg Limestone act as a single hydrologic unit. Ground water moves through fractures and other secondary openings and generally is under water-table conditions. Median annual ground-water discharge (base flow) to Little Lehigh Creek near Allentown (station 01451500) during 1946-86 was 12.97 inches or 82 percent of streamflow. Average annual recharge for 1975-83 was 21.75 inches. Groundwater and surface-water divides do not coincide in the basin. Ground-water underflow from the Little Lehigh Creek basin to the Cedar Creek basin in 1987 was 4 inches per year. A double-mass curve analysis of the relation of cumulative precipitation at Allentown to the flow of Schantz Spring for 1956-84 showed that cessation of quarry pumping and development of ground water for public supply in the Schantz Spring basin did not affect the flow of Schantz Spring. Ground-water flow in the Little Lehigh Creek basin was simulated using a finite-difference, two-dimensional computer model. The geologic units in the modeled area were simulated as a single water-table aquifer. The 134-squaremile area of carbonate rocks between the Lehigh River and Sacony Creek was modeled to include the natural hydrologic boundaries of the ground-water-flow system. The ground-water-flow model was calibrated under steady-state conditions using 1975-83 average recharge, evapotranspiration, and pumping rates. Each geologic unit was assigned a different hydraulic conductivity. Initial aquifer hydraulic conductivity was estimated from specific-capacity data. The average (1975-83) water budget for the Little Lehigh Creek basin was simulated. The simulated base flow from the carbonate rocks of the Little Lehigh Creek basin above gaging station 01451500 is 11.85 inches per year. The simulated ground-water underflow from the Little Lehigh Creek basin to the Cedar Creek basin is 4.04 inches per year. For steady-state calibration, the root-mean-squared difference between observed and simulated heads was 21.19 feet. The effects of increased ground-water development on base flow and underflow out of the Little Lehigh Creek basin for average and drought conditions were simulated by locating a hypothetical well field in different parts of the basin. Steady-state simulations were used to represent equilibrium conditions, which would be the maximum expected long-term effect. Increased ground-water development was simulated as hypothetical well fields pumping at the rate of 15, 25, and 45 million gallons per day in addition to existing ground-water withdrawals. Four hypothetical well fields were located near and away from Little Lehigh Creek in upstream and downstream areas. The effects of pumping a well field in different parts of the Little Lehigh Creek basin were compared. Pumping a well field located near the headwaters of Little Lehigh Creek and away from the stream would have greatest effect on inducing underflow from the Sacony Greek basin and the least effect on reducing base flow and underflow to the Ceda^r Creek basin. Pumping a well field located near the headwaters of Little Leh|igh Creek near the stream would have less impact on inducing underflow from|the Sacony Creek basin and a greater impact on reducing the base flow of Little Lehigh Creek because more of the pumpage would come from diverted base flow. Pumping a well field located in the downstream area of the Little Lehigh Creek basin away from the stream would have the greatest effect on the underflow to the Cedar Creek basin. Pumping a well field located in the downstream area of the Little Lehigh Creek basin near the stream would have the greatest effect on reducing the base flow of Little Lehigh Cteek. Model simulations show that groundwater withdrawals do not cause a proportional reduction in base flow. Under average conditions, ground-water withdrawals are equal to 48 to 70 percent of simulated base-flow reductions; under drought conditions, ground-water withdrawals are equal to 35 to 73 percent of simulated base-flow reductions. The hydraulic effects of pumping largely depend on well location. In the Little Lehigh basin, surface-water and ground-water divides do not coincide, and ground-water development, especially near surface-water divides, can cause ground-water divides to shift and induce ground-water underflow from adjacent basins. Large-scale ground-water pumping in a basin may not produce expected reductions of base flow in that basin because of shifts in the ground-water divide; however, such shifts can reduce base flow in adjacent surface-water basins. 

  20. Simulating land-use changes and stormwater-detention basins and evaluating their effect on peak streamflows and stream-water quality in Irondequoit Creek basin, New York—A user's manual for HSPF and GenScn

    USGS Publications Warehouse

    Coon, William F.

    2003-01-01

    A computer model of hydrologic and water-quality processes of the Irondequoit Creek basin in Monroe and Ontario Counties, N.Y., was developed during 2000-02 to enable water-resources managers to simulate the effects of future development and stormwater-detention basins on peak flows and water quality of Irondequoit Creek and its tributaries. The model was developed with the program Hydrological Simulation Program-Fortran (HSPF) such that proposed or hypothetical land-use changes and instream stormwater-detention basins could be simulated, and their effects on peak flows and loads of total suspended solids, total phosphorus, ammonia-plus-organic nitrogen, and nitrate-plus-nitrite nitrogen could be analyzed, through an interactive computer program known as Generation and Analysis of Model Simulation Scenarios for Watersheds (GenScn). This report is a user's manual written to guide the Irondequoit Creek Watershed Collaborative in (1) the creation of land-use and flow-detention scenarios for simulation by the HSPF model, and (2) the use of GenScn to analyze the results of these simulations. These analyses can, in turn, aid the group in making basin-wide water-resources-management decisions.

  1. Impacts of Biofuel-Induced Agricultural Land Use Changes on Watershed Hydrology and Water Quality

    NASA Astrophysics Data System (ADS)

    Lin, Z.; Zheng, H.

    2015-12-01

    The US Energy Independence and Security Act (EISA) of 2007 has contributed to widespread changes in agricultural land uses. The impact of these land use changes on regional water resources could also be significant. Agricultural land use changes were evaluated for the Red River of the North Basin (RRNB), an international river basin shared by the US and Canada. The influence of the land use changes on spring snowmelt flooding and downstream water quality was also assessed using watershed modeling. The planting areas for corn and soybean in the basin increased by 62% and 18%, while those for spring wheat, forest, and pasture decreased by 30%, 18%, and 50%, from 2006 to 2013. Although the magnitude of spring snowmelt peak flows in the Red River did not change from pre-EISA to post-EISA, our uncertainty analysis of the normalized hydrographs revealed that the downstream streamflows had a greater variability under the post-EISA land use scenario, which may lead to greater uncertainty in predicting spring snowmelt floods in the Red River. Hydrological simulation also showed that the sediment and nutrient loads at the basin's outlet in the US and Canada border increased under the post-EISA land use scenario, on average sediment increasing by 2.6%, TP by 14.1%, nitrate nitrogen by 5.9%, and TN by 9.1%. Potential impacts of the future biofuel crop scenarios on watershed hydrology and water quality in the RRNB were also simulated through integrated economic-hydrologic modeling.

  2. A coupled hydrological-hydraulic flood inundation model calibrated using post-event measurements and integrated uncertainty analysis in a poorly gauged Mediterranean basin

    NASA Astrophysics Data System (ADS)

    Hdeib, Rouya; Abdallah, Chadi; Moussa, Roger; Colin, Francois

    2017-04-01

    Developing flood inundation maps of defined exceedance probabilities is required to provide information on the flood hazard and the associated risk. A methodology has been developed to model flood inundation in poorly gauged basins, where reliable information on the hydrological characteristics of floods are uncertain and partially captured by the traditional rain-gauge networks. Flood inundation is performed through coupling a hydrological rainfall-runoff (RR) model (HEC-HMS) with a hydraulic model (HEC-RAS). The RR model is calibrated against the January 2013 flood event in the Awali River basin, Lebanon (300 km2), whose flood peak discharge was estimated by post-event measurements. The resulting flows of the RR model are defined as boundary conditions of the hydraulic model, which is run to generate the corresponding water surface profiles and calibrated against 20 post-event surveyed cross sections after the January-2013 flood event. An uncertainty analysis is performed to assess the results of the models. Consequently, the coupled flood inundation model is simulated with design storms and flood inundation maps are generated of defined exceedance probabilities. The peak discharges estimated by the simulated RR model were in close agreement with the results from different empirical and statistical methods. This methodology can be extended to other poorly gauged basins facing common stage-gauge failure or characterized by floods with a stage exceeding the gauge measurement level, or higher than that defined by the rating curve.

  3. Simulation of groundwater and surface-water resources and evaluation of water-management alternatives for the Chamokane Creek basin, Stevens County, Washington

    USGS Publications Warehouse

    Ely, D. Matthew; Kahle, Sue C.

    2012-01-01

    A three-dimensional, transient numerical model of groundwater and surface-water flow was constructed for Chamokane Creek basin to better understand the groundwater-flow system and its relation to surface-water resources. The model described in this report can be used as a tool by water-management agencies and other stakeholders to quantitatively evaluate the effects of potential increases in groundwater pumping on groundwater and surface-water resources in the basin. The Chamokane Creek model was constructed using the U.S. Geological Survey (USGS) integrated model, GSFLOW. GSFLOW was developed to simulate coupled groundwater and surface-water resources. The model uses 1,000-foot grid cells that subdivide the model domain by 102 rows and 106 columns. Six hydrogeologic units in the model are represented using eight model layers. Daily precipitation and temperature were spatially distributed and subsequent groundwater recharge was computed within GSFLOW. Streamflows in Chamokane Creek and its major tributaries are simulated in the model by routing streamflow within a stream network that is coupled to the groundwater-flow system. Groundwater pumpage and surface-water diversions and returns specified in the model were derived from monthly and annual pumpage values previously estimated from another component of this study and new data reported by study partners. The model simulation period is water years 1980-2010 (October 1, 1979, to September 30, 2010), but the model was calibrated to the transient conditions for water years 1999-2010 (October 1, 1998, to September 30, 2010). Calibration was completed by using traditional trial-and-error methods and automated parameter-estimation techniques. The model adequately reproduces the measured time-series groundwater levels and daily streamflows. At well observation points, the mean difference between simulated and measured hydraulic heads is 7 feet with a root-mean-square error divided by the total difference in water levels of 4.7 percent. Simulated streamflow was compared to measured streamflow at the USGS streamflow-gaging station-Chamokane Creek below Falls, near Long Lake (12433200). Annual differences between measured and simulated streamflow for the site ranged from -63 to 22 percent. Calibrated model output includes a 31-year estimate of monthly water budget components for the hydrologic system. Five model applications (scenarios) were completed to obtain a better understanding of the relation between groundwater pumping and surface-water resources. The calibrated transient model was used to evaluate: (1) the connection between the upper- and middle-basin groundwater systems, (2) the effect of surface-water and groundwater uses in the middle basin, (3) the cumulative impacts of claims registry use and permit-exempt wells on Chamokane Creek streamflow, (4) the frequency of regulation due to impacted streamflow, and (5) the levels of domestic and stockwater use that can be regulated. The simulation results indicated that streamflow is affected by existing groundwater pumping in the upper and middle basins. Simulated water-management scenarios show streamflow increased relative to historical conditions as groundwater and surface-water withdrawals decreased.

  4. MoGIRE: A Model for Integrated Water Management

    NASA Astrophysics Data System (ADS)

    Reynaud, A.; Leenhardt, D.

    2008-12-01

    Climate change and growing water needs have resulted in many parts of the world in water scarcity problems that must by managed by public authorities. Hence, policy-makers are more and more often asked to define and to implement water allocation rules between competitive users. This requires to develop new tools aiming at designing those rules for various scenarios of context (climatic, agronomic, economic). If models have been developed for each type of water use however, very few integrated frameworks link these different uses, while such an integrated approach is a relevant stake for designing regional water and land policies. The lack of such integrated models can be explained by the difficulty of integrating models developed by very different disciplines and by the problem of scale change (collecting data on large area, arbitrate between the computational tractability of models and their level of aggregation). However, modelers are more and more asked to deal with large basin scales while analyzing some policy impacts at very high detailed levels. These contradicting objectives require to develop new modeling tools. The CALVIN economically-driven optimization model developed for managing water in California is a good example of this type of framework, Draper et al. (2003). Recent reviews of the literature on integrated water management at the basin level include Letcher et al. (2007) or Cai (2008). We present here an original framework for integrated water management at the river basin scale called MoGIRE ("Modèle pour la Gestion Intégrée de la Ressource en Eau"). It is intended to optimize water use at the river basin level and to evaluate scenarios (agronomic, climatic or economic) for a better planning of agricultural and non-agricultural water use. MoGIRE includes a nodal representation of the water network. Agricultural, urban and environmental water uses are also represented using mathematical programming and econometric approaches. The model then optimizes at each date (10 days step) the allocation of water across agricultural and urban water demands in order to maximize the social surplus derived from water consumption given the constraints imposed by the water network. An application of the model is proposed for the Neste system located in South-West of France. 67 regions competing for water allocation have been identified in the Neste system. Those regions are characterized by specific cropping systems, specific climate and soil characteristics and by their connections to the water network. The model, including the nodal representation of the water network, has been coded using the algebraic modeling language GAMS. We are currently analyzing the robustness of the approach through scenario testing. Keywords : Integrated water management, optimization-simulation model, agronomic-economic modeling, river basin.

  5. Eco-hydrological Wireless Sensor Network and upscaling method research in the Heihe River Basin, China

    NASA Astrophysics Data System (ADS)

    Jin, Rui; kang, Jian

    2017-04-01

    Wireless Sensor Networks are recognized as one of most important near-surface components of GEOSS (Global Earth Observation System of Systems), with flourish development of low-cost, robust and integrated data loggers and sensors. A nested eco-hydrological wireless sensor network (EHWSN) was installed in the up- and middle-reaches of the Heihe River Basin, operated to obtain multi-scale observation of soil moisture, soil temperature and land surface temperature from 2012 till now. The spatial distribution of EHWSN was optimally designed based on the geo-statistical theory, with the aim to capture the spatial variations and temporal dynamics of soil moisture and soil temperature, and to produce ground truth at grid scale for validating the related remote sensing products and model simulation in the heterogeneous land surface. In terms of upscaling research, we have developed a set of method to aggregate multi-point WSN observations to grid scale ( 1km), including regression kriging estimation to utilize multi-resource remote sensing auxiliary information, block kriging with homogeneous measurement errors, and bayesian-based upscaling algorithm that utilizes MODIS-derived apparent thermal inertia. All the EHWSN observation are organized as datasets to be freely published at http://westdc.westgis.ac.cn/hiwater. EHWSN integrates distributed observation nodes to achieve an automated, intelligent and remote-controllable network that provides superior integrated, standardized and automated observation capabilities for hydrological and ecological processes research at the basin scale.

  6. Integrated scientific assessment for ecosystem management in the interior Columbia Basin and portions of the Klamath and Great Basins.

    Treesearch

    Thomas M. Quigley; Richard W Haynes; Russell T. Graham

    1996-01-01

    The Integrated Scientific Assessment for Ecosystem Management for the Interior Columbia Basin links landscape, aquatic, terrestrial, social, and economic characterizations to describe biophysical and social systems. Integration was achieved through a framework built around six goals for ecosystem management and three different views of the future. These goals are:...

  7. Ethiopian Central Rift Valley basin hydrologic modelling using HEC-HMS and ArcSWAT

    NASA Astrophysics Data System (ADS)

    Pascual-Ferrer, Jordi; Candela, Lucila; Pérez-Foguet, Agustí

    2013-04-01

    An Integrated Water Resources Management (IWRM) shall be applied to achieve a sustainable development, to increase population incomes without affecting lives of those who are highly dependent on the environment. First step should be to understand water dynamics at basin level, starting by modeling the basin water resources. For model implementation, a large number of data and parameters are required, but those are not always available, especially in some developing countries where different sources may have different data, there is lack of information on data collection, etc. The Ethiopian Central Rift Valley (CRV) is an endorheic basin covering an area of approximately 10,000 km2. For the period 1996-2005, the average annual volume of rainfall accounted for 9.1 Mm3, and evapotranspiration for 8 Mm3 (Jansen et al., 2007). From the environmental point of view, basin ecosystems are endangered due to human activities. Also, poverty is widespread all over the basin, with population mainly living from agriculture on a subsistence economy. Hence, there is an urgent need to set an IWRM, but datasets required for water dynamics simulation are not too reliable. In order to reduce uncertainty of numerical simulation, two semi-distributed open software hydrologic models were implemented: HEC-HMS and ArcSWAT. HEC-HMS was developed by the United States Army Corps of Engineers (USACoE) Hydrologic Engineering Center (HEC) to run precipitation-runoff simulations for a variety of applications in dendritic watershed systems. ArcSWAT includes the SWAT (Soil and Water Assessment Tool, Arnold et al., 1998) model developed for the USDA Agricultural Research Service into ArcGIS (ESRI®). SWAT was developed to assess the impact of land management practices on large complex watersheds with varying soils, land use and management conditions over long periods of time (Neitsch et al., 2005). According to this, ArcSWAT would be the best option for IWRM implementation in the basin. However, considering data uncertainty and model complexity a previous hydrologic assessment of the basin based in HEC-HMS simulation is advisable. As a first approach HEC-HMS was implemented for basin modeling in order to get physical parameters of interest, results from HEC-HMS calibration were used to setup the accuracy of the ArcSWAT numerical modelling. References Arnold, J.G., Srinivasan, R., Muttiah, R.S. & Williams, J.R. (1998). Large Area Hydrologic Modeling and Assessment Part I: Model Development. JAWRA Journal of the American Water Resources Association, Vol. 34, No. 1, pp. 73-89. Jansen, H., Hengsdijk, H., Legesse, D., Ayenew, T., Hellegers, P. & Spliethoff, P. (2007). Land and water resources assessment in the Ethiopian Central Rift Valley. In Alterra report 1587. Wageningen: Alterra. p. 81. Neitsch, S.L., Arnold, J.G., Kiniry, J.R. & Williams, J.R. (2005). Soil and Water Assessment Tool Theoretical Documentation. Version 2005, Temple, Texas.

  8. Simulation of streamflow and sediment transport in two surface-coal-mined basins in Fayette County, Pennsylvania

    USGS Publications Warehouse

    Sams, J. I.; Witt, E. C.

    1995-01-01

    The Hydrological Simulation Program - Fortran (HSPF) was used to simulate streamflow and sediment transport in two surface-mined basins of Fayette County, Pa. Hydrologic data from the Stony Fork Basin (0.93 square miles) was used to calibrate HSPF parameters. The calibrated parameters were applied to an HSPF model of the Poplar Run Basin (8.83 square miles) to evaluate the transfer value of model parameters. The results of this investigation provide information to the Pennsylvania Department of Environmental Resources, Bureau of Mining and Reclamation, regarding the value of the simulated hydrologic data for use in cumulative hydrologic-impact assessments of surface-mined basins. The calibration period was October 1, 1985, through September 30, 1988 (water years 1986-88). The simulated data were representative of the observed data from the Stony Fork Basin. Mean simulated streamflow was 1.64 cubic feet per second compared to measured streamflow of 1.58 cubic feet per second for the 3-year period. The difference between the observed and simulated peak stormflow ranged from 4.0 to 59.7 percent for 12 storms. The simulated sediment load for the 1987 water year was 127.14 tons (0.21 ton per acre), which compares to a measured sediment load of 147.09 tons (0.25 ton per acre). The total simulated suspended-sediment load for the 3-year period was 538.2 tons (0.30 ton per acre per year), which compares to a measured sediment load of 467.61 tons (0.26 ton per acre per year). The model was verified by comparing observed and simulated data from October 1, 1988, through September 30, 1989. The results obtained were comparable to those from the calibration period. The simulated mean daily discharge was representative of the range of data observed from the basin and of the frequency with which specific discharges were equalled or exceeded. The calibrated and verified parameters from the Stony Fork model were applied to an HSPF model of the Poplar Run Basin. The two basins are in a similar physical setting. Data from October 1, 1987, through September 30, 1989, were used to evaluate the Poplar Run model. In general, the results from the Poplar Run model were comparable to those obtained from the Stony Fork model. The difference between observed and simulated total streamflow was 1.1 percent for the 2-year period. The mean annual streamflow simulated by the Poplar Run model was 18.3 cubic feet per second. This compares to an observed streamflow of 18.15 cubic feet per second. For the 2-year period, the simulated sediment load was 2,754 tons (0.24 ton per acre per year), which compares to a measured sediment load of 3,051.2 tons (0.27 ton per acre per year) for the Poplar Run Basin. Cumulative frequency-distribution curves of the observed and simulated streamflow compared well. The comparison between observed and simulated data improved as the time span increased. Simulated annual means and totals were more representative of the observed data than hourly data used in comparing storm events. The structure and organization of the HSPF model facilitated the simulation of a wide range of hydrologic processes. The simulation results from this investigation indicate that model parameters may be transferred to ungaged basins to generate representative hydrologic data through modeling techniques.

  9. Water quality modeling in the systems impact assessment model for the Klamath River basin - Keno, Oregon to Seiad Valley, California

    USGS Publications Warehouse

    Hanna, R. Blair; Campbell, Sharon G.

    2000-01-01

    This report describes the water quality model developed for the Klamath River System Impact Assessment Model (SIAM). The Klamath River SIAM is a decision support system developed by the authors and other US Geological Survey (USGS), Midcontinent Ecological Science Center staff to study the effects of basin-wide water management decisions on anadromous fish in the Klamath River. The Army Corps of Engineersa?? HEC5Q water quality modeling software was used to simulate water temperature, dissolved oxygen and conductivity in 100 miles of the Klamath River Basin in Oregon and California. The water quality model simulated three reservoirs and the mainstem Klamath River influenced by the Shasta and Scott River tributaries. Model development, calibration and two validation exercises are described as well as the integration of the water quality model into the SIAM decision support system software. Within SIAM, data are exchanged between the water quantity model (MODSIM), the water quality model (HEC5Q), the salmon population model (SALMOD) and methods for evaluating ecosystem health. The overall predictive ability of the water quality model is described in the context of calibration and validation error statistics. Applications of SIAM and the water quality model are described.

  10. Upscaling key ecosystem functions across the conterminous United States by a water‐centric ecosystem model

    Treesearch

    Ge Sun; Peter Caldwell; Asko Noormets; Steven G. McNulty; Erika Cohen; al. et.

    2011-01-01

    We developed a water‐centric monthly scale simulation model (WaSSI‐C) by integrating empirical water and carbon flux measurements from the FLUXNET network and an existing water supply and demand accounting model (WaSSI). The WaSSI‐C model was evaluated with basin‐scale evapotranspiration (ET), gross ecosystem productivity (GEP), and net ecosystem exchange (NEE)...

  11. Basin Analysis and Petroleum System Characterisation of Western Bredasdorp Basin, Southern Offshore of South Africa: Insights from a 3d Crust-Scale Basin Model - (Phase 1)

    NASA Astrophysics Data System (ADS)

    Sonibare, W. A.; Scheck-Wenderoth, M.; Sippel, J.; Mikeš, D.

    2012-04-01

    In recent years, construction of 3D geological models and their subsequent upscaling for reservoir simulation has become an important tool within the oil industry for managing hydrocarbon reservoirs and increasing recovery rate. Incorporating petroleum system elements (i.e. source, reservoir and trap) into these models is a relatively new concept that seems very promising to play/prospect risk assessment and reservoir characterisation alike. However, yet to be fully integrated into this multi-disciplinary modelling approach are the qualitative and quantitative impacts of crust-scale basin dynamics on the observed basin-fill architecture and geometries. The focus of this study i.e. Western Bredasdorp Basin constitutes the extreme western section of the larger Bredasdorp sub-basin, which is the westernmost depocentre of the four southern Africa offshore sub-basins (others being Pletmos, Gamtoos and Algoa). These basins, which appear to be initiated by volcanically influenced continental rifting and break-up related to passive margin evolution (during the Mid-Late Jurassic to latest Valanginian), remain previously unstudied for crust-scale basin margin evolution, and particularly in terms of relating deep crustal processes to depo-system reconstruction and petroleum system evolution. Seismic interpretation of 42 2D seismic-reflection profiles forms the basis for maps of 6 stratigraphic horizons which record the syn-rift to post-rift (i.e. early drift and late drift to present-day seafloor) successions. In addition to this established seismic markers, high quality seismic profiles have shown evidence for a pre-rift sequence (i.e. older than Late Jurassic >130 Ma). The first goal of this study is the construction of a 3D gravity-constrained, crust-scale basin model from integration of seismics, well data and cores. This basin model is constructed using GMS (in-house GFZ Geo-Modelling Software) while testing its consistency with the gravity field is performed using IGMAS+ (Interactive Gravity and Magnetic Assistant System; Götze et al., 2010 and Schmidt et al., 2011). The ensuing model will be applied to predict the present-day deep crustal configuration and thermal field characteristics of the basin. Thereafter, 3D volumetric backstripping analysis will be performed to predict basin subsidence mechanisms (i.e. tectonic, thermal and sediment load) through time as well as to estimate paleo-water depths for paleogeographic reconstruction. The information gathered from crust-scale basin dynamics will be subsequently used at the petroleum system modelling stage to holistically assess the hydrocarbon potential of the basin in terms of source rock maturity and hydrocarbon generation, migration, timing and accumulation.

  12. Astronomically Forced Hydrology of the Late Cretaceous Sub-tropical Potosí Basin, Bolivia

    NASA Astrophysics Data System (ADS)

    Tasistro-Hart, A.; Maloof, A. C.; Schoene, B.; Eddy, M. P.

    2017-12-01

    Orbital forcings paced the ice ages of the Pleistocene, demonstrating that periodic variations in the latitudinal distribution of insolation amplified by ice-albedo feedbacks can guide global climate. How these forcings operate in the hot-houses that span most of the planet's history, however, is unknown. The lacustrine El Molino formation of the late Cretaceous-early Paleogene Potosí Basin in present-day Bolivia contains carbonate-mud parasequences that record fluctuating hydrological conditions from 73 to 63 Ma. This study presents the first cyclostratigraphic analysis using high-resolution drone-derived imagery and 3D elevation models, combined with conventional stratigraphic measurements and magnetic susceptibility data. The drone-derived data are integrated over the entire outcrop at two field areas using a novel application of stratigraphic potential field modeling that increases signal-to-noise ratios prior to spectral analysis. We demonstrate that these parasequences exhibit significant periodicities consistent with eccentricity (400 and 100 kyr), obliquity (50 kyr, 40 kyr, and 29 kyr), precession (17-23 kyr), and semi-precession (9-11 kyr). New U-Pb ID-TIMS zircon ages from intercalacted ash beds corroborate the interpreted sedimentation rates at two sites, indicating that the Potosí Basin contains evidence for hot-house astronomical forcing of sub-tropical lacustrine hydrology. Global climate simulations of late Cretaceous orbital end-member configurations demonstrate precessional-eccentricity and obliquity driven modulation of basin hydrology. In model simulations, the forcings drive long-term shifts in the location of the intertropical convergence zone, changing precipitation along the northern extent of the Potosí Basin's catchment area. This study is the first to demonstrate orbital forcing of a lacustrine system during the Maastrichtian and could ultimately contribute to a precise age for the Cretaceous-Paleogene boundary.

  13. Watershed scale response to climate change--Trout Lake Basin, Wisconsin

    USGS Publications Warehouse

    Walker, John F.; Hunt, Randall J.; Hay, Lauren E.; Markstrom, Steven L.

    2012-01-01

    Fourteen basins for which the Precipitation Runoff Modeling System has been calibrated and evaluated were selected as study sites. Precipitation Runoff Modeling System is a deterministic, distributed parameter watershed model developed to evaluate the effects of various combinations of precipitation, temperature, and land use on streamflow and general basin hydrology. Output from five General Circulation Model simulations and four emission scenarios were used to develop an ensemble of climate-change scenarios for each basin. These ensembles were simulated with the corresponding Precipitation Runoff Modeling System model. This fact sheet summarizes the hydrologic effect and sensitivity of the Precipitation Runoff Modeling System simulations to climate change for the Trout River Basin at Trout Lake in northern Wisconsin.

  14. Watershed scale response to climate change--Clear Creek Basin, Iowa

    USGS Publications Warehouse

    Christiansen, Daniel E.; Hay, Lauren E.; Markstrom, Steven L.

    2012-01-01

    Fourteen basins for which the Precipitation Runoff Modeling System has been calibrated and evaluated were selected as study sites. Precipitation Runoff Modeling System is a deterministic, distributed parameter watershed model developed to evaluate the effects of various combinations of precipitation, temperature, and land use on streamflow and general basin hydrology. Output from five General Circulation Model simulations and four emission scenarios were used to develop an ensemble of climate-change scenarios for each basin. These ensembles were simulated with the corresponding Precipitation Runoff Modeling System model. This fact sheet summarizes the hydrologic effect and sensitivity of the Precipitation Runoff Modeling System simulations to climate change for the Clear Creek Basin, near Coralville, Iowa.

  15. Watershed scale response to climate change--Feather River Basin, California

    USGS Publications Warehouse

    Koczot, Kathryn M.; Markstrom, Steven L.; Hay, Lauren E.

    2012-01-01

    Fourteen basins for which the Precipitation Runoff Modeling System has been calibrated and evaluated were selected as study sites. Precipitation Runoff Modeling System is a deterministic, distributed parameter watershed model developed to evaluate the effects of various combinations of precipitation, temperature, and land use on streamflow and general basin hydrology. Output from five General Circulation Model simulations and four emission scenarios were used to develop an ensemble of climate-change scenarios for each basin. These ensembles were simulated with the corresponding Precipitation Runoff Modeling System model. This fact sheet summarizes the hydrologic effect and sensitivity of the Precipitation Runoff Modeling System simulations to climate change for the Feather River Basin, California.

  16. Watershed scale response to climate change--South Fork Flathead River Basin, Montana

    USGS Publications Warehouse

    Chase, Katherine J.; Hay, Lauren E.; Markstrom, Steven L.

    2012-01-01

    Fourteen basins for which the Precipitation Runoff Modeling System has been calibrated and evaluated were selected as study sites. Precipitation Runoff Modeling System is a deterministic, distributed parameter watershed model developed to evaluate the effects of various combinations of precipitation, temperature, and land use on streamflow and general basin hydrology. Output from five General Circulation Model simulations and four emission scenarios were used to develop an ensemble of climate-change scenarios for each basin. These ensembles were simulated with the corresponding Precipitation Runoff Modeling System model. This fact sheet summarizes the hydrologic effect and sensitivity of the Precipitation Runoff Modeling System simulations to climate change for the South Fork Flathead River Basin, Montana.

  17. Watershed scale response to climate change--Cathance Stream Basin, Maine

    USGS Publications Warehouse

    Dudley, Robert W.; Hay, Lauren E.; Markstrom, Steven L.; Hodgkins, Glenn A.

    2012-01-01

    Fourteen basins for which the Precipitation Runoff Modeling System has been calibrated and evaluated were selected as study sites. Precipitation Runoff Modeling System is a deterministic, distributed parameter watershed model developed to evaluate the effects of various combinations of precipitation, temperature, and land use on streamflow and general basin hydrology. Output from five General Circulation Model simulations and four emission scenarios were used to develop an ensemble of climate-change scenarios for each basin. These ensembles were simulated with the corresponding Precipitation Runoff Modeling System model. This fact sheet summarizes the hydrologic effect and sensitivity of the Precipitation Runoff Modeling System simulations to climate change for the Cathance Stream Basin, Maine.

  18. Watershed scale response to climate change--Starkweather Coulee Basin, North Dakota

    USGS Publications Warehouse

    Vining, Kevin C.; Hay, Lauren E.; Markstrom, Steven L.

    2012-01-01

    Fourteen basins for which the Precipitation Runoff Modeling System has been calibrated and evaluated were selected as study sites. Precipitation Runoff Modeling System is a deterministic, distributed parameter watershed model developed to evaluate the effects of various combinations of precipitation, temperature, and land use on streamflow and general basin hydrology. Output from five General Circulation Model simulations and four emission scenarios were used to develop an ensemble of climate-change scenarios for each basin. These ensembles were simulated with the corresponding Precipitation Runoff Modeling System model. This fact sheet summarizes the hydrologic effect and sensitivity of the Precipitation Runoff Modeling System simulations to climate change for the Starkweather Coulee Basin near Webster, North Dakota.

  19. Watershed scale response to climate change--Sagehen Creek Basin, California

    USGS Publications Warehouse

    Markstrom, Steven L.; Hay, Lauren E.; Regan, R. Steven

    2012-01-01

    Fourteen basins for which the Precipitation Runoff Modeling System has been calibrated and evaluated were selected as study sites. Precipitation Runoff Modeling System is a deterministic, distributed parameter watershed model developed to evaluate the effects of various combinations of precipitation, temperature, and land use on streamflow and general basin hydrology. Output from five General Circulation Model simulations and four emission scenarios were used to develop an ensemble of climate-change scenarios for each basin. These ensembles were simulated with the corresponding Precipitation Runoff Modeling System model. This fact sheet summarizes the hydrologic effect and sensitivity of the Precipitation Runoff Modeling System simulations to climate change for the Sagehen Creek Basin near Truckee, California.

  20. Watershed scale response to climate change--Sprague River Basin, Oregon

    USGS Publications Warehouse

    Risley, John; Hay, Lauren E.; Markstrom, Steven L.

    2012-01-01

    Fourteen basins for which the Precipitation Runoff Modeling System has been calibrated and evaluated were selected as study sites. Precipitation Runoff Modeling System is a deterministic, distributed parameter watershed model developed to evaluate the effects of various combinations of precipitation, temperature, and land use on streamflow and general basin hydrology. Output from five General Circulation Model simulations and four emission scenarios were used to develop an ensemble of climate-change scenarios for each basin. These ensembles were simulated with the corresponding Precipitation Runoff Modeling System model. This fact sheet summarizes the hydrologic effect and sensitivity of the Precipitation Runoff Modeling System simulations to climate change for the Sprague River Basin near Chiloquin, Oregon.

  1. Watershed scale response to climate change--Black Earth Creek Basin, Wisconsin

    USGS Publications Warehouse

    Hunt, Randall J.; Walker, John F.; Westenbroek, Steven M.; Hay, Lauren E.; Markstrom, Steven L.

    2012-01-01

    Fourteen basins for which the Precipitation Runoff Modeling System has been calibrated and evaluated were selected as study sites. Precipitation Runoff Modeling System is a deterministic, distributed parameter watershed model developed to evaluate the effects of various combinations of precipitation, temperature, and land use on streamflow and general basin hydrology. Output from five General Circulation Model simulations and four emission scenarios were used to develop an ensemble of climate-change scenarios for each basin. These ensembles were simulated with the corresponding Precipitation Runoff Modeling System model. This fact sheet summarizes the hydrologic effect and sensitivity of the Precipitation Runoff Modeling System simulations to climate change for the Black Earth Creek Basin, Wisconsin.

  2. Watershed scale response to climate change--East River Basin, Colorado

    USGS Publications Warehouse

    Battaglin, William A.; Hay, Lauren E.; Markstrom, Steven L.

    2012-01-01

    Fourteen basins for which the Precipitation Runoff Modeling System has been calibrated and evaluated were selected as study sites. Precipitation Runoff Modeling System is a deterministic, distributed parameter watershed model developed to evaluate the effects of various combinations of precipitation, temperature, and land use on streamflow and general basin hydrology. Output from five General Circulation Model simulations and four emission scenarios were used to develop an ensemble of climate-change scenarios for each basin. These ensembles were simulated with the corresponding Precipitation Runoff Modeling System model. This fact sheet summarizes the hydrologic effect and sensitivity of the Precipitation Runoff Modeling System simulations to climate change for the East River Basin, Colorado.

  3. Watershed scale response to climate change--Naches River Basin, Washington

    USGS Publications Warehouse

    Mastin, Mark C.; Hay, Lauren E.; Markstrom, Steven L.

    2012-01-01

    Fourteen basins for which the Precipitation Runoff Modeling System has been calibrated and evaluated were selected as study sites. Precipitation Runoff Modeling System is a deterministic, distributed parameter watershed model developed to evaluate the effects of various combinations of precipitation, temperature, and land use on streamflow and general basin hydrology. Output from five General Circulation Model simulations and four emission scenarios were used to develop an ensemble of climate-change scenarios for each basin. These ensembles were simulated with the corresponding Precipitation Runoff Modeling System model. This fact sheet summarizes the hydrologic effect and sensitivity of the Precipitation Runoff Modeling System simulations to climate change for the Naches River Basin below Tieton River in Washington.

  4. Watershed scale response to climate change--Flint River Basin, Georgia

    USGS Publications Warehouse

    Hay, Lauren E.; Markstrom, Steven L.

    2012-01-01

    Fourteen basins for which the Precipitation Runoff Modeling System has been calibrated and evaluated were selected as study sites. Precipitation Runoff Modeling System is a deterministic, distributed parameter watershed model developed to evaluate the effects of various combinations of precipitation, temperature, and land use on streamflow and general basin hydrology. Output from five General Circulation Model simulations and four emission scenarios were used to develop an ensemble of climate-change scenarios for each basin. These ensembles were simulated with the corresponding Precipitation Runoff Modeling System model. This fact sheet summarizes the hydrologic effect and sensitivity of the Precipitation Runoff Modeling System simulations to climate change for the Flint River Basin at Montezuma, Georgia.

  5. Observing and Simulating Diapycnal Mixing in the Canadian Arctic Archipelago

    NASA Astrophysics Data System (ADS)

    Hughes, K.; Klymak, J. M.; Hu, X.; Myers, P. G.; Williams, W. J.; Melling, H.

    2016-12-01

    High-spatial-resolution observations in the central Canadian Arctic Archipelago are analysed in conjunction with process-oriented modelling to estimate the flow pathways among the constricted waterways, understand the nature of the hydraulic control(s), and assess the influence of smaller scale (metres to kilometres) phenomena such as internal waves and topographically induced eddies. The observations repeatedly display isopycnal displacements of 50 m as dense water plunges over a sill. Depth-averaged turbulent dissipation rates near the sill estimated from these observations are typically 10-6-10-5 W kg-1, a range that is three orders of magnitude larger than that for the open ocean. These and other estimates are compared against a 1/12° basin-scale model from which we estimate diapycnal mixing rates using a volume-integrated advection-diffusion equation. Much of the mixing in this simulation is concentrated near constrictions within Barrow Strait and Queens Channel, the latter being our observational site. This suggests the model is capable of capturing topographically induced mixing. However, such mixing is expected to be enhanced in the presence of tides, a process not included in our basin scale simulation or other similar models. Quantifying this enhancement is another objective of our process-oriented modelling.

  6. Investigating water budget dynamics in 18 river basins across the Tibetan Plateau through multiple datasets

    NASA Astrophysics Data System (ADS)

    Liu, Wenbin; Sun, Fubao; Li, Yanzhong; Zhang, Guoqing; Sang, Yan-Fang; Lim, Wee Ho; Liu, Jiahong; Wang, Hong; Bai, Peng

    2018-01-01

    The dynamics of basin-scale water budgets over the Tibetan Plateau (TP) are not well understood nowadays due to the lack of in situ hydro-climatic observations. In this study, we investigate the seasonal cycles and trends of water budget components (e.g. precipitation P, evapotranspiration ET and runoff Q) in 18 TP river basins during the period 1982-2011 through the use of multi-source datasets (e.g. in situ observations, satellite retrievals, reanalysis outputs and land surface model simulations). A water balance-based two-step procedure, which considers the changes in basin-scale water storage on the annual scale, is also adopted to calculate actual ET. The results indicated that precipitation (mainly snowfall from mid-autumn to next spring), which are mainly concentrated during June-October (varied among different monsoons-impacted basins), was the major contributor to the runoff in TP basins. The P, ET and Q were found to marginally increase in most TP basins during the past 30 years except for the upper Yellow River basin and some sub-basins of Yalong River, which were mainly affected by the weakening east Asian monsoon. Moreover, the aridity index (PET/P) and runoff coefficient (Q/P) decreased slightly in most basins, which were in agreement with the warming and moistening climate in the Tibetan Plateau. The results obtained demonstrated the usefulness of integrating multi-source datasets to hydrological applications in the data-sparse regions. More generally, such an approach might offer helpful insights into understanding the water and energy budgets and sustainability of water resource management practices of data-sparse regions in a changing environment.

  7. Simulations of hydrologic response in the Apalachicola-Chattahoochee-Flint River Basin, Southeastern United States

    USGS Publications Warehouse

    LaFontaine, Jacob H.; Jones, L. Elliott; Painter, Jaime A.

    2017-12-29

    A suite of hydrologic models has been developed for the Apalachicola-Chattahoochee-Flint River Basin (ACFB) as part of the National Water Census, a U.S. Geological Survey research program that focuses on developing new water accounting tools and assessing water availability and use at the regional and national scales. Seven hydrologic models were developed using the Precipitation-Runoff Modeling System (PRMS), a deterministic, distributed-parameter, process-based system that simulates the effects of precipitation, temperature, land cover, and water use on basin hydrology. A coarse-resolution PRMS model was developed for the entire ACFB, and six fine-resolution PRMS models were developed for six subbasins of the ACFB. The coarse-resolution model was loosely coupled with a groundwater model to better assess the effects of water use on streamflow in the lower ACFB, a complex geologic setting with karst features. The PRMS coarse-resolution model was used to provide inputs of recharge to the groundwater model, which in turn provide simulations of groundwater flow that were aggregated with PRMS-based simulations of surface runoff and shallow-subsurface flow. Simulations without the effects of water use were developed for each model for at least the calendar years 1982–2012 with longer periods for the Potato Creek subbasin (1942–2012) and the Spring Creek subbasin (1952–2012). Water-use-affected flows were simulated for 2008–12. Water budget simulations showed heterogeneous distributions of precipitation, actual evapotranspiration, recharge, runoff, and storage change across the ACFB. Streamflow volume differences between no-water-use and water-use simulations were largest along the main stem of the Apalachicola and Chattahoochee River Basins, with streamflow percentage differences largest in the upper Chattahoochee and Flint River Basins and Spring Creek in the lower Flint River Basin. Water-use information at a shorter time step and a fully coupled simulation in the lower ACFB may further improve water availability estimates and hydrologic simulations in the basin.

  8. Simulating The Change In Agricultural Fruit Patterns In The Context of River Basin Modelling

    NASA Astrophysics Data System (ADS)

    Kloecking, B.; Laue, K.; Stroebl, B.

    A new concept has been developed for the integrated analysis of impacts of Global Change and direct human activities on the environment and the society in mesoscale river basins. The main steps of this approach are: (1) Developing a set of regional scenarios of change considering expected changes in climate, economic, demographic and social development, (2) Identification of indicators of sustainability for the impact assessment, (3) Impact analysis of the defined scenarios of development, (4) Evalu- ation of the different scenarios on the basis of the impact analysis to elaborate new stategies in regional development. All steps include consultations with actors and stakeholders. The concept is applied in the western part of Thuringia (7.500 km2), covering the basin of the Unstrut river. This part of the German Elbe river basin is highly suited for food production under the present conditions. Therefore it is a good site for vulnerability studies focused on agriculture. The development of agricultural land-use scenarios for the Unstrut region will be done in form of a bottom-up approach based on adaptation reactions of example farms within the expected boundary condi- tions such as the global food markets and other global economic trends as well as in- ternational agreements. Representing the present conditions in Thuringia, a referential land-use scenario was developed, assuming a complete realisation of the AGENDA 2000 resolutions. Impacts of changed land use in combination with climate change scenarios on plant production and on availability and quality of water are been inves- tigated with the help of a spatial distributed river basin model. A GIS-based approach was developed to locate the spatially not explicit land use scenarios. This approach allows to reproduce the agricultural fruit patterns of a region in a river basin model without taking into account the real field boundaries. First simulation results for the referential climate and land-use scenario for the Unstrut region will be presented.

  9. STREAM FLOW BASIN CHARACTERISTICS FOR THE MID-ATLANTIC INTEGRATED ASSESSMENT (MAIA) STUDY AREA

    EPA Science Inventory

    This data set is a GIS coverage of the stream flow basin characteristics for drainage basins of selected US Geological Survey (USGS) gauging stations the United States Environmental Protection Agency (USEPA) Mid-Atlantic Integrated Assessment (MAIA) Project region. This data se...

  10. Application of Water Evaluation and Planning Model for Integrated Water Resources Management: Case Study of Langat River Basin, Malaysia

    NASA Astrophysics Data System (ADS)

    Leong, W. K.; Lai, S. H.

    2017-06-01

    Due to the effects of climate change and the increasing demand on water, sustainable development in term of water resources management has become a major challenge. In this context, the application of simulation models is useful to duel with the uncertainty and complexity of water system by providing stakeholders with the best solution. This paper outlines an integrated management planning network is developed based on Water Evaluation and Planning (WEAP) to evaluate current and future water management system of Langat River Basin, Malaysia under various scenarios. The WEAP model is known as an integrated decision support system investigate major stresses on demand and supply in terms of water availability in catchment scale. In fact, WEAP is applicable to simulate complex systems including various sectors within a single catchment or transboundary river system. To construct the model, by taking account of the Langat catchment and the corresponding demand points, we defined the hydrological model into 10 sub-hydrological catchments and 17 demand points included the export of treated water to the major cities outside the catchment. The model is calibrated and verified by several quantitative statistics (coefficient of determination, R2; Nash-Sutcliffe efficiency, NSE and Percent bias, PBIAS). The trend of supply and demand in the catchment is evaluated under three scenarios to 2050, 1: Population growth rate, 2: Demand side management (DSM) and 3: Combination of DSM and reduce non-revenue water (NRW). Results show that by reducing NRW and proper DSM, unmet demand able to reduce significantly.

  11. Sierra Nevada snowpack and runoff prediction integrating basin-wide wireless-sensor network data

    NASA Astrophysics Data System (ADS)

    Yoon, Y.; Conklin, M. H.; Bales, R. C.; Zhang, Z.; Zheng, Z.; Glaser, S. D.

    2016-12-01

    We focus on characterizing snowpack and estimating runoff from snowmelt in high elevation area (>2100 m) in Sierra Nevada for daily (for use in, e.g. flood and hydropower forecasting), seasonal (supply prediction), and decadal (long-term planning) time scale. Here, basin-wide wireless-sensor network data (ARHO, http://glaser.berkeley.edu/wsn/) is integrated into the USGS Precipitation-Runoff Modeling System (PRMS), and a case study of the American River basin is presented. In the American River basin, over 140 wireless sensors have been planted in 14 sites considering elevation gradient, slope, aspect, and vegetation density, which provides spatially distributed snow depth, temperature, solar radiation, and soil moisture from 2013. 800 m daily gridded dataset (PRISM) is used as the climate input for the PRMS. Model parameters are obtained from various sources (e.g., NLCD 2011, SSURGO, and NED) with a regionalization method and GIS analysis. We use a stepwise framework for a model calibration to improve model performance and localities of estimates. For this, entire basin is divided into 12 subbasins that include full natural flow measurements. The study period is between 1982 and 2014, which contains three major storm events and recent severe drought. Simulated snow depth and snow water equivalent (SWE) are initially compared with the water year 2014 ARHO observations. The overall results show reasonable agreements having the Nash-Sutcliffe efficiency coefficient (NS) of 0.7, ranged from 0.3 to 0.86. However, the results indicate a tendency to underestimate the SWE in a high elevation area compared with ARHO observations, which is caused by the underestimated PRISM precipitation data. Precipitation at gauge-sparse regions (e.g., high elevation area), in general, cannot be well represented in gridded datasets. Streamflow estimates of the basin outlet have NS of 0.93, percent bias of 7.8%, and normalized root mean square error of 3.6% for the monthly time scale.

  12. Diffuse nutrient losses and the impact factors determining their regional differences in four catchments from North to South China

    NASA Astrophysics Data System (ADS)

    Zhang, Yongyong; Zhou, Yujian; Shao, Quanxi; Liu, Hongbin; Lei, Qiuliang; Zhai, Xiaoyan; Wang, Xuelei

    2016-12-01

    Diffuse nutrient loss mechanism is complicated and shows remarkably regional differences due to spatial heterogeneities of underlying surface conditions, climate and agricultural practices. Moreover, current available observations are still hard to support the identification of impact factors due to different time or space steps. In this study, an integrated water system model (HEQM) was adopted to obtain the simulated loads of diffuse components (carriers: runoff and sediment; nutrient: total nitrogen (TN) and total phosphorous (TP)) with synchronous scales. Multivariable statistical analysis approaches (Analysis of Similarity and redundancy analysis) were used to assess the regional differences, and to identify impact factors as well as their contributions. Four catchments were selected as our study areas, i.e., Xiahui and Zhangjiafen Catchments of Miyun Basin in North China, Yuliang and Tunxi Catchments of Xin'anjiang Basin in South China. Results showed that the model performances of monthly processes were very good for runoff and good for sediment, TN and TP. The annual average coefficients of all the diffuse components in Xin'anjiang Basin were much greater than those in Miyun Basin, and showed significantly regional differences. All the selected impact factors interpreted 72.87-82.16% of the regional differences of carriers, and 62.72-71.62% of those of nutrient coefficients, respectively. For individual impact factor categories, the critical category was geography, followed by land-use/cover, carriers, climate, as well as soil and agricultural practices in Miyun Basin, or agricultural practices and soil in Xin'anjiang Basin. For individual factors, the critical factors were locations for the carrier regional differences, and carriers or chemical fertilizer for the nutrient regional differences. This study is expected to promote further applications of integrated water system model and multivariable statistical analysis in the diffuse nutrient studies, and provide a scientific support for the diffuse pollution control and management in China.

  13. Risk Assessment in Relation to the Effect of Climate Change on Water Shortage in the Taichung Area

    NASA Astrophysics Data System (ADS)

    Hsiao, J.; Chang, L.; Ho, C.; Niu, M.

    2010-12-01

    Rapid economic development has stimulated a worldwide greenhouse effect and induced global climate change. Global climate change has increased the range of variation in the quantity of regional river flows between wet and dry seasons, which effects the management of regional water resources. Consequently, the influence of climate change has become an important issue in the management of regional water resources. In this study, the Monte Carlo simulation method was applied to risk analysis of shortage of water supply in the Taichung area. This study proposed a simulation model that integrated three models: weather generator model, surface runoff model, and water distribution model. The proposed model was used to evaluate the efficiency of the current water supply system and the potential effectiveness of two additional plans for water supply: the “artificial lakes” plan and the “cross-basin water transport” plan. A first-order Markov Chain method and two probability distribution models, exponential distribution and normal distribution, were used in the weather generator model. In the surface runoff model, researchers selected the Generalized Watershed Loading Function model (GWLF) to simulate the relationship between quantity of rainfall and basin outflow. A system dynamics model (SD) was applied to the water distribution model. Results of the simulation indicated that climate change could increase the annual quantity of river flow in the Dachia River and Daan River basins. However, climate change could also increase the difference in the quantity of river flow between wet and dry seasons. Simulation results showed that in current system case or in the additional plan cases, shortage status of water for both public and agricultural uses with conditions of climate change will be mostly worse than that without conditions of climate change except for the shortage status for the public use in the current system case. With or without considering the effect of climate change, the additional plans, especially the “cross-basin water transport” plan, for water supply could significantly increase the supply of water for public use. The proposed simulation model and results of analysis in this study could provide valuable reference for decision-makers in regards to risk analysis of regional water supply.

  14. Comparing morphologies of drainage basins on Mars and Earth using integral-geometry and neural maps

    NASA Technical Reports Server (NTRS)

    Stepinski, T. F.; Coradetti, S.

    2004-01-01

    We compare morphologies of drainage basins on Mars and Earth in order to confine the formation process of Martian valley networks. Basins on both planets are computationally extracted from digital topography. Integral-geometry methods are used to represent each basin by a circularity function that encapsulates its internal structure. The shape of such a function is an indicator of the style of fluvial erosion. We use the self-organizing map technique to construct a similarity graph for all basins. The graph reveals systematic differences between morphologies of basins on the two planets. This dichotomy indicates that terrestrial and Martian surfaces were eroded differently. We argue that morphologies of Martian basins are incompatible with runoff from sustained, homogeneous rainfall. Fluvial environments compatible with observed morphologies are discussed. We also construct a similarity graph based on the comparison of basins hypsometric curves to demonstrate that hypsometry is incapable of discriminating between terrestrial and Martian basins. INDEX TERMS: 1824 Hydrology: Geomorphology (1625); 1886 Hydrology: Weathering (1625); 5415 Planetology: Solid Surface Planets: Erosion and weathering; 6225 Planetology: Solar System Objects Mars. Citation: Stepinski, T. F., and S. Coradetti (2004), Comparing morphologies of drainage basins on Mars and Earth using integral-ge

  15. The Effect of Sedimentary Basins on Through-Passing Short-Period Surface Waves

    NASA Astrophysics Data System (ADS)

    Feng, L.; Ritzwoller, M. H.

    2017-12-01

    Surface waves propagating through sedimentary basins undergo elastic wave field complications that include multiple scattering, amplification, the formation of secondary wave fronts, and subsequent wave front healing. Unless these effects are accounted for accurately, they may introduce systematic bias to estimates of source characteristics, the inference of the anelastic structure of the Earth, and ground motion predictions for hazard assessment. Most studies of the effects of basins on surface waves have centered on waves inside the basins. In contrast, we investigate wave field effects downstream from sedimentary basins, with particular emphasis on continental basins and propagation paths, elastic structural heterogeneity, and Rayleigh waves at 10 s period. Based on wave field simulations through a recent 3D crustal and upper mantle model of East Asia, we demonstrate significant Rayleigh wave amplification downstream from sedimentary basins in eastern China such that Ms measurements obtained on the simulated wave field vary by more than a magnitude unit. We show that surface wave amplification caused by basins results predominantly from elastic focusing and that amplification effects produced through 3D basin models are reproduced using 2D membrane wave simulations through an appropriately defined phase velocity map. The principal characteristics of elastic focusing in both 2D and 3D simulations include (1) retardation of the wave front inside the basins; (2) deflection of the wave propagation direction; (3) formation of a high amplitude lineation directly downstream from the basin bracketed by two low amplitude zones; and (4) formation of a secondary wave front. Finally, by comparing the impact of elastic focusing with anelastic attenuation, we argue that on-continent sedimentary basins are expected to affect surface wave amplitudes more strongly through elastic focusing than through the anelastic attenuation.

  16. Climate and Tectonics Need Not Apply: Transient Erosion Driven by Drainage Integration, Aravaipa Creek, AZ

    NASA Astrophysics Data System (ADS)

    Jungers, M.; Heimsath, A. M.

    2013-12-01

    Periods of transient erosion during landscape evolution are most commonly attributed to fluvial systems' responses to changes in tectonic or climatic forcing. Dramatic changes in base level and sudden increases in drainage area associated with drainage reorganization can, however, drive punctuated events of incision and erosion equal in magnitude to those driven by tectonics or climate. In southeastern Arizona's Basin and Range, a mature portion of the North American physiographic province, the modern Gila River system integrates a network of previously internally drained structural basins. One basin in particular, Aravaipa Creek, is the most recent to join the broader Gila River fluvial network. Following drainage integration, Aravaipa Creek rapidly incised to equilibrate with its new, much lower, base level. In doing so, it carved Aravaipa Canyon, excavated a large volume of sedimentary basin fill, and captured drainage area from the still internally drained Sulphur Springs basin. Importantly, this dramatic episode of transient incision and erosion was the result of drainage integration alone. We hypothesize that the adjustment time for Aravaipa Creek was shorter than the timescale of any climate forcing, and regional extensional tectonics were quiescent at the time of integration. We can, therefore, explicitly quantify the magnitude of transient incision and erosion driven by drainage reorganization. We use remnants of the paleo-basin surface and modern landscape elevations to reconstruct the pre-drainage integration topography of Aravaipa Creek basin. Doing so enables us to quantify the magnitude of incision driven by drainage reorganization as well as the volume of material eroded from the basin subsequent to integration. Key control points for our landscape reconstruction are: (1) the inferred elevation of the spillover point between Aravaipa Creek and the San Pedro River; (2) Quaternary pediment-capping gravels above Aravaipa Canyon (3) perched remnants of late stage sedimentary basin fill that preserve the slope of the pre-incision piedmonts of the Galiuro Mountains and Santa Teresa Mountains; and (4) the paleo-drainage divide between Aravaipa Creek and Sulphur Springs Valley, approximately 6 km northwest of the modern divide. The pre-incision basin surface sloped from the Sulphur Springs divide (1370 m) to its intersection with the point of integration (1100 m) between Aravaipa Creek and the San Pedro River, 50 km to the northwest. Maximum incision of 450 m occurred in the vicinity of Aravaipa Canyon, and more than 50 cubic kilometers of material have been eroded from Aravaipa Creek basin. Finally, cosmogenic nuclide burial dates for latest stage sedimentary basin fill enable us to constrain the timing of drainage integration and place first-order constraints on paleo-erosion rates.

  17. Simulated Effects of Year 2030 Water-Use and Land-Use Changes on Streamflow near the Interstate-495 Corridor, Assabet and Upper Charles River Basins, Eastern Massachusetts

    USGS Publications Warehouse

    Carlson, Carl S.; Desimone, Leslie A.; Weiskel, Peter K.

    2008-01-01

    Continued population growth and land development for commercial, industrial, and residential uses have created concerns regarding the future supply of potable water and the quantity of ground water discharging to streams in the area of Interstate 495 in eastern Massachusetts. Two ground-water models developed in 2002-2004 for the Assabet and Upper Charles River Basins were used to simulate water supply and land-use scenarios relevant for the entire Interstate-495 corridor. Future population growth, water demands, and commercial and residential growth were projected for year 2030 by the Metropolitan Area Planning Council. To assess the effects of future development on subbasin streamflows, seven scenarios were simulated by using existing computer-based ground-water-flow models with the data projected for year 2030. The scenarios incorporate three categories of projected 2030 water- and land-use data: (1) 2030 water use, (2) 2030 land use, and (3) a combination of 2030 water use and 2030 land use. Hydrologic, land-use, and water-use data from 1997 through 2001 for the Assabet River Basin study and 1989 through 1998 for the Upper Charles River Basin study were used to represent current conditions - referred to as 'basecase' conditions - in each basin to which each 2030 scenario was compared. The effects of projected 2030 land- and water-use change on streamflows in the Assabet River Basin depended upon the time of year, the hydrologic position of the subbasin in the larger basin, and the relative areas of new commercial and residential development projected for a subbasin. Effects of water use and land use on streamflow were evaluated by comparing average monthly nonstorm streamflow (base flow) for March and September simulated by using the models. The greatest decreases in streamflow (up to 76 percent in one subbasin), compared to the basecase, occurred in September, when streamflows are naturally at their lowest level. By contrast, simulated March streamflows decreased less than 6.5 percent from basecase streamflows in all subbasins for all scenarios. The simulations showed similar effects in the Upper Charles River Basin, but increased water use contributed to decreased simulated streamflow in most subbasins. Simulated changes in March streamflows for 2030 in the Upper Charles River Basin were within +- 6 percent of the basecase for all scenarios and subbasins. Percentage decreases in simulated September streamflows for 2030 were greater than in March but less than the September decreases that resulted for some subbasins in the Assabet River Basin. Only two subbasins of the Upper Charles River Basin had projected decreases greater than 5 percent. In the Mill River subbasin, the decrease was 11 percent, and in the Mine Brook subbasin, 6.6 percent. Changes in water use and wastewater return flow generally were found to have the greatest effect in the summer months when streamflow and aquifer recharge rates are low and water use is high. September increases in main-stem streamflow of both basins were due mainly to increased discharge of treated effluent from wastewater-treatment facilities on the main-stem rivers. In the Assabet River Basin, wastewater-treatment-facility discharge became a smaller proportion of total streamflow with distance downstream. In contrast, wastewater-treatment facility discharge in the Upper Charles River Basin became a greater proportion of streamflow with distance downstream. The effects of sewer-line extension and low-impact development on streamflows in two different subbasins of the Assabet River Basin also were simulated. The result of extending sewer lines with a corresponding decrease in septic-system return flow caused September streamflows to decrease as much as 15 percent in the Fort Pond Brook subbasin. The effect of low-impact development was simulated in the Hop Brook subbasin in areas projected for commercial development. In this simulation, the greater the area where low-i

  18. Integrated Hydrologic Models for Closing the Water Budget: Whitewater River Basin, Kansas

    NASA Astrophysics Data System (ADS)

    Beeson, P.; Duffy, C.; Springer, E.; Panday, S.

    2004-12-01

    Groundwater and its recharge are unobserved and unmeasured components of the water cycle of a river basin. The objectives of this study were: 1) to evaluate the groundwater component of the water balance for the Whitewater River Basin using a 3-D saturated groundwater model, 2) to compare the groundwater model results with a fully integrated hydrologic model and, 3) to describe the spectral frequency response of the basin to long-term climate forcing. The basin is the Whitewater River, near Wichita, Kansas. The basin has an area of 1,100 square-kilometers, an elevation range of 380 - 470m (amsl), and an average annual precipitation of 858 millimeters. The near-surface geology is comprised of a weathered shale overlying limestone bedrock of Mississippian age. Streamflow and weather records are available from 1960. A steady-state saturated groundwater model (MODFLOW) was implemented assuming a simple two-layer conceptual model. A total of 422 wells with static water levels were available. Using a subset of the wells, a steady-state calibration of MODFLOW was performed by adjusting permeability between the two layers. Steady-state calibration resulted in an R2 of 0.89 for predicted and observed water levels. The remaining wells were used for validation, with an R2 of 0.92. The next step constructed the transient model using a fixed percentage of rainfall as groundwater recharge. For a single observation well the R2 was 0.89 (observed vs. predicted) for the transient calibration and 0.77 for the validation for a year simulation. The final step was to compare MODFLOW to an integrated model to provide a more complete representation of surface hydrologic dynamics. Here MODHMS (developed by HydroGeologic Inc, Herndon, VA) was used since it is MODFLOW-based with 3D variably-saturated groundwater flow, 2D overland flow, and 1D channel flow. MODHMS allows for canopy interception and evapotranspiration so total precipitation and potential evaporation were input to the model for a better estimate of recharge through complete energy and water balance. Singular spectrum analysis (SSA) was used to analyze the temporal response of precipitation, streamflow and groundwater levels from selected points in the model both for MODFLOW and MODHMS results. This paper demonstrates the use of integrated models for determination of groundwater recharge. Time series analysis proved to be a useful tool in identifying climate response within the watershed.

  19. The Shale Hills Sensorium for Embedded Sensors, Simulation, & Visualization: A Prototype for Land-Vegetation-Atmosphere Interactions

    NASA Astrophysics Data System (ADS)

    Duffy, C.

    2008-12-01

    The future of environmental observing systems will utilize embedded sensor networks with continuous real- time measurement of hydrologic, atmospheric, biogeochemical, and ecological variables across diverse terrestrial environments. Embedded environmental sensors, benefitting from advances in information sciences, networking technology, materials science, computing capacity, and data synthesis methods, are undergoing revolutionary change. It is now possible to field spatially-distributed, multi-node sensor networks that provide density and spatial coverage previously accessible only via numerical simulation. At the same time, computational tools are advancing rapidly to the point where it is now possible to simulate the physical processes controlling individual parcels of water and solutes through the complete terrestrial water cycle. Our goal for the Penn State Critical Zone Observatory is to apply environmental sensor arrays, integrated hydrologic models, and state-of-the-art visualization deployed and coordinated at a testbed within the Penn State Experimental Forest. The Shale Hills Hydro_Sensorium prototype proposed here is designed to observe land-atmosphere interactions in four-dimensional (space and time). The term Hydro_Sensorium implies the totality of physical sensors, models and visualization tools that allow us to perceive the detailed space and time complexities of the water and energy cycle for a watershed or river basin for all physical states and fluxes (groundwater, soil moisture, temperature, streamflow, latent heat, snowmelt, chemistry, isotopes etc.). This research will ultimately catalyze the study of complex interactions between the land surface, subsurface, biological and atmospheric systems over a broad range of scales. The sensor array would be real-time and fully controllable by remote users for "computational steering" and data fusion. Presently fully-coupled physical models are being developed that link the atmosphere-land-vegetation-subsurface system into a fully-coupled distributed system. During the last 5 years the Penn State Integrated Hydrologic Modeling System has been under development as an open-source community modeling project funded by NSF EAR/GEO and NSF CBET/ENG. PIHM represents a strategy for the formulation and solution of fully-coupled process equations at the watershed and river basin scales, and includes a tightly coupled GIS tool for data handling, domain decomposition, optimal unstructured grid generation, and model parameterization. The sensor and simulation system has the following elements: 1) extensive, spatially-distributed, non- invasive, smart sensor networks to gather massive geologic, hydrologic, and geochemical data; 2) stochastic information fusion methods; 3) spatially-explicit multiphysics models/solutions of the land-vegetation- atmosphere system; and 4) asynchronous, parallel/distributed, adaptive algorithms for rapidly simulating the states of a basin at high resolution, 5) signal processing tools for data mining and parameter estimation, and 6) visualization tools. The prototype proposed sensor array and simulation system proposed here will offer a coherent new approach to environmental predictions with a fully integrated observing system design. We expect that the Shale Hills Hydro_Sensorium may provide the needed synthesis of information and conceptualization necessary to advance predictive understanding in complex hydrologic systems.

  20. A spatially distributed energy balance snowmelt model for application in mountain basins

    USGS Publications Warehouse

    Marks, D.; Domingo, J.; Susong, D.; Link, T.; Garen, D.

    1999-01-01

    Snowmelt is the principal source for soil moisture, ground-water re-charge, and stream-flow in mountainous regions of the western US, Canada, and other similar regions of the world. Information on the timing, magnitude, and contributing area of melt under variable or changing climate conditions is required for successful water and resource management. A coupled energy and mass-balance model ISNOBAL is used to simulate the development and melting of the seasonal snowcover in several mountain basins in California, Idaho, and Utah. Simulations are done over basins varying from 1 to 2500 km2, with simulation periods varying from a few days for the smallest basin, Emerald Lake watershed in California, to multiple snow seasons for the Park City area in Utah. The model is driven by topographically corrected estimates of radiation, temperature, humidity, wind, and precipitation. Simulation results in all basins closely match independently measured snow water equivalent, snow depth, or runoff during both the development and depletion of the snowcover. Spatially distributed estimates of snow deposition and melt allow us to better understand the interaction between topographic structure, climate, and moisture availability in mountain basins of the western US. Application of topographically distributed models such as this will lead to improved water resource and watershed management.Snowmelt is the principal source for soil moisture, ground-water re-charge, and stream-flow in mountainous regions of the western US, Canada, and other similar regions of the world. Information on the timing, magnitude, and contributing area of melt under variable or changing climate conditions is required for successful water and resource management. A coupled energy and mass-balance model ISNOBAL is used to simulate the development and melting of the seasonal snowcover in several mountain basins in California, Idaho, and Utah. Simulations are done over basins varying from 1 to 2500 km2, with simulation periods varying from a few days for the smallest basin, Emerald Lake watershed in California, to multiple snow seasons for the Park City area in Utah. The model is driven by topographically corrected estimates of radiation, temperature, humidity, wind, and precipitation. Simulation results in all basins closely match independently measured snow water equivalent, snow depth, or runoff during both the development and depletion of the snowcover. Spatially distributed estimates of snow deposition and melt allow us to better understand the interaction between topographic structure, climate, and moisture availability in mountain basins of the western US. Application of topographically distributed models such as this will lead to improved water resource and watershed management.

  1. Quantifying water and energy budgets and the impacts of climatic and human factors in the Haihe River Basin, China: 1. Model and validation

    NASA Astrophysics Data System (ADS)

    Guo, Ying; Shen, Yanjun

    2015-09-01

    We have developed an operational model to simulate water and energy fluxes in the Haihe River Basin (231,800 km2 in size) for the past 28 years. This model is capable of estimating water and energy fluxes of irrigated croplands and heterogeneous grids. The model was validated using actual evapotranspiration (ETa) measured by an eddy covariance system, measured soil moisture in croplands, groundwater level measurements over the piedmont plain and runoff observations in a mountainous catchment. A long-term time series of water and energy balance components were then simulated at a daily time step by integrating remotely sensed information and meteorological data to examine the spatial and temporal distribution and changes in water and energy fluxes in the basin over the past 28 years. The results show that net radiation (Rn) in the mountainous regions is generally higher than that in the plain regions. ETa in the plain regions is higher than that in the mountainous regions mostly because of higher air temperature and larger areas of irrigated farmland. Higher sensible heat flux (H) and lower ETa in the urban areas are possibly due to less vegetation cover, an impervious surface, rapid drainage, and the heat island effect of cities. During the study period, a water deficit continuously occurred in the plain regions because of extensive pumping of groundwater for irrigation to meet the crop water requirements. Irrigation has led to significant groundwater depletion, which poses a substantial challenge to the sustainability of water resources in this basin.

  2. Data-base development for water-quality modeling of the Patuxent River basin, Maryland

    USGS Publications Warehouse

    Fisher, G.T.; Summers, R.M.

    1987-01-01

    Procedures and rationale used to develop a data base and data management system for the Patuxent Watershed Nonpoint Source Water Quality Monitoring and Modeling Program of the Maryland Department of the Environment and the U.S. Geological Survey are described. A detailed data base and data management system has been developed to facilitate modeling of the watershed for water quality planning purposes; statistical analysis; plotting of meteorologic, hydrologic and water quality data; and geographic data analysis. The system is Maryland 's prototype for development of a basinwide water quality management program. A key step in the program is to build a calibrated and verified water quality model of the basin using the Hydrological Simulation Program--FORTRAN (HSPF) hydrologic model, which has been used extensively in large-scale basin modeling. The compilation of the substantial existing data base for preliminary calibration of the basin model, including meteorologic, hydrologic, and water quality data from federal and state data bases and a geographic information system containing digital land use and soils data is described. The data base development is significant in its application of an integrated, uniform approach to data base management and modeling. (Lantz-PTT)

  3. Fully-Integrated Simulation of Conjunctive Use from Field to Basin Scales: Development of a Surface Water Operations Module for MODFLOW-OWHM

    NASA Astrophysics Data System (ADS)

    Ferguson, I. M.; Boyce, S. E.; Hanson, R. T.; Llewellyn, D.

    2014-12-01

    It is well established that groundwater pumping affects surface-water availability by intercepting groundwater that would otherwise discharge to streams and/or by increasing seepage from surface-water channels. Conversely, surface-water management operations effect groundwater availability by altering the timing, location, and quantity of groundwater recharge and demand. Successful conjunctive use may require analysis with an integrated approach that accounts for the many interactions and feedbacks between surface-water and groundwater availability and their joint management. In order to improve simulation and analysis of conjunctive use, Bureau of Reclamation and USGS are collaborating to develop a surface-water operations module within MODFLOW One Water Hydrologic Flow Model (MF-OWHM), a new version of the USGS Modular Groundwater Flow Model (MODFLOW). Here we describe the development and application of the surface-water operations module. We provide an overview of the conceptual approach used to simulate surface-water operations—including surface-water storage, allocation, release, diversion, and delivery on monthly to seasonal time frames—in a fully-integrated manner. We then present results from a recent case study analysis of the Rio Grande Project, a large-scale irrigation project located in New Mexico and Texas, under varying surface-water operations criteria and climate conditions. Case study results demonstrate the importance of integrated hydrologic simulation of surface water and groundwater operations in analysis and management of conjunctive-use systems.

  4. The role of SST on the South American atmospheric circulation during January, February and March 2001

    NASA Astrophysics Data System (ADS)

    Drumond, Anita Rodrigues De Moraes; Ambrizzi, Tércio

    2005-06-01

    Precipitation deficits were observed over southeastern, northeastern and Central Brazil during the 2001 Austral Summer. They contributed to the worsening of the energy crisis that was occurring in the country. A low-level anomalous anticyclonic circulation observed over eastern Brazil enhanced the deviation of moisture transport that usually occurs from the Amazon Basin to southeastern Brazil and inhibited the occurrence of South Atlantic Convergence Zone events in that period. However, an anomalous low-level northerly moisture flux was observed over the La Plata Basin, and positive precipitation anomalies occurred over Bolivia, Paraguay, northeastern Argentina and southern Brazil. Using the ensemble technique, a numerical study was carried out to investigate the role of different sea surface temperature (SST) forcings observed over this anomalous South American atmospheric circulation. Reynolds SST monthly means were used as boundary conditions to study the influence of South Atlantic, South Indian, South Pacific and Equatorial Pacific oceans. The simulations were run from September 2000 to April 2001 using the Community Climate Model version 3.6 General Circulation Model. Ten integrations using different initial conditions were done to each experiment. Numerical experiments suggested that the combined influence of South Pacific and Equatorial Pacific oceans could be responsible for the drought observed over Central Brazil. These experiments simulated the low-level anticyclonic anomaly observed over eastern Brazil. However, both experiments have poorly reproduced the intensity of the anomalous low-level northerly moisture flux observed over the La Plata Basin. Therefore, the intensity of the simulated precipitation anomalies over the subtropical regions was much weaker than observed.

  5. Managing water quality under drought conditions in the Llobregat River Basin.

    PubMed

    Momblanch, Andrea; Paredes-Arquiola, Javier; Munné, Antoni; Manzano, Andreu; Arnau, Javier; Andreu, Joaquín

    2015-01-15

    The primary effects of droughts on river basins include both depleted quantity and quality of the available water resources, which can render water resources useless for human needs and simultaneously damage the environment. Isolated water quality analyses limit the action measures that can be proposed. Thus, an integrated evaluation of water management and quality is warranted. In this study, a methodology consisting of two coordinated models is used to combine aspects of water resource allocation and water quality assessment. Water management addresses water allocation issues by considering the storage, transport and consumption elements. Moreover, the water quality model generates time series of concentrations for several pollutants according to the water quality of the runoff and the demand discharges. These two modules are part of the AQUATOOL decision support system shell for water resource management. This tool facilitates the analysis of the effects of water management and quality alternatives and scenarios on the relevant variables in a river basin. This paper illustrates the development of an integrated model for the Llobregat River Basin. The analysis examines the drought from 2004 to 2008, which is an example of a period when the water system was quantitative and qualitatively stressed. The performed simulations encompass a wide variety of water management and water quality measures; the results provide data for making informed decisions. Moreover, the results demonstrated the importance of combining these measures depending on the evolution of a drought event and the state of the water resources system. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Surface-water hydrology and runoff simulations for three basins in Pierce County, Washington

    USGS Publications Warehouse

    Mastin, M.C.

    1996-01-01

    The surface-water hydrology in Clear, Clarks, and Clover Creek Basins in central Pierce County, Washington, is described with a conceptual model of the runoff processes and then simulated with the Hydrological Simulation Program-FORTRAN (HSPF), a continuous, deterministic hydrologic model. The study area is currently undergoing a rapid conversion of rural, undeveloped land to urban and suburban land that often changes the flow characteristics of the streams that drain these lands. The complex interactions of land cover, climate, soils, topography, channel characteristics, and ground- water flow patterns determine the surface-water hydrology of the study area and require a complex numerical model to assess the impact of urbanization on streamflows. The U.S. Geological Survey completed this investigation in cooperation with the Storm Drainage and Surface Water Management Utility within the Pierce County Department of Public Works to describe the important rainfall-runoff processes within the study area and to develop a simulation model to be used as a tool to predict changes in runoff characteristics resulting from changes in land use. The conceptual model, a qualitative representation of the study basins, links the physical characteristics to the runoff process of the study basins. The model incorporates 11 generalizations identified by the investigation, eight of which describe runoff from hillslopes, and three that account for the effects of channel characteristics and ground-water flow patterns on runoff. Stream discharge was measured at 28 sites and precipitation was measured at six sites for 3 years in two overlapping phases during the period of October 1989 through September 1992 to calibrate and validate the simulation model. Comparison of rainfall data from October 1989 through September 1992 shows the data-collection period beginning with 2 wet water years followed by the relatively dry 1992 water year. Runoff was simulated with two basin models-the Clover Creek Basin model and the Clear-Clarks Basin model-by incorporating the generalizations of the conceptual model into the construction of two HSPF numerical models. Initially, the process-related parameters for runoff from glacial-till hillslopes were calibrated with numerical models for three catchment sites and one headwater basin where streamflows were continuously measured and little or no influence from ground water, channel storage, or channel losses affected runoff. At one of the catchments soil moisture was monitored and compared with simulated soil moisture. The values for these parameters were used in the basin models. Basin models were calibrated to the first year of observed streamflow data by adjusting other parameters in the numerical model that simulated channel losses, simulated channel storage in a few of the reaches in the headwaters and in the floodplain of the main stem of Clover Creek, and simulated volume and outflow of the ground-water reservoir representing the regional ground-water aquifers. The models were run for a second year without any adjustments, and simulated results were compared with observed results as a measure of validation of the models. The investigation showed the importance of defining the ground-water flow boundaries and demonstrated a simple method of simulating the influence of the regional ground-water aquifer on streamflows. In the Clover Creek Basin model, ground-water flow boundaries were used to define subbasins containing mostly glacial outwash soils and not containing any surface drainage channels. In the Clear-Clarks Basin model, ground-water flow boundaries outlined a recharge area outside the surface-water boundaries of the basin that was incorporated into the model in order to provide sufficient water to balance simulated ground-water outflows to the creeks. A simulated ground-water reservoir used to represent regional ground-water flow processes successfully provided the proper water balance of inflows and outfl

  7. Methane emissions from floodplains in the Amazon Basin: towards a process-based model for global applications

    NASA Astrophysics Data System (ADS)

    Ringeval, B.; Houweling, S.; van Bodegom, P. M.; Spahni, R.; van Beek, R.; Joos, F.; Röckmann, T.

    2013-10-01

    Tropical wetlands are estimated to represent about 50% of the natural wetland emissions and explain a large fraction of the observed CH4 variability on time scales ranging from glacial-interglacial cycles to the currently observed year-to-year variability. Despite their importance, however, tropical wetlands are poorly represented in global models aiming to predict global CH4 emissions. This study documents the first regional-scale, process-based model of CH4 emissions from tropical floodplains. The LPX-Bern Dynamic Global Vegetation Model (LPX hereafter) was modified to represent floodplain hydrology, vegetation and associated CH4 emissions. The extent of tropical floodplains was prescribed using output from the spatially-explicit hydrology model PCR-GLOBWB. We introduced new Plant Functional Types (PFTs) that explicitly represent floodplain vegetation. The PFT parameterizations were evaluated against available remote sensing datasets (GLC2000 land cover and MODIS Net Primary Productivity). Simulated CH4 flux densities were evaluated against field observations and regional flux inventories. Simulated CH4 emissions at Amazon Basin scale were compared to model simulations performed in the WETCHIMP intercomparison project. We found that LPX simulated CH4 flux densities are in reasonable agreement with observations at the field scale but with a~tendency to overestimate the flux observed at specific sites. In addition, the model did not reproduce between-site variations or between-year variations within a site. Unfortunately, site informations are too limited to attest or disprove some model features. At the Amazon Basin scale, our results underline the large uncertainty in the magnitude of wetland CH4 emissions. In particular, uncertainties in floodplain extent (i.e., difference between GLC2000 and PCR-GLOBWB output) modulate the simulated emissions by a factor of about 2. Our best estimates, using PCR-GLOBWB in combination with GLC2000, lead to simulated Amazon-integrated emissions of 44.4 ± 4.8 Tg yr-1. Additionally, the LPX emissions are highly sensitive to vegetation distribution. Two simulations with the same mean PFT cover, but different spatial distributions of grasslands within the basin modulated emissions by about 20%. Correcting the LPX simulated NPP using MODIS reduces the Amazon emissions by 11.3%. Finally, due to an intrinsic limitation of LPX to account for seasonality in floodplain extent, the model failed to reproduce the seasonality in CH4 emissions. The Inter Annual Variability (IAV) of the emissions increases by 90% if the IAV in floodplain extent is account for, but still remains lower than in most of WETCHIMP models. While our model includes more mechanisms specific to tropical floodplains, we were unable to reduce the uncertainty in the magnitude of wetland CH4 emissions of the Amazon Basin. Our results stress the need for more research to constrain floodplain CH4 emissions and their temporal variability.

  8. Accuracy assessment of a net radiation and temperature index snowmelt model using ground observations of snow water equivalent in an alpine basin

    NASA Astrophysics Data System (ADS)

    Molotch, N. P.; Painter, T. H.; Bales, R. C.; Dozier, J.

    2003-04-01

    In this study, an accumulated net radiation / accumulated degree-day index snowmelt model was coupled with remotely sensed snow covered area (SCA) data to simulate snow cover depletion and reconstruct maximum snow water equivalent (SWE) in the 19.1-km2 Tokopah Basin of the Sierra Nevada, California. Simple net radiation snowmelt models are attractive for operational snowmelt runoff forecasts as they are computationally inexpensive and have low input requirements relative to physically based energy balance models. The objective of this research was to assess the accuracy of a simple net radiation snowmelt model in a topographically heterogeneous alpine environment. Previous applications of net radiation / temperature index snowmelt models have not been evaluated in alpine terrain with intensive field observations of SWE. Solar radiation data from two meteorological stations were distributed using the topographic radiation model TOPORAD. Relative humidity and temperature data were distributed based on the lapse rate calculated between three meteorological stations within the basin. Fractional SCA data from the Landsat Enhanced Thematic Mapper (5 acquisitions) and the Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) (2 acquisitions) were used to derive daily SCA using a linear regression between acquisition dates. Grain size data from AVIRIS (4 acquisitions) were used to infer snow surface albedo and interpolated linearly with time to derive daily albedo values. Modeled daily snowmelt rates for each 30-m pixel were scaled by the SCA and integrated over the snowmelt season to obtain estimates of maximum SWE accumulation. Snow surveys consisting of an average of 335 depth measurements and 53 density measurements during April, May and June, 1997 were interpolated using a regression tree / co-krig model, with independent variables of average incoming solar radiation, elevation, slope and maximum upwind slope. The basin was clustered into 7 elevation / average-solar-radiation zones for SWE accuracy assessment. Model simulations did a poor job at estimating the spatial distribution of SWE. Basin clusters where the solar radiative flux dominated the melt flux were simulated more accurately than those dominated by the turbulent fluxes or the longwave radiative flux.

  9. A framework for identifying water management typologies for agent based modeling of water resources and its application in the Boise River Basin, USA.

    NASA Astrophysics Data System (ADS)

    Kaiser, K. E.; Flores, A. N.; Hillis, V.; Moroney, J.; Schneider, J.

    2017-12-01

    Modeling the management of water resources necessitates incorporation of complex social and hydrologic dynamics. Simulation of these socio-ecological systems requires characterization of the decision-making process of relevant actors, the mechanisms through which they exert control on the biophysical system, their ability to react and adapt to regional environmental conditions, and the plausible behaviors in response to changes in those conditions. Agent based models (ABMs) are a useful tool in simulating these complex adaptive systems because they can dynamically couple hydrological models and the behavior of decision making actors. ABMs can provide a flexible, integrated framework that can represent multi-scale interactions, and the heterogeneity of information networks and sources. However, the variability in behavior of water management actors across systems makes characterizing agent behaviors and relationships challenging. Agent typologies, or agent functional types (AFTs), group together individuals and/or agencies with similar functional roles, management objectives, and decision-making strategies. AFTs have been used to represent archetypal land managers in the agricultural and forestry sectors in large-scale socio-economic system models. A similar typology of water actors could simplify the representation of water management across river basins, and increase transferability and scaling of resulting ABMs. Here, we present a framework for identifying and classifying major water actors and show how we will link an ABM of water management to a regional hydrologic model in a western river basin. The Boise River Basin in southwest Idaho is an interesting setting to apply our AFT framework because of the diverse stakeholders and associated management objectives which include managing urban growth pressures and water supply in the face of climate change. Precipitation in the upper basin supplies 90% of the surface water used in the basin, thus managers of the reservoir system (located in the upper basin) must balance flood control for the metropolitan area with water supply for downstream agricultural and hydropower use. Identifying dominant water management typologies that include state and federal agencies will increase the transferability of water management ABMs in the western US.

  10. Tackling risks at the broad scale in the Interior Columbia Basin.

    Treesearch

    Sally Duncan

    1998-01-01

    Examining biophysical and social conditions, trends, and opportunities, the Columbia basin assessment draws a composite picture of the basin with two integrated measures: ecological integrity (the presence and functioning of ecological components and processes) and socioeconomic resiliency (the social and economic adaptability of a geographic area to outside economic...

  11. Integrated assessment of policy interventions for promoting sustainable irrigation in semi-arid environments: a hydro-economic modeling approach.

    PubMed

    Blanco-Gutiérrez, Irene; Varela-Ortega, Consuelo; Purkey, David R

    2013-10-15

    Sustaining irrigated agriculture to meet food production needs while maintaining aquatic ecosystems is at the heart of many policy debates in various parts of the world, especially in arid and semi-arid areas. Researchers and practitioners are increasingly calling for integrated approaches, and policy-makers are progressively supporting the inclusion of ecological and social aspects in water management programs. This paper contributes to this policy debate by providing an integrated economic-hydrologic modeling framework that captures the socio-economic and environmental effects of various policy initiatives and climate variability. This modeling integration includes a risk-based economic optimization model and a hydrologic water management simulation model that have been specified for the Middle Guadiana basin, a vulnerable drought-prone agro-ecological area with highly regulated river systems in southwest Spain. Namely, two key water policy interventions were investigated: the implementation of minimum environmental flows (supported by the European Water Framework Directive, EU WFD), and a reduction in the legal amount of water delivered for irrigation (planned measure included in the new Guadiana River Basin Management Plan, GRBMP, still under discussion). Results indicate that current patterns of excessive water use for irrigation in the basin may put environmental flow demands at risk, jeopardizing the WFD's goal of restoring the 'good ecological status' of water bodies by 2015. Conflicts between environmental and agricultural water uses will be stressed during prolonged dry episodes, and particularly in summer low-flow periods, when there is an important increase of crop irrigation water requirements. Securing minimum stream flows would entail a substantial reduction in irrigation water use for rice cultivation, which might affect the profitability and economic viability of small rice-growing farms located upstream in the river. The new GRBMP could contribute to balance competing water demands in the basin and to increase economic water productivity, but might not be sufficient to ensure the provision of environmental flows as required by the WFD. A thoroughly revision of the basin's water use concession system for irrigation seems to be needed in order to bring the GRBMP in line with the WFD objectives. Furthermore, the study illustrates that social, economic, institutional, and technological factors, in addition to bio-physical conditions, are important issues to be considered for designing and developing water management strategies. The research initiative presented in this paper demonstrates that hydro-economic models can explicitly integrate all these issues, constituting a valuable tool that could assist policy makers for implementing sustainable irrigation policies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Historical and potential future impacts of extreme hydrological events on the Amazonian floodplain hydrology and inundation dynamics

    NASA Astrophysics Data System (ADS)

    Macedo, M.; Panday, P. K.; Coe, M. T.; Lefebvre, P.; Castello, L.

    2015-12-01

    The Amazonian floodplains and wetlands cover one fifth of the basin and are highly productive promoting diverse biological communities and sustaining human populations with fisheries. Seasonal inundation of the floodplains fluctuates in response to drought or extreme rainfall as observed in the recent droughts of 2005 and 2010 where river levels dropped to among the lowest recorded. We model and evaluate the historical (1940-2010) and projected future (2010-2100) impacts of droughts and floods on the floodplain hydrology and inundation dynamics in the central Amazon using the Integrated Biosphere Simulator (IBIS) and the Terrestrial Hydrology Model and Biogeochemistry (THMB). Simulated discharge correlates well with observed discharges for tributaries originating in Brazil but underestimates basins draining regions in the non-Brazilian Amazon (Solimões, Japuŕa, Madeira, and Negro) by greater than 30%. A volume bias-correction from the simulated and observed runoff was used to correct the input precipitation across the major tributaries of the Amazon basin that drain the Andes. Simulated hydrological parameters (discharge, inundated area and river height) using corrected precipitation has a strong correlation with field measured discharge at gauging stations, surface water extent data (Global Inundation Extent from Multi-Satellites (GIEMS) and NASA Earth System Data Records (ESDRs) for inundation), and satellite radar altimetry (TOPEX/POSEIDON altimeter data for 1992-1998 and ENVISAT data for 2002-2010). We also used an ensemble of model outputs participating in the IPCC AR5 to drive two sets of simulations with and without carbon dioxide fertilization for the 2006-2100 period, and evaluated the potential scale and variability of future changes in discharge and inundation dynamics due to the influences of climate change and vegetation response to carbon dioxide fertilization. Preliminary modeled results for future scenarios using Representative Concentration Pathways (RCP) 4.5 indicate decreases in projected discharge and extent of inundated area on the mainstem Amazon by the late 21st century owing to influences of future climate change only.

  13. Modeling of extreme freshwater outflow from the north-eastern Japanese river basins to western Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Troselj, Josko; Sayama, Takahiro; Varlamov, Sergey M.; Sasaki, Toshiharu; Racault, Marie-Fanny; Takara, Kaoru; Miyazawa, Yasumasa; Kuroki, Ryusuke; Yamagata, Toshio; Yamashiki, Yosuke

    2017-12-01

    This study demonstrates the importance of accurate extreme discharge input in hydrological and oceanographic combined modeling by introducing two extreme typhoon events. We investigated the effects of extreme freshwater outflow events from river mouths on sea surface salinity distribution (SSS) in the coastal zone of the north-eastern Japan. Previous studies have used observed discharge at the river mouth, as well as seasonally averaged inter-annual, annual, monthly or daily simulated data. Here, we reproduced the hourly peak discharge during two typhoon events for a targeted set of nine rivers and compared their impact on SSS in the coastal zone based on observed, climatological and simulated freshwater outflows in conjunction with verification of the results using satellite remote-sensing data. We created a set of hourly simulated freshwater outflow data from nine first-class Japanese river basins flowing to the western Pacific Ocean for the two targeted typhoon events (Chataan and Roke) and used it with the integrated hydrological (CDRMV3.1.1) and oceanographic (JCOPE-T) model, to compare the case using climatological mean monthly discharges as freshwater input from rivers with the case using our hydrological model simulated discharges. By using the CDRMV model optimized with the SCE-UA method, we successfully reproduced hindcasts for peak discharges of extreme typhoon events at the river mouths and could consider multiple river basin locations. Modeled SSS results were verified by comparison with Chlorophyll-a distribution, observed by satellite remote sensing. The projection of SSS in the coastal zone became more realistic than without including extreme freshwater outflow. These results suggest that our hydrological models with optimized model parameters calibrated to the Typhoon Roke and Chataan cases can be successfully used to predict runoff values from other extreme precipitation events with similar physical characteristics. Proper simulation of extreme typhoon events provides more realistic coastal SSS and may allow a different scenario analysis with various precipitation inputs for developing a nowcasting analysis in the future.

  14. Use of Regional Climate Model Output for Hydrologic Simulations

    NASA Astrophysics Data System (ADS)

    Hay, L. E.; Clark, M. P.; Wilby, R. L.; Gutowski, W. J.; Leavesley, G. H.; Pan, Z.; Arritt, R. W.; Takle, E. S.

    2001-12-01

    Daily precipitation and maximum and minimum temperature time series from a Regional Climate Model (RegCM2) were used as input to a distributed hydrologic model for a rainfall-dominated basin (Alapaha River at Statenville, Georgia) and three snowmelt-dominated basins (Animas River at Durango, Colorado; East Fork of the Carson River near Gardnerville, Nevada; and Cle Elum River near Roslyn, Washington). For comparison purposes, spatially averaged daily data sets of precipitation and maximum and minimum temperature were developed from measured data. These datasets included precipitation and temperature data for all stations that are located within the area of the RegCM2 model output used for each basin, but excluded station data used to calibrate the hydrologic model. Both the RegCM2 output and station data capture the gross aspects of the seasonal cycles of precipitation and temperature. However, in all four basins, the RegCM2- and station-based simulations of runoff show little skill on a daily basis (Nash-Sutcliffe (NS) values ranging from 0.05-0.37 for RegCM2 and -0.08-0.65 for station). When the precipitation and temperature biases are corrected in the RegCM2 output and station data sets (Bias-RegCM2 and Bias-station, respectively) the accuracy of the daily runoff simulations improve dramatically for the snowmelt-dominated basins. In the rainfall-dominated basin, runoff simulations based on the Bias-RegCM2 output show no skill (NS value of 0.09) whereas Bias-All simulated runoff improves (NS value improved from -0.08 to 0.72). These results indicate that the resolution of the RegCM2 output is appropriate for basin-scale modeling, but RegCM2 model output does not contain the day-to-day variability needed for basin-scale modeling in rainfall-dominated basins. Future work is warranted to identify the causes for systematic biases in RegCM2 simulations, develop methods to remove the biases, and improve RegCM2 simulations of daily variability in local climate.

  15. Simulations of Ground Motion in Southern California based upon the Spectral-Element Method

    NASA Astrophysics Data System (ADS)

    Tromp, J.; Komatitsch, D.; Liu, Q.

    2003-12-01

    We use the spectral-element method to simulate ground motion generated by recent well-recorded small earthquakes in Southern California. Simulations are performed using a new sedimentary basin model that is constrained by hundreds of petroleum industry well logs and more than twenty thousand kilometers of seismic reflection profiles. The numerical simulations account for 3D variations of seismic wave speeds and density, topography and bathymetry, and attenuation. Simulations for several small recent events demonstrate that the combination of a detailed sedimentary basin model and an accurate numerical technique facilitates the simulation of ground motion at periods of 2 seconds and longer inside the Los Angeles basin and 6 seconds and longer elsewhere. Peak ground displacement, velocity and acceleration maps illustrate that significant amplification occurs in the basin. Centroid-Moment Tensor mechanisms are obtained based upon Pnl and surface waveforms and numerically calculated 3D Frechet derivatives. We use a combination of waveform and waveform-envelope misfit criteria, and facilitate pure double-couple or zero-trace moment-tensor inversions.

  16. Methane emissions from floodplains in the Amazon Basin: challenges in developing a process-based model for global applications

    NASA Astrophysics Data System (ADS)

    Ringeval, B.; Houweling, S.; van Bodegom, P. M.; Spahni, R.; van Beek, R.; Joos, F.; Röckmann, T.

    2014-03-01

    Tropical wetlands are estimated to represent about 50% of the natural wetland methane (CH4) emissions and explain a large fraction of the observed CH4 variability on timescales ranging from glacial-interglacial cycles to the currently observed year-to-year variability. Despite their importance, however, tropical wetlands are poorly represented in global models aiming to predict global CH4 emissions. This publication documents a first step in the development of a process-based model of CH4 emissions from tropical floodplains for global applications. For this purpose, the LPX-Bern Dynamic Global Vegetation Model (LPX hereafter) was slightly modified to represent floodplain hydrology, vegetation and associated CH4 emissions. The extent of tropical floodplains was prescribed using output from the spatially explicit hydrology model PCR-GLOBWB. We introduced new plant functional types (PFTs) that explicitly represent floodplain vegetation. The PFT parameterizations were evaluated against available remote-sensing data sets (GLC2000 land cover and MODIS Net Primary Productivity). Simulated CH4 flux densities were evaluated against field observations and regional flux inventories. Simulated CH4 emissions at Amazon Basin scale were compared to model simulations performed in the WETCHIMP intercomparison project. We found that LPX reproduces the average magnitude of observed net CH4 flux densities for the Amazon Basin. However, the model does not reproduce the variability between sites or between years within a site. Unfortunately, site information is too limited to attest or disprove some model features. At the Amazon Basin scale, our results underline the large uncertainty in the magnitude of wetland CH4 emissions. Sensitivity analyses gave insights into the main drivers of floodplain CH4 emission and their associated uncertainties. In particular, uncertainties in floodplain extent (i.e., difference between GLC2000 and PCR-GLOBWB output) modulate the simulated emissions by a factor of about 2. Our best estimates, using PCR-GLOBWB in combination with GLC2000, lead to simulated Amazon-integrated emissions of 44.4 ± 4.8 Tg yr-1. Additionally, the LPX emissions are highly sensitive to vegetation distribution. Two simulations with the same mean PFT cover, but different spatial distributions of grasslands within the basin, modulated emissions by about 20%. Correcting the LPX-simulated NPP using MODIS reduces the Amazon emissions by 11.3%. Finally, due to an intrinsic limitation of LPX to account for seasonality in floodplain extent, the model failed to reproduce the full dynamics in CH4 emissions but we proposed solutions to this issue. The interannual variability (IAV) of the emissions increases by 90% if the IAV in floodplain extent is accounted for, but still remains lower than in most of the WETCHIMP models. While our model includes more mechanisms specific to tropical floodplains, we were unable to reduce the uncertainty in the magnitude of wetland CH4 emissions of the Amazon Basin. Our results helped identify and prioritize directions towards more accurate estimates of tropical CH4 emissions, and they stress the need for more research to constrain floodplain CH4 emissions and their temporal variability, even before including other fundamental mechanisms such as floating macrophytes or lateral water fluxes.

  17. Extreme Landfalling Atmospheric River Events in Arizona: Possible Future Changes

    NASA Astrophysics Data System (ADS)

    Singh, I.; Dominguez, F.

    2016-12-01

    Changing climate could impact the frequency and intensity of extreme atmospheric river events. This can have important consequences for regions like the Southwestern United Sates that rely upon AR-related precipitation for meeting their water demand and are prone to AR-related flooding. This study investigates the effects of climate change on extreme AR events in the Salt and Verde river basins in Central Arizona using a pseudo global warming method (PGW). First, the five most extreme events that affected the region were selected. High-resolution control simulations of these events using the Weather Research and Forecasting model realistically captured the magnitude and spatial distribution of precipitation. Subsequently, following the PGW approach, the WRF initial and lateral boundary conditions were perturbed. The perturbation signals were obtained from an ensemble of 9 General Circulation Models for two warming scenarios - Representative Concentration Pathway (RCP) 4.5 and RCP8.5. Several simulations were conducted changing the temperature and relative humidity fields. PGW simulations reveal that while the overall dynamics of the storms did not change significantly, there was marked strengthening of associated Integrated Vertical Transport (IVT) plumes. There was a general increase in the precipitation over the basins due to increased moisture availability, but heterogeneous spatial changes. Additionally, no significant changes in the strength of the pre-cold frontal low-level jet in the future simulations were observed.

  18. Data collection for cooperative water resources modeling in the Lower Rio Grande Basin, Fort Quitman to the Gulf of Mexico.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Passell, Howard David; Pallachula, Kiran; Tidwell, Vincent Carroll

    2004-10-01

    Water resource scarcity around the world is driving the need for the development of simulation models that can assist in water resources management. Transboundary water resources are receiving special attention because of the potential for conflict over scarce shared water resources. The Rio Grande/Rio Bravo along the U.S./Mexican border is an example of a scarce, transboundary water resource over which conflict has already begun. The data collection and modeling effort described in this report aims at developing methods for international collaboration, data collection, data integration and modeling for simulating geographically large and diverse international watersheds, with a special focus onmore » the Rio Grande/Rio Bravo. This report describes the basin, and the data collected. This data collection effort was spatially aggregated across five reaches consisting of Fort Quitman to Presidio, the Rio Conchos, Presidio to Amistad Dam, Amistad Dam to Falcon Dam, and Falcon Dam to the Gulf of Mexico. This report represents a nine-month effort made in FY04, during which time the model was not completed.« less

  19. Integrated catchment modelling within a strategic planning and decision making process: Werra case study

    NASA Astrophysics Data System (ADS)

    Dietrich, Jörg; Funke, Markus

    Integrated water resources management (IWRM) redefines conventional water management approaches through a closer cross-linkage between environment and society. The role of public participation and socio-economic considerations becomes more important within the planning and decision making process. In this paper we address aspects of the integration of catchment models into such a process taking the implementation of the European Water Framework Directive (WFD) as an example. Within a case study situated in the Werra river basin (Central Germany), a systems analytic decision process model was developed. This model uses the semantics of the Unified Modeling Language (UML) activity model. As an example application, the catchment model SWAT and the water quality model RWQM1 were applied to simulate the effect of phosphorus emissions from non-point and point sources on water quality. The decision process model was able to guide the participants of the case study through the interdisciplinary planning and negotiation of actions. Further improvements of the integration framework include tools for quantitative uncertainty analyses, which are crucial for real life application of models within an IWRM decision making toolbox. For the case study, the multi-criteria assessment of actions indicates that the polluter pays principle can be met at larger scales (sub-catchment or river basin) without significantly compromising cost efficiency for the local situation.

  20. Modelling flow and heat transfer through unsaturated chalk - Validation with experimental data from the ground surface to the aquifer

    NASA Astrophysics Data System (ADS)

    Thiéry, Dominique; Amraoui, Nadia; Noyer, Marie-Luce

    2018-01-01

    During the winter and spring of 2000-2001, large floods occurred in northern France (Somme River Basin) and southern England (Patcham area of Brighton) in valleys that are developed on Chalk outcrops. The floods durations were particularly long (more than 3 months in the Somme Basin) and caused significant damage in both countries. To improve the understanding of groundwater flooding in Chalk catchments, an experimental site was set up in the Hallue basin, which is located in the Somme River Basin (France). Unsaturated fractured chalk formation overlying the Chalk aquifer was monitored to understand its reaction to long and heavy rainfall events when it reaches a near saturation state. The water content and soil temperature were monitored to a depth of 8 m, and the matrix pressure was monitored down to the water table, 26.5 m below ground level. The monitoring extended over a 2.5-year period (2006-2008) under natural conditions and during two periods when heavy, artificial infiltration was induced. The objective of the paper is to describe a vertical numerical flow model based on Richards' equation using these data that was developed to simulate infiltrating rainwater flow from the ground surface to the saturated aquifer. The MARTHE computer code, which models the unsaturated-saturated continuum, was adapted to reproduce the monitored high saturation periods. Composite constitutive functions (hydraulic conductivity-saturation and pressure-saturation) that integrate the increase in hydraulic conductivity near saturation and extra available porosity resulting from fractures were introduced into the code. Using these composite constitutive functions, the model was able to accurately simulate the water contents and pressures at all depths over the entire monitored period, including the infiltration tests. The soil temperature was also accurately simulated at all depths, except during the infiltrations tests, which contributes to the model validation. The model was used to calculate the aquifer recharge over a long period that included droughts and floods. The calculated recharge is realistic as it makes it possible to simulate the corresponding monitored groundwater level data, which increases confidence in the modelling approach.

  1. Chrystal and Proudman resonances simulated with three numerical models

    NASA Astrophysics Data System (ADS)

    Bubalo, Maja; Janeković, Ivica; Orlić, Mirko

    2018-05-01

    The aim of this work was to study Chrystal and Proudman resonances in a simple closed basin and to explore and compare how well the two resonant mechanisms are reproduced with different, nowadays widely used, numerical ocean models. The test case was based on air pressure disturbances of two commonly used shapes (a sinusoidal and a boxcar), having various wave lengths, and propagating at different speeds. Our test domain was a closed rectangular basin, 300 km long with a uniform depth of 50 m, with the theoretical analytical solution available for benchmark. In total, 2250 simulations were performed for each of the three different numerical models: ADCIRC, SCHISM and ROMS. During each of the simulations, we recorded water level anomalies and computed the integral of the energy density spectrum for a number of points distributed along the basin. We have successfully documented the transition from Proudman to Chrystal resonance that occurs for a sinusoidal air pressure disturbance having a wavelength between one and two basin lengths. An inter-model comparison of the results shows that different models represent the two resonant phenomena in a slightly different way. For Chrystal resonance, all the models showed similar behavior; however, ADCIRC model providing slightly higher values of the mean resonant period than the other two models. In the case of Proudman resonance, the most consistent results, closest to the analytical solution, were obtained using ROMS model, which reproduced the mean resonant speed equal to 22.00 m/s— i.e., close to the theoretical value of 22.15 m/s. ADCIRC and SCHISM models showed small deviations from that value, with the mean speed being slightly lower—21.97 m/s (ADCIRC) and 21.93 m/s (SCHISM). The findings may seem small but could play an important role when resonance is a crucial process producing enhancing effects by two orders of magnitude (i.e., meteotsunamis).

  2. Valuing investments in sustainable land management using an integrated modelling framework to support a watershed conservation scheme in the Upper Tana River, Kenya

    NASA Astrophysics Data System (ADS)

    Hunink, Johannes E.; Bryant, Benjamin P.; Vogl, Adrian; Droogers, Peter

    2015-04-01

    We analyse the multiple impacts of investments in sustainable land use practices on ecosystem services in the Upper Tana basin (Kenya) to support a watershed conservation scheme (a "water fund"). We apply an integrated modelling framework, building on previous field-based and modelling studies in the basin, and link biophysical outputs to economic benefits for the main actors in the basin. The first step in the modelling workflow is the use of a high-resolution spatial prioritization tool (Resource Investment Optimization System -- RIOS) to allocate the type and location of conservation investments in the different subbasins, subject to budget constraints and stakeholder concerns. We then run the Soil and Water Assessment Tool (SWAT) using the RIOS-identified investment scenarios to produce spatially explicit scenarios that simulate changes in water yield and suspended sediment. Finally, in close collaboration with downstream water users (urban water supply and hydropower) we link those biophysical outputs to monetary metrics, including: reduced water treatment costs, increased hydropower production, and crop yield benefits for upstream farmers in the conservation area. We explore how different budgets and different spatial targeting scenarios influence the return of the investments and the effectiveness of the water fund scheme. This study is novel in that it presents an integrated analysis targeting interventions in a decision context that takes into account local environmental and socio-economic conditions, and then relies on detailed, process-based, biophysical models to demonstrate the economic return on those investments. We conclude that the approach allows for an analysis on different spatial and temporal scales, providing conclusive evidence to stakeholders and decision makers on the contribution and benefits of the land-based investments in this basin. This is serving as foundational work to support the implementation of the Upper Tana-Nairobi Water Fund, a public-private partnership to safeguard ecosystem service provision and food security.

  3. CI-WATER HPC Model: Cyberinfrastructure to Advance High Performance Water Resources Modeling in the Intermountain Western U.S

    NASA Astrophysics Data System (ADS)

    Ogden, F. L.; Lai, W.; Douglas, C. C.; Miller, S. N.; Zhang, Y.

    2012-12-01

    The CI-WATER project is a cooperative effort between the Utah and Wyoming EPSCoR jurisdictions, and is funded through a cooperative agreement with the U.S. National Science Foundation EPSCoR. The CI-WATER project is acquiring hardware and developing software cyberinfrastructure (CI) to enhance accessibility of High Performance Computing for water resources modeling in the Western U.S. One of the components of the project is development of a large-scale, high-resolution, physically-based, data-driven, integrated computational water resources model, which we call the CI-WATER HPC model. The objective of this model development is to enable evaluation of integrated system behavior to guide and support water system planning and management by individual users, cities, or states. The model is first being tested in the Green River basin of Wyoming, which is the largest tributary to the Colorado River. The model will ultimately be applied to simulate the entire Upper Colorado River basin for hydrological studies, watershed management, economic analysis, as well as evaluation of potential changes in environmental policy and law, population, land use, and climate. In addition to hydrologically important processes simulated in many hydrological models, the CI-WATER HPC model will emphasize anthropogenic influences such as land use change, water resources infrastructure, irrigation practices, trans-basin diversions, and urban/suburban development. The model operates on an unstructured mesh, employing adaptive mesh at grid sizes as small as 10 m as needed- particularly in high elevation snow melt regions. Data for the model are derived from remote sensing sources, atmospheric models and geophysical techniques. Monte-Carlo techniques and ensemble Kalman filtering methodologies are employed for data assimilation. The model includes application programming interface (API) standards to allow easy substitution of alternative process-level simulation routines, and provide post-processing, visualization, and communication of massive amounts of output. The open-source CI-WATER model represents a significant advance in water resources modeling, and will be useful to water managers, planners, resource economists, and the hydrologic research community in general.

  4. Precipitation-runoff processes in the Feather River basin, northeastern California, and streamflow predictability, water years 1971-97

    USGS Publications Warehouse

    Koczot, Kathryn M.; Jeton, Anne E.; McGurk, Bruce; Dettinger, Michael D.

    2005-01-01

    Precipitation-runoff processes in the Feather River Basin of northern California determine short- and long-term streamflow variations that are of considerable local, State, and Federal concern. The river is an important source of water and power for the region. The basin forms the headwaters of the California State Water Project. Lake Oroville, at the outlet of the basin, plays an important role in flood management, water quality, and the health of fisheries as far downstream as the Sacramento-San Joaquin Delta. Existing models of the river simulate streamflow in hourly, daily, weekly, and seasonal time steps, but cannot adequately describe responses to climate and land-use variations in the basin. New spatially detailed precipitation-runoff models of the basin have been developed to simulate responses to climate and land-use variations at a higher spatial resolution than was available previously. This report characterizes daily rainfall, snowpack evolution, runoff, water and energy balances, and streamflow variations from, and within, the basin above Lake Oroville. The new model's ability to predict streamflow is assessed. The Feather River Basin sits astride geologic, topographic, and climatic divides that establish a hydrologic character that is relatively unusual among the basins of the Sierra Nevada. It straddles a north-south geologic transition in the Sierra Nevada between the granitic bedrock that underlies and forms most of the central and southern Sierra Nevada and volcanic bedrock that underlies the northernmost parts of the range (and basin). Because volcanic bedrock generally is more permeable than granitic, the northern, volcanic parts of the basin contribute larger fractions of ground-water flow to streams than do the southern, granitic parts of the basin. The Sierra Nevada topographic divide forms a high altitude ridgeline running northwest to southeast through the middle of the basin. The topography east of this ridgeline is more like the rain-shadowed basins of the northeastern Sierra Nevada than the uplands of most western Sierra Nevada river basins. The climate is mediterranean, with most of the annual precipitation occurring in winter. Because the basin includes large areas that are near the average snowline, rainfall and rain-snow mixtures are common during winter storms. Consequently, the overall timing and rates of runoff from the basin are highly sensitive to winter temperature fluctuations. The models were developed to simulate runoff-generating processes in eight drainages of the Feather River Basin. Together, these models simulate streamflow from 98 percent of the basin above Lake Oroville. The models simulate daily water and heat balances, snowpack evolution and snowmelt, evaporation and transpiration, subsurface water storage and outflows, and streamflow to key streamflow gage sites. The drainages are modeled as 324 hydrologic-response units, each of which is assumed homogeneous in physical characteristics and response to precipitation and runoff. The models were calibrated with emphasis on reproducing monthly streamflow rates, and model simulations were compared to the total natural inflows into Lake Oroville as reconstructed by the California Department of Water Resources for April-July snowmelt seasons from 1971 to 1997. The models are most sensitive to input values and patterns of precipitation and soil characteristics. The input precipitation values were allowed to vary on a daily basis to reflect available observations by making daily transformations to an existing map of long-term mean monthly precipitation rates that account for altitude and rain-shadow effects. The models effectively simulate streamflow into Lake Oroville during water years (October through September) 1971-97, which is demonstrated in hydrographs and statistical results presented in this report. The Butt Creek model yields the most accurate historical April-July simulations, whereas the West Branch

  5. Connections between residence time distributions and watershed characteristics across the continental US

    NASA Astrophysics Data System (ADS)

    Condon, L. E.; Maxwell, R. M.; Kollet, S. J.; Maher, K.; Haggerty, R.; Forrester, M. M.

    2016-12-01

    Although previous studies have demonstrated fractal residence time distributions in small watersheds, analyzing residence time scaling over large spatial areas is difficult with existing observational methods. For this study we use a fully integrated groundwater surface water simulation combined with Lagrangian particle tracking to evaluate connections between residence time distributions and watershed characteristics such as geology, topography and climate. Our simulation spans more than six million square kilometers of the continental US, encompassing a broad range of watershed sizes and physiographic settings. Simulated results demonstrate power law residence time distributions with peak age rages from 1.5 to 10.5 years. These ranges agree well with previous observational work and demonstrate the feasibility of using integrated models to simulate residence times. Comparing behavior between eight major watersheds, we show spatial variability in both the peak and the variance of the residence time distributions that can be related to model inputs. Peak age is well correlated with basin averaged hydraulic conductivity and the semi-variance corresponds to aridity. While power law age distributions have previously been attributed to fractal topography, these results illustrate the importance of subsurface characteristics and macro climate as additional controls on groundwater configuration and residence times.

  6. Watershed scale response to climate change--Pomperaug River Watershed, Connecticut

    USGS Publications Warehouse

    Bjerklie, David M.; Hay, Lauren E.; Markstrom, Steven L.

    2012-01-01

    Fourteen basins for which the Precipitation Runoff Modeling System has been calibrated and evaluated were selected as study sites. Precipitation Runoff Modeling System is a deterministic, distributed parameter watershed model developed to evaluate the effects of various combinations of precipitation, temperature, and land use on streamflow and general basin hydrology. Output from five General Circulation Model simulations and four emission scenarios were used to develop an ensemble of climate-change scenarios for each basin. These ensembles were simulated with the corresponding Precipitation Runoff Modeling System model. This fact sheet summarizes the hydrologic effect and sensitivity of the Precipitation Runoff Modeling System simulations to climate change for the Pomperaug River Basin at Southbury, Connecticut.

  7. Combined top-down and bottom-up climate change impact assessment for the hydrological system in the Vu Gia- Thu Bon River Basin.

    PubMed

    Tra, Tran Van; Thinh, Nguyen Xuan; Greiving, Stefan

    2018-07-15

    Vu Gia- Thu Bon (VGTB) River Basin, located in the Central Coastal zone of Viet Nam currently faces water shortage. Climate change is expected to exacerbate the challenge. Therefore, there is a need to study the impacts of climate change on water shortage in the river basin. The study adopts a combined top-down and bottom-up climate change impact assessment to address the impacts of climate change on water shortage in the VGTB River Basin. A MIKE BASIN water balance model for the river basin was established to simulate the response of the hydrological system. Simulations were performed through parametrically varying temperature and precipitation to determine the vulnerability space of water shortage. General Circulation Models (GCMs) were then utilized to provide climate projections for the river basin. The output from GCMs was then mapped onto the vulnerability space determined earlier. In total, 9 out of 55 water demand nodes in the simulation are expected to face problematic conditions as future climate changes. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Hydrogeology and Simulated Effects of Ground-Water Withdrawals in the Big River Area, Rhode Island

    USGS Publications Warehouse

    Granato, Gregory E.; Barlow, Paul M.; Dickerman, David C.

    2003-01-01

    The Rhode Island Water Resources Board is considering expanded use of ground-water resources from the Big River area because increasing water demands in Rhode Island may exceed the capacity of current sources. This report describes the hydrology of the area and numerical simulation models that were used to examine effects of ground-water withdrawals during 1964?98 and to describe potential effects of different withdrawal scenarios in the area. The Big River study area covers 35.7 square miles (mi2) and includes three primary surface-water drainage basins?the Mishnock River Basin above Route 3, the Big River Basin, and the Carr River Basin, which is a tributary to the Big River. The principal aquifer (referred to as the surficial aquifer) in the study area, which is defined as the area of stratified deposits with a saturated thickness estimated to be 10 feet or greater, covers an area of 10.9 mi2. On average, an estimated 75 cubic feet per second (ft3/s) of water flows through the study area and about 70 ft3/s flows out of the area as streamflow in either the Big River (about 63 ft3/s) or the Mishnock River (about 7 ft3/s). Numerical simulation models are used to describe the hydrology of the area under simulated predevelopment conditions, conditions during 1964?98, and conditions that might occur in 14 hypothetical ground-water withdrawal scenarios with total ground-water withdrawal rates in the area that range from 2 to 11 million gallons per day. Streamflow depletion caused by these hypothetical ground-water withdrawals is calculated by comparison with simulated flows for the predevelopment conditions, which are identical to simulated conditions during the 1964?98 period but without withdrawals at public-supply wells and wastewater recharge. Interpretation of numerical simulation results indicates that the three basins in the study area are in fact a single ground-water resource. For example, the Carr River Basin above Capwell Mill Pond is naturally losing water to the Mishnock River Basin. Withdrawals in the Carr River Basin can deplete streamflows in the Mishnock River Basin. Withdrawals in the Mishnock River Basin deplete streamflows in the Big River Basin and can intercept water flowing to the Flat River Reservoir North of Hill Farm Road in Coventry, Rhode Island. Withdrawals in the Big River Basin can deplete streamflows in the western unnamed tributary to the Carr River, but do not deplete streamflows in the Mishnock River Basin or in the Carr River upstream of Capwell Mill Pond. Because withdrawals deplete streamflows in the study area, the total amount of ground water that may be withdrawn for public supply depends on the minimum allowable streamflow criterion that is applied for each basin.

  9. Simulation of Surface-Water Conditions in the Nontidal Passaic River Basin, New Jersey

    USGS Publications Warehouse

    Spitz, Frederick J.

    2007-01-01

    The Passaic River Basin, the third largest drainage basin in New Jersey, encompasses 950 mi2 (square miles) in the highly urbanized area outside New York City, with a population of 2 million. Water quality in the basin is affected by many natural and anthropogenic factors. Nutrient loading to the Wanaque Reservoir in the northern part of the basin is of particular concern and is caused partly by the diversion of water at two downstream intakes that is transferred back upstream to refill the reservoir. The larger of these diversions, Wanaque South intake, is on the lower Pompton River near Two Bridges, New Jersey. To support the development of a Total Maximum Daily Load (TMDL) for nutrients in the nontidal part of the basin (805 mi2), a water-quality transport model was needed. The U.S. Geological Survey, in cooperation with the New Jersey Department of Environmental Protection and New Jersey EcoComplex, developed a flow-routing model to provide the hydraulic inputs to the water-quality model. The Diffusion Analogy Flow model (DAFLOW) described herein was designed for integration with the Water Quality Analysis Simulation Program (WASP) watershed water-quality model. The flow routing model was used to simulate flow in 108 miles of the Passaic River and major tributaries. Flow data from U.S. Geological Survey streamflow-gaging stations represent most of the model's upstream boundaries. Other model inputs include estimated flows for ungaged tributaries and unchanneled drainage along the mainstem, and reported flows for major point-source discharges and diversions. The former flows were calibrated using the drainage-area ratio method. The simulation extended over a 4+ year period representing a range in flow conditions. Simulated channel cross-sectional geometry in the DAFLOW model was calibrated using several different approaches by adjusting area and top width parameters. The model also was calibrated to observed flows for water year 2001 (low flow) at five mainstem gaging stations and one station at which flow was estimated. The model's target range was medium to low flows--the range of typical intake operations. Simulated flow mass balance, hydrographs (flood-wave speed, attenuation, and spread), flow-duration curves, and velocity and depth values were compared to observed counterparts. Mass balance and hydrograph fit were evaluated quantitatively. Simulation results generally were within the accuracy of the flow data at the measurement stations. The model was validated to observed flows for water years 2000 (average flow), 2002 (extreme low flow), and 2003 (high flow). Results for 19 of 20 comparisons indicate average mass-balance and model-fit errors of 6.6 and 15.7 percent, respectively, indicating that the model reasonably represents the time variation of streamflow in the nontidal Passaic River Basin. An algorithm (subroutine) also was developed for DAFLOW to simulate the hydraulic mixing that occurs near the Wanaque South intake upstream from the confluence of the Pompton and Passaic Rivers. The intake draws water from multiple sources, including effluent from a nearby wastewater-treatment plant, all of which have different phosphorus loads. The algorithm determines the proportion of flow from each source and operates within a narrow flow range. The equations used in the algorithm are based on the theory of diffusion and lateral mixing in rivers. Parameters used in the equations were estimated from limited available local flow and water-quality data. As expected, simulation results for water years 2000, 2001, and 2003 indicate that most of the water drawn to the intake comes from the Pompton River; however, during many short periods of low flow and high diversion, particularly in water year 2002, entrainment of the other flow sources compensated for the insufficient flow in the Pompton River. As additional verification of the flow model used in the water-quality model, a Branched Lagrangian Transport Model (B

  10. Geomorphic evolution of the San Luis Basin and Rio Grande in southern Colorado and northern New Mexico

    USGS Publications Warehouse

    Ruleman, Chester A.; Machette, Michael; Thompson, Ren A.; Miggins, Dan M; Goehring, Brent M; Paces, James B.

    2016-01-01

    The San Luis Basin encompasses the largest structural and hydrologic basin of the Rio Grande rift. On this field trip, we will examine the timing of transition of the San Luis Basin from hydrologically closed, aggrading subbasins to a continuous fluvial system that eroded the basin, formed the Rio Grande gorge, and ultimately, integrated the Rio Grande from Colorado to the Gulf of Mexico. Waning Pleistocene neotectonic activity and onset of major glacial episodes, in particular Marine Isotope Stages 11–2 (~420–14 ka), induced basin fill, spillover, and erosion of the southern San Luis Basin. The combined use of new geologic mapping, fluvial geomorphology, reinterpreted surficial geology of the Taos Plateau, pedogenic relative dating studies, 3He surface exposure dating of basalts, and U-series dating of pedogenic carbonate supports a sequence of events wherein pluvial Lake Alamosa in the northern San Luis Basin overflowed, and began to drain to the south across the closed Sunshine Valley–Costilla Plain region ≤400 ka. By ~200 ka, erosion had cut through topographic highs at Ute Mountain and the Red River fault zone, and began deep-canyon incision across the southern San Luis Basin. Previous studies indicate that prior to 200 ka, the present Rio Grande terminated into a large bolson complex in the vicinity of El Paso, Texas, and systematic, headward erosional processes had subtly integrated discontinuously connected basins along the eastern flank of the Rio Grande rift and southern Rocky Mountains. We propose that the integration of the entire San Luis Basin into the Rio Grande drainage system (~400–200 ka) was the critical event in the formation of the modern Rio Grande, integrating hinterland basins of the Rio Grande rift from El Paso, Texas, north to the San Luis Basin with the Gulf of Mexico. This event dramatically affected basins southeast of El Paso, Texas, across the Chisos Mountains and southeastern Basin and Range province, including the Rio Conchos watershed and much of the Chihuahuan Desert, inducing broad regional landscape incision and exhumation.

  11. Evaluation of climate change effects on the hydrology of a medium-sized Mediterranean basin affected by data sparseness

    NASA Astrophysics Data System (ADS)

    Piras, Monica; Mascaro, Giuseppe; Deidda, Roberto; Vivoni, Enrique R.

    2014-05-01

    Many studies based on global and regional climate models agree on the prediction that the Mediterranean area will be most likely affected by climate changes with consequent reduced water availability and intensified hydrologic extremes. This study evaluates the effects of climate changes on the hydrologic response of a medium-sized Mediterranean basin through downscaling techniques and hydrologic simulations. The watershed is the Rio Mannu at Monastir basin (473 km2), located in an agricultural area of southern Sardinia, Italy, which has suffered drought issues in the last decades. It is one of the seven study cases of a multidisciplinary European research project, CLIMB (Climate Induced Changes on the Hydrology of Mediterranean Basins). In such basins, characterized by strong climate variability and by a complex hydrologic response, process based distributed hydrologic models, DHMs, combined with regional climate models, RCMs, and downscaling techniques can help in the evaluation of the local impacts of climate change on water resources decreasing the uncertainty. Since the Rio Mannu basin is affected by data sparseness (meteorological and streamflow data are collected in non overlapping time periods and at diverse time resolutions), two statistical downscaling strategies for precipitation and potential evapotranspiration have been designed which allow to obtain the high-resolution input data required for the calibration of our hydrologic model, the TIN-based Real time Integrated Basin Simulator (tRIBS). We show how the DHM has been calibrated and validated with reasonable accuracy using the disaggregation tools. Next, the same downscaling algorithms have been used to fill the resolution discrepancy between RCMs and the hydrologic model. The outputs of four RCMs, selected as the best performing and bias corrected within the CLIMB project, have been downscaled and used to force the tRIBS during a reference (1971-2000) and a future (2041-2070) period. Several hydro-climatic indicators have been computed based on the time series and spatial maps produced by the DHM to assess the variation in Rio Mannu water resources budget and hydrologic extremes in the future period as compared to the reference one. Our results confirms what is generally predicted for the Mediterranean area, showing a basin future condition of more water shortages due to both reduced precipitations and increased temperatures.

  12. User manuals for the Delaware River Basin Water Availability Tool for Environmental Resources (DRB–WATER) and associated WATER application utilities

    USGS Publications Warehouse

    Williamson, Tanja N.; Lant, Jeremiah G.

    2015-11-18

    The Water Availability Tool for Environmental Resources (WATER) is a decision support system (DSS) for the nontidal part of the Delaware River Basin (DRB) that provides a consistent and objective method of simulating streamflow under historical, forecasted, and managed conditions. WATER integrates geospatial sampling of landscape characteristics, including topographic and soil properties, with a regionally calibrated hillslope-hydrology model, an impervious-surface model, and hydroclimatic models that have been parameterized using three hydrologic response units—forested, agricultural, and developed land cover. It is this integration that enables the regional hydrologic-modeling approach used in WATER without requiring site-specific optimization or those stationary conditions inferred when using a statistical model. The DSS provides a “historical” database, ideal for simulating streamflow for 2001–11, in addition to land-cover forecasts that focus on 2030 and 2060. The WATER Application Utilities are provided with the DSS and apply change factors for precipitation, temperature, and potential evapotranspiration to a 1981–2011 climatic record provided with the DSS. These change factors were derived from a suite of general circulation models (GCMs) and representative concentration pathway (RCP) emission scenarios. These change factors are based on 25-year monthly averages (normals) that are centere on 2030 and 2060. The WATER Application Utilities also can be used to apply a 2010 snapshot of water use for the DRB; a factorial approach enables scenario testing of increased or decreased water use for each simulation. Finally, the WATER Application Utilities can be used to reformat streamflow time series for input to statistical or reservoir management software. 

  13. Improvement in precipitation-runoff model simulations by recalibration with basin-specific data, and subsequent model applications, Onondaga Lake Basin, Onondaga County, New York

    USGS Publications Warehouse

    Coon, William F.

    2011-01-01

    Simulation of streamflows in small subbasins was improved by adjusting model parameter values to match base flows, storm peaks, and storm recessions more precisely than had been done with the original model. Simulated recessional and low flows were either increased or decreased as appropriate for a given stream, and simulated peak flows generally were lowered in the revised model. The use of suspended-sediment concentrations rather than concentrations of the surrogate constituent, total suspended solids, resulted in increases in the simulated low-flow sediment concentrations and, in most cases, decreases in the simulated peak-flow sediment concentrations. Simulated orthophosphate concentrations in base flows generally increased but decreased for peak flows in selected headwater subbasins in the revised model. Compared with the original model, phosphorus concentrations simulated by the revised model were comparable in forested subbasins, generally decreased in developed and wetland-dominated subbasins, and increased in agricultural subbasins. A final revision to the model was made by the addition of the simulation of chloride (salt) concentrations in the Onondaga Creek Basin to help water-resource managers better understand the relative contributions of salt from multiple sources in this particular tributary. The calibrated revised model was used to (1) compute loading rates for the various land types that were simulated in the model, (2) conduct a watershed-management analysis that estimated the portion of the total load that was likely to be transported to Onondaga Lake from each of the modeled subbasins, (3) compute and assess chloride loads to Onondaga Lake from the Onondaga Creek Basin, and (4) simulate precolonization (forested) conditions in the basin to estimate the probable minimum phosphorus loads to the lake.

  14. Better Assessment Science Integrating Point and Non-point Sources (BASINS)

    EPA Pesticide Factsheets

    Better Assessment Science Integrating Point and Nonpoint Sources (BASINS) is a multipurpose environmental analysis system designed to help regional, state, and local agencies perform watershed- and water quality-based studies.

  15. Integration of hydrologic and water allocation models in basin-scale water resources management considering crop pattern and climate change: Karkheh River Basin in Iran

    USDA-ARS?s Scientific Manuscript database

    The paradigm of integrated water resources management requires coupled analysis of hydrology and water resources in a river basin. Population growth and uncertainties due to climate change make historic data not a reliable source of information for future planning of water resources, hence necessit...

  16. Modelling carbon responses of tundra ecosystems to historical and projected climate: Sensitivity of pan-Arctic carbon storage to temporal and spatial variation in climate

    USGS Publications Warehouse

    McGuire, A.D.; Clein, Joy S.; Melillo, J.M.; Kicklighter, D.W.; Meier, R.A.; Vorosmarty, C.J.; Serreze, Mark C.

    2000-01-01

    Historical and projected climate trends for high latitudes show substantial temporal and spatial variability. To identify uncertainties in simulating carbon (C) dynamics for pan-Arctic tundra, we compare the historical and projected responses of tundra C storage from 1921 to 2100 between simulations by the Terrestrial Ecosystem Model (TEM) for the pan-Arctic and the Kuparuk River Basin, which was the focus of an integrated study of C dynamics from 1994 to 1996. In the historical period from 1921 to 1994, the responses of net primary production (NPP) and heterotrophic respiration (RH) simulated for the Kuparuk River Basin and the pan-Arctic are correlated with the same factors; NPP is positively correlated with net nitrogen mineralization (NMIN) and RH is negatively correlated with mean annual soil moisture. In comparison to the historical period, the spatially aggregated responses of NPP and RH for the Kuparuk River Basin and the pan-Arctic in our simulations for the projected period have different sensitivities to temperature, soil moisture and NMIN. In addition to being sensitive to soil moisture during the projected period, RH is also sensitive to temperature and there is a significant correlation between RH and NMIN. We interpret the increases in NPP during the projected period as being driven primarily by increases in NMIN, and that the correlation between NPP and temperature in the projected period is a result primarily of the causal linkage between temperature, RH, and NMIN. Although similar factors appear to be controlling simulated regional-and biome-scale C dynamics, simulated C dynamics at the two scales differ in magnitude with higher increases in C storage simulated for the Kuparuk River Basin than for the pan-Arctic at the end of the historical period and throughout the projected period. Also, the results of the simulations indicate that responses of C storage show different climate sensitivities at regional and pan-Arctic spatial scales and that these sensitivities change across the temporal scope of the simulations. The results of the TEM simulations indicate that the scaling of C dynamics to a region of arctic tundra may not represent C dynamics of pan-Arctic tundra because of the limited spatial variation in climate and vegetation within a region relative to the pan-Arctic. For reducing uncertainties, our analyses highlight the importance of incorporating the understanding gained from process-level studies of C dynamics in a region of arctic tundra into process-based models that simulate C dynamics in a spatially explicit fashion across the spatial domain of pan-Arctic tundra. Also, efforts to improve gridded datasets of historical climate for the pan-Arctic would advance the ability to assess the responses of C dynamics for pan-Arctic tundra in a more realistic fashion. A major challenge will be to incorporate topographic controls over soil moisture in assessing the response of C storage for pan-Arctic tundra.

  17. Evaluating Satellite-based Rainfall Estimates for Basin-scale Hydrologic Modeling

    NASA Astrophysics Data System (ADS)

    Yilmaz, K. K.; Hogue, T. S.; Hsu, K.; Gupta, H. V.; Mahani, S. E.; Sorooshian, S.

    2003-12-01

    The reliability of any hydrologic simulation and basin outflow prediction effort depends primarily on the rainfall estimates. The problem of estimating rainfall becomes more obvious in basins with scarce or no rain gauges. We present an evaluation of satellite-based rainfall estimates for basin-scale hydrologic modeling with particular interest in ungauged basins. The initial phase of this study focuses on comparison of mean areal rainfall estimates from ground-based rain gauge network, NEXRAD radar Stage-III, and satellite-based PERSIANN (Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks) and their influence on hydrologic model simulations over several basins in the U.S. Six-hourly accumulations of the above competing mean areal rainfall estimates are used as input to the Sacramento Soil Moisture Accounting Model. Preliminary experiments for the Leaf River Basin in Mississippi, for the period of March 2000 - June 2002, reveals that seasonality plays an important role in the comparison. There is an overestimation during the summer and underestimation during the winter in satellite-based rainfall with respect to the competing rainfall estimates. The consequence of this result on the hydrologic model is that simulated discharge underestimates the major observed peak discharges during early spring for the basin under study. Future research will entail developing correction procedures, which depend on different factors such as seasonality, geographic location and basin size, for satellite-based rainfall estimates over basins with dense rain gauge network and/or radar coverage. Extension of these correction procedures to satellite-based rainfall estimates over ungauged basins with similar characteristics has the potential for reducing the input uncertainty in ungauged basin modeling efforts.

  18. Geohydrology of the French Creek basin and simulated effects of droughtand ground-water withdrawals, Chester County, Pennsylvania

    USGS Publications Warehouse

    Sloto, Ronald A.

    2004-01-01

    This report describes the results of a study by the U.S. Geological Survey, in cooperation with the Delaware River Basin Commission, to develop a regional ground-water-flow model of the French Creek Basin in Chester County, Pa. The model was used to assist water-resource managers by illustrating the interconnection between ground-water and surface-water systems. The 70.7-mi2 (square mile) French Creek Basin is in the Piedmont Physiographic Province and is underlain by crystalline and sedimentary fractured-rock aquifers. Annual water budgets were calculated for 1969-2001 for the French Creek Basin upstream of streamflow measurement station French Creek near Phoenixville (01472157). Average annual precipitation was 46.28 in. (inches), average annual streamflow was 20.29 in., average annual base flow determined by hydrograph separation was 12.42 in., and estimated average annual ET (evapotranspiration) was 26.10 in. Estimated average annual recharge was 14.32 in. and is equal to 31 percent of the average annual precipitation. Base flow made up an average of 61 percent of streamflow. Ground-water flow in the French Creek Basin was simulated using the finite-difference MODFLOW-96 computer program. The model structure is based on a simplified two-dimensional conceptualization of the ground-water-flow system. The modeled area was extended outside the French Creek Basin to natural hydrologic boundaries; the modeled area includes 40 mi2 of adjacent areas outside the basin. The hydraulic conductivity for each geologic unit was calculated from reported specific-capacity data determined from aquifer tests and was adjusted during model calibration. The model was calibrated for aboveaverage conditions by simulating base-flow and water-level measurements made on May 1, 2001, using a recharge rate of 20 in/yr (inches per year). The model was calibrated for below-average conditions by simulating base-flow and water-level measurements made on September 11 and 17, 2001, using a recharge rate of 6.2 in/yr. Average conditions were simulated by adjusting the recharge rate until simulated streamflow at streamflow-measurement station 01472157 matched the long-term (1968-2001) average base flow of 54.1 cubic feet per second. The recharge rate used for average conditions was 15.7 in/yr. The effect of drought in the French Creek Basin was simulated using a drought year recharge rate of 8 in/yr for 3 months. After 3 months of drought, the simulated streamflow of French Creek at streamflow-measurement station 01472157 decreased 34 percent. The simulations show that after 6 months of average recharge (15.7 in/yr) following drought, streamflow and water levels recovered almost to pre-drought conditions. The effect of increased ground-water withdrawals on stream base flow in the South Branch French Creek Subbasin was simulated under average and drought conditions with pumping rates equal to 50, 75, and 100 percent of the Delaware River Basin Commission Ground Water Protected Area (GWPA) withdrawal limit (1,393 million gallons per year) with all pumped water removed from the basin. For average recharge conditions, the simulated streamflow of South Branch French Creek at the mouth decreased 18, 28, and 37 percent at a withdrawal rate equal to 50, 75, and 100 percent of the GWPA limit, respectively. After 3 months of drought recharge conditions, the simulated streamflow of South Branch French Creek at the mouth decreased 27, 40, and 52 percent at a withdrawal rate equal to 50, 75, and 100 percent of the GWPA limit, respectively. The effect of well location on base flow, water levels, and the sources of water to the well was simulated by locating a hypothetical well pumping 200 gallons per minute in different places in the Beaver Run Subbasin with all pumped water removed from the basin. The smallest reduction in the base flow of Beaver Run was from a well on the drainage divide

  19. Aqua-planet simulations of the formation of the South Atlantic convergence zone

    NASA Technical Reports Server (NTRS)

    Nieto Ferreira, Rosana; Chao, Winston C.

    2013-01-01

    The impact of Amazon Basin convection and cold fronts on the formation and maintenance of the South Atlantic convergence zone (SACZ) is studied using aqua-planet simulations with a general circulation model. In the model, a circular patch of warm sea-surface temperature (SST) is used to mimic the effect of the Amazon Basin on South American monsoon convection. The aqua-planet simulations were designed to study the effect of the strength and latitude of Amazon Basin convection on the formation of the SACZ. The simulations indicate that the strength of the SACZ increases as the Amazon convection intensifies and is moved away from the equator. Of the two controls studied here, the latitude of the Amazon convection exerts the strongest effect on the strength of the SACZ. An analysis of the synoptic-scale variability in the simulations shows the importance of frontal systems in the formation of the aqua-planet SACZ. Composite time series of frontal systems that occurred in the simulations show that a robust SACZ occurs when fronts penetrate into the subtropics and become stationary there as they cross eastward of the longitude of the Amazon Basin. Moisture convergence associated with these frontal systems produces rainfall not along the model SACZ region and along a large portion of the northern model Amazon Basin. Simulations in which the warm SST patch was too weak or too close to the equator did not produce frontal systems that extended into the tropics and became stationary, and did not form a SACZ. In the model, the SACZ forms as Amazon Basin convection strengthens and migrates far enough southward to allow frontal systems to penetrate into the tropics and stall over South America. This result is in agreement with observations that the SACZ tends to form after the onset of the monsoon season in the Amazon Basin.

  20. Computer input and output files associated with ground-water-flow simulations of the Albuquerque Basin, central New Mexico, 1901-95, with projections to 2020; (supplement three to U.S. Geological Survey Water-resources investigations report 94-4251)

    USGS Publications Warehouse

    Kernodle, J.M.

    1996-01-01

    This report presents the computer input files required to run the three-dimensional ground-water-flow model of the Albuquerque Basin, central New Mexico, documented in Kernodle and others (Kernodle, J.M., McAda, D.P., and Thorn, C.R., 1995, Simulation of ground-water flow in the Albuquerque Basin, central New Mexico, 1901-1994, with projections to 2020: U.S. Geological Survey Water-Resources Investigations Report 94-4251, 114 p.) and revised by Kernodle (Kernodle, J.M., 1998, Simulation of ground-water flow in the Albuquerque Basin, 1901-95, with projections to 2020 (supplement two to U.S. Geological Survey Water-Resources Investigations Report 94-4251): U.S. Geological Survey Open-File Report 96-209, 54 p.). Output files resulting from the computer simulations are included for reference.

  1. Modeling the distributed effects of forest thinning on the long-term water balance and streamflow extremes for a semi-arid basin in the southwestern US

    NASA Astrophysics Data System (ADS)

    Moreno, Hernan A.; Gupta, Hoshin V.; White, Dave D.; Sampson, David A.

    2016-03-01

    To achieve water resource sustainability in the water-limited southwestern US, it is critical to understand the potential effects of proposed forest thinning on the hydrology of semi-arid basins, where disturbances to headwater catchments can cause significant changes in the local water balance components and basinwise streamflows. In Arizona, the Four Forest Restoration Initiative (4FRI) is being developed with the goal of restoring 2.4 million acres of ponderosa pine along the Mogollon Rim. Using the physically based, spatially distributed triangulated irregular network (TIN)-based Real-time Integrated Basin Simulator (tRIBS) model, we examine the potential impacts of the 4FRI on the hydrology of Tonto Creek, a basin in the Verde-Tonto-Salt (VTS) system, which provides much of the water supply for the Phoenix metropolitan area. Long-term (20-year) simulations indicate that forest removal can trigger significant shifts in the spatiotemporal patterns of various hydrological components, causing increases in net radiation, surface temperature, wind speed, soil evaporation, groundwater recharge and runoff, at the expense of reductions in interception and shading, transpiration, vadose zone moisture and snow water equivalent, with south-facing slopes being more susceptible to enhanced atmospheric losses. The net effect will likely be increases in mean and maximum streamflow, particularly during El Niño events and the winter months, and chiefly for those scenarios in which soil hydraulic conductivity has been significantly reduced due to thinning operations. In this particular climate, forest thinning can lead to net loss of surface water storage by vegetation and snowpack, increasing the vulnerability of ecosystems and populations to larger and more frequent hydrologic extreme conditions on these semi-arid systems.

  2. Improved Lower Mekong River Basin Hydrological Decision Making Using NASA Satellite-based Earth Observation Systems

    NASA Astrophysics Data System (ADS)

    Bolten, J. D.; Mohammed, I. N.; Srinivasan, R.; Lakshmi, V.

    2017-12-01

    Better understanding of the hydrological cycle of the Lower Mekong River Basin (LMRB) and addressing the value-added information of using remote sensing data on the spatial variability of soil moisture over the Mekong Basin is the objective of this work. In this work, we present the development and assessment of the LMRB (drainage area of 495,000 km2) Soil and Water Assessment Tool (SWAT). The coupled model framework presented is part of SERVIR, a joint capacity building venture between NASA and the U.S. Agency for International Development, providing state-of-the-art, satellite-based earth monitoring, imaging and mapping data, geospatial information, predictive models, and science applications to improve environmental decision-making among multiple developing nations. The developed LMRB SWAT model enables the integration of satellite-based daily gridded precipitation, air temperature, digital elevation model, soil texture, and land cover and land use data to drive SWAT model simulations over the Lower Mekong River Basin. The LMRB SWAT model driven by remote sensing climate data was calibrated and verified with observed runoff data at the watershed outlet as well as at multiple sites along the main river course. Another LMRB SWAT model set driven by in-situ climate observations was also calibrated and verified to streamflow data. Simulated soil moisture estimates from the two models were then examined and compared to a downscaled Soil Moisture Active Passive Sensor (SMAP) 36 km radiometer products. Results from this work present a framework for improving SWAT performance by utilizing a downscaled SMAP soil moisture products used for model calibration and validation. Index Terms: 1622: Earth system modeling; 1631: Land/atmosphere interactions; 1800: Hydrology; 1836 Hydrological cycles and budgets; 1840 Hydrometeorology; 1855: Remote sensing; 1866: Soil moisture; 6334: Regional Planning

  3. Agriculture and groundwater nitrate contamination in the Seine basin. The STICS-MODCOU modelling chain.

    PubMed

    Ledoux, E; Gomez, E; Monget, J M; Viavattene, C; Viennot, P; Ducharne, A; Benoit, M; Mignolet, C; Schott, C; Mary, B

    2007-04-01

    A software package is presented here to predict the fate of nitrogen fertilizers and the transport of nitrate from the rooting zone of agricultural areas to surface water and groundwater in the Seine basin, taking into account the long residence times of water and nitrate in the unsaturated and aquifer systems. Information on pedological characteristics, land use and farming practices is used to determine the spatial units to be considered. These data are converted into input data for the crop model STICS which simulates the water and nitrogen balances in the soil-plant system with a daily time-step. A spatial application of STICS has been derived at the catchment scale which computes the water and nitrate fluxes at the bottom of the rooting zone. These fluxes are integrated into a surface and groundwater coupled model MODCOU which calculates the daily water balance in the hydrological system, the flow in the rivers and the piezometric variations in the aquifers, using standard climatic data (rainfall, PET). The transport of nitrate and the evolution of nitrate contamination in groundwater and to rivers is computed by the model NEWSAM. This modelling chain is a valuable tool to predict the evolution of crop productivity and nitrate contamination according to various scenarios modifying farming practices and/or climatic changes. Data for the period 1970-2000 are used to simulate the past evolution of nitrogen contamination. The method has been validated using available data bases of nitrate concentrations in the three main aquifers of the Paris basin (Oligocene, Eocene and chalk). The approach has then been used to predict the future evolution of nitrogen contamination up to 2015. A statistical approach allowed estimating the probability of transgression of different concentration thresholds in various areas in the basin. The model is also used to evaluate the cost of the damage resulting of the treatment of drinking water at the scale of a groundwater management unit in the Seine river basin.

  4. On the Development of an Integrated Hydrologic, Hydraulic, and Inverse Modeling Approach for Estimating Discharges and Water Depths for Ungauged Rivers from Space

    NASA Astrophysics Data System (ADS)

    LIU, G.; Schwartz, F. W.; Tseng, K. H.; Shum, C. K.

    2015-12-01

    The characterization of hydrologic processes in large river basins has been benefitting from a variety of remotely sensed data. These are useful in augmenting the conventional ground-surface and gage data that have long been available, or in providing what is often the only available information for ungauged river basins. The goal of this study is to demonstrate an innovative modeling approach that uses satellite data to enhance understanding of rivers, particularly ungauged rivers. The paper describes a prototype system - SWAT-XG, coupling SWAT and XSECT models in a Genetic Algorithm framework, for estimating discharge and depth for ungauged rivers from space. SWAT-XG was rigorously tested in the Red River of the North basin by validating discharge and depth products from 2006 to 2010 using in-situ observations across the basin. Results show that SWAT-XG, calibrated against remotely sensed data alone (i.e., water levels from ENVISAT altimetry and water extents from LANDSAT), was able to provide estimates of daily and monthly river discharge with mean R2 values of 0.822 and 0.924, respectively, against data from three gaging stations on the main stem. SWAT-XG also simulated the discharges of smaller tributaries well (yielding a mean R2 of 0.809 over seven gaging stations), suggesting that the SWAT-XG is a powerful estimator of river discharge at a basin scale. Results also show that the SWAT-XG simulated river's vertical dynamics quite well, providing water-depth estimates with an average R2 of 0.831. We conclude that the SWAT-XG advances the ability to estimate discharge and water depth from space for ungauged rivers. SWAT-XG would help to solve global big data problem for river studies and offer potential for understanding and quantifying the global water cycles. This study also implies that in-situ discharge data may not be necessary for a successful hydrologic model calibration.

  5. Will urban expansion lead to an increase in future water pollution loads?--a preliminary investigation of the Haihe River Basin in northeastern China.

    PubMed

    Dong, Yang; Liu, Yi; Chen, Jining

    2014-01-01

    Urban expansion is a major driving force changing regional hydrology and nonpoint source pollution. The Haihe River Basin, the political, economic, and cultural center of northeastern China, has undergone rapid urbanization in recent decades. To investigate the consequences of future urban sprawl on nonpoint source water pollutant emissions in the river basin, the urban sprawl in 2030 was estimated, and the annual runoff and nonpoint source pollution in the Haihe River basin were simulated. The Integrated Model of Non-Point Sources Pollution Processes (IMPULSE) was used to simulate the effects of urban sprawl on nonpoint source pollution emissions. The outcomes indicated that the urban expansion through 2030 increased the nonpoint source total nitrogen (TN), total phosphorous (TP), and chemical oxygen demand (COD) emissions by 8.08, 0.14, and 149.57 kg/km(2), respectively. Compared to 2008, the total nonpoint emissions rose by 15.33, 0.57, and 12.39 %, respectively. Twelve percent of the 25 cities in the basin would increase by more than 50 % in nonpoint source TN and COD emissions in 2030. In particular, the nonpoint source TN emissions in Xinxiang, Jiaozuo, and Puyang would rise by 73.31, 67.25, and 58.61 %, and the nonpoint source COD emissions in these cities would rise by 74.02, 51.99, and 53.27 %, respectively. The point source pollution emissions in 2008 and 2030 were also estimated to explore the effects of urban sprawl on total water pollution loads. Urban sprawl through 2030 would bring significant structural changes of total TN, TP, and COD emissions for each city in the area. The results of this study could provide insights into the effects of urbanization in the study area and the methods could help to recognize the role that future urban sprawl plays in the total water pollution loads in the water quality management process.

  6. The Brazilian developments on the Regional Atmospheric Modeling System (BRAMS 5.2): an integrated environmental model tuned for tropical areas

    NASA Astrophysics Data System (ADS)

    Freitas, Saulo R.; Panetta, Jairo; Longo, Karla M.; Rodrigues, Luiz F.; Moreira, Demerval S.; Rosário, Nilton E.; Silva Dias, Pedro L.; Silva Dias, Maria A. F.; Souza, Enio P.; Freitas, Edmilson D.; Longo, Marcos; Frassoni, Ariane; Fazenda, Alvaro L.; Silva, Cláudio M. Santos e.; Pavani, Cláudio A. B.; Eiras, Denis; França, Daniela A.; Massaru, Daniel; Silva, Fernanda B.; Santos, Fernando C.; Pereira, Gabriel; Camponogara, Gláuber; Ferrada, Gonzalo A.; Campos Velho, Haroldo F.; Menezes, Isilda; Freire, Julliana L.; Alonso, Marcelo F.; Gácita, Madeleine S.; Zarzur, Maurício; Fonseca, Rafael M.; Lima, Rafael S.; Siqueira, Ricardo A.; Braz, Rodrigo; Tomita, Simone; Oliveira, Valter; Martins, Leila D.

    2017-01-01

    We present a new version of the Brazilian developments on the Regional Atmospheric Modeling System (BRAMS), in which different previous versions for weather, chemistry, and carbon cycle were unified in a single integrated modeling system software. This new version also has a new set of state-of-the-art physical parameterizations and greater computational parallel and memory usage efficiency. The description of the main model features includes several examples illustrating the quality of the transport scheme for scalars, radiative fluxes on surface, and model simulation of rainfall systems over South America at different spatial resolutions using a scale aware convective parameterization. Additionally, the simulation of the diurnal cycle of the convection and carbon dioxide concentration over the Amazon Basin, as well as carbon dioxide fluxes from biogenic processes over a large portion of South America, are shown. Atmospheric chemistry examples show the model performance in simulating near-surface carbon monoxide and ozone in the Amazon Basin and the megacity of Rio de Janeiro. For tracer transport and dispersion, the model capabilities to simulate the volcanic ash 3-D redistribution associated with the eruption of a Chilean volcano are demonstrated. The gain of computational efficiency is described in some detail. BRAMS has been applied for research and operational forecasting mainly in South America. Model results from the operational weather forecast of BRAMS on 5 km grid spacing in the Center for Weather Forecasting and Climate Studies, INPE/Brazil, since 2013 are used to quantify the model skill of near-surface variables and rainfall. The scores show the reliability of BRAMS for the tropical and subtropical areas of South America. Requirements for keeping this modeling system competitive regarding both its functionalities and skills are discussed. Finally, we highlight the relevant contribution of this work to building a South American community of model developers.

  7. The Brazilian Developments on the Regional Atmospheric Modeling System (BRAMS 5.2): An Integrated Environmental Model Tuned for Tropical Areas

    NASA Technical Reports Server (NTRS)

    Freitas, Saulo R.; Panetta, Jairo; Longo, Karla M.; Rodrigues, Luiz F.; Moreira, Demerval S.; Rosario, Nilton E.; Silva Dias, Pedro L.; Silva Dias, Maria A. F.; Souza, Enio P.; Freitas, Edmilson D.; hide

    2017-01-01

    We present a new version of the Brazilian developments on the Regional Atmospheric Modeling System where different previous versions for weather, chemistry and carbon cycle were unified in a single integrated software system. The new version also has a new set of state-of-the-art physical parameterizations and greater computational parallel and memory usage efficiency. Together with the description of the main features are examples of the quality of the transport scheme for scalars, radiative fluxes on surface and model simulation of rainfall systems over South America in different spatial resolutions using a scale-aware convective parameterization. Besides, the simulation of the diurnal cycle of the convection and carbon dioxide concentration over the Amazon Basin, as well as carbon dioxide fluxes from biogenic processes over a large portion of South America are shown. Atmospheric chemistry examples present model performance in simulating near-surface carbon monoxide and ozone in Amazon Basin and Rio de Janeiro megacity. For tracer transport and dispersion, it is demonstrated the model capabilities to simulate the volcanic ash 3-d redistribution associated with the eruption of a Chilean volcano. Then, the gain of computational efficiency is described with some details. BRAMS has been applied for research and operational forecasting mainly in South America. Model results from the operational weather forecast of BRAMS on 5 km grid spacing in the Center for Weather Forecasting and Climate Studies, INPE/Brazil, since 2013 are used to quantify the model skill of near surface variables and rainfall. The scores show the reliability of BRAMS for the tropical and subtropical areas of South America. Requirements for keeping this modeling system competitive regarding on its functionalities and skills are discussed. At last, we highlight the relevant contribution of this work on the building up of a South American community of model developers.

  8. Global Change adaptation in water resources management: the Water Change project.

    PubMed

    Pouget, Laurent; Escaler, Isabel; Guiu, Roger; Mc Ennis, Suzy; Versini, Pierre-Antoine

    2012-12-01

    In recent years, water resources management has been facing new challenges due to increasing changes and their associated uncertainties, such as changes in climate, water demand or land use, which can be grouped under the term Global Change. The Water Change project (LIFE+ funding) developed a methodology and a tool to assess the Global Change impacts on water resources, thus helping river basin agencies and water companies in their long term planning and in the definition of adaptation measures. The main result of the project was the creation of a step by step methodology to assess Global Change impacts and define strategies of adaptation. This methodology was tested in the Llobregat river basin (Spain) with the objective of being applicable to any water system. It includes several steps such as setting-up the problem with a DPSIR framework, developing Global Change scenarios, running river basin models and performing a cost-benefit analysis to define optimal strategies of adaptation. This methodology was supported by the creation of a flexible modelling system, which can link a wide range of models, such as hydrological, water quality, and water management models. The tool allows users to integrate their own models to the system, which can then exchange information among them automatically. This enables to simulate the interactions among multiple components of the water cycle, and run quickly a large number of Global Change scenarios. The outcomes of this project make possible to define and test different sets of adaptation measures for the basin that can be further evaluated through cost-benefit analysis. The integration of the results contributes to an efficient decision-making on how to adapt to Global Change impacts. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. The Watershed and River Systems Management Program: Decision Support for Water- and Environmental-Resource Management

    NASA Astrophysics Data System (ADS)

    Leavesley, G.; Markstrom, S.; Frevert, D.; Fulp, T.; Zagona, E.; Viger, R.

    2004-12-01

    Increasing demands for limited fresh-water supplies, and increasing complexity of water-management issues, present the water-resource manager with the difficult task of achieving an equitable balance of water allocation among a diverse group of water users. The Watershed and River System Management Program (WARSMP) is a cooperative effort between the U.S. Geological Survey (USGS) and the Bureau of Reclamation (BOR) to develop and deploy a database-centered, decision-support system (DSS) to address these multi-objective, resource-management problems. The decision-support system couples the USGS Modular Modeling System (MMS) with the BOR RiverWare tools using a shared relational database. MMS is an integrated system of computer software that provides a research and operational framework to support the development and integration of a wide variety of hydrologic and ecosystem models, and their application to water- and ecosystem-resource management. RiverWare is an object-oriented reservoir and river-system modeling framework developed to provide tools for evaluating and applying water-allocation and management strategies. The modeling capabilities of MMS and Riverware include simulating watershed runoff, reservoir inflows, and the impacts of resource-management decisions on municipal, agricultural, and industrial water users, environmental concerns, power generation, and recreational interests. Forecasts of future climatic conditions are a key component in the application of MMS models to resource-management decisions. Forecast methods applied in MMS include a modified version of the National Weather Service's Extended Streamflow Prediction Program (ESP) and statistical downscaling from atmospheric models. The WARSMP DSS is currently operational in the Gunnison River Basin, Colorado; Yakima River Basin, Washington; Rio Grande Basin in Colorado and New Mexico; and Truckee River Basin in California and Nevada.

  10. Two-dimensional simulation of clastic and carbonate sedimentation, consolidation, subsidence, fluid flow, heat flow and solute transport during the formation of sedimentary basins

    NASA Astrophysics Data System (ADS)

    Bitzer, Klaus

    1999-05-01

    Geological processes that create sedimentary basins or act during their formation can be simulated using the public domain computer code `BASIN'. For a given set of geological initial and boundary conditions the sedimentary basin evolution is calculated in a forward modeling approach. The basin is represented in a two-dimensional vertical cross section with individual layers. The stratigraphic, tectonic, hydrodynamic and thermal evolution is calculated beginning at an initial state, and subsequent changes of basin geometry are calculated from sedimentation rates, compaction and pore fluid mobilization, isostatic compensation, fault movement and subsidence. The sedimentologic, hydraulic and thermal parameters are stored at discrete time steps allowing the temporal evolution of the basin to be analyzed. A maximum flexibility in terms of geological conditions is achieved by using individual program modules representing geological processes which can be switched on and off depending on the data available for a specific simulation experiment. The code incorporates a module for clastic and carbonate sedimentation, taking into account the impact of clastic sediment supply on carbonate production. A maximum of four different sediment types, which may be mixed during sedimentation, can be defined. Compaction and fluid flow are coupled through the consolidation equation and the nonlinear form of the equation of state for porosity, allowing nonequilibrium compaction and overpressuring to be calculated. Instead of empirical porosity-effective stress equations, a physically consistent consolidation model is applied which incorporates a porosity dependent sediment compressibility. Transient solute transport and heat flow are calculated as well, applying calculated fluid flow rates from the hydraulic model. As a measure for hydrocarbon generation, the Time-Temperature Index (TTI) is calculated. Three postprocessing programs are available to provide graphic output in PostScript format: BASINVIEW is used to display the distribution of parameters in the simulated cross-section of the basin for defined time steps. It is used in conjunction with the Ghostview software, which is freeware and available on most computer systems. AIBASIN provides PostScript output for Adobe Illustrator®, taking advantage of the layer-concept which facilitates further graphic manipulation. BASELINE is used to display parameter distribution at a defined well or to visualize the temporal evolution of individual elements located in the simulated sedimentary basin. The modular structure of the BASIN code allows additional processes to be included. A module to simulate reactive transport and diagenetic reactions is planned for future versions. The program has been applied to existing sedimentary basins, and it has also shown a high potential for classroom instruction, giving the possibility to create hypothetical basins and to interpret basin evolution in terms of sequence stratigraphy or petroleum potential.

  11. Modelling the impact of Global Change on the hydrological system of the Aral Sea basin

    NASA Astrophysics Data System (ADS)

    Aus der Beek, T.; Voß, F.; Flörke, M.

    During the last decades the Aral Sea basin has suffered an enormous depletion of water resources within its lakes and rivers with consequences for society, economy, and nature. Within this model study, Global Change impacts on the Amu Darya and Syr Darya rivers, as well as on the Aral Sea itself, are being analysed for the period 1958-2002. In a first step, a multi-annual data base on crop specific irrigated areas has been set-up, which has then been integrated in the hydrology and water use model WaterGAP3. As a second step, anthropogenic water abstractions have been calculated, which were then assimilated in the simulation of river runoff of the Amu Darya and Syr Darya. The last step includes the simulation of the water balance of the Aral Sea, by taking into account modelled river inflow. Within WaterGAP3, the water use module has been switched on and off to separate the impacts of Climate and Global Change (i.e. water abstractions). Irrigation water abstractions are very well represented by WaterGAP3 and lie within the range of reported values. Modelled river discharge also shows a good fit to observed data, whereas phases are in sync but volumes are slightly overestimated. Simulated volumes of the Aral Sea itself are well reflected by the model, though results for the period 1990-2002 are too high. In this study, the Climate Change impacts are much smaller (14%) than the water use impacts (86%) on the shrinkage of the Aral Sea. Finally, an outlook on potential scenario model studies is given, which could analyse the different strategies of mitigation and adaptation of Global Change in the Aral Sea basin.

  12. Impact of Climate Change on Irrigation and Hydropower Potential: A Case of Upper Blue Nile Basin

    NASA Astrophysics Data System (ADS)

    Abdella, E. J.; Gosain, A. K.; Khosa, R.

    2017-12-01

    Due to the growing pressure in water resource and climate change there is great uncertainty in the availability of water for existing as well as proposed irrigation and hydropower projects in the Upper Blue Nile basin (longitude 34oE and 39oE and latitude 7oN and 12oN). This study quantitatively assessed the impact of climate change on the hydrological regime of the basin which intern affect water availability for different use including hydropower and irrigation. Ensemble of four bias corrected regional climate models (RCM) of CORDEX Africa domain and two scenarios (RCP 4.5 and RCP 8.5) were used to determine climate projections for future (2021-2050) period. The outputs from the climate models used to drive the calibrated Soil and Water Assessment Tool (SWAT) hydrologic model to simulate future runoff. The simulated discharge were used as input to a Water Evaluation and Planning (WEAP) water allocation model to determine the implication in hydropower and irrigation potential of the basin. The WEAP model was setup to simulate three scenarios which includes Current, Medium-term (by 2025) and Long-term (by 2050) Development scenario. The projected mean annual temperature of the basin are warmer than the baseline (1982 - 2005) average in the range of 1 to 1.4oC. Projected mean annual precipitation varies across the basin in the range of - 3% to 7%, much of the expected increase is in the highland region of the basin. The water use simulation indicate that the current annual average irrigation water demand in the basin is 1.29Bm3y-1 with 100% coverage. By 2025 and 2050, with the development of new schemes and changing climate, water demand for irrigation is estimated to increase by 2.5 Bm3y-1 and 3.4 Bm3y-1 with 99 % and 96% coverage respectively. Simulation for domestic water demand coverage for all scenarios shows that there will be 100% coverage for the two major cities in the basin. The hydropower generation simulation indicate that 98% of hydroelectricity potential could be produced if all planed dams are constructed. The results in this study demonstrate the general idea of future water availability for different purpose in the basin, but uncertainties still exist in the projected future climate and simulated runoff. Optimal operation of existing and proposed reservoirs is also crucial in the context of climate change.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Getirana, Augusto; Dutra, Emanuel; Guimberteau, Matthieu

    Despite recent advances in modeling and remote sensing of land surfaces, estimates of the global water budget are still fairly uncertain. The objective of this study is to evaluate the water budget of the Amazon basin based on several state-of-the-art land surface model (LSM) outputs. Water budget variables [total water storage (TWS), evapotranspiration (ET), surface runoff (R) and baseflow (B)] are evaluated at the basin scale using both remote sensing and in situ data. Fourteen LSMs were run using meteorological forcings at a 3-hourly time step and 1-degree spatial resolution. Three experiments are performed using precipitation which has been rescaledmore » to match monthly global GPCP and GPCC datasets and the daily HYBAM dataset for the Amazon basin. R and B are used to force the Hydrological Modeling and Analysis Platform (HyMAP) river routing scheme and simulated discharges are compared against observations at 165 gauges. Simulated ET and TWS are compared against FLUXNET and MOD16A2 evapotranspiration, and GRACE TWS estimates in different catchments. At the basin scale, simulated ET ranges from 2.39mm.d-1 to 3.26mm.d-1 and a low spatial correlation between ET and P indicates that evapotranspiration does not depend on water availability over most of the basin. Results also show that other simulated water budget variables vary significantly as a function of both the LSM and precipitation used, but simulated TWS generally agree at the basin scale. The best water budget simulations resulted from experiments using the HYBAM dataset, mostly explained by a denser rainfall gauge network the daily rescaling.« less

  14. Testing conceptual and physically based soil hydrology schemes against observations for the Amazon Basin

    NASA Astrophysics Data System (ADS)

    Guimberteau, M.; Ducharne, A.; Ciais, P.; Boisier, J. P.; Peng, S.; De Weirdt, M.; Verbeeck, H.

    2014-06-01

    This study analyzes the performance of the two soil hydrology schemes of the land surface model ORCHIDEE in estimating Amazonian hydrology and phenology for five major sub-basins (Xingu, Tapajós, Madeira, Solimões and Negro), during the 29-year period 1980-2008. A simple 2-layer scheme with a bucket topped by an evaporative layer is compared to an 11-layer diffusion scheme. The soil schemes are coupled with a river routing module and a process model of plant physiology, phenology and carbon dynamics. The simulated water budget and vegetation functioning components are compared with several data sets at sub-basin scale. The use of the 11-layer soil diffusion scheme does not significantly change the Amazonian water budget simulation when compared to the 2-layer soil scheme (+3.1 and -3.0% in evapotranspiration and river discharge, respectively). However, the higher water-holding capacity of the soil and the physically based representation of runoff and drainage in the 11-layer soil diffusion scheme result in more dynamic soil water storage variation and improved simulation of the total terrestrial water storage when compared to GRACE satellite estimates. The greater soil water storage within the 11-layer scheme also results in increased dry-season evapotranspiration (+0.5 mm d-1, +17%) and improves river discharge simulation in the southeastern sub-basins such as the Xingu. Evapotranspiration over this sub-basin is sustained during the whole dry season with the 11-layer soil diffusion scheme, whereas the 2-layer scheme limits it after only 2 dry months. Lower plant drought stress simulated by the 11-layer soil diffusion scheme leads to better simulation of the seasonal cycle of photosynthesis (GPP) when compared to a GPP data-driven model based on eddy covariance and satellite greenness measurements. A dry-season length between 4 and 7 months over the entire Amazon Basin is found to be critical in distinguishing differences in hydrological feedbacks between the soil and the vegetation cover simulated by the two soil schemes. On average, the multilayer soil diffusion scheme provides little improvement in simulated hydrology over the wet tropical Amazonian sub-basins, but a more significant improvement is found over the drier sub-basins. The use of a multilayer soil diffusion scheme might become critical for assessments of future hydrological changes, especially in southern regions of the Amazon Basin where longer dry seasons and more severe droughts are expected in the next century.

  15. Integration of rainfall/runoff and geomorphological analyses flood hazard in small catchments: case studies from the southern Apennines (Italy)

    NASA Astrophysics Data System (ADS)

    Palumbo, Manuela; Ascione, Alessandra; Santangelo, Nicoletta; Santo, Antonio

    2017-04-01

    We present the first results of an analysis of flood hazard in ungauged mountain catchments that are associated with intensely urbanized alluvial fans. Assessment of hydrological hazard has been based on the integration of rainfall/runoff modelling of drainage basins with geomorphological analysis and mapping. Some small and steep, ungauged mountain catchments located in various areas of the southern Apennines, in southern Italy, have been chosen as test sites. In the last centuries, the selected basins have been subject to heavy and intense precipitation events, which have caused flash floods with serious damages in the correlated alluvial fan areas. Available spatial information (regional technical maps, DEMs, land use maps, geological/lithological maps, orthophotos) and an automated GIS-based procedure (ArcGis tools and ArcHydro tools) have been used to extract morphological, hydrological and hydraulic parameters. Such parameters have been used to run the HEC (Hydrologic Engineering Center of the US Army Corps of Engineers) software (GeoHMS, GeoRAS, HMS and RAS) based on rainfall-runoff models, which have allowed the hydrological and hydraulic simulations. As the floods occurred in the studied catchments have been debris flows dominated, the solid load simulation has been also performed. In order to validate the simulations, we have compared results of the modelling with the effects produced by past floods. Such effects have been quantified through estimations of both the sediment volumes within each catchment that have the potential to be mobilised (pre-event) during a sediment transfer event, and the volume of sediments delivered by the debris flows at basins' outlets (post-event). The post-event sediment volume has been quantified through post-event surveys and Lidar data. Evaluation of the pre-event sediment volumes in single catchments has been based on mapping of sediment storages that may constitute source zones of bed load transport and debris flows. For such an approach has been used a methodology that consists of the application of a process-based geomorphological mapping, based on data derived from GIS analysis using high-resolution DEMs, field measurements and aerial photograph interpretations. Our integrated approach, which allows quantification of the flow rate and a semi-quantitative assessment of sediment that can be mobilized during hydro-meteorological events, is applied for the first time to torrential catchmenmts of the southern Apennines and may significantly contribute to previsional studies aimed at risk mitigation in the study region.

  16. High-resolution integration of water, energy, and climate models to assess electricity grid vulnerabilities to climate change

    NASA Astrophysics Data System (ADS)

    Meng, M.; Macknick, J.; Tidwell, V. C.; Zagona, E. A.; Magee, T. M.; Bennett, K.; Middleton, R. S.

    2017-12-01

    The U.S. electricity sector depends on large amounts of water for hydropower generation and cooling thermoelectric power plants. Variability in water quantity and temperature due to climate change could reduce the performance and reliability of individual power plants and of the electric grid as a system. While studies have modeled water usage in power systems planning, few have linked grid operations with physical water constraints or with climate-induced changes in water resources to capture the role of the energy-water nexus in power systems flexibility and adequacy. In addition, many hydrologic and hydropower models have a limited representation of power sector water demands and grid interaction opportunities of demand response and ancillary services. A multi-model framework was developed to integrate and harmonize electricity, water, and climate models, allowing for high-resolution simulation of the spatial, temporal, and physical dynamics of these interacting systems. The San Juan River basin in the Southwestern U.S., which contains thermoelectric power plants, hydropower facilities, and multiple non-energy water demands, was chosen as a case study. Downscaled data from three global climate models and predicted regional water demand changes were implemented in the simulations. The Variable Infiltration Capacity hydrologic model was used to project inflows, ambient air temperature, and humidity in the San Juan River Basin. Resulting river operations, water deliveries, water shortage sharing agreements, new water demands, and hydroelectricity generation at the basin-scale were estimated with RiverWare. The impacts of water availability and temperature on electric grid dispatch, curtailment, cooling water usage, and electricity generation cost were modeled in PLEXOS. Lack of water availability resulting from climate, new water demands, and shortage sharing agreements will require thermoelectric generators to drastically decrease power production, as much as 50% during intensifying drought scenarios, which can have broader electricity sector system implications. Results relevant to stakeholder and power provider interests highlight the vulnerabilities in grid operations driven by water shortage agreements and changes in the climate.

  17. Monthly streamflow forecasting in the Rhine basin

    NASA Astrophysics Data System (ADS)

    Schick, Simon; Rössler, Ole; Weingartner, Rolf

    2017-04-01

    Forecasting seasonal streamflow of the Rhine river is of societal relevance as the Rhine is an important water way and water resource in Western Europe. The present study investigates the predictability of monthly mean streamflow at lead times of zero, one, and two months with the focus on potential benefits by the integration of seasonal climate predictions. Specifically, we use seasonal predictions of precipitation and surface air temperature released by the European Centre for Medium-Range Weather Forecasts (ECMWF) for a regression analysis. In order to disentangle forecast uncertainty, the 'Reverse Ensemble Streamflow Prediction' framework is adapted here to the context of regression: By using appropriate subsets of predictors the regression model is constrained to either the initial conditions, the meteorological forcing, or both. An operational application is mimicked by equipping the model with the seasonal climate predictions provided by ECMWF. Finally, to mitigate the spatial aggregation of the meteorological fields the model is also applied at the subcatchment scale, and the resulting predictions are combined afterwards. The hindcast experiment is carried out for the period 1982-2011 in cross validation mode at two gauging stations, namely the Rhine at Lobith and Basel. The results show that monthly forecasts are skillful with respect to climatology only at zero lead time. In addition, at zero lead time the integration of seasonal climate predictions decreases the mean absolute error by 5 to 10 percentage compared to forecasts which are solely based on initial conditions. This reduction most likely is induced by the seasonal prediction of precipitation and not air temperature. The study is completed by bench marking the regression model with runoff simulations from ECMWFs seasonal forecast system. By simply using basin averages followed by a linear bias correction, these runoff simulations translate well to monthly streamflow. Though the regression model is only slightly outperformed, we argue that runoff out of the land surface component of seasonal climate forecasting systems is an interesting option when it comes to seasonal streamflow forecasting in large river basins.

  18. Site Effect Analysis in the Izmit Basin of Turkey: Preliminary Results from the Wave Propagation Simulation using the Spectral Element Method

    NASA Astrophysics Data System (ADS)

    Firtana Elcomert, Karolin; Kocaoglu, Argun

    2014-05-01

    Sedimentary basins affect the propagation characteristics of the seismic waves and cause significant ground motion amplification during an earthquake. While the impedance contrast between the sedimentary layer and bedrock predominantly controls the resonance frequencies and their amplitudes (seismic amplification), surface waves generated within the basin, make the waveforms more complex and longer in duration. When a dense network of weak and/or strong motion sensors is available, site effect or more specifically sedimentary basin amplification can be directly estimated experimentally provided that significant earthquakes occur during the period of study. Alternatively, site effect can be investigated through simulation of ground motion. The objective of this study is to investigate the 2-D site effect in the Izmit Basin located in the eastern Marmara region of Turkey, using the currently available bedrock topography and shear-wave velocity data. The Izmit Basin was formed in Plio-Quaternary period and is known to be a pull-apart basin controlled by the northern branch of the North Anatolian Fault Zone (Şengör et al. 2005). A thorough analysis of seismic hazard is important since the city of Izmit and its metropolitan area is located in this region. Using a spectral element code, SPECFEM2D (Komatitsch et al. 1998), this work presents some of the preliminary results of the 2-D seismic wave propagation simulations for the Izmit basin. The spectral-element method allows accurate and efficient simulation of seismic wave propagation due to its advantages over the other numerical modeling techniques by means of representation of the wavefield and the computational mesh. The preliminary results of this study suggest that seismic wave propagation simulations give some insight into the site amplification phenomena in the Izmit basin. Comparison of seismograms recorded on the top of sedimentary layer with those recorded on the bedrock show more complex waveforms with higher amplitudes on seismograms recorded at the free surface. Furthermore, modeling reveals that observed seismograms include surface waves whose excitation is clearly related to the basin geometry.

  19. Hydroeconomic modeling of sustainable groundwater management

    NASA Astrophysics Data System (ADS)

    MacEwan, Duncan; Cayar, Mesut; Taghavi, Ali; Mitchell, David; Hatchett, Steve; Howitt, Richard

    2017-03-01

    In 2014, California passed legislation requiring the sustainable management of critically overdrafted groundwater basins, located primarily in the Central Valley agricultural region. Hydroeconomic modeling of the agricultural economy, groundwater, and surface water systems is critically important to simulate potential transition paths to sustainable management of the basins. The requirement for sustainable groundwater use by 2040 is mandated for many overdrafted groundwater basins that are decoupled from environmental and river flow effects. We argue that, for such cases, a modeling approach that integrates a biophysical response function from a hydrologic model into an economic model of groundwater use is preferable to embedding an economic response function in a complex hydrologic model as is more commonly done. Using this preferred approach, we develop a dynamic hydroeconomic model for the Kings and Tulare Lake subbasins of California and evaluate three groundwater management institutions—open access, perfect foresight, and managed pumping. We quantify the costs and benefits of sustainable groundwater management, including energy pumping savings, drought reserve values, and avoided capital costs. Our analysis finds that, for basins that are severely depleted, losses in crop net revenue are offset by the benefits of energy savings, drought reserve value, and avoided capital costs. This finding provides an empirical counterexample to the Gisser and Sanchez Effect.

  20. The Effect of modeled recharge distribution on simulated groundwater availability and capture

    USGS Publications Warehouse

    Tillman, Fred D.; Pool, Donald R.; Leake, Stanley A.

    2015-01-01

    Simulating groundwater flow in basin-fill aquifers of the semiarid southwestern United States commonly requires decisions about how to distribute aquifer recharge. Precipitation can recharge basin-fill aquifers by direct infiltration and transport through faults and fractures in the high-elevation areas, by flowing overland through high-elevation areas to infiltrate at basin-fill margins along mountain fronts, by flowing overland to infiltrate along ephemeral channels that often traverse basins in the area, or by some combination of these processes. The importance of accurately simulating recharge distributions is a current topic of discussion among hydrologists and water managers in the region, but no comparative study has been performed to analyze the effects of different recharge distributions on groundwater simulations. This study investigates the importance of the distribution of aquifer recharge in simulating regional groundwater flow in basin-fill aquifers by calibrating a groundwater-flow model to four different recharge distributions, all with the same total amount of recharge. Similarities are seen in results from steady-state models for optimized hydraulic conductivity values, fit of simulated to observed hydraulic heads, and composite scaled sensitivities of conductivity parameter zones. Transient simulations with hypothetical storage properties and pumping rates produce similar capture rates and storage change results, but differences are noted in the rate of drawdown at some well locations owing to the differences in optimized hydraulic conductivity. Depending on whether the purpose of the groundwater model is to simulate changes in groundwater levels or changes in storage and capture, the distribution of aquifer recharge may or may not be of primary importance.

  1. An integrated modelling framework to aid smallholder farming system management in the Olifants River Basin, South Africa

    NASA Astrophysics Data System (ADS)

    Magombeyi, M. S.; Taigbenu, A. E.

    Computerised integrated models from science contribute to better informed and holistic assessments of multifaceted policies and technologies than individual models. This view has led to considerable effort being devoted to developing integrated models to support decision-making under integrated water resources management (IWRM). Nevertheless, an appraisal of previous and ongoing efforts to develop such decision support systems shows considerable deficiencies in attempts to address the hydro-socio-economic effects on livelihoods. To date, no universal standard integration method or framework is in use. For the existing integrated models, their application failures have pointed to the lack of stakeholder participation. In an endeavour to close this gap, development and application of a seasonal time-step integrated model with prediction capability is presented in this paper. This model couples existing hydrology, agronomy and socio-economic models with feedbacks to link livelihoods of resource-constrained smallholder farmers to water resources at catchment level in the semi-arid Olifants subbasin in South Africa. These three models, prior to coupling, were calibrated and validated using observed data and participation of local stakeholders. All the models gave good representation of the study conditions, as indicated by the statistical indicators. The integrated model is of general applicability, hence can be extended to other catchments. The impacts of untied ridges, planting basins and supplemental irrigation were compared to conventional rainfed tillage under maize crop production and for different farm typologies. Over the 20 years of simulation, the predicted benefit of untied ridges and planting basins versus conventional rainfed tillage on surface runoff (Mm 3/year) reduction was 14.3% and 19.8%, respectively, and about 41-46% sediment yield (t/year) reduction in the catchment. Under supplemental irrigation, maize yield improved by up to 500% from the long-term average yield of 0.5 t/ha. At 90% confidence interval, family savings improved from between US 4 and US 270 under conventional rainfed to between US 233 and US 1140 under supplemental irrigation. These results highlight the economic and environmental benefits that could be achieved by adopting these improved crop management practices. However, the application of various crop management practices is site-specific and depends on both physical and socio-economic characteristics of the farmers.

  2. Contrasting spatial structures of Atlantic Multidecadal Oscillation between observations and slab ocean model simulations

    NASA Astrophysics Data System (ADS)

    Sun, Cheng; Li, Jianping; Kucharski, Fred; Xue, Jiaqing; Li, Xiang

    2018-04-01

    The spatial structure of Atlantic multidecadal oscillation (AMO) is analyzed and compared between the observations and simulations from slab ocean models (SOMs) and fully coupled models. The observed sea surface temperature (SST) pattern of AMO is characterized by a basin-wide monopole structure, and there is a significantly high degree of spatial coherence of decadal SST variations across the entire North Atlantic basin. The observed SST anomalies share a common decadal-scale signal, corresponding to the basin-wide average (i. e., the AMO). In contrast, the simulated AMO in SOMs (AMOs) exhibits a tripole-like structure, with the mid-latitude North Atlantic SST showing an inverse relationship with other parts of the basin, and the SOMs fail to reproduce the observed strong spatial coherence of decadal SST variations associated with the AMO. The observed spatial coherence of AMO SST anomalies is identified as a key feature that can be used to distinguish the AMO mechanism. The tripole-like SST pattern of AMOs in SOMs can be largely explained by the atmosphere-forced thermodynamics mechanism due to the surface heat flux changes associated with the North Atlantic Oscillation (NAO). The thermodynamic forcing of AMOs by the NAO gives rise to a simultaneous inverse NAO-AMOs relationship at both interannual and decadal timescales and a seasonal phase locking of the AMOs variability to the cold season. However, the NAO-forced thermodynamics mechanism cannot explain the observed NAO-AMO relationship and the seasonal phase locking of observed AMO variability to the warm season. At decadal timescales, a strong lagged relationship between NAO and AMO is observed, with the NAO leading by up to two decades, while the simultaneous correlation of NAO with AMO is weak. This lagged relationship and the spatial coherence of AMO can be well understood from the view point of ocean dynamics. A time-integrated NAO index, which reflects the variations in Atlantic meridional overturning circulation (AMOC) and northward ocean heat transport caused by the accumulated effect of NAO forcing, reasonably well captures the observed multidecadal fluctuations in the AMO. Further analysis using the fully coupled model simulations provides direct modeling evidence that the observed spatial coherence of decadal SST variations across North Atlantic basin can be reproduced only by including the AMOC-related ocean dynamics, and the AMOC acts as a common forcing signal that results in a spatially coherent variation of North Atlantic SST.

  3. Probabilistic evaluation of the water footprint of a river basin: Accounting method and case study in the Segura River Basin, Spain.

    PubMed

    Pellicer-Martínez, Francisco; Martínez-Paz, José Miguel

    2018-06-15

    In the current study a method for the probabilistic accounting of the water footprint (WF) at the river basin level has been proposed and developed. It is based upon the simulation of the anthropised water cycle and combines a hydrological model and a decision support system. The methodology was carried out in the Segura River Basin (SRB) in South-eastern Spain, and four historical scenarios were evaluated (1998-2010-2015-2027). The results indicate that the WF of the river basin reached 5581 Mm 3 /year on average in the base scenario, with a high variability. The green component (3231 Mm 3 /year), mainly generated by rainfed crops (62%), was responsible for the great variability of the WF. The blue WF (1201 Mm 3 /year) was broken down into surface water (56%), renewable groundwater (20%) and non-renewable groundwater (24%), and it showed the generalized overexploitation of aquifers. Regarding the grey component (1150 Mm 3 /year), the study reveals that wastewater, especially phosphates (90%), was the main culprit producing water pollution in surface water bodies. The temporal evolution of the four scenarios highlighted the successfulness of the water treatment plans developed in the river basin, with a sharp decrease in the grey WF, as well as the stability of the WF and its three components in the future. So, the accounting of the three components of the WF in a basin was integrated into the management of water resources, it being possible to predict their evolution, their spatial characterisation and even their assessment in probabilistic terms. Then, the WF was incorporated into the set of indicators that usually is used in water resources management and hydrological planning. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. A "total parameter estimation" method in the varification of distributed hydrological models

    NASA Astrophysics Data System (ADS)

    Wang, M.; Qin, D.; Wang, H.

    2011-12-01

    Conventionally hydrological models are used for runoff or flood forecasting, hence the determination of model parameters are common estimated based on discharge measurements at the catchment outlets. With the advancement in hydrological sciences and computer technology, distributed hydrological models based on the physical mechanism such as SWAT, MIKESHE, and WEP, have gradually become the mainstream models in hydrology sciences. However, the assessments of distributed hydrological models and model parameter determination still rely on runoff and occasionally, groundwater level measurements. It is essential in many countries, including China, to understand the local and regional water cycle: not only do we need to simulate the runoff generation process and for flood forecasting in wet areas, we also need to grasp the water cycle pathways and consumption process of transformation in arid and semi-arid regions for the conservation and integrated water resources management. As distributed hydrological model can simulate physical processes within a catchment, we can get a more realistic representation of the actual water cycle within the simulation model. Runoff is the combined result of various hydrological processes, using runoff for parameter estimation alone is inherits problematic and difficult to assess the accuracy. In particular, in the arid areas, such as the Haihe River Basin in China, runoff accounted for only 17% of the rainfall, and very concentrated during the rainy season from June to August each year. During other months, many of the perennial rivers within the river basin dry up. Thus using single runoff simulation does not fully utilize the distributed hydrological model in arid and semi-arid regions. This paper proposed a "total parameter estimation" method to verify the distributed hydrological models within various water cycle processes, including runoff, evapotranspiration, groundwater, and soil water; and apply it to the Haihe river basin in China. The application results demonstrate that this comprehensive testing method is very useful in the development of a distributed hydrological model and it provides a new way of thinking in hydrological sciences.

  5. Flash Floods Simulation Using a Physical based hydrological Model at the Eastern Nile Basin: Case studies; Wadi Assiut, Egypt and Wadi Gumara, Lake Tana, Ethiopia.

    NASA Astrophysics Data System (ADS)

    Saber, M.; Sefelnasr, A.; Yilmaz, K. K.

    2015-12-01

    Flash flood is a natural hydrological phenomenon which affects many regions of the world. The behavior and effect of this phenomenon is different from one region to the other regions depending on several issues such as climatology and hydrological and topographical conditions at the target regions. Wadi assiut, Egypt as arid environment, and Gumara catchment, Lake Tana, Ethiopia, as humid conditions have been selected for application. The main target of this work is to simulate flash floods at both catchments considering the difference between them on the flash flood behaviors based on the variability of both of them. In order to simulate the flash floods, remote sensing data and a physical-based distributed hydrological model, Hydro-BEAM-WaS (Hydrological River Basin Environmental Assessment Model incorporating Wadi System) have been integrated used in this work. Based on the simulation results of flash floods in these regions, it was found that the time to reach the maximum peak is very short and consequently the warning time is very short as well. It was found that the flash floods starts from zero flow in arid environment, but on the contrary in humid arid, it starts from Base flow which is changeable based on the simulated events. Distribution maps of flash floods showing the vulnerable regions of these selected areas have been developed. Consequently, some mitigation strategies relying on this study have been introduced. The proposed methodology can be applied effectively for flash flood forecasting at different climate regions, however the paucity of observational data.

  6. Simulating and predicting snow and glacier meltwater to the runoff of the Upper Mekong River basin in Southwest China

    NASA Astrophysics Data System (ADS)

    Han, Z.; Long, D.; Hong, Y.

    2017-12-01

    Snow and glacier meltwater in cryospheric regions replenishes groundwater and reservoir storage and is critical to water supply, hydropower development, agricultural irrigation, and ecological integrity. Accurate simulating and predicting snow and glacier meltwater is therefore fundamental to develop a better understanding of hydrological processes and water resource management for alpine basins and its lower reaches. The Upper Mekong River (or the Lancang River in China) as one of the most important transboundary rivers originating from the Tibetan Plateau (TP), features active dam construction and complicated water resources allocation of the stakeholders. Confronted by both climate change and significant human activities, it is imperative to examine contributions of snow and glacier meltwater to the total runoff and how it will change in the near future. This will greatly benefit hydropower development in the upper reach of the Mekong and better water resources allocation and management across the relevant countries. This study aims to improve snowfall and snow water equivalent (SWE) simulation using improved methods, and combines both modeling skill and remote sensing (i.e., passive microwave-based SWE, and satellite gravimetry-based total water storage) to quantify the contributions of snow and glacier meltwater there. In addition, the runoff of the Lancang River under a range of climate change scenarios is simulated using the improved modeling scheme to evaluate how climate change will impact hydropower development in the upper reaches.

  7. WRF model for precipitation simulation and its application in real-time flood forecasting in the Jinshajiang River Basin, China

    NASA Astrophysics Data System (ADS)

    Zhou, Jianzhong; Zhang, Hairong; Zhang, Jianyun; Zeng, Xiaofan; Ye, Lei; Liu, Yi; Tayyab, Muhammad; Chen, Yufan

    2017-07-01

    An accurate flood forecasting with long lead time can be of great value for flood prevention and utilization. This paper develops a one-way coupled hydro-meteorological modeling system consisting of the mesoscale numerical weather model Weather Research and Forecasting (WRF) model and the Chinese Xinanjiang hydrological model to extend flood forecasting lead time in the Jinshajiang River Basin, which is the largest hydropower base in China. Focusing on four typical precipitation events includes: first, the combinations and mode structures of parameterization schemes of WRF suitable for simulating precipitation in the Jinshajiang River Basin were investigated. Then, the Xinanjiang model was established after calibration and validation to make up the hydro-meteorological system. It was found that the selection of the cloud microphysics scheme and boundary layer scheme has a great impact on precipitation simulation, and only a proper combination of the two schemes could yield accurate simulation effects in the Jinshajiang River Basin and the hydro-meteorological system can provide instructive flood forecasts with long lead time. On the whole, the one-way coupled hydro-meteorological model could be used for precipitation simulation and flood prediction in the Jinshajiang River Basin because of its relatively high precision and long lead time.

  8. Estimation of pollutant loads considering dam operation in Han River Basin by BASINS/Hydrological Simulation Program-FORTRAN.

    PubMed

    Jung, Kwang-Wook; Yoon, Choon-G; Jang, Jae-Ho; Kong, Dong-Soo

    2008-01-01

    Effective watershed management often demands qualitative and quantitative predictions of the effect of future management activities as arguments for policy makers and administration. The BASINS geographic information system was developed to compute total maximum daily loads, which are helpful to establish hydrological process and water quality modeling system. In this paper the BASINS toolkit HSPF model is applied in 20,271 km(2) large watershed of the Han River Basin is used for applicability of HSPF and BMPs scenarios. For proper evaluation of watershed and stream water quality, comprehensive estimation methods are necessary to assess large amounts of point source and nonpoint-source (NPS) pollution based on the total watershed area. In this study, The Hydrological Simulation Program-FORTRAN (HSPF) was estimated to simulate watershed pollutant loads containing dam operation and applied BMPs scenarios for control NPS pollution. The 8-day monitoring data (about three years) were used in the calibration and verification processes. Model performance was in the range of "very good" and "good" based on percent difference. The water-quality simulation results were encouraging for this large sizable watershed with dam operation practice and mixed land uses; HSPF proved adequate, and its application is recommended to simulate watershed processes and BMPs evaluation. IWA Publishing 2008.

  9. Application of a computer simulation model to migrating white-fronted geese in the Klamath Basin

    USGS Publications Warehouse

    Frederick, R.B.; Clark, William R.; Takekawa, John Y.; McCullough, Dale R.; Barrett, R.H.

    1992-01-01

    The Pacific greater white-fronted goose (Anser albifrons) population has declined precipitously over the past 20 years. Loss of wetland habitat in California wintering areas has had a significant effect on the population, so recovery of the population may depend on innovative management of the few remaining wetlands. A computer simulation model, REFMOD, was applied to greater white-fronted geese in the Klamath Basin, northern California, to investigate the importance of food availability and hunting disturbance to migrating and wintering populations. Time spent flying and feeding was simulated during fall and early winter, and the resulting energy expenditure was compared with energy consumed to calculate an overall energy balance. This energy balance and the ease with which waterfowl acquired needed food affected emigration rate, and thus, the waterfowl population level was directly tied to availability and distribution of food. The model validly described distances moved by geese from their Tule Lake Refuge roosting site (core) to feeding sites within the surrounding Klamath Basin arena, and exhibited a capability to simulate observed time spent feeding. Based on 25 stochastic simulations, greater white-fronted goose population dynamics were validly simulated over the fall and early-winter (P>0.8). When food was removed from the Tule Lake Refuge, simulated geese had to fly farther (P<0.0001) to find food, hastening emigration and resulting in a decline (P<0.05) in use of the Klamath Basin by geese. Although barley is normally abundant in the basin and is extensively used by geese, simulated elimination of barley in the arena did not cause a reduction in goose numbers (P>0.05). The elimination did cause an increase in the distance traveled to feed (P<0.05), but the availability of other foods in the basin (e.g., potatoes) was evidently sufficient to support the population. The elimination of hunting in the Klamath Basin, and the related decrease in disturbance of feeding birds, had little effect (P>0.05) on the distance traveled to feed or on goose numbers. A 10-fold increase in disturbance hastened emigration and reduced population levels (P<0.0001) during the season by about 30%; a 100-fold increase in disturbance reduced population levels (P<0.0001) by 85%. When goose immigration was increased to simulate an average peak population of approximately 500 000 geese, population levels remained high throughout the fall, indicating the Klamath Basin can sustain a population much larger than currently exists. This suggests food availability and disturbance levels in the Klamath Basin are not responsible for observed population declines during the last 2 decades. REFMOD can easily be used to evaluate the effects of other scenarios related to hunting regimes and food distribution and availability.

  10. Formation of the Orientale lunar multiring basin.

    PubMed

    Johnson, Brandon C; Blair, David M; Collins, Gareth S; Melosh, H Jay; Freed, Andrew M; Taylor, G Jeffrey; Head, James W; Wieczorek, Mark A; Andrews-Hanna, Jeffrey C; Nimmo, Francis; Keane, James T; Miljković, Katarina; Soderblom, Jason M; Zuber, Maria T

    2016-10-28

    Multiring basins, large impact craters characterized by multiple concentric topographic rings, dominate the stratigraphy, tectonics, and crustal structure of the Moon. Using a hydrocode, we simulated the formation of the Orientale multiring basin, producing a subsurface structure consistent with high-resolution gravity data from the Gravity Recovery and Interior Laboratory (GRAIL) spacecraft. The simulated impact produced a transient crater, ~390 kilometers in diameter, that was not maintained because of subsequent gravitational collapse. Our simulations indicate that the flow of warm weak material at depth was crucial to the formation of the basin's outer rings, which are large normal faults that formed at different times during the collapse stage. The key parameters controlling ring location and spacing are impactor diameter and lunar thermal gradients. Copyright © 2016, American Association for the Advancement of Science.

  11. Application of a snowmelt-runoff model using LANDSAT data. [Dinwoody Creek Basin, Wyoming

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The snowmelt-runoff model developed for two small central European watersheds simulate daily streamflow on the 228 sq km Dinwoody Creek basin in Wyoming, using snowcover extent for LANDSAT and conventionally measured temperature and precipitation. For the six-month snowmelt seasons of 1976 and 1974, the simulated seasonal runoff volumes were within 5 and 1%, respectively, of the measured runoff. Also the daily fluctuations of discharge were simulated to a high degree by the model. Thus far the limiting basin size for applying the model has not been reached, and improvements can be expected if the hydrometeorological data can be obtained from a station inside the basin. LANDSAT provides an efficient way to obtain the critical snowcover input parameter required by the model.

  12. Impact of basin scale and time-weighted mercury metrics on intra-/inter-basin mercury comparisons

    Treesearch

    Paul Bradley; Mark E. Brigham

    2016-01-01

    Understanding anthropogenic and environmental controls on fluvial Mercury (Hg) bioaccumulation over global and national gradients can be challenging due to the need to integrate discrete-sample results from numerous small scale investigations. Two fundamental issues for such integrative Hg assessments are the wide range of basin scales for included studies and how well...

  13. Integrating understanding of biophysical processes governing larval fish dispersal with basin-scale management decisions: lessons from the Missouri River, USA

    NASA Astrophysics Data System (ADS)

    Erwin, S. O.; Jacobson, R. B.; Fischenich, C. J.; Bulliner, E. A., IV; McDonald, R.; DeLonay, A. J.; Braaten, P.; Elliott, C. M.; Chojnacki, K.

    2017-12-01

    Management of the Missouri River—the longest river in the USA, with a drainage basin covering one sixth of the conterminous USA—is increasingly driven by the need to understand biophysical processes governing the dispersal of 8-mm long larval pallid sturgeon. In both the upper and lower basin, survival of larval sturgeon is thought to be a bottleneck limiting populations, but because of different physical processes at play, different modeling frameworks and resolutions are required to link management actions with population-level responses. In the upper basin, a series of impoundments reduce the length of river for the drifting larval sturgeon to complete their development. Downstream from the mainstem dams, recruitment is most likely diminished by channelization and reduced floodplain connectivity that limit the benthic habitat available for larval sturgeon to settle and initiate feeding. We present a synthesis of complementary field studies, laboratory observations, and numerical simulations that evaluate the physical processes related to larval dispersal of sturgeon in the Missouri River basin. In the upper basin, we use one-dimensional advection-dispersion models, calibrated with field experiments conducted in 2016-2017 using surrogate particles and tracers, to evaluate reservoir management alternatives. Results of field experimentation and numerical modeling show that proposed management alternatives in the upper basin may be limited by insufficient lengths of flowing river for drifting larvae to fully develop into their juvenile lifestage. In the intensively engineered lower basin, we employ higher resolution measurements and models to evaluate potential for channel reconfiguration and flow alteration to promote successful interception of drifting larvae into supportive benthic habitats for the initiation of feeding and transition to the juvenile life stage. We illustrate how refined understanding of small-scale biophysical process has been incorporated into the basin-scale management framework, thereby prompting a shift in restoration actions and design.

  14. Geomechanical Framework for Secure CO 2 Storage in Fractured Reservoirs and Caprocks for Sedimentary Basins in theMidwest United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sminchak, Joel

    This report presents final technical results for the project Geomechanical Framework for Secure CO 2 Storage in Fractured Reservoirs and Caprocks for Sedimentary Basins in the Midwest United States (DE-FE0023330). The project was a three-year effort consisting of seven technical tasks focused on defining geomechanical factors for CO 2 storage applications in deep saline rock formations in Ohio and the Midwest United States, because geomechancial issues have been identified as a significant risk factor for large-scale CO 2 storage applications. A basin-scale stress-strain analysis was completed to describe the geomechanical setting for rock formations of Ordovician-Cambrian age in Ohio andmore » adjacent areas of the Midwest United States in relation to geologic CO 2 storage applications. The tectonic setting, stress orientation-magnitude, and geomechanical and petrophysical parameters for CO 2 storage zones and caprocks in the region were cataloged. Ten geophysical image logs were analyzed for natural fractures, borehole breakouts, and drilling-induced fractures. The logs indicated mostly less than 10 fractures per 100 vertical feet in the borehole, with mostly N65E principal stress orientation through the section. Geophysical image logs and other logs were obtained for three wells located near the sites where specific models were developed for geomechanical simulations: Arches site in Boone County, Kentucky; Northern Appalachian Basin site in Chautauqua County, New York; and E-Central Appalachian Basin site in Tuscarawas County, Ohio. For these three wells, 9,700 feet of image logs were processed and interpreted to provide a systematic review of the distribution within each well of natural fractures, wellbore breakouts, faults, and drilling induced fractures. There were many borehole breakouts and drilling-induced tensile fractures but few natural fractures. Concentrated fractures were present at the Rome-basal sandstone and basal sandstone-Precambrian contacts at the Arches and East-Central Appalachian Basin sites. Geophysical logs were utilized to develop local-scale geologic models by determining geomechanical and petrophysical parameters within the geologic formations. These data were ported to coupled fluid-flow and reservoir geomechanics multi-phase CO 2 injection simulations. The models were developed to emphasize the geomechanical layers within the CO 2 storage zones and caprocks. A series of simulations were completed for each site to evaluate whether commercial-scale CO 2 could be safely injected into each site, given site-specific geologic and geomechanical controls. This involved analyzing the simulation results for the integrity of the caprock, intermediate, and reservoir zones, as well quantifying the areal uplift at the surface. Simulation results were also examined to ensure that the stress-stress perturbations were isolated within the subsurface, and that there was only limited upward migration of the CO 2. Simulations showed capacity to inject more than 10 million metric tons of CO 2 in a single well at the Arches and East Central Appalachian Basin sites without excessive geomechanical risks. Low-permeability rock layers at the Northern Appalachian Basin study area well resulted in very low CO 2 injection capacity. Fracture models developed for the sites suggests that the sites have sparse fracture network in the deeper Cambrian rocks. However, there were indicators in image logs of a moderate fracture matrix in the Rose Run Sandstone at the Northern Appalachian Basin site. Dual permeability fracture matrix simulations suggest the much higher injection rates may be feasible in the fractured interval. Guidance was developed for geomechanical site characterization in the areas of geophysical logging, rock core testing, well testing, and site monitoring. The guidance demonstrates that there is a suitable array of options for addressing geomechanical issues at CO 2 storage sites. Finally, a review of Marcellus and Utica-Point Pleasant shale gas wells and CO 2 storage intervals indicates that these items are vertically separated, except for the Oriskany sandstone and Marcellus wells in southwest Pennsylvania and northern West Virginia. Together, project results present a more realistic portrayal of geomechanical risk factors related to CO 2 storage for existing and future coal-fired power plants in Ohio.« less

  15. An integrated science plan for the Lake Tahoe basin: conceptual framework and research strategies

    Treesearch

    Zachary P. Hymanson; Michael W. Collopy

    2010-01-01

    An integrated science plan was developed to identify and refine contemporary science information needs for the Lake Tahoe basin ecosystem. The main objectives were to describe a conceptual framework for an integrated science program, and to develop research strategies addressing key uncertainties and information gaps that challenge government agencies in the theme...

  16. Modeling of facade leaching in urban catchments

    NASA Astrophysics Data System (ADS)

    Coutu, S.; Del Giudice, D.; Rossi, L.; Barry, D. A.

    2012-12-01

    Building facades are protected from microbial attack by incorporation of biocides within them. Flow over facades leaches these biocides and transports them to the urban environment. A parsimonious water quantity/quality model applicable for engineered urban watersheds was developed to compute biocide release from facades and their transport at the urban basin scale. The model couples two lumped submodels applicable at the basin scale, and a local model of biocide leaching at the facade scale. For the facade leaching, an existing model applicable at the individual wall scale was utilized. The two lumped models describe urban hydrodynamics and leachate transport. The integrated model allows prediction of biocide concentrations in urban rivers. It was applied to a 15 km2urban hydrosystem in western Switzerland, the Vuachère river basin, to study three facade biocides (terbutryn, carbendazim, diuron). The water quality simulated by the model matched well most of the pollutographs at the outlet of the Vuachère watershed. The model was then used to estimate possible ecotoxicological impacts of facade leachates. To this end, exceedance probabilities and cumulative pollutant loads from the catchment were estimated. Results showed that the considered biocides rarely exceeded the relevant predicted no-effect concentrations for the riverine system. Despite the heterogeneities and complexity of (engineered) urban catchments, the model application demonstrated that a computationally "light" model can be employed to simulate the hydrograph and pollutograph response within them. It thus allows catchment-scale assessment of the potential ecotoxicological impact of biocides on receiving waters.

  17. Balancing global water availability and use at basin scale in an integrated assessment model

    DOE PAGES

    Kim, Son H.; Hejazi, Mohamad; Liu, Lu; ...

    2016-01-22

    Water is essential for the world’s food supply, for energy production, including bioenergy and hydroelectric power, and for power system cooling. Water is already scarce in many regions of the world and could present a critical constraint as society attempts simultaneously to mitigate climate forcing and adapt to climate change, and to provide for a larger and more prosperous human population. Numerous studies have pointed to growing pressures on the world’s scarce fresh water resources from population and economic growth, and climate change. This study goes further. We use the Global Change Assessment Model to analyze interactions between population, economicmore » growth, energy, land, and water resources simultaneously in a dynamically evolving system where competing claims on water resources from all claimants—energy, land, and economy—are reconciled with water resource availability—from renewable water, non-renewable groundwater and desalinated water sources —across 14 geopolitical regions, 151 agriculture-ecological zones, and 235 major river basins. We find that previous estimates of global water withdrawal projections are overestimated. Model simulations show that it is more economical in some basins to alter agricultural and energy activities rather than utilize non-renewable groundwater or desalinated water. Lastly, this study highlights the importance of accounting for water as a binding factor in agriculture, energy and land use decisions in integrated assessment models and implications for global responses to water scarcity, particularly in the trade of agricultural commodities and land-use decisions.« less

  18. Balancing global water availability and use at basin scale in an integrated assessment model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Son H.; Hejazi, Mohamad; Liu, Lu

    Water is essential for the world’s food supply, for energy production, including bioenergy and hydroelectric power, and for power system cooling. Water is already scarce in many regions of the world and could present a critical constraint as society attempts simultaneously to mitigate climate forcing and adapt to climate change, and to provide for a larger and more prosperous human population. Numerous studies have pointed to growing pressures on the world’s scarce fresh water resources from population and economic growth, and climate change. This study goes further. We use the Global Change Assessment Model to analyze interactions between population, economicmore » growth, energy, land, and water resources simultaneously in a dynamically evolving system where competing claims on water resources from all claimants—energy, land, and economy—are reconciled with water resource availability—from renewable water, non-renewable groundwater and desalinated water sources —across 14 geopolitical regions, 151 agriculture-ecological zones, and 235 major river basins. We find that previous estimates of global water withdrawal projections are overestimated. Model simulations show that it is more economical in some basins to alter agricultural and energy activities rather than utilize non-renewable groundwater or desalinated water. Lastly, this study highlights the importance of accounting for water as a binding factor in agriculture, energy and land use decisions in integrated assessment models and implications for global responses to water scarcity, particularly in the trade of agricultural commodities and land-use decisions.« less

  19. Development of an Integrated Modeling Framework for Simulations of Coastal Processes in Deltaic Environments Using High-Performance Computing

    DTIC Science & Technology

    2008-01-01

    exceeds the local water depth. The approximation eliminates the vertical dimension of the elliptic equation that is normally required for the fully non...used for vertical resolution. The shallow water equations (SWE) are a set of non-linear hyperbolic equations. As the equations are derived under...linear standing wave with a wavelength of 10 m in a square 10 m by 10 m basin. The still water depth is 0.5 m. In order to compare with the analytical

  20. Development and Application of a Simple Hydrogeomorphic Model for Headwater Catchments

    EPA Science Inventory

    We developed a catchment model based on a hydrogeomorphic concept that simulates discharge from channel-riparian complexes, zero-order basins (ZOB, basins ZB and FA), and hillslopes. Multitank models simulate ZOB and hillslope hydrological response, while kinematic wave models pr...

  1. 5. View, oxidizer waste tanks and containment basin in foreground ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. View, oxidizer waste tanks and containment basin in foreground with Systems Integration Laboratory (T-28) uphill in background, looking northeast. - Air Force Plant PJKS, Systems Integration Laboratory, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  2. Rehabilitation of Great Basin rangelands: an integrated approach

    USDA-ARS?s Scientific Manuscript database

    Disturbed rangelands present significant challenges to resource managers and land owners. In the Great Basin, exotic annual grasses have truncated secondary succession by outcompeting native perennial species for limited moisture and nutrients. An integrated approach to successfully control such inv...

  3. Integrated Water Resources Planning and Management in Arid/Semi-arid Regions: Data, Modeling, and Assessment

    NASA Astrophysics Data System (ADS)

    Gupta, H.; Liu, Y.; Wagener, T.; Durcik, M.; Duffy, C.; Springer, E.

    2005-12-01

    Water resources in arid and semi-arid regions are highly sensitive to climate variability and change. As the demand for water continues to increase due to economic and population growth, planning and management of available water resources under climate uncertainties becomes increasingly critical in order to achieve basin-scale water sustainability (i.e., to ensure a long-term balance between supply and demand of water).The tremendous complexity of the interactions between the natural hydrologic system and the human environment means that modeling is the only available mechanism for properly integrating new knowledge into the decision-making process. Basin-scale integrated models have the potential to allow us to study the feedback processes between the physical and human systems (including institutional, engineering, and behavioral components); and an integrated assessment of the potential second- and higher-order effects of political and management decisions can aid in the selection of a rational water-resources policy. Data and information, especially hydrological and water-use data, are critical to the integrated modeling and assessment for water resources management of any region. To this end we are in the process of developing a multi-resolution integrated modeling and assessment framework for the south-western USA, which can be used to generate simulations of the probable effects of human actions while taking into account the uncertainties brought about by future climatic variability and change. Data are being collected (including the development of a hydro-geospatial database) and used in support of the modeling and assessment activities. This paper will present a blueprint of the modeling framework, describe achievements so far and discuss the science questions which still require answers with a particular emphasis on issues related to dry regions.

  4. Scaling up watershed model parameters: flow and load simulations of the Edisto River Basin, South Carolina, 2007-09

    USGS Publications Warehouse

    Feaster, Toby D.; Benedict, Stephen T.; Clark, Jimmy M.; Bradley, Paul M.; Conrads, Paul

    2014-01-01

    As part of an ongoing effort by the U.S. Geological Survey to expand the understanding of relations among hydrologic, geochemical, and ecological processes that affect fish-tissue mercury concentrations within the Edisto River Basin, analyses and simulations of the hydrology of the Edisto River Basin were made using the topography-based hydrological model (TOPMODEL). A primary focus of the investigation was to assess the potential for scaling up a previous application of TOPMODEL for the McTier Creek watershed, which is a small headwater catchment to the Edisto River Basin. Scaling up was done in a step-wise manner, beginning with applying the calibration parameters, meteorological data, and topographic-wetness-index data from the McTier Creek TOPMODEL to the Edisto River TOPMODEL. Additional changes were made for subsequent simulations, culminating in the best simulation, which included meteorological and topographic wetness index data from the Edisto River Basin and updated calibration parameters for some of the TOPMODEL calibration parameters. The scaling-up process resulted in nine simulations being made. Simulation 7 best matched the streamflows at station 02175000, Edisto River near Givhans, SC, which was the downstream limit for the TOPMODEL setup, and was obtained by adjusting the scaling factor, including streamflow routing, and using NEXRAD precipitation data for the Edisto River Basin. The Nash-Sutcliffe coefficient of model-fit efficiency and Pearson’s correlation coefficient for simulation 7 were 0.78 and 0.89, respectively. Comparison of goodness-of-fit statistics between measured and simulated daily mean streamflow for the McTier Creek and Edisto River models showed that with calibration, the Edisto River TOPMODEL produced slightly better results than the McTier Creek model, despite the substantial difference in the drainage-area size at the outlet locations for the two models (30.7 and 2,725 square miles, respectively). Along with the TOPMODEL hydrologic simulations, a visualization tool (the Edisto River Data Viewer) was developed to help assess trends and influencing variable in the stream ecosystem. Incorporated into the visualization tool were the water-quality load models TOPLOAD, TOPLOAD–H, and LOADEST. Because the focus of this investigation was on scaling up the models from McTier Creek, water-quality concentrations that were previously collected in the McTier Creek Basin were used in the water-quality load models.

  5. Water Balance in the Amazon Basin from a Land Surface Model Ensemble

    NASA Technical Reports Server (NTRS)

    Getirana, Augusto C. V.; Dutra, Emanuel; Guimberteau, Matthieu; Kam, Jonghun; Li, Hong-Yi; Decharme, Bertrand; Zhang, Zhengqiu; Ducharne, Agnes; Boone, Aaron; Balsamo, Gianpaolo; hide

    2014-01-01

    Despite recent advances in land surfacemodeling and remote sensing, estimates of the global water budget are still fairly uncertain. This study aims to evaluate the water budget of the Amazon basin based on several state-ofthe- art land surface model (LSM) outputs. Water budget variables (terrestrial water storage TWS, evapotranspiration ET, surface runoff R, and base flow B) are evaluated at the basin scale using both remote sensing and in situ data. Meteorological forcings at a 3-hourly time step and 18 spatial resolution were used to run 14 LSMs. Precipitation datasets that have been rescaled to matchmonthly Global Precipitation Climatology Project (GPCP) andGlobal Precipitation Climatology Centre (GPCC) datasets and the daily Hydrologie du Bassin de l'Amazone (HYBAM) dataset were used to perform three experiments. The Hydrological Modeling and Analysis Platform (HyMAP) river routing scheme was forced with R and B and simulated discharges are compared against observations at 165 gauges. Simulated ET and TWS are compared against FLUXNET and MOD16A2 evapotranspiration datasets andGravity Recovery and ClimateExperiment (GRACE)TWSestimates in two subcatchments of main tributaries (Madeira and Negro Rivers).At the basin scale, simulated ET ranges from 2.39 to 3.26 mm day(exp -1) and a low spatial correlation between ET and precipitation indicates that evapotranspiration does not depend on water availability over most of the basin. Results also show that other simulated water budget components vary significantly as a function of both the LSM and precipitation dataset, but simulated TWS generally agrees with GRACE estimates at the basin scale. The best water budget simulations resulted from experiments using HYBAM, mostly explained by a denser rainfall gauge network and the rescaling at a finer temporal scale.

  6. Conceptual model of water resources in the Kabul Basin, Afghanistan

    USGS Publications Warehouse

    Mack, Thomas J.; Akbari, M. Amin; Ashoor, M. Hanif; Chornack, Michael P.; Coplen, Tyler B.; Emerson, Douglas G.; Hubbard, Bernard E.; Litke, David W.; Michel, Robert L.; Plummer, Niel; Rezai, M. Taher; Senay, Gabriel B.; Verdin, James P.; Verstraeten, Ingrid M.

    2010-01-01

    The United States (U.S.) Geological Survey has been working with the Afghanistan Geological Survey and the Afghanistan Ministry of Energy and Water on water-resources investigations in the Kabul Basin under an agreement supported by the United States Agency for International Development. This collaborative investigation compiled, to the extent possible in a war-stricken country, a varied hydrogeologic data set and developed limited data-collection networks to assist with the management of water resources in the Kabul Basin. This report presents the results of a multidisciplinary water-resources assessment conducted between 2005 and 2007 to address questions of future water availability for a growing population and of the potential effects of climate change. Most hydrologic and climatic data-collection activities in Afghanistan were interrupted in the early 1980s as a consequence of war and civil strife and did not resume until 2003 or later. Because of the gap of more than 20 years in the record of hydrologic and climatic observations, this investigation has made considerable use of remotely sensed data and, where available, historical records to investigate the water resources of the Kabul Basin. Specifically, this investigation integrated recently acquired remotely sensed data and satellite imagery, including glacier and climatic data; recent climate-change analyses; recent geologic investigations; analysis of streamflow data; groundwater-level analysis; surface-water- and groundwater-quality data, including data on chemical and isotopic environmental tracers; and estimates of public-supply and agricultural water uses. The data and analyses were integrated by using a simplified groundwater-flow model to test the conceptual model of the hydrologic system and to assess current (2007) and future (2057) water availability. Recharge in the basin is spatially and temporally variable and generally occurs near streams and irrigated areas in the late winter and early spring. In irrigated areas near uplands or major rivers, the annual recharge rate may be about 1.2 ? 10-3 meters per year; however, in areas at lower altitude with little irrigation, the recharge rate may average about 0.7 ? 10-3 meters per year. With increasing population, the water needs of the Kabul Basin are estimated to increase from 112,000 cubic meters per day to about 725,000 cubic meters per day by the year 2057. In some areas of the basin, particularly in the north along the western mountain front and near major rivers, water resources are generally adequate for current needs. In other areas of the basin, such as in the east and away from major rivers, the available water resources may not meet future needs. On the basis of the model simulations, increasing withdrawals are likely to result in declining water levels that may cause more than 50 percent of shallow (typically less than 50 meters deep) supply wells to become dry or inoperative. The water quality in the shallow (less than 100 meters thick), unconsolidated primary aquifer has deteriorated in urban areas because of poor sanitation. Concerns about water availability may be compounded by poor well-construction practices and lack of planning. Future water resources of the Kabul Basin will likely be reduced as a result of increasing air temperatures associated with global climate change. It is estimated that at least 60 percent of shallow groundwater-supply wells would be affected and may become dry or inoperative as a result of climate change. These effects of climate change would likely be greatest in the agricultural areas adjacent to the Paghman Mountains where a majority of springs, karezes, and wells would be affected. The water available in the shallow primary aquifer of the basin may meet future water needs in the northern areas of the Kabul Basin near the Panjsher River. Conceptual groundwater-flow simulations indicate that the basin likely has groundwater reserves in unused unconsolidate

  7. Snowmelt-runoff Model Utilizing Remotely-sensed Data

    NASA Technical Reports Server (NTRS)

    Rango, A.

    1985-01-01

    Remotely sensed snow cover information is the critical data input for the Snowmelt-Runoff Model (SRM), which was developed to simulatke discharge from mountain basins where snowmelt is an important component of runoff. Of simple structure, the model requires only input of temperature, precipitation, and snow covered area. SRM was run successfully on two widely separated basins. The simulations on the Kings River basin are significant because of the large basin area (4000 sq km) and the adequate performance in the most extreme drought year of record (1976). The performance of SRM on the Okutadami River basin was important because it was accomplished with minimum snow cover data available. Tables show: optimum and minimum conditions for model application; basin sizes and elevations where SRM was applied; and SRM strengths and weaknesses. Graphs show results of discharge simulation.

  8. Simulation of Streamflow and Selected Water-Quality Constituents through a Model of the Onondaga Lake Basin, Onondaga County, New York - A Guide to Model Application

    USGS Publications Warehouse

    Coon, William F.

    2008-01-01

    A computer model of hydrologic and water-quality processes of the Onondaga Lake basin in Onondaga County, N.Y., was developed during 2003-07 to assist water-resources managers in making basin-wide management decisions that could affect peak flows and the water quality of tributaries to Onondaga Lake. The model was developed with the Hydrological Simulation Program-Fortran (HSPF) and was designed to allow simulation of proposed or hypothetical land-use changes, best-management practices (BMPs), and instream stormwater-detention basins such that their effects on flows and loads of suspended sediment, orthophosphate, total phosphorus, ammonia, organic nitrogen, and nitrate could be analyzed. Extreme weather conditions, such as intense storms and prolonged droughts, can be simulated through manipulation of the precipitation record. Model results obtained from different scenarios can then be compared and analyzed through an interactive computer program known as Generation and Analysis of Model Simulation Scenarios for Watersheds (GenScn). Background information on HSPF and GenScn is presented to familiarize the user with these two programs. Step-by-step examples are provided on (1) the creation of land-use, BMP, and stormflow-detention scenarios for simulation by the HSPF model, and (2) the analysis of simulation results through GenScn.

  9. SUBWATERSHEDS OF THE UPPER SAN PEDRO BASIN WITH PERCENT DIFFERENCE BETWEEN RESULTS FROM TWO SWAT SIMULATIONS

    EPA Science Inventory

    Subwatersheds of the Upper San Pedro basin with percent difference between results from two SWAT simulations run through AGWA: one using the 1973 NALC landcover for model parameterization, and the other using the 1997 NALC landcover.

  10. Environmental Planning in Jonah's Basin: A Simulation Game and Experimental Analysis.

    ERIC Educational Resources Information Center

    Horsley, Doyne

    1982-01-01

    Described is a successfully field tested simulation which will help high school or college level students become familiar with flood hazards. Students assume the roles of members of the Jonah's Basin planning commission and plan solutions to the area's flood problems. (RM)

  11. Impact of LULC change on the runoff, base flow and evapotranspiration dynamics in eastern Indian river basins during 1985-2005 using variable infiltration capacity approach

    NASA Astrophysics Data System (ADS)

    Das, Pulakesh; Behera, Mukunda Dev; Patidar, Nitesh; Sahoo, Bhabagrahi; Tripathi, Poonam; Behera, Priti Ranjan; Srivastava, S. K.; Roy, Partha Sarathi; Thakur, Praveen; Agrawal, S. P.; Krishnamurthy, Y. V. N.

    2018-03-01

    As a catchment phenomenon, land use and land cover change (LULCC) has a great role in influencing the hydrological cycle. In this study, decadal LULC maps of 1985, 1995, 2005 and predicted-2025 of the Subarnarekha, Brahmani, Baitarani, Mahanadi and Nagavali River basins of eastern India were analyzed in the framework of the variable infiltration capacity (VIC) macro scale hydrologic model to estimate their relative consequences. The model simulation showed a decrease in ET with 0.0276% during 1985-1995, but a slight increase with 0.0097% during 1995-2005. Conversely, runoff and base flow showed an overall increasing trend with 0.0319 and 0.0041% respectively during 1985-1995. In response to the predicted LULC in 2025, the VIC model simulation estimated reduction of ET with 0.0851% with an increase of runoff by 0.051%. Among the vegetation parameters, leaf area index (LAI) emerged as the most sensitive one to alter the simulated water balance. LULC alterations via deforestation, urbanization, cropland expansions led to reduced canopy cover for interception and transpiration that in turn contributed to overall decrease in ET and increase in runoff and base flow. This study reiterates changes in the hydrology due to LULCC, thereby providing useful inputs for integrated water resources management in the principle of sustained ecology.

  12. Use of regional climate model output for hydrologic simulations

    USGS Publications Warehouse

    Hay, L.E.; Clark, M.P.; Wilby, R.L.; Gutowski, W.J.; Leavesley, G.H.; Pan, Z.; Arritt, R.W.; Takle, E.S.

    2002-01-01

    Daily precipitation and maximum and minimum temperature time series from a regional climate model (RegCM2) configured using the continental United States as a domain and run on a 52-km (approximately) spatial resolution were used as input to a distributed hydrologic model for one rainfall-dominated basin (Alapaha River at Statenville, Georgia) and three snowmelt-dominated basins (Animas River at Durango. Colorado; east fork of the Carson River near Gardnerville, Nevada: and Cle Elum River near Roslyn, Washington). For comparison purposes, spatially averaged daily datasets of precipitation and maximum and minimum temperature were developed from measured data for each basin. These datasets included precipitation and temperature data for all stations (hereafter, All-Sta) located within the area of the RegCM2 output used for each basin, but excluded station data used to calibrate the hydrologic model. Both the RegCM2 output and All-Sta data capture the gross aspects of the seasonal cycles of precipitation and temperature. However, in all four basins, the RegCM2- and All-Sta-based simulations of runoff show little skill on a daily basis [Nash-Sutcliffe (NS) values range from 0.05 to 0.37 for RegCM2 and -0.08 to 0.65 for All-Sta]. When the precipitation and temperature biases are corrected in the RegCM2 output and All-Sta data (Bias-RegCM2 and Bias-All, respectively) the accuracy of the daily runoff simulations improve dramatically for the snowmelt-dominated basins (NS values range from 0.41 to 0.66 for RegCM2 and 0.60 to 0.76 for All-Sta). In the rainfall-dominated basin, runoff simulations based on the Bias-RegCM2 output show no skill (NS value of 0.09) whereas Bias-All simulated runoff improves (NS value improved from - 0.08 to 0.72). These results indicate that measured data at the coarse resolution of the RegCM2 output can be made appropriate for basin-scale modeling through bias correction (essentially a magnitude correction). However, RegCM2 output, even when bias corrected, does not contain the day-to-day variability present in the All-Sta dataset that is necessary for basin-scale modeling. Future work is warranted to identify the causes for systematic biases in RegCM2 simulations, develop methods to remove the biases, and improve RegCM2 simulations of daily variability in local climate.

  13. The Mechanics of Impact Basin Formation: Comparisons between Modeling and Geophysical Observations

    NASA Astrophysics Data System (ADS)

    Stewart, S. T.

    2010-12-01

    Impact basins are the largest geologic structures on planetary surfaces. Single or multiple ring-shaped scarps or arcuate chains of massifs typically surround basin-sized craters (e.g., larger than about 300 km diameter on the moon [1]). Impact basins also possess central mass anomalies related to ejection of a portion of the crust (and mantle) and uplift of the mantle. I will discuss insights into the mechanics of impact basin formation derived from numerical simulations and focus on features that may be compared with gravity and topography data. The simulations of basin formation use the method of [2] with an improved rheological model that includes dynamic weakening of faults and more accurate treatment of the mantle solidus. Two-dimensional simulations of vertical impacts onto spherical planets utilize a central gravity field, and three-dimensional simulations of oblique impacts include a self-gravity calculation. During the opening and collapse of the transient crater, localization of strain leads to deformation features that are interpreted as deep faults through the lithosphere. Based on simulations of mantle-excavating impacts onto the moon and Mars with thermal gradients that intersect the solidus in the asthenosphere, the final impact structure has three major features: (i) an inner basin filled with melt and bounded by the folded lithosphere, (ii) a broad shallow terrace of faulted and translated lithosphere with an ejecta deposit, and (iii) the surrounding autochthonous lithosphere with radially thinning ejecta. The folded lithosphere is a complex structure that experiences translation inward and then outward again during collapse of the transient cavity. The uplifted mantle within this structure is overlain by a thin layer of hot crustal material. In addition to asymmetry in the excavated material, 45-degree impact events produce an asymmetric terrace feature. The principal observations for comparison to the calculations are the inferred locations of major ring structures (derived from topography and geologic mapping) and the crustal thickness and mantle topography (derived from gravity and topography) [see also 3]. Preliminary comparisons indicate that the simulations produce the major features in the observations. I will present detailed comparisons between simulations and observations for major basins on the moon, including South Pole-Aitken, for different initial lithospheric thicknesses and thermal gradients. [1] Spudis, P.D. (1993) The Geology of Multi-Ring Impact basins: Cambridge University Press. [2] Senft, L.E. and S.T. Stewart (2009) Earth and Planetary Science Letters 287, 471-482. [3] Lillis, R.J., et al. (2010) AGU Fall Meeting.

  14. Numerical Simulation of The Mediterranean Sea Using Diecast: Interaction Between Basin, Sub-basin and Local Scale Features and Natural Variability.

    NASA Astrophysics Data System (ADS)

    Fernández, V.; Dietrich, D. E.; Haney, R. L.; Tintoré, J.

    In situ and satellite data obtained during the last ten years have shown that the circula- tion in the Mediterranean Sea is extremely complex in space, with significant features ranging from mesoscale to sub-basin and basin scale, and highly variable in time, with mesoscale to seasonal and interannual signals. Also, the steep bottom topography and the variable atmospheric conditions from one sub-basin to another, make the circula- tion to be composed of numerous energetic and narrow coastal currents, density fronts and mesoscale structures that interact at sub-basin scale with the large scale circula- tion. To simulate numerically and better understand these features, besides high grid resolution, a low numerical dispersion and low physical dissipation ocean model is required. We present the results from a 1/8z horizontal resolution numerical simula- tion of the Mediterranean Sea using DieCAST ocean model, which meets the above requirements since it is stable with low general dissipation and uses accurate fourth- order-accurate approximations with low numerical dispersion. The simulations are carried out with climatological surface forcing using monthly mean winds and relax- ation towards climatological values of temperature and salinity. The model reproduces the main features of the large basin scale circulation, as well as the seasonal variabil- ity of sub-basin scale currents that are well documented by observations in straits and channels. In addition, DieCAST brings out natural fronts and eddies that usually do not appear in numerical simulations of the Mediterranean and that lead to a natural interannual variability. The role of this intrinsic variability in the general circulation will be discussed.

  15. Perturbations in the initial soil moisture conditions: Impacts on hydrologic simulation in a large river basin

    NASA Astrophysics Data System (ADS)

    Niroula, Sundar; Halder, Subhadeep; Ghosh, Subimal

    2018-06-01

    Real time hydrologic forecasting requires near accurate initial condition of soil moisture; however, continuous monitoring of soil moisture is not operational in many regions, such as, in Ganga basin, extended in Nepal, India and Bangladesh. Here, we examine the impacts of perturbation/error in the initial soil moisture conditions on simulated soil moisture and streamflow in Ganga basin and its propagation, during the summer monsoon season (June to September). This provides information regarding the required minimum duration of model simulation for attaining the model stability. We use the Variable Infiltration Capacity model for hydrological simulations after validation. Multiple hydrologic simulations are performed, each of 21 days, initialized on every 5th day of the monsoon season for deficit, surplus and normal monsoon years. Each of these simulations is performed with the initial soil moisture condition obtained from long term runs along with positive and negative perturbations. The time required for the convergence of initial errors is obtained for all the cases. We find a quick convergence for the year with high rainfall as well as for the wet spells within a season. We further find high spatial variations in the time required for convergence; the region with high precipitation such as Lower Ganga basin attains convergence at a faster rate. Furthermore, deeper soil layers need more time for convergence. Our analysis is the first attempt on understanding the sensitivity of hydrological simulations of Ganga basin on initial soil moisture conditions. The results obtained here may be useful in understanding the spin-up requirements for operational hydrologic forecasts.

  16. Simulation of nitrate reduction in groundwater - An upscaling approach from small catchments to the Baltic Sea basin

    NASA Astrophysics Data System (ADS)

    Hansen, A. L.; Donnelly, C.; Refsgaard, J. C.; Karlsson, I. B.

    2018-01-01

    This paper describes a modeling approach proposed to simulate the impact of local-scale, spatially targeted N-mitigation measures for the Baltic Sea Basin. Spatially targeted N-regulations aim at exploiting the considerable spatial differences in the natural N-reduction taking place in groundwater and surface water. While such measures can be simulated using local-scale physically-based catchment models, use of such detailed models for the 1.8 million km2 Baltic Sea basin is not feasible due to constraints on input data and computing power. Large-scale models that are able to simulate the Baltic Sea basin, on the other hand, do not have adequate spatial resolution to simulate some of the field-scale measures. Our methodology combines knowledge and results from two local-scale physically-based MIKE SHE catchment models, the large-scale and more conceptual E-HYPE model, and auxiliary data in order to enable E-HYPE to simulate how spatially targeted regulation of agricultural practices may affect N-loads to the Baltic Sea. We conclude that the use of E-HYPE with this upscaling methodology enables the simulation of the impact on N-loads of applying a spatially targeted regulation at the Baltic Sea basin scale to the correct order-of-magnitude. The E-HYPE model together with the upscaling methodology therefore provides a sound basis for large-scale policy analysis; however, we do not expect it to be sufficiently accurate to be useful for the detailed design of local-scale measures.

  17. Basins of distinct asymptotic states in the cyclically competing mobile five species game

    NASA Astrophysics Data System (ADS)

    Kim, Beomseok; Park, Junpyo

    2017-10-01

    We study the dynamics of cyclic competing mobile five species on spatially extended systems originated from asymmetric initial populations and investigate the basins for the three possible asymptotic states, coexistence of all species, existences of only two independent species, and the extinction. Through extensive numerical simulations, we find a prosperous dependence on initial conditions for species biodiversity. In particular, for fixed given equal densities of two relevant species, we find that only five basins for the existence of two independent species exist and they are spirally entangled for high mobility. A basin of coexistence is outbreaking when the mobility parameter is decreased through a critical value and surrounded by the other five basins. For fixed given equal densities of two independent species, however, we find that basin structures are not spirally entangled. Further, final states of two independent species are totally different. For all possible considerations, the extinction state is not witnessed which is verified by the survival probability. To provide the validity of basin structures from lattice simulations, we analyze the system in mean-field manners. Consequently, results on macroscopic levels are matched to direct lattice simulations for high mobility regimes. These findings provide a good insight into the fundamental issue of the biodiversity among many species than previous cases.

  18. The effect of modeled recharge distribution on simulated groundwater availability and capture.

    PubMed

    Tillman, F D; Pool, D R; Leake, S A

    2015-01-01

    Simulating groundwater flow in basin-fill aquifers of the semiarid southwestern United States commonly requires decisions about how to distribute aquifer recharge. Precipitation can recharge basin-fill aquifers by direct infiltration and transport through faults and fractures in the high-elevation areas, by flowing overland through high-elevation areas to infiltrate at basin-fill margins along mountain fronts, by flowing overland to infiltrate along ephemeral channels that often traverse basins in the area, or by some combination of these processes. The importance of accurately simulating recharge distributions is a current topic of discussion among hydrologists and water managers in the region, but no comparative study has been performed to analyze the effects of different recharge distributions on groundwater simulations. This study investigates the importance of the distribution of aquifer recharge in simulating regional groundwater flow in basin-fill aquifers by calibrating a groundwater-flow model to four different recharge distributions, all with the same total amount of recharge. Similarities are seen in results from steady-state models for optimized hydraulic conductivity values, fit of simulated to observed hydraulic heads, and composite scaled sensitivities of conductivity parameter zones. Transient simulations with hypothetical storage properties and pumping rates produce similar capture rates and storage change results, but differences are noted in the rate of drawdown at some well locations owing to the differences in optimized hydraulic conductivity. Depending on whether the purpose of the groundwater model is to simulate changes in groundwater levels or changes in storage and capture, the distribution of aquifer recharge may or may not be of primary importance. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  19. Hydrogeology and effects of tailings basins on the hydrology of Sands Plain, Marquette County, Michigan

    USGS Publications Warehouse

    Grannemann, N.G.

    1984-01-01

    Sands Plain, a 225-square mile area, is near the Marquette iron-mining district in Michigan's Upper Peninsula. Gribben Basin, a settling basin for disposal of waste rock particles from iron-ore concentration, is in the western part. Because Sands Plain is near iron-ore deposits, but not underlain by them, parts of the area are being considered as sites for additional tailings basins. Glacial deposits, as much as 500 feet thick, comprise the principal aquifer. Most ground water flows through the glacial deposits and discharges in a series of nearly parallel tributaries to the Chocolay River which flows into Lake Superior. Ninety-five percent of the discharge of these streams is ground-water runoff. The aquifer is recharged by precipitation at an average rate of 15 inches per year and by streamflow losses from the upper reaches of Goose Lake Outlet at an average rate of 2 inches per year. Precipitation collected at two sites had mean pH values of 4.0; rates of deposition of sulfate and total dissolved nitrogen were estimated to be 17.4 and 5.8 pounds per acre per year, respectively. Dissolved-solids concentrations in water from streams ranged from 82 to 143 milligrams per liter; sulfate ranged from 4.2 to 10 milligrams per liter. Calcium and bicarbonate were the principal dissolved substances. Highest dissolved-solids concentrations in water from wells in glacial deposits were found in a major buried valley east of Goose Lake Outlet. These concentrations ranged from 14 to 246 milligrams per liter; sulfate concentrations ranged from 0.9 to 53 milligrams per liter. Because of the high ground-water component of streamflow, mean concentrations of total nitrogen and trace metals in surface water do not differ significantly from mean concentrations in ground water. A two-dimensional digital model of ground-water flow was used to simulate water levels and ground-water runoff under steady-state and transient conditions Predictive simulations with the steady-state model were made to determine the effects of continued operation of Gribben tailings basin and construction and operation of four hypothetical tailings basins. Operation of Gribben Basin has decreased the average rate of ground-water flow to Goose Lake Outlet by 0.9 to 1.6 cubic feet per second but has increased the average rate of groundwater flow to Warner Creek by about 0.2 cubic foot per second. Continued filling of the tailings basin to its design capacity is expected to cause a slight increase in leakage from the basin to Goose Lake Outlet.Four hypothetical tailings basins, comprising a total of 11 square miles, were simulated by successively adding one more basin to the previous basin configuration. Net ground-water flow to streams was reduced by the simulated basins. The magnitude of these reductions depends on engineering decisions about the method of basin construction and a better understanding of the hydraulic properties of the materials used to seal the basin perimeters. The maximum total reduction in ground-water runoff due to construction and operation of 11 square miles of tailings basins is about 18 cubic feet per second compared to flow simulated by a steady-state simulation without tailings basins. If bottom sealing, rather than slurry wall construction, is used for one of the hypothetical basins, the total maximum reduction is 7.5 cubic feet per second. Under some assumed conditions, leakage from the tailings basins may slightly increase ground-water flow to Goose Lake Outlet and Warner Creek. The maximum probable leakage from all tailings basins is about 7 cubic feet per second; the minimum probable leakage is about 0.7 cubic foot per second.

  20. Effect of Downscaled Forcings and Soil Texture Properties on Hyperresolution Hydrologic Simulations in a Regional Basin in Northwest Mexico

    NASA Astrophysics Data System (ADS)

    Ko, A.; Mascaro, G.; Vivoni, E. R.

    2017-12-01

    Hyper-resolution (< 1 km) hydrological modeling is expected to support a range of studies related to the terrestrial water cycle. A critical need for increasing the utility of hyper-resolution modeling is the availability of meteorological forcings and land surface characteristics at high spatial resolution. Unfortunately, in many areas these datasets are only available at coarse (> 10 km) scales. In this study, we address some of the challenges by applying a parallel version of the Triangulated Irregular Network (TIN)-based Real Time Integrated Basin Simulator (tRIBS) to the Rio Sonora Basin (RSB) in northwest Mexico. The RSB is a large, semiarid watershed ( 21,000 km2) characterized by complex topography and a strong seasonality in vegetation conditions, due to the North American monsoon. We conducted simulations at an average spatial resolution of 88 m over a decadal (2004-2013) period using spatially-distributed forcings from remotely-sensed and reanalysis products. Meteorological forcings were derived from the North American Land Data Assimilation System (NLDAS) at the original resolution of 12 km and were downscaled at 1 km with techniques accounting for terrain effects. Two grids of soil properties were created from different sources, including: (i) CONABIO (Comisión Nacional para el Conocimiento y Uso de la Biodiversidad) at 6 km resolution; and (ii) ISRIC (International Soil Reference Information Centre) at 250 m. Time-varying vegetation parameters were derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) composite products. The model was first calibrated and validated through distributed soil moisture data from a network of 20 soil moisture stations during the monsoon season. Next, hydrologic simulations were conducted with five different combinations of coarse and downscaled forcings and soil properties. Outputs in the different configurations were then compared with independent observations of soil moisture, and with estimates of land surface temperature (1 km, daily) and evapotranspiration (1 km, monthly) from MODIS. This study is expected to support the community involved in hyper-resolution hydrologic modeling by identifying the crucial factors that, if available at higher resolution, lead to the largest improvement of the simulation prognostic capability.

  1. A simple stochastic rainstorm generator for simulating spatially and temporally varying rainfall

    NASA Astrophysics Data System (ADS)

    Singer, M. B.; Michaelides, K.; Nichols, M.; Nearing, M. A.

    2016-12-01

    In semi-arid to arid drainage basins, rainstorms often control both water supply and flood risk to marginal communities of people. They also govern the availability of water to vegetation and other ecological communities, as well as spatial patterns of sediment, nutrient, and contaminant transport and deposition on local to basin scales. All of these landscape responses are sensitive to changes in climate that are projected to occur throughout western North America. Thus, it is important to improve characterization of rainstorms in a manner that enables statistical assessment of rainfall at spatial scales below that of existing gauging networks and the prediction of plausible manifestations of climate change. Here we present a simple, stochastic rainstorm generator that was created using data from a rich and dense network of rain gauges at the Walnut Gulch Experimental Watershed (WGEW) in SE Arizona, but which is applicable anywhere. We describe our methods for assembling pdfs of relevant rainstorm characteristics including total annual rainfall, storm area, storm center location, and storm duration. We also generate five fitted intensity-duration curves and apply a spatial rainfall gradient to generate precipitation at spatial scales below gauge spacing. The model then runs by Monte Carlo simulation in which a total annual rainfall is selected before we generate rainstorms until the annual precipitation total is reached. The procedure continues for decadal simulations. Thus, we keep track of the hydrologic impact of individual storms and the integral of precipitation over multiple decades. We first test the model using ensemble predictions until we reach statistical similarity to the input data from WGEW. We then employ the model to assess decadal precipitation under simulations of climate change in which we separately vary the distribution of total annual rainfall (trend in moisture) and the intensity-duration curves used for simulation (trends in storminess). We demonstrate the model output through spatial maps of rainfall and through statistical comparisons of relevant parameters and distributions. Finally, discuss how the model can be used to understand basin-scale hydrology in terms of soil moisture, runoff, and erosion.

  2. An approach for modelling snowcover ablation and snowmelt runoff in cold region environments

    NASA Astrophysics Data System (ADS)

    Dornes, Pablo Fernando

    Reliable hydrological model simulations are the result of numerous complex interactions among hydrological inputs, landscape properties, and initial conditions. Determination of the effects of these factors is one of the main challenges in hydrological modelling. This situation becomes even more difficult in cold regions due to the ungauged nature of subarctic and arctic environments. This research work is an attempt to apply a new approach for modelling snowcover ablation and snowmelt runoff in complex subarctic environments with limited data while retaining integrity in the process representations. The modelling strategy is based on the incorporation of both detailed process understanding and inputs along with information gained from observations of basin-wide streamflow phenomenon; essentially a combination of deductive and inductive approaches. The study was conducted in the Wolf Creek Research Basin, Yukon Territory, using three models, a small-scale physically based hydrological model, a land surface scheme, and a land surface hydrological model. The spatial representation was based on previous research studies and observations, and was accomplished by incorporating landscape units, defined according to topography and vegetation, as the spatial model elements. Comparisons between distributed and aggregated modelling approaches showed that simulations incorporating distributed initial snowcover and corrected solar radiation were able to properly simulate snowcover ablation and snowmelt runoff whereas the aggregated modelling approaches were unable to represent the differential snowmelt rates and complex snowmelt runoff dynamics. Similarly, the inclusion of spatially distributed information in a land surface scheme clearly improved simulations of snowcover ablation. Application of the same modelling approach at a larger scale using the same landscape based parameterisation showed satisfactory results in simulating snowcover ablation and snowmelt runoff with minimal calibration. Verification of this approach in an arctic basin illustrated that landscape based parameters are a feasible regionalisation framework for distributed and physically based models. In summary, the proposed modelling philosophy, based on the combination of an inductive and deductive reasoning, is a suitable strategy for reliable predictions of snowcover ablation and snowmelt runoff in cold regions and complex environments.

  3. Computer input and output files associated with ground-water-flow simulations of the Albuquerque Basin, central New Mexico, 1901-94, with projections to 2020; (supplement one to U.S. Geological Survey Water-resources investigations report 94-4251)

    USGS Publications Warehouse

    Kernodle, J.M.

    1996-01-01

    This report presents the computer input files required to run the three-dimensional ground-water-flow model of the Albuquerque Basin, central New Mexico, documented in Kernodle and others (Kernodle, J.M., McAda, D.P., and Thorn, C.R., 1995, Simulation of ground-water flow in the Albuquerque Basin, central New Mexico, 1901-1994, with projections to 2020: U.S. Geological Survey Water-Resources Investigations Report 94-4251, 114 p.). Output files resulting from the computer simulations are included for reference.

  4. Integrative Governance of Environmental Water in Australia's Murray-Darling Basin: Evolving Challenges and Emerging Pathways.

    PubMed

    Bischoff-Mattson, Zachary; Lynch, Amanda H

    2017-07-01

    Integration, a widely promoted response to the multi-scale complexities of social-environmental sustainability, is diversely and sometimes poorly conceptualized. In this paper we explore integrative governance, which we define as an iterative and contextual process for negotiating and advancing the common interest. We ground this definition in a discussion of institutional factors conditioning integrative governance of environmental water in Australia's Murray-Darling Basin. The Murray-Darling Basin is an iconic system of social-ecological complexity, evocative of large-scale conservation challenges in other developed arid river basins. Our critical assessment of integrative governance practices in that context emerges through analysis of interviews with policy participants and documents pertaining to environmental water management in the tri-state area of southwestern New South Wales, northwestern Victoria, and the South Australian Riverland. We identify four linked challenges: (i) decision support for developing socially robust environmental water management goals, (ii) resource constraints on adaptive practice, (iii) inter-state differences in participatory decision-making and devolution of authority, and (iv) representative inclusion in decision-making. Our appraisal demonstrates these as pivotal challenges for integrative governance in the common interest. We conclude by offering a perspective on the potential for supporting integrative governance through the bridging capacity of Australia's Commonwealth Environmental Water Holder.

  5. HYDROLOGY AND SEDIMENT MODELING USING THE BASINS NON-POINT SOURCE MODEL

    EPA Science Inventory

    The Non-Point Source Model (Hydrologic Simulation Program-Fortran, or HSPF) within the EPA Office of Water's BASINS watershed modeling system was used to simulate streamflow and total suspended solids within Contentnea Creek, North Carolina, which is a tributary of the Neuse Rive...

  6. Free-energy landscape, principal component analysis, and structural clustering to identify representative conformations from molecular dynamics simulations: the myoglobin case.

    PubMed

    Papaleo, Elena; Mereghetti, Paolo; Fantucci, Piercarlo; Grandori, Rita; De Gioia, Luca

    2009-01-01

    Several molecular dynamics (MD) simulations were used to sample conformations in the neighborhood of the native structure of holo-myoglobin (holo-Mb), collecting trajectories spanning 0.22 micros at 300 K. Principal component (PCA) and free-energy landscape (FEL) analyses, integrated by cluster analysis, which was performed considering the position and structures of the individual helices of the globin fold, were carried out. The coherence between the different structural clusters and the basins of the FEL, together with the convergence of parameters derived by PCA indicates that an accurate description of the Mb conformational space around the native state was achieved by multiple MD trajectories spanning at least 0.14 micros. The integration of FEL, PCA, and structural clustering was shown to be a very useful approach to gain an overall view of the conformational landscape accessible to a protein and to identify representative protein substates. This method could be also used to investigate the conformational and dynamical properties of Mb apo-, mutant, or delete versions, in which greater conformational variability is expected and, therefore identification of representative substates from the simulations is relevant to disclose structure-function relationship.

  7. METAGUI 3: A graphical user interface for choosing the collective variables in molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Giorgino, Toni; Laio, Alessandro; Rodriguez, Alex

    2017-08-01

    Molecular dynamics (MD) simulations allow the exploration of the phase space of biopolymers through the integration of equations of motion of their constituent atoms. The analysis of MD trajectories often relies on the choice of collective variables (CVs) along which the dynamics of the system is projected. We developed a graphical user interface (GUI) for facilitating the interactive choice of the appropriate CVs. The GUI allows: defining interactively new CVs; partitioning the configurations into microstates characterized by similar values of the CVs; calculating the free energies of the microstates for both unbiased and biased (metadynamics) simulations; clustering the microstates in kinetic basins; visualizing the free energy landscape as a function of a subset of the CVs used for the analysis. A simple mouse click allows one to quickly inspect structures corresponding to specific points in the landscape.

  8. Critical multi-level governance issues of integrated modelling: An example of low-water management in the Adour-Garonne basin (France)

    NASA Astrophysics Data System (ADS)

    Mazzega, Pierre; Therond, Olivier; Debril, Thomas; March, Hug; Sibertin-Blanc, Christophe; Lardy, Romain; Sant'ana, Daniel

    2014-11-01

    This paper presents the experience gained related to the development of an integrated simulation model of water policy. Within this context, we analyze particular difficulties raised by the inclusion of multi-level governance that assigns the responsibility of individual or collective decision-making to a variety of actors, regarding measures of which the implementation has significant effects toward the sustainability of socio-hydrosystems. Multi-level governance procedures are compared with the potential of model-based impact assessment. Our discussion is illustrated on the basis of the exploitation of the multi-agent platform MAELIA dedicated to the simulation of social, economic and environmental impacts of low-water management in a context of climate and regulatory changes. We focus on three major decision-making processes occurring in the Adour-Garonne basin, France: (i) the participatory development of the Master Scheme for Water Planning and Management (SDAGE) under the auspices of the Water Agency; (ii) the publication of water use restrictions in situations of water scarcity; and (iii) the determination of the abstraction volumes for irrigation and their allocation. The MAELIA platform explicitly takes into account the mode of decision-making when it is framed by a procedure set beforehand, focusing on the actors' participation and on the nature and parameters of the measures to be implemented. It is observed that in some water organizations decision-making follows patterns that can be represented as rule-based actions triggered by thresholds of resource states. When decisions are resulting from individual choice, endowing virtual agents with bounded rationality allows us to reproduce (in silico) their behavior and decisions in a reliable way. However, the negotiation processes taking place during the period of time simulated by the models in arenas of collective choices are not all reproducible. Outcomes of some collective decisions are very little or not at all predictable. The development and simulation of a priori policy scenarios capturing the most plausible or interesting outcomes of such collective decisions on measures for low-water management allows these difficulties to be overcome. The building of these kind of scenarios requires close collaboration between researchers and stakeholders involved in arenas of collective choice, and implies the integration of the production of model and the analysis of scenarios as one component of the polycentric political process of water management.

  9. One-way coupling of an integrated assessment model and a water resources model: evaluation and implications of future changes over the US Midwest

    NASA Astrophysics Data System (ADS)

    Voisin, N.; Liu, L.; Hejazi, M.; Tesfa, T.; Li, H.; Huang, M.; Liu, Y.; Leung, L. R.

    2013-11-01

    An integrated model is being developed to advance our understanding of the interactions between human activities, terrestrial system and water cycle, and to evaluate how system interactions will be affected by a changing climate at the regional scale. As a first step towards that goal, a global integrated assessment model, which includes a water-demand model driven by socioeconomics at regional and global scales, is coupled in a one-way fashion with a land surface hydrology-routing-water resources management model. To reconcile the scale differences between the models, a spatial and temporal disaggregation approach is developed to downscale the annual regional water demand simulations into a daily time step and subbasin representation. The model demonstrates reasonable ability to represent the historical flow regulation and water supply over the US Midwest (Missouri, Upper Mississippi, and Ohio river basins). Implications for future flow regulation, water supply, and supply deficit are investigated using climate change projections with the B1 and A2 emission scenarios, which affect both natural flow and water demand. Although natural flow is projected to increase under climate change in both the B1 and A2 scenarios, there is larger uncertainty in the changes of the regulated flow. Over the Ohio and Upper Mississippi river basins, changes in flow regulation are driven by the change in natural flow due to the limited storage capacity. However, both changes in flow and demand have effects on the Missouri River Basin summer regulated flow. Changes in demand are driven by socioeconomic factors, energy and food demands, global markets and prices with rainfed crop demand handled directly by the land surface modeling component. Even though most of the changes in supply deficit (unmet demand) and the actual supply (met demand) are driven primarily by the change in natural flow over the entire region, the integrated framework shows that supply deficit over the Missouri River Basin sees an increasing sensitivity to changes in demand in future periods. It further shows that the supply deficit is six times as sensitive as the actual supply to changes in flow and demand. A spatial analysis of the supply deficit demonstrates vulnerabilities of urban areas located along mainstream with limited storage.

  10. Integrated water resources modelling for assessing sustainable water governance

    NASA Astrophysics Data System (ADS)

    Skoulikaris, Charalampos; Ganoulis, Jacques; Tsoukalas, Ioannis; Makropoulos, Christos; Gkatzogianni, Eleni; Michas, Spyros

    2015-04-01

    Climatic variations and resulting future uncertainties, increasing anthropogenic pressures, changes in political boundaries, ineffective or dysfunctional governance of natural resources and environmental degradation are some of the most fundamental challenges with which worldwide initiatives fostering the "think globally, act locally" concept are concerned. Different initiatives target the protection of the environment through sustainable development; Integrated Water Resources Management (IWRM) and Transboundary Water Resources Management (TWRM) in the case of internationally shared waters are frameworks that have gained wide political acceptance at international level and form part of water resources management planning and implementation on a global scale. Both concepts contribute in promoting economic efficiency, social equity and environmental sustainability. Inspired by these holistic management approaches, the present work describes an effort that uses integrated water resources modelling for the development of an integrated, coherent and flexible water governance tool. This work in which a sequence of computer based models and tools are linked together, aims at the evaluation of the sustainable operation of projects generating renewable energy from water as well as the sustainability of agricultural demands and environmental security in terms of environmental flow under various climatic and operational conditions. More specifically, catchment hydrological modelling is coupled with dams' simulation models and thereafter with models dedicated to water resources management and planning,while the bridging of models is conducted through geographic information systems and custom programming tools. For the case of Mesta/Nestos river basin different priority rules in the dams' operational schedule (e.g. priority given to power production as opposed to irrigation needs and vice versa), as well as different irrigation demands, e.g. current water demands as opposed to those defined in the River Basin Management Plan (RBMP), are thoroughly examined in order to ascertain the river's capability to cover multi water demands and the potential of further infrastructure development. Due to the transboundary nature of the river basin in question, different scenarios quantify the maximum water volumes that could be further exploited in the upper part of the basin in order to avoid adverse consequences to the downstream regional economy, power productivity and environmental flow, and in terms of water governance to satisfy the need to balance water use between socio-economic activities and ecosystems.

  11. 5. Basin assessment and watershed analysis

    Treesearch

    Leslie M. Reid; Robert R. Ziemer

    1994-01-01

    Abstract - Basin assessment is an important component of the President's Forest Plan, yet it has received little attention. Basin assessments are intended both to guide watershed analyses by specifying types of issues and interactions that need to be understood, and, eventually, to integrate the results of watershed analyses occurring within a river basin....

  12. Parameterization and Uncertainty Analysis of SWAT model in Hydrological Simulation of Chaohe River Basin

    NASA Astrophysics Data System (ADS)

    Jie, M.; Zhang, J.; Guo, B. B.

    2017-12-01

    As a typical distributed hydrological model, the SWAT model also has a challenge in calibrating parameters and analysis their uncertainty. This paper chooses the Chaohe River Basin China as the study area, through the establishment of the SWAT model, loading the DEM data of the Chaohe river basin, the watershed is automatically divided into several sub-basins. Analyzing the land use, soil and slope which are on the basis of the sub-basins and calculating the hydrological response unit (HRU) of the study area, after running SWAT model, the runoff simulation values in the watershed are obtained. On this basis, using weather data, known daily runoff of three hydrological stations, combined with the SWAT-CUP automatic program and the manual adjustment method are used to analyze the multi-site calibration of the model parameters. Furthermore, the GLUE algorithm is used to analyze the parameters uncertainty of the SWAT model. Through the sensitivity analysis, calibration and uncertainty study of SWAT, the results indicate that the parameterization of the hydrological characteristics of the Chaohe river is successful and feasible which can be used to simulate the Chaohe river basin.

  13. An Evaluation of the Predictability of Austral Summer Season Precipitation over South America.

    NASA Astrophysics Data System (ADS)

    Misra, Vasubandhu

    2004-03-01

    In this study predictability of austral summer seasonal precipitation over South America is investigated using a 12-yr set of a 3.5-month range (seasonal) and a 17-yr range (continuous multiannual) five-member ensemble integrations of the Center for Ocean Land Atmosphere Studies (COLA) atmospheric general circulation model (AGCM). These integrations were performed with prescribed observed sea surface temperature (SST); therefore, skill attained represents an estimate of the upper bound of the skill achievable by COLA AGCM with predicted SST. The seasonal runs outperform the multiannual model integrations both in deterministic and probabilistic skill. The simulation of the January February March (JFM) seasonal climatology of precipitation is vastly superior in the seasonal runs except over the Nordeste region where the multiannual runs show a marginal improvement. The teleconnection of the ensemble mean JFM precipitation over tropical South America with global contemporaneous observed sea surface temperature in the seasonal runs conforms more closely to observations than in the multiannual runs. Both the sets of runs clearly beat persistence in predicting the interannual precipitation anomalies over the Amazon River basin, Nordeste, South Atlantic convergence zone, and subtropical South America. However, both types of runs display poorer simulations over subtropical regions than the tropical areas of South America. The examination of probabilistic skill of precipitation supports the conclusions from deterministic skill analysis that the seasonal runs yield superior simulations than the multiannual-type runs.

  14. Development of a coupled model of a distributed hydrological model and a rice growth model for optimizing irrigation schedule

    NASA Astrophysics Data System (ADS)

    Tsujimoto, Kumiko; Homma, Koki; Koike, Toshio; Ohta, Tetsu

    2013-04-01

    A coupled model of a distributed hydrological model and a rice growth model was developed in this study. The distributed hydrological model used in this study is the Water and Energy Budget-based Distributed Hydrological Model (WEB-DHM) developed by Wang et al. (2009). This model includes a modified SiB2 (Simple Biosphere Model, Sellers et al., 1996) and the Geomorphology-Based Hydrological Model (GBHM) and thus it can physically calculate both water and energy fluxes. The rice growth model used in this study is the Simulation Model for Rice-Weather relations (SIMRIW) - rainfed developed by Homma et al. (2009). This is an updated version of the original SIMRIW (Horie et al., 1987) and can calculate rice growth by considering the yield reduction due to water stress. The purpose of the coupling is the integration of hydrology and crop science to develop a tool to support decision making 1) for determining the necessary agricultural water resources and 2) for allocating limited water resources to various sectors. The efficient water use and optimal water allocation in the agricultural sector are necessary to balance supply and demand of limited water resources. In addition, variations in available soil moisture are the main reasons of variations in rice yield. In our model, soil moisture and the Leaf Area Index (LAI) are calculated inside SIMRIW-rainfed so that these variables can be simulated dynamically and more precisely based on the rice than the more general calculations is the original WEB-DHM. At the same time by coupling SIMRIW-rainfed with WEB-DHM, lateral flow of soil water, increases in soil moisture and reduction of river discharge due to the irrigation, and its effects on the rice growth can be calculated. Agricultural information such as planting date, rice cultivar, fertilization amount are given in a fully distributed manner. The coupled model was validated using LAI and soil moisture in a small basin in western Cambodia (Sangker River Basin). This basin is mostly rainfed paddy so that irrigation scheme was firstly switched off. Several simulations with varying irrigation scheme were performed to determine the optimal irrigation schedule in this basin.

  15. Simulation of streamflow temperatures in the Yakima River basin, Washington, April-October 1981

    USGS Publications Warehouse

    Vaccaro, J.J.

    1986-01-01

    The effects of storage, diversion, return flow, and meteorological variables on water temperature in the Yakima River, in Washington State, were simulated, and the changes in water temperature that could be expected under four alternative-management scenarios were examined for improvement in anadromous fish environment. A streamflow routing model and Lagrangian streamflow temperature model were used to simulate water discharge and temperature in the river. The estimated model errors were 12% for daily discharge and 1.7 C for daily temperature. Sensitivity analysis of the simulation of water temperatures showed that the effect of reservoir outflow temperatures diminishes in a downstream direction. A 4 C increase in outflow temperatures results in a 1.0 C increase in mean irrigation season water temperature at Umtanum in the upper Yakima River basin, but only a 0.01C increase at Prosser in the lower basin. The influence of air temperature on water temperature increases in a downstream direction and is the dominant influence in the lower basin. A 4 C increase in air temperature over the entire basin resulted in a 2.34 C increase in river temperatures at Prosser in the lower basin and 1.46 C at Umtanum in the upper basin. Changes in wind speed and model wind-function parameters had little effect on the model predicted water temperature. Of four alternative management scenarios suggested by the U.S. Bureau of Indian Affairs and the Yakima Indian Nation, the 1981 reservoir releases maintained without diversions or return flow in the river basin produced water temperatures nearest those considered as preferable for salmon and steelhead trout habitat. The alternative management scenario for no reservoir storage and no diversions or return flows in the river basin (estimate of natural conditions) produced conditions that were the least like those considered as preferable for salmon and steelhead trout habitat. (Author 's abstract)

  16. Simulation of rainfall-runoff response in mined and unmined watersheds in coal areas of West Virginia

    USGS Publications Warehouse

    Puente, Celso; Atkins, John T.

    1989-01-01

    Meteorologic and hydrologic data from five small watersheds in the coal areas of West Virginia were used to calibrate and test the U.S. Geological Survey Precipitation-Runoff Modeling System for simulating streamflow under various climatic and land-use conditions. Three of the basins--Horsecamp Run, Gilmer Run, and Collison Creek--are primarily forested and relatively undisturbed. The remaining basins--Drawdy Creek and Brier Creek-are extensively mined, both surface and underground above stream drainage level. Low-flow measurements at numerous synoptic sites in the mined basins indicate that coal mining has substantially altered the hydrologic system of each basin. The effects of mining on streamflow that were identified are (1) reduced base flow in stream segments underlain by underground mines, (2) increased base flow in streams that are downdip and stratigraphically below the elevation of the mined coal beds, and (3) interbasin transfer of ground water through underground mines. These changes probably reflect increased permeability of surface rocks caused by subsidence fractures associated with collapsed underground mines in the basin. Such fractures would increase downward percolation of precipitation, surface and subsurface flow, and ground-water flow to deeper rocks or to underground mine workings. Model simulations of the water budgets for the unmined basins during the 1972-73 water years indicate that total annual runoff averaged 60 percent of average annual precipitation; annual evapotranspiration losses averaged 40 percent of average annual precipitation. Of the total annual runoff, approximately 91 percent was surface and subsurface runoff and 9 percent was groundwater discharge. Changes in storage in the soil zone and in the subsurface and ground-water reservoirs in the basins were negligible. In contrast, water-budget simulations for the mined basins indicate significant differences in annual recharge and in total annual runoff. Model simulations of the water budget for Drawdy Creek basin indicate that total annual runoff during 1972-73 averaged only 43 percent of average annual precipitation--the lowest of all study basins; annual evapotranspiration losses averaged 49 percent, and interbasin transfer of ground-water losses averaged about 8 percent. Of the total annual runoff, approximately 74 percent was surface and subsurface flow and 26 percent was ground-water discharge. The low total annual runoff at Drawdy Creek probably reflects increased recharge of precipitation and surface and subsurface flow losses to ground water. Most of the increase in ground-water storage is, in turn, lost to a ground-water sink--namely, interbasin transfer of ground water by gravity drainage and (or) mine pumpage from underground mines that extend to adjacent basins. Hypothetical mining situations were posed for model analysis to determine the effects of increased mining on streamflow in the mined basins. Results of model simulations indicate that streamflow characteristics, the water budget, and the seasonal distribution of streamflow would be significantly modified in response to an increase in mining in the basins. Simulations indicate that (1) total annual runoff in the basins would decrease because of increased surface- and subsurface-flow losses and increased recharge of precipitation to ground water (these losses would tend to reduce medium to high flows mainly during winter and spring when losses would be greatest), (2) extreme high flows in response to intense rainstorms would be negligibly affected, regardless of the magnitude of mining in the basins, (3) ground-water discharge also would decrease during winter and spring, but the amount and duration of low flows during summer and fall would substantially increase in response to increased ground-water storage in rocks and in underground mines, and (4) the increase in ground-water storage in the basins would be depleted, mostly by increased losses to a grou

  17. Downscaling of a global climate model for estimation of runoff, sediment yield and dam storage: A case study of Pirapama basin, Brazil

    NASA Astrophysics Data System (ADS)

    Braga, Ana Cláudia F. Medeiros; Silva, Richarde Marques da; Santos, Celso Augusto Guimarães; Galvão, Carlos de Oliveira; Nobre, Paulo

    2013-08-01

    The coastal zone of northeastern Brazil is characterized by intense human activities and by large settlements and also experiences high soil losses that can contribute to environmental damage. Therefore, it is necessary to build an integrated modeling-forecasting system for rainfall-runoff erosion that assesses plans for water availability and sediment yield that can be conceived and implemented. In this work, we present an evaluation of an integrated modeling system for a basin located in this region with a relatively low predictability of seasonal rainfall and a small area (600 km2). The National Center for Environmental Predictions - NCEP’s Regional Spectral Model (RSM) nested within the Center for Weather Forecasting and Climate Studies - CPTEC’s Atmospheric General Circulation Model (AGCM) were investigated in this study, and both are addressed in the simulation work. The rainfall analysis shows that: (1) the dynamic downscaling carried out by the regional RSM model approximates the frequency distribution of the daily observed data set although errors were detected in the magnitude and timing (anticipation of peaks, for example) at the daily scale, (2) an unbiased precipitation forecast seemed to be essential for use of the results in hydrological models, and (3) the information directly extracted from the global model may also be useful. The simulated runoff and reservoir-stored volumes are strongly linked to rainfall, and their estimation accuracy was significantly improved at the monthly scale, thus rendering the results useful for management purposes. The runoff-erosion forecasting displayed a large sediment yield that was consistent with the predicted rainfall.

  18. Geologic and climatic controls on streamflow generation processes in a complex eogenetic karst basin

    NASA Astrophysics Data System (ADS)

    Vibhava, F.; Graham, W. D.; Maxwell, R. M.

    2012-12-01

    Streamflow at any given location and time is representative of surface and subsurface contributions from various sources. The ability to fully identify the factors controlling these contributions is key to successfully understanding the transport of contaminants through the system. In this study we developed a fully integrated 3D surface water-groundwater-land surface model, PARFLOW, to evaluate geologic and climatic controls on streamflow generation processes in a complex eogenetic karst basin in North Central Florida. In addition to traditional model evaluation criterion, such as comparing field observations to model simulated streamflow and groundwater elevations, we quantitatively evaluated the model's predictions of surface-groundwater interactions over space and time using a suite of binary end-member mixing models that were developed using observed specific conductivity differences among surface and groundwater sources throughout the domain. Analysis of model predictions showed that geologic heterogeneity exerts a strong control on both streamflow generation processes and land atmospheric fluxes in this watershed. In the upper basin, where the karst aquifer is overlain by a thick confining layer, approximately 92% of streamflow is "young" event flow, produced by near stream rainfall. Throughout the upper basin the confining layer produces a persistent high surficial water table which results in high evapotranspiration, low groundwater recharge and thus negligible "inter-event" streamflow. In the lower basin, where the karst aquifer is unconfined, deeper water tables result in less evapotranspiration. Thus, over 80% of the streamflow is "old" subsurface flow produced by diffuse infiltration through the epikarst throughout the lower basin, and all surface contributions to streamflow originate in the upper confined basin. Climatic variability provides a secondary control on surface-subsurface and land-atmosphere fluxes, producing significant seasonal and interannual variability in these processes. Spatial and temporal patterns of evapotranspiration, groundwater recharge and streamflow generation processes reveal potential hot spots and hot moments for surface and groundwater contamination in this basin.

  19. Methods and tools to simulate the effect of economic instruments in complex water resources systems. Application to the Jucar river basin.

    NASA Astrophysics Data System (ADS)

    Lopez-Nicolas, Antonio; Pulido-Velazquez, Manuel

    2014-05-01

    The main challenge of the BLUEPRINT to safeguard Europe's water resources (EC, 2012) is to guarantee that enough good quality water is available for people's needs, the economy and the environment. In this sense, economic policy instruments such as water pricing policies and water markets can be applied to enhance efficient use of water. This paper presents a method based on hydro-economic tools to assess the effect of economic instruments on water resource systems. Hydro-economic models allow integrated analysis of water supply, demand and infrastructure operation at the river basin scale, by simultaneously combining engineering, hydrologic and economic aspects of water resources management. The method made use of the simulation and optimization hydroeconomic tools SIMGAMS and OPTIGAMS. The simulation tool SIMGAMS allocates water resources among the users according to priorities and operating rules, and evaluate economic scarcity costs of the system by using economic demand functions. The model's objective function is designed so that the system aims to meet the operational targets (ranked according to priorities) at each month while following the system operating rules. The optimization tool OPTIGAMS allocates water resources based on an economic efficiency criterion: maximize net benefits, or alternatively, minimizing the total water scarcity and operating cost of water use. SIMGAS allows to simulate incentive water pricing policies based on marginal resource opportunity costs (MROC; Pulido-Velazquez et al., 2013). Storage-dependent step pricing functions are derived from the time series of MROC values at a certain reservoir in the system. These water pricing policies are defined based on water availability in the system (scarcity pricing), so that when water storage is high, the MROC is low, while low storage (drought periods) will be associated to high MROC and therefore, high prices. We also illustrate the use of OPTIGAMS to simulate the effect of ideal water markets by economic optimization, without considering the potential effect of transaction costs. These methods and tools have been applied to the Jucar River basin (Spain). The results show the potential of economic instruments in setting incentives for a more efficient management of water resources systems. Acknowledgments: The study has been partially supported by the European Community 7th Framework Project (GENESIS project, n. 226536), SAWARES (Plan Nacional I+D+i 2008-2011, CGL2009-13238-C02-01 and C02-02), SCARCE (Consolider-Ingenio 2010 CSD2009-00065) of the Spanish Ministry of Economy and Competitiveness; and EC 7th Framework Project ENHANCE (n. 308438) Reference: Pulido-Velazquez, M., Alvarez-Mendiola, E., and Andreu, J., 2013. Design of Efficient Water Pricing Policies Integrating Basinwide Resource Opportunity Costs. J. Water Resour. Plann. Manage., 139(5): 583-592.

  20. Seasonal Variation of the Indonesian Throughflow in Makassar Strait

    DTIC Science & Technology

    2012-07-01

    HYCOM). Twenty-eight years (1981–2008) of 1/38 Indo-Pacific basin HYCOM simulations and three years (2004–06) from a 1/128 global HYCOM simulation are...eight years (1981?2008) of 1/ 38 Indo-Pacific basin HYCOM simulations and three years (2004?06) from a 1/ 128 global HYCOM simulation are analyzed...Wyrtki 1973) and the propa- gation of Kelvin waves along the coasts of Sumatra and Java, such as observed and modeled during May 1997 (Sprintall et

  1. Modeling hydrology, groundwater recharge and non-point nitrate loadings in the Himalayan Upper Yamuna basin.

    PubMed

    Narula, Kapil K; Gosain, A K

    2013-12-01

    The mountainous Himalayan watersheds are important hydrologic systems responsible for much of the water supply in the Indian sub-continent. These watersheds are increasingly facing anthropogenic and climate-related pressures that impact spatial and temporal distribution of water availability. This study evaluates temporal and spatial distribution of water availability including groundwater recharge and quality (non-point nitrate loadings) for a Himalayan watershed, namely, the Upper Yamuna watershed (part of the Ganga River basin). The watershed has an area of 11,600 km(2) with elevation ranging from 6300 to 600 m above mean sea level. Soil and Water Assessment Tool (SWAT), a physically-based, time-continuous model, has been used to simulate the land phase of the hydrological cycle, to obtain streamflows, groundwater recharge, and nitrate (NO3) load distributions in various components of runoff. The hydrological SWAT model is integrated with the MODular finite difference groundwater FLOW model (MODFLOW), and Modular 3-Dimensional Multi-Species Transport model (MT3DMS), to obtain groundwater flow and NO3 transport. Validation of various modules of this integrated model has been done for sub-basins of the Upper Yamuna watershed. Results on surface runoff and groundwater levels obtained as outputs from simulation show a good comparison with the observed streamflows and groundwater levels (Nash-Sutcliffe and R(2) correlations greater than +0.7). Nitrate loading obtained after nitrification, denitrification, and NO3 removal from unsaturated and shallow aquifer zones is combined with groundwater recharge. Results for nitrate modeling in groundwater aquifers are compared with observed NO3 concentration and are found to be in good agreement. The study further evaluates the sensitivity of water availability to climate change. Simulations have been made with the weather inputs of climate change scenarios of A2, B2, and A1B for end of the century. Water yield estimates under climate change scenarios have been made and implications on groundwater and groundwater quality have been assessed. The delicate groundwater resource balance that connects livelihoods of millions of people seems to be under tremendously increasing pressure due to the dynamic conditions of the natural environment of the region and the future climate changes. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Reinterpretation of Halokinetic Features in the Ancestral Rocky Mountains Paradox Salt Basin, Utah and Colorado

    NASA Astrophysics Data System (ADS)

    Thompson, J. A.; Giles, K. A.; Rowan, M. G.; Hearon, T. E., IV

    2016-12-01

    The Paradox Basin in southeastern Utah and southwestern Colorado is a foreland basin formed in response to flexural loading by the Pennsylvanian-aged Uncompaghre uplift during the Ancestral Rocky Mountain orogen. Thick sequences of evaporites (Paradox Formation) were deposited within the foreland basin, which interfinger with clastic sediments in the foredeep and carbonates around the basin margin. Differential loading of the Pennsylvanian-Jurassic sediments onto the evaporites drove synsedimentary halokinesis, creating a series of salt walls and adjacent minibasins within the larger foreland basin. The growing salt walls within the basin influenced patterns of sediment deposition from the Pennsylvanian through the Cretaceous. By integrating previously published mapping with recent field observations, mapping, and subsurface interpretations of well logs and 2D seismic lines, we present interpretations of the timing, geometry, and nature of halokinesis within the Paradox Basin, which record the complex salt tectonic history in the basin. Furthermore, we present recent work on the relationships between the local passive salt history and the formation of syndepositional counter-regional extensional fault systems within the foreland. These results will be integrated into a new regional salt-tectonic and stratigraphic framework of the Paradox Basin, and have broader implications for interpreting sedimentary records in other basins with a mobile substrate.

  3. Rio Grande transboundary integrated hydrologic model and water-availability analysis, New Mexico and Texas, United States, and Northern Chihuahua, Mexico

    USGS Publications Warehouse

    Hanson, Randall T.; Ritchie, Andre; Boyce, Scott E.; Ferguson, Ian; Galanter, Amy; Flint, Lorraine E.; Henson, Wesley

    2018-05-31

    Changes in population, agricultural development and practices (including shifts to more water-intensive crops), and climate variability are increasing demands on available water resources, particularly groundwater, in one of the most productive agricultural regions in the Southwest—the Rincon and Mesilla Valley parts of Rio Grande Valley, Doña Ana and Sierra Counties, New Mexico, and El Paso County, Texas. The goal of this study was to produce an integrated hydrological simulation model to help evaluate water-management strategies, including conjunctive use of surface water and groundwater for historical conditions, and to support long-term planning for the Rio Grande Project. This report describes model construction and applications by the U.S. Geological Survey, working in cooperation and collaboration with the Bureau of Reclamation.This model, the Rio Grande Transboundary Integrated Hydrologic Model, simulates the most important natural and human components of the hydrologic system, including selected components related to variations in climate, thereby providing a reliable assessment of surface-water and groundwater conditions and processes that can inform water users and help improve planning for future conditions and sustained operations of the Rio Grande Project (RGP) by the Bureau of Reclamation. Model development included a revision of the conceptual model of the flow system, construction of a Transboundary Rio Grande Watershed Model (TRGWM) water-balance model using the Basin Characterization Model (BCM), and construction of an integrated hydrologic flow model with MODFLOW-One-Water Hydrologic Flow Model (referred to as One Water). The hydrologic models were developed for and calibrated to historical conditions of water and land use, and parameters were adjusted so that simulated values closely matched available measurements (calibration). The calibrated model was then used to assess the use and movement of water in the Rincon Valley, Mesilla Basin, and northern part of the Conejos-Médanos Basin, with the entire region referred to as the “Transboundary Rio Grande” or TRG. These tools provide a means to understand hydrologic system response to the evolution of water use in the region, its availability, and potential operational constraints of the RGP.The conceptual model identified surface-water and groundwater inflows and outflows that included the movement and use of water both in natural and in anthropogenic systems. The groundwater-flow system is characterized by a layered geologic sedimentary sequence combined with the effects of groundwater pumping, operation of the RGP, natural runoff and recharge, and the application of irrigation water at the land surface that is captured and reused in an extensive network of canals and drains as part of the conjunctive use of water in the region.Historical groundwater-level fluctuations followed a cyclic pattern that were aligned with climate cycles, which collectively resulted in alternating periods of wet or dry years. Periods of drought that persisted for one or more years are associated with low surface-water availability that resulted in higher rates of groundwater-level decline. Rates of groundwater-level decline also increased during periods of agricultural intensification, which necessitated increasing use of groundwater as a source of irrigation water. Agriculture in the area was initially dominated by alfalfa and cotton, but since 1970 more water-intensive pecan orchards and vegetable production have become more common. Groundwater levels substantially declined in subregions where drier climate combined with increased demand, resulting in periods of reduced streamflows.Most of the groundwater was recharged in the Rio Grande Valley floor, and most of the pumpage and aquifer storage depletion was in Mesilla Basin agricultural subregions. A cyclic imbalance between inflows and outflows resulted in the modeled cyclic depletion (groundwater withdrawals in excess of natural recharge) of the groundwater basin during the 75-year simulation period of 1940–2014. Changes in groundwater storage can vary considerably from year to year, depending on land use, pumpage, and climate conditions. Climatic drivers of wet and dry years can greatly affect all inflows, outflows, and water use. Although streamflow and, to a minor extent, precipitation during inter-decadal wet-year periods replenished the groundwater historically, contemporary water use and storage depletion could have reduced the effects of these major recharge events. The average net groundwater flow-rate deficit for 1953–2014 was estimated to be about 8,990 acre-feet per year.

  4. Rio Grande Transboundary Integrated Hydrologic Model and Water-Availability Analysis, New Mexico and Texas, United States, and Northern Chihuahua, Mexico

    USGS Publications Warehouse

    Hanson, R.T.; Ritchie, Andre; Boyce, Scott E.; Galanter, Amy E.; Ferguson, Ian A.; Flint, Lorraine E.; Henson, Wesley R.

    2018-05-31

    Changes in population, agricultural development and practices (including shifts to more water-intensive crops), and climate variability are increasing demands on available water resources, particularly groundwater, in one of the most productive agricultural regions in the Southwest—the Rincon and Mesilla Valley parts of Rio Grande Valley, Doña Ana and Sierra Counties, New Mexico, and El Paso County, Texas. The goal of this study was to produce an integrated hydrological simulation model to help evaluate water-management strategies, including conjunctive use of surface water and groundwater for historical conditions, and to support long-term planning for the Rio Grande Project. This report describes model construction and applications by the U.S. Geological Survey, working in cooperation and collaboration with the Bureau of Reclamation.This model, the Rio Grande Transboundary Integrated Hydrologic Model, simulates the most important natural and human components of the hydrologic system, including selected components related to variations in climate, thereby providing a reliable assessment of surface-water and groundwater conditions and processes that can inform water users and help improve planning for future conditions and sustained operations of the Rio Grande Project (RGP) by the Bureau of Reclamation. Model development included a revision of the conceptual model of the flow system, construction of a Transboundary Rio Grande Watershed Model (TRGWM) water-balance model using the Basin Characterization Model (BCM), and construction of an integrated hydrologic flow model with MODFLOW-One-Water Hydrologic Flow Model (referred to as One Water). The hydrologic models were developed for and calibrated to historical conditions of water and land use, and parameters were adjusted so that simulated values closely matched available measurements (calibration). The calibrated model was then used to assess the use and movement of water in the Rincon Valley, Mesilla Basin, and northern part of the Conejos-Médanos Basin, with the entire region referred to as the “Transboundary Rio Grande” or TRG. These tools provide a means to understand hydrologic system response to the evolution of water use in the region, its availability, and potential operational constraints of the RGP.The conceptual model identified surface-water and groundwater inflows and outflows that included the movement and use of water both in natural and in anthropogenic systems. The groundwater-flow system is characterized by a layered geologic sedimentary sequence combined with the effects of groundwater pumping, operation of the RGP, natural runoff and recharge, and the application of irrigation water at the land surface that is captured and reused in an extensive network of canals and drains as part of the conjunctive use of water in the region.Historical groundwater-level fluctuations followed a cyclic pattern that were aligned with climate cycles, which collectively resulted in alternating periods of wet or dry years. Periods of drought that persisted for one or more years are associated with low surface-water availability that resulted in higher rates of groundwater-level decline. Rates of groundwater-level decline also increased during periods of agricultural intensification, which necessitated increasing use of groundwater as a source of irrigation water. Agriculture in the area was initially dominated by alfalfa and cotton, but since 1970 more water-intensive pecan orchards and vegetable production have become more common. Groundwater levels substantially declined in subregions where drier climate combined with increased demand, resulting in periods of reduced streamflows.Most of the groundwater was recharged in the Rio Grande Valley floor, and most of the pumpage and aquifer storage depletion was in Mesilla Basin agricultural subregions. A cyclic imbalance between inflows and outflows resulted in the modeled cyclic depletion (groundwater withdrawals in excess of natural recharge) of the groundwater basin during the 75-year simulation period of 1940–2014. Changes in groundwater storage can vary considerably from year to year, depending on land use, pumpage, and climate conditions. Climatic drivers of wet and dry years can greatly affect all inflows, outflows, and water use. Although streamflow and, to a minor extent, precipitation during inter-decadal wet-year periods replenished the groundwater historically, contemporary water use and storage depletion could have reduced the effects of these major recharge events. The average net groundwater flow-rate deficit for 1953–2014 was estimated to be about 8,990 acre-feet per year.

  5. Simulation of operating rules and discretional decisions using a fuzzy rule-based system integrated into a water resources management model

    NASA Astrophysics Data System (ADS)

    Macian-Sorribes, Hector; Pulido-Velazquez, Manuel

    2013-04-01

    Water resources systems are operated, mostly, using a set of pre-defined rules not regarding, usually, to an optimal allocation in terms of water use or economic benefits, but to historical and institutional reasons. These operating policies are reproduced, commonly, as hedging rules, pack rules or zone-based operations, and simulation models can be used to test their performance under a wide range of hydrological and/or socio-economic hypothesis. Despite the high degree of acceptation and testing that these models have achieved, the actual operation of water resources systems hardly follows all the time the pre-defined rules with the consequent uncertainty on the system performance. Real-world reservoir operation is very complex, affected by input uncertainty (imprecision in forecast inflow, seepage and evaporation losses, etc.), filtered by the reservoir operator's experience and natural risk-aversion, while considering the different physical and legal/institutional constraints in order to meet the different demands and system requirements. The aim of this work is to expose a fuzzy logic approach to derive and assess the historical operation of a system. This framework uses a fuzzy rule-based system to reproduce pre-defined rules and also to match as close as possible the actual decisions made by managers. After built up, the fuzzy rule-based system can be integrated in a water resources management model, making possible to assess the system performance at the basin scale. The case study of the Mijares basin (eastern Spain) is used to illustrate the method. A reservoir operating curve regulates the two main reservoir releases (operated in a conjunctive way) with the purpose of guaranteeing a high realiability of supply to the traditional irrigation districts with higher priority (more senior demands that funded the reservoir construction). A fuzzy rule-based system has been created to reproduce the operating curve's performance, defining the system state (total water stored in the reservoirs) and the month of the year as inputs; and the demand deliveries as outputs. The developed simulation management model integrates the fuzzy-ruled system of the operation of the two main reservoirs of the basin with the corresponding mass balance equations, the physical or boundary conditions and the water allocation rules among the competing demands. Historical information on inflow time series is used as inputs to the model simulation, being trained and validated using historical information on reservoir storage level and flow in several streams of the Mijares river. This methodology provides a more flexible and close to real policies approach. The model is easy to develop and to understand due to its rule-based structure, which mimics the human way of thinking. This can improve cooperation and negotiation between managers, decision-makers and stakeholders. The approach can be also applied to analyze the historical operation of the reservoir (what we have called a reservoir operation "audit").

  6. Modelling of Rainfall Induced Landslides in Puerto Rico

    NASA Astrophysics Data System (ADS)

    Lepore, C.; Arnone, E.; Sivandran, G.; Noto, L. V.; Bras, R. L.

    2010-12-01

    We performed an island-wide determination of static landslide susceptibility and hazard assessment as well as dynamic modeling of rainfall-induced shallow landslides in a particular hydrologic basin. Based on statistical analysis of past landslides, we determined that reliable prediction of the susceptibility to landslides is strongly dependent on the resolution of the digital elevation model (DEM) employed and the reliability of the rainfall data. A distributed hydrology model, Triangulated Irregular Network (TIN)-based Real-time Integrated Basin Simulator with VEGetation Generator for Interactive Evolution (tRIBS-VEGGIE), tRIBS-VEGGIE, has been implemented for the first time in a humid tropical environment like Puerto Rico and validated against in-situ measurements. A slope-failure module has been added to tRIBS-VEGGIE’s framework, after analyzing several failure criterions to identify the most suitable for our application; the module is used to predict the location and timing of landsliding events. The Mameyes basin, located in the Luquillo Experimental Forest in Puerto Rico, was selected for modeling based on the availability of soil, vegetation, topographical, meteorological and historic landslide data. Application of the model yields a temporal and spatial distribution of predicted rainfall-induced landslides.

  7. Climate Change Impacts on Hydrology and Water Management of the San Juan Basin

    NASA Astrophysics Data System (ADS)

    Rich, P. M.; Weintraub, L. H.; Chen, L.; Herr, J.

    2005-12-01

    Recent climatic events, including regional drought and increased storm severity, have accentuated concerns that climatic extremes may be increasing in frequency and intensity due to global climate change. As part of the ZeroNet Water-Energy Initiative, the San Juan Decision Support System includes a basin-scale modeling tool to evaluate effects of climate change on water budgets under different climate and management scenarios. The existing Watershed Analysis Risk Management Framework (WARMF) was enhanced with iterative modeling capabilities to enable construction of climate scenarios based on historical and projected data. We applied WARMF to 42,000 km2 (16,000 mi2) of the San Juan Basin (CO, NM) to assess impacts of extended drought and increased temperature on surface water balance. Simulations showed that drought and increased temperature impact water availability for all sectors (agriculture, energy, municipal, industry), and lead to increased frequency of critical shortages. Implementation of potential management alternatives such as "shortage sharing" or degraded water usage during critical years helps improve available water supply. In the face of growing concern over climate change, limited water resources, and competing demands, integrative modeling tools can enable better understanding of complex interconnected systems, and enable better decisions.

  8. Integrating water quality responses to best management practices in Portugal.

    PubMed

    Fonseca, André; Boaventura, Rui A R; Vilar, Vítor J P

    2018-01-01

    Nutrient nonpoint pollution has a significant impact on water resources worldwide. The main challenge of this work was to assess the application of best management practices in agricultural land to comply with water quality legislation for surface waters. The Hydrological Simulation Program-FORTRAN was used to evaluate water quality of Ave River in Portugal. Best management practices (infiltration basin) (BMP) were applied to agricultural land (for 3, 6, 9, 12, and 15% area) with removal efficiencies of 50% for fecal coliforms and 30% for nitrogen, phosphorus, and biochemical oxygen demand. The inflow of water quality constituents was reduced for all scenarios, with fecal coliforms achieving the highest reduction between 5.8 and 28.9% and nutrients and biochemical oxygen demand between 2 and 13%. Biochemical oxygen demand and orthophosphates concentrations achieved a good water quality status according to the European Legislation for scenarios of BMP applied to 3 and 12% agricultural area, respectively. Fecal coliform levels in Ave River basin require further treatment to fall below the established value in the abovementioned legislation. This study shows that agricultural watersheds such as Ave basins demand special attention in regard to nonpoint pollution sources effects on water quality and nutrient loads.

  9. Evaluation of Gridded Precipitation Data for Driving SWAT Model in Area Upstream of Three Gorges Reservoir

    PubMed Central

    Yang, Yan; Wang, Guoqiang; Wang, Lijing; Yu, Jingshan; Xu, Zongxue

    2014-01-01

    Gridded precipitation data are becoming an important source for driving hydrologic models to achieve stable and valid simulation results in different regions. Thus, evaluating different sources of precipitation data is important for improving the applicability of gridded data. In this study, we used three gridded rainfall datasets: 1) National Centers for Environmental Prediction - Climate Forecast System Reanalysis (NCEP-CFSR); 2) Asian Precipitation - Highly-Resolved Observational Data Integration Towards Evaluation (APHRODITE); and 3) China trend - surface reanalysis (trend surface) data. These are compared with monitoring precipitation data for driving the Soil and Water Assessment Tool in two basins upstream of Three Gorges Reservoir (TGR) in China. The results of one test basin with significant topographic influence indicates that all the gridded data have poor abilities in reproducing hydrologic processes with the topographic influence on precipitation quantity and distribution. However, in a relatively flat test basin, the APHRODITE and trend surface data can give stable and desirable results. The results of this study suggest that precipitation data for future applications should be considered comprehensively in the TGR area, including the influence of data density and topography. PMID:25409467

  10. Simulation of stream discharge and transport of nitrate and selected herbicides in the Mississippi River Basin

    USGS Publications Warehouse

    Broshears, R.E.; Clark, G.M.; Jobson, H.E.

    2001-01-01

    Stream discharge and the transport of nitrate, atrazine, and metolachlor in the Mississippi River Basin were simulated using the DAFLOW/BLTM hydrologic model. The simulated domain for stream discharge included river reaches downstream from the following stations in the National Stream Quality Accounting Network: Mississippi River at Clinton, IA; Missouri River at Hermann, MO: Ohio River at Grand Chain, IL: And Arkansas River at Little Rock, AR. Coefficients of hydraulic geometry were calibrated using data from water year 1996; the model was validated by favourable simulation of observed discharges in water years 1992-1994. The transport of nitrate, atrazine, and metolachlor was simulated downstream from the Mississippi River at Thebes, IL, and the Ohio River at Grand Chain. Simulated concentrations compared favourably with observed concentrations at Baton Rouge, LA. Development of this model is a preliminary step in gaining a more quantitative understanding of the sources and fate of nutrients and pesticides delivered from the Mississippi River Basin to the Gulf of Mexico.

  11. An Integrated Modeling Framework Forecasting Ecosystem Services: Application to the Albemarle Pamlico Basins, NC and VA (USA)

    EPA Science Inventory

    We demonstrate an Integrated Modeling Framework that predicts the state of freshwater ecosystem services within the Albemarle-Pamlico Basins. The Framework consists of three facilitating technologies: Data for Environmental Modeling (D4EM) that automates the collection and standa...

  12. An Integrated Modeling Framework Forcasting Ecosystem Services--Application to the Albemarle Pamlico Basins, NC and VA (USA) and Beyond

    EPA Science Inventory

    We demonstrate an Integrated Modeling Framework that predicts the state of freshwater ecosystem services within the Albemarle-Pamlico Basins. The Framework consists of three facilitating technologies: Data for Environmental Modeling (D4EM) that automates the collection and standa...

  13. BIRD SPECIES ASSEMBLAGES AS INDICATORS OF BIOLOGICAL INTEGRITY IN GREAT BASIN RANGELAND

    EPA Science Inventory

    The study evaluates the potential for bird species assemblages to serve as indicators of biological integrity of rangelands in the Great Basin in much the same way that fish and invertebrate assemblages have been used as indicators in aquatic environments. Our approach was to ide...

  14. The Shale Hills Critical Zone Observatory for Embedded Sensing and Simulation

    NASA Astrophysics Data System (ADS)

    Duffy, C.; Davis, K.; Kane, T.; Boyer, E.

    2009-04-01

    The future of environmental observing systems will utilize embedded sensor networks with continuous real-time measurement of hydrologic, atmospheric, biogeochemical, and ecological variables across diverse terrestrial environments. Embedded environmental sensors, benefitting from advances in information sciences, networking technology, materials science, computing capacity, and data synthesis methods, are undergoing revolutionary change. It is now possible to field spatially-distributed, multi-node sensor networks that provide density and spatial coverage previously accessible only via numerical simulation. At the same time, computational tools are advancing rapidly to the point where it is now possible to simulate the physical processes controlling individual parcels of water and solutes through the complete terrestrial water cycle. Our goal for the Penn State Critical Zone Observatory is to apply environmental sensor arrays, integrated hydrologic models deployed and coordinated at a testbed within the Penn State Experimental Forest. The NSF-funded CZO is designed to observe the detailed space and time complexities of the water and energy cycle for a watershed and ultimately the river basin for all physical states and fluxes (groundwater, soil moisture, temperature, streamflow, latent heat, snowmelt, chemistry, isotopes etc.). Presently fully-coupled physical models are being developed that link the atmosphere-land-vegetation-subsurface system into a fully-coupled distributed system. During the last 5 years the Penn State Integrated Hydrologic Modeling System has been under development as an open-source community modeling project funded by NSF EAR/GEO and NSF CBET/ENG. PIHM represents a strategy for the formulation and solution of fully-coupled process equations at the watershed and river basin scales, and includes a tightly coupled GIS tool for data handling, domain decomposition, optimal unstructured grid generation, and model parameterization. (PIHM; http://sourceforge.net/projects/pihmmodel/; http://sourceforge.net/projects/pihmgis/ ) The CZO sensor and simulation system is being developed to have the following elements: 1) extensive, spatially-distributed smart sensor networks to gather intensive soil, geologic, hydrologic, geochemical and isotopic data; 2) spatially-explicit multiphysics models/solutions of the land-subsurface-vegetation-atmosphere system; and 3) parallel/distributed, adaptive algorithms for rapidly simulating the states of the watershed at high resolution, and 4) signal processing tools for data mining and parameter estimation. The prototype proposed sensor array and simulation system proposed is demonstrated with preliminary results from our first year.

  15. Reservoir-development impacts on surface-water quantity and quality in the Yampa River basin, Colorado and Wyoming

    USGS Publications Warehouse

    Adams, D. Briane; Bauer, Daniel P.; Dale, Robert H.; Steele, Timothy Doak

    1983-01-01

    Development of coal resources and associated economy is accelerating in the Yampa River basin in northwestern Colorado and south-central Wyoming. Increased use of the water resources of the area will have a direct impact on their quantity and quality. As part of 18 surface-water projects, 35 reservoirs have been proposed with a combined total storage of 2.18 million acre-feet, 41% greater than the mean annual outflow from the basin. Three computer models were used to demonstrate methods of evaluating future impacts of reservoir development in the Yampa River basin. Four different reservoir configurations were used to simulate the effects of different degrees of proposed reservoir development. A multireservoir-flow model included both within-basin and transmountain diversions. Simulations indicated that in many cases diversion amounts would not be available for either type of diversion. A corresponding frequency analysis of reservoir storage levels indicated that most reservoirs would be operating with small percentages of total capacities and generally with less than 20% of conservation-pool volumes. Simulations using a dissolved-solids model indicated that extensive reservoir development could increase average annual concentrations at most locations. Simulations using a single-reservoir model indicated no significant occurrence of water-temperature stratification in most reservoirs due to limited reservoir storage. (USGS)

  16. Ground-water hydrology and simulated effects of development in the Milford area, an arid basin in southwestern Utah

    USGS Publications Warehouse

    Mason, James L.

    1998-01-01

    A three-dimensional, finite-difference model was constructed to simulate ground-water flow in the Milford area. The purpose of the study was to evaluate present knowledge and concepts of the groundwater system, to analyze the ability of the model to represent past and current (1984) conditions, and to estimate the effects of various groundwater development alternatives. The alternative patterns of groundwater development might prove effective in capturing natural discharge from the basin-fill aquifer while limiting water-level declines. Water levels measured during this study indicate that ground water in the Milford area flows in a northwesterly direction through consolidated rocks in the northern San Francisco Mountains toward Sevier Lake. The revised potentiometric surface shows a large area for probable basin outflow, indicating that more water leaves the Milford area than the 8 acre-feet per year estimated previously.Simulations made to calibrate the model were able to approximate steady-state conditions for 1927, before ground-water development began, and transient conditions for 1950-82, during which groundwater withdrawal increased. Basin recharge from the consolidated rocks and basin outflow were calculated during the calibration process. Transient simulations using constant and variable recharge from surface water were made to test effects of large flows in the Beaver River.Simulations were made to project water-level declines over a 37- year period (1983-2020) using the present pumping distribution. Ground-water withdrawals were simulated at 1, 1.5, and 2 times the 1979-82 average rate.The concepts of "sustained" yield, ground-water mining, and the capture of natural discharge were tested using several hypothetical pumping distributions over a 600-year simulation period. Simulations using concentrated pumping centers were the least efficient at capturing natural discharge and produced the largest water-level declines. Simulations using strategically placed ground-water withdrawals in the discharge area were the most efficient at eliminating natural discharge with small water-level declines.

  17. Vertically-integrated Approaches for Carbon Sequestration Modeling

    NASA Astrophysics Data System (ADS)

    Bandilla, K.; Celia, M. A.; Guo, B.

    2015-12-01

    Carbon capture and sequestration (CCS) is being considered as an approach to mitigate anthropogenic CO2 emissions from large stationary sources such as coal fired power plants and natural gas processing plants. Computer modeling is an essential tool for site design and operational planning as it allows prediction of the pressure response as well as the migration of both CO2 and brine in the subsurface. Many processes, such as buoyancy, hysteresis, geomechanics and geochemistry, can have important impacts on the system. While all of the processes can be taken into account simultaneously, the resulting models are computationally very expensive and require large numbers of parameters which are often uncertain or unknown. In many cases of practical interest, the computational and data requirements can be reduced by choosing a smaller domain and/or by neglecting or simplifying certain processes. This leads to a series of models with different complexity, ranging from coupled multi-physics, multi-phase three-dimensional models to semi-analytical single-phase models. Under certain conditions the three-dimensional equations can be integrated in the vertical direction, leading to a suite of two-dimensional multi-phase models, termed vertically-integrated models. These models are either solved numerically or simplified further (e.g., assumption of vertical equilibrium) to allow analytical or semi-analytical solutions. This presentation focuses on how different vertically-integrated models have been applied to the simulation of CO2 and brine migration during CCS projects. Several example sites, such as the Illinois Basin and the Wabamun Lake region of the Alberta Basin, are discussed to show how vertically-integrated models can be used to gain understanding of CCS operations.

  18. Modeling the Surface Water-Groundwater Interaction in Arid and Semi-Arid Regions Impacted by Agricultural Activities

    NASA Astrophysics Data System (ADS)

    Tian, Y.; Wu, B.; Zheng, Y.

    2013-12-01

    In many semi-arid and arid regions, interaction between surface water and groundwater plays an important role in the eco-hydrological system. The interaction is often complicated by agricultural activities such as surface water diversion, groundwater pumping, and irrigation. In existing surface water-groundwater integrated models, simulation of the interaction is often simplified, which could introduce significant simulation uncertainty under certain circumstance. In this study, GSFLOW, a USGS model coupling PRMS and MODFLOW, was improved to better characterize the surface water-groundwater interaction. The practices of water diversion from rivers, groundwater pumping and irrigation are explicitly simulated. In addition, the original kinematic wave routing method was replaced by a dynamic wave routing method. The improved model was then applied in Zhangye Basin (the midstream part of Heihe River Baisn), China, where the famous 'Silk Road' came through. It is a typical semi-arid region of the western China, with extensive agriculture in its oasis. The model was established and calibrated using the data in 2000-2008. A series of numerical experiments were conducted to evaluate the effect of those improvements. It has been demonstrated that with the improvements, the observed streamflow and groundwater level were better reproduced by the model. The improvements have a significant impact on the simulation of multiple fluxes associated with the interaction, such as groundwater discharge, riverbed seepage, infiltration, etc. Human activities were proved to be key elements of the water cycle in the study area. The study results have important implications to the water resources modeling and management in semi-arid and arid basins.

  19. Stochastic model for simulating Souris River Basin precipitation, evapotranspiration, and natural streamflow

    USGS Publications Warehouse

    Kolars, Kelsey A.; Vecchia, Aldo V.; Ryberg, Karen R.

    2016-02-24

    The Souris River Basin is a 61,000-square-kilometer basin in the Provinces of Saskatchewan and Manitoba and the State of North Dakota. In May and June of 2011, record-setting rains were seen in the headwater areas of the basin. Emergency spillways of major reservoirs were discharging at full or nearly full capacity, and extensive flooding was seen in numerous downstream communities. To determine the probability of future extreme floods and droughts, the U.S. Geological Survey, in cooperation with the North Dakota State Water Commission, developed a stochastic model for simulating Souris River Basin precipitation, evapotranspiration, and natural (unregulated) streamflow. Simulations from the model can be used in future studies to simulate regulated streamflow, design levees, and other structures; and to complete economic cost/benefit analyses.Long-term climatic variability was analyzed using tree-ring chronologies to hindcast precipitation to the early 1700s and compare recent wet and dry conditions to earlier extreme conditions. The extended precipitation record was consistent with findings from the Devils Lake and Red River of the North Basins (southeast of the Souris River Basin), supporting the idea that regional climatic patterns for many centuries have consisted of alternating wet and dry climate states.A stochastic climate simulation model for precipitation, temperature, and potential evapotranspiration for the Souris River Basin was developed using recorded meteorological data and extended precipitation records provided through tree-ring analysis. A significant climate transition was seen around1970, with 1912–69 representing a dry climate state and 1970–2011 representing a wet climate state. Although there were some distinct subpatterns within the basin, the predominant differences between the two states were higher spring through early fall precipitation and higher spring potential evapotranspiration for the wet compared to the dry state.A water-balance model was developed for simulating monthly natural (unregulated) mean streamflow based on precipitation, temperature, and potential evapotranspiration at select streamflow-gaging stations. The model was calibrated using streamflow data from the U.S. Geological Survey and Environment Canada, along with natural (unregulated) streamflow data from the U.S. Army Corps of Engineers. Correlation coefficients between simulated and natural (unregulated) flows generally were high (greater than 0.8), and the seasonal means and standard deviations of the simulated flows closely matched the means and standard deviations of the natural (unregulated) flows. After calibrating the model for a monthly time step, monthly streamflow for each subbasin was disaggregated into three values per month, or an approximately 10-day time step, and a separate routing model was developed for simulating 10-day streamflow for downstream gages.The stochastic climate simulation model for precipitation, temperature, and potential evapotranspiration was combined with the water-balance model to simulate potential future sequences of 10-day mean streamflow for each of the streamflow-gaging station locations. Flood risk, as determined by equilibrium flow-frequency distributions for the dry (1912–69) and wet (1970–2011) climate states, was considerably higher for the wet state compared to the dry state. Future flood risk will remain high until the wet climate state ends, and for several years after that, because there may be a long lag-time between the return of drier conditions and the onset of a lower soil-moisture storage equilibrium.

  20. Scaling up watershed model parameters--Flow and load simulations of the Edisto River Basin

    USGS Publications Warehouse

    Feaster, Toby D.; Benedict, Stephen T.; Clark, Jimmy M.; Bradley, Paul M.; Conrads, Paul

    2014-01-01

    The Edisto River is the longest and largest river system completely contained in South Carolina and is one of the longest free flowing blackwater rivers in the United States. The Edisto River basin also has fish-tissue mercury concentrations that are some of the highest recorded in the United States. As part of an effort by the U.S. Geological Survey to expand the understanding of relations among hydrologic, geochemical, and ecological processes that affect fish-tissue mercury concentrations within the Edisto River basin, analyses and simulations of the hydrology of the Edisto River basin were made with the topography-based hydrological model (TOPMODEL). The potential for scaling up a previous application of TOPMODEL for the McTier Creek watershed, which is a small headwater catchment to the Edisto River basin, was assessed. Scaling up was done in a step-wise process beginning with applying the calibration parameters, meteorological data, and topographic wetness index data from the McTier Creek TOPMODEL to the Edisto River TOPMODEL. Additional changes were made with subsequent simulations culminating in the best simulation, which included meteorological and topographic wetness index data from the Edisto River basin and updated calibration parameters for some of the TOPMODEL calibration parameters. Comparison of goodness-of-fit statistics between measured and simulated daily mean streamflow for the two models showed that with calibration, the Edisto River TOPMODEL produced slightly better results than the McTier Creek model, despite the significant difference in the drainage-area size at the outlet locations for the two models (30.7 and 2,725 square miles, respectively). Along with the TOPMODEL hydrologic simulations, a visualization tool (the Edisto River Data Viewer) was developed to help assess trends and influencing variables in the stream ecosystem. Incorporated into the visualization tool were the water-quality load models TOPLOAD, TOPLOAD-H, and LOADEST. Because the focus of this investigation was on scaling up the models from McTier Creek, water-quality concentrations that were previously collected in the McTier Creek basin were used in the water-quality load models.

  1. Evaluation of the Community Multiscale Air Quality Model for Simulating Winter Ozone Formation in the Uinta Basin.

    EPA Science Inventory

    The Weather Research and Forecasting (WRF) and Community Multiscale Air Quality (CMAQ) models were used to simulate a 10 day high‐ozone episode observed during the 2013 Uinta Basin Winter Ozone Study (UBWOS). The baseline model had a large negative bias when compared to ozo...

  2. Modeling of meteorology, tracer transport and chemistry for the Uintah Basin Winter Ozone Studies 2012 and 2013

    NASA Astrophysics Data System (ADS)

    Ahmadov, R.; McKeen, S. A.; Angevine, W. M.; Frost, G. J.; Roberts, J. M.; De Gouw, J. A.; Warneke, C.; Peischl, J.; Brown, S. S.; Edwards, P. M.; Wild, R. J.; Pichugina, Y. L.; Banta, R. M.; Brewer, A.; Senff, C. J.; Langford, A. O.; Petron, G.; Karion, A.; Sweeney, C.; Schnell, R. C.; Johnson, B.; Zamora, R. J.; Helmig, D.; Park, J.; Evans, J.; Stephens, C. R.; Olson, J. B.; Trainer, M.

    2013-12-01

    The Uintah Basin Winter Ozone Studies (UBWOS) field campaigns took place during winter of 2012 and 2013 in the Uintah Basin, Utah. The studies were aimed at characterizing meteorology, emissions of atmospheric constituents and air chemistry in a region abundant with oil and gas production, with associated emissions of various volatile organic compounds (VOCs) and NOx. High ozone pollution events were observed throughout the Uintah Basin during the winter of 2013, but not during the winter of 2012. A clear understanding of the processes leading to high ozone events is still lacking. We present here high spatiotemporal resolution simulations of meteorology, tracer transport and gas chemistry over the basin during January-February, 2012 and 2013 using the WRF/Chem regional photochemical model. Correctly characterizing the meteorology poses unique challenges due to complex terrain, cold-pool conditions, and shallow inversion layers observed during the winter of 2013. We discuss the approach taken to adequately simulate the meteorology over the basin and present evaluations of the modeled meteorology using surface, lidar and tethersonde measurements. Initial simulations use a passive tracer within the model as a surrogate for CH4 released from oil and gas wells. These tracer transport simulations show that concentrations of inert, emitted species near the surface in 2013 were 4-8 times higher than 2012 due to much shallower boundary layers and reduced winds in 2013. This is supported by in-situ measurements of CH4 made at the Horse Pool surface station during the field campaigns. Full photochemical simulations are forced by VOC and NOx emissions that are determined in a top-down approach, using observed emission ratios of VOC and NOx relative to CH4, along with available information of active wells, compressors, and processing plants. We focus on differences in meteorology, temperature, and radiation between the two winters in determining ozone concentrations in the basin. The model is then used diagnostically to assess first-order sensitivities of basin-wide ozone to NOx or VOC emissions, and how they depend on the environmental differences between the winters of 2012 and 2013.

  3. Probabilistic assessment of the impact of coal seam gas development on groundwater: Surat Basin, Australia

    NASA Astrophysics Data System (ADS)

    Cui, Tao; Moore, Catherine; Raiber, Matthias

    2018-05-01

    Modelling cumulative impacts of basin-scale coal seam gas (CSG) extraction is challenging due to the long time frames and spatial extent over which impacts occur combined with the need to consider local-scale processes. The computational burden of such models limits the ability to undertake calibration and sensitivity and uncertainty analyses. A framework is presented that integrates recently developed methods and tools to address the computational burdens of an assessment of drawdown impacts associated with rapid CSG development in the Surat Basin, Australia. The null space Monte Carlo method combined with singular value decomposition (SVD)-assisted regularisation was used to analyse the uncertainty of simulated drawdown impacts. The study also describes how the computational burden of assessing local-scale impacts was mitigated by adopting a novel combination of a nested modelling framework which incorporated a model emulator of drawdown in dual-phase flow conditions, and a methodology for representing local faulting. This combination provides a mechanism to support more reliable estimates of regional CSG-related drawdown predictions. The study indicates that uncertainties associated with boundary conditions are reduced significantly when expressing differences between scenarios. The results are analysed and distilled to enable the easy identification of areas where the simulated maximum drawdown impacts could exceed trigger points associated with legislative `make good' requirements; trigger points require that either an adjustment in the development scheme or other measures are implemented to remediate the impact. This report contributes to the currently small body of work that describes modelling and uncertainty analyses of CSG extraction impacts on groundwater.

  4. Impact of Sub-grid Soil Textural Properties on Simulations of Hydrological Fluxes at the Continental Scale Mississippi River Basin

    NASA Astrophysics Data System (ADS)

    Kumar, R.; Samaniego, L. E.; Livneh, B.

    2013-12-01

    Knowledge of soil hydraulic properties such as porosity and saturated hydraulic conductivity is required to accurately model the dynamics of near-surface hydrological processes (e.g. evapotranspiration and root-zone soil moisture dynamics) and provide reliable estimates of regional water and energy budgets. Soil hydraulic properties are commonly derived from pedo-transfer functions using soil textural information recorded during surveys, such as the fractions of sand and clay, bulk density, and organic matter content. Typically large scale land-surface models are parameterized using a relatively coarse soil map with little or no information on parametric sub-grid variability. In this study we analyze the impact of sub-grid soil variability on simulated hydrological fluxes over the Mississippi River Basin (≈3,240,000 km2) at multiple spatio-temporal resolutions. A set of numerical experiments were conducted with the distributed mesoscale hydrologic model (mHM) using two soil datasets: (a) the Digital General Soil Map of the United States or STATSGO2 (1:250 000) and (b) the recently collated Harmonized World Soil Database based on the FAO-UNESCO Soil Map of the World (1:5 000 000). mHM was parameterized with the multi-scale regionalization technique that derives distributed soil hydraulic properties via pedo-transfer functions and regional coefficients. Within the experimental framework, the 3-hourly model simulations were conducted at four spatial resolutions ranging from 0.125° to 1°, using meteorological datasets from the NLDAS-2 project for the time period 1980-2012. Preliminary results indicate that the model was able to capture observed streamflow behavior reasonably well with both soil datasets, in the major sub-basins (i.e. the Missouri, the Upper Mississippi, the Ohio, the Red, and the Arkansas). However, the spatio-temporal patterns of simulated water fluxes and states (e.g. soil moisture, evapotranspiration) from both simulations, showed marked differences; particularly at a shorter time scale (hours to days) in regions with coarse texture sandy soils. Furthermore, the partitioning of total runoff into near-surface interflows and baseflow components was also significantly different between the two simulations. Simulations with the coarser soil map produced comparatively higher baseflows. At longer time scales (months to seasons) where climatic factors plays a major role, the integrated fluxes and states from both sets of model simulations match fairly closely, despite the apparent discrepancy in the partitioning of total runoff.

  5. Analysis of Site Effect in the Izmit Basin of Turkey by Wave Propagation Simulation Using the Spectral Element Method: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Firtana Elcomert, K.; Kocaoglu, A. H.

    2013-12-01

    Sedimentary basins generally cause significant ground motion amplification during an earthquake. Along with the resonance controlled by the impedance contrast between the sedimentary cover and bedrock, surface waves generated within the basin make the waveforms more complex and longer in duration. When a dense network of weak and/or strong motion sensors is available, site effect or more specifically sedimentary basin amplification can be directly estimated experimentally provided that significant earthquakes occur during the period of study. Alternatively, site effect can be investigated through simulation of ground motion. The objective of this study is to investigate the 2-D and/or 3-D site effect in the Izmit Basin located in the eastern Marmara region of Turkey, using the currently available bedrock topography and shear-wave velocity data. The Izmit Basin was formed in Plio-Quaternary period and is known to be controlled by the northern branch of the North Anatolian Fault Zone. A thorough analysis of seismic hazard is important since the city of Izmit and its metropolitan area is located in this region. This work presents some of the preliminary results obtained from 2-D and 3-D seismic wave propagation simulations using the spectral element method, which is based on high order polynomial approximation of the weak formulation of the wave equation. In this study, the numerical simulations were carried out with SPECFEM2D/3D program. Comparison of seismograms recorded on the top of sedimentary layer with those recorded on the bedrock show more complex waveforms with higher amplitudes on seismograms recorded at the free surface. Furthermore, modeling clearly reveals that observed seismograms include surface waves whose excitation is clearly related with the basin geometry.

  6. A demonstration of the instream flow incremental methodology, Shenandoah River

    USGS Publications Warehouse

    Zappia, Humbert; Hayes, Donald C.

    1998-01-01

    Current and projected demands on the water resources of the Shenandoah River have increased concerns for the potential effect of these demands on the natural integrity of the Shenandoah River system. The Instream Flow Incremental Method (IFIM) process attempts to integrate concepts of water-supply planning, analytical hydraulic engineering models, and empirically derived habitat versus flow functions to address water-use and instream-flow issues and questions concerning life-stage specific effects on selected species and the general well being of aquatic biological populations.The demonstration project also sets the stage for the identification and compilation of the major instream-flow issues in the Shenandoah River Basin, development of the required multidisciplinary technical team to conduct more detailed studies, and development of basin specific habitat and flow requirements for fish species, species assemblages, and various water uses in the Shenandoah River Basin. This report presents the results of an IFIM demonstration project, conducted on the main stem Shenandoah River in Virginia, during 1996 and 1997, using the Physical Habitat Simulation System (PHABSIM) model.Output from PHABSIM is used to address the general flow requirements for water supply and recreation and habitat for selected life stages of several fish species. The model output is only a small part of the information necessary for effective decision making and management of river resources. The information by itself is usually insufficient for formulation of recommendations regarding instream-flow requirements. Additional information, for example, can be obtained by analysis of habitat time-series data, habitat duration data, and habitat bottlenecks. Alternative-flow analysis and habitat-duration curves are presented.

  7. Integrated groundwater resource management in Indus Basin using satellite gravimetry and physical modeling tools.

    PubMed

    Iqbal, Naveed; Hossain, Faisal; Lee, Hyongki; Akhter, Gulraiz

    2017-03-01

    Reliable and frequent information on groundwater behavior and dynamics is very important for effective groundwater resource management at appropriate spatial scales. This information is rarely available in developing countries and thus poses a challenge for groundwater managers. The in situ data and groundwater modeling tools are limited in their ability to cover large domains. Remote sensing technology can now be used to continuously collect information on hydrological cycle in a cost-effective way. This study evaluates the effectiveness of a remote sensing integrated physical modeling approach for groundwater management in Indus Basin. The Gravity Recovery and Climate Experiment Satellite (GRACE)-based gravity anomalies from 2003 to 2010 were processed to generate monthly groundwater storage changes using the Variable Infiltration Capacity (VIC) hydrologic model. The groundwater storage is the key parameter of interest for groundwater resource management. The spatial and temporal patterns in groundwater storage (GWS) are useful for devising the appropriate groundwater management strategies. GRACE-estimated GWS information with large-scale coverage is valuable for basin-scale monitoring and decision making. This frequently available information is found useful for the identification of groundwater recharge areas, groundwater storage depletion, and pinpointing of the areas where groundwater sustainability is at risk. The GWS anomalies were found to favorably agree with groundwater model simulations from Visual MODFLOW and in situ data. Mostly, a moderate to severe GWS depletion is observed causing a vulnerable situation to the sustainability of this groundwater resource. For the sustainable groundwater management, the region needs to implement groundwater policies and adopt water conservation techniques.

  8. Changes in Moisture Flux Over the Tibetan Plateau During 1979-2011: Insights from a High Resolution Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Yanhong; Leung, Lai-Yung R.; Zhang, Yongxin

    2015-05-01

    Net precipitation (precipitation minus evapotranspiration, P-E) changes from a high resolution regional climate simulation and its reanalysis forcing are analyzed over the Tibet Plateau (TP) and compared to the global land data assimilation system (GLDAS) product. The mechanism behind the P-E changes is explored by decomposing the column integrated moisture flux convergence into thermodynamic, dynamic, and transient eddy components. High-resolution climate simulation improves the spatial pattern of P-E changes over the best available global reanalysis. Improvement in simulating precipitation changes at high elevations contributes dominantly to the improved P-E changes. High-resolution climate simulation also facilitates new and substantial findings regardingmore » the role of thermodynamics and transient eddies in P-E changes reflected in observed changes in major river basins fed by runoff from the TP. The analysis revealed the contrasting convergence/divergence changes between the northwestern and southeastern TP and feedback through latent heat release as an important mechanism leading to the mean P-E changes in the TP.« less

  9. Basin-scale simulation of current and potential climate changed hydrologic conditions in the Lake Michigan Basin, United States

    USGS Publications Warehouse

    Christiansen, Daniel E.; Walker, John F.; Hunt, Randall J.

    2014-01-01

    The Great Lakes Restoration Initiative (GLRI) is the largest public investment in the Great Lakes in two decades. A task force of 11 Federal agencies developed an action plan to implement the initiative. The U.S. Department of the Interior was one of the 11 agencies that entered into an interagency agreement with the U.S. Environmental Protection Agency as part of the GLRI to complete scientific projects throughout the Great Lakes basin. The U.S. Geological Survey, a bureau within the Department of the Interior, is involved in the GLRI to provide scientific support to management decisions as well as measure progress of the Great Lakes basin restoration efforts. This report presents basin-scale simulated current and forecast climatic and hydrologic conditions in the Lake Michigan Basin. The forecasts were obtained by constructing and calibrating a Precipitation-Runoff Modeling System (PRMS) model of the Lake Michigan Basin; the PRMS model was calibrated using the parameter estimation and uncertainty analysis (PEST) software suite. The calibrated model was used to evaluate potential responses to climate change by using four simulated carbon emission scenarios from eight general circulation models released by the World Climate Research Programme’s Coupled Model Intercomparison Project phase 3. Statistically downscaled datasets of these scenarios were used to project hydrologic response for the Lake Michigan Basin. In general, most of the observation sites in the Lake Michigan Basin indicated slight increases in annual streamflow in response to future climate change scenarios. Monthly streamflows indicated a general shift from the current (2014) winter-storage/snowmelt-pulse system to a system with a more equally distributed hydrograph throughout the year. Simulated soil moisture within the basin illustrates that conditions within the basin are also expected to change on a monthly timescale. One effect of increasing air temperature as a result of the changing climate was the appreciable increase in the length of the growing season in the Lake Michigan Basin. The increase in growing season will cause an increase in evapotranspiration across the Lake Michigan Basin, which will directly affect soil moisture and late growing season streamflows. Output from the Lake Michigan Basin PRMS model is available through an online dynamic web mapping service available at (http://pubs.usgs.gov/sir/2014/5175/). The map service includes layers for the each of the 8 global climate models and 4 carbon emission scenarios combinations for 12 hydrologic model state variables. The layers are pre-rendered maps of annual hydrologic response from 1977 through 2099 that provide an easily accessible online method to examine climate change effects across the Lake Michigan Basin.

  10. Development of a biosphere hydrological model considering vegetation dynamics and its evaluation at basin scale under climate change

    NASA Astrophysics Data System (ADS)

    Li, Qiaoling; Ishidaira, Hiroshi

    2012-01-01

    SummaryThe biosphere and hydrosphere are intrinsically coupled. The scientific question is if there is a substantial change in one component such as vegetation cover, how will the other components such as transpiration and runoff generation respond, especially under climate change conditions? Stand-alone hydrological models have a detailed description of hydrological processes but do not sufficiently parameterize vegetation as a dynamic component. Dynamic global vegetation models (DGVMs) are able to simulate transient structural changes in major vegetation types but do not simulate runoff generation reliably. Therefore, both hydrological models and DGVMs have their limitations as well as advantages for addressing this question. In this study a biosphere hydrological model (LPJH) is developed by coupling a prominent DGVM (Lund-Postdam-Jena model referred to as LPJ) with a stand-alone hydrological model (HYMOD), with the objective of analyzing the role of vegetation in the hydrological processes at basin scale and evaluating the impact of vegetation change on the hydrological processes under climate change. The application and validation of the LPJH model to four basins representing a variety of climate and vegetation conditions shows that the performance of LPJH is much better than that of the original LPJ and is similar to that of stand-alone hydrological models for monthly and daily runoff simulation at the basin scale. It is argued that the LPJH model gives more reasonable hydrological simulation since it considers both the spatial variability of soil moisture and vegetation dynamics, which make the runoff generation mechanism more reliable. As an example, it is shown that changing atmospheric CO 2 content alone would result in runoff increases in humid basins and decreases in arid basins. Theses changes are mainly attributable to changes in transpiration driven by vegetation dynamics, which are not simulated in stand-alone hydrological models. Therefore LPJH potentially provides a powerful tool for simulating vegetation response to climate changes in the biosphere hydrological cycle.

  11. Simulation of the Effects of Water Withdrawals, Wastewater Return Flows, and Land-Use Change on Streamflow in the Blackstone River Basin, Massachusetts and Rhode Island

    USGS Publications Warehouse

    Barbaro, Jeffrey R.

    2007-01-01

    Streamflow in many parts of the Blackstone River Basin in south-central Massachusetts and northern Rhode Island is altered by water-supply withdrawals, wastewater-return flows, and land-use change associated with a growing population. Simulations from a previously developed and calibrated Hydrological Simulation Program?FORTRAN (HSPF) precipitation-runoff model for the basin were used to evaluate the effects of water withdrawals, wastewater-return flows, and land-use change on streamflow. Most of the simulations were done for recent (1996?2001) conditions and potential buildout conditions in the future when all available land is developed to provide a long-range assessment of the effects of possible future human activities on water resources in the basin. The effects of land-use change were evaluated by comparing the results of long-term (1960?2004) simulations with (1) undeveloped land use, (2) 1995?1999 land use, and (3) potential buildout land use at selected sites across the basin. Flow-duration curves for these land-use scenarios were similar, indicating that land-use change, as represented in the HSPF model, had little effect on flow in the major tributary streams and rivers in the basin. However, land-use change?particularly increased effective impervious area?could potentially have greater effects on the hydrology, water quality, and aquatic habitat of the smaller streams in the basin. The effects of water withdrawals and wastewater-return flows were evaluated by comparing the results of long-term simulations with (1) no withdrawals and return flows, (2) actual (measured) 1996?2001 withdrawals and wastewater-return flows, and (3) potential withdrawals and wastewater-return flows at buildout. Overall, the results indicated that water use had a much larger effect on streamflow than did land use, and that the location and magnitude of wastewater-return flows were important for lessening the effects of withdrawals on streamflow in the Blackstone River Basin. Ratios of long-term (1960?2004) simulated flows with 1996?2001 water use (representing the net effect of withdrawals and wastewater-return flows) to long-term simulated flows with no water use indicated that, for many reaches, 1996?2001 water use did not deplete flows at the 90-percent flow duration substantially compared to flows unaffected by water use. Flows generally were more severely depleted in the reaches that include surface-water supplies for the larger cities in the basin (Kettle and Tatnuck Brooks, Worcester, Mass. water supply; Quinsigamond River, Shrewsbury, Mass. water supply; Crookfall Brook, Woonsocket, R.I. water supply; and Abbott Run, Pawtucket, R.I. water supply). These reaches did not have substantial wastewater-return flows that could offset the effects of the withdrawals. In contrast, wastewater-return flows from the Upper Blackstone Wastewater Treatment Facility in Millbury, Mass. increased flows at the 90-percent flow duration in the main stem of the Blackstone River compared to no-water-use conditions. Under the assumptions used to develop the buildout scenario, nearly all of the new water withdrawals were returned to the Blackstone River Basin at municipal wastewater-treatment plants or on-site septic systems. Consequently, buildout generally had small effects on simulated low flows in the Blackstone River and most of the major tributary streams compared to flows with 1996?2001 water use. To evaluate the effects of water use on flows in the rivers and major tributary streams in the Rhode Island part of the basin in greater detail, the magnitudes of water withdrawals and wastewater-return flows in relation to simulated streamflow were calculated as unique ratios for individual HSPF subbasins, total contributing areas to HSPF subbasins, and total contributing areas to the major tributary streams. For recent conditions (1996?2001 withdrawals and 1995?1999 land use), ratios of average summer (June through September) withdrawals to the l

  12. Development of an integrated hydrological modeling system for near-real-time multi-objective reservoir operation in large river basins

    NASA Astrophysics Data System (ADS)

    Wang, L.; Koike, T.

    2010-12-01

    The climate change-induced variability in hydrological cycles directly affects regional water resources management. For improved multiple multi-objective reservoir operation, an integrated modeling system has been developed by incorporating a global optimization system (SCE-UA) into a distributed biosphere hydrological model (WEB-DHM) coupled with the reservoir routing module. The reservoir storage change is estimated from the difference between the simulated inflows and outflows; while the reservoir water level can be defined from the updated reservoir storage by using the H-V curve. According to the reservoir water level, the new operation rule can be decided. For optimization: (1) WEB-DHM is calibrated for each dam’s inflows separately; (2) then the calibrated WEB-DHM is used to simulate inflows and outflows by assuming outflow proportional to inflow; and (3) the proportion coefficients are optimized with Shuffle Complex Evolution method (SCE-UA), to fulfill an objective function towards minimum flood risk at downstream and maximum reservoir water storage for future use. The GSMaP product offers hourly global precipitation maps in near real-time (about four hours after observation). Aiming at near real-time reservoir operation in large river basins, the integrated modeling system takes the inputs from both an operational global quantitative precipitation forecast (JMA-GPV; to achieve an optimal operation rule in the assumed lead time period) and the GSMaP product (to perform current operation with the obtained optimal rule, after correction by gauge rainfall). The newly-developed system was then applied to the Red River Basin, with an area of 160,000 km2, to test its performance for near real-time dam operation. In Vietnam, three reservoirs are located in the upstream of Hanoi city, with Hoa Binh the largest (69% of total volume). After calibration with the gauge rainfall, the inflows to three reservoirs are well simulated; the discharge and water level at Hanoi city are also well reproduced with the actual dam releases. With the corrected GSMaP rainfall (by using gauge rainfall), the inflows to reservoirs and the water level at Hanoi city can be also reasonably reproduced. The study aims at achieving an optimal operation rule in the lead time period (with the quantitative precipitation forecast) and then using it to perform current operation (with the corrected GSMaP rainfall). At Hanoi, there are relatively low flows in July, but high floods in August 2005. Results show that with the actual operation, dangerous water level in Hanoi was observed; while with the lead-time operation, the water level in Hanoi can be obviously cut down, and maximum water storage is also achieved for Hoa Binh reservoir at the end of flood season.

  13. Modeling surface water dynamics in the Amazon Basin using MOSART-Inundation v1.0: Impacts of geomorphological parameters and river flow representation

    DOE PAGES

    Luo, Xiangyu; Li, Hong -Yi; Leung, L. Ruby; ...

    2017-03-23

    In the Amazon Basin, floodplain inundation is a key component of surface water dynamics and plays an important role in water, energy and carbon cycles. The Model for Scale Adaptive River Transport (MOSART) was extended with a macroscale inundation scheme for representing floodplain inundation. The extended model, named MOSART-Inundation, was used to simulate surface hydrology of the entire Amazon Basin. Previous hydrologic modeling studies in the Amazon Basin identified and addressed a few challenges in simulating surface hydrology of this basin, including uncertainties of floodplain topography and channel geometry, and the representation of river flow in reaches with mild slopes.more » This study further addressed four aspects of these challenges. First, the spatial variability of vegetation-caused biases embedded in the HydroSHEDS digital elevation model (DEM) data was explicitly addressed. A vegetation height map of about 1 km resolution and a land cover dataset of about 90 m resolution were used in a DEM correction procedure that resulted in an average elevation reduction of 13.2 m for the entire basin and led to evident changes in the floodplain topography. Second, basin-wide empirical formulae for channel cross-sectional dimensions were refined for various subregions to improve the representation of spatial variability in channel geometry. Third, the channel Manning roughness coefficient was allowed to vary with the channel depth, as the effect of riverbed resistance on river flow generally declines with increasing river size. Lastly, backwater effects were accounted for to better represent river flow in mild-slope reaches. The model was evaluated against in situ streamflow records and remotely sensed Envisat altimetry data and Global Inundation Extent from Multi-Satellites (GIEMS) inundation data. In a sensitivity study, seven simulations were compared to evaluate the impacts of the five modeling aspects addressed in this study. The comparisons showed that representing floodplain inundation could significantly improve the simulated streamflow and river stages. Refining floodplain topography, channel geometry and Manning roughness coefficients, as well as accounting for backwater effects had notable impacts on the simulated surface water dynamics in the Amazon Basin. As a result, the understanding obtained in this study could be helpful in improving modeling of surface hydrology in basins with evident inundation, especially at regional to continental scales.« less

  14. Modeling surface water dynamics in the Amazon Basin using MOSART-Inundation v1.0: Impacts of geomorphological parameters and river flow representation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Xiangyu; Li, Hong -Yi; Leung, L. Ruby

    In the Amazon Basin, floodplain inundation is a key component of surface water dynamics and plays an important role in water, energy and carbon cycles. The Model for Scale Adaptive River Transport (MOSART) was extended with a macroscale inundation scheme for representing floodplain inundation. The extended model, named MOSART-Inundation, was used to simulate surface hydrology of the entire Amazon Basin. Previous hydrologic modeling studies in the Amazon Basin identified and addressed a few challenges in simulating surface hydrology of this basin, including uncertainties of floodplain topography and channel geometry, and the representation of river flow in reaches with mild slopes.more » This study further addressed four aspects of these challenges. First, the spatial variability of vegetation-caused biases embedded in the HydroSHEDS digital elevation model (DEM) data was explicitly addressed. A vegetation height map of about 1 km resolution and a land cover dataset of about 90 m resolution were used in a DEM correction procedure that resulted in an average elevation reduction of 13.2 m for the entire basin and led to evident changes in the floodplain topography. Second, basin-wide empirical formulae for channel cross-sectional dimensions were refined for various subregions to improve the representation of spatial variability in channel geometry. Third, the channel Manning roughness coefficient was allowed to vary with the channel depth, as the effect of riverbed resistance on river flow generally declines with increasing river size. Lastly, backwater effects were accounted for to better represent river flow in mild-slope reaches. The model was evaluated against in situ streamflow records and remotely sensed Envisat altimetry data and Global Inundation Extent from Multi-Satellites (GIEMS) inundation data. In a sensitivity study, seven simulations were compared to evaluate the impacts of the five modeling aspects addressed in this study. The comparisons showed that representing floodplain inundation could significantly improve the simulated streamflow and river stages. Refining floodplain topography, channel geometry and Manning roughness coefficients, as well as accounting for backwater effects had notable impacts on the simulated surface water dynamics in the Amazon Basin. As a result, the understanding obtained in this study could be helpful in improving modeling of surface hydrology in basins with evident inundation, especially at regional to continental scales.« less

  15. Integrated Flood Forecast and Virtual Dam Operation System for Water Resources and Flood Risk Management

    NASA Astrophysics Data System (ADS)

    Shibuo, Yoshihiro; Ikoma, Eiji; Lawford, Peter; Oyanagi, Misa; Kanauchi, Shizu; Koudelova, Petra; Kitsuregawa, Masaru; Koike, Toshio

    2014-05-01

    While availability of hydrological- and hydrometeorological data shows growing tendency and advanced modeling techniques are emerging, such newly available data and advanced models may not always be applied in the field of decision-making. In this study we present an integrated system of ensemble streamflow forecast (ESP) and virtual dam simulator, which is designed to support river and dam manager's decision making. The system consists of three main functions: real time hydrological model, ESP model, and dam simulator model. In the real time model, the system simulates current condition of river basins, such as soil moisture and river discharges, using LSM coupled distributed hydrological model. The ESP model takes initial condition from the real time model's output and generates ESP, based on numerical weather prediction. The dam simulator model provides virtual dam operation and users can experience impact of dam control on remaining reservoir volume and downstream flood under the anticipated flood forecast. Thus the river and dam managers shall be able to evaluate benefit of priori dam release and flood risk reduction at the same time, on real time basis. Furthermore the system has been developed under the concept of data and models integration, and it is coupled with Data Integration and Analysis System (DIAS) - a Japanese national project for integrating and analyzing massive amount of observational and model data. Therefore it has advantage in direct use of miscellaneous data from point/radar-derived observation, numerical weather prediction output, to satellite imagery stored in data archive. Output of the system is accessible over the web interface, making information available with relative ease, e.g. from ordinary PC to mobile devices. We have been applying the system to the Upper Tone region, located northwest from Tokyo metropolitan area, and we show application example of the system in recent flood events caused by typhoons.

  16. Effects of Potential Future Warming on Runoff in the Yakima River Basin, Washington

    USGS Publications Warehouse

    Mastin, Mark C.

    2008-01-01

    The Bureau of Reclamation has implemented a long-term planning study of potential water-storage alternatives in the Yakima River Basin, which includes planning for climate change effects on available water resources in the basin. Previously constructed watershed models for the Yakima River Basin were used to simulate changes in unregulated streamflow under two warmer climate scenarios, one representing a 1 degree C increase in the annual air temperature over current conditions (plus one scenario) and one representing a 2 degree C increase in the annual air temperature over current conditions (plus two scenario). Simulations were done for water years 1981 through 2005 and the results were compared to simulated unregulated runoff for the same period using recorded daily precipitation, and minimum and maximum air temperatures (base conditions). Precipitation was not altered for the two warmer climate change scenarios. Simulated annual runoff for the plus one and plus two scenarios decreased modestly from the base conditions, but the seasonal distribution and the general pattern of runoff proved to be highly sensitive to temperature changes throughout the basin. Seasonally increased runoff was simulated during the late autumn and winter months for both the plus one and plus two scenarios compared to base conditions. Comparisons at six principal regulatory locations in the basin showed that the maximum percentage increases in runoff over the base conditions during December to March varied from 24 to 48 percent for the plus one scenario and 59 to 94 percent for the plus two scenario. During late spring and summer months, significantly decreased runoff was simulated at these sites for both scenarios compared to base conditions. Simulated maximum decreases in runoff occurred during June and July, and the changes ranged from -22 to -51 percent for the plus one scenario and -44 to -76 percent for the plus two scenario. Differences in total annual runoff at these sites ranged from -1.4 to -3.9 percent for the plus one scenario and from -2.5 to -8.2 percent for the plus two scenario. The percent change of the monthly mean runoff for both scenarios from the base conditions at many points in the basin will be used in a water-management model developed by the Bureau of Reclamation to assess various storage alternatives.

  17. Numerical Simulations of the Natural Thermal Regime and Enhanced Geothermal Systems in the St. Lawrence Lowlands Basin, Quebec, Canad

    NASA Astrophysics Data System (ADS)

    Nowamooz, A.; Therrien, R.; Molson, J. W. H.; Gosselin, L.; Mathieu-Potvin, F.; Raymond, J.; Malo, M.; Comeau, F. A.; Bedard, K.

    2017-12-01

    An enhanced geothermal system (EGS) consists of injecting water into deep sedimentary or basement rocks, which have been hydraulically stimulated, and withdrawing this water for heat extraction. In this work, the geothermal potential of the St. Lawrence Lowlands Basin (SLLB), Quebec, Canada, is evaluated using numerical heat transport simulations. A 3D conceptual model was first developed based on a detailed geological model of the basin and using realistic ranges of hydrothermal properties of the geological formations. The basin thermal regime under natural conditions was simulated with the HydroGeoSphere model assuming non-isothermal single-phase flow, while the hydrothermal properties of the formations were predicted using the PEST parameter estimation package. The simulated basin temperatures were consistent with the measured bottom-hole temperatures (RMSE = 9%). The calibrated model revealed that the areas in the basin with EGS potential, where temperature exceeds 120 °C, are located at depths ranging from 3.5 to 5.5 km. In the second step of the work, the favorable areas are investigated in detail by conducting simulations in a discrete fracture network similar to the one proposed in the literature for the Rosemanowes geothermal site, UK. Simulations consider 4 main horizontal fractures having each an extent of 1000 m × 180 m, and 10 vertical fractures having each an extent of 1000 m × 45 m. The fracture spacing and aperture are uniform and equal to 15 m and 250 μm, respectively. Simulations showed that a commercial project in the SLLB, with conditions similar to those of the Rosemanowes site, would not feasible. However, sensitivity analyses have demonstrated that it would be possible to extract sufficient heat for a period of at least 20 years from a fractured reservoir in this basin under the following conditions: (1) a flow circulation rate below the desired target value (10 L/s instead of 50 L/s), which would require a flexible power plant; (2) an area of contact of at least 1 km2 between the geofluid and the rock matrix, which would require horizontal and multilateral drilling with hydraulic stimulation, and (3) an initial temperature of at least 150 °C in a conductive geological formation, which would require drilling to depths of 6500 m.

  18. Development of a precipitation-runoff model to simulate unregulated streamflow in the South Fork Flathead River Basin, Montana

    USGS Publications Warehouse

    Chase, K.J.

    2011-01-01

    This report documents the development of a precipitation-runoff model for the South Fork Flathead River Basin, Mont. The Precipitation-Runoff Modeling System model, developed in cooperation with the Bureau of Reclamation, can be used to simulate daily mean unregulated streamflow upstream and downstream from Hungry Horse Reservoir for water-resources planning. Two input files are required to run the model. The time-series data file contains daily precipitation data and daily minimum and maximum air-temperature data from climate stations in and near the South Fork Flathead River Basin. The parameter file contains values of parameters that describe the basin topography, the flow network, the distribution of the precipitation and temperature data, and the hydrologic characteristics of the basin soils and vegetation. A primary-parameter file was created for simulating streamflow during the study period (water years 1967-2005). The model was calibrated for water years 1991-2005 using the primary-parameter file. This calibration was further refined using snow-covered area data for water years 2001-05. The model then was tested for water years 1967-90. Calibration targets included mean monthly and daily mean unregulated streamflow upstream from Hungry Horse Reservoir, mean monthly unregulated streamflow downstream from Hungry Horse Reservoir, basin mean monthly solar radiation and potential evapotranspiration, and daily snapshots of basin snow-covered area. Simulated streamflow generally was in better agreement with observed streamflow at the upstream gage than at the downstream gage. Upstream from the reservoir, simulated mean annual streamflow was within 0.0 percent of observed mean annual streamflow for the calibration period and was about 2 percent higher than observed mean annual streamflow for the test period. Simulated mean April-July streamflow upstream from the reservoir was about 1 percent lower than observed streamflow for the calibration period and about 4 percent higher than observed for the test period. Downstream from the reservoir, simulated mean annual streamflow was 17 percent lower than observed streamflow for the calibration period and 12 percent lower than observed streamflow for the test period. Simulated mean April-July streamflow downstream from the reservoir was 13 percent lower than observed streamflow for the calibration period and 6 percent lower than observed streamflow for the test period. Calibrating to solar radiation, potential evapotranspiration, and snow-covered area improved the model representation of evapotranspiration, snow accumulation, and snowmelt processes. Simulated basin mean monthly solar radiation values for both the calibration and test periods were within 9 percent of observed values except during the month of December (28 percent different). Simulated basin potential evapotranspiration values for both the calibration and test periods were within 10 percent of observed values except during the months of January (100 percent different) and February (13 percent different). The larger percent errors in simulated potential evaporation occurred in the winter months when observed potential evapotranspiration values were very small; in January the observed value was 0.000 inches and in February the observed value was 0.009 inches. Simulated start of melting of the snowpack occurred at about the same time as observed start of melting. The simulated snowpack accumulated to 90-100 percent snow-covered area 1 to 3 months earlier than observed snowpack. This overestimated snowpack during the winter corresponded to underestimated streamflow during the same period. In addition to the primary-parameter file, four other parameter files were created: for a "recent" period (1991-2005), a historical period (1967-90), a "wet" period (1989-97), and a "dry" period (1998-2005). For each data file of projected precipitation and air temperature, a single parameter file can be used to simulate a s

  19. A Watershed-based spatially-explicit demonstration of an Integrated Environmental Modeling Framework for Ecosystem Services in the Coal River Basin (WV, USA)

    EPA Science Inventory

    We demonstrate a spatially-explicit regional assessment of current condition of aquatic ecoservices in the Coal River Basin (CRB), with limited sensitivity analysis for the atmospheric contaminant mercury. The integrated modeling framework (IMF) forecasts water quality and quant...

  20. Evaluation of EIS alternatives by the science integration team, volume I.

    Treesearch

    Thomas M. Quigley; Kristine M. Lee; Sylvia J. Arbelbide

    1997-01-01

    The Evaluation of EIS Alternatives by the Science Integration Team describes the outcomes, interactions, effects, and consequences likely to result from implementing seven different management strategies on Forest Service (FS) and Bureau of Land Management (BLM) administered lands within the Interior Columbia Basin and portions of the Klamath and Great Basins. Two...

  1. Simulation of Ground-Water Flow and Effects of Ground-Water Irrigation on Base Flow in the Elkhorn and Loup River Basins, Nebraska

    USGS Publications Warehouse

    Peterson, Steven M.; Stanton, Jennifer S.; Saunders, Amanda T.; Bradley, Jesse R.

    2008-01-01

    Irrigated agriculture is vital to the livelihood of communities in the Elkhorn and Loup River Basins in Nebraska, and ground water is used to irrigate most of the cropland. Concerns about the sustainability of ground-water and surface-water resources have prompted State and regional agencies to evaluate the cumulative effects of ground-water irrigation in this area. To facilitate understanding of the effects of ground-water irrigation, a numerical computer model was developed to simulate ground-water flow and assess the effects of ground-water irrigation (including ground-water withdrawals, hereinafter referred to as pumpage, and enhanced recharge) on stream base flow. The study area covers approximately 30,800 square miles, and includes the Elkhorn River Basin upstream from Norfolk, Nebraska, and the Loup River Basin upstream from Columbus, Nebraska. The water-table aquifer consists of Quaternary-age sands and gravels and Tertiary-age silts, sands, and gravels. The simulation was constructed using one layer with 2-mile by 2-mile cell size. Simulations were constructed to represent the ground-water system before 1940 and from 1940 through 2005, and to simulate hypothetical conditions from 2006 through 2045 or 2055. The first simulation represents steady-state conditions of the system before anthropogenic effects, and then simulates the effects of early surface-water development activities and recharge of water leaking from canals during 1895 to 1940. The first simulation ends at 1940 because before that time, very little pumpage for irrigation occurred, but after that time it became increasingly commonplace. The pre-1940 simulation was calibrated against measured water levels and estimated long-term base flow, and the 1940 through 2005 simulation was calibrated against measured water-level changes and estimated long-term base flow. The calibrated 1940 through 2005 simulation was used as the basis for analyzing hypothetical scenarios to evaluate the effects of ground-water irrigation on stream base flow for 1940 through 2005 and for 2006 through 2045. Simulated base flows were compared for scenarios that alternately did or did not include a representation of the effects of ground-water irrigation. The difference between simulated base flows for the two scenarios represents the predicted effects of ground-water irrigation on base flow. Comparison of base flows between simulations with ground-water irrigation and no ground-water irrigation indicated that ground-water irrigation has cumulatively reduced streamflows from 1940 through 2005 by 888,000 acre-feet in the Elkhorn River Basin and by 2,273,000 acre-feet in the Loup River Basin. Generally, predicted cumulative effects of ground-water irrigation on base flow were 5 to 10 times larger from 2006 through 2045 than from 1940 through 2005, and were 7,678,000 acre-feet for the Elkhorn River Basin and 14,784,000 acre-feet for the Loup River Basin. The calibrated simulation also was used to estimate base-flow depletion as a percentage of pumping volumes for a 50-year future time period, because base-flow depletion percentages are used to guide the placement of management boundaries in Nebraska. Mapped results of the base-flow depletion analysis conducted for most of the interior of the study area indicated that pumpage of one additional theoretical well simulated for a future 50-year period generally would result in more than 80 percent depletion when it was located close to the stream, except in areas where depletion was partly offset by reduced ground-water discharge to evapotranspiration in wetland areas. In many areas, depletion for the 50-year future period composed greater than 10 percent of the pumped water volume for theoretical wells placed less than 7 or 8 miles from the stream, though considerable variations existed because of the heterogeneity of the natural system represented in the simulation. For a few streams, predicted future simulated base flows dec

  2. Rainfall-runoff characteristics and effects of increased urban density on streamflow and infiltration in the eastern part of the San Jacinto River basin, Riverside County, California

    USGS Publications Warehouse

    Guay, Joel R.

    2002-01-01

    To better understand the rainfall-runoff characteristics of the eastern part of the San Jacinto River Basin and to estimate the effects of increased urbanization on streamflow, channel infiltration, and land-surface infiltration, a long-term (1950?98) time series of monthly flows in and out of the channels and land surfaces were simulated using the Hydrologic Simulation Program- FORTRAN (HSPF) rainfall-runoff model. Channel and land-surface infiltration includes rainfall or runoff that infiltrates past the zone of evapotranspiration and may become ground-water recharge. The study area encompasses about 256 square miles of the San Jacinto River drainage basin in Riverside County, California. Daily streamflow (for periods with available data between 1950 and 1998), and daily rainfall and evaporation (1950?98) data; monthly reservoir storage data (1961?98); and estimated mean annual reservoir inflow data (for 1974 conditions) were used to calibrate the rainfall-runoff model. Measured and simulated mean annual streamflows for the San Jacinto River near San Jacinto streamflow-gaging station (North-South Fork subbasin) for 1950?91 and 1997?98 were 14,000 and 14,200 acre-feet, respectively, a difference of 1.4 percent. The standard error of the mean for measured and simulated annual streamflow in the North-South Fork subbasin was 3,520 and 3,160 acre-feet, respectively. Measured and simulated mean annual streamflows for the Bautista Creek streamflow-gaging station (Bautista Creek subbasin) for 1950?98 were 980 acre-feet and 991 acre-feet, respectively, a difference of 1.1 percent. The standard error of the mean for measured and simulated annual streamflow in the Bautista Creek subbasin was 299 and 217 acre-feet, respectively. Measured and simulated annual streamflows for the San Jacinto River above State Street near San Jacinto streamflow-gaging station (Poppet subbasin) for 1998 were 23,400 and 23,500 acre-feet, respectively, a difference of 0.4 percent. The simulated mean annual streamflow for the State Street gaging station at the outlet of the study basin and the simulated mean annual basin infiltration (combined infiltration from all the channels and land surfaces) were 8,720 and 41,600 acre-feet, respectively, for water years 1950-98. Simulated annual streamflow at the State Street gaging station ranged from 16.8 acre-feet in water year 1961 to 70,400 acre-feet in water year 1993, and simulated basin infiltration ranged from 2,770 acre-feet in water year 1961 to 149,000 acre-feet in water year 1983.The effects of increased urbanization on the hydrology of the study basin were evaluated by increasing the size of the effective impervious and non-effective impervious urban areas simulated in the calibrated rainfall-runoff model by 50 and 100 percent, respectively. The rainfall-runoff model simulated a long-term time series of monthly flows in and out of the channels and land surfaces using daily rainfall and potential evaporation data for water years 1950?98. Increasing the effective impervious and non-effective impervious urban areas by 100 percent resulted in a 5-percent increase in simulated mean annual streamflow at the State Street gaging station, and a 2.2-percent increase in simulated basin infiltration. Results of a frequency analysis of the simulated annual streamflow at the State Street gaging station showed that when effective impervious and non-effective impervious areas were increased 100 percent, simulated annual streamflow increased about 100 percent for low-flow conditions and was unchanged for high-flow conditions. The simulated increase in streamflow at the State Street gaging station potentially could infiltrate along the stream channel further downstream, outside of the model area.

  3. Decision support system based on DPSIR framework for a low flow Mediterranean river basin

    NASA Astrophysics Data System (ADS)

    Bangash, Rubab Fatima; Kumar, Vikas; Schuhmacher, Marta

    2013-04-01

    The application of decision making practices are effectively enhanced by adopting a procedural approach setting out a general methodological framework within which specific methods, models and tools can be integrated. Integrated Catchment Management is a process that recognizes the river catchment as a basic organizing unit for understanding and managing ecosystem process. Decision support system becomes more complex by considering unavoidable human activities within a catchment that are motivated by multiple and often competing criteria and/or constraints. DPSIR is a causal framework for describing the interactions between society and the environment. This framework has been adopted by the European Environment Agency and the components of this model are: Driving forces, Pressures, States, Impacts and Responses. The proposed decision support system is a two step framework based on DPSIR. Considering first three component of DPSIR, Driving forces, Pressures and States, hydrological and ecosystem services models are developed. The last two components, Impact and Responses, helped to develop Bayesian Network to integrate the models. This decision support system also takes account of social, economic and environmental aspects. A small river of Catalonia (Northeastern Spain), Francoli River with a low flow (~2 m3/s) is selected for integration of catchment assessment models and to improve knowledge transfer from research to the stakeholders with a view to improve decision making process. DHI's MIKE BASIN software is used to evaluate the low-flow Francolí River with respect to the water bodies' characteristics and also to assess the impact of human activities aiming to achieve good water status for all waters to comply with the WFD's River Basin Management Plan. Based on ArcGIS, MIKE BASIN is a versatile decision support tool that provides a simple and powerful framework for managers and stakeholders to address multisectoral allocation and environmental issues in river basins. While InVEST is a spatially explicit tool, used to model and map a suite of ecosystem services caused by land cover changes or climate change impacts. Moreover, results obtained from low-flow hydrological simulation and ecosystem services models serves as useful tools to develop decision support system based on DPSIR framework by integrating models. Bayesian Networks is used as a knowledge integration and visualization tool to summarize the outcomes of hydrological and ecosystem services models at the "Response" stage of DPSIR. Bayesian Networks provide a framework for modelling the logical relationship between catchment variables and decision objectives by quantifying the strength of these relationships using conditional probabilities. Participatory nature of this framework can provide better communication of water research, particularly in the context of a perceived lack of future awareness-raising with the public that helps to develop more sustainable water management strategies. Acknowledgements The present study was financially supported by Spanish Ministry of Economy and Competitiveness for its financial support through the project SCARCE (Consolider-Ingenio 2010 CSD2009-00065). R. F. Bangash also received PhD fellowship from AGAUR (Commissioner for Universities and Research of the Department of Innovation, Universities and Enterprise of the "Generalitat de Catalunya" and the European Social Fund).

  4. Statistical Comparisons of watershed scale response to climate change in selected basins across the United States

    USGS Publications Warehouse

    Risley, John; Moradkhani, Hamid; Hay, Lauren E.; Markstrom, Steve

    2011-01-01

    In an earlier global climate-change study, air temperature and precipitation data for the entire twenty-first century simulated from five general circulation models were used as input to precalibrated watershed models for 14 selected basins across the United States. Simulated daily streamflow and energy output from the watershed models were used to compute a range of statistics. With a side-by-side comparison of the statistical analyses for the 14 basins, regional climatic and hydrologic trends over the twenty-first century could be qualitatively identified. Low-flow statistics (95% exceedance, 7-day mean annual minimum, and summer mean monthly streamflow) decreased for almost all basins. Annual maximum daily streamflow also decreased in all the basins, except for all four basins in California and the Pacific Northwest. An analysis of the supply of available energy and water for the basins indicated that ratios of evaporation to precipitation and potential evapotranspiration to precipitation for most of the basins will increase. Probability density functions (PDFs) were developed to assess the uncertainty and multimodality in the impact of climate change on mean annual streamflow variability. Kolmogorov?Smirnov tests showed significant differences between the beginning and ending twenty-first-century PDFs for most of the basins, with the exception of four basins that are located in the western United States. Almost none of the basin PDFs were normally distributed, and two basins in the upper Midwest had PDFs that were extremely dispersed and skewed.

  5. Tools and Techniques for Basin-Scale Climate Change Assessment

    NASA Astrophysics Data System (ADS)

    Zagona, E.; Rajagopalan, B.; Oakley, W.; Wilson, N.; Weinstein, P.; Verdin, A.; Jerla, C.; Prairie, J. R.

    2012-12-01

    The Department of Interior's WaterSMART Program seeks to secure and stretch water supplies to benefit future generations and identify adaptive measures to address climate change. Under WaterSMART, Basin Studies are comprehensive water studies to explore options for meeting projected imbalances in water supply and demand in specific basins. Such studies could be most beneficial with application of recent scientific advances in climate projections, stochastic simulation, operational modeling and robust decision-making, as well as computational techniques to organize and analyze many alternatives. A new integrated set of tools and techniques to facilitate these studies includes the following components: Future supply scenarios are produced by the Hydrology Simulator, which uses non-parametric K-nearest neighbor resampling techniques to generate ensembles of hydrologic traces based on historical data, optionally conditioned on long paleo reconstructed data using various Markov Chain techniuqes. Resampling can also be conditioned on climate change projections from e.g., downscaled GCM projections to capture increased variability; spatial and temporal disaggregation is also provided. The simulations produced are ensembles of hydrologic inputs to the RiverWare operations/infrastucture decision modeling software. Alternative demand scenarios can be produced with the Demand Input Tool (DIT), an Excel-based tool that allows modifying future demands by groups such as states; sectors, e.g., agriculture, municipal, energy; and hydrologic basins. The demands can be scaled at future dates or changes ramped over specified time periods. Resulting data is imported directly into the decision model. Different model files can represent infrastructure alternatives and different Policy Sets represent alternative operating policies, including options for noticing when conditions point to unacceptable vulnerabilities, which trigger dynamically executing changes in operations or other options. The over-arching Study Manager provides a graphical tool to create combinations of future supply scenarios, demand scenarios, infrastructure and operating policy alternatives; each scenario is executed as an ensemble of RiverWare runs, driven by the hydrologic supply. The Study Manager sets up and manages multiple executions on multi-core hardware. The sizeable are typically direct model outputs, or post-processed indicators of performance based on model outputs. Post processing statistical analysis of the outputs are possible using the Graphical Policy Analysis Tool or other statistical packages. Several Basin Studies undertaken have used RiverWare to evaluate future scenarios. The Colorado River Basin Study, the most complex and extensive to date, has taken advantage of these tools and techniques to generate supply scenarios, produce alternative demand scenarios and to set up and execute the many combinations of supplies, demands, policies, and infrastructure alternatives. The tools and techniques will be described with example applications.

  6. On the non-uniqueness of sediment yield

    NASA Astrophysics Data System (ADS)

    Kim, J.; Ivanov, V. Y.; Katopodes, N.

    2012-12-01

    Estimation of sediment yield at the catchment scale plays an important role for optimal design of hydraulic structures, such as bridges, culverts, reservoirs, and detention basins, as well as making informed decisions in environmental management. Many experimental studies focused on obtaining flow and sediment data in search of unique relationships between runoff (specifically, volume and peak) and sediment characteristics. These relationships were employed to predict sediment yield from flow information. However, despite the same flow volume, the actual sediment yield produced by river basins can vary significantly depending on several conditions: (i) the catchment size, (ii) land use, topography, and soil type, (iii) climatic variations or characteristics , and (iv) initial conditions of soil moisture and soil surface . Additionally, shield formation by relatively larger particles can be one of the possible controllers of erosion and net sediment transport. Smaller particles have low settling velocities and tend to move far from their original position of detachment. Conversely, larger particles can settle quickly near their original locations. Eventually, such particles can form a shield on soil bed and protect underlying soil from rainfall detachment and runoff entrainment. The shield formation and temporal development can be influenced by rainfall intensity, frequency, and volume. Rainfall influences the generation of runoff leading to different conditions of flow depth and velocity that can perturb intact soil into a loose condition. In this study, we numerically investigate the effects of precipitation patterns on the generation of sediment yield. In particular, we address reasons of non-uniqueness of basin sediment yield for the same runoff volume as well as causes of unsteady phenomena in erosion processes under steady state flow conditions. For numerical simulations, the two-dimensional Hairsine-Rose model coupled with a fully distributed hydrology and hydraulics model (tRIBS-OFM: Triangulated irregular network - based Real time Integrated Basin Simulator-Overland Flow Model) is used.

  7. Elastic-wave propagation and site amplification in the Salt Lake Valley, Utah, from simulated normal faulting earthquakes

    USGS Publications Warehouse

    Benz, H.M.; Smith, R.B.

    1988-01-01

    The two-dimensional seismic response of the Salt Lake valley to near- and far-field earthquakes has been investigated from simulations of vertically incident plane waves and from normal-faulting earthquakes generated on the basin-bounding Wasatch fault. The plane-wave simulations were compared with observed site amplifications in the Salt Lake valley, based on seismic recordings from nuclear explosions in southern Nevada, that show 10 times greater amplification with the basin than measured values on hard-rock sites. Synthetic seismograms suggest that in the frequency band 0.3 to 1.5 Hz at least one-half the site amplitication can be attributed to the impedance contrast between the basin sediments and higher velocity basement rocks. -from Authors

  8. Fluvial Connectivity and Sediment Dispersal within Continental Extensional Basins; Assessment of Controlling Factors using Numerical Modelling

    NASA Astrophysics Data System (ADS)

    Geurts, A., Jr.; Cowie, P. A.; Gawthorpe, R.; Huismans, R. S.; Pedersen, V. K.

    2017-12-01

    Progressive integration of drainage networks has been documented in many regional-scale studies of extensional continental systems. While endorheic drainage and lake sedimentation are common features observed in basin stratigraphy, they often disappear from the record due to the development of a through-going river network. Because changes in the fluvial connectivity of extensional basins have profound impact on erosion and sediment dispersal, and thus the feedback between surface processes and tectonics, it is of great importance to understand what controls them. Headward erosion (also called headward capture or river piracy) is often suggested to be the main mechanism causing basins to become interconnected over time with one another and with the regional/coastal drainage network. We show that overspill mechanisms (basin over-filling or lake over-spilling) play a key role in the actively extending central Italian Apennines, even though this area is theoretically favorable for headward erosion (short distances to the coast in combination with rapid surface uplift). In other tectonic settings (e.g. contractional basins and high plateaux) the role of headward erosion in transverse drainage development and integrating endorheic basins has also been increasingly questioned. These two mechanisms predict very different spatio-temporal patterns of sediment dispersal and thus timing of sediment loading (or erosional unloading) along active normal faults, which in turn may influence the locus of subsequent extensional deformation. By means of surface process modelling we develop a process-based understanding of the controls on fluvial connectivity between extensional basins in the central Italian Apennines. We focus on which conditions (tectonic and erosional) favour headward erosion versus overspill and compare our model results with published field evidence for drainage integration and the timing of basin sedimentation/incision.

  9. Crustal investigations of the earthquake-prone Vrancea region in Romania - Part 2: Novel deep seismic reflection experiment in the southeastern Carpathian belt and its foreland basin - survey target, design, and first results

    NASA Astrophysics Data System (ADS)

    Mocanu, V. I.; Stephenson, R. A.; Diaconescu, C. C.; Knapp, J. H.; Matenco, L.; Dinu, C.; Harder, S.; Prodehl, C.; Hauser, F.; Raileanu, V.; Cloetingh, S. A.; Leever, K.

    2001-12-01

    Seismic studies of the outer Carpathian Orogen and its foreland (Focsani Basin) in the vicinity of the Vrancea Zone and Danube Delta (Romania) forms one component of a new multidisciplinary initiative of ISES (Netherlands Centre for Integrated Solid Earth Sciences) called DACIA PLAN ("Danube and Carpathian Integrated Action on Processes in the Lithosphere and Neotectonics"). The study area, at the margin of the European craton, constitutes one of the most active seismic zones in Europe, yet has remained a geological and geodynamic enigma within the Alpine-Himalayan orogenic system. Intermediate depth (50-220 km) mantle earthquakes of significant magnitude occur in a geographically restricted area in the south-east Carpathians bend. The adjacent, foreland Focsani Basin appears to exhibit recent extensional deformation in what is otherwise understood to be a zone of convergence. The deep seismic reflection component of DACIA PLAN comprises a ~140-km near-vertical profile across the Vrancea Zone and Focsani Basin. Data acquisition took place in August-September 2001, as part of the integrated refraction/reflection seismic field programme "Vrancea-2001" co-ordinated at Karlsruhe University (cf. Abstract, Part 1), utilising 640 independently deployed recorders provided by UTEP and IRIS/PASSCAL ("Texans"). Station spacing was every 100-m with shots every 1-km. These data are to be integrated with industry seismic as well as planned new medium-high resolution seismic reflection profiling across key neotectonically active structures in the Focsani Basin. Particular goals of DACIA PLAN include: (1) the architecture of the Tertiary/Quaternary basins developed within and adjacent to this zone, including the foreland Focsani Basin; (2) the presence and geometry of structural detachment(s) in relation with foreland basin development, including constraints for balanced cross-sections and geodynamic modelling of basin origin and evolution; (3) the relationship between crustal structures related to basin evolution, especially neotectonic structures, with deep (mantle) structure and seismicity; and, (4) integratration with complementary studies in the Carpathian-Transylvanian region for evaluation and validation of competing geodynamic models for the present-day development and neotectonic character of the Vrancea Zone-Focsani Basin-Danube Delta-Black Sea corridor.

  10. Participatory modelling to support decision making in water management under uncertainty: two comparative case studies in the Guadiana river basin, Spain.

    PubMed

    Carmona, Gema; Varela-Ortega, Consuelo; Bromley, John

    2013-10-15

    A participatory modelling process has been conducted in two areas of the Guadiana river (the upper and the middle sub-basins), in Spain, with the aim of providing support for decision making in the water management field. The area has a semi-arid climate where irrigated agriculture plays a key role in the economic development of the region and accounts for around 90% of water use. Following the guidelines of the European Water Framework Directive, we promote stakeholder involvement in water management with the aim to achieve an improved understanding of the water system and to encourage the exchange of knowledge and views between stakeholders in order to help building a shared vision of the system. At the same time, the resulting models, which integrate the different sectors and views, provide some insight of the impacts that different management options and possible future scenarios could have. The methodology is based on a Bayesian network combined with an economic model and, in the middle Guadiana sub-basin, with a crop model. The resulting integrated modelling framework is used to simulate possible water policy, market and climate scenarios to find out the impacts of those scenarios on farm income and on the environment. At the end of the modelling process, an evaluation questionnaire was filled by participants in both sub-basins. Results show that this type of processes are found very helpful by stakeholders to improve the system understanding, to understand each other's views and to reduce conflict when it exists. In addition, they found the model an extremely useful tool to support management. The graphical interface, the quantitative output and the explicit representation of uncertainty helped stakeholders to better understand the implications of the scenario tested. Finally, the combination of different types of models was also found very useful, as it allowed exploring in detail specific aspects of the water management problems. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Restoring ecological integrity of great rivers: Historical hydrographs aid in defining reference conditions for the Missouri River

    USGS Publications Warehouse

    Galat, D.L.; Lipkin, R.

    2000-01-01

    Restoring the ecological integrity of regulated large rivers necessitates characterizing the natural flow regime. We applied 'Indicators of Hydrologic Alteration' to assess the natural range of variation of the Missouri River's flow regime at 11 locations before (1929-1948) and after (1967-1996) mainstem impoundment. The 3768 km long Missouri River was divided into three sections: upper basin least-altered from flow regulation, including the lower Yellowstone River; middle basin inter-reservoir, and lower basin channelized. Flow regulation was associated with a reduction in magnitude and duration of the annual flood pulse, an increase in magnitude and duration of annual discharge minima, a reduction in frequency of annual low-flow pulses, earlier timing of March-October low-flow pulses, and a general increase in frequency of flow reversals with a reduction in the rate of change in river flows. Hydrologic alterations were smallest at two least-altered upper-basin sites and most frequent and severe in inter-reservoir and upper-channelized river sections. The influence of reservoir operations on depressing the annual flood pulse was partially offset by tributary inflow in the lower 600 km of river. Reservoir operations could be modified to more closely approximate the 1929-1948 flow regime to establish a simulated natural riverine ecosystem. For inter-reservoir and upper channelized-river sections, we recommend periodic controlled flooding through managed reservoir releases during June and July; increased magnitude, frequency and duration of annual high-flow pulses; and increased annual rates of hydrograph rises and falls. All of the regulated Missouri River would benefit from reduced reservoir discharges during August-February, modified timing of reservoir releases and a reduced number of annual hydrograph reversals. Assessment of ecological responses to a reregulation of Missouri River flows that more closely approximates the natural flow regime should then be used in an adaptive fashion to further adjust reservoir operations.

  12. Probabilistic Evaluation of Ecological and Economic Objectives of River Basin Management Reveals a Potential Flaw in the Goal Setting of the EU Water Framework Directive

    NASA Astrophysics Data System (ADS)

    Hjerppe, Turo; Taskinen, Antti; Kotamäki, Niina; Malve, Olli; Kettunen, Juhani

    2017-04-01

    The biological status of European lakes has not improved as expected despite up-to-date legislation and ecological standards. As a result, the realism of objectives and the attainment of related ecological standards are under doubt. This paper gets to the bottom of a river basin management plan of a eutrophic lake in Finland and presents the ecological and economic impacts of environmental and societal drivers and planned management measures. For these purposes, we performed a Monte Carlo simulation of a diffuse nutrient load, lake water quality and cost-benefit models. Simulations were integrated into a Bayesian influence diagram that revealed the basic uncertainties. It turned out that the attainment of good ecological status as qualified in the Water Framework Directive of the European Union is unlikely within given socio-economic constraints. Therefore, management objectives and ecological and economic standards need to be reassessed and reset to provide a realistic goal setting for management. More effort should be put into the evaluation of the total monetary benefits and on the monitoring of lake phosphorus balances to reduce the uncertainties, and the resulting margin of safety and costs and risks of planned management measures.

  13. Improved Hydrological Decision Support System for the Lower Mekong River Basin Using Satellite-Based Earth Observations.

    PubMed

    Mohammed, Ibrahim Nourein; Bolten, John D; Srinivasan, Raghavan; Lakshmi, Venkat

    2018-06-01

    Multiple satellite-based earth observations and traditional station data along with the Soil & Water Assessment Tool (SWAT) hydrologic model were employed to enhance the Lower Mekong River Basin region's hydrological decision support system. A nearest neighbor approximation methodology was introduced to fill the Integrated Multi-satellite Retrieval for the Global Precipitation Measurement mission (IMERG) grid points from 2001 to 2014, together with the Tropical Rainfall Measurement Mission (TRMM) data points for continuous precipitation forcing for our hydrological decision support system. A software tool to access and format satellite-based earth observation systems of precipitation and minimum and maximum air temperatures was developed and is presented. Our results suggest that the model-simulated streamflow utilizing TRMM and IMERG forcing data was able to capture the variability of the observed streamflow patterns in the Lower Mekong better than model-simulated streamflow with in-situ precipitation station data. We also present satellite-based and in-situ precipitation adjustment maps that can serve to correct precipitation data for the Lower Mekong region for use in other applications. The inconsistency, scarcity, poor spatial representation, difficult access and incompleteness of the available in-situ precipitation data for the Mekong region make it imperative to adopt satellite-based earth observations to pursue hydrologic modeling.

  14. Probabilistic Evaluation of Ecological and Economic Objectives of River Basin Management Reveals a Potential Flaw in the Goal Setting of the EU Water Framework Directive.

    PubMed

    Hjerppe, Turo; Taskinen, Antti; Kotamäki, Niina; Malve, Olli; Kettunen, Juhani

    2017-04-01

    The biological status of European lakes has not improved as expected despite up-to-date legislation and ecological standards. As a result, the realism of objectives and the attainment of related ecological standards are under doubt. This paper gets to the bottom of a river basin management plan of a eutrophic lake in Finland and presents the ecological and economic impacts of environmental and societal drivers and planned management measures. For these purposes, we performed a Monte Carlo simulation of a diffuse nutrient load, lake water quality and cost-benefit models. Simulations were integrated into a Bayesian influence diagram that revealed the basic uncertainties. It turned out that the attainment of good ecological status as qualified in the Water Framework Directive of the European Union is unlikely within given socio-economic constraints. Therefore, management objectives and ecological and economic standards need to be reassessed and reset to provide a realistic goal setting for management. More effort should be put into the evaluation of the total monetary benefits and on the monitoring of lake phosphorus balances to reduce the uncertainties, and the resulting margin of safety and costs and risks of planned management measures.

  15. Improved Hydrological Decision Support System for the Lower Mekong River Basin Using Satellite-Based Earth Observations

    PubMed Central

    Mohammed, Ibrahim Nourein; Bolten, John D.; Srinivasan, Raghavan; Lakshmi, Venkat

    2018-01-01

    Multiple satellite-based earth observations and traditional station data along with the Soil & Water Assessment Tool (SWAT) hydrologic model were employed to enhance the Lower Mekong River Basin region’s hydrological decision support system. A nearest neighbor approximation methodology was introduced to fill the Integrated Multi-satellite Retrieval for the Global Precipitation Measurement mission (IMERG) grid points from 2001 to 2014, together with the Tropical Rainfall Measurement Mission (TRMM) data points for continuous precipitation forcing for our hydrological decision support system. A software tool to access and format satellite-based earth observation systems of precipitation and minimum and maximum air temperatures was developed and is presented. Our results suggest that the model-simulated streamflow utilizing TRMM and IMERG forcing data was able to capture the variability of the observed streamflow patterns in the Lower Mekong better than model-simulated streamflow with in-situ precipitation station data. We also present satellite-based and in-situ precipitation adjustment maps that can serve to correct precipitation data for the Lower Mekong region for use in other applications. The inconsistency, scarcity, poor spatial representation, difficult access and incompleteness of the available in-situ precipitation data for the Mekong region make it imperative to adopt satellite-based earth observations to pursue hydrologic modeling. PMID:29938116

  16. Simulating the Response of Urban Water Quality to Climate and Land Use Change in Partially Urbanized Basins

    NASA Astrophysics Data System (ADS)

    Sun, N.; Yearsley, J. R.; Nijssen, B.; Lettenmaier, D. P.

    2014-12-01

    Urban stream quality is particularly susceptible to extreme precipitation events and land use change. Although the projected effects of extreme events and land use change on hydrology have been resonably well studied, the impacts on urban water quality have not been widely examined due in part to the scale mismatch between global climate models and the spatial scales required to represent urban hydrology and water quality signals. Here we describe a grid-based modeling system that integrates the Distributed Hydrology Soil Vegetation Model (DHSVM) and urban water quality module adpated from EPA's Storm Water Management Model (SWMM) and Soil and water assessment tool (SWAT). Using the model system, we evaluate, for four partially urbanized catchments within the Puget Sound basin, urban water quality under current climate conditions, and projected potential changes in urban water quality associated with future changes in climate and land use. We examine in particular total suspended solids, toal nitrogen, total phosphorous, and coliform bacteria, with catchment representations at the 150-meter spatial resolution and the sub-daily timestep. We report long-term streamflow and water quality predictions in response to extreme precipitation events of varying magnitudes in the four partially urbanized catchments. Our simulations show that urban water quality is highly sensitive to both climatic and land use change.

  17. Simulation of streamflow and water quality in the Brandywine Creek subbasin of the Christina River basin, Pennsylvania and Delaware, 1994-98

    USGS Publications Warehouse

    Senior, Lisa A.; Koerkle, Edward H.

    2003-01-01

    The Christina River Basin drains 565 mi2 (square miles) in Pennsylvania and Delaware. Water from the basin is used for recreation, drinking-water supply, and to support aquatic life. The Christina River Basin includes the major subbasins of Brandywine Creek, Red Clay Creek, White Clay Creek, and Christina River. The Brandywine Creek is the largest of the subbasins and drains an area of 327 mi2. Water quality in some parts of the Christina River Basin is impaired and does not support designated uses of the streams. A multi-agency water-quality management strategy included a modeling component to evaluate the effects of point and nonpoint-source contributions of nutrients and suspended sediment on streamwater quality. To assist in nonpoint-source evaluation, four independent models, one for each of the four main subbasins of the Christina River Basin, were developed and calibrated using the model code Hydrological Simulation Program—Fortran (HSPF). Water-quality data for model calibration were collected in each of the four main subbasins and in small subbasins predominantly covered by one land use following a nonpoint-source monitoring plan. Under this plan, stormflow and base-flow samples were collected during 1998 at six sites in the Brandywine Creek subbasin and five sites in the other subbasins.The HSPF model for the Brandywine Creek Basin simulates streamflow, suspended sediment, and the nutrients, nitrogen and phosphorus. In addition, the model simulates water temperature, dissolved oxygen, biochemical oxygen demand, and plankton as secondary objectives needed to support the sediment and nutrient simulations. For the model, the basin was subdivided into 35 reaches draining areas that ranged from 0.6 to 18 mi2. Three of the reaches contain regulated reservoir. Eleven different pervious land uses and two impervious land uses were selected for simulation. Land-use areas were determined from 1995 land-use data. The predominant land uses in the basin are forested, agricultural, residential, and urban. The hydrologic component of the model was run at an hourly time step and calibrated using streamflow data for eight U.S. Geological Survey (USGS) stream-flow-measurement stations for the period of January 1, 1994, through October 29, 1998. Daily precipitation data for three National Oceanic and Atmospheric Administration (NOAA) gages and hourly data for one NOAA gage were used for model input. The difference between observed and simulated streamflow volume ranged from -2.7 to 3.9 percent for the nearly 5-year period at the eight calibration sites. Annual differences between observed and simulated streamflow generally were greater than the overall error. For example, at a site near the bottom of the basin (drainage area of 237 mi2), annual differences between observed and simulated streamflow ranged from -14.0 to 18.8 percent and the overall error for the 5-year period was 1.0 percent. Calibration errors for 36 storm periods at the eight calibration sites for total volume, low-flow-recession rate, 50-percent lowest flows, 10-percent highest flows, and storm peaks were within the recommended criteria of 20 percent or less. Much of the error in simulating storm events on an hourly time step can be attributed to uncertainty in the rainfall data.The water-quality component of the model was calibrated using monitoring data collected at six USGS streamflow-measurement stations with variable water quality monitoring periods ending October 1998. Because of availability, monitoring data for suspended solids concentrations were used as surrogates for suspended-sediment concentrations, although suspended-solids data may underestimate suspended sediment and affect apparent accuracy of the suspended-sediment simulation. Comparison of observed to simulated loads for two to six individual storms in 1998 at each of the six monitoring sites indicate that simulation error is commonly as large as an order of magnitude for suspended sediment and nutrients. The simulation error tends to be smaller for dissolved nutrients than for particulate nutrients. Errors of 40 percent or less for monthly or annual values indicate a fair to good water-quality calibration according to recommended criteria, with much larger errors possible for individual events. Assessment of the water-quality calibration under stormflow conditions is limited by the relatively small amount of available water-quality data in the basin. Duration curves for simulated and reported sediment concentration at Brandywine Creek at Wilmington, Del., are similar, indicating model performance is better when evaluated over longer periods than when evaluated on individual storm events.

  18. Geophysics in Mejillones Basin, Chile: Dynamic analysis and associatedseismic hazard

    NASA Astrophysics Data System (ADS)

    Maringue, J. I.; Yanez, G. A.; Lira, E.; Podestá, L., Sr.; Figueroa, R.; Estay, N. P.; Saez, E.

    2016-12-01

    The active margin of South America has a high seismogenic potential. In particular, the Mejillones peninsula, located in northern Chile, represents a site of interest for seismic hazard due to 100-year seismic gap, the potentially large site effects, and the presence of the most important port in the region. We perform a dynamic analysis of the zone from a spatial and petrophysical model of the Mejillones Basin, to understand its behavior under realistic seismic scenarios. Geometry and petrophysics of the basin were obtained from an integrated modeling of geophysics observations (gravity, seismic and electromagnetic data) distributed mainly in Pampa Mejillones whose western edge is limited by Mejillones Fault, oriented north-south. This regional-scale normal fault shows a half-graben geometry which controls the development of the Mejillones basin eastwards. The gravimetric and magnetotelluric methods allow to define the geometry of the basin, through a cover/basement density contrast, and the transition zone from very low-moderate electrical resistivities, respectively. The seismic method complements the petrophysics in terms of the shear wave depth profile. The results show soil's thicknesses up to 700 meters on deeper zone, with steeper slopes to the west and lower slopes to the east, in agreement with the normal-fault-half-graben basin geometry. Along the N-S direction there are not great differences in basin depth, comprising an almost 2D problem. In terms of petrophysics, the sedimentary stratum is characterized by shear velocities between 300-700 m/s, extremely low electrical resistivities, below 1 ohm-m, and densities from 1.4 to 1.8 gr/cc. The numerical simulation of the seismic waves amplification gives values in the order of 0.8g, which implying large surface damages. The results demonstrate a potential risk in Mejillones bay to future events, therefore is very important to generate mitigations policies for infrastructure and human settlements.

  19. Determining gas hydrate distribution in sands using integrated analysis of well log and seismic data in the Terrebonne Basin, Gulf of Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hillman, Jess; Cook, Ann; Daigle, Hugh

    The Terrebonne Basin is a salt bounded mini-basin in the northeast section of the Walker Ridge protraction area in the Gulf of Mexico, and the main site for an upcoming gas-hydrate focused International Ocean Discovery Program (IODP) cruise. The basin is infilled by an increasingly mud rich sedimentary sequence with several 5-15 meter gas-hydrate filled sand units of Miocene to Pliocene age overlying the up-domed salt. These gas-hydrate filled sand units can be identified in logging while drilling data from two existing wells in the Terrebonne Basin, drilled in 2009 by the Gas Hydrate Joint Industry Project (JIP) Leg 2.more » The sand units are cross cut by a distinct bottom-simulating reflector (BSR), and are clearly characterized by a polarity reversal in the sand units. The polarity reversal is caused by a positive gas-hydrate filled sand within the stability zone changing to negative gas-bearing sand. Using well data and calculated synthetic seismogram well ties we are able to identify several additional 1-4 meter gas-hydrate and water-saturated sand units associated with thick (100-200 m-thick), fine grained, hydrate bearing fractured units in the upper sedimentary sequence on the seismic data. Following on previous work, we propose that microbial generation of methane occurring within the fine-grained, fractured units acts as a source for gas hydrate formation in the thin sands. In contrast, it has been proposed that the gas hydrate in the 5-15 m-thick sands first discovered by the JIP was originates from a deeper thermogenic source. Through correlating hydrate occurrence in sands from well data, to amplitudes derived from the seismic data, we can estimate possible distribution of hydrate across the basin. Overall, we find the Terrebonne basin to be a complex gas hydrate system with multiple mechanisms of methane generation and migration.« less

  20. Does the GPM mission resolve the systematic error dependence with climatology and topography - a statistical and hydrologic evaluation over India?

    NASA Astrophysics Data System (ADS)

    Beria, H.; Nanda, T., Sr.; Bisht, D. S.; Chatterjee, C.

    2016-12-01

    Increasing hydrologic extremes in a changing climate with lack of quality rainfall forcings have inspired the development of a number of satellite and reanalysis based precipitation products in the past decade. Tropical Rainfall Measuring Mission (TRMM) has emerged as the front runner in this race, providing high quality precipitation forcings in the tropical part of the world. However, TRMM is known to suffer from its poor sensitivity to low rainfall intensities due to limited resolving power of its sensors, and is also not known to accurately resolve topography in its rainfall estimates. The Global Precipitation Mission (GPM), a follow-up mission of TRMM, promises enhanced spatio-temporal resolution along with upgrades in sensors and rainfall estimation techniques. In this study, the rainfall estimates of Integrated Multi-satellitE Retrievals for GPM (IMERG), was compared with those of TRMM for the major basins in India for the year 2014. IMERG depicted higher skill (in terms of correlation) for the majority of basins at all rainfall intensities, with a drastic improvement in low rainfall estimates (smaller biases in 75 out of 86 basins). IMERG was found to improve the topographic resolution, with lower error in high elevation basins. IMERG could better resolve the sharp topographic gradient in the Western Ghat region of India. However, IMERG suffered from poor skill in the semi-arid basins of Rajasthan, at all rainfall intensities. Rainfall-runoff exercise over Mahanadi River basin (a flood prone basin on the Eastern coast of India) using Variable Infiltration Capacity Model (VIC) showed better simulations with TRMM, mainly due to the overestimation of low rainfall events by IMERG. Also, the calibration scheme could be put to fault as the period of availability of IMERG is rather small, and more in-depth hydrologic analysis could only be carried out with sufficiently longer time series. Overall, the fine spatial and temporal resolution along with improved accuracy, promises new horizons in hydrologic forecasting under data scarcity.

  1. Evolution of fore-arc and back-arc sedimentary basins with focus on the Japan subduction system and its analogues

    NASA Astrophysics Data System (ADS)

    Sato, Hiroshi; Ishiyama, Tatsuya; Matenco, Liviu; Nader, Fadi Henri

    2017-07-01

    The International Lithosphere Program (ILP) seeks to elucidate the nature, dynamics, origin and evolution of the lithosphere through international, multidisciplinary geoscience research projects and coordinating committees (Cloetingh and Negendank, 2010). The focus of the Task Force VI Sedimentary Basins activities is to foster collaborations between academia, research institutes and industry in all domains relevant for the understanding of sedimentary basins, from regional to nano-scale, from the deep earth to near surface processes (e.g., Roure et al., 2010, 2013). In this activity, it is important to develop and validate novel concepts of sedimentary basin evolution and topography building by incorporating geological/geophysical datasets and methodologies applied to worldwide natural laboratories (Cloetingh et al., 2011; Cloetingh and Willett, 2013; Matenco and Andriessen, 2013). The Task Force aims to understand and predict the processes that control the formation and evolution of the coupled orogens and sedimentary basins system through integration of field studies, analytical techniques and numerical/analogue modelling. At the same time, the Task Force aims to promote research in the domain of sedimentary basins evolution and quantitative tectonics for the study of mountain building and the subsequent extensional collapse, and their quantitative implications for vertical motions on different temporal and spatial scales (Gibson et al., 2015; Matenco et al., 2016; Roure, 2008; Seranne et al., 2015). The implications of tectonics on basin fluids (fluid-flow and rock-fluid interactions) are important to understand and predict geo-resources (e.g., Nader, 2016). Important is to initiate innovative research lines in linking the evolution of sedimentary systems by integrating cross-disciplinary expertise with a focus on integrated sedimentary basins and orogenic evolution. The key is to strengthen the synergy between academic research and applied industry in large (inter)national interdisciplinary research networks able to tackle complex problems at integrated system level.

  2. Interannual Sea Level Variations in the Tropical Indian Ocean from Geosat and Shallow Water Simulations

    NASA Technical Reports Server (NTRS)

    Perigaud, Claire; Delecluse, Pascale

    1993-01-01

    Sea level variations of the Indian Ocean north of 20 deg S are analyzed from Geosat satellite altimeter data over April 1985-September 1989. These variations are compared and interpreted with numerical simulations derived from a reduced gravity model forced by FSU observed winds over the same period. After decomposition into complex empirical orthogonal functions, the low-frequency anomalies are described by the first two modes for observations as well as for simulations. The sums of the two modes contain 34% and 40% of the observed and simulated variances, respectively. Averaged over the basin, the observed and simulated sea level changes are correlated by 0.92 over 1985-1988. The strongest change happens during the El Ninio 1986-1987: between winter 1986 and summer 1987 the basin-averaged sea level rises by approx. 1 cm. These low-frequency variations can partly be explained by changes in the Sverdrup circulation. The southern tropical Indian Ocean between 1O deg and 20 deg S is the domain where those changes are strongest: the averaged sea level rises by approx. 4.5 cm between winter 1986 and winter 1987. There, the signal propagates southwestward across the basin at a speed similar to free Rossby waves. Sensitivity of observed anomalies is examined over 1987-1988, with different orbit ephemeris, tropospheric corrections, and error reduction processes. The uncertainty of the basin-averaged sea level estimates is mostly due to the way the orbit error is reduced and reaches approx. 1 cm. Nonetheless, spatial correlation is good between the various observations and better than between observations and simulations. Sensitivity of simulated anomalies to the wind uncertainty, examined with Former Soviet Union (FSU) and European Center for Medium-Range Weather Forecasting (ECMWF) forcings over 1985-1988, shows that the variance of the simulations driven by ECMWF is 52% smaller, as FSU winds are stronger than ECMWF. Results show that the wind strength also affects the dynamic response of the ocean: anomalies propagate westward across the basin more than twice as fast with FSU than with ECMWF. It is found that the discrepancy is larger between ECMWF and FSU simulations than between observations and FSU simulations.

  3. Composite use of numerical groundwater flow modeling and geoinformatics techniques for monitoring Indus Basin aquifer, Pakistan.

    PubMed

    Ahmad, Zulfiqar; Ashraf, Arshad; Fryar, Alan; Akhter, Gulraiz

    2011-02-01

    The integration of the Geographic Information System (GIS) with groundwater modeling and satellite remote sensing capabilities has provided an efficient way of analyzing and monitoring groundwater behavior and its associated land conditions. A 3-dimensional finite element model (Feflow) has been used for regional groundwater flow modeling of Upper Chaj Doab in Indus Basin, Pakistan. The approach of using GIS techniques that partially fulfill the data requirements and define the parameters of existing hydrologic models was adopted. The numerical groundwater flow model is developed to configure the groundwater equipotential surface, hydraulic head gradient, and estimation of the groundwater budget of the aquifer. GIS is used for spatial database development, integration with a remote sensing, and numerical groundwater flow modeling capabilities. The thematic layers of soils, land use, hydrology, infrastructure, and climate were developed using GIS. The Arcview GIS software is used as additive tool to develop supportive data for numerical groundwater flow modeling and integration and presentation of image processing and modeling results. The groundwater flow model was calibrated to simulate future changes in piezometric heads from the period 2006 to 2020. Different scenarios were developed to study the impact of extreme climatic conditions (drought/flood) and variable groundwater abstraction on the regional groundwater system. The model results indicated a significant response in watertable due to external influential factors. The developed model provides an effective tool for evaluating better management options for monitoring future groundwater development in the study area.

  4. Examples of deformation-dependent flow simulations of conjunctive use with MF-OWHM

    USGS Publications Warehouse

    Hanson, Randall T.; Traum, Jonathan A.; Boyce, Scott E.; Schmid, Wolfgang; Hughes, Joseph D.

    2015-01-01

    The dependency of surface- and groundwater flows and aquifer hydraulic properties on deformation induced by changes in aquifer head is not accounted for in the standard version of MODFLOW. A new USGS integrated hydrologic model, MODFLOW-OWHM, incorporates this dependency by linking subsidence and mesh deformation with changes in aquifer transmissivity and storage coefficient, and with flows that also depend on aquifer characteristics and land-surface geometry. This new deformation-dependent approach is being used for the further development of the integrated Central Valley hydrologic model (CVHM) in California. Preliminary results from this application and from hypothetical test cases of similar systems show that changes in canal flows, stream seepage, and evapotranspiration from groundwater (ETgw) are sensitive to deformation. Deformation feedback has been shown to also have an indirect effect on conjunctive surface- and groundwater use components with increased stream seepage and streamflows influencing surface-water deliveries and return flows. In the Central Valley model, land subsidence may significantly degrade the ability of the major canals to deliver surface water from the Delta to the San Joaquin and Tulare basins. Subsidence can also affect irrigation demand and ETgw, which, along with altered surface-water supplies, causes a feedback response resulting in changed estimates of groundwater pumping for irrigation. This modeling feature also may improve the impact assessment of dewatering-induced land subsidence/uplift (following irrigation pumping or coal-seam gas extraction) on surface receptors, inter-basin transfers, and surface infrastructure integrity.

  5. CO{sub 2} Injectivity, Storage Capacity, Plume Size, and Reservoir and Seal Integrity of the Ordovician St. Peter Sandstone and the Cambrian Potosi Formation in the Illnois Basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leetaru, Hannes; Brown, Alan; Lee, Donald

    2012-05-01

    The Cambro-Ordovician strata of the Illinois and Michigan Basins underlie most of the states of Illinois, Indiana, Kentucky, and Michigan. This interval also extends through much of the Midwest of the United States and, for some areas, may be the only available target for geological sequestration of CO{sub 2}. We evaluated the Cambro-Ordovician strata above the basal Mt. Simon Sandstone reservoir for sequestration potential. The two targets were the Cambrian carbonate intervals in the Knox and the Ordovician St. Peter Sandstone. The evaluation of these two formations was accomplished using wireline data, core data, pressure data, and seismic data frommore » the USDOE-funded Illinois Basin Decatur Project being conducted by the Midwest Geological Sequestration Consortium in Macon County, Illinois. Interpretations were completed using log analysis software, a reservoir flow simulator, and a finite element solver that determines rock stress and strain changes resulting from the pressure increase associated with CO{sub 2} injection. Results of this research suggest that both the St. Peter Sandstone and the Potosi Dolomite (a formation of the Knox) reservoirs may be capable of storing up to 2 million tonnes of CO{sub 2} per year for a 20-year period. Reservoir simulation results for the St. Peter indicate good injectivity and a relatively small CO{sub 2} plume. While a single St. Peter well is not likely to achieve the targeted injection rate of 2 million tonnes/year, results of this study indicate that development with three or four appropriately spaced wells may be sufficient. Reservoir simulation of the Potosi suggest that much of the CO{sub 2} flows into and through relatively thin, high permeability intervals, resulting in a large plume diameter compared with the St. Peter.« less

  6. Dynamic Downscaling of Seasonal Simulations over South America.

    NASA Astrophysics Data System (ADS)

    Misra, Vasubandhu; Dirmeyer, Paul A.; Kirtman, Ben P.

    2003-01-01

    In this paper multiple atmospheric global circulation model (AGCM) integrations at T42 spectral truncation and prescribed sea surface temperature were used to drive regional spectral model (RSM) simulations at 80-km resolution for the austral summer season (January-February-March). Relative to the AGCM, the RSM improves the ensemble mean simulation of precipitation and the lower- and upper-level tropospheric circulation over both tropical and subtropical South America and the neighboring ocean basins. It is also seen that the RSM exacerbates the dry bias over the northern tip of South America and the Nordeste region, and perpetuates the erroneous split intertropical convergence zone (ITCZ) over both the Pacific and Atlantic Ocean basins from the AGCM. The RSM at 80-km horizontal resolution is able to reasonably resolve the Altiplano plateau. This led to an improvement in the mean precipitation over the plateau. The improved resolution orography in the RSM did not substantially change the predictability of the precipitation, surface fluxes, or upper- and lower-level winds in the vicinity of the Andes Mountains from the AGCM. In spite of identical convective and land surface parameterization schemes, the diagnostic quantities, such as precipitation and surface fluxes, show significant differences in the intramodel variability over oceans and certain parts of the Amazon River basin (ARB). However, the prognostic variables of the models exhibit relatively similar model noise structures and magnitude. This suggests that the model physics are in large part responsible for the divergence of the solutions in the two models. However, the surface temperature and fluxes from the land surface scheme of the model [Simplified Simple Biosphere scheme (SSiB)] display comparable intramodel variability, except over certain parts of ARB in the two models. This suggests a certain resilience of predictability in SSiB (over the chosen domain of study) to variations in horizontal resolution. It is seen in this study that the summer precipitation over tropical and subtropical South America is highly unpredictable in both models.

  7. Investigation of possible effects of surface coal mining on hydrology and landscape stability in part of the Powder River structural basin, northeastern Wyoming

    USGS Publications Warehouse

    Bloyd, R.M.; Daddow, P.B.; Jordon, P.R.; Lowham, H.W.

    1986-01-01

    The effects of surface coal mining on the surface- and groundwater systems in a 5,400 sq mi area in the Powder River Basin, Wyoming, that includes 20 major coal mines were evaluated using three approaches: A surface water model, a landscape-stability analysis, and a groundwater model. A surface water model was developed for the Belle Fourche River basin. The Hydrological Simulation Program-Fortran model was used to simulate changes in streamflow and changes in dissolved-solids and sulfate concentrations. Simulated streamflows resulting from less than average rainfall were small, changes in flow from premining to during-mining and postmining conditions were less than 2.5%, and changes in mean dissolved-solids and sulfate concentrations ranged from 1 to 7%. A landscape-stability analysis resulted in regression relations to aid in the reconstruction of reclaimed drainage networks. Hypsometric analyses indicate the larger basins are relatively stable, and statistical data from these basins may be used to design the placement of material within a mined basin to approximate natural, stable landscapes in the area. The attempt to define and simulate the groundwater system in the area using a groundwater-flow model was unsuccessful. The steady-state groundwater-flow model could not be calibrated. The modeling effort failed principally because of insufficient quantity and quality of data to define the spatial distribution of aquifer properties; the hydraulic-head distribution within and between aquifers; and the rates of groundwater recharge and discharge, especially for steady-state conditions. (USGS)

  8. Changes in the relation between snow station observations and basin scale snow water resources

    NASA Astrophysics Data System (ADS)

    Sexstone, G. A.; Penn, C. A.; Clow, D. W.; Moeser, D.; Liston, G. E.

    2017-12-01

    Snow monitoring stations that measure snow water equivalent or snow depth provide fundamental observations used for predicting water availability and flood risk in mountainous regions. In the western United States, snow station observations provided by the Natural Resources Conservation Service Snow Telemetry (SNOTEL) network are relied upon for forecasting spring and summer streamflow volume. Streamflow forecast accuracy has declined for many regions over the last several decades. Changes in snow accumulation and melt related to climate, land use, and forest cover are not accounted for in current forecasts, and are likely sources of error. Therefore, understanding and updating relations between snow station observations and basin scale snow water resources is crucial to improve accuracy of streamflow prediction. In this study, we investigated the representativeness of snow station observations when compared to simulated basin-wide snow water resources within the Rio Grande headwaters of Colorado. We used the combination of a process-based snow model (SnowModel), field-based measurements, and remote sensing observations to compare the spatiotemporal variability of simulated basin-wide snow accumulation and melt with that of SNOTEL station observations. Results indicated that observations are comparable to simulated basin-average winter precipitation but overestimate both the simulated basin-average snow water equivalent and snowmelt rate. Changes in the representation of snow station observations over time in the Rio Grande headwaters were also investigated and compared to observed streamflow and streamflow forecasting errors. Results from this study provide important insight in the context of non-stationarity for future water availability assessments and streamflow predictions.

  9. Burial and thermal history simulation of the Abu Rudeis-Sidri oil field, Gulf of Suez-Egypt: A 1D basin modeling study

    NASA Astrophysics Data System (ADS)

    Awadalla, Ahmed; Hegab, Omar A.; Ahmed, Mohammed A.; Hassan, Saad

    2018-02-01

    An integrated 1D model on seven wells has been performed to simulate the multi-tectonic phases and multiple thermal regimes in the Abu Rudeis-Sidri oilfield. Concordance between measured and calculated present-day temperatures is achieved with present-day heat flows in the range of 42-55 mW/m2. Reconstruction of the thermal and burial histories provides information on the paleotemperature profiles, the timing of thermal activation as well as the effect of the Oligo-Miocene rifting phases and its associated magmatic activity. The burial histories show the pre-rift subsidence was progressive but modest, whereas the syn-rift was more rapid (contemporaneous with the main rifting phases and basin formation). Finally, the early post-rift thermal subsidence was slow to moderate in contrast to the late post-rift thermal subsidence which was moderate to rapid. The simulated paleo heat flow illustrates a steady state for the pre-rift phase and non-steady state (transient) for syn-rift and postrift phases. Three geothermal regimes are recognized, each of which is associated with a specific geological domain. 1) A lower geothermal regime reflects the impact of stable tectonics (pre-rift). 2) The higher temperature distribution reflects the syn-rift high depositional rate as well as the impact of stretching and thinning (rifting phases) of the lithosphere. 3) A local higher geothermal pulse owing to the magmatic activity during the Oligo-Miocene time (ARM-1 and Sidri-7 wells). Paleoheat flow values of 100mW/m2 (Oligo-Miocene rifting phase) increased to 120mW/m2 (Miocene rifting phase) and lesser magnitude of 80mW/m2 (Mio- Pliocene reactivation phase) have been specified. These affected the thermal regime and temperature distribution by causing perturbations in subsurface temperatures. A decline in the background value of 60mW/m2 owing to conductive cooling has been assigned. The blanketing effect caused by low thermal conductivity of the basin-fill sediments has been simulated as well.

  10. Deciphering the expression of climate change within the Lower Colorado River basin by stochastic simulation of convective rainfall

    NASA Astrophysics Data System (ADS)

    Bliss Singer, Michael; Michaelides, Katerina

    2017-10-01

    In drylands, convective rainstorms typically control runoff, streamflow, water supply and flood risk to human populations, and ecological water availability at multiple spatial scales. Since drainage basin water balance is sensitive to climate, it is important to improve characterization of convective rainstorms in a manner that enables statistical assessment of rainfall at high spatial and temporal resolution, and the prediction of plausible manifestations of climate change. Here we present a simple rainstorm generator, STORM, for convective storm simulation. It was created using data from a rain gauge network in one dryland drainage basin, but is applicable anywhere. We employ STORM to assess watershed rainfall under climate change simulations that reflect differences in wetness/storminess, and thus provide insight into observed or projected regional hydrologic trends. Our analysis documents historical, regional climate change manifesting as a multidecadal decline in rainfall intensity, which we suggest has negatively impacted ephemeral runoff in the Lower Colorado River basin, but has not contributed substantially to regional negative streamflow trends.

  11. Simulation of stream discharge and transport of nitrate and selected herbicides in the Mississippi River Basin

    NASA Astrophysics Data System (ADS)

    Broshears, Robert E.; Clark, Gregory M.; Jobson, Harvey E.

    2001-05-01

    Stream discharge and the transport of nitrate, atrazine, and metolachlor in the Mississippi River Basin were simulated using the DAFLOW/BLTM hydrologic model. The simulated domain for stream discharge included river reaches downstream from the following stations in the National Stream Quality Accounting Network: Mississippi River at Clinton, IA; Missouri River at Hermann, MO; Ohio River at Grand Chain, IL; and Arkansas River at Little Rock, AR. Coefficients of hydraulic geometry were calibrated using data from water year 1996; the model was validated by favourable simulation of observed discharges in water years 1992-1994. The transport of nitrate, atrazine, and metolachlor was simulated downstream from the Mississippi River at Thebes, IL, and the Ohio River at Grand Chain. Simulated concentrations compared favourably with observed concentrations at Baton Rouge, LA. Development of this model is a preliminary step in gaining a more quantitative understanding of the sources and fate of nutrients and pesticides delivered from the Mississippi River Basin to the Gulf of Mexico. Published in 2001 by John Wiley & Sons, Ltd.

  12. Processing of next generation weather radar-multisensor precipitation estimates and quantitative precipitation forecast data for the DuPage County streamflow simulation system

    USGS Publications Warehouse

    Bera, Maitreyee; Ortel, Terry W.

    2018-01-12

    The U.S. Geological Survey, in cooperation with DuPage County Stormwater Management Department, is testing a near real-time streamflow simulation system that assists in the management and operation of reservoirs and other flood-control structures in the Salt Creek and West Branch DuPage River drainage basins in DuPage County, Illinois. As part of this effort, the U.S. Geological Survey maintains a database of hourly meteorological and hydrologic data for use in this near real-time streamflow simulation system. Among these data are next generation weather radar-multisensor precipitation estimates and quantitative precipitation forecast data, which are retrieved from the North Central River Forecasting Center of the National Weather Service. The DuPage County streamflow simulation system uses these quantitative precipitation forecast data to create streamflow predictions for the two simulated drainage basins. This report discusses in detail how these data are processed for inclusion in the Watershed Data Management files used in the streamflow simulation system for the Salt Creek and West Branch DuPage River drainage basins.

  13. Hydrological simulation of Sperchios River basin in Central Greece using the MIKE SHE model and geographic information systems

    NASA Astrophysics Data System (ADS)

    Paparrizos, Spyridon; Maris, Fotios

    2017-05-01

    The MIKE SHE model is able to simulate the entire stream flow which includes direct and basic flow. Many models either do not simulate or use simplistic methods to determine the basic flow. The MIKE SHE model takes into account many hydrological data. Since this study was directed towards the simulation of surface runoff and infiltration into saturated and unsaturated zone, the MIKE SHE is an appropriate model for reliable conclusions. In the current research, the MIKE SHE model was used to simulate runoff in the area of Sperchios River basin. Meteorological data from eight rainfall stations within the Sperchios River basin were used as inputs. Vegetation as well as geological data was used to perform the calibration and validation of the physical processes of the model. Additionally, ArcGIS program was used. The results indicated that the model was able to simulate the surface runoff satisfactorily, representing all the hydrological data adequately. Some minor differentiations appeared which can be eliminated with the appropriate adjustments that can be decided by the researcher's experience.

  14. Bringing ecosystem services into integrated water resources management.

    PubMed

    Liu, Shuang; Crossman, Neville D; Nolan, Martin; Ghirmay, Hiyoba

    2013-11-15

    In this paper we propose an ecosystem service framework to support integrated water resource management and apply it to the Murray-Darling Basin in Australia. Water resources in the Murray-Darling Basin have been over-allocated for irrigation use with the consequent degradation of freshwater ecosystems. In line with integrated water resource management principles, Australian Government reforms are reducing the amount of water diverted for irrigation to improve ecosystem health. However, limited understanding of the broader benefits and trade-offs associated with reducing irrigation diversions has hampered the planning process supporting this reform. Ecosystem services offer an integrative framework to identify the broader benefits associated with integrated water resource management in the Murray-Darling Basin, thereby providing support for the Government to reform decision-making. We conducted a multi-criteria decision analysis for ranking regional potentials to provide ecosystem services at river basin scale. We surveyed the wider public about their understanding of, and priorities for, managing ecosystem services and then integrated the results with spatially explicit indicators of ecosystem service provision. The preliminary results of this work identified the sub-catchments with the greatest potential synergies and trade-offs of ecosystem service provision under the integrated water resources management reform process. With future development, our framework could be used as a decision support tool by those grappling with the challenge of the sustainable allocation of water between irrigation and the environment. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  15. Inversion Build-Up and Cold-Air Outflow in a Small Alpine Sinkhole

    NASA Astrophysics Data System (ADS)

    Lehner, Manuela; Whiteman, C. David; Dorninger, Manfred

    2017-06-01

    Semi-idealized model simulations are made of the nocturnal cold-air pool development in the approximately 1-km wide and 100-200-m deep Grünloch basin, Austria. The simulations show qualitatively good agreement with vertical temperature and wind profiles and surface measurements collected during a meteorological field expedition. A two-layer stable atmosphere forms in the basin, with a very strong inversion in the lowest part, below the approximate height of the lowest gap in the surrounding orography. The upper part of the stable layer is less strongly stratified and extends to the approximate height of the second-lowest gap. The basin atmosphere cools most strongly during the first few hours of the night, after which temperatures decrease only slowly. An outflow of air forms through the lowest gap in the surrounding orography. The outflow connects with a weak inflow of air through a gap on the opposite sidewall, forming a vertically and horizontally confined jet over the basin. Basin cooling shows strong sensitivity to surface-layer characteristics, highlighting the large impact of variations in vegetation and soil cover on cold-air pool development, as well as the importance of surface-layer parametrization in numerical simulations of cold-air-pool development.

  16. Strategic planning for instream flow restoration: a case study of potential climate change impacts in the central Columbia River basin.

    PubMed

    Donley, Erin E; Naiman, Robert J; Marineau, Mathieu D

    2012-10-01

    We provide a case study prioritizing instream flow restoration activities by sub-basin according to the habitat needs of Endangered Species Act (ESA)-listed salmonids relative to climate change in the central Columbia River basin in Washington State (USA). The objective is to employ scenario analysis to inform and improve existing instream flow restoration projects. We assess the sensitivity of late summer (July, August, and September) flows to the following scenario simulations - singly or in combination: climate change, changes in the quantity of water used for irrigation and possible changes to existing water resource policy. Flows for four sub-basins were modeled using the Water Evaluation and Planning system (WEAP) under historical and projected conditions of 2020 and 2040 for each scenario. Results indicate that Yakima will be the most flow-limited sub-basin with average reductions in streamflow of 41% under climate conditions of 2020 and 56% under 2040 conditions; 1.3-2.5 times greater than those of other sub-basins. In addition, irrigation plays a key role in the hydrology of the Yakima sub-basin - with flow reductions ranging from 78% to 90% under severe to extreme (i.e., 20-40%) increases in agricultural water use (2.0-4.4 times the reductions in the other sub-basins). The Yakima and Okanogan sub-basins are the most responsive to simulations of flow-bolstering policy change (providing salmon with first priority water allocation and at biologically relevant flows), as demonstrated by 91-100% target flows attained. The Wenatchee and Methow sub-basins do not exhibit similar responsiveness to simulated policy changes. Considering climate change only, we conclude that flow restoration should be prioritized first in the Yakima and Wenatchee sub-basins, and second in the Okanogan and Methow. Considering both climate change and possible policy changes, we recommend that the Yakima sub-basin receive the highest priority for flow restoration activities to sustain critical instream habitat for ESA-listed salmonids. © 2012 Blackwell Publishing Ltd.

  17. Great Basin Integrated Landscape Monitoring Pilot Summary Report

    USGS Publications Warehouse

    Finn, Sean P.; Kitchell, Kate; Baer, Lori Anne; Bedford, David R.; Brooks, Matthew L.; Flint, Alan L.; Flint, Lorraine E.; Matchett, J.R.; Mathie, Amy; Miller, David M.; Pilliod, David S.; Torregrosa, Alicia; Woodward, Andrea

    2010-01-01

    The Great Basin Integrated Landscape Monitoring Pilot project (GBILM) was one of four regional pilots to implement the U.S. Geological Survey (USGS) Science Thrust on Integrated Landscape Monitoring (ILM) whose goal was to observe, understand, and predict landscape change and its implications on natural resources at multiple spatial and temporal scales and address priority natural resource management and policy issues. The Great Basin is undergoing rapid environmental change stemming from interactions among global climate trends, increasing human populations, expanding and accelerating land and water uses, invasive species, and altered fire regimes. GBLIM tested concepts and developed tools to store and analyze monitoring data, understand change at multiple scales, and forecast landscape change. The GBILM endeavored to develop and test a landscape-level monitoring approach in the Great Basin that integrates USGS disciplines, addresses priority management questions, catalogs and uses existing monitoring data, evaluates change at multiple scales, and contributes to development of regional monitoring strategies. GBILM functioned as an integrative team from 2005 to 2010, producing more than 35 science and data management products that addressed pressing ecosystem drivers and resource management agency needs in the region. This report summarizes the approaches and methods of this interdisciplinary effort, identifies and describes the products generated, and provides lessons learned during the project.

  18. Evaluating Snow Data Assimilation Framework for Streamflow Forecasting Applications Using Hindcast Verification

    NASA Astrophysics Data System (ADS)

    Barik, M. G.; Hogue, T. S.; Franz, K. J.; He, M.

    2012-12-01

    Snow water equivalent (SWE) estimation is a key factor in producing reliable streamflow simulations and forecasts in snow dominated areas. However, measuring or predicting SWE has significant uncertainty. Sequential data assimilation, which updates states using both observed and modeled data based on error estimation, has been shown to reduce streamflow simulation errors but has had limited testing for forecasting applications. In the current study, a snow data assimilation framework integrated with the National Weather System River Forecasting System (NWSRFS) is evaluated for use in ensemble streamflow prediction (ESP). Seasonal water supply ESP hindcasts are generated for the North Fork of the American River Basin (NFARB) in northern California. Parameter sets from the California Nevada River Forecast Center (CNRFC), the Differential Evolution Adaptive Metropolis (DREAM) algorithm and the Multistep Automated Calibration Scheme (MACS) are tested both with and without sequential data assimilation. The traditional ESP method considers uncertainty in future climate conditions using historical temperature and precipitation time series to generate future streamflow scenarios conditioned on the current basin state. We include data uncertainty analysis in the forecasting framework through the DREAM-based parameter set which is part of a recently developed Integrated Uncertainty and Ensemble-based data Assimilation framework (ICEA). Extensive verification of all tested approaches is undertaken using traditional forecast verification measures, including root mean square error (RMSE), Nash-Sutcliffe efficiency coefficient (NSE), volumetric bias, joint distribution, rank probability score (RPS), and discrimination and reliability plots. In comparison to the RFC parameters, the DREAM and MACS sets show significant improvement in volumetric bias in flow. Use of assimilation improves hindcasts of higher flows but does not significantly improve performance in the mid flow and low flow categories.

  19. Research on the response of the water sources to the climatic change in Shiyang River Basin

    NASA Astrophysics Data System (ADS)

    Jin, Y. Z.; Zeng, J. J.; Hu, X. Q.; Sun, D. Y.; Song, Z. F.; Zhang, Y. L.; Lu, S. C.; Cui, Y. Q.

    2017-08-01

    The influence of the future climate change to the water resource will directly pose some impact on the watershed management planning and administrative strategies of Shiyang River Basin. With the purpose of exploring the influence of climate change to the runoff, this paper set Shiyang River as the study area and then established a SWAT basin hydrological model based on the data such as DEM, land use, soil, climate hydrology and so on. Besides, algorithm of SUFI2 embedded in SWAT-CUP software is adopted. The conclusion shows that SWAT Model can simulate the runoff process of Nanying River well. During the period of model verification and simulation, the runoff Nash-Sutcliffe efficient coefficient of the verification and simulation is 0.76 and 0.72 separately. The relative error between the simulation and actual measurement and the model efficient coefficient are both within the scope of acceptance, which means that the SWAT hydrological model can be properly applied into the runoff simulation of Shiyang River Basin. Meantime, analysis on the response of the water resources to the climate change in Shiyang River Basin indicates that the impact of climate change on runoff is remarkable under different climate change situations and the annual runoff will be greatly decreased as the precipitation falls and the temperature rises. Influence of precipitation to annual runoff is greater than that of temperature. Annual runoff differs obviously under different climate change situations. All in all, this paper tries to provide some technical assistance for the water sources development and utilization assessment and optimal configuration.

  20. IRBM for the Rio Conchos Basin as a Restoration and Conservation Tool

    NASA Astrophysics Data System (ADS)

    Barrios, E.; Rodriguez, J. A.; de La Maza, M.

    2007-12-01

    The Rio Conchos basin is the main water supply for the people of the State of Chihuahua and the middle and lower Rio Bravo in northern Mexico. Flowing for about 850 km from the highlands of the Sierra Tarahumara towards the wide valleys of the Chihuahuan Desert, the river presents recurrent periods of water stress and its basin of 6.7 million of hectares experiences a wide spectrum of problems such us long drought periods, water over allocation and extraction, water pollution, severe soil use changes. Besides, drastic soil moisture reduction is forecasted by effects of climate change. These natural and anthropological harmful situations impose a serious stress for this important and beautiful river and the rest of the basin hydrological resources. The WWF-Gonzalo Rio Arronte Alliance and its partners USAID, The Coca Cola Company and RICOH are implementing since 2004 an Integrated River Basin Management (IRBM) strategy to recover the natural integrity of the Rio Conchos in the form of environmental flow. The strategy includes the five basic working lines: i) development of river basin scientific knowledge, ii) strengthen of local institutional capacities, iii) development of demonstrative projects, iv) strengthen of indigenous communities, v) education and communication. Although the implementation of the IRBM program is expected to show main results until the year 2050, some interesting results have been obtained. The strategy has provided i) new basic knowledge about the basin dynamic events such as soil change use rates, baseline values of biological integrity, water economic values, among others; ii) strong program acceptance by government and main water users (farmers), and the integration of a working group formed by government, academia and NGO's; iii) local acceptance and understanding of benefits about basin management (soil recovery, reforestation, ecological sanitation) through demonstrative projects; iv) social organization; v) few advances in education and communications have been obtained. Some of the negative results of program implementation are lack of positive acceptance by powerful groups and a couple of NGO's currently working in the basin, and low credibility from indigenous governors (leaders of the Tarahumara group).

  1. Use of modflow drain package for simulating inter-basin transfer in abandoned coal mines

    USGS Publications Warehouse

    Kozar, Mark D.; McCoy, Kurt J.

    2017-01-01

    Simulation of groundwater flow in abandoned mines is difficult, especially where flux to and from mines is unknown or poorly quantified, and inter-basin transfer of groundwater occurs. A 3-year study was conducted in the Elkhorn area, West Virginia to better understand groundwater-flow processes and inter-basin transfer in above drainage abandoned coal mines. The study area was specifically selected, as all mines are located above the elevation of tributary receiving streams, to allow accurate measurements of discharge from mine portals and tributaries for groundwater model calibration. Abandoned mine workings were simulated in several ways, initially as a layer of high hydraulic conductivity bounded by lower permeability rock in adjacent strata, and secondly as rows of higher hydraulic conductivity embedded within a lower hydraulic conductivity coal aquifer matrix. Regardless of the hydraulic conductivity assigned to mine workings, neither approach to simulate mine workings could accurately reproduce the inter-basin transfer of groundwater from adjacent watersheds. To resolve the problem, a third approach was developed. The MODFLOW DRAIN package was used to simulate seepage into and through mine workings discharging water under unconfined conditions to Elkhorn Creek, North Fork, and tributaries of the Bluestone River. Drain nodes were embedded in a matrix of uniform hydraulic conductivity cells that represented the coal mine aquifer. Drain heads were empirically defined from well observations, and elevations were based on structure contours for the Pocahontas No. 3 mine workings. Use of the DRAIN package to simulate mine workings as an internal boundary condition resolved the inter-basin transfer problem, and effectively simulated a shift from a topographic- dominated to a dip-dominated flow system, by dewatering overlying unmined strata and shifting the groundwater drainage divide up dip within the Pocahontas No. 3 coal seam several kilometers into the adjacent Bluestone River Watershed. Model simulations prior to use of the DRAIN package for simulating mine workings produced estimated flows of 0.32 to 0.34 m3/s in each of the similar sized Elkhorn Creek and North Fork Watersheds, but failed to estimate inter-basin transfer of groundwater from the adjacent Bluestone River Watershed. The simulation of mine entries and discharge using the MODFLOW DRAIN package produced estimated flows of 0.46 and 0.26 m3/s for the Elkhorn Creek and North Fork watersheds respectively, which matched well measured flows for the respective watersheds of 0.47 and 0.26 m3/s.

  2. Application of the satellite system of the earth's gravity field measurement (GRACE) for the evaluation of water balance in large Russian river catchments

    NASA Astrophysics Data System (ADS)

    Frolova, Natalia; Zotov, Leonid; Grigoriev, Vadim; Sazonov, Alexey; Kireeva, Maria; Krylenko, Inna

    2017-04-01

    Space-based Earth observing systems provided a substantially large amount of information to the scientific community in recent decades. Cumulative effects of redistribution of masses in the Earth system can be seen in the changes of the gravity field of the Earth. Gravity Recovery and Climate Experiment (GRACE) satellites, launched 17.03.2002 from Plesetsk, provide a set of monthly Earth's gravity field observations. GRACE data is very useful for hydrological and climatological studies, especially over large territory, not completely covered by the meteorological and hydrological networks, like Russia. Possible application of the satellite gravity survey data obtained under the GRACE for solving various hydrological problems is discussed. The GRACE-based monthly gravity field data are transformed into the maps of water level equivalent and averaged for the catchments of the largest rivers of Russia. The temporal variability of the parameter is analyzed. Possible application of the GRACE data for the evaluation of particular components of water balance within the largest river basins of the European part of Russia is discussed. After averaging over 15 large Russian rivers basins annual component shows amplitude increase since 2009. Trend component grows until 2009 and then reaches a plateau. It is mostly dominated by Siberian rivers. Map for the trend show gravity field increase in Siberia, at Back Sea and decrease over Caspian Sea since 2003. GRACE satellite gravimetry data can be used for estimating terrestrial water storage (TWS) in a river basin scale. Terrestrial water storage (TWS) is the integrated sum of all basin storages (surface water bodies, soil and ground aquifer, snowpack and glaciers) and the ability to estimate TWS dynamics is useful for understanding the basin's water cycle, its interconnection with the local climate, physics of predictability of extreme hydrological events. Despite the importance of the TWS estimates, reliable ground-based monitoring data of all TWS components are scarce or absent at all. Since observations are not sufficient to monitor TWS, hydrological models are considered as a comprehensive tool to simulate TWS components at a basin scale. However accuracy of the model-derived TWS is influenced by the uncertainty of the model structure and parameters, reliability of input data, etc. To improve the TWS-estimates, it is reasonable to combine the simulated TWS with independent observations provided by the GRACE gravity data. Ninety-seven monthly TWS retrieval from GRACE data (from April 2002 to December 2009) was examined and compared with TWS-estimates obtained by the ECOMAG hydrological model simulations. The case study was carried out for the Northern Dvina River basin. Quantitative analyze between the hydrological model and GRACE-based TWS showed that latter is in good consistency with the simulation results on both seasonal and inter-annual time scales. Overall, the results highlight the benefit of assimilating GRACE data for hydrological applications, particularly in data-sparse regions, while also providing insight on future refinements of the methodology of GRACE-data application in watershed hydrology. The study is financially supported by the Russian Foundation for Basic Research (Proj.№ 16-35-60080; 16-05-00753) and the Russian Science Foundation (Grant No. 14-17-00155).

  3. Hydrogeologic framework and preliminary simulation of ground-water flow in the Mimbres Basin, southwestern New Mexico

    USGS Publications Warehouse

    Hanson, R.T.; McLean, J.S.; Miller, Ryan S.

    1994-01-01

    The bolson-fill aquifer, the major water-yielding unit in the Mimbres Basin, southwestern New Mexico, ranges in thickness from 0 to about 3,700 feet. Recharge to the bolson-fill aquifer occurs by infiltration of ephemeral streams that cross the basin margin, infiltration from precipitation and streamflow, ground-water underflow from adjacent basins, and infiltration of springflow from adjacent bedrock units within the basin. Ground water generally flows southward from the northern highland areas of the basin. Ground-water discharge consists of pumpage from wells, transpiration by plants, outflow to playas and springs in the Los Muertos Basin in Mexico, discharge to the Mimbres River, and ground-water flow to the Mesilla Basin near Mason Draw. Before 1910, ground-water recharge and discharge were approximately equal; by 1975, however, about 75 percent of the 146,000 acre-feet withdrawn annually was ground water, most of it from aquifer storage. The transmissivity of the bolson-fill aquifer determined from aquifer tests and specific-capacity data ranges from 10 to 50,000 feet squared per day. Hydraulic conductivity, calculated from saturated thickness and transmissivity, ranges from 0.03 to 800 feet per day, with median values of about 18 feet per day in the Deming area and 6 feet per day elsewhere. Reported storage-coefficient values representing confined parts of the aquifer range from 0.00036 to 0.0036, and those representing unconfined parts of the aquifer range from 0.02 to 0.24. Water quality in the north and central parts of the Mimbres Basin is suitable for most uses. Due to its large salinity and alkalinity, some of the ground water in the south and southeastern areas of the bolson-fill aquifer may not be suitable for irrigation or domestic use. A preliminary two-dimensional digital model was constructed to evaluate ground-water flow in the bolson-fill aquifer. The model was divided into zones of uniform hydraulic conductivity corresponding to the major structural elements of the basin. For simulation purposes, hydraulic conductivity in the central part of the basin ranged from 2.2 to 4.4 feet per day, whereas locally along the edges of the aquifer less certain values ranged from 0.003 to 62 feet per day Analysis of the results of this predevelopment model indicated that use of the mountain-front recharge method overestimates total recharge and that evapotranspiration is substantial. The simulated total inflow was about 55 percent of that estimated in a water budget for the Mimbres Basin.Ground-water development between 1930 and 1985 was simulated using storage-coefficient values of 0.01 and 0.02 for the Gila Conglomerate, 0.04 to 0.17 for bolson-fill deposits, and 0.001 for bolson fill capped with lacustrine clay. The simulated transient water budget indicated that most of the water pumped by 1985 came from storage, and lesser but substantial amounts came from reductions in evapotranspiration.

  4. Suwannee river basin and estuary integrated science workshop: September 22-24, 2004 Cedar Key, Florida

    USGS Publications Warehouse

    Katz, Brian; Raabe, Ellen

    2004-01-01

    In response to the growing number of environmental concerns in the mostly pristine Suwannee River Basin and the Suwannee River Estuary system, the States of Florida and Georgia, the Federal government, and other local organizations have identified the Suwannee River as an ecosystem in need of protection because of its unique biota and important water resources. Organizations with vested interests in the region formed a coalition, the Suwannee Basin Interagency Alliance (SBIA), whose goals are to promote coordination in the identification, management, and scientific knowledge of the natural resources in the basin and estuary. To date, an integrated assessment of the physical, biological, and water resources has not been completed. A holistic, multi-disciplinary approach is being pursued to address the research needs in the basin and estuary and to provide supportive data for meeting management objectives of the entire ecosystem. The USGS is well situated to focus on the larger concerns of the basin and estuary by addressing specific research questions linking water supply and quality to ecosystem function and health across county and state boundaries. A strategic plan is being prepared in cooperation with Federal, State, and local agencies to identify and implement studies to address the most compelling research issues and management questions, and to conduct fundamental environmental monitoring studies. The USGS, Suwannee River Water Management District and the Florida Marine Research Institute are co-sponsoring this scientific workshop on the Suwannee River Basin and Estuary to: Discuss current and past research findings, Identify information gaps and research priorities, and Develop an action plan for coordinated and relevant research activities in the future. This workshop builds on the highly successful basin-wide conference sponsored by the Suwannee Basin Interagency Alliance that was held three years ago in Live Oak, Florida. This years workshop will focus on identifying information needs and priorities and developing partnerships. The USGS is seeking to define the role of the USGS Florida Integrated Science Center (FISC) in conducting integrated research in the Suwannee River Basin, and to establish a cooperative program with other agencies. Participants interested in river, floodplain, springs, estuary, or basin-wide issues are encouraged to attend. Topics for this years workshop include: Water quality and geochemistry: nutrient enrichment, reduction of nutrient loading to ground water, contaminants, and land use, Hydrogeology: interactions among ground water, surface water and ecosystem, modeling, and baseline mapping, Ecosystem dynamics: structure, process, species, and habitats (estuarine, riverine, floodplain, and wetland), and Information management: data sharing, database development, geographic information system (GIS), and basin-wide models.

  5. MODELING WILDLIFE RESPONSE TO LANDSCAPE CHANGE IN OREGON'S WILLAMETTE RIVER BASIN

    EPA Science Inventory

    The PATCH simulation model was used to predict the response of 17 wildlife species to
    three plausible scenarios of habitat change in Oregon's Willamette River Basin. This 30
    thousand square-kilometer basin comprises about 12% of the state of Oregon, encompasses extensive f...

  6. Bringing Water into an Integrated Assessment Framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izaurralde, Roberto C.; Thomson, Allison M.; Sands, Ronald

    We developed a modeling capability to understand how water is allocated within a river basin and examined present and future water allocations among agriculture, energy production, other human requirements, and ecological needs. Water is an essential natural resource needed for food and fiber production, household and industrial uses, energy production, transportation, tourism and recreation, and the functioning of natural ecosystems. Anthropogenic climate change and population growth are anticipated to impose unprecedented pressure on water resources during this century. Pacific Northwest National Laboratory (PNNL) researchers have pioneered the development of integrated assessment (IA) models for the analysis of energy and economicmore » systems under conditions of climate change. This Laboratory Directed Research and Development (LDRD) effort led to the development of a modeling capability to evaluate current and future water allocations between human requirements and ecosystem services. The Water Prototype Model (WPM) was built in STELLA®, a computer modeling package with a powerful interface that enables users to construct dynamic models to simulate and integrate many processes (biological, hydrological, economics, sociological). A 150,404-km2 basin in the United States (U.S.) Pacific Northwest region served as the platform for the development of the WPM. About 60% of the study basin is in the state of Washington with the rest in Oregon. The Columbia River runs through the basin for 874 km, starting at the international border with Canada and ending (for the purpose of the simulation) at The Dalles dam. Water enters the basin through precipitation and from streamflows originating from the Columbia River at the international border with Canada, the Spokane River, and the Snake River. Water leaves the basin through evapotranspiration, consumptive uses (irrigation, livestock, domestic, commercial, mining, industrial, and off-stream power generation), and streamflow through The Dalles dam. Water also enters the Columbia River via runoff from land. The model runs on a monthly timescale to account for the impact of seasonal variations of climate, streamflows, and water uses. Data for the model prototype were obtained from national databases and ecosystem model results. The WPM can be run from three sources: 1) directly from STELLA, 2) with the isee Player®, or 3) the web version of WPM constructed with NetSim® software. When running any of these three versions, the user is presented a screen with a series of buttons, graphs, and a table. Two of the buttons provide the user with background and instructions on how to run the model. Currently, there are five types of scenarios that can be manipulated alone or in combination using the Sliding Input Devices: 1) interannual variability (e.g., El Niño), 2) climate change, 3) salmon policy, 4) future population, and 5) biodiesel production. Overall, the WPM captured the effects of streamflow conditions on hydropower production. Under La Niña conditions, more hydropower is available during all months of the year, with a substantially higher availability during spring and summer. Under El Niño conditions, hydropower would be reduced, with a total decline of 15% from normal weather conditions over the year. A policy of flow augmentation to facilitate the spring migration of smolts to the ocean would also reduce hydropower supply. Modeled hydropower generation was 23% greater than the 81 TWh reported in the 1995 U.S. Geological Survey (USGS) database. The modeling capability presented here contains the essential features to conduct basin-scale analyses of water allocation under current and future climates. Due to its underlying data structure iv and conceptual foundation, the WPM should be appropriate to conduct IA modeling at national and global scales.« less

  7. Effects of anthropogenic groundwater exploitation on land surface processes: A case study of the Haihe River Basin, Northern China

    NASA Astrophysics Data System (ADS)

    Xie, Z.; Zou, J.; Qin, P.; Sun, Q.

    2014-12-01

    In this study, we incorporated a groundwater exploitation scheme into the land surface model CLM3.5 to investigate the effects of the anthropogenic exploitation of groundwater on land surface processes in a river basin. Simulations of the Haihe River Basin in northern China were conducted for the years 1965-2000 using the model. A control simulation without exploitation and three exploitation simulations with different water demands derived from socioeconomic data related to the Basin were conducted. The results showed that groundwater exploitation for human activities resulted in increased wetting and cooling effects at the land surface and reduced groundwater storage. A lowering of the groundwater table, increased upper soil moisture, reduced 2 m air temperature, and enhanced latent heat flux were detected by the end of the simulated period, and the changes at the land surface were related linearly to the water demands. To determine the possible responses of the land surface processes in extreme cases (i.e., in which the exploitation process either continued or ceased), additional hypothetical simulations for the coming 200 years with constant climate forcing were conducted, regardless of changes in climate. The simulations revealed that the local groundwater storage on the plains could not contend with high-intensity exploitation for long if the exploitation process continues at the current rate. Changes attributable to groundwater exploitation reached extreme values and then weakened within decades with the depletion of groundwater resources and the exploitation process will therefore cease. However, if exploitation is stopped completely to allow groundwater to recover, drying and warming effects, such as increased temperature, reduced soil moisture, and reduced total runoff, would occur in the Basin within the early decades of the simulation period. The effects of exploitation will then gradually disappear, and the land surface variables will approach the natural state and stabilize at different rates. Simulations were also conducted for cases in which exploitation either continues or ceases using future climate scenario outputs from a general circulation model. The resulting trends were almost the same as those of the simulations with constant climate forcing.

  8. Use of statistically and dynamically downscaled atmospheric model output for hydrologic simulations in three mountainous basins in the western United States

    USGS Publications Warehouse

    Hay, L.E.; Clark, M.P.

    2003-01-01

    This paper examines the hydrologic model performance in three snowmelt-dominated basins in the western United States to dynamically- and statistically downscaled output from the National Centers for Environmental Prediction/National Center for Atmospheric Research Reanalysis (NCEP). Runoff produced using a distributed hydrologic model is compared using daily precipitation and maximum and minimum temperature timeseries derived from the following sources: (1) NCEP output (horizontal grid spacing of approximately 210 km); (2) dynamically downscaled (DDS) NCEP output using a Regional Climate Model (RegCM2, horizontal grid spacing of approximately 52 km); (3) statistically downscaled (SDS) NCEP output; (4) spatially averaged measured data used to calibrate the hydrologic model (Best-Sta) and (5) spatially averaged measured data derived from stations located within the area of the RegCM2 model output used for each basin, but excluding Best-Sta set (All-Sta). In all three basins the SDS-based simulations of daily runoff were as good as runoff produced using the Best-Sta timeseries. The NCEP, DDS, and All-Sta timeseries were able to capture the gross aspects of the seasonal cycles of precipitation and temperature. However, in all three basins, the NCEP-, DDS-, and All-Sta-based simulations of runoff showed little skill on a daily basis. When the precipitation and temperature biases were corrected in the NCEP, DDS, and All-Sta timeseries, the accuracy of the daily runoff simulations improved dramatically, but, with the exception of the bias-corrected All-Sta data set, these simulations were never as accurate as the SDS-based simulations. This need for a bias correction may be somewhat troubling, but in the case of the large station-timeseries (All-Sta), the bias correction did indeed 'correct' for the change in scale. It is unknown if bias corrections to model output will be valid in a future climate. Future work is warranted to identify the causes for (and removal of) systematic biases in DDS simulations, and improve DDS simulations of daily variability in local climate. Until then, SDS based simulations of runoff appear to be the safer downscaling choice.

  9. Using a basin-scale hydrological model to estimate crop transpiration and soil evaporation

    NASA Astrophysics Data System (ADS)

    Kite, G.

    2000-03-01

    Increasing populations and expectations, declining crop yields and the resulting increased competition for water necesitate improvements in irrigation management and productivity. A key factor in defining agricultural productivity is to be able to simulate soil evaporation and crop transpiration. In agribusiness terms, crop transpiration is a useful process while soil and open-water evaporations are wasteful processes. In this study a distributed hydrological model was used to compute daily evaporation and transpiration for a variety of crops and other land covers within the 17,200 km 2 Gediz Basin in western Turkey. The model, SLURP, describes the complete hydrological cycle for each land cover within a series of sub-basins including all dams, reservoirs, regulators and irrigation schemes in the basin. The sub-basins and land covers are defined by analysing a digital elevation model and NOAA AVHRR satellite data. In this study, the model uses the FAO implementation of the Penman-Monteith equation to simulate soil evaporation and crop transpiration. The results of the model runs provide time series of data on streamflow at many points along the river system, abstractions and return flows from crops within the irrigation schemes and areally distributed soil evaporation and crop transpiration across the entire basin on each day of an 11 year period. The results show that evaporation and transpiration vary widely across the basin on any one day and over the irrigation season and can be used to evaluate the effectiveness of the various irrigation strategies used in the basin. The advantages of using such a model as compared to deriving evapotranspiration from satellite data are that the model obtains results for each day of an indefinitely long period, as opposed to occasional snapshots, and can also be used to simulate alternate scenarios.

  10. Forecasting the Amount of Waste-Sewage Water Discharged into the Yangtze River Basin Based on the Optimal Fractional Order Grey Model

    PubMed Central

    Li, Shuliang; Meng, Wei; Xie, Yufeng

    2017-01-01

    With the rapid development of the Yangtze River economic belt, the amount of waste-sewage water discharged into the Yangtze River basin increases sharply year by year, which has impeded the sustainable development of the Yangtze River basin. The water security along the Yangtze River basin is very important for China, It is something about water security of roughly one-third of China’s population and the sustainable development of the 19 provinces, municipalities and autonomous regions among the Yangtze River basin. Therefore, a scientific prediction of the amount of waste-sewage water discharged into Yangtze River basin has a positive significance on sustainable development of industry belt along with Yangtze River basin. This paper builds the fractional DWSGM (1,1) (DWSGM (1,1) model is short for Discharge amount of Waste Sewage Grey Model for one order equation and one variable) model based on the fractional accumulating generation operator and fractional reducing operator, and calculates the optimal order of “r” by using particle swarm optimization (PSO) algorithm for solving the minimum average relative simulation error. Meanwhile, the simulation performance of DWSGM (1,1) model with the optimal fractional order is tested by comparing the simulation results of grey prediction models with different orders. Finally, the optimal fractional order DWSGM (1,1) grey model is applied to predict the amount of waste-sewage water discharged into the Yangtze River basin, and corresponding countermeasures and suggestions are put forward through analyzing and comparing the prediction results. This paper has positive significance on enriching the fractional order modeling method of the grey system. PMID:29295517

  11. DEM Simulated Results And Seismic Interpretation of the Red River Fault Displacements in Vietnam

    NASA Astrophysics Data System (ADS)

    Bui, H. T.; Yamada, Y.; Matsuoka, T.

    2005-12-01

    The Song Hong basin is the largest Tertiary sedimentary basin in Viet Nam. Its onset is approximately 32 Ma ago since the left-lateral displacement of the Red River Fault commenced. Many researches on structures, formation and tectonic evolution of the Song Hong basin have been carried out for a long time but there are still remained some problems that needed to put into continuous discussion such as: magnitude of the displacements, magnitude of movement along the faults, the time of tectonic inversion and right lateral displacement. Especially the mechanism of the Song Hong basin formation is still in controversy with many different hypotheses due to the activation of the Red River fault. In this paper PFC2D based on the Distinct Element Method (DEM) was used to simulate the development of the Red River fault system that controlled the development of the Song Hong basin from the onshore to the elongated portion offshore area. The numerical results show the different parts of the stress field such as compress field, non-stress field, pull-apart field of the dynamic mechanism along the Red River fault in the onshore area. This propagation to the offshore area is partitioned into two main branch faults that are corresponding to the Song Chay and Song Lo fault systems and said to restrain the east and west flanks of the Song Hong basin. The simulation of the Red River motion also showed well the left lateral displacement since its onset. Though it is the first time the DEM method was applied to study the deformation and geodynamic evolution of the Song Hong basin, the results showed reliably applied into the structural configuration evaluation of the Song Hong basin.

  12. Forecasting the Amount of Waste-Sewage Water Discharged into the Yangtze River Basin Based on the Optimal Fractional Order Grey Model.

    PubMed

    Li, Shuliang; Meng, Wei; Xie, Yufeng

    2017-12-23

    With the rapid development of the Yangtze River economic belt, the amount of waste-sewage water discharged into the Yangtze River basin increases sharply year by year, which has impeded the sustainable development of the Yangtze River basin. The water security along the Yangtze River basin is very important for China, It is something aboutwater security of roughly one-third of China's population and the sustainable development of the 19 provinces, municipalities and autonomous regions among the Yangtze River basin. Therefore, a scientific prediction of the amount of waste-sewage water discharged into Yangtze River basin has a positive significance on sustainable development of industry belt along with Yangtze River basin. This paper builds the fractional DWSGM(1,1)(DWSGM(1,1) model is short for Discharge amount of Waste Sewage Grey Model for one order equation and one variable) model based on the fractional accumulating generation operator and fractional reducing operator, and calculates the optimal order of "r" by using particle swarm optimization(PSO)algorithm for solving the minimum average relative simulation error. Meanwhile, the simulation performance of DWSGM(1,1)model with the optimal fractional order is tested by comparing the simulation results of grey prediction models with different orders. Finally, the optimal fractional order DWSGM(1,1)grey model is applied to predict the amount of waste-sewage water discharged into the Yangtze River basin, and corresponding countermeasures and suggestions are put forward through analyzing and comparing the prediction results. This paper has positive significance on enriching the fractional order modeling method of the grey system.

  13. MULTI-TEMPORAL LAND USE GENERATION FOR THE OHIO RIVER BASIN

    EPA Science Inventory

    A set of backcast and forecast land use maps of the Ohio River Basin (ORB) was developed that could be used to assess the spatial-temporal patterns of land use/land cover (LULC) change in this important basin. This approach was taken to facilitate assessment of integrated sustain...

  14. NASA-modified precipitation products to improve USEPA nonpoint source water quality modeling for the Chesapeake Bay.

    PubMed

    Nigro, Joseph; Toll, David; Partington, Ed; Ni-Meister, Wenge; Lee, Shihyan; Gutierrez-Magness, Angelica; Engman, Ted; Arsenault, Kristi

    2010-01-01

    The USEPA has estimated that over 20,000 water bodies within the United States do not meet water quality standards. One of the regulations in the Clean Water Act of 1972 requires states to monitor the total maximum daily load, or the amount of pollution that can be carried by a water body before it is determined to be "polluted," for any watershed in the United States (Copeland, 2005). In response to this mandate, the USEPA developed Better Assessment Science Integrating Nonpoint Sources (BASINS) as a decision support tool for assessing pollution and to guide the decision-making process for improving water quality. One of the models in BASINS, the Hydrological Simulation Program-Fortran (HSPF), computes continuous streamflow rates and pollutant concentration at each basin outlet. By design, precipitation and other meteorological data from weather stations serve as standard model input. In practice, these stations may be unable to capture the spatial heterogeneity of precipitation events, especially if they are few and far between. An attempt was made to resolve this issue by substituting station data with NASA-modified/NOAA precipitation data. Using these data within HSPF, streamflow was calculated for seven watersheds in the Chesapeake Bay Basin during low flow periods, convective storm periods, and annual flows. In almost every case, the modeling performance of HSPF increased when using the NASA-modified precipitation data, resulting in better streamflow statistics and, potentially, in improved water quality assessment.

  15. Improving simulations of snow water equivalent and total water storage changes over the Upper Yangtze River basin using multi-source remote sensing data

    NASA Astrophysics Data System (ADS)

    Han, P.; Long, D.

    2017-12-01

    Snow water equivalent (SWE) and total water storage (TWS) changes are important hydrological state variables over cryospheric regions, such as China's Upper Yangtze River (UYR) basin. Accurate simulation of these two state variables plays a critical role in understanding hydrological processes over this region and, in turn, benefits water resource management, hydropower development, and ecological integrity over the lower reaches of the Yangtze River, one of the largest rivers globally. In this study, an improved CREST model coupled with a snow and glacier melting module was used to simulate SWE and TWS changes over the UYR, and to quantify contributions of snow and glacier meltwater to the total runoff. Forcing, calibration, and validation data are mainly from multi-source remote sensing observations, including satellite-based precipitation estimates, passive microwave remote sensing-based SWE, and GRACE-derived TWS changes, along with streamflow measurements at the Zhimenda gauging station. Results show that multi-source remote sensing information can be extremely valuable in model forcing, calibration, and validation over the poorly gauged region. The simulated SWE and TWS changes and the observed counterparts are highly consistent, showing NSE coefficients higher than 0.8. The results also show that the contributions of snow and glacier meltwater to the total runoff are 8% and 6%, respectively, during the period 2003‒2014, which is an important source of runoff. Moreover, from this study, the TWS is found to increase at a rate of 5 mm/a ( 0.72 Gt/a) for the period 2003‒2014. The snow melting module may overestimate SWE for high precipitation events and was improved in this study. Key words: CREST model; Remote Sensing; Melting model; Source Region of the Yangtze River

  16. 4. View, fuel waste tanks and containment basin in foreground ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. View, fuel waste tanks and containment basin in foreground with Systems Integration Laboratory (T-28) uphill in background, looking southeast. At the extreme right is the Long-Term Oxidizer Silo (T-28B) and the Oxidizer Conditioning Structure (T-28D). - Air Force Plant PJKS, Systems Integration Laboratory, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  17. Wave Energy Potential in the Eastern Mediterranean Levantine Basin. An Integrated 10-year Study

    DTIC Science & Technology

    2014-01-01

    SUBTITLE Wave energy potential in the Eastern Mediterranean Levantine Basin. An integrated 10-year study 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c... Cardone CV, Ewing JA, et al. The WAM model e a third generation ocean wave prediction model. J Phys Oceanogr 1988;18(12):1775e810. [70] Varinou M

  18. Biomass burning CCN enhance the dynamics of a mesoscale convective system over the La Plata Basin: a numerical approach

    NASA Astrophysics Data System (ADS)

    Camponogara, Gláuber; Assunção Faus da Silva Dias, Maria; Carrió, Gustavo G.

    2018-02-01

    High aerosol loadings are discharged into the atmosphere every year by biomass burning in the Amazon and central Brazil during the dry season (July-December). These particles, suspended in the atmosphere, can be carried via a low-level jet toward the La Plata Basin, one of the largest hydrographic basins in the world. Once they reach this region, the aerosols can affect mesoscale convective systems (MCSs), whose frequency is higher during the spring and summer over the basin. The present study is one of the first that seeks to understand the microphysical effects of biomass burning aerosols from the Amazon Basin on mesoscale convective systems over the La Plata Basin. We performed numerical simulations initialized with idealized cloud condensation nuclei (CCN) profiles for an MCS case observed over the La Plata Basin on 21 September 2010. The experiments reveal an important link between CCN number concentration and MCS dynamics, where stronger downdrafts were observed under higher amounts of aerosols, generating more updraft cells in response. Moreover, the simulations show higher amounts of precipitation as the CCN concentration increases. Despite the model's uncertainties and limitations, these results represent an important step toward the understanding of possible impacts on the Amazon biomass burning aerosols over neighboring regions such as the La Plata Basin.

  19. The origin of lunar mascon basins.

    PubMed

    Melosh, H J; Freed, Andrew M; Johnson, Brandon C; Blair, David M; Andrews-Hanna, Jeffrey C; Neumann, Gregory A; Phillips, Roger J; Smith, David E; Solomon, Sean C; Wieczorek, Mark A; Zuber, Maria T

    2013-06-28

    High-resolution gravity data from the Gravity Recovery and Interior Laboratory spacecraft have clarified the origin of lunar mass concentrations (mascons). Free-air gravity anomalies over lunar impact basins display bull's-eye patterns consisting of a central positive (mascon) anomaly, a surrounding negative collar, and a positive outer annulus. We show that this pattern results from impact basin excavation and collapse followed by isostatic adjustment and cooling and contraction of a voluminous melt pool. We used a hydrocode to simulate the impact and a self-consistent finite-element model to simulate the subsequent viscoelastic relaxation and cooling. The primary parameters controlling the modeled gravity signatures of mascon basins are the impactor energy, the lunar thermal gradient at the time of impact, the crustal thickness, and the extent of volcanic fill.

  20. High-resolution Continental Scale Land Surface Model incorporating Land-water Management in United States

    NASA Astrophysics Data System (ADS)

    Shin, S.; Pokhrel, Y. N.

    2016-12-01

    Land surface models have been used to assess water resources sustainability under changing Earth environment and increasing human water needs. Overwhelming observational records indicate that human activities have ubiquitous and pertinent effects on the hydrologic cycle; however, they have been crudely represented in large scale land surface models. In this study, we enhance an integrated continental-scale land hydrology model named Leaf-Hydro-Flood to better represent land-water management. The model is implemented at high resolution (5km grids) over the continental US. Surface water and groundwater are withdrawn based on actual practices. Newly added irrigation, water diversion, and dam operation schemes allow better simulations of stream flows, evapotranspiration, and infiltration. Results of various hydrologic fluxes and stores from two sets of simulation (one with and the other without human activities) are compared over a range of river basin and aquifer scales. The improved simulations of land hydrology have potential to build consistent modeling framework for human-water-climate interactions.

  1. Evaluating temporal changes in stream condition in three New Jersey rive basins by using an index of biotic integrity

    USGS Publications Warehouse

    Chang, Ming; Kennen, Jonathan G.; Del Corso, Ellyn

    2000-01-01

    An index of biotic integrity (!B!) modified for New Jersey streams was used to compare changes in stream condition from the 1970s to the 1990s in Delaware, Passaic, and Raritan River Basins. Stream condition was assessed at 88 sampling locations. Mean IBI scores for all basins increased from the 1970s to the 1990s, but the stream-condition category improved (from fair to good) only for the Delaware River Basin. The number of benthic insectivores and the proportion of insectivorous cyprinds increased in all three basins; however, the number of white suckers decreased significantly only in the Delaware River Basin. Results of linear-regression analysis indicate a significant correlation between the percentage of altered land in the basin and change in IBI score (1970s to 1990s) for Delaware River sites. Results of analysis of variance of the rank-transformed IBI scores for the 1970s and 1990s indicate that the three basins was equal in the 1970s. Results of a multiple-comparison test demonstrated that the 1990s IBI values for the Delaware River Basin differed significantly from those for the Passaic and Raritan River Basins. Many factors, such as the imposition of the more stringent standards on water-water and industrial discharges during the 1980s and changes in land-use practices, likely contributed to the change in the Delaware River Basin. A general increase in IBI values for the Passaic, Raritan, and Delaware River Basins over the past 25 years appears to reflect overall improvements in water quality.

  2. Streamflow changes in the Sierra Nevada, California, simulated using a statistically downscaled general circulation model scenario of climate change

    USGS Publications Warehouse

    Wilby, Robert L.; Dettinger, Michael D.

    2000-01-01

    Simulations of future climate using general circulation models (GCMs) suggest that rising concentrations of greenhouse gases may have significant consequences for the global climate. Of less certainty is the extent to which regional scale (i.e., sub-GCM grid) environmental processes will be affected. In this chapter, a range of downscaling techniques are critiqued. Then a relatively simple (yet robust) statistical downscaling technique and its use in the modelling of future runoff scenarios for three river basins in the Sierra Nevada, California, is described. This region was selected because GCM experiments driven by combined greenhouse-gas and sulphate-aerosol forcings consistently show major changes in the hydro-climate of the southwest United States by the end of the 21st century. The regression-based downscaling method was used to simulate daily rainfall and temperature series for streamflow modelling in three Californian river basins under current-and future-climate conditions. The downscaling involved just three predictor variables (specific humidity, zonal velocity component of airflow, and 500 hPa geopotential heights) supplied by the U.K. Meteorological Office couple ocean-atmosphere model (HadCM2) for the grid point nearest the target basins. When evaluated using independent data, the model showed reasonable skill at reproducing observed area-average precipitation, temperature, and concomitant streamflow variations. Overall, the downscaled data resulted in slight underestimates of mean annual streamflow due to underestimates of precipitation in spring and positive temperature biases in winter. Differences in the skill of simulated streamflows amongst the three basins were attributed to the smoothing effects of snowpack on streamflow responses to climate forcing. The Merced and American River basins drain the western, windward slope of the Sierra Nevada and are snowmelt dominated, whereas the Carson River drains the eastern, leeward slope and is a mix of rainfall runoff and snowmelt runoff. Simulated streamflow in the American River responds rapidly and sensitively to daily-scale temperature and precipitation fluctuations and errors; in the Merced and Carson Rivers, the response to the same short-term influences is much less. Consequently, the skill of simulated flows was significantly lower in the American River model than in the Carson and Merced. The physiography of the three basins also accounts for differences in their sensitivities to future climate change. Increases in winter precipitation exceeding +100% coupled with mean temperature rises greater than +2°C result in increased winter streamflows in all three basins. In the Merced and Carson basins, these streamflow increases reflect large changes in winter snowpack, whereas the streamflow changes in the lower elevation American basin are driven primarily by rainfall runoff. Furthermore, reductions in winter snowpack in the American River basin, owing to less precipitation falling as snow and earlier melting of snow at middle elevations, lead to less spring and summer streamflow. Taken collectively, the downscaling results suggest significant changes to both the timing and magnitude of streamflows in the Sierra Nevada by the end of the 21st Century. In the higher elevation basins, the HadCM2 scenario implies more annual streamflow and more streamflow during the spring and summer months that are critical for water-resources management in California. Depending on the relative significance of rainfall runoff and snowmelt, each basin responds in its own way to regional climate forcing. Generally, then, climate scenarios need to be specified — by whatever means — with sufficient temporal and spatial resolution to capture subtle orographic influences if projections of climate-change responses are to be useful and reproducible.

  3. Technique for simulating peak-flow hydrographs in Maryland

    USGS Publications Warehouse

    Dillow, Jonathan J.A.

    1998-01-01

    The efficient design and management of many bridges, culverts, embankments, and flood-protection structures may require the estimation of time-of-inundation and (or) storage of floodwater relating to such structures. These estimates can be made on the basis of information derived from the peak-flow hydrograph. Average peak-flow hydrographs corresponding to a peak discharge of specific recurrence interval can be simulated for drainage basins having drainage areas less than 500 square miles in Maryland, using a direct technique of known accuracy. The technique uses dimensionless hydrographs in conjunction with estimates of basin lagtime and instantaneous peak flow. Ordinary least-squares regression analysis was used to develop an equation for estimating basin lagtime in Maryland. Drainage area, main channel slope, forest cover, and impervious area were determined to be the significant explanatory variables necessary to estimate average basin lagtime at the 95-percent confidence interval. Qualitative variables included in the equation adequately correct for geographic bias across the State. The average standard error of prediction associated with the equation is approximated as plus or minus (+/-) 37.6 percent. Volume correction factors may be applied to the basin lagtime on the basis of a comparison between actual and estimated hydrograph volumes prior to hydrograph simulation. Three dimensionless hydrographs were developed and tested using data collected during 278 significant rainfall-runoff events at 81 stream-gaging stations distributed throughout Maryland and Delaware. The data represent a range of drainage area sizes and basin conditions. The technique was verified by applying it to the simulation of 20 peak-flow events and comparing actual and simulated hydrograph widths at 50 and 75 percent of the observed peak-flow levels. The events chosen are considered extreme in that the average recurrence interval of the selected peak flows is 130 years. The average standard errors of prediction were +/- 61 and +/- 56 percent at the 50 and 75 percent of peak-flow hydrograph widths, respectively.

  4. Influence of snowpack and melt energy heterogeneity on snow cover depletion and snowmelt runoff simulation in a cold mountain environment

    NASA Astrophysics Data System (ADS)

    DeBeer, Chris M.; Pomeroy, John W.

    2017-10-01

    The spatial heterogeneity of mountain snow cover and ablation is important in controlling patterns of snow cover depletion (SCD), meltwater production, and runoff, yet is not well-represented in most large-scale hydrological models and land surface schemes. Analyses were conducted in this study to examine the influence of various representations of snow cover and melt energy heterogeneity on both simulated SCD and stream discharge from a small alpine basin in the Canadian Rocky Mountains. Simulations were performed using the Cold Regions Hydrological Model (CRHM), where point-scale snowmelt computations were made using a snowpack energy balance formulation and applied to spatial frequency distributions of snow water equivalent (SWE) on individual slope-, aspect-, and landcover-based hydrological response units (HRUs) in the basin. Hydrological routines were added to represent the vertical and lateral transfers of water through the basin and channel system. From previous studies it is understood that the heterogeneity of late winter SWE is a primary control on patterns of SCD. The analyses here showed that spatial variation in applied melt energy, mainly due to differences in net radiation, has an important influence on SCD at multiple scales and basin discharge, and cannot be neglected without serious error in the prediction of these variables. A single basin SWE distribution using the basin-wide mean SWE (SWE ‾) and coefficient of variation (CV; standard deviation/mean) was found to represent the fine-scale spatial heterogeneity of SWE sufficiently well. Simulations that accounted for differences in (SWE ‾) among HRUs but neglected the sub-HRU heterogeneity of SWE were found to yield similar discharge results as simulations that included this heterogeneity, while SCD was poorly represented, even at the basin level. Finally, applying point-scale snowmelt computations based on a single SWE depth for each HRU (thereby neglecting spatial differences in internal snowpack energetics over the distributions) was found to yield similar SCD and discharge results as simulations that resolved internal energy differences. Spatial/internal snowpack melt energy effects are more pronounced at times earlier in spring before the main period of snowmelt and SCD, as shown in previously published work. The paper discusses the importance of these findings as they apply to the warranted complexity of snowmelt process simulation in cold mountain environments, and shows how the end-of-winter SWE distribution represents an effective means of resolving snow cover heterogeneity at multiple scales for modelling, even in steep and complex terrain.

  5. Simulation of ground-water flow in the Albuquerque Basin, central New Mexico, 1901-95, with projections to 2020

    USGS Publications Warehouse

    Kernodle, J.M.

    1998-01-01

    The ground-water-flow model of the Albuquerque Basin (Kernodle, J.M., McAda, D.P., and Thorn, C.R., 1995, Simulation of ground-water flow in the Albuquerque Basin, central New Mexico, with projections to 2020: U.S. Geological Survey Water-Resources Investigations Report 94-4251, 114 p.) was updated to include new information on the hydrogeologic framework (Hawley, J.W., Haase, C.S., and Lozinsky, R.P., 1995, An underground view of the Albuquerque Basin: Proceedings of the 39th Annual New Mexico Water Conference, November 3-4, 1994, p. 37-55). An additional year of ground-water-withdrawal data was appended to the simulation of the historical period and incorporated into the base for future projections to the year 2020. The revised model projects the simulated ground-water levels associated with an aerally enlarged occurrence of the relatively high hydraulic conductivity in the upper part of the Santa Fe Group east and west of the Rio Grande in the Albuquerque area and north to Bernalillo. Although the differences between the two model versions are substantial, the revised model does not contradict any previous conclusions about the effect of City of Albuquerque ground-water withdrawals on flow in the Rio Grande or the net benefits of an effort to conserve ground water. Recent revisions to the hydrogeologic model (Hawley, J.W., Haneberg, W.C., and Whitworth, P.M., in press, Hydrogeologic investigations in the Albuquerque Basin, central New Mexico, 1992-1995: Socorro, New Mexico Bureau of Mines and Mineral Resources Open- File Report 402) of the Albuquerque Basin eventually will require that this model version also be revised and updated.

  6. How sensitive is earthquake ground motion to source parameters? Insights from a numerical study in the Mygdonian basin

    NASA Astrophysics Data System (ADS)

    Chaljub, Emmanuel; Maufroy, Emeline; deMartin, Florent; Hollender, Fabrice; Guyonnet-Benaize, Cédric; Manakou, Maria; Savvaidis, Alexandros; Kiratzi, Anastasia; Roumelioti, Zaferia; Theodoulidis, Nikos

    2014-05-01

    Understanding the origin of the variability of earthquake ground motion is critical for seismic hazard assessment. Here we present the results of a numerical analysis of the sensitivity of earthquake ground motion to seismic source parameters, focusing on the Mygdonian basin near Thessaloniki (Greece). We use an extended model of the basin (65 km [EW] x 50 km [NS]) which has been elaborated during the Euroseistest Verification and Validation Project. The numerical simulations are performed with two independent codes, both implementing the Spectral Element Method. They rely on a robust, semi-automated, mesh design strategy together with a simple homogenization procedure to define a smooth velocity model of the basin. Our simulations are accurate up to 4 Hz, and include the effects of surface topography and of intrinsic attenuation. Two kinds of simulations are performed: (1) direct simulations of the surface ground motion for real regional events having various back azimuth with respect to the center of the basin; (2) reciprocity-based calculations where the ground motion due to 980 different seismic sources is computed at a few stations in the basin. In the reciprocity-based calculations, we consider epicentral distances varying from 2.5 km to 40 km, source depths from 1 km to 15 km and we span the range of possible back-azimuths with a 10 degree bin. We will present some results showing (1) the sensitivity of ground motion parameters to the location and focal mechanism of the seismic sources; and (2) the variability of the amplification caused by site effects, as measured by standard spectral ratios, to the source characteristics

  7. Spatial and temporal variability of groundwater recharge in Geba basin, Northern Ethiopia

    NASA Astrophysics Data System (ADS)

    Yenehun, Alemu; Walraevens, Kristine; Batelaan, Okke

    2017-10-01

    WetSpa, a physically based, spatially distributed watershed model, has been used to study the spatial and temporal variation of recharge in the Geba basin, Northern Ethiopia. The model covers an area of about 4, 249 km2 and integrates elevation, soil and land-use data, hydrometeorological and river discharge data. The Geba basin has a highly variable topography ranging from 1000 to 3280 m with an average slope of 12.9%. The area is characterized by a distinct wet and long dry season with a mean annual precipitation of 681 mm and temperatures ranging between 6.5 °C and 32 °C. The model was simulated on daily basis for nearly four years (January 1, 2000 to December 18, 2003). It resulted in a good agreement between measured and simulated streamflow hydrographs with Nash-Sutcliffe efficiency of almost 70% and 85% for, respectively, the calibration and validation. The water balance terms show very strong spatial and temporal variability, about 3.8% of the total precipitation is intercepted by the plant canopy; 87.5% infiltrates into the soil (of which 13% percolates, 2.7% flows laterally off and 84.2% evapotranspired from the root zone), and 7.2% is surface runoff. The mean annual recharge varies from about 45 mm (2003) to 208 mm (2001), with average of 98.6 mm/yr. On monthly basis, August has the maximum (73 mm) and December the lowest (0.1 mm) recharge. The mean annual groundwater recharge spatially varies from 0 to 371 mm; mainly controlled by the distribution of rainfall amount, followed by soil and land-use, and to a certain extent, slope. About 21% of Geba has a recharge larger than 120 mm and 1% less than 5 mm.

  8. Impact of Crop Conversions on Runoff and Sediment Output in the Lower Mississippi River Basin

    NASA Astrophysics Data System (ADS)

    Momm, H.; Bingner, R. L.; Elkadiri, R.; Yaraser, L.; Porter, W.

    2017-12-01

    Farming management practices influence sediment and agrochemical loads exiting fields and entering downstream water bodies. These practices impact multiple physical processes responsible for sediment and nutrient detachment, transport, and deposition. Recent changes in farming practices in the Southern United States coincide with increased grain production, replacing traditional crops such as cotton with corn and soybeans. To grow these crops in the South, adapted crop management practices are needed (irrigation, fertilizer, etc.). In this study, the impact of grain crop adoption on hydrologic processes and non-point source pollutant production is quantified. A watershed located in the Big Sunflower River drainage basin (14,179 km2) - a part of the greater Lower Mississippi River basin - was selected due to its economic relevance, historical agricultural output, and depiction of recent farming management trends. Estimates of runoff and sediment loads were produced using the U.S. Department of Agriculture supported Annualized Agriculture Non-Point Source Pollution (AnnAGNPS) watershed pollution and management model. Existing physical conditions during a 16-year period (2000-2015) were characterized using 3,992 sub-catchments and 1,602 concentrated flow paths. Algorithms were developed to integrate continuous land use/land cover information, variable spatio-temporal irrigation practices, and crop output yield in order to generate a total of 2,922 unique management practices and corresponding soil-disturbing operations. A simulation representing existing conditions was contrasted with simulations depicting alternatives of management, irrigation practices, and temporal variations in crop yield. Quantification of anthropogenic impacts to water quality and water availability at a watershed scale supports the development of targeted pollution mitigation and custom conservation strategies.

  9. A Participatory Modeling Application of a Distributed Hydrologic Model in Nuevo Leon, Mexico for the 2010 Hurricane Alex Flood Event

    NASA Astrophysics Data System (ADS)

    Baish, A. S.; Vivoni, E. R.; Payan, J. G.; Robles-Morua, A.; Basile, G. M.

    2011-12-01

    A distributed hydrologic model can help bring consensus among diverse stakeholders in regional flood planning by producing quantifiable sets of alternative futures. This value is acute in areas with high uncertainties in hydrologic conditions and sparse observations. In this study, we conduct an application of the Triangulated Irregular Network (TIN)-based Real-time Integrated Basin Simulator (tRIBS) in the Santa Catarina basin of Nuevo Leon, Mexico, where Hurricane Alex in July 2010 led to catastrophic flooding of the capital city of Monterrey. Distributed model simulations utilize best-available information on the regional topography, land cover, and soils obtained from Mexican government agencies or analysis of remotely-sensed imagery from MODIS and ASTER. Furthermore, we developed meteorological forcing for the flood event based on multiple data sources, including three local gauge networks, satellite-based estimates from TRMM and PERSIANN, and the North American Land Data Assimilation System (NLDAS). Remotely-sensed data allowed us to quantify rainfall distributions in the upland, rural portions of the Santa Catarina that are sparsely populated and ungauged. Rural areas had significant contributions to the flood event and as a result were considered by stakeholders for flood control measures, including new reservoirs and upland vegetation management. Participatory modeling workshops with the stakeholders revealed a disconnect between urban and rural populations in regard to understanding the hydrologic conditions of the flood event and the effectiveness of existing and potential flood control measures. Despite these challenges, the use of the distributed flood forecasts developed within this participatory framework facilitated building consensus among diverse stakeholders and exploring alternative futures in the basin.

  10. Multi-Factor Impact Analysis of Agricultural Production in Bangladesh with Climate Change

    NASA Technical Reports Server (NTRS)

    Ruane, Alex C.; Major, David C.; Yu, Winston H.; Alam, Mozaharul; Hussain, Sk. Ghulam; Khan, Abu Saleh; Hassan, Ahmadul; Al Hossain, Bhuiya Md. Tamim; Goldberg, Richard; Horton, Radley M.; hide

    2012-01-01

    Diverse vulnerabilities of Bangladesh's agricultural sector in 16 sub-regions are assessed using experiments designed to investigate climate impact factors in isolation and in combination. Climate information from a suite of global climate models (GCMs) is used to drive models assessing the agricultural impact of changes in temperature, precipitation, carbon dioxide concentrations, river floods, and sea level rise for the 2040-2069 period in comparison to a historical baseline. Using the multi-factor impacts analysis framework developed in Yu et al. (2010), this study provides new sub-regional vulnerability analyses and quantifies key uncertainties in climate and production. Rice (aman, boro, and aus seasons) and wheat production are simulated in each sub-region using the biophysical Crop Environment REsource Synthesis (CERES) models. These simulations are then combined with the MIKE BASIN hydrologic model for river floods in the Ganges-Brahmaputra-Meghna (GBM) Basins, and the MIKE21Two-Dimensional Estuary Model to determine coastal inundation under conditions of higher mean sea level. The impacts of each factor depend on GCM configurations, emissions pathways, sub-regions, and particular seasons and crops. Temperature increases generally reduce production across all scenarios. Precipitation changes can have either a positive or a negative impact, with a high degree of uncertainty across GCMs. Carbon dioxide impacts on crop production are positive and depend on the emissions pathway. Increasing river flood areas reduce production in affected sub-regions. Precipitation uncertainties from different GCMs and emissions scenarios are reduced when integrated across the large GBM Basins' hydrology. Agriculture in Southern Bangladesh is severely affected by sea level rise even when cyclonic surges are not fully considered, with impacts increasing under the higher emissions scenario.

  11. Climate change impacts on irrigated rice and wheat production in Gomti River basin of India: a case study.

    PubMed

    Abeysingha, N S; Singh, Man; Islam, Adlul; Sehgal, V K

    2016-01-01

    Potential future impacts of climate change on irrigated rice and wheat production and their evapotranspiration and irrigation requirements in the Gomti River basin were assessed by integrating a widely used hydrological model "Soil and Water Assessment Tool (SWAT)" and climate change scenario generated from MIROC (HiRes) global climate model. SWAT model was calibrated and validated using monthly streamflow data of four spatially distributed gauging stations and district wise wheat and rice yields data for the districts located within the basin. Simulation results showed an increase in mean annual rice yield in the range of 5.5-6.7, 16.6-20.2 and 26-33.4 % during 2020s, 2050s and 2080s, respectively. Similarly, mean annual wheat yield is also likely to increase by 13.9-15.4, 23.6-25.6 and 25.2-27.9 % for the same future time periods. Evapotranspiration for both wheat and rice is projected to increase in the range of 3-9.6 and 7.8-16.3 %, respectively. With increase in rainfall during rice growing season, irrigation water allocation for rice is likely to decrease (<5 %) in future periods, but irrigation water allocation for wheat is likely to increase by 17.0-45.3 % in future periods.

  12. Achieving sustainable irrigation water withdrawals: global impacts on food security and land use

    NASA Astrophysics Data System (ADS)

    Liu, Jing; Hertel, Thomas W.; Lammers, Richard B.; Prusevich, Alexander; Baldos, Uris Lantz C.; Grogan, Danielle S.; Frolking, Steve

    2017-10-01

    Unsustainable water use challenges the capacity of water resources to ensure food security and continued growth of the economy. Adaptation policies targeting future water security can easily overlook its interaction with other sustainability metrics and unanticipated local responses to the larger-scale policy interventions. Using a global partial equilibrium grid-resolving model SIMPLE-G, and coupling it with the global Water Balance Model, we simulate the consequences of reducing unsustainable irrigation for food security, land use change, and terrestrial carbon. A variety of future (2050) scenarios are considered that interact irrigation productivity with two policy interventions— inter-basin water transfers and international commodity market integration. We find that pursuing sustainable irrigation may erode other development and environmental goals due to higher food prices and cropland expansion. This results in over 800 000 more undernourished people and 0.87 GtC additional emissions. Faster total factor productivity growth in irrigated sectors will encourage more aggressive irrigation water use in the basins where irrigation vulnerability is expected to be reduced by inter-basin water transfer. By allowing for a systematic comparison of these alternative adaptations to future irrigation vulnerability, the global gridded modeling approach offers unique insights into the multiscale nature of the water scarcity challenge.

  13. Changes in Seasonal and Extreme Hydrologic Conditions of the Georgia Basin/Puget Sound in an Ensemble Regional Climate Simulation for the Mid-Century

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leung, Lai R.; Qian, Yun

    This study examines an ensemble of climate change projections simulated by a global climate model (GCM) and downscaled with a region climate model (RCM) to 40 km spatial resolution for the western North America. One control and three ensemble future climate simulations were produced by the GCM following a business as usual scenario for greenhouse gases and aerosols emissions from 1995 to 2100. The RCM was used to downscale the GCM control simulation (1995-2015) and each ensemble future GCM climate (2040-2060) simulation. Analyses of the regional climate simulations for the Georgia Basin/Puget Sound showed a warming of 1.5-2oC and statisticallymore » insignificant changes in precipitation by the mid-century. Climate change has large impacts on snowpack (about 50% reduction) but relatively smaller impacts on the total runoff for the basin as a whole. However, climate change can strongly affect small watersheds such as those located in the transient snow zone, causing a higher likelihood of winter flooding as a higher percentage of precipitation falls in the form of rain rather than snow, and reduced streamflow in early summer. In addition, there are large changes in the monthly total runoff above the upper 1% threshold (or flood volume) from October through May, and the December flood volume of the future climate is 60% above the maximum monthly flood volume of the control climate. Uncertainty of the climate change projections, as characterized by the spread among the ensemble future climate simulations, is relatively small for the basin mean snowpack and runoff, but increases in smaller watersheds, especially in the transient snow zone, and associated with extreme events. This emphasizes the importance of characterizing uncertainty through ensemble simulations.« less

  14. The Role of Rough Topography in Mediating Impacts of Bottom Drag in Eddying Ocean Circulation Models.

    PubMed

    Trossman, David S; Arbic, Brian K; Straub, David N; Richman, James G; Chassignet, Eric P; Wallcraft, Alan J; Xu, Xiaobiao

    2017-08-01

    Motivated by the substantial sensitivity of eddies in two-layer quasi-geostrophic (QG) turbulence models to the strength of bottom drag, this study explores the sensitivity of eddies in more realistic ocean general circulation model (OGCM) simulations to bottom drag strength. The OGCM results are interpreted using previous results from horizontally homogeneous, two-layer, flat-bottom, f-plane, doubly periodic QG turbulence simulations and new results from two-layer β -plane QG turbulence simulations run in a basin geometry with both flat and rough bottoms. Baroclinicity in all of the simulations varies greatly with drag strength, with weak drag corresponding to more barotropic flow and strong drag corresponding to more baroclinic flow. The sensitivity of the baroclinicity in the QG basin simulations to bottom drag is considerably reduced, however, when rough topography is used in lieu of a flat bottom. Rough topography reduces the sensitivity of the eddy kinetic energy amplitude and horizontal length scales in the QG basin simulations to bottom drag to an even greater degree. The OGCM simulation behavior is qualitatively similar to that in the QG rough bottom basin simulations in that baroclinicity is more sensitive to bottom drag strength than are eddy amplitudes or horizontal length scales. Rough topography therefore appears to mediate the sensitivity of eddies in models to the strength of bottom drag. The sensitivity of eddies to parameterized topographic internal lee wave drag, which has recently been introduced into some OGCMs, is also briefly discussed. Wave drag acts like a strong bottom drag in that it increases the baroclinicity of the flow, without strongly affecting eddy horizontal length scales.

  15. Simulation of daily streamflow for 12 river basins in western Iowa using the Precipitation-Runoff Modeling System

    USGS Publications Warehouse

    Christiansen, Daniel E.; Haj, Adel E.; Risley, John C.

    2017-10-24

    The U.S. Geological Survey, in cooperation with the Iowa Department of Natural Resources, constructed Precipitation-Runoff Modeling System models to estimate daily streamflow for 12 river basins in western Iowa that drain into the Missouri River. The Precipitation-Runoff Modeling System is a deterministic, distributed-parameter, physical-process-based modeling system developed to evaluate the response of streamflow and general drainage basin hydrology to various combinations of climate and land use. Calibration periods for each basin varied depending on the period of record available for daily mean streamflow measurements at U.S. Geological Survey streamflow-gaging stations.A geographic information system tool was used to delineate each basin and estimate initial values for model parameters based on basin physical and geographical features. A U.S. Geological Survey automatic calibration tool that uses a shuffled complex evolution algorithm was used for initial calibration, and then manual modifications were made to parameter values to complete the calibration of each basin model. The main objective of the calibration was to match daily discharge values of simulated streamflow to measured daily discharge values. The Precipitation-Runoff Modeling System model was calibrated at 42 sites located in the 12 river basins in western Iowa.The accuracy of the simulated daily streamflow values at the 42 calibration sites varied by river and by site. The models were satisfactory at 36 of the sites based on statistical results. Unsatisfactory performance at the six other sites can be attributed to several factors: (1) low flow, no flow, and flashy flow conditions in headwater subbasins having a small drainage area; (2) poor representation of the groundwater and storage components of flow within a basin; (3) lack of accounting for basin withdrawals and water use; and (4) limited availability and accuracy of meteorological input data. The Precipitation-Runoff Modeling System models of 12 river basins in western Iowa will provide water-resource managers with a consistent and documented method for estimating streamflow at ungaged sites and aid in environmental studies, hydraulic design, water management, and water-quality projects.

  16. Comparison of ground motions from hybrid simulations to nga prediction equations

    USGS Publications Warehouse

    Star, L.M.; Stewart, J.P.; Graves, R.W.

    2011-01-01

    We compare simulated motions for a Mw 7.8 rupture scenario on the San Andreas Fault known as the ShakeOut event, two permutations with different hypocenter locations, and a Mw 7.15 Puente Hills blind thrust scenario, to median and dispersion predictions from empirical NGA ground motion prediction equations. We find the simulated motions attenuate faster with distance than is predicted by the NGA models for periods less than about 5.0 s After removing this distance attenuation bias, the average residuals of the simulated events (i.e., event terms) are generally within the scatter of empirical event terms, although the ShakeOut simulation appears to be a high static stress drop event. The intraevent dispersion in the simulations is lower than NGA values at short periods and abruptly increases at 1.0 s due to different simulation procedures at short and long periods. The simulated motions have a depth-dependent basin response similar to the NGA models, and also show complex effects in which stronger basin response occurs when the fault rupture transmits energy into a basin at low angle, which is not predicted by the NGA models. Rupture directivity effects are found to scale with the isochrone parameter ?? 2011, Earthquake Engineering Research Institute.

  17. Temporal variation of soil moisture over the Wuding River Basin assessed with an eco-hydrological model, in-situ observations and remote sensing

    NASA Astrophysics Data System (ADS)

    Liu, S.; Mo, X.; Zhao, W.; Naeimi, V.; Dai, D.; Shu, C.; Mao, L.

    2008-12-01

    For integrative management of soil and water in the Wuding River basin, Loess plateau, China, where severe soil erosion damages are incurred, the ecohydrological behavior of the region is needed to be explored. In this study we focus on the evolution of soil moisture (SM) in the basin. Since there are only twelve years in-situ SM measurements available at two stations from 1992 to 2004, an eco-hydrological processes-based model (VIP, Vegetation Interface Processes model) is employed to simulate the long-term SM, evapotranspiration (ET), vegetation cover and production variation from 1956 to 2004, for the mechanical analysis of SM change. In-situ SM observations and a remotely sensed SM dataset retrieved by the Vienna University of Technology are used to validate the model. The results show that the model is able to capture seasonal SM variations. The seasonal pattern, multi-year variation, standard deviation and CV (coefficient of the variation) of SM at the daily, monthly and annual scale are well explained by the climatic and ecological factors such as precipitation, temperature, net radiation, evapotranspiration, and Leaf Area Index (LAI, denoted as LAI). The annual and inter-annual variability of SM is the lowest comparing with that for other 11-ecohydrological variables. The trend analysis shows that SM is in decreasing tendency at ∝=0.01 level of significance. Its significance is lower than that of runoff and that of temperature (∝=0.001), whereas higher than that of precipitation (∝=0.1). The products of these long-term SM data aim to help integrative management of soil and water resources.

  18. Hydrogeological influences on petroleum accumulations in the Arabian Gulf

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vizgirda, J.; Burke, L.

    1995-08-01

    The stratigraphic and topographic conditions in the Arabian Gulf are appropriate for the instigation and maintenance of an active hydrodynamic regime. The setting is that of a gentle basin surrounded by topographic highs. The central Arabian highlands to the west-southwest, the Tarus-Zagros mountains to the north, and the Oman mountains to the east rim the structural low occupied by the Gulf. Elevations in these areas reach maximum values of approximately 1000 meters. Paleozoic through Cenozoic strata stretch continuously across the basin, are relatively unfaulted, and outcrop in the topographic highs. Such a setting is propitious for a regional hydrodynamic systemmore » with meteoric recharge in the topographic highs and discharge in the middle of the Gulf. The prolific oil and gas accumulations of this region would be subject to influence by these hydrodynamic processes. The existence of such a hydrodynamic regime is documented by a variety of evidence, including potentiometric data, water salinity measurements, and observed tilts in oil-water contacts. Potentiometric data for several Tertiary and Cretaceous units on the Arabian platform, in the Gulf, and in Iraq show a pattern of consistently decreasing potential from topographic highs to lows. Water salinities show a consistent, but inverse, variation with the potentiometric data. Tilted oil-water contacts in Cretaceous and Jurassic reservoirs are observed in several fields of the Gulf region. The direction and magnitude of the observed tilts are consistent with the water potential and salinity data, and suggest that petroleum accumulations are being influenced by a regional hydrodynamic drive. Basin modelling is used to simulate petroleum generation and migration scenarios, and to integrate these histories with the structural evolution of the Gulf. The integrated modelling study illustrates the influence of hydrodynamic processes on the distribution of petroleum accumulations.« less

  19. Simulating the potential effects of climate change in two Colorado basins and at two Colorado ski areas

    USGS Publications Warehouse

    Battaglin, William; Hay, Lauren E.; Markstrom, Steve

    2011-01-01

    The mountainous areas of Colorado are used for tourism and recreation, and they provide water storage and supply for municipalities, industries, and agriculture. Recent studies suggest that water supply and tourist industries such as skiing are at risk from climate change. In this study, a distributed-parameter watershed model, the Precipitation-Runoff Modeling System (PRMS), is used to identify the potential effects of future climate on hydrologic conditions for two Colorado basins, the East River at Almont and the Yampa River at Steamboat Springs, and at the subbasin scale for two ski areas within those basins.Climate-change input files for PRMS were generated by modifying daily PRMS precipitation and temperature inputs with mean monthly climate-change fields of precipitation and temperature derived from five general circulation model (GCM) simulations using one current and three future carbon emission scenarios. All GCM simulations of mean daily minimum and maximum air temperature for the East and Yampa River basins indicate a relatively steady increase of up to several degrees Celsius from baseline conditions by 2094. GCM simulations of precipitation in the two basins indicate little change or trend in precipitation, but there is a large range associated with these projections. PRMS projections of basin mean daily streamflow vary by scenario but indicate a central tendency toward slight decreases, with a large range associated with these projections.Decreases in water content or changes in the spatial extent of snowpack in the East and Yampa River basins are important because of potential adverse effects on water supply and recreational activities. PRMS projections of each future scenario indicate a central tendency for decreases in basin mean snow-covered area and snowpack water equivalent, with the range in the projected decreases increasing with time. However, when examined on a monthly basis, the projected decreases are most dramatic during fall and spring. Presumably, ski area locations are picked because of a tendency to receive snow and keep snowpack relative to the surrounding area. This effect of ski area location within the basin was examined by comparing projections of March snow-covered area and snowpack water equivalent for the entire basin with more local projections for the portion of the basin that represents the ski area in the PRMS models. These projections indicate a steady decrease in March snow-covered area for the basins but only small changes in March snow-covered area at both ski areas for the three future scenarios until around 2050. After 2050, larger decreases are possible, but there is a large range in the projections of future scenarios. The rates of decrease for snowpack water equivalent and precipitation that falls as snow are similar at the basin and subbasin scale in both basins. Results from this modeling effort show that there is a wide range of possible outcomes for future snowpack conditions in Colorado. The results also highlight the differences between projections for entire basins and projections for local areas or subbasins within those basins.

  20. Integrating non-colocated well and geophysical data to capture subsurface heterogeneity at an aquifer recharge and recovery site

    NASA Astrophysics Data System (ADS)

    Gottschalk, Ian P.; Hermans, Thomas; Knight, Rosemary; Caers, Jef; Cameron, David A.; Regnery, Julia; McCray, John E.

    2017-12-01

    Geophysical data have proven to be very useful for lithological characterization. However, quantitatively integrating the information gained from acquiring geophysical data generally requires colocated lithological and geophysical data for constructing a rock-physics relationship. In this contribution, the issue of integrating noncolocated geophysical and lithological data is addressed, and the results are applied to simulate groundwater flow in a heterogeneous aquifer in the Prairie Waters Project North Campus aquifer recharge site, Colorado. Two methods of constructing a rock-physics transform between electrical resistivity tomography (ERT) data and lithology measurements are assessed. In the first approach, a maximum likelihood estimation (MLE) is used to fit a bimodal lognormal distribution to horizontal crosssections of the ERT resistivity histogram. In the second approach, a spatial bootstrap is applied to approximate the rock-physics relationship. The rock-physics transforms provide soft data for multiple point statistics (MPS) simulations. Subsurface models are used to run groundwater flow and tracer test simulations. Each model's uncalibrated, predicted breakthrough time is evaluated based on its agreement with measured subsurface travel time values from infiltration basins to selected groundwater recovery wells. We find that incorporating geophysical information into uncalibrated flow models reduces the difference with observed values, as compared to flow models without geophysical information incorporated. The integration of geophysical data also narrows the variance of predicted tracer breakthrough times substantially. Accuracy is highest and variance is lowest in breakthrough predictions generated by the MLE-based rock-physics transform. Calibrating the ensemble of geophysically constrained models would help produce a suite of realistic flow models for predictive purposes at the site. We find that the success of breakthrough predictions is highly sensitive to the definition of the rock-physics transform; it is therefore important to model this transfer function accurately.

  1. Assessing the Hydrologic Performance of the EPA's Nonpoint Source Water Quality Assessment Decision Support Tool Using North American Land Data Assimilation System (Products)

    NASA Technical Reports Server (NTRS)

    Lee, S.; Ni-Meister, W.; Toll, D.; Nigro, J.; Guiterrez-Magness, A.; Engman, T.

    2010-01-01

    The accuracy of streamflow predictions in the EPA's BASINS (Better Assessment Science Integrating Point and Nonpoint Sources) decision support tool is affected by the sparse meteorological data contained in BASINS. The North American Land Data Assimilation System (NLDAS) data with high spatial and temporal resolutions provide an alternative to the NOAA National Climatic Data Center (NCDC)'s station data. This study assessed the improvement of streamflow prediction of the Hydrological Simulation Program-FORTRAN (HSPF) model contained within BASINS using the NLDAS 118 degree hourly precipitation and evapotranspiration estimates in seven watersheds of the Chesapeake Bay region. Our results demonstrated consistent improvements of daily streamflow predictions in five of the seven watersheds when NLDAS precipitation and evapotranspiration data was incorporated into BASINS. The improvement of using the NLDAS data is significant when watershed's meteorological station is either far away or not in a similar climatic region. When the station is nearby, using the NLDAS data produces similar results. The correlation coefficients of the analyses using the NLDAS data were greater than 0.8, the Nash-Sutcliffe (NS) model fit efficiency greater than 0.6, and the error in the water balance was less than 5%. Our analyses also showed that the streamflow improvements were mainly contributed by the NLDAS's precipitation data and that the improvement from using NLDAS's evapotranspiration data was not significant; partially due to the constraints of current BASINS-HSPF settings. However, NLDAS's evapotranspiration data did improve the baseflow prediction. This study demonstrates the NLDAS data has the potential to improve stream flow predictions, thus aid the water quality assessment in the EPA nonpoint water quality assessment decision tool.

  2. Value of Seasonal Fuzzy-based Inflow Prediction in the Jucar River Basin

    NASA Astrophysics Data System (ADS)

    Pulido-Velazquez, M.; Macian-Sorribes, H.

    2016-12-01

    The development and application of climate services in Integrated Water Resources Management (IWRM) is said to add important benefits in terms of water use efficiency due to an increase ability to foresee future water availability. A method to evaluate the economic impact of these services is presented, based on the use of hydroeconomic modelling techniques (hydroeconomic simulation) to compare the net benefits from water use in the system with and without the inflow forecasting. The Jucar River Basin (Spain) has been used as case study. Operating rules currently applied in the basin were assessed using fuzzy rule-based (FRB) systems via a co-development process involving the system operators. These operating rules use as input variable the hydrological inflows in several sub-basins, which need to be foreseen by the system operators. The inflow forecasting mechanism to preview water availability in the irrigation season (May-September) relied on fuzzy regression in which future inflows were foreseen based on past inflows and rainfall in the basin. This approach was compared with the current use of the two past year inflows for projecting the future inflow. For each irrigation season, the previewed inflows were determined using both methods and their impact on the system operation assessed through a hydroeconomic DSS. Results show that the implementation of the fuzzy inflow forecasting system offers higher economic returns. Another advantage of the fuzzy approach regards to the uncertainty treatment using fuzzy numbers, which allow us to estimate the uncertainty range of the expected benefits. Consequently, we can use the fuzzy approach to estimate the uncertainty associated with both the prediction and the associated benefits.

  3. Effects of Forecasted Climate Change on Stream Temperatures in the Nooksack River Basin

    NASA Astrophysics Data System (ADS)

    Truitt, S. E.; Mitchell, R. J.; Yearsley, J. R.; Grah, O. J.

    2017-12-01

    The Nooksack River in northwest Washington State provides valuable habitat for endangered salmon species, as such it is critical to understand how stream temperatures will be affected by forecasted climate change. The Middle and North Forks basins of the Nooksack are high-relief and glaciated, whereas the South Fork is a lower relief rain and snow dominated basin. Due to a moderate Pacific maritime climate, snowpack in the basins is sensitive to temperature increases. Previous modeling studies in the upper Nooksack basins indicate a reduction in snowpack and spring runoff, and a recession of glaciers into the 21st century. How stream temperatures will respond to these changes is unknown. We use the Distributed Hydrology Soil Vegetation Model (DHSVM) coupled with a glacier dynamics model and the River Basin Model (RBM) to simulate hydrology and stream temperature from present to the year 2100. We calibrate the DHSVM and RBM to the three forks in the upper 1550 km2 of the Nooksack basin, which contain an estimated 3400 hectares of glacial ice. We employ observed stream-temperature data collected over the past decade and hydrologic data from the four USGS streamflow monitoring sites within the basin and observed gridded climate data developed by Linveh et al. (2013). Field work was conducted in the summer of 2016 to determine stream morphology, discharge, and stream temperatures at a number of stream segments for the RBM calibration. We simulate forecast climate change impacts, using gridded daily downscaled data from global climate models of the CMIP5 with RCP4.5 and RCP8.5 forcing scenarios developed using the multivariate adaptive constructed analogs method (MACA; Abatzoglou and Brown, 2011). Simulation results project a trending increase in stream temperature as a result of lower snowmelt and higher air temperatures into the 21st century, especially in the lower relief, unglaciated South Fork basin.

  4. Large scale spatially explicit modeling of blue and green water dynamics in a temperate mid-latitude basin

    NASA Astrophysics Data System (ADS)

    Du, Liuying; Rajib, Adnan; Merwade, Venkatesh

    2018-07-01

    Looking only at climate change impacts provides partial information about a changing hydrologic regime. Understanding the spatio-temporal nature of change in hydrologic processes, and the explicit contributions from both climate and land use drivers, holds more practical value for water resources management and policy intervention. This study presents a comprehensive assessment on the spatio-temporal trend of Blue Water (BW) and Green Water (GW) in a 490,000 km2 temperate mid-latitude basin (Ohio River Basin) over the past 80 years (1935-2014), and from thereon, quantifies the combined as well as relative contributions of climate and land use changes. The Soil and Water Assessment Tool (SWAT) is adopted to simulate hydrologic fluxes. Mann-Kendall and Theil-Sen statistical tests are performed on the modeled outputs to detect respectively the trend and magnitude of changes at three different spatial scales - the entire basin, regional level, and sub-basin level. Despite the overall volumetric increase of both BW and GW in the entire basin, changes in their annual average values during the period of simulation reveal a distinctive spatial pattern. GW has increased significantly in the upper and lower parts of the basin, which can be related to the prominent land use change in those areas. BW has increased significantly only in the lower part, likely being associated with the notable precipitation change there. Furthermore, the simulation under a time-varying climate but constant land use scenario identifies climate change in the Ohio River Basin to be influential on BW, while the impact is relatively nominal on GW; whereas, land use change increases GW remarkably, but is counterproductive on BW. The approach to quantify combined/relative effects of climate and land use change as shown in this study can be replicated to understand BW-GW dynamics in similar large basins around the globe.

  5. Effect of detention basin release rates on flood flows - Application of a model to the Blackberry Creek Watershed in Kane County, Illinois

    USGS Publications Warehouse

    Soong, David T.; Murphy, Elizabeth A.; Straub, Timothy D.

    2009-01-01

    The effects of stormwater detention basins with specified release rates are examined on the watershed scale with a Hydrological Simulation Program - FORTRAN (HSPF) continuous-simulation model. Modeling procedures for specifying release rates from detention basins with orifice and weir discharge configurations are discussed in this report. To facilitate future detention modeling as a tool for watershed management, a chart relating watershed impervious area to detention volume is presented. The report also presents a case study of the Blackberry Creek watershed in Kane County, Ill., a rapidly urbanizing area seeking to avoid future flood damages from increased urbanization, to illustrate the effects of various detention basin release rates on flood peaks and volumes and flood frequencies. The case study compares flows simulated with a 1996 land-use HSPF model to those simulated with four different 2020 projected land-use HSPF model scenarios - no detention, and detention basins with release rates of 0.08, 0.10, and 0.12 cubic feet per second per acre (ft3/s-acre), respectively. Results of the simulations for 15 locations, which included the downstream ends of all tributaries and various locations along the main stem, showed that a release rate of 0.10 ft3/s-acre, in general, can maintain postdevelopment 100-year peak-flood discharge at a similar magnitude to that of 1996 land-use conditions. Although the release rate is designed to reduce the 100-year peak flow, reduction of the 2-year peak flow is also achieved for a smaller proportion of the peak. Results also showed that the 0.10 ft3/s-acre release rate was less effective in watersheds with relatively high percentages of preexisting (1996) development than in watersheds with less preexisting development.

  6. The effect of land use change to maximum and minimum discharge in Cikapundung River Basin

    NASA Astrophysics Data System (ADS)

    Kuntoro, Arno Adi; Putro, Anton Winarto; Kusuma, M. Syahril B.; Natasaputra, Suardi

    2017-11-01

    Land use change are become issues for many river basin in the world, including Cikapundung River Basin in West Java. Cikapundung River is one of the main water sources of Bandung City water supply system. In the other hand, as one of the tributaries of Citarum River, Cikapundung also contributes to flooding in the Southern part of Bandung. Therefore, it is important to analyze the effect of land use change on Cikapundung river discharge, to maintain the reliability of water supply system and to minimize flooding in Bandung Basin. Land use map of Cikapundung River in 2009 shows that residential area (49.7%) and mixed farming (42.6%), are the most dominant land use type, while dry agriculture (19.4%) and forest (21.8%) cover the rest. The effect of land use change in Cikapundung River Basin is simulated by using Hydrological Simulation Program FORTRAN (HSPF) through 3 land use change scenarios: extreme, optimum, and existing. By using the calibrated parameters, simulation of the extreme land use change scenario with the decrease of forest area by 77.7% and increase of developed area by 57.0% from the existing condition resulted in increase of Qmax/Qmin ratio from 5.24 to 6.10. Meanwhile, simulation of the optimum land use change scenario with the expansion of forest area by 75.26% from the existing condition resulted in decrease of Qmax/Qmin ratio from 5.24 to 4.14. Although Qmax/Qmin ratio of Cikapundung is still relatively small, but the simulation shows the important of water resources analysis in providing river health indicator, as input for land use planning.

  7. Evaluating LSM-Based Water Budgets Over a West African Basin Assisted with a River Routing Scheme

    NASA Technical Reports Server (NTRS)

    Getirana, Augusto C. V.; Boone, Aaron; Peugeot, Christophe

    2014-01-01

    Within the framework of the African Monsoon Multidisciplinary Analysis (AMMA) Land Surface Model Intercomparison Project phase 2 (ALMIP-2), this study evaluates the water balance simulated by the Interactions between Soil, Biosphere, and Atmosphere (ISBA) over the upper Oum River basin, in Benin, using a mesoscale river routing scheme (RRS). The RRS is based on the nonlinear Muskingum Cunge method coupled with two linear reservoirs that simulate the time delay of both surface runoff and base flow that are produced by land surface models. On the basis of the evidence of a deep water-table recharge in that region,a reservoir representing the deep-water infiltration (DWI) is introduced. The hydrological processes of the basin are simulated for the 2005-08 AMMA field campaign period during which rainfall and stream flow data were intensively collected over the study area. Optimal RRS parameter sets were determined for three optimization experiments that were performed using daily stream flow at five gauges within the basin. Results demonstrate that the RRS simulates stream flow at all gauges with relative errors varying from -22% to 3% and Nash-Sutcliffe coefficients varying from 0.62 to 0.90. DWI varies from 24% to 67% of the base flow as a function of the sub-basin. The relatively simple reservoir DWI approach is quite robust, and further improvements would likely necessitate more complex solutions (e.g., considering seasonality and soil type in ISBA); thus, such modifications are recommended for future studies. Although the evaluation shows that the simulated stream flows are generally satisfactory, further field investigations are necessary to confirm some of the model assumptions.

  8. Construction of sediment budgets for drainage basins

    Treesearch

    William E. Dietrich; Thomas Dunne; Neil F. Humphrey; Leslie M. Reid

    1982-01-01

    Abstract - A sediment budget for a drainage basin is a quantitative statement of the rates of production, transport, and discharge of detritus. To construct a sediment budget for a drainage basin, one must integrate the temporal and spatial variations of transport and storage processes. This requires: recognition and quantification of transport processes, recognition...

  9. INTEGRATING GEOPHYSICS, GEOLOGY, AND HYDROLOGY TO DETERMINE BEDROCK GEOMETRY CONTROLS ON THE ORIGIN OF ISOLATED MEADOW COMPLEXES WITHIN THE CENTRAL GREAT BASIN, NEVADA

    EPA Science Inventory

    Riparian meadow complexes found in mountain ranges of the Central Great Basin physiographic region (western United States) are of interest to researchers as they contain significant biodiversity relative to the surrounding basin areas. These meadow complexes are currently degradi...

  10. Tropical storm interannual and interdecadal variability in an ensemble of GCM integrations

    NASA Astrophysics Data System (ADS)

    Vitart, Frederic Pol.

    1999-11-01

    A T42L18 Atmospheric General Circulation Model forced by observed SSTs has been integrated for 10 years with 9 different initial conditions. An objective procedure for tracking model-generated tropical storms has been applied to this ensemble. Statistical tools have been applied to the ensemble frequency, intensity and location of tropical storms, leading to the conclusion that the potential predictability is particularly strong over the western North Pacific, the eastern North Pacific and the western North Atlantic. An EOF analysis of local SSts and a combined EOF analysis of vertical wind shear, 200 mb and 850 mb vorticity indicate that the simulated tropical storm interannual variability is mostly constrained by the large scale circulation as in observations. The model simulates a realistic interannual variability of tropical storms over the western North Atlantic, eastern North Pacific, western North Pacific and Australian basin where the model simulates a realistic large scale circulation. Several experiments with the atmospheric GCM forced by imposed SSTs demonstrate that the GCM simulates a realistic impact of ENSO on the simulated Atlantic tropical storms. In addition the GCM simulates fewer tropical storms over the western North Atlantic with SSTs of the 1950s than with SSTs of the 1970s in agreement with observations. Tropical storms simulated with RAS and with MCA have been compared to evaluate their sensitivity to a change in cumulus parameterization. Composites of tropical storm structure indicate stronger tropical storms with higher warm cores with MCA. An experiment using the GFDL hurricane model and several theoretical calculations indicate that the mean state may be responsible for the difference in intensity and in the height of the warm core. With the RAS scheme, increasing the threshold which determines when convection can occur increases the tropical storm frequency almost linearly. The increase of tropical storm frequency seems to be linked to an increase of CAPE. Tropical storms predicted by a coupled model produce a strong cooling of SSTs and their intensity is lower than in the simulations. An ensemble of coupled GCM integrations displays some skill in forecasting the tropical storm frequency when starting on July 1st.

  11. Numerical Simulation of Potential Groundwater Contaminant Pathways from Hydraulically Fractured Oil Shale in the Nevada Basin and Range Province

    NASA Astrophysics Data System (ADS)

    Rybarski, S.; Pohll, G.; Pohlmann, K.; Plume, R.

    2014-12-01

    In recent years, hydraulic fracturing (fracking) has become an increasingly popular method for extraction of oil and natural gas from tight formations. Concerns have been raised over a number of environmental risks associated with fracking, including contamination of groundwater by fracking fluids, upwelling of deep subsurface brines, and methane migration. Given the potentially long time scale for contaminant transport associated with hydraulic fracturing, numerical modeling remains the best practice for risk assessment. Oil shale in the Humboldt basin of northeastern Nevada has now become a target for hydraulic fracturing operations. Analysis of regional and shallow groundwater flow is used to assess several potential migration pathways specific to the geology and hydrogeology of this basin. The model domain in all simulations is defined by the geologic structure of the basin as determined by deep oil and gas well bores and formation outcrops. Vertical transport of gaseous methane along a density gradient is simulated in TOUGH2, while fluid transport along faults and/or hydraulic fractures and lateral flow through more permeable units adjacent to the targeted shale are modeled in FEFLOW. Sensitivity analysis considers basin, fault, and hydraulic fracturing parameters, and results highlight key processes that control fracking fluid and methane migration and time scales under which it might occur.

  12. Hydrology and simulation of ground-water flow in the Tooele Valley ground-water basin, Tooele County, Utah

    USGS Publications Warehouse

    Stolp, Bernard J.; Brooks, Lynette E.

    2009-01-01

    Ground water is the sole source of drinking water within Tooele Valley. Transition from agriculture to residential land and water use necessitates additional understanding of water resources. The ground-water basin is conceptualized as a single interconnected hydrologic system consisting of the consolidated-rock mountains and adjoining unconsolidated basin-fill valleys. Within the basin fill, unconfined conditions exist along the valley margins and confined conditions exist in the central areas of the valleys. Transmissivity of the unconsolidated basin-fill aquifer ranges from 1,000 to 270,000 square feet per day. Within the consolidated rock of the mountains, ground-water flow largely is unconfined, though variability in geologic structure, stratigraphy, and lithology has created some areas where ground-water flow is confined. Hydraulic conductivity of the consolidated rock ranges from 0.003 to 100 feet per day. Ground water within the basin generally moves from the mountains toward the central and northern areas of Tooele Valley. Steep hydraulic gradients exist at Tooele Army Depot and near Erda. The estimated average annual ground-water recharge within the basin is 82,000 acre-feet per year. The primary source of recharge is precipitation in the mountains; other sources of recharge are irrigation water and streams. Recharge from precipitation was determined using the Basin Characterization Model. Estimated average annual ground-water discharge within the basin is 84,000 acre-feet per year. Discharge is to wells, springs, and drains, and by evapotranspiration. Water levels at wells within the basin indicate periods of increased recharge during 1983-84 and 1996-2000. During these periods annual precipitation at Tooele City exceeded the 1971-2000 annual average for consecutive years. The water with the lowest dissolved-solids concentrations exists in the mountain areas where most of the ground-water recharge occurs. The principal dissolved constituents are calcium and bicarbonate. Dissolved-solids concentration increases in the central and northern parts of Tooele Valley, at the distal ends of the ground-water flow paths. Increased concentration is due mainly to greater amounts of sodium and chloride. Deuterium and oxygen-18 values indicate water recharged primarily from precipitation occurs throughout the ground-water basin. Ground water with the highest percentage of recharge from irrigation exists along the eastern margin of Tooele Valley, indicating negligible recharge from the adjacent consolidated rock. Tritium and tritiogenic helium-3 concentrations indicate modern water exists along the flow paths originating in the Oquirrh Mountains between Settlement and Pass Canyons and extending between the steep hydraulic gradient areas at Tooele Army Depot and Erda. Pre-modern water exists in areas east of Erda and near Stansbury Park. Using the change in tritium along the flow paths originating in the Oquirrh Mountains, a first-order estimate of average linear ground-water velocity for the general area is roughly 2 to 5 feet per day. A numerical ground-water flow model was developed to simulate ground-water flow in the Tooele Valley ground-water basin and to test the conceptual understanding of the ground-water system. Simulating flow in consolidated rock allows recharge and withdrawal from wells in or near consolidated rock to be simulated more accurately. In general, the model accurately simulates water levels and water-level fluctuations and can be considered an adequate tool to help determine the valley-wide effects on water levels of additional ground-water withdrawal and changes in water use. The simulated increase in storage during a projection simulation using 2003 withdrawal rates and average recharge indicates that repeated years of average precipitation and recharge conditions do not completely restore the system after multiple years of below-normal precipitation. In the similar case where precipitation is 90

  13. Discharge forecasts in mountain basins based on satellite snow cover mapping. [Dinwoody Creek Basin, Wyoming and the Dischma Basin, Switzerland

    NASA Technical Reports Server (NTRS)

    Martinec, J.; Rango, A. (Principal Investigator)

    1980-01-01

    The author has identified the following significant results. A snow runoff model developed for European mountain basins was used with LANDSAT imagery and air temperature data to simulate runoff in the Rocky Mountains under conditions of large elevation range and moderate cloud cover (cloud cover of 40% or less during LANDSAT passes 70% of the time during a snowmelt season). Favorable results were obtained for basins with area not exceeding serval hundred square kilometers and with a significant component of subsurface runoff.

  14. Development of an integrated water resources management plan for the Lake Manyara sub-basin, Northern Tanzania

    NASA Astrophysics Data System (ADS)

    Ngana, J. O.; Mwalyosi, R. B. B.; Madulu, N. F.; Yanda, P. Z.

    Water resources management in Lake Manyara sub-basin is an issue of very high significance as the sub-basin hosts a number of national and global assets of great socio-cultural, ecological and economic values. The sub-basin comprise of a Biosphere Reserve with boosting tourism from Lake Manyara National Park with a variety of wildlife population, large livestock population and highly fertile land for agricultural production. The prevailing system of uncoordinated water resources management in the sub-basin cannot sustain the ever increasing water needs of the various expanding sectors, therefore a strategy must be sought to integrate the various sectoral needs against the available water resources in order to attain both economic and ecological sustainability. Through participatory approach with the stakeholders, the study has established key issues, demonstrated considerable experience in water resources management in the sub-basin including existence of water boards, water committees in some districts as well as land resources management practices However, a number of constraints were noted which inhibit sustainable water resources management including ignorance of water policies, conflicting sectoral policies, lack of coordination between sectors, high in migration rates into the basin, heavy in migration of livestock, conflicts between sectors, poor land use resulting in soil erosion and sedimentation, lack of comprehensive data base on water resources and water needs for : domestic, tourism, livestock, irrigation, wild life and environmental flows. As a way forward it was recommended that a basin wide legally mandated body (involving all levels) be established to oversee water use in the sub-basin. Other strategies include capacity building of stakeholders on water natural resources management policies, water rights and enforcement of laws. This progress report paper highlights the wealth of knowledge that stakeholders possess on water resources management and using that platform develop a participatory Integrated water resources management where roles and responsibilities are ironed out.

  15. Performance of a pilot-scale constructed wetland system for treating simulated ash basin water.

    PubMed

    Dorman, Lane; Castle, James W; Rodgers, John H

    2009-05-01

    A pilot-scale constructed wetland treatment system (CWTS) was designed and built to decrease the concentration and toxicity of constituents of concern in ash basin water from coal-burning power plants. The CWTS was designed to promote the following treatment processes for metals and metalloids: precipitation as non-bioavailable sulfides, co-precipitation with iron oxyhydroxides, and adsorption onto iron oxides. Concentrations of Zn, Cr, Hg, As, and Se in simulated ash basin water were reduced by the CWTS to less than USEPA-recommended water quality criteria. The removal efficiency (defined as the percent concentration decrease from influent to effluent) was dependent on the influent concentration of the constituent, while the extent of removal (defined as the concentration of a constituent of concern in the CWTS effluent) was independent of the influent concentration. Results from toxicity experiments illustrated that the CWTS eliminated influent toxicity with regard to survival and reduced influent toxicity with regard to reproduction. Reduction in potential for scale formation and biofouling was achieved through treatment of the simulated ash basin water by the pilot-scale CWTS.

  16. Simulated Hydrologic Responses to Climate Variations and Change in the Merced, Carson, and American River Basins, Sierra Nevada, California, 1900-2099

    NASA Astrophysics Data System (ADS)

    Dettinger, M. D.; Cayan, D. R.; Cayan, D. R.; Meyer, M. K.

    2001-12-01

    Sensitivities of river basins in the Sierra Nevada of California to historical and future climate variations and changes are analyzed by simulating daily streamflow and water-balance responses to simulated climate variations over a continuous 200-year period. The coupled atmosphere-ocean-ice-land Parallel Climate Model provides the simulated climate histories, and existing hydrologic models of the Merced, Carson, and American Rivers are used to simulate the basin responses. The historical simulations yield stationary climate and hydrologic variations through the first part of the 20th Century until about 1975, when temperatures begin to warm noticeably and when snowmelt and streamflow peaks begin to occur progressively earlier within the seasonal cycle. A future climate simulated with business-as-usual increases in greenhouse-gas and aerosol radiative forcings continues those recent trends through the 21st Century with an attendant +2.5ºC warming and a hastening of snowmelt and streamflow within the seasonal cycle by almost a month. In contrast, a control simulation in which radiative forcings are held constant at 1995 levels for the 50 years following 1995, yields climate and streamflow-timing conditions much like the 1980s and 1990s throughout its duration. Long-term average totals of streamflow and other hydrologic fluxes remain similar to the historical mean in all three simulations. The various projected trends in the business-as-usual simulations become readily visible above simulated natural climatic and hydrologic variability by about 2020.

  17. Simulating Streamflow Using Bias-corrected Multiple Satellite Rainfall Products in the Tekeze Basin, Ethiopia

    NASA Astrophysics Data System (ADS)

    Abitew, T. A.; Roy, T.; Serrat-Capdevila, A.; van Griensven, A.; Bauwens, W.; Valdes, J. B.

    2016-12-01

    The Tekeze Basin supports one of Africans largest Arch Dam located in northern Ethiopian has vital role in hydropower generation. However, little has been done on the hydrology of the basin due to limited in situ hydroclimatological data. Therefore, the main objective of this research is to simulate streamflow upstream of the Tekeze Dam using Soil and Water Assessment Tool (SWAT) forced by bias-corrected multiple satellite rainfall products (CMORPH, TMPA and PERSIANN-CCS). This talk will present the potential as well as skills of bias-corrected satellite rainfall products for streamflow prediction in in Tropical Africa. Additionally, the SWAT model results will also be compared with previous conceptual Hydrological models (HyMOD and HBV) from SERVIR Streamflow forecasting in African Basin project (http://www.swaat.arizona.edu/index.html).

  18. Modeled effects of irrigation on surface climate in the Heihe River Basin, Northwest China

    NASA Astrophysics Data System (ADS)

    Zhang, Xuezhen; Xiong, Zhe; Tang, Qiuhong

    2017-08-01

    In Northwest China, water originates from the mountain area and is largely used for irrigation agriculture in the middle reaches. This study investigates the local and remote impact of irrigation on regional climate in the Heihe River Basin, the second largest inland river basin in Northwest China. An irrigation scheme was developed and incorporated into the Weather Research and Forecasting (WRF) model with the Noah-MP land surface scheme (WRF/Noah-MP). The effects of irrigation is assessed by comparing the model simulations with and without consideration of irrigation (hereafter, IRRG and NATU simulations, respectively) for five growth seasons (May to September) from 2009 to 2013. As consequences of irrigation, daily mean temperature decreased by 1.7°C and humidity increased by 2.3 g kg-1 (corresponding to 38.5%) over irrigated area. The temperature and humidity of IRRG simulation matched well with the observations, whereas NATU simulation overestimated temperature and underestimated humidity over irrigated area. The effects on temperature and humidity are generally small outside the irrigated area. The cooling and wetting effects have opposing impacts on convective precipitation, resulting in a negligible change in localized precipitation over irrigated area. However, irrigation may induce water vapor convergence and enhance precipitation remotely in the southeastern portion of the Heihe River Basin.

  19. Coupling of a distributed stakeholder-built system dynamics socio-economic model with SAHYSMOD for sustainable soil salinity management. Part 2: Model coupling and application

    NASA Astrophysics Data System (ADS)

    Inam, Azhar; Adamowski, Jan; Prasher, Shiv; Halbe, Johannes; Malard, Julien; Albano, Raffaele

    2017-08-01

    Many simulation models focus on simulating a single physical process and do not constitute balanced representations of the physical, social and economic components of a system. The present study addresses this challenge by integrating a physical (P) model (SAHYSMOD) with a group (stakeholder) built system dynamics model (GBSDM) through a component modeling approach based on widely applied tools such as MS Excel, Python and Visual Basic for Applications (VBA). The coupled model (P-GBSDM) was applied to test soil salinity management scenarios (proposed by stakeholders) for the Haveli region of the Rechna Doab Basin in Pakistan. Scenarios such as water banking, vertical drainage, canal lining, and irrigation water reallocation were simulated with the integrated model. Spatiotemporal maps and economic and environmental trade-off criteria were used to examine the effectiveness of the selected management scenarios. After 20 years of simulation, canal lining reduced soil salinity by 22% but caused an initial reduction of 18% in farm income, which requires an initial investment from the government. The government-sponsored Salinity Control and Reclamation Project (SCARP) is a short-term policy that resulted in a 37% increase in water availability with a 12% increase in farmer income. However, it showed detrimental effects on soil salinity in the long term, with a 21% increase in soil salinity due to secondary salinization. The new P-GBSDM was shown to be an effective platform for engaging stakeholders and simulating their proposed management policies while taking into account socioeconomic considerations. This was not possible using the physically based SAHYSMOD model alone.

  20. Integrating facies and structural analyses with subsidence history in a Jurassic-Cretaceous intraplatform basin: Outcome for paleogeography of the Panormide Southern Tethyan margin (NW Sicily, Italy)

    NASA Astrophysics Data System (ADS)

    Basilone, Luca; Sulli, Attilio; Gasparo Morticelli, Maurizio

    2016-06-01

    We illustrate the tectono-sedimentary evolution of a Jurassic-Cretaceous intraplatform basin in a fold and thrust belt present setting (Cala Rossa basin). Detailed stratigraphy and facies analysis of Upper Triassic-Eocene successions outcropping in the Palermo Mts (NW Sicily), integrated with structural analysis, restoration and basin analysis, led to recognize and describe into the intraplatform basin the proximal and distal depositional areas respect to the bordered carbonate platform sectors. Carbonate platform was characterized by a rimmed reef growing with progradational trends towards the basin, as suggested by the several reworked shallow-water materials interlayered into the deep-water succession. More, the occurrence of thick resedimented breccia levels into the deep-water succession suggests the time and the characters of synsedimentary tectonics occurred during the Late Jurassic. The study sections, involved in the building processes of the Sicilian fold and thrust belt, were restored in order to obtain the original width of the Cala Rossa basin, useful to reconstruct the original geometries and opening mechanisms of the basin. Basin analysis allowed reconstructing the subsidence history of three sectors with different paleobathymetry, evidencing the role exerted by tectonics in the evolution of the narrow Cala Rossa basin. In our interpretation, a transtensional dextral Lower Jurassic fault system, WNW-ESE (present-day) oriented, has activated a wedge shaped pull-apart basin. In the frame of the geodynamic evolution of the Southern Tethyan rifted continental margin, the Cala Rossa basin could have been affected by Jurassic transtensional faults related to the lateral westward motion of Africa relative to Europe.

  1. Evaluating mountain meadow groundwater response to Pinyon-Juniper and temperature in a great basin watershed

    USGS Publications Warehouse

    Carroll, Rosemary W.H.; Huntington, Justin L.; Snyder, Keirith A.; Niswonger, Richard G.; Morton, Charles; Stringham, Tamzen K.

    2017-01-01

    This research highlights development and application of an integrated hydrologic model (GSFLOW) to a semiarid, snow-dominated watershed in the Great Basin to evaluate Pinyon-Juniper (PJ) and temperature controls on mountain meadow shallow groundwater. The work used Google Earth Engine Landsat satellite and gridded climate archives for model evaluation. Model simulations across three decades indicated that the watershed operates on a threshold response to precipitation (P) >400 mm/y to produce a positive yield (P-ET; 9%) resulting in stream discharge and a rebound in meadow groundwater levels during these wetter years. Observed and simulated meadow groundwater response to large P correlates with above average predicted soil moisture and with a normalized difference vegetation index threshold value >0.3. A return to assumed pre-expansion PJ conditions or an increase in temperature to mid-21st century shifts yielded by only ±1% during the multi-decade simulation period; but changes of approximately ±4% occurred during wet years. Changes in annual yield were largely dampened by the spatial and temporal redistribution of evapotranspiration across the watershed: Yet the influence of this redistribution and vegetation structural controls on snowmelt altered recharge to control water table depth in the meadow. Even a small-scale removal of PJ (0.5 km2) proximal to the meadow will promote a stable, shallow groundwater system resilient to droughts, while modest increases in temperature will produce a meadow susceptible to declining water levels and a community structure likely to move toward dry and degraded conditions.

  2. Simulation-optimization aids in resolving water conflict: Temecula Basin, Southern California

    USGS Publications Warehouse

    Hanson, Randall T.; Faunt, Claudia C.; Schmid, Wolfgang; Lear, Jonathan

    2014-01-01

    The productive agricultural areas of Pajaro Valley, California have exclusively relied on ground water from coastal aquifers in central Monterey Bay. As part of the Basin Management Plan (BMP), the Pajaro Valley Water Management Agency (PVWMA) is developing additional local supplies to replace coastal pumpage, which is causing seawater intrusion. The BMP includes an aquifer storage and recovery (ASR) system, which captures and stores local winter runoff, and supplies it to growers later in the growing season in lieu of ground-water pumpage. A Coastal Distribution System (CDS) distributes water from the ASR and other supplemental sources. A detailed model of the Pajaro Valley is being used to simulate the coupled supply and demand components of irrigated agriculture from 1963 to 2006. Recent upgrades to the Farm Process in MODFLOW (MF2K-FMP) allow simulating the effects of ASR deliveries and reduced pumping for farms in subregions connected to the CDS. The BMP includes a hierarchy of monthly supply alternatives, including a recovery well field around the ASR system, a supplemental wellfield, and onsite farm supply wells. The hierarchy of delivery requirements is used by MF2K-FMP to estimate the effects of these deliveries on coastal ground-water pumpage and recovery of water levels. This integrated approach can be used to assess the effectiveness of the BMP under variable climatic conditions, and to test the impacts of more complete subscription by coastal farmers to the CDS deliveries. The model will help managers assess the effects of new BMP components to further reduce pumpage and seawater intrusion.

  3. Evaluating the spatiotemporal variations of water budget across China over 1951-2006 using IBIS model

    USGS Publications Warehouse

    Zhu, Q.; Jiang, H.; Liu, J.; Wei, X.; Peng, C.; Fang, X.; Liu, S.; Zhou, G.; Yu, S.; Ju, W.

    2010-01-01

    The Integrated Biosphere Simulator is used to evaluate the spatial and temporal patterns of the crucial hydrological variables [run-off and actual evapotranspiration (AET)] of the water balance across China for the period 1951–2006 including a precipitation analysis. Results suggest three major findings. First, simulated run-off captured 85% of the spatial variability and 80% of the temporal variability for 85 hydrological gauges across China. The mean relative errors were within 20% for 66% of the studied stations and within 30% for 86% of the stations. The Nash–Sutcliffe coefficients indicated that the quantity pattern of run-off was also captured acceptably except for some watersheds in southwestern and northwestern China. The possible reasons for underestimation of run-off in the Tibetan plateau include underestimation of precipitation and uncertainties in other meteorological data due to complex topography, and simplified representations of the soil depth attribute and snow processes in the model. Second, simulated AET matched reasonably with estimated values calculated as the residual of precipitation and run-off for watersheds controlled by the hydrological gauges. Finally, trend analysis based on the Mann–Kendall method indicated that significant increasing and decreasing patterns in precipitation appeared in the northwest part of China and the Yellow River region, respectively. Significant increasing and decreasing trends in AET were detected in the Southwest region and the Yangtze River region, respectively. In addition, the Southwest region, northern China (including the Heilongjiang, Liaohe, and Haihe Basins), and the Yellow River Basin showed significant decreasing trends in run-off, and the Zhemin hydrological region showed a significant increasing trend.

  4. Basin-Scale Hydrologic Impacts of CO2 Storage: Regulatory and Capacity Implications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birkholzer, J.T.; Zhou, Q.

    Industrial-scale injection of CO{sub 2} into saline sedimentary basins will cause large-scale fluid pressurization and migration of native brines, which may affect valuable groundwater resources overlying the deep sequestration reservoirs. In this paper, we discuss how such basin-scale hydrologic impacts can (1) affect regulation of CO{sub 2} storage projects and (2) may reduce current storage capacity estimates. Our assessment arises from a hypothetical future carbon sequestration scenario in the Illinois Basin, which involves twenty individual CO{sub 2} storage projects in a core injection area suitable for long-term storage. Each project is assumed to inject five million tonnes of CO{sub 2}more » per year for 50 years. A regional-scale three-dimensional simulation model was developed for the Illinois Basin that captures both the local-scale CO{sub 2}-brine flow processes and the large-scale groundwater flow patterns in response to CO{sub 2} storage. The far-field pressure buildup predicted for this selected sequestration scenario suggests that (1) the area that needs to be characterized in a permitting process may comprise a very large region within the basin if reservoir pressurization is considered, and (2) permits cannot be granted on a single-site basis alone because the near- and far-field hydrologic response may be affected by interference between individual sites. Our results also support recent studies in that environmental concerns related to near-field and far-field pressure buildup may be a limiting factor on CO{sub 2} storage capacity. In other words, estimates of storage capacity, if solely based on the effective pore volume available for safe trapping of CO{sub 2}, may have to be revised based on assessments of pressure perturbations and their potential impact on caprock integrity and groundwater resources, respectively. We finally discuss some of the challenges in making reliable predictions of large-scale hydrologic impacts related to CO{sub 2} sequestration projects.« less

  5. Eos modeling and reservoir simulation study of bakken gas injection improved oil recovery in the elm coulee field, Montana

    NASA Astrophysics Data System (ADS)

    Pu, Wanli

    The Bakken Formation in the Williston Basin is one of the most productive liquid-rich unconventional plays. The Bakken Formation is divided into three members, and the Middle Bakken Member is the primary target for horizontal wellbore landing and hydraulic fracturing because of its better rock properties. Even with this new technology, the primary recovery factor is believed to be only around 10%. This study is to evaluate various gas injection EOR methods to try to improve on that low recovery factor of 10%. In this study, the Elm Coulee Oil Field in the Williston Basin was selected as the area of interest. Static reservoir models featuring the rock property heterogeneity of the Middle Bakken Member were built, and fluid property models were built based on Bakken reservoir fluid sample PVT data. By employing both compositional model simulation and Todd-Longstaff solvent model simulation methods, miscible gas injections were simulated and the simulations speculated that oil recovery increased by 10% to 20% of OOIP in 30 years. The compositional simulations yielded lower oil recovery compared to the solvent model simulations. Compared to the homogeneous model, the reservoir model featuring rock property heterogeneity in the vertical direction resulted in slightly better oil recovery, but with earlier CO2 break-through and larger CO2 production, suggesting that rock property heterogeneity is an important property for modeling because it has a big effect on the simulation results. Long hydraulic fractures shortened CO2 break-through time greatly and increased CO 2 production. Water-alternating-gas injection schemes and injection-alternating-shut-in schemes can provide more options for gas injection EOR projects, especially for gas production management. Compared to CO2 injection, separator gas injection yielded slightly better oil recovery, meaning separator gas could be a good candidate for gas injection EOR; lean gas generated the worst results. Reservoir simulations also indicate that original rock properties are the dominant factor for the ultimate oil recovery for both primary recovery and gas injection EOR. Because reservoir simulations provide critical inputs for project planning and management, more effort needs to be invested into reservoir modeling and simulation, including building enhanced geologic models, fracture characterization and modeling, and history matching with field data. Gas injection EOR projects are integrated projects, and the viability of a project also depends on different economic conditions.

  6. Advancing representation of hydrologic processes in the Soil and Water Assessment Tool (SWAT) through integration of the TOPographic MODEL (TOPMODEL) features

    USGS Publications Warehouse

    Chen, J.; Wu, Y.

    2012-01-01

    This paper presents a study of the integration of the Soil and Water Assessment Tool (SWAT) model and the TOPographic MODEL (TOPMODEL) features for enhancing the physical representation of hydrologic processes. In SWAT, four hydrologic processes, which are surface runoff, baseflow, groundwater re-evaporation and deep aquifer percolation, are modeled by using a group of empirical equations. The empirical equations usually constrain the simulation capability of relevant processes. To replace these equations and to model the influences of topography and water table variation on streamflow generation, the TOPMODEL features are integrated into SWAT, and a new model, the so-called SWAT-TOP, is developed. In the new model, the process of deep aquifer percolation is removed, the concept of groundwater re-evaporation is refined, and the processes of surface runoff and baseflow are remodeled. Consequently, three parameters in SWAT are discarded, and two new parameters to reflect the TOPMODEL features are introduced. SWAT-TOP and SWAT are applied to the East River basin in South China, and the results reveal that, compared with SWAT, the new model can provide a more reasonable simulation of the hydrologic processes of surface runoff, groundwater re-evaporation, and baseflow. This study evidences that an established hydrologic model can be further improved by integrating the features of another model, which is a possible way to enhance our understanding of the workings of catchments.

  7. [Simulation for balanced effect of soil and water resources on cultivated land in Naoli River Basin, Northeast China under the RCPs climate scene].

    PubMed

    Zhou, Hao; Lei, Guo Ping; Yang, Xue Xin; Zhao, Yu Hui; Zhang, Ji Xin

    2018-04-01

    Under the scenarios of climate change, balancing the land and water resources is one of the key problems needed to be solved in land development. To reveal the water dynamics of the cultivated land in Naoli River Basin, we simulated the future scenarios by using the future land use simulation model based on Landsat Satellite images, the DEM data and the meteorological data. Results showed that the growth rate of cultivated land gradually decreased. It showed different changing characteristics in different time periods, which led to different balancing effect between land and water resources. In 1990, the water dynamics of the cultivated land resources was in good state, At the same time, the adjustment of crops structure caused the paddy fields increased dramatically. During 2002 to 2014, the cultivated land that in moderate and serious moisture shortage state increased slightly, the water deficit was deteriorating to a certain degree, and maintained sound development of water profit and loss situation gradually. By comparing the simulation accuracy with different spatial resolutions and time scales, we selected 200 m as the spatial resolution of the simulation, and simulated the land use status in 2038. The simulation results showed that the cultivated land's water profit and loss degree in the river basin showed significant polarization characteristic, in that the water profit and loss degree of the cultivated land would be further intensified, the area with the higher grades of moisture profit and loss degree would distribute more centralized, and partially high evaluated grades for the moisture shortage would expand. It is needed to develop the cultivated land irrigation schemes and adjust the cultivated land in Naoli River Basin to balance soil and water resources.

  8. Streamflow Simulations and Percolation Estimates Using the Soil and Water Assessment Tool for Selected Basins in North-Central Nebraska, 1940-2005

    USGS Publications Warehouse

    Strauch, Kellan R.; Linard, Joshua I.

    2009-01-01

    The U.S. Geological Survey, in cooperation with the Upper Elkhorn, Lower Elkhorn, Upper Loup, Lower Loup, Middle Niobrara, Lower Niobrara, Lewis and Clark, and Lower Platte North Natural Resources Districts, used the Soil and Water Assessment Tool to simulate streamflow and estimate percolation in north-central Nebraska to aid development of long-term strategies for management of hydrologically connected ground and surface water. Although groundwater models adequately simulate subsurface hydrologic processes, they often are not designed to simulate the hydrologically complex processes occurring at or near the land surface. The use of watershed models such as the Soil and Water Assessment Tool, which are designed specifically to simulate surface and near-subsurface processes, can provide helpful insight into the effects of surface-water hydrology on the groundwater system. The Soil and Water Assessment Tool was calibrated for five stream basins in the Elkhorn-Loup Groundwater Model study area in north-central Nebraska to obtain spatially variable estimates of percolation. Six watershed models were calibrated to recorded streamflow in each subbasin by modifying the adjustment parameters. The calibrated parameter sets were then used to simulate a validation period; the validation period was half of the total streamflow period of record with a minimum requirement of 10 years. If the statistical and water-balance results for the validation period were similar to those for the calibration period, a model was considered satisfactory. Statistical measures of each watershed model's performance were variable. These objective measures included the Nash-Sutcliffe measure of efficiency, the ratio of the root-mean-square error to the standard deviation of the measured data, and an estimate of bias. The model met performance criteria for the bias statistic, but failed to meet statistical adequacy criteria for the other two performance measures when evaluated at a monthly time step. A primary cause of the poor model validation results was the inability of the model to reproduce the sustained base flow and streamflow response to precipitation that was observed in the Sand Hills region. The watershed models also were evaluated based on how well they conformed to the annual mass balance (precipitation equals the sum of evapotranspiration, streamflow/runoff, and deep percolation). The model was able to adequately simulate annual values of evapotranspiration, runoff, and precipitation in comparison to reported values, which indicates the model may provide reasonable estimates of annual percolation. Mean annual percolation estimated by the model as basin averages varied within the study area from a maximum of 12.9 inches in the Loup River Basin to a minimum of 1.5 inches in the Shell Creek Basin. Percolation also varied within the studied basins; basin headwaters tended to have greater percolation rates than downstream areas. This variance in percolation rates was mainly was because of the predominance of sandy, highly permeable soils in the upstream areas of the modeled basins.

  9. Sustainability of water-supply at military installations, Kabul Basin, Afghanistan

    USGS Publications Warehouse

    Mack, Thomas J.; Chornack, Michael P.; Verstraeten, Ingrid M.; Linkov, Igor

    2014-01-01

    The Kabul Basin, including the city of Kabul, Afghanistan, is host to several military installations of Afghanistan, the United States, and other nations that depend on groundwater resources for water supply. These installations are within or close to the city of Kabul. Groundwater also is the potable supply for the approximately four million residents of Kabul. The sustainability of water resources in the Kabul Basin is a concern to military operations, and Afghan water-resource managers, owing to increased water demands from a growing population and potential mining activities. This study illustrates the use of chemical and isotopic analysis, groundwater flow modeling, and hydrogeologic investigations to assess the sustainability of groundwater resources in the Kabul Basin.Water supplies for military installations in the southern Kabul Basin were found to be subject to sustainability concerns, such as the potential drying of shallow-water supply wells as a result of declining water levels. Model simulations indicate that new withdrawals from deep aquifers may have less of an impact on surrounding community water supply wells than increased withdrawals from near- surface aquifers. Higher rates of recharge in the northern Kabul Basin indicate that military installations in that part of the basin may have fewer issues with long-term water sustainability. Simulations of groundwater withdrawals may be used to evaluate different withdrawal scenarios in an effort to manage water resources in a sustainable manner in the Kabul Basin.

  10. Integrating diffusion maps with umbrella sampling: Application to alanine dipeptide

    NASA Astrophysics Data System (ADS)

    Ferguson, Andrew L.; Panagiotopoulos, Athanassios Z.; Debenedetti, Pablo G.; Kevrekidis, Ioannis G.

    2011-04-01

    Nonlinear dimensionality reduction techniques can be applied to molecular simulation trajectories to systematically extract a small number of variables with which to parametrize the important dynamical motions of the system. For molecular systems exhibiting free energy barriers exceeding a few kBT, inadequate sampling of the barrier regions between stable or metastable basins can lead to a poor global characterization of the free energy landscape. We present an adaptation of a nonlinear dimensionality reduction technique known as the diffusion map that extends its applicability to biased umbrella sampling simulation trajectories in which restraining potentials are employed to drive the system into high free energy regions and improve sampling of phase space. We then propose a bootstrapped approach to iteratively discover good low-dimensional parametrizations by interleaving successive rounds of umbrella sampling and diffusion mapping, and we illustrate the technique through a study of alanine dipeptide in explicit solvent.

  11. Sensitivity of equatorial Pacific and Indian Ocean watermasses to the position of the Indonesian Throughflow

    NASA Astrophysics Data System (ADS)

    Rodgers, Keith B.; Latif, Mojib; Legutke, Stephanie

    2000-09-01

    The sensitivity of the thermal structure of the equatorial Pacific and Indian Ocean pycnoclines to a model's representation of the Indonesian Straits connecting the two basins is investigated. Two integrations are performed using the global HOPE ocean model. The initial conditions and surface forcing for both cases are identical; the only difference between the runs is that one has an opening for the Indonesian Straits which spans the equator on the Pacific side, and the other has an opening which lies fully north of the equator. The resulting sensitivity throughout much of the upper ocean is greater than 0.5°C for both the equatorial Indian and Pacific. A realistic simulation of net Indonesian Throughflow (ITF) transport (measured in Sverdrups) is not sufficient for an adequate simulation of equatorial watermasses. The ITF must also contain a realistic admixture of northern and southern Pacific source water.

  12. Hydrologic-energy balance constraints on the Holocene lake-level history of lake Titicaca, South America

    NASA Astrophysics Data System (ADS)

    Rowe, H. D.; Dunbar, R. B.

    2004-09-01

    A basin-scale hydrologic-energy balance model that integrates modern climatological, hydrological, and hypsographic observations was developed for the modern Lake Titicaca watershed (northern Altiplano, South America) and operated under variable conditions to understand controls on post-glacial changes in lake level. The model simulates changes in five environmental variables (air temperature, cloud fraction, precipitation, relative humidity, and land surface albedo). Relatively small changes in three meteorological variables (mean annual precipitation, temperature, and/or cloud fraction) explain the large mid-Holocene lake-level decrease (˜85 m) inferred from seismic reflection profiling and supported by sediment-based paleoproxies from lake sediments. Climatic controls that shape the present-day Altiplano and the sediment-based record of Holocene lake-level change are combined to interpret model-derived lake-level simulations in terms of changes in the mean state of ENSO and its impact on moisture transport to the Altiplano.

  13. Integrated Basin-Scale Modelling and Assessment: Lessons and Challenges in Linking Biophysical and Socioeconomic Sciences for Enhancing Sustainability Outcomes

    NASA Astrophysics Data System (ADS)

    Jakeman, A. J.; Croke, B. F.; Letcher, R. A.; Newham, L. T.; Norton, J. P.

    2004-12-01

    Integrated Assessment (IA) and Integrated Scenario Modelling (ISM) are being increasingly used to assess sustainability options and, in particular, the effects of policy changes, land use management, climate forcing and other uncontrollable drivers on a wide range of river basin outcomes. IA and ISM are processes that invoke the necessary range of biophysical and socioeconomic disciplines and embrace stakeholder involvement as an essential ingredient. The authors report on their IA studies in Australian and Asian river basins. They illustrate a range of modelling frameworks and tools that were used to perform the assessments, engage the relevant interest groups and promote systems understanding and social learning. The studies cover a range of issues and policies including poverty alleviation, industrial investments, infrastructure provision, erosion and sedimentation, water supply allocation, and ecological protection. The positive impacts of these studies are presented, as well as the lessons learnt and the challenges for modellers and disciplinary experts in advancing the reputation and performance of integrated assessment exercises.

  14. Renewed circulation scheme of the Baltic Sea - based on the 40-year simulation with GETM.

    NASA Astrophysics Data System (ADS)

    Maljutenko, Ilja; Raudsepp, Urmas

    2015-04-01

    The general circulation of the Baltic Sea has been characterized as cyclonic in all sub-basins based on numerous measurements and model simulations. From the long-term hydrodynamical simulation our model results have verified the general cyclonic circulation in the Baltic Proper and in the Gulf of Bothnia, but the Gulf of Finland and the Gulf of Riga have shown tendency to anticyclonic circulation. We have applied the General Estuarine Transport Model ( GETM ) for the period of 1966 - 2006 with a 1 nautical mile horizontal resolution and density adaptive bottom following vertical coordinates to make it possible to simulate horizontal and vertical density gradients with better precision. The atmospheric forcing from dynamically downscaled ERA40-HIRLAM and parametrized lateral boundary conditions are applied. Model simulation show close agreement with measurements conducted in the main monitoring stations in the BS during the simulation period. The geostrophic adjustment of density driven currents along with the upward salinity flux due to entrainment could explain the anticyclonic circulation and strong coastal current. Mean vertical velocities show that upward and downward movements are forming closed vertical circulation loops along the bottom slope of the Baltic Proper and the Gulf of Bothnia. The model has also reproduced patchy vertical movement across the BS with some distinctive areas of upward advective fluxes in the GoF along the thalweg. The distinctive areas of deepwater upwelling are also evident in the Gdansk Basin, western Gotland Basin, northern Gotland Basin and in the northen part of the Bothnia Sea.

  15. Improvment of short cut numerical method for determination of periods of free oscillations for basins with irregular geometry and bathymetry

    NASA Astrophysics Data System (ADS)

    Chernov, Anton; Kurkin, Andrey; Pelinovsky, Efim; Yalciner, Ahmet; Zaytsev, Andrey

    2010-05-01

    A short cut numerical method for evaluation of the modes of free oscillations of the basins which have irregular geometry and bathymetry was presented in the paper (Yalciner A.C., Pelinovsky E., 2007). In the method, a single wave is inputted to the basin as an initial impulse. The respective agitation in the basin is computed by using the numerical method solving the nonlinear form of long wave equations. The time histories of water surface fluctuations at different locations due to propagation of the waves in relation to the initial impulse are stored and analyzed by the fast Fourier transform technique (FFT) and energy spectrum curves for each location are obtained. The frequencies of each mode of free oscillations are determined from the peaks of the spectrum curves. Some main features were added for this method and will be discussed here: 1. Instead of small number of gauges which were manually installed in the studied area the information from numerical simulation now is recorded on the regular net of the «simulation» gauges which was place everywhere on the sea surface in the depth deeper than "coast" level with the fixed presetted distance between gauges. The spectral analysis of wave records was produced by Welch periodorgam method instead of simple FFT so it's possible to get spectral power estimation for wave process and determine confidence interval for spectra peaks. 2. After the power spectral estimation procedure the common peak of studied seiche can be found and mean spectral amplitudes for this peak were calculated numerically by a Simpson integration method for all gauges in the basin and the mean spectral amplitudes spatial distribution map can be ploted. The spatial distribution helps to study structure of seiche and determine effected dangerous areas. 3. Nested grid module in the NAMI-DANCE - nonlinear shallow water equations calculation software package was developed. This is very important feature for complicated different scale (ocean - sea - bay - harbor) phenomenons studying. The new developed software was tested for Mediterranian, Sea of Okhotsk and South China sea regions. This software can be usefull in local tsunami mapping and tsunami propagation in the coastal zone. References: Yalciner A.C., Pelinovsky E. A short cut numerical method for determination of periods of free oscillations for basins with irregular geometry and bathymetry // Ocean engineering. V. 34. 2007. С. 747 - 757

  16. Disturbance departure and fragmentation of natural systems in the interior Columbia basin.

    Treesearch

    Wendel J. Hann; Michael J. Wisdom; Mary M. Rowland

    2003-01-01

    We integrated landscape data from science assessments of the interior Columbia basin (basin) into one variable that functions as a robust index of departure from native conditions. This variable, referred to as the disturbance departure and fragmentation index, is a spatially explicit measure of landscape quality and resiliency. Primary causes of departure and...

  17. Geohydrology, geochemistry, and groundwater simulation (1992-2011) and analysis of potential water-supply management options, 2010-60, of the Langford Basin, California

    USGS Publications Warehouse

    Voronin, Lois M.; Densmore, Jill N.; Martin, Peter; Brush, Charles F.; Carlson, Carl S.; Miller, David M.

    2013-01-01

    Groundwater withdrawals began in 1992 from the Langford Basin within the Fort Irwin National Training Center (NTC), California. From April 1992 to December 2010, approximately 12,300 acre-feet of water (averaging about 650 acre-feet per year) has been withdrawn from the basin and transported to the adjacent Irwin Basin. Since withdrawals began, water levels in the basin have declined by as much as 40 feet, and the quality of the groundwater withdrawn from the basin has deteriorated. The U.S. Geological Survey collected geohydrologic data from Langford Basin during 1992–2011 to determine the quantity and quality of groundwater available in the basin. Geophysical surveys, including gravity, seismic refraction, and time-domain electromagnetic induction surveys, were conducted to determine the depth and shape of the basin, to delineate depths to the Quaternary-Tertiary interface, and to map the depth to the water table and changes in water quality. Data were collected from existing wells and test holes, as well as 11 monitor wells that were installed at 5 sites as part of this study. Water-quality samples collected from wells in the basin were used to determine the groundwater chemistry within the basin and to delineate potential sources of poor-quality groundwater. Analysis of stable isotopes of oxygen and hydrogen in groundwater indicates that present-day precipitation is not a major source of recharge to the basin. Tritium and carbon-14 data indicate that most of the basin was recharged prior to 1952, and the groundwater in the basin has an apparent age of 12,500 to 30,000 years. Recharge to the basin, estimated to be less than 50 acre-feet per year, has not been sufficient to replenish the water that is being withdrawn from the basin. A numerical groundwater-flow model was developed for the Langford Basin to better understand the aquifer system used by the Fort Irwin NTC as part of its water supply, and to provide a tool to help manage groundwater resources at the NTC. Measured groundwater-level declines since the initiation of withdrawals (1992–2011) were used to calibrate the groundwater-flow model. The simulated recharge was about 46 acre-feet per year, including approximately 6 acre-feet per year of natural recharge derived from precipitation runoff and as much as 40 acre-feet per year of underflow from the Irwin Basin. Between April 1992 and December 2010, an average of about 650 acre-feet per year of water was withdrawn from the Langford Basin. Groundwater withdrawals in excess of natural recharge resulted in a net loss of 11,670 acre-feet of groundwater storage within the basin for the simulation period. The Fort Irwin NTC is considering various groundwater-management options to address the limited water resources in the Langford Basin. The calibrated Langford Basin groundwater-flow model was used to evaluate the hydrologic effects of four groundwater-withdrawal scenarios being considered by the Fort Irwin NTC over the next 50 years (January 2011 through December 2060). Continuation of the 2010 withdrawal rate in the three existing production wells will result in 70 feet of additional drawdown in the central part of the basin. Redistributing the 2010 withdrawal rate equally to the three existing wells and two proposed new wells in the northern and southern parts of the basin would result in about 10 feet less drawdown in the central part of the basin but about 100 feet of additional drawdown in the new well in the northern part of the basin and about 50 feet of additional drawdown in the new well in the southern part of the basin. Reducing the withdrawals from the three existing production wells in the central part of the basin from about 45,000 acre-feet to about 32,720 acre-feet would result in about 40 feet of additional drawdown in the central basin near the pumping wells, about 25 feet less than if withdrawals were not reduced. The combination of reducing and redistributing the cumulative withdrawals to the three existing and two proposed new wells results in about 40 feet of additional drawdown in the central and southern parts of the basin and about 70 feet in the northern part of the basin. These results show that reducing and redistributing the groundwater withdrawals would maintain the upper aquifer at greater than 50 percent of its predevelopment saturated thickness throughout the groundwater basin. The scenarios simulated for this study demonstrate how the calibrated model can be utilized to evaluate the hydrologic effects of different water-management strategies.

  18. Combining point and distributed snowpack data with landscape-based discretization for hydrologic modeling of the snow-dominated Maipo River basin, in the semi-arid Andes of Central Chile.

    NASA Astrophysics Data System (ADS)

    McPhee, James; Videla, Yohann

    2014-05-01

    The 5000-km2 upper Maipo River Basin, in central Chile's Andes, has an adequate streamgage network but almost no meteorological or snow accumulation data. Therefore, hydrologic model parameterization is strongly subject to model errors stemming from input and model-state uncertainty. In this research, we apply the Cold Regions Hydrologic Model (CRHM) to the basin, force it with reanalysis data downscaled to an appropriate resolution, and inform a parsimonious basin discretization, based on the hydrologic response unit concept, with distributed data on snowpack properties obtained through snow surveys for two seasons. With minimal calibration the model is able to reproduce the seasonal accumulation and melt cycle as recorded in the one snow pillow available for the basin, and although a bias in maximum accumulation persists, snowpack persistence in time is appropriately simulated based on snow water equivalent and snow covered area observations. Blowing snow events were simulated by the model whenever daily wind speed surpassed 8 m/s, although the use of daily instead of hourly data to force the model suggests that this phenomenon could be underestimated. We investigate the representation of snow redistribution by the model, and compare it with small-scale observations of wintertime snow accumulation on glaciers, in a first step towards characterizing ice distribution within a HRU spatial discretization. Although built at a different spatial scale, we present a comparison of simulated results with distributed snow depth data obtained within a 40 km2 sub-basin of the main Maipo watershed in two snow surveys carried out at the end of winter seasons 2011 and 2012, and compare basin-wide SWE estimates with a regression tree extrapolation of the observed data.

  19. A watershed-based spatially-explicit demonstration of an integrated environmental modeling framework for ecosystem services in the Coal River Basin (WV, USA)

    Treesearch

    John M. Johnston; Mahion C. Barber; Kurt Wolfe; Mike Galvin; Mike Cyterski; Rajbir Parmar; Luis Suarez

    2016-01-01

    We demonstrate a spatially-explicit regional assessment of current condition of aquatic ecoservices in the Coal River Basin (CRB), with limited sensitivity analysis for the atmospheric contaminant mercury. The integrated modeling framework (IMF) forecasts water quality and quantity, habitat suitability for aquatic biota, fish biomasses, population densities, ...

  20. Efficient dynamic scarcity pricing in urban water supply

    NASA Astrophysics Data System (ADS)

    Lopez-Nicolas, Antonio; Pulido-Velazquez, Manuel; Rougé, Charles; Harou, Julien J.; Escriva-Bou, Alvar

    2017-04-01

    Water pricing is a key instrument for water demand management. Despite the variety of existing strategies for urban water pricing, urban water rates are often far from reflecting the real value of the resource, which increases with water scarcity. Current water rates do not bring any incentive to reduce water use in water scarcity periods, since they do not send any signal to the users of water scarcity. In California, the recent drought has spurred the implementation of drought surcharges and penalties to reduce residential water use, although it is not a common practice yet. In Europe, the EU Water Framework Directive calls for the implementation of new pricing policies that assure the contribution of water users to the recovery of the cost of water services (financial instrument) while providing adequate incentives for an efficient use of water (economic instrument). Not only financial costs should be recovered but also environmental and resource (opportunity) costs. A dynamic pricing policy is efficient if the prices charged correspond to the marginal economic value of water, which increases with water scarcity and is determined by the value of water for all alternative uses in the basin. Therefore, in the absence of efficient water markets, measuring the opportunity costs of scarce water can only be achieved through an integrated basin-wide hydroeconomic simulation approach. The objective of this work is to design a dynamic water rate for urban water supply accounting for the seasonal marginal value of water in the basin, related to water scarcity. The dynamic pricing policy would send to the users a signal of the economic value of the resource when water is scarce, therefore promoting more efficient water use. The water rate is also designed to simultaneously meet the expected basic requirements for water tariffs: revenue sufficiency (cost recovery) and neutrality, equity and affordability, simplicity and efficiency. A dynamic increasing block rate (IBR) tariff is designed, including a variable charge related to the scarcity value of water in the basin. The new tariff would encourage water conservation, providing more incentives with great water scarcity. The approach is applied to the supply to the city of Valencia with water resources from the Jucar river basin, a drought-prone Mediterranean basin in Eastern Spain that constitutes a good case for testing this policy. Our results demonstrate the potential of integrating the marginal value of water in the urban water tariffs, with water savings reaching up to 30% during scarcity conditions with respect to the baseline urban water tariffs.

  1. SWAT use of gridded observations for simulating runoff - a Vietnam river basin study

    NASA Astrophysics Data System (ADS)

    Vu, M. T.; Raghavan, S. V.; Liong, S. Y.

    2011-12-01

    Many research studies that focus on basin hydrology have used the SWAT model to simulate runoff. One common practice in calibrating the SWAT model is the application of station data rainfall to simulate runoff. But over regions lacking robust station data, there is a problem of applying the model to study the hydrological responses. For some countries and remote areas, the rainfall data availability might be a constraint due to many different reasons such as lacking of technology, war time and financial limitation that lead to difficulty in constructing the runoff data. To overcome such a limitation, this research study uses some of the available globally gridded high resolution precipitation datasets to simulate runoff. Five popular gridded observation precipitation datasets: (1) Asian Precipitation Highly Resolved Observational Data Integration Towards the Evaluation of Water Resources (APHRODITE), (2) Tropical Rainfall Measuring Mission (TRMM), (3) Precipitation Estimation from Remote Sensing Information using Artificial Neural Network (PERSIANN), (4) Global Precipitation Climatology Project (GPCP), (5) modified Global Historical Climatology Network version 2 (GHCN2) and one reanalysis dataset National Centers for Environment Prediction/National Center for Atmospheric Research (NCEP/NCAR) are used to simulate runoff over the Dakbla River (a small tributary of the Mekong River) in Vietnam. Wherever possible, available station data are also used for comparison. Bilinear interpolation of these gridded datasets is used to input the precipitation data at the closest grid points to the station locations. Sensitivity Analysis and Auto-calibration are performed for the SWAT model. The Nash-Sutcliffe Efficiency (NSE) and Coefficient of Determination (R2) indices are used to benchmark the model performance. This entails a good understanding of the response of the hydrological model to different datasets and a quantification of the uncertainties in these datasets. Such a methodology is also useful for planning on Rainfall-runoff and even reservoir/river management both at rural and urban scales.

  2. Biogeochemical modelling vs. tree-ring data - comparison of forest ecosystem productivity estimates

    NASA Astrophysics Data System (ADS)

    Zorana Ostrogović Sever, Maša; Barcza, Zoltán; Hidy, Dóra; Paladinić, Elvis; Kern, Anikó; Marjanović, Hrvoje

    2017-04-01

    Forest ecosystems are sensitive to environmental changes as well as human-induce disturbances, therefore process-based models with integrated management modules represent valuable tool for estimating and forecasting forest ecosystem productivity under changing conditions. Biogeochemical model Biome-BGC simulates carbon, nitrogen and water fluxes, and it is widely used for different terrestrial ecosystems. It was modified and parameterised by many researchers in the past to meet the specific local conditions. In this research, we used recently published improved version of the model Biome-BGCMuSo (BBGCMuSo), with multilayer soil module and integrated management module. The aim of our research is to validate modelling results of forest ecosystem productivity (NPP) from BBGCMuSo model with observed productivity estimated from an extensive dataset of tree-rings. The research was conducted in two distinct forest complexes of managed Pedunculate oak in SE Europe (Croatia), namely Pokupsko basin and Spačva basin. First, we parameterized BBGCMuSo model at a local level using eddy-covariance (EC) data from Jastrebarsko EC site. Parameterized model was used for the assessment of productivity on a larger scale. Results of NPP assessment with BBGCMuSo are compared with NPP estimated from tree ring data taken from trees on over 100 plots in both forest complexes. Keywords: Biome-BGCMuSo, forest productivity, model parameterization, NPP, Pedunculate oak

  3. Modeling the effect of glacier recession on streamflow response using a coupled glacio-hydrological model

    DOE PAGES

    Frans, Chris D.; Clarke, Garry K. C.; Burns, P.; ...

    2014-02-27

    Here, we describe an integrated spatially distributed hydrologic and glacier dynamic model, and use it to investigate the effect of glacier recession on streamflow variations for the Upper Bow River basin, a tributary of the South Saskatchewan River. Several recent studies have suggested that observed decreases in summer flows in the South Saskatchewan River are partly due to the retreat of glaciers in the river's headwaters. Modeling the effect of glacier changes on streamflow response in river basins such as the South Saskatchewan is complicated due to the inability of most existing physically-based distributed hydrologic models to represent glacier dynamics.more » We compare predicted variations in glacier extent, snow water equivalent and streamflow discharge made with the integrated model with satellite estimates of glacier area and terminus position, observed streamflow and snow water equivalent measurements over the period of 1980 2007. Simulations with the coupled hydrology-glacier model reduce the uncertainty in streamflow predictions. Our results suggested that on average, the glacier melt contribution to the Bow River flow upstream of Lake Louise is about 30% in summer. For warm and dry years, however, the glacier melt contribution can be as large as 50% in August, whereas for cold years, it can be as small as 20% and the timing of glacier melt signature can be delayed by a month.« less

  4. Simulation of Water Sources and Precipitation Recycling for the MacKenzie, Mississippi and Amazon River Basins

    NASA Technical Reports Server (NTRS)

    Bosilovich, Michael G.; Chern, Jiun-Dar

    2005-01-01

    An atmospheric general circulation model simulation for 1948-1997 of the water budgets for the MacKenzie, Mississippi and Amazon River basins is presented. In addition to the water budget, we include passive tracers to identify the geographic sources of water for the basins, and the analysis focuses on the mechanisms contributing to precipitation recycling in each basin. While each basin s precipitation recycling has a strong dependency on evaporation during the mean annual cycle, the interannual variability of the recycling shows important relationships with the atmospheric circulation. The MacKenzie River basin has only a weak interannual dependency on evaporation, where the variations in zonal moisture transport from the Pacific Ocean can affect the basin water cycle. On the other hand, the Mississippi River basin has strong interannual dependencies on evaporation. While the precipitation recycling weakens with increased low level jet intensity, the evaporation variations exert stronger influence in providing water vapor for convective precipitation at the convective cloud base. High precipitation recycling is also found to be partly connected to warm SSTs in the tropical Pacific Ocean. The Amazon River basin evaporation exhibits small interannual variations, so that the interannual variations of precipitation recycling are related to atmospheric moisture transport from the tropical south Atlantic Ocean. Increasing SSTs over the 50-year period are causing increased easterly transport across the basin. As moisture transport increases, the Amazon precipitation recycling decreases (without real time varying vegetation changes). In addition, precipitation recycling from a bulk diagnostic method is compared to the passive tracer method used in the analysis. While the mean values are different, the interannual variations are comparable between each method. The methods also exhibit similar relationships to the terms of the basin scale water budgets.

  5. Simulation of streamflow and water quality in the White Clay Creek subbasin of the Christina River Basin, Pennsylvania and Delaware, 1994-98

    USGS Publications Warehouse

    Senior, Lisa A.; Koerkle, Edward H.

    2003-01-01

    The Christina River Basin drains 565 square miles (mi2) in Pennsylvania, Maryland, and Delaware. Water from the basin is used for recreation, drinking water supply, and to support aquatic life. The Christina River Basin includes the major subbasins of Brandywine Creek, White Clay Creek, and Red Clay Creek. The White Clay Creek is the second largest of the subbasins and drains an area of 108 mi2. Water quality in some parts of the Christina River Basin is impaired and does not support designated uses of the streams. A multi-agency water-quality management strategy included a modeling component to evaluate the effects of point and nonpoint-source contributions of nutrients and suspended sediment on stream water quality. To assist in non point-source evaluation, four independent models, one for each of the three major subbasins and for the Christina River, were developed and calibrated using the model code Hydrological Simulation Program—Fortran (HSPF). Water-quality data for model calibration were collected in each of the four main subbasins and in smaller subbasins predominantly covered by one land use following a nonpoint-source monitoring plan. Under this plan, stormflow and base- flow samples were collected during 1998 at two sites in the White Clay Creek subbasin and at nine sites in the other subbasins.The HSPF model for the White Clay Creek Basin simulates streamflow, suspended sediment, and the nutrients, nitrogen and phosphorus. In addition, the model simulates water temperature, dissolved oxygen, biochemical oxygen demand, and plankton as secondary objectives needed to support the sediment and nutrient simulations. For the model, the basin was subdivided into 17 reaches draining areas that ranged from 1.37 to 13 mi2. Ten different pervious land uses and two impervious land uses were selected for simulation. Land-use areas were determined from 1995 land-use data. The predominant land uses in the White Clay Creek Basin are agricultural, forested, residential, and urban.The hydrologic component of the model was run at an hourly time step and primarily calibrated using streamflow data from two U.S. Geological Survey (USGS) streamflow-measurement stations for the period of October 1, 1994, through October 29, 1998. Additional calibration was done using data from two other USGS streamflow-measurement stations with periods of record shorter than the calibration period. Daily precipitation data from two National Oceanic and Atmospheric Administration (NOAA) gages and hourly precipitation and other meteorological data for one NOAA gage were used for model input. The difference between simulated and observed streamflow volume ranged from -0.9 to 1.8 percent for the 4-year period at the two calibration sites with 4-year records. Annual differences between observed and simulated streamflow generally were greater than the overall error. For example, at a site near the bottom of the basin (drainage area of 89.1 mi2), annual differences between observed and simulated streamflow ranged from -5.8 to 14.4 percent and the overall error for the 4-year period was -0.9 percent. Calibration errors for 36 storm periods at the two calibration sites for total volume, low-flowrecession rate, 50-percent lowest flows, 10-percent highest flows, and storm peaks were within the recommended criteria of 20 percent or less. Much of the error in simulating storm events on an hourly time step can be attributed to uncertainty in the hourly rainfall data.The water-quality component of the model was calibrated using data collected by the USGS and state agencies at three USGS streamflow-measurement stations with variable water-quality monitoring periods ending October 1998. Because of availability, monitoring data for suspended-solids concentrations were used as surrogates for suspended-sediment concentrations, although suspended solids may underestimate suspended sediment and affect apparent accuracy of the suspended-sediment simulation. Comparison of observed to simulated loads for up to five storms in 1998 at each of the two nonpoint-source monitoring sites in the White Clay Creek Basin indicate that simulation error is commonly as large as an order of magnitude for suspended sediment and nutrients. The simulation error tends to be smaller for dissolved nutrients than for particulate nutrients. Errors of 40 percent or less for monthly or annual values indicate a fair to good water-quality calibration according to recommended criteria, with much larger errors possible for individual events. The accuracy of the water-quality calibration under stormflow conditions is limited by the relatively small amount of water-quality data available for the White Clay Creek Basin.Users of the White Clay Creek HSPF model should be aware of model limitations and consider the following if the model is used for predictive purposes: streamflow and water quality for individual storm events may not be well simulated, but the model performance is reasonable when evaluated over longer periods of time; the observed flow-duration curve for the simulation period is similar to the long-term flow-duration curve at White Clay Creek near Newark, Del., indicating that the calibration period is representative of all but highest 0.1 percent and lowest 0.1 percent of flows at that site; relative errors in streamflow and water-quality simulations are greater for smaller drainage areas than for larger areas; and calibration for water-quality was based on sparse data.

  6. Integrated flood damage modelling in the Ebro river basin under hydrodynamic, socio-economic and environmental factors

    NASA Astrophysics Data System (ADS)

    Foudi, S.; Galarraga, I.; Osés, N.

    2012-04-01

    This paper presents a model of flood damage measurement. It studies the socio-economic and environmental potential damage of floods in the Ebro river basin. We estimate the damage to the urban, rural and environmental sectors. In these sectors, we make distinctions between residential, non residential, cultural, agricultural, public facilities and utilities, environmental and human subsectors. We focus on both the direct, indirect, tangible and intangible impacts. The residential damages refer to the damages on housing, costs of repair and cleaning as direct effects and the re-housing costs as an indirect effect. The non residential and agricultural impacts concern the losses to the economic sectors (industry, business, agricultural): production, capital losses, costs of cleaning and repairs for the direct costs and the consequences of the suspension of activities for the indirect costs. For the human sector, we refer to the physical impacts (injuries and death) in the direct tangible effects and to the posttraumatic stress as indirect intangible impact. The environmental impacts focus on a site of Community Interests (pSCIs) in the case study area. The case study is located the Ebro river basin, Spain. The Ebro river basin is the larger river basin in term of surface and water discharge. The Ebro river system is subject to Atlantic and Mediterranean climatic influences. It gathers most of its water from the north of Spain (in the Pyrenees Mountains) and is the most important river basin of Spain in term of water resources. Most of the flooding occurs during the winter period. Between 1900- 2010, the National Catalogue of Historical Floods identifies 372 events: meanly 33 events every 10 years and up to 58 during the 1990-2000. Natural floods have two origins: (i) persistent rainfalls in large sub basins raised up by high temperature giving rise to a rapid thaw in the Pyrenees, (ii) local rainfalls of short duration and high intensity that gives rise to rapid and wrenching floods. Our integrated model combines hydrologic, land use, environmental and economic data. The combination of the cadastral data with the flood characteristics (flow, depth, duration) for various periods of return enables to draw damage maps expressed as function of flood characteristics (Penning-Rowsell et al. 2005). This methodology also enables to illustrate consequences of risk prevention measures. We can thus measure the value of information in the alert system of Civil Protection Agency, give information on risks for urban development plans and simulate the consequences of hydraulic interventions like river bed cleaning. This methodology would then contribute to match with the requirements of the 2007 EU flood risk Management Directive (2007/60/CE).

  7. Effects of anthropogenic groundwater exploitation on land surface processes: A case study of the Haihe River Basin, northern China

    NASA Astrophysics Data System (ADS)

    Zou, Jing; Xie, Zhenghui; Zhan, Chesheng; Qin, Peihua; Sun, Qin; Jia, Binghao; Xia, Jun

    2015-05-01

    In this study, we incorporated a groundwater exploitation scheme into the land surface model CLM3.5 to investigate the effects of the anthropogenic exploitation of groundwater on land surface processes in a river basin. Simulations of the Haihe River Basin in northern China were conducted for the years 1965-2000 using the model. A control simulation without exploitation and three exploitation simulations with different water demands derived from socioeconomic data related to the Basin were conducted. The results showed that groundwater exploitation for human activities resulted in increased wetting and cooling effects at the land surface and reduced groundwater storage. A lowering of the groundwater table, increased upper soil moisture, reduced 2 m air temperature, and enhanced latent heat flux were detected by the end of the simulated period, and the changes at the land surface were related linearly to the water demands. To determine the possible responses of the land surface processes in extreme cases (i.e., in which the exploitation process either continued or ceased), additional hypothetical simulations for the coming 200 years with constant climate forcing were conducted, regardless of changes in climate. The simulations revealed that the local groundwater storage on the plains could not contend with high-intensity exploitation for long if the exploitation process continues at the current rate. Changes attributable to groundwater exploitation reached extreme values and then weakened within decades with the depletion of groundwater resources and the exploitation process will therefore cease. However, if exploitation is stopped completely to allow groundwater to recover, drying and warming effects, such as increased temperature, reduced soil moisture, and reduced total runoff, would occur in the Basin within the early decades of the simulation period. The effects of exploitation will then gradually disappear, and the variables will approach the natural state and stabilize at different rates. Simulations were also conducted for cases in which exploitation either continues or ceases using future climate scenario outputs from a general circulation model. The resulting trends were almost the same as those of the simulations with constant climate forcing, despite differences in the climate data input. Therefore, a balance between slow groundwater restoration and rapid human development of the land must be achieved to maintain a sustainable water resource.

  8. Basin deconstruction-construction: Seeking thermal-tectonic consistency through the integration of geochemical thermal indicators and seismic fault mechanical stratigraphy ​- Example from Faras Field, North Western Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Pigott, John D.; Abouelresh, Mohamed O.

    2016-02-01

    To construct a model of a sedimentary basin's thermal tectonic history is first to deconstruct it: taking apart its geological elements, searching for its initial conditions, and then to reassemble the elements in the temporal order that the basin is assumed to have evolved. Two inherent difficulties implicit to the analysis are that most organic thermal indicators are cumulative, irreversible and a function of both temperature and time and the non-uniqueness of crustal strain histories which complicates tectonic interpretations. If the initial conditions (e.g. starting maturity of the reactants and initial crustal temperature) can be specified and the boundary conditions incrementally designated from changes in the lithospheric heat engine owing to stratigraphic structural constraints, then the number of pathways for the temporal evolution of a basin is greatly reduced. For this investigation, model input uncertainties are reduced through seeking a solution that iteratively integrates the geologically constrained tectonic subsidence, geochemically constrained thermal indicators, and geophysically constrained fault mechanical stratigraphy. The Faras oilfield in the Abu Gharadig Basin, North Western Desert, Egypt, provides an investigative example of such a basin's deconstructive procedure. Multiple episodes of crustal extension and shortening are apparent in the tectonic subsidence analyses which are constrained from the fault mechanical stratigraphy interpreted from reflection seismic profiles. The model was iterated with different thermal boundary conditions until outputs best fit the geochemical observations. In so doing, the thermal iterations demonstrate that general relationship that basin heat flow increases decrease vertical model maturity gradients, increases in surface temperatures shift vertical maturity gradients linearly to higher values, increases in sediment conductivities lower vertical maturities with depth, and the addition of ;ghost; layers (those layers removed) prior to the erosional event increase maturities beneath, and conversely. These integrated constraints upon the basin evolution model indicate that the principal source rocks, Khatatba and the lowest part of the Alam El Bueib formations, entered the oil window at approximately 95 Ma and the gas window at approximately 25 Ma. The upper part of the Alam El Bueib Formation is within the oil window at the present day. Establishing initial and boundary value conditions for a basin's thermal evolution when geovalidated by the integration of seismic fault mechanical stratigraphy, tectonic subsidence analysis, and organic geochemical maturity indicators provides a powerful tool for optimizing petroleum exploration in both mature and frontier basins.

  9. A novel land surface-hydrologic-sediment dynamics model for stream corridor conservation assessment and its first application

    NASA Astrophysics Data System (ADS)

    Smithgall, K.; Shen, C.; Langendoen, E. J.; Johnson, P. A.

    2015-12-01

    Nationally and in the Chesapeake Bay (CB), Stream Corridor restoration costs unsustainable amount of public resources, but decisions are often made with inadequate knowledge of regional-scale system behavior. Bank erosion is a significant issue relevant to sediment and nutrient pollution, aquatic and riparian habitat and stream health. Existing modeling effort either focuses only on reach-scale responses or overly simplifies the descriptions for bank failure mechanics. In this work we present a novel regional-scale processes model integrating hydrology, vegetation dynamics, hydraulics, bank mechanics and sediment transport, based on a coupling between Community Land Model, Process-based Adaptive Watershed Simulator and CONservational Channel Evolution and Pollutant Transport System (CLM + PAWS + CONCEPTS, CPC). We illustrate the feasibility of this modeling platform in a Valley and Ridge basin in Pennsylvania, USA, with channel geometry data collected in 2004 and 2014. The simulations are able to reproduce essential pattern of the observed trends. We study the causes of the noticeable evolution of a relocated channel and the hydrologic controls. Bridging processes on multiple scales, the CPC model creates a new, integrated system that may serve as a confluence point for inter-disciplinary research.

  10. 3D Ground-Motion Simulations for Magnitude 9 Earthquakes on the Cascadia Megathrust: Sedimentary Basin Amplification, Rupture Directivity, and Ground-Motion Variability

    NASA Astrophysics Data System (ADS)

    Frankel, A. D.; Wirth, E. A.; Marafi, N.; Vidale, J. E.; Stephenson, W. J.

    2017-12-01

    We have produced broadband (0-10 Hz) synthetic seismograms for Mw 9 earthquakes on the Cascadia subduction zone by combining synthetics from 3D finite-difference simulations at low frequencies (≤ 1 Hz) and stochastic synthetics at high frequencies (≥ 1 Hz). These synthetic ground motions are being used to evaluate building response, liquefaction, and landslides, as part of the M9 Project of the University of Washington, in collaboration with the U.S. Geological Survey. The kinematic rupture model is composed of high stress drop sub-events with Mw 8, similar to those observed in the Mw 9.0 Tohoku, Japan and Mw 8.8 Maule, Chile earthquakes, superimposed on large background slip with lower slip velocities. The 3D velocity model is based on active and passive-source seismic tomography studies, seismic refraction and reflection surveys, and geologic constraints. The Seattle basin portion of the model has been validated by simulating ground motions from local earthquakes. We have completed 50 3D simulations of Mw 9 earthquakes using a variety of hypocenters, slip distributions, sub-event locations, down-dip limits of rupture, and other parameters. For sites not in deep sedimentary basins, the response spectra of the synthetics for 0.1-6.0 s are similar, on average, to the values from the BC Hydro ground motion prediction equations (GMPE). For periods of 7-10 s, the synthetic response spectra exceed these GMPE, partially due to the shallow dip of the plate interface. We find large amplification factors of 2-5 for response spectra at periods of 1-10 s for locations in the Seattle and Tacoma basins, relative to sites outside the basins. This amplification depends on the direction of incoming waves and rupture directivity. The basin amplification is caused by surface waves generated at basin edges from incoming S-waves, as well as amplification and focusing of S-waves and surface waves by the 3D basin structure. The inter-event standard deviation of response spectral amplitudes from the synthetics is larger for sites nearer the coast, because of their higher sensitivity to the sub-event locations and rupture directivity. The total standard deviations of spectral accelerations from 30 simulations for periods greater than 2 s are similar to those determined in the BC Hydro GMPE from strong-motion recordings in subduction zones.

  11. Simulation of daily streamflows at gaged and ungaged locations within the Cedar River Basin, Iowa, using a Precipitation-Runoff Modeling System model

    USGS Publications Warehouse

    Christiansen, Daniel E.

    2012-01-01

    The U.S. Geological Survey, in cooperation with the Iowa Department of Natural Resources, conducted a study to examine techniques for estimation of daily streamflows using hydrological models and statistical methods. This report focuses on the use of a hydrologic model, the U.S. Geological Survey's Precipitation-Runoff Modeling System, to estimate daily streamflows at gaged and ungaged locations. The Precipitation-Runoff Modeling System is a modular, physically based, distributed-parameter modeling system developed to evaluate the impacts of various combinations of precipitation, climate, and land use on surface-water runoff and general basin hydrology. The Cedar River Basin was selected to construct a Precipitation-Runoff Modeling System model that simulates the period from January 1, 2000, to December 31, 2010. The calibration period was from January 1, 2000, to December 31, 2004, and the validation periods were from January 1, 2005, to December 31, 2010 and January 1, 2000 to December 31, 2010. A Geographic Information System tool was used to delineate the Cedar River Basin and subbasins for the Precipitation-Runoff Modeling System model and to derive parameters based on the physical geographical features. Calibration of the Precipitation-Runoff Modeling System model was completed using a U.S. Geological Survey calibration software tool. The main objective of the calibration was to match the daily streamflow simulated by the Precipitation-Runoff Modeling System model with streamflow measured at U.S. Geological Survey streamflow gages. The Cedar River Basin daily streamflow model performed with a Nash-Sutcliffe efficiency ranged from 0.82 to 0.33 during the calibration period, and a Nash-Sutcliffe efficiency ranged from 0.77 to -0.04 during the validation period. The Cedar River Basin model is meeting the criteria of greater than 0.50 Nash-Sutcliffe and is a good fit for streamflow conditions for the calibration period at all but one location, Austin, Minnesota. The Precipitation-Runoff Modeling System model accurately simulated streamflow at four of six uncalibrated sites within the basin. Overall, there was good agreement between simulated and measured seasonal and annual volumes throughout the basin for calibration and validation sites. The calibration period ranged from 0.2 to 20.8 percent difference, and the validation period ranged from 0.0 to 19.5 percent difference across all seasons and total annual runoff. The Precipitation-Runoff Modeling System model tended to underestimate lower streamflows compared to the observed streamflow values. This is an indication that the Precipitation-Runoff Modeling model needs more detailed groundwater and storage information to properly model the low-flow conditions in the Cedar River Basin.

  12. Confirmation of Elevated Methane Emissions in Utah's Uintah Basin With Ground-Based Observations and a High-Resolution Transport Model

    NASA Astrophysics Data System (ADS)

    Foster, C. S.; Crosman, E. T.; Holland, L.; Mallia, D. V.; Fasoli, B.; Bares, R.; Horel, J.; Lin, J. C.

    2017-12-01

    Large CH4 leak rates have been observed in the Uintah Basin of eastern Utah, an area with over 10,000 active and producing natural gas and oil wells. In this paper, we model CH4 concentrations at four sites in the Uintah Basin and compare the simulated results to in situ observations at these sites during two spring time periods in 2015 and 2016. These sites include a baseline location (Fruitland), two sites near oil wells (Roosevelt and Castlepeak), and a site near natural gas wells (Horsepool). To interpret these measurements and relate observed CH4 variations to emissions, we carried out atmospheric simulations using the Stochastic Time-Inverted Lagrangian Transport model driven by meteorological fields simulated by the Weather Research and Forecasting and High Resolution Rapid Refresh models. These simulations were combined with two different emission inventories: (1) aircraft-derived basin-wide emissions allocated spatially using oil and gas well locations, from the National Oceanic and Atmospheric Administration (NOAA), and (2) a bottom-up inventory for the entire U.S., from the Environmental Protection Agency (EPA). At both Horsepool and Castlepeak, the diurnal cycle of modeled CH4 concentrations was captured using NOAA emission estimates but was underestimated using the EPA inventory. These findings corroborate emission estimates from the NOAA inventory, based on daytime mass balance estimates, and provide additional support for a suggested leak rate from the Uintah Basin that is higher than most other regions with natural gas and oil development.

  13. Regional groundwater-flow model of the Redwall-Muav, Coconino, and alluvial basin aquifer systems of northern and central Arizona

    USGS Publications Warehouse

    Pool, D.R.; Blasch, Kyle W.; Callegary, James B.; Leake, Stanley A.; Graser, Leslie F.

    2011-01-01

    A numerical flow model (MODFLOW) of the groundwater flow system in the primary aquifers in northern Arizona was developed to simulate interactions between the aquifers, perennial streams, and springs for predevelopment and transient conditions during 1910 through 2005. Simulated aquifers include the Redwall-Muav, Coconino, and basin-fill aquifers. Perennial stream reaches and springs that derive base flow from the aquifers were simulated, including the Colorado River, Little Colorado River, Salt River, Verde River, and perennial reaches of tributary streams. Simulated major springs include Blue Spring, Del Rio Springs, Havasu Springs, Verde River headwater springs, several springs that discharge adjacent to major Verde River tributaries, and many springs that discharge to the Colorado River. Estimates of aquifer hydraulic properties and groundwater budgets were developed from published reports and groundwater-flow models. Spatial extents of aquifers and confining units were developed from geologic data, geophysical models, a groundwater-flow model for the Prescott Active Management Area, drill logs, geologic logs, and geophysical logs. Spatial and temporal distributions of natural recharge were developed by using a water-balance model that estimates recharge from direct infiltration. Additional natural recharge from ephemeral channel infiltration was simulated in alluvial basins. Recharge at wastewater treatment facilities and incidental recharge at agricultural fields and golf courses were also simulated. Estimates of predevelopment rates of groundwater discharge to streams, springs, and evapotranspiration by phreatophytes were derived from previous reports and on the basis of streamflow records at gages. Annual estimates of groundwater withdrawals for agriculture, municipal, industrial, and domestic uses were developed from several sources, including reported withdrawals for nonexempt wells, estimated crop requirements for agricultural wells, and estimated per capita water use for exempt wells. Accuracy of the simulated groundwater-flow system was evaluated by using observational control from water levels in wells, estimates of base flow from streamflow records, and estimates of spring discharge. Major results from the simulations include the importance of variations in recharge rates throughout the study area and recharge along ephemeral and losing stream reaches in alluvial basins. Insights about the groundwater-flow systems in individual basins include the hydrologic influence of geologic structures in some areas and that stream-aquifer interactions along the lower part of the Little Colorado River are an effective control on water level distributions throughout the Little Colorado River Plateau basin. Better information on several aspects of the groundwater flow system are needed to reduce uncertainty of the simulated system. Many areas lack documentation of the response of the groundwater system to changes in withdrawals and recharge. Data needed to define groundwater flow between vertically adjacent water-bearing units is lacking in many areas. Distributions of recharge along losing stream reaches are poorly defined. Extents of aquifers and alluvial lithologies are poorly defined in parts of the Big Chino and Verde Valley sub-basins. Aquifer storage properties are poorly defined throughout most of the study area. Little data exist to define the hydrologic importance of geologic structures such as faults and fractures. Discharge of regional groundwater flow to the Verde River is difficult to identify in the Verde Valley sub-basin because of unknown contributions from deep percolation of excess surface water irrigation.

  14. An Integrated Modeling System for Estimating Glacier and Snow Melt Driven Streamflow from Remote Sensing and Earth System Data Products in the Himalayas

    NASA Technical Reports Server (NTRS)

    Brown, M. E.; Racoviteanu, A. E.; Tarboton, D. G.; Sen Gupta, A.; Nigro, J.; Policelli, F.; Habib, S.; Tokay, M.; Shrestha, M. S.; Bajracharya, S.

    2014-01-01

    Quantification of the contribution of the hydrologic components (snow, ice and rain) to river discharge in the Hindu Kush Himalayan (HKH) region is important for decision-making in water sensitive sectors, and for water resources management and flood risk reduction. In this area, access to and monitoring of the glaciers and their melt outflow is challenging due to difficult access, thus modeling based on remote sensing offers the potential for providing information to improve water resources management and decision making. This paper describes an integrated modeling system developed using downscaled NASA satellite based and earth system data products coupled with in-situ hydrologic data to assess the contribution of snow and glaciers to the flows of the rivers in the HKH region. Snow and glacier melt was estimated using the Utah Energy Balance (UEB) model, further enhanced to accommodate glacier ice melt over clean and debris-covered tongues, then meltwater was input into the USGS Geospatial Stream Flow Model (Geo- SFM). The two model components were integrated into Better Assessment Science Integrating point and Nonpoint Sources modeling framework (BASINS) as a user-friendly open source system and was made available to countries in high Asia. Here we present a case study from the Langtang Khola watershed in the monsoon-influenced Nepal Himalaya, used to validate our energy balance approach and to test the applicability of our modeling system. The snow and glacier melt model predicts that for the eight years used for model evaluation (October 2003-September 2010), the total surface water input over the basin was 9.43 m, originating as 62% from glacier melt, 30% from snowmelt and 8% from rainfall. Measured streamflow for those years were 5.02 m, reflecting a runoff coefficient of 0.53. GeoSFM simulated streamflow was 5.31 m indicating reasonable correspondence between measured and model confirming the capability of the integrated system to provide a quantification of water availability.

  15. Reconstruction of Long-Term Discharge Data in a Snow Dominant Region considering Uncertainty in Snow Measurement

    NASA Astrophysics Data System (ADS)

    Kim, S.

    2016-12-01

    This study to improve the accuracy of discharge simulation at the head water of the Tone River Basin (Yagisawa Dam Basin; 167 km2 and Naramata Dam Basin; 67 km2), Japan, where the river discharge is governed by the snowmelt and thus much uncertainty was originated in our previous study (Kim et al, 2011). To decrease the uncertainty in our hydrological modeling and simulation, snowmelt amounts are estimated rigorously using an improved degree-day method. The degree-day method, which is the simplest method to estimate snowmelt, is adopted with an improved degree-day factor estimation method. The degree-day factor for the target area is estimated using the observed temperature and the observed river discharge of the snowmelt season. Using long-term observed data, the unique relationship between the degree-day factor and temperature are extracted, and the estimated degree-day factor as a function of temperature is applied for the winter season discharge simulation. Rainfall-runoff simulation for the rest of season is done by the kinematic wave model based on the stage-discharge relationship, considering surface-subsurface flow generation. Finally, long-term (1979-2008) simulation output for the dam inflow is reconstructed and compared with the observed one. ( Kim, S., Tachikawa, Y., Nakakita, E., Yorozu, K. and Shiiba, M. 2011. Climate change impact on river flow of the Tone river basin, Japan, Annual Journal of Hydraulic Engneering, JSCE, 55:S_85-S_90.)

  16. Design of a multi-agent hydroeconomic model to simulate a complex human-water system: Early insights from the Jordan Water Project

    NASA Astrophysics Data System (ADS)

    Yoon, J.; Klassert, C. J. A.; Lachaut, T.; Selby, P. D.; Knox, S.; Gorelick, S.; Rajsekhar, D.; Tilmant, A.; Avisse, N.; Harou, J. J.; Gawel, E.; Klauer, B.; Mustafa, D.; Talozi, S.; Sigel, K.

    2015-12-01

    Our work focuses on development of a multi-agent, hydroeconomic model for purposes of water policy evaluation in Jordan. The model adopts a modular approach, integrating biophysical modules that simulate natural and engineered phenomena with human modules that represent behavior at multiple levels of decision making. The hydrologic modules are developed using spatially-distributed groundwater and surface water models, which are translated into compact simulators for efficient integration into the multi-agent model. For the groundwater model, we adopt a response matrix method approach in which a 3-dimensional MODFLOW model of a complex regional groundwater system is converted into a linear simulator of groundwater response by pre-processing drawdown results from several hundred numerical simulation runs. Surface water models for each major surface water basin in the country are developed in SWAT and similarly translated into simple rainfall-runoff functions for integration with the multi-agent model. The approach balances physically-based, spatially-explicit representation of hydrologic systems with the efficiency required for integration into a complex multi-agent model that is computationally amenable to robust scenario analysis. For the multi-agent model, we explicitly represent human agency at multiple levels of decision making, with agents representing riparian, management, supplier, and water user groups. The agents' decision making models incorporate both rule-based heuristics as well as economic optimization. The model is programmed in Python using Pynsim, a generalizable, open-source object-oriented code framework for modeling network-based water resource systems. The Jordan model is one of the first applications of Pynsim to a real-world water management case study. Preliminary results from a tanker market scenario run through year 2050 are presented in which several salient features of the water system are investigated: competition between urban and private farmer agents, the emergence of a private tanker market, disparities in economic wellbeing to different user groups caused by unique supply conditions, and response of the complex system to various policy interventions.

  17. Global Sensitivity of Simulated Water Balance Indicators Under Future Climate Change in the Colorado Basin

    DOE PAGES

    Bennett, Katrina Eleanor; Urrego Blanco, Jorge Rolando; Jonko, Alexandra; ...

    2017-11-20

    The Colorado River basin is a fundamentally important river for society, ecology and energy in the United States. Streamflow estimates are often provided using modeling tools which rely on uncertain parameters; sensitivity analysis can help determine which parameters impact model results. Despite the fact that simulated flows respond to changing climate and vegetation in the basin, parameter sensitivity of the simulations under climate change has rarely been considered. In this study, we conduct a global sensitivity analysis to relate changes in runoff, evapotranspiration, snow water equivalent and soil moisture to model parameters in the Variable Infiltration Capacity (VIC) hydrologic model.more » Here, we combine global sensitivity analysis with a space-filling Latin Hypercube sampling of the model parameter space and statistical emulation of the VIC model to examine sensitivities to uncertainties in 46 model parameters following a variance-based approach.« less

  18. Multiple-basin energy landscapes for large-amplitude conformational motions of proteins: Structure-based molecular dynamics simulations

    PubMed Central

    Okazaki, Kei-ichi; Koga, Nobuyasu; Takada, Shoji; Onuchic, Jose N.; Wolynes, Peter G.

    2006-01-01

    Biomolecules often undergo large-amplitude motions when they bind or release other molecules. Unlike macroscopic machines, these biomolecular machines can partially disassemble (unfold) and then reassemble (fold) during such transitions. Here we put forward a minimal structure-based model, the “multiple-basin model,” that can directly be used for molecular dynamics simulation of even very large biomolecular systems so long as the endpoints of the conformational change are known. We investigate the model by simulating large-scale motions of four proteins: glutamine-binding protein, S100A6, dihydrofolate reductase, and HIV-1 protease. The mechanisms of conformational transition depend on the protein basin topologies and change with temperature near the folding transition. The conformational transition rate varies linearly with driving force over a fairly large range. This linearity appears to be a consequence of partial unfolding during the conformational transition. PMID:16877541

  19. Global Sensitivity of Simulated Water Balance Indicators Under Future Climate Change in the Colorado Basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, Katrina Eleanor; Urrego Blanco, Jorge Rolando; Jonko, Alexandra

    The Colorado River basin is a fundamentally important river for society, ecology and energy in the United States. Streamflow estimates are often provided using modeling tools which rely on uncertain parameters; sensitivity analysis can help determine which parameters impact model results. Despite the fact that simulated flows respond to changing climate and vegetation in the basin, parameter sensitivity of the simulations under climate change has rarely been considered. In this study, we conduct a global sensitivity analysis to relate changes in runoff, evapotranspiration, snow water equivalent and soil moisture to model parameters in the Variable Infiltration Capacity (VIC) hydrologic model.more » Here, we combine global sensitivity analysis with a space-filling Latin Hypercube sampling of the model parameter space and statistical emulation of the VIC model to examine sensitivities to uncertainties in 46 model parameters following a variance-based approach.« less

  20. Utilizing Gravity Methods for Regional Studies in Basin Delineation: Case Study at Jornada del Muerto basin, New Mexico

    NASA Astrophysics Data System (ADS)

    Villalobos, J. I.

    2005-12-01

    The modeling of basin structures is an important step in the development of plans and policies for ground water management. To facilitate in the analysis of large scale regional structures, gravity data is implemented to examine the overall structural trend of the region. The gravitational attraction of structures in the upper mantle and crust provide vital information about the possible structure and composition of a region. Improved availability of gravity data via internet has promoted extensive construction and interpretation of gravity maps in the analysis of sub-surface structural anomalies. The utilization of gravity data appears to be particularly worthwhile because it is a non-invasive and inexpensive means of addressing the subsurface tectonic framework of large scale regions. In this paper, the author intends to illustrate 1) acquisition of gravity data and its processing; 2) interpretation of gravity data; and 3) sources of uncertainty and errors by using a case study of the Jornada del Muerto basin in South-Central New Mexico where integrated gravity data inferred several faults, sub-basins and thickness variations within the basins structure. The author also explores the integration of gravity method with other geophysical methods to further refine the delineation of basins.

  1. A precipitation-runoff model for part of the Ninemile Creek Watershed near Camillus, Onondaga County, New York

    USGS Publications Warehouse

    Zarriello, Phillip J.

    1999-01-01

    A precipitation-runoff model, HSPF (Hydrologic Simulation Program Fortran), of a 41.7 square mile part of the Ninemile Creek watershed near Camillus, in central New York, was developed and calibrated to predict the hydrological effects of future suburban development on streamflow, and the effects of stormwater detention on flooding of Ninemile Creek at Camillus. Development was represented in the model in two ways: (1) as a pervious area (open and residential land) that simulates the hydrologic response from mixed pervious and impervious areas that drain to pervious areas, or (2) as an impervious area that drains to channels. Simulations indicate that peak discharges for 30 non-winter storms in 1995-96 would increase by an average of 10 to 37 percent in response to a 10- to 100-percent buildup of developable land represented as open/residential land and by 40 to 68 percent in response to 10 to 100 percent buildup of developable area represented as impervious area. A 10 to 100 percent buildup of developable area represents an impervious area of about 1 to 7 percent of the watershed. A log Pearson Type-III analysis of peak annual discharge for October 1989 through September 1996 for simulations with full development represented as impervious area indicates that stormflows that formerly occurred once every 2 years on average will occur once every 1.5 years, and stormflows that formerly occurred once every 5 years will occur once every 3.3 years.Simulations of a hypothetical 147-acre residential development in the lower part of the watershed with and without stormwater detention indicate that detention basins could cause either increase or decrease downstream flooding of Ninemile Creek at Camillus, depending on the basin.s available storage relative to its inflows and, hence, the timing of its peak outflow in relation to that of the peak discharge in Ninemile Creek; and the degree of flow retention by wetlands and other channel storage that affect the timing of peak discharges. Design and management of detention basins in the watershed will require analysis of each basin.s hydraulic characteristics and location relative to Ninemile Creek to predict their effect on downstream flooding. The runoff model described herein can be used to evaluate alternative detention basin designs and locations.

  2. Changes in Moisture Flux over the Tibetan Plateau during 1979-2011: Insights from a High Resolution Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Yanhong; Leung, Lai-Yung R.; Zhang, Yongxin

    2015-05-15

    Net precipitation (precipitation minus evapotranspiration, P-E) changes between 1979 and 2011 from a high resolution regional climate simulation and its reanalysis forcing are analyzed over the Tibet Plateau (TP) and compared to the global land data assimilation system (GLDAS) product. The high resolution simulation better resolves precipitation changes than its coarse resolution forcing, which contributes dominantly to the improved P-E change in the regional simulation compared to the global reanalysis. Hence, the former may provide better insights about the drivers of P-E changes. The mechanism behind the P-E changes is explored by decomposing the column integrated moisture flux convergence intomore » thermodynamic, dynamic, and transient eddy components. High-resolution climate simulation improves the spatial pattern of P-E changes over the best available global reanalysis. High-resolution climate simulation also facilitates new and substantial findings regarding the role of thermodynamics and transient eddies in P-E changes reflected in observed changes in major river basins fed by runoff from the TP. The analysis revealed the contrasting convergence/divergence changes between the northwestern and southeastern TP and feedback through latent heat release as an important mechanism leading to the mean P-E changes in the TP.« less

  3. Evolution of the Lake Victoria basin in the context of coeval rift initiation in East Africa: a 3D numerical model approach

    NASA Astrophysics Data System (ADS)

    Wichura, Henry; Quinteros, Javier; Melnick, Daniel; Brune, Sascha; Schwanghart, Wolfgang; Strecker, Manfred R.

    2015-04-01

    Over the last four years sedimentologic and thermochronologic studies in the western and eastern branches of the Cenozoic East African Rift System (EARS) have supported the notion of a broadly contemporaneous onset of normal faulting and rift-basin formation in both segments. These studies support previous interpretations based on geophysical investigations from which an onset of rifting during the Paleogene had been postulated. In light of these studies we explore the evolution of the Lake Victoria basin, a shallow, unfaulted sedimentary basin centered between both branches of the EARS and located in the interior of the East African Plateau (EAP). We quantify the fluvial catchment evolution of the Lake Victoria basin and assess the topographic response of African crust to the onset of rifting in both branches. Furthermore, we evaluate and localize the nature of strain and flexural rift-flank uplift in both branches. We use a 3D numerical forward model that includes nonlinear temperature- and stress-dependent elasto-visco-plastic rheology. The model is able to reproduce the flexural response of variably thick lithosphere to rift-related deformation processes such as lithospheric thinning and asthenospheric upwelling. The model domain covers the entire EAP and integrates extensional processes in a heterogeneous, yet cold and thick cratonic block (Archean Tanzania craton), which is surrounded by mechanically weaker Proterozoic mobile belts, which are characterized by thinner lithosphere ("thin spots"). The lower limits of the craton (170 km) and the mobile belts (120 km) are simulated by different depths of the 1300 °C lithosphere-asthenosphere boundary. We assume a constant extension rate of 4 mm/a throughout the entire simulation of 30 Ma and neglect the effect of dynamic topography and magmatism. Even though the model setup is very simple and the resolution is not high enough to calculate realistic rift-flank uplift, it intriguingly reveals important topographic trends. The model shows that elevation differences of 120 to 180 m between the plateau interior and bordering rift shoulders are pronounced enough to form a closed basin after 6.5 Ma of extension. By that time the catchment area is already comparable to the present-day Lake Victoria catchment. Moreover, the final modeled topography, including 1000 m of dynamic and 500 m of pre-plume topography, yields a base basin elevation of 1110 m, which is also in good agreement with the present-day elevation of Lake Victoria. The combined effects of the formation of an extensive lacustrine depositional environment in the interior of the EAP after 6.5 Ma and rift-shoulder uplift may have forced far-reaching environmental impacts. These may have included the onset of the Lake Victoria microclimate, the influence of the basin and surrounding orographic barriers on precipitation patterns in East Africa, and the establishment of a unique flora and fauna.

  4. The United States Army Medical Department Journal. July - September 2011

    DTIC Science & Technology

    2011-09-01

    compliance. Figure 1. Functional schematic of the flow path and treatment stages of the water treatment plant. Basin 5  Basin  4  Basin  3  Basin 2...that hindered optimal performance of the WTP. They were the flocculation treatment process and flow distribution through the WTP. Flocculation...designed to simulate the WTP at a flow of 1.5 MGD (the flow through the WTP at the time of jar testing). Jar test samples were collected after

  5. Effects of simulated ground-water pumping and recharge on ground-water flow in Cape Cod, Martha's Vineyard, and Nantucket Island basins, Massachusetts

    USGS Publications Warehouse

    Masterson, John P.; Barlow, Paul M.

    1997-01-01

    Three-dimensional transient ground-water-flow models that simulate both freshwater and saltwater flow were developed for the flow cells of the Cape Cod Basin to determine the effects of long-term pumping and recharge, seasonal fluctuations in pumping and recharge, and prolonged reductions of natural recharge, on the position of the freshwater-saltwater interface, water-table and pond altitudes, and streamflow and discharge to coastal marshes and embayments. Two-dimensional, finite-difference change models were developed for Martha's Vineyard and Nantucket Island basins to determine anticipated drawdowns in response to projected summer season pumping rates for 180 days of no recharge.

  6. Water Energy Simulation Toolset

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Thuy; Jeffers, Robert

    The Water-Energy Simulation Toolset (WEST) is an interactive simulation model that helps visualize impacts of different stakeholders on water quantity and quality of a watershed. The case study is applied for the Snake River Basin with the fictional name Cutthroat River Basin. There are four groups of stakeholders of interest: hydropower, agriculture, flood control, and environmental protection. Currently, the quality component depicts nitrogen-nitrate contaminant. Users can easily interact with the model by changing certain inputs (climate change, fertilizer inputs, etc.) to observe the change over the entire system. Users can also change certain parameters to test their management policy.

  7. Spatio-temporal dynamics of cod nursery areas in the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Hinrichsen, H.-H.; von Dewitz, B.; Lehmann, A.; Bergström, U.; Hüssy, K.

    2017-06-01

    In this study the drift of eastern Baltic cod larvae and juveniles spawned within the historical eastern Baltic cod spawning grounds was investigated by detailed drift model simulations for the years 1971-2010, to examine the spatio-temporal dynamics of environmental suitability in the nursery areas of juvenile cod settlement. The results of the long-term model scenario runs, where juvenile cod were treated as simulated passively drifting particles, enabled us to find strong indications for long-term variations of settlement and potentially the reproduction success of the historically important eastern Baltic cod nursery grounds. Only low proportions of juveniles hatched in the Arkona Basin and in the Gotland Basin were able to settle in their respective spawning ground. Ocean currents were either unfavorable for the juveniles to reach suitable habitats or transported the juveniles to nursery grounds of neighboring subdivisions. Juveniles which hatched in the Bornholm Basin were most widely dispersed and showed the highest settlement probability, while the second highest settlement probability and horizontal dispersal was observed for juveniles originating from the Gdansk Deep. In a long-term perspective, wind-driven transport of larvae/juveniles positively affected the settlement success predominately in the Bornholm Basin and in the Bay of Gdansk. The Bornholm Basin has the potential to contribute on average 54% and the Bay of Gdansk 11% to the production of juveniles in the Baltic Sea. Furthermore, transport of juveniles surviving to the age of settlement with origin in the Bornholm Basin contributed on average 13 and 11% to the total settlement in the Arkona Basin and in the Gdansk Deep, respectively. The time-series of the simulated occupied juvenile cod habitat in the Bornholm Basin and in the Gdansk Deep showed a similar declining trend as the Fulton's K condition factor of demersal 1-group cod, which may confirm the importance of oxygen-dependent habitat availability and its effect on density dependence as a process relevant for recruitment success.

  8. Hydrologic and water-quality characterization and modeling of the Chenoweth Run basin, Jefferson County, Kentucky

    USGS Publications Warehouse

    Martin, Gary R.; Zarriello, Phillip J.; Shipp, Allison A.

    2001-01-01

    Rainfall, streamflow, and water-quality data collected in the Chenoweth Run Basin during February 1996?January 1998, in combination with the available historical sampling data, were used to characterize hydrologic conditions and to develop and calibrate a Hydrological Simulation Program?Fortran (HSPF) model for continuous simulation of rainfall, streamflow, suspended-sediment, and total-orthophosphate (TPO4) transport relations. Study results provide an improved understanding of basin hydrology and a hydrologic-modeling framework with analytical tools for use in comprehensive waterresource planning and management. Chenoweth Run Basin, encompassing 16.5 mi2 in suburban eastern Jefferson County, Kentucky, contains expanding urban development, particularly in the upper third of the basin. Historical water-quality problems have interfered with designated aquatic-life and recreation uses in the stream main channel (approximately 9 mi in length) and have been attributed to organic enrichment, nutrients, metals, and pathogens in urban runoff and wastewater inflows. Hydrologic conditions in Jefferson County are highly varied. In the Chenoweth Run Basin, as in much of the eastern third of the county, relief is moderately sloping to steep. Also, internal drainage in pervious areas is impeded by the shallow, fine-textured subsoils that contain abundant silts and clays. Thus, much of the precipitation here tends to move rapidly as overland flow and (or) shallow subsurface flow (interflow) to the stream channels. Data were collected at two streamflowgaging stations, one rain gage, and four waterquality- sampling sites in the basin. Precipitation, streamflow, and, consequently, constituent loads were above normal during the data-collection period of this study. Nonpoint sources contributed the largest portion of the sediment loads. However, the three wastewatertreatment plants (WWTP?s) were the source of the majority of estimated total phosphorus (TP) and TPO4 transport downstream from the WWTP?s. HSPF, a hydrologic model capable of simulating mixed-land-use basins, includes land surface, subsurface, and instream waterquantity- and water-quality-modeling components. The HSPF model was used to represent several important hydrologic features of the Chenoweth Run Basin including (1) numerous small lakes and ponds, through which approximately 25 percent of the basin drains; (2) potential seasonal ground-waterseepage losses in stream channels; (3) contributions from WWTP effluents and bypass flows; and (4) the transport and transformations of sediments and nutrients. The HSPF model was calibrated and verified for flow simulation on the basis of measured total, annual, seasonal, monthly, daily, hourly, and 5-minute-interval storm discharge data. The occurrence of numerous storms during the study period permitted a splitsample procedure to be used for a model verification on the basis of storm volumes and peaks. Total simulated and observed discharge during the model calibration period differed by approximately -5.4 percent at the upper gaging station and 3.1 percent at the lower station. The model results for the total and annual water balances were classified as very good on the basis of the calibration criteria reported in other modeling studies. The model had correlation coefficients ranging from 0.89 to 0.98 for hourly to monthly mean flows, respectively. The coefficients of model-fit efficiency for daily and monthly discharge simulations were near the excellent range (exceeding 0.97). However, the model was calibrated for a comparatively short 24-month period during which flows were above normal. Increased model error might be expected during an extended period of nearnormal flows. The model was calibrated for simulation of sediment and TPO4 transport. The simulated mean-annual load (over 24 months) ranged from -33 to -28 percent of the estimated sediment load and within +/- 1 percent of the estimated TPO4 load at the two streamflow-gaging s

  9. Implicit time accurate simulation of unsteady flow

    NASA Astrophysics Data System (ADS)

    van Buuren, René; Kuerten, Hans; Geurts, Bernard J.

    2001-03-01

    Implicit time integration was studied in the context of unsteady shock-boundary layer interaction flow. With an explicit second-order Runge-Kutta scheme, a reference solution to compare with the implicit second-order Crank-Nicolson scheme was determined. The time step in the explicit scheme is restricted by both temporal accuracy as well as stability requirements, whereas in the A-stable implicit scheme, the time step has to obey temporal resolution requirements and numerical convergence conditions. The non-linear discrete equations for each time step are solved iteratively by adding a pseudo-time derivative. The quasi-Newton approach is adopted and the linear systems that arise are approximately solved with a symmetric block Gauss-Seidel solver. As a guiding principle for properly setting numerical time integration parameters that yield an efficient time accurate capturing of the solution, the global error caused by the temporal integration is compared with the error resulting from the spatial discretization. Focus is on the sensitivity of properties of the solution in relation to the time step. Numerical simulations show that the time step needed for acceptable accuracy can be considerably larger than the explicit stability time step; typical ratios range from 20 to 80. At large time steps, convergence problems that are closely related to a highly complex structure of the basins of attraction of the iterative method may occur. Copyright

  10. Simulating hydrologic and hydraulic processes throughout the Amazon River Basin

    USGS Publications Warehouse

    Beighley, R.E.; Eggert, K.G.; Dunne, T.; He, Y.; Gummadi, V.; Verdin, K.L.

    2009-01-01

    Presented here is a model framework based on a land surface topography that can be represented with various degrees of resolution and capable of providing representative channel/floodplain hydraulic characteristics on a daily to hourly scale. The framework integrates two models: (1) a water balance model (WBM) for the vertical fluxes and stores of water in and through the canopy and soil layers based on the conservation of mass and energy, and (2) a routing model for the horizontal routing of surface and subsurface runoff and channel and floodplain waters based on kinematic and diffusion wave methodologies. The WBM is driven by satellite-derived precipitation (TRMM_3B42) and air temperature (MOD08_M3). The model's use of an irregular computational grid is intended to facilitate parallel processing for applications to continental and global scales. Results are presented for the Amazon Basin over the period Jan 2001 through Dec 2005. The model is shown to capture annual runoff totals, annual peaks, seasonal patterns, and daily fluctuations over a range of spatial scales (>1, 000 to < 4·7M km2). For the period of study, results suggest basin-wide total water storage changes in the Amazon vary by approximately + /− 5 to 10 cm, and the fractional components accounting for these changes are: root zone soil moisture (20%), subsurface water being routed laterally to channels (40%) and channel/floodplain discharge (40%). Annual variability in monthly water storage changes by + /− 2·5 cm is likely due to 0·5 to 1 month variability in the arrival of significant rainfall periods throughout the basin.

  11. NASA-Modified Precipitation Products to Improve EPA Nonpoint Source Water Quality Modeling for the Chesapeake Bay

    NASA Technical Reports Server (NTRS)

    Nigro, Joseph; Toll, David; Partington, Ed; Ni-Meister, Wenge; Lee, Shihyan; Gutierrez-Magness, Angelica; Engman, Ted; Arsenault, Kristi

    2010-01-01

    The Environmental Protection Agency (EPA) has estimated that over 20,000 water bodies within the United States do not meet water quality standards. Ninety percent of the impairments are typically caused by nonpoint sources. One of the regulations in the Clean Water Act of 1972 requires States to monitor the Total Maximum Daily Load (TMDL), or the amount of pollution that can be carried by a water body before it is determined to be "polluted", for any watershed in the U.S.. In response to this mandate, the EPA developed Better Assessment Science Integrating Nonpoint Sources (BASINS) as a Decision Support Tool (DST) for assessing pollution and to guide the decision making process for improving water quality. One of the models in BASINS, the Hydrological Simulation Program -- Fortran (HSPF), computes daily stream flow rates and pollutant concentration at each basin outlet. By design, precipitation and other meteorological data from weather stations serve as standard model input. In practice, these stations may be unable to capture the spatial heterogeneity of precipitation events especially if they are few and far between. An attempt was made to resolve this issue by substituting station data with NASA modified/NOAA precipitation data. Using these data within HSPF, stream flow was calculated for seven watersheds in the Chesapeake Bay Basin during low flow periods, convective storm periods, and annual flows. In almost every case, the modeling performance of HSPF increased when using the NASA-modified precipitation data, resulting in better stream flow statistics and, ultimately, in improved water quality assessment.

  12. The seismic response of the Los Angeles basin, California

    USGS Publications Warehouse

    Wald, D.J.; Graves, R.W.

    1998-01-01

    Using strong-motion data recorded in the Los Angeles region from the 1992 (Mw 7.3) Landers earthquake, we have tested the accuracy of existing three-dimensional (3D) velocity models on the simulation of long-period (???2 sec) ground motions in the Los Angeles basin and surrounding San Fernando and San Gabriel Valleys. First, the overall pattern and degree of long-period excitation of the basins were identified in the observations. Within the Los Angeles basin, the recorded amplitudes are about three to four times larger than at sites outside the basins; amplitudes within the San Fernando and San Gabriel Valleys are nearly a factor of 3 greater than surrounding bedrock sites. Then, using a 3D finite-difference numerical modeling approach, we analyzed how variations in 3D earth structure affect simulated waveforms, amplitudes, and the fit to the observed patterns of amplification. Significant differences exist in the 3D velocity models of southern California that we tested (Magistrale et al., 1996; Graves, 1996a; Hauksson and Haase, 1997). Major differences in the models include the velocity of the assumed background models; the depth of the Los Angeles basin; and the depth, location, and geometry of smaller basins. The largest disparities in the response of the models are seen for the San Fernando Valley and the deepest portion of the Los Angeles basin. These arise in large part from variations in the structure of the basins, particularly the effective depth extent, which is mainly due to alternative assumptions about the nature of the basin sediment fill. The general ground-motion characteristics are matched by the 3D model simulations, validating the use of 3D modeling with geologically based velocity-structure models. However, significant shortcomings exist in the overall patterns of amplification and the duration of the long-period response. The successes and limitations of the models for reproducing the recorded ground motions as discussed provide the basis and direction for necessary improvements to earth structure models, whether geologically or tomographically derived. The differences in the response of the earth models tested also translate to variable success in the ability to successfully model the data and add uncertainty to estimates of the basin response given input "scenario" earthquake source models.

  13. Comparison of the Various Methodologies Used in Studying Runoff and Sediment Load in the Yellow River Basin

    NASA Astrophysics Data System (ADS)

    Xu, M., III; Liu, X.

    2017-12-01

    In the past 60 years, both the runoff and sediment load in the Yellow River Basin showed significant decreasing trends owing to the influences of human activities and climate change. Quantifying the impact of each factor (e.g. precipitation, sediment trapping dams, pasture, terrace, etc.) on the runoff and sediment load is among the key issues to guide the implement of water and soil conservation measures, and to predict the variation trends in the future. Hundreds of methods have been developed for studying the runoff and sediment load in the Yellow River Basin. Generally, these methods can be classified into empirical methods and physical-based models. The empirical methods, including hydrological method, soil and water conservation method, etc., are widely used in the Yellow River management engineering. These methods generally apply the statistical analyses like the regression analysis to build the empirical relationships between the main characteristic variables in a river basin. The elasticity method extensively used in the hydrological research can be classified into empirical method as it is mathematically deduced to be equivalent with the hydrological method. Physical-based models mainly include conceptual models and distributed models. The conceptual models are usually lumped models (e.g. SYMHD model, etc.) and can be regarded as transition of empirical models and distributed models. Seen from the publications that less studies have been conducted applying distributed models than empirical models as the simulation results of runoff and sediment load based on distributed models (e.g. the Digital Yellow Integrated Model, the Geomorphology-Based Hydrological Model, etc.) were usually not so satisfied owing to the intensive human activities in the Yellow River Basin. Therefore, this study primarily summarizes the empirical models applied in the Yellow River Basin and theoretically analyzes the main causes for the significantly different results using different empirical researching methods. Besides, we put forward an assessment frame for the researching methods of the runoff and sediment load variations in the Yellow River Basin from the point of view of inputting data, model structure and result output. And the assessment frame was then applied in the Huangfuchuan River.

  14. Modeling Surface Water Flow in the Atchafalaya Basin

    NASA Astrophysics Data System (ADS)

    Liu, K.; Simard, M.

    2017-12-01

    While most of the Mississippi River Delta is sinking due to insufficient sediment supply and subsidence, the stable wetlands and the prograding delta systems in the Atchafalaya Basin provide a unique opportunity to study the constructive interactions between riverine and marine forcings and their impacts upon coastal morphology. To better understand the hydrodynamics in this region, we developed a numerical modeling system for the water flow through the river channel - deltas - wetlands networks in the Atchafalaya Basin. Determining spatially varying model parameters for a large area composed of such diverse land cover types poses a challenge to developing an accurate numerical model. For example, the bottom friction coefficient can not be measured directly and the available elevation maps for the wetlands in the basin are inaccurate. To overcome these obstacles, we developed the modeling system in three steps. Firstly, we modeled river bathymetry based on in situ sonar transects and developed a simplified 1D model for the Wax Lake Outlet using HEC-RAS. Secondly, we used a Bayesian approach to calibrate the model automatically and infer important unknown parameters such as riverbank elevation and bottom friction coefficient through Markov Chain Monte Carlo (MCMC) simulations. We also estimated the wetland elevation based on the distribution of different vegetation species in the basin. Thirdly, with the lessons learnt from the 1D model, we developed a depth-averaged 2D model for the whole Atchafalaya Basin using Delft3D. After calibrations, the model successfully reproduced the water levels measured at five gauges in the Wax Lake Outlet and the modeled water surface profile along the channel agreed reasonably well with our LIDAR measurements. In addition, the model predicted a one-hour delay in tidal phase from the Wax Lake Delta to the upstream gauge. In summary, this project presents a procedure to initialize hydrology model parameters that integrates field measurements, existing knowledge and model sensitivities. The numerical model provides a powerful tool to understand the complex patterns of water flow and exchange in the rivers, tributaries, and wetlands of the Atchafalaya Basin.

  15. Cascading ocean basins: numerical simulations of the circulation and interbasin exchange in the Azov-Black-Marmara-Mediterranean Seas system

    NASA Astrophysics Data System (ADS)

    Stanev, Emil Vassilev; Grashorn, Sebastian; Zhang, Yinglong Joseph

    2017-08-01

    In this paper, we use the unstructured grid model SCHISM to simulate the thermohydrodynamics in a chain of baroclinic, interconnected basins. The model shows a good skill in simulating the horizontal circulation and vertical profiles of temperature, salinity, and currents. The magnitude and phases of the seasonal changes of circulation are consistent with earlier observations. Among the mesoscale and subbasin-scale circulation features that are realistically simulated are the anticyclonic coastal eddies, the Sebastopol and Batumi eddies, the Marmara Sea outflow around the southern coast of the Limnos Island, and the pathway of the cold water originating from the shelf. The superiority of the simulations compared to earlier numerical studies is demonstrated with the example of model capabilities to resolve the strait dynamics, gravity currents originating from the straits, high-salinity bottom layer on the shallow shelf, as well as the multiple intrusions from the Bosporus Strait down to 700 m depth. The warm temperature intrusions from the strait produce the warm water mass in the intermediate layers of the Black Sea. One novel result is that the seasonal intensification of circulation affects the interbasin exchange, thus allowing us to formulate the concept of circulation-controlled interbasin exchange. To the best of our knowledge, the present numerical simulations, for the first time, suggest that the sea level in the interior part of the Black Sea can be lower than the sea level in the Marmara Sea and even in some parts of the Aegean Sea. The comparison with observations shows that the timings and magnitude of exchange flows are also realistically simulated, along with the blocking events. The short-term variability of the strait transports is largely controlled by the anomalies of wind. The simulations demonstrate the crucial role of the narrow and shallow strait of Bosporus in separating the two pairs of basins: Aegean-Marmara Seas from one side and Azov-Black Seas from the other side. The straits of Kerch and Dardanelles provide sufficient interbasin connectivity that prevents large phase lags of the sea levels in the neighboring basins. The two-layer flows in the three straits considered here show different dependencies upon the net transport, and the spatial variability of this dependence is also quite pronounced. We show that the blocking of the surface flow can occur at different net transports, thus casting doubt on a previous approach of using simple relationships to prescribe (steady) outflow and inflow. Specific attention is paid to the role of synoptic atmospheric forcing for the basin-wide circulation and redistribution of mass in the Black Sea. An important controlling process is the propagation of coastal waves. One major conclusion from this research is that modeling the individual basins separately could result in large inaccuracies because of the critical importance of the cascading character of these interconnected basins.

  16. Great Basin Research and Management Project: Restoring and maintaining riparian ecosystem integrity

    Treesearch

    Jeanne C. Chambers

    2000-01-01

    The Great Basin Research and Management Project was initiated in 1994 by the USDA Forest Service, Rocky Mountain Research Station’s Ecology, Paleoecology, and Restoration of Great Basin Watersheds Project to address the problems of stream incision and riparian ecosystem degradation in central Nevada. It is a highly interdisciplinary project that is being conducted in...

  17. Macroecology, paleoecology, and ecological integrity of terrestrial species and communities of the interior Columbia basin and northern portions of the Klamath and Great Basins.

    Treesearch

    Bruce G. Marcot; L.K. Croft; J.F. Lehmkuhl; R.H. Naney; C.G. Niwa; W.R. Owen; R.E. Sandquist

    1998-01-01

    This report present information on biogeography and broad-scale ecology (macroecology) of selected fungi, lichens, bryophytes, vascular plants, invertebrates, and vertebrates of the interior Columbia River basin and adjacent areas. Rareplants include many endemics associated with local conditions. Potential plant and invertebrate bioindicators are identified. Species...

  18. Institutional arrangements for beneficial regional cooperation on water, energy and food priority issues in the Eastern Nile Basin

    NASA Astrophysics Data System (ADS)

    Al-Saidi, Mohammad; Hefny, Amr

    2018-07-01

    Research on water cooperation in the Eastern Nile Basin has focused on expanding policy and diplomacy tools for a better allocation of transboundary water resources confined to the river. Regional cooperation on water and related sectors such as energy and land expands the bargaining and areas for mutual gain, and thus enhances cooperation perspectives. This paper looks at the contribution and the potential benefits of a regional cooperation approach to addressing the underlying challenges of water diplomacy, such as complexity and distrust. It also promotes the understanding of river basins as a "resource basin" of integrated and linked resource-use issues, not always related to the river flow. The paper provides an analysis of priority issues for water-energy-food nexus in regional cooperation in the Eastern Nile Basin. This basin represents an illustrative case for regional cooperation and increased integration due to multiple comparative advantages inherent in the uneven endowments of water, energy and arable land resources, and to varying levels of economic and technological advancement among the three riparian countries: Egypt, Sudan and Ethiopia. The paper also analyzes institutional arrangements on a regional scale, and elaborates on the inherent trade-offs associated with them.

  19. Basin-Scale Freshwater Storage Trends from GRACE

    NASA Astrophysics Data System (ADS)

    Famiglietti, J.; Kiel, B.; Frappart, F.; Syed, T. H.; Rodell, M.

    2006-12-01

    Four years have passed since the GRACE satellite tandem began recording variations in Earth's gravitational field. On monthly to annual timescales, variations in the gravity signal for a given location correspond primarily to changes in water storage. GRACE thus reveals, in a comprehensive, vertically-integrated manner, which areas and basins have experienced net increases or decreases in water storage. GRACE data (April 2002 to November 2005) released by the Center for Space Research at the University of Texas at Austin (RL01) is used for this study. Model-based data from GLDAS (Global Land Data Assimilation System) is integrated into this study for comparison with the CSR GRACE data. Basin-scale GLDAS storage trends are similar to those from GRACE, except in the Arctic, likely due to the GLDAS snow module. Outside of the Arctic, correlation of GRACE and GLDAS data confirms significant basin-scale storage trends across the GRACE data collection period. Sharp storage decreases are noted in the Congo, Zambezi, Mekong, Parana, and Yukon basins, among others. Significant increases are noted in the Niger, Lena, and Volga basins, and others. Current and future work involves assessment of these trends and their causes in the context of hydroclimatological variability.

  20. Linking local vulnerability to climatic hazard damage assessment for integrated river basin management

    NASA Astrophysics Data System (ADS)

    Hung, Hung-Chih; Liu, Yi-Chung; Chien, Sung-Ying

    2015-04-01

    1. Background Major portions of areas in Asia are expected to increase exposure and vulnerability to climate change and weather extremes due to rapid urbanization and overdevelopment in hazard-prone areas. To prepare and confront the potential impacts of climate change and related hazard risk, many countries have implemented programs of integrated river basin management. This has led to an impending challenge for the police-makers in many developing countries to build effective mechanism to assess how the vulnerability distributes over river basins, and to understand how the local vulnerability links to climatic (climate-related) hazard damages and risks. However, the related studies have received relatively little attention. This study aims to examine whether geographic localities characterized by high vulnerability experience significantly more damages owing to onset weather extreme events at the river basin level, and to explain what vulnerability factors influence these damages or losses. 2. Methods and data An indicator-based assessment framework is constructed with the goal of identifying composite indicators (including exposure, biophysical, socioeconomic, land-use and adaptive capacity factors) that could serve as proxies for attributes of local vulnerability. This framework is applied by combining geographical information system (GIS) techniques with multicriteria decision analysis (MCDA) to evaluate and map integrated vulnerability to climatic hazards across river basins. Furthermore, to explain the relationship between vulnerability factors and disaster damages, we develop a disaster damage model (DDM) based on existing disaster impact theory. We then synthesize a Zero-Inflated Poisson regression model with a Tobit regression analysis to identify and examine how the disaster impacts and vulnerability factors connect to typhoon disaster damages and losses. To illustrate the proposed methodology, the study collects data on the vulnerability attributes of the Kaoping, Tsengwen, and Taimali River basins in southern Taiwan, and on the disaster impacts and damages in these river basins due to Typhoon Morakot in 2009. The data was offered by the National Science and Technology Center for Disaster Reduction, Taiwan, as well as collected from the National Land Use Investigation, official census statistics and questionnaire surveys. 3. Results We use an MCDA to create a composite vulnerability index, and this index is incorporated into a GIS analysis to demonstrate the results of integrated vulnerability assessment throughout the river basins. Results of the vulnerability assessment indicate that the most vulnerable areas are almost all situated in the regions of middle and upper reaches of the river basins. Through the examining of DDM, it shows that the vulnerability factors play a critical role in determining disaster damages. Findings also present that the losses and casualties caused by Typhoon Morakot increase with elevation, urban and agricultural developments, proximity to rivers, and decrease with levels of income and adaptive capacity. Finally, we propose the adaptive options for minimizing vulnerability and risk, as well as for integrated river basin governance.

  1. Effects of increased urbanization from 1970's to 1990's on storm-runoff characteristics in Perris Valley, California

    USGS Publications Warehouse

    Guay, J.R.

    1996-01-01

    Urban areas in Perris Valley, California, have more than tripled during the last 20 years. To quantify the effects of increased urbanization on storm runoff volumes and peak discharges, rainfall-runoff models of the basin were developed to simulate runoff for 1970-75 and 1990-93 conditions. Hourly rainfall data for 1949-93 were used with the rainfall-runoff models to simulate a long-term record of storm runoff. The hydrologic effects of increased urbanization from 1970-75 to 1990-93 were analyzed by comparing the simulated annual peak discharges and volumes, and storm runoff peaks, frequency of annual peak discharges and runoff volumes, and duration of storm peak discharges for each study period. A Log-Pearson Type-III frequency analysis was calculated using the simulated annual peaks to estimate the 2-, 5-, 10-, 25-, 50-, and 100-year recurrence intervals. The estimated 2-year discharge at the outlet of the basin was 646 cubic feet per second for the 1970-75 conditions and 1,328 cubic feet per second for the 1990-93 conditions. The 100-year discharge at the outlet of the basin was about 14,000 cubic feet per second for the 1970-75 and 1990-93 conditions. The station duration analysis used 925 model-simulated storm peaks from each basin to estimate the percent chance a peak discharge is exceeded. At the outlet of the basin, the chances of exceeding 100 cubic feet per second were about 33 percent under 1970-75 conditions and about 59 percent under 1990-93 conditions. The chance of exceeding 2,500 cubic feet per second at the outlet of the basin was less than 1 percent higher under the 1990-93 conditions than under the 1970-75 conditions. The increase in urbanization from the early 1970's to the early 1990's more than doubled the peak discharges with a 2-year return period. However, peak discharges with return periods greater than 50 years were not significantly affected by the change in urbanization.

  2. Twinning European and South Asian river basins to enhance capacity and implement adaptive integrated water resources management approaches - results from the EC-project BRAHMATWINN

    NASA Astrophysics Data System (ADS)

    Flügel, W.-A.

    2011-04-01

    The EC-project BRAHMATWINN was carrying out a harmonised integrated water resources management (IWRM) approach as addressed by the European Water Initiative (EWI) in headwater river systems of alpine mountain massifs of the twinning Upper Danube River Basin (UDRB) and the Upper Brahmaputra River Basins (UBRB) in Europe and Southeast Asia respectively. Social and natural scientists in cooperation with water law experts and local stakeholders produced the project outcomes presented in Chapter 2 till Chapter 10 of this publication. BRAHMATWINN applied a holistic approach towards IWRM comprising climate modelling, socio-economic and governance analysis and concepts together with methods and integrated tools of applied Geoinformatics. A detailed description of the deliverables produced by the BRAHMATWINN project is published on the project homepage http://www.brahmatwinn.uni-jena.de.

  3. A risk-based framework to assess long-term effects of policy and water supply changes on water resources systems

    NASA Astrophysics Data System (ADS)

    Hassanzadeh, Elmira; Elshorbagy, Amin; Wheater, Howard; Gober, Patricia

    2015-04-01

    Climate uncertainty can affect water resources availability and management decisions. Sustainable water resources management therefore requires evaluation of policy and management decisions under a wide range of possible future water supply conditions. This study proposes a risk-based framework to integrate water supply uncertainty into a forward-looking decision making context. To apply this framework, a stochastic reconstruction scheme is used to generate a large ensemble of flow series. For the Rocky Mountain basins considered here, two key characteristics of the annual hydrograph are its annual flow volume and the timing of the seasonal flood peak. These are perturbed to represent natural randomness and potential changes due to future climate. 30-year series of perturbed flows are used as input to the SWAMP model - an integrated water resources model that simulates regional water supply-demand system and estimates economic productivity of water and other sustainability indicators, including system vulnerability and resilience. The simulation results are used to construct 2D-maps of net revenue of a particular water sector; e.g., hydropower, or for all sectors combined. Each map cell represents a risk scenario of net revenue based on a particular annual flow volume, timing of the peak flow, and 200 stochastic realizations of flow series. This framework is demonstrated for a water resources system in the Saskatchewan River Basin (SaskRB) in Saskatchewan, Canada. Critical historical drought sequences, derived from tree-ring reconstructions of several hundred years of annual river flows, are used to evaluate the system's performance (net revenue risk) under extremely low flow conditions and also to locate them on the previously produced 2D risk maps. This simulation and analysis framework is repeated under various reservoir operation strategies (e.g., maximizing flood protection or maximizing water supply security); development proposals, such as irrigation expansion; and change in energy prices. Such risk-based analysis demonstrates relative reduction/increase of risk associated with management and policy decisions and allow decision makers to explore the relative importance of policy versus natural water supply change in a water resources system.

  4. Mesoscale Climate Evaluation Using Grid Computing

    NASA Astrophysics Data System (ADS)

    Campos Velho, H. F.; Freitas, S. R.; Souto, R. P.; Charao, A. S.; Ferraz, S.; Roberti, D. R.; Streck, N.; Navaux, P. O.; Maillard, N.; Collischonn, W.; Diniz, G.; Radin, B.

    2012-04-01

    The CLIMARS project is focused to establish an operational environment for seasonal climate prediction for the Rio Grande do Sul state, Brazil. The dynamical downscaling will be performed with the use of several software platforms and hardware infrastructure to carry out the investigation on mesoscale of the global change impact. The grid computing takes advantage of geographically spread out computer systems, connected by the internet, for enhancing the power of computation. The ensemble climate prediction is an appropriated application for processing on grid computing, because the integration of each ensemble member does not have a dependency on information from another ensemble members. The grid processing is employed to compute the 20-year climatology and the long range simulations under ensemble methodology. BRAMS (Brazilian Regional Atmospheric Model) is a mesoscale model developed from a version of the RAMS (from the Colorado State University - CSU, USA). BRAMS model is the tool for carrying out the dynamical downscaling from the IPCC scenarios. Long range BRAMS simulations will provide data for some climate (data) analysis, and supply data for numerical integration of different models: (a) Regime of the extreme events for temperature and precipitation fields: statistical analysis will be applied on the BRAMS data, (b) CCATT-BRAMS (Coupled Chemistry Aerosol Tracer Transport - BRAMS) is an environmental prediction system that will be used to evaluate if the new standards of temperature, rain regime, and wind field have a significant impact on the pollutant dispersion in the analyzed regions, (c) MGB-IPH (Portuguese acronym for the Large Basin Model (MGB), developed by the Hydraulic Research Institute, (IPH) from the Federal University of Rio Grande do Sul (UFRGS), Brazil) will be employed to simulate the alteration of the river flux under new climate patterns. Important meteorological input variables for the MGB-IPH are the precipitation (most relevant), temperature, and wind field, all provided by BRAMS. The Uruguay river basin will be analyzed in the scope of this proposal, (d) INFOCROP: this crop model has been calibrated for Southern Brazil, three agriculture cropswill be analyzed: rice, soybean and corn.

  5. Efficient uncertainty quantification in fully-integrated surface and subsurface hydrologic simulations

    NASA Astrophysics Data System (ADS)

    Miller, K. L.; Berg, S. J.; Davison, J. H.; Sudicky, E. A.; Forsyth, P. A.

    2018-01-01

    Although high performance computers and advanced numerical methods have made the application of fully-integrated surface and subsurface flow and transport models such as HydroGeoSphere common place, run times for large complex basin models can still be on the order of days to weeks, thus, limiting the usefulness of traditional workhorse algorithms for uncertainty quantification (UQ) such as Latin Hypercube simulation (LHS) or Monte Carlo simulation (MCS), which generally require thousands of simulations to achieve an acceptable level of accuracy. In this paper we investigate non-intrusive polynomial chaos for uncertainty quantification, which in contrast to random sampling methods (e.g., LHS and MCS), represents a model response of interest as a weighted sum of polynomials over the random inputs. Once a chaos expansion has been constructed, approximating the mean, covariance, probability density function, cumulative distribution function, and other common statistics as well as local and global sensitivity measures is straightforward and computationally inexpensive, thus making PCE an attractive UQ method for hydrologic models with long run times. Our polynomial chaos implementation was validated through comparison with analytical solutions as well as solutions obtained via LHS for simple numerical problems. It was then used to quantify parametric uncertainty in a series of numerical problems with increasing complexity, including a two-dimensional fully-saturated, steady flow and transient transport problem with six uncertain parameters and one quantity of interest; a one-dimensional variably-saturated column test involving transient flow and transport, four uncertain parameters, and two quantities of interest at 101 spatial locations and five different times each (1010 total); and a three-dimensional fully-integrated surface and subsurface flow and transport problem for a small test catchment involving seven uncertain parameters and three quantities of interest at 241 different times each. Numerical experiments show that polynomial chaos is an effective and robust method for quantifying uncertainty in fully-integrated hydrologic simulations, which provides a rich set of features and is computationally efficient. Our approach has the potential for significant speedup over existing sampling based methods when the number of uncertain model parameters is modest ( ≤ 20). To our knowledge, this is the first implementation of the algorithm in a comprehensive, fully-integrated, physically-based three-dimensional hydrosystem model.

  6. Impact of Urbanization on Precipitation Distribution and Intensity over Lake Victoria Basin

    NASA Astrophysics Data System (ADS)

    Gudoshava, M.; Semazzi, F. H. M.

    2014-12-01

    In this study, sensitivity simulations on the impact of rapid urbanization over Lake Victoria Basin in East Africa were done using a Regional Climate Model (RegCM4.4-rc29) with the Hostetler lake model activated. The simulations were done for the rainy seasons that is the long rains (March-April-May) and short rains (October-November-December). Africa is projected to have a surge in urbanization with an approximate rate of 590% in 2030 over their 2000 levels. The Northern part of Lake Victoria Basin and some parts of Rwanda and Burundi are amongst the regions with high urbanization projections. Simulations were done with the land cover for 2000 and the projected 2030 urbanization levels. The results showed that increasing the urban fraction over the northern part of the basin modified the physical parameters such as albedo, moisture and surface energy fluxes, aerodynamic roughness and surface emissivity, thereby altering the precipitation distribution, intensity and frequency in the region. The change in the physical parameters gave a response of an average increase in temperature of approximately 2oC over the urbanized region. A strong convergence zone was formed over the urbanized region and thereby accelerating the lake-breeze front towards the urbanized region center. Precipitation in the urbanized region and regions immediate to the area increased by approximately 4mm/day, while drying up the southern (non-urbanized) side of the basin. The drying up of the southern side of the basin could be a result of divergent flow and subsidence that suppresses vertical development of storms.

  7. Understanding High Wintertime Ozone Events over an Oil and Natural Gas Production Region from Air Quality Model Perspective

    NASA Astrophysics Data System (ADS)

    Ahmadov, R.; McKeen, S. A.; Trainer, M.; Banta, R. M.; Brown, S. S.; Edwards, P. M.; Frost, G. J.; Gilman, J.; Helmig, D.; Johnson, B.; Karion, A.; Koss, A.; Lerner, B. M.; Oltmans, S. J.; Roberts, J. M.; Schnell, R. C.; Veres, P. R.; Warneke, C.; Williams, E. J.; Wild, R. J.; Yuan, B.; Zamora, R. J.; Petron, G.; De Gouw, J. A.; Peischl, J.

    2014-12-01

    The huge increase in production of oil and natural gas has been associated with high wintertime ozone events over some parts of the western US. The Uinta Basin, UT, where oil and natural gas production is abundant experienced high ozone concentrations in winters of recent years, when cold stagnant weather conditions were prevalent. It has been very challenging for conventional air quality models to accurately simulate such wintertime ozone pollution cases. Here, a regional air quality model study was successfully conducted for the Uinta Basin by using the WRF-Chem model. For this purpose a new emission dataset for the region's oil/gas sector was built based on atmospheric in-situ measurements made during 2012 and 2013 field campaigns in the Uinta Basin. The WRF-Chem model demonstrates that the major factors driving high ozone in the Uinta Basin in winter are shallow boundary layers with light winds, high emissions of volatile organic compounds (VOC) compared to nitrogen oxides emissions from the oil and natural gas industry, enhancement of photolysis rates and reduction of O3 dry deposition due to snow cover. We present multiple sensitivity simulations to quantify the contribution of various factors driving high ozone over the Uinta Basin. The emission perturbation simulations show that the photochemical conditions in the Basin during winter of 2013 were VOC sensitive, which suggests that targeting VOC emissions would be most beneficial for regulatory purposes. Shortcomings of the emissions within the most recent US EPA (NEI-2011, version 1) inventory are also discussed.

  8. Water-ecosystem-economy nexus under human intervention and climate change: a study in the Heihe River Basin (China)

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Tian, Y.; Wu, X.; Feng, D.

    2017-12-01

    Recently, "One Belt and One Road" initiative, namely, building the "Silk Road Economic Belt" and "21st Century Maritime Silk Road", has become a global strategy of China and has been discussed as China's "Marshall Plan". The overland route of "One Belt" comes across vast arid lands, where the local population and ecosystem compete keenly for limited water resources. Water and environmental securities represent an important constraint of the "One Belt" development, and therefore understanding the complex water-ecosystem-economy nexus in the arid inland areas is very important. One typical case is Heihe River Basin (HRB), the second largest inland river basin of China, where the croplands in its middle part sucked up the river flow and groundwater, causing serious ecological problems in its lower part (Gobi Desert). We have developed an integrated hydrological-ecological model for the middle and lower HRB (the modeling domain has an area of 90,589 km2), which served as a platform to fuse multi-source data and provided a coherent understanding on the regional water cycle. With this physically based model, we quantitatively investigated how the nexus would be impacted by human intervention, mainly the existing and potential water regulations, and what would be the uncertainty of the nexus under the climate change. In studying the impact of human intervention, simulation-optimization analyses based on surrogate modeling were performed. In studying the uncertainty resulted from the climate change, outputs of multiple GCMs were downscaled for this river basin to drive ecohydrological simulations. Our studies have demonstrated the significant tradeoffs among the crop production in the middle HRB, the water and environmental securities of the middle HRB, and the ecological health of the lower HRB. The underlying mechanisms of the tradeoffs were also systematically addressed. The climate change would cause notable uncertainty of the nexus, which makes the water resources management more challenging. Overall, our studies suggest that the existing water allocation regulation in HRB could be improved if the complex nexus can be appropriately accounted for, and adaptive management is highly desired to cope with the uncertainty of future climate.

  9. Climate change and vulnerability of bull trout (Salvelinus confluentus) in a fire-prone landscape.

    USGS Publications Warehouse

    Falke, Jeffrey A.; Flitcroft, Rebecca L; Dunham, Jason B.; McNyset, Kristina M.; Hessburg, Paul F.; Reeves, Gordon H.

    2015-01-01

    Linked atmospheric and wildfire changes will complicate future management of native coldwater fishes in fire-prone landscapes, and new approaches to management that incorporate uncertainty are needed to address this challenge. We used a Bayesian network (BN) approach to evaluate population vulnerability of bull trout (Salvelinus confluentus) in the Wenatchee River basin, Washington, USA, under current and future climate and fire scenarios. The BN was based on modeled estimates of wildfire, water temperature, and physical habitat prior to, and following, simulated fires throughout the basin. We found that bull trout population vulnerability depended on the extent to which climate effects can be at least partially offset by managing factors such as habitat connectivity and fire size. Moreover, our analysis showed that local management can significantly reduce the vulnerability of bull trout to climate change given appropriate management actions. Tools such as our BN that explicitly integrate the linked nature of climate and wildfire, and incorporate uncertainty in both input data and vulnerability estimates, will be vital in effective future management to conserve native coldwater fishes.

  10. 2020s scenario analysis of nutrient load in the Mekong River Basin using a distributed hydrological model.

    PubMed

    Yoshimura, Chihiro; Zhou, Maichun; Kiem, Anthony S; Fukami, Kazuhiko; Prasantha, Hapuarachchi H A; Ishidaira, Hiroshi; Takeuchi, Kuniyoshi

    2009-10-01

    A distributed hydrological model, YHyM, was integrated with the export coefficient concept and applied to simulate the nutrient load in the Mekong River Basin. In the validation period (1992-1999), Nash-Sutcliffe efficiency was 76.4% for discharge, 65.9% for total nitrogen, and 45.3% for total phosphorus at Khong Chiam. Using the model, scenario analysis was then performed for the 2020s taking into account major anthropogenic factors: climate change, population, land cover, fertilizer use, and industrial waste water. The results show that the load at Kompong Cham in 2020s is 6.3 x 10(4)tN a(-1) (+13.0% compared to 1990s) and 4.3 x 10(3)tP a(-1) (+24.7%). Overall, the noticeable nutrient sources are cropland in the middle region and urban load in the lower region. The installation of waste water treatment plants in urban areas possibly cut 60.6%N and 19.9%P of the estimated increase in the case without any treatment.

  11. Multi-model ensemble hydrological simulation using a BP Neural Network for the upper Yalongjiang River Basin, China

    NASA Astrophysics Data System (ADS)

    Li, Zhanjie; Yu, Jingshan; Xu, Xinyi; Sun, Wenchao; Pang, Bo; Yue, Jiajia

    2018-06-01

    Hydrological models are important and effective tools for detecting complex hydrological processes. Different models have different strengths when capturing the various aspects of hydrological processes. Relying on a single model usually leads to simulation uncertainties. Ensemble approaches, based on multi-model hydrological simulations, can improve application performance over single models. In this study, the upper Yalongjiang River Basin was selected for a case study. Three commonly used hydrological models (SWAT, VIC, and BTOPMC) were selected and used for independent simulations with the same input and initial values. Then, the BP neural network method was employed to combine the results from the three models. The results show that the accuracy of BP ensemble simulation is better than that of the single models.

  12. Development of a Precipitation-Runoff Model to Simulate Unregulated Streamflow in the Salmon Creek Basin, Okanogan County, Washington

    USGS Publications Warehouse

    van Heeswijk, Marijke

    2006-01-01

    Surface water has been diverted from the Salmon Creek Basin for irrigation purposes since the early 1900s, when the Bureau of Reclamation built the Okanogan Project. Spring snowmelt runoff is stored in two reservoirs, Conconully Reservoir and Salmon Lake Reservoir, and gradually released during the growing season. As a result of the out-of-basin streamflow diversions, the lower 4.3 miles of Salmon Creek typically has been a dry creek bed for almost 100 years, except during the spring snowmelt season during years of high runoff. To continue meeting the water needs of irrigators but also leave water in lower Salmon Creek for fish passage and to help restore the natural ecosystem, changes are being considered in how the Okanogan Project is operated. This report documents development of a precipitation-runoff model for the Salmon Creek Basin that can be used to simulate daily unregulated streamflows. The precipitation-runoff model is a component of a Decision Support System (DSS) that includes a water-operations model the Bureau of Reclamation plans to develop to study the water resources of the Salmon Creek Basin. The DSS will be similar to the DSS that the Bureau of Reclamation and the U.S. Geological Survey developed previously for the Yakima River Basin in central southern Washington. The precipitation-runoff model was calibrated for water years 1950-89 and tested for water years 1990-96. The model was used to simulate daily streamflows that were aggregated on a monthly basis and calibrated against historical monthly streamflows for Salmon Creek at Conconully Dam. Additional calibration data were provided by the snowpack water-equivalent record for a SNOTEL station in the basin. Model input time series of daily precipitation and minimum and maximum air temperatures were based on data from climate stations in the study area. Historical records of unregulated streamflow for Salmon Creek at Conconully Dam do not exist for water years 1950-96. Instead, estimates of historical monthly mean unregulated streamflow based on reservoir outflows and storage changes were used as a surrogate for the missing data and to calibrate and test the model. The estimated unregulated streamflows were corrected for evaporative losses from Conconully Reservoir (about 1 ft3/s) and ground-water losses from the basin (about 2 ft3/s). The total of the corrections was about 9 percent of the mean uncorrected streamflow of 32.2 ft3/s (23,300 acre-ft/yr) for water years 1949-96. For the calibration period, the basinwide mean annual evapotranspiration was simulated to be 19.1 inches, or about 83 percent of the mean annual precipitation of 23.1 inches. Model calibration and testing indicated that the daily streamflows simulated using the precipitation-runoff model should be used only to analyze historical and forecasted annual mean and April-July mean streamflows for Salmon Creek at Conconully Dam. Because of the paucity of model input data and uncertainty in the estimated unregulated streamflows, the model is not adequately calibrated and tested to estimate monthly mean streamflows for individual months, such as during low-flow periods, or for shorter periods such as during peak flows. No data were available to test the accuracy of simulated streamflows for lower Salmon Creek. As a result, simulated streamflows for lower Salmon Creek should be used with caution. For the calibration period (water years 1950-89), both the simulated mean annual streamflow and the simulated mean April-July streamflow compared well with the estimated uncorrected unregulated streamflow (UUS) and corrected unregulated streamflow (CUS). The simulated mean annual streamflow exceeded UUS by 5.9 percent and was less than CUS by 2.7 percent. Similarly, the simulated mean April-July streamflow exceeded UUS by 1.8 percent and was less than CUS by 3.1 percent. However, streamflow was significantly undersimulated during the low-flow, baseflow-dominated months of November through F

  13. Reactive Transport Modeling Investigation of High Dissolved Sulfide Concentrations in Sedimentary Basin Rocks

    NASA Astrophysics Data System (ADS)

    Xie, M.; Mayer, U. K.; MacQuarrie, K. T. B.

    2017-12-01

    Water with total dissolved sulfide in excess of 1 mmol L-1is widely found in groundwater at intermediate depths in sedimentary basins, including regions of the Michigan basin in southeastern Ontario, Canada. Conversely, at deeper and shallower depths, relatively low total dissolved sulfide concentrations have been reported. The mechanisms responsible for the occurrence of these brackish sulfide-containing waters are not fully understood. Anaerobic microbial sulfate reduction is a common process resulting in the formation of high sulfide concentrations. Sulfate reduction rates depend on many factors including the concentration of sulfate, the abundance of organic substances, redox conditions, temperature, salinity and the species of sulfate reducing bacteria (SRB). A sedimentary basin-specific conceptual model considering the effect of salinity on the rate of sulfate reduction was developed and implemented in the reactive transport model MIN3P-THCm. Generic 2D basin-scale simulations were undertaken to provide a potential explanation for the dissolved sulfide distribution observed in the Michigan basin. The model is 440 km in the horizontal dimension and 4 km in depth, and contains fourteen sedimentary rock units including shales, sandstones, limestones, dolostone and evaporites. The main processes considered are non-isothermal density dependent flow, kinetically-controlled mineral dissolution/precipitation and its feedback on hydraulic properties, cation exchange, redox reactions, biogenic sulfate reduction, and hydromechanical coupling due to glaciation-deglaciation events. Two scenarios were investigated focusing on conditions during an interglacial period and the transient evolution during a glaciation-deglaciation cycle. Inter-glaciation simulations illustrate that the presence of high salinity brines strongly suppress biogenic sulfate reduction. The transient simulations show that glaciation-deglaciation cycles can have an impact on the maximum depth of elevated sulfide concentrations due to freshwater ingress and enhanced mixing. In all simulations the highest concentrations of total sulfide occur at depths of approximately 150 m, while concentrations at depths greater than 300 m typically remain below 0.03 mmol L-1, comparing well with observational data.

  14. Four dimensional data assimilation (FDDA) impacts on WRF performance in simulating inversion layer structure and distributions of CMAQ-simulated winter ozone concentrations in Uintah Basin

    NASA Astrophysics Data System (ADS)

    Tran, Trang; Tran, Huy; Mansfield, Marc; Lyman, Seth; Crosman, Erik

    2018-03-01

    Four-dimensional data assimilation (FDDA) was applied in WRF-CMAQ model sensitivity tests to study the impact of observational and analysis nudging on model performance in simulating inversion layers and O3 concentration distributions within the Uintah Basin, Utah, U.S.A. in winter 2013. Observational nudging substantially improved WRF model performance in simulating surface wind fields, correcting a 10 °C warm surface temperature bias, correcting overestimation of the planetary boundary layer height (PBLH) and correcting underestimation of inversion strengths produced by regular WRF model physics without nudging. However, the combined effects of poor performance of WRF meteorological model physical parameterization schemes in simulating low clouds, and warm and moist biases in the temperature and moisture initialization and subsequent simulation fields, likely amplified the overestimation of warm clouds during inversion days when observational nudging was applied, impacting the resulting O3 photochemical formation in the chemistry model. To reduce the impact of a moist bias in the simulations on warm cloud formation, nudging with the analysis water mixing ratio above the planetary boundary layer (PBL) was applied. However, due to poor analysis vertical temperature profiles, applying analysis nudging also increased the errors in the modeled inversion layer vertical structure compared to observational nudging. Combining both observational and analysis nudging methods resulted in unrealistically extreme stratified stability that trapped pollutants at the lowest elevations at the center of the Uintah Basin and yielded the worst WRF performance in simulating inversion layer structure among the four sensitivity tests. The results of this study illustrate the importance of carefully considering the representativeness and quality of the observational and model analysis data sets when applying nudging techniques within stable PBLs, and the need to evaluate model results on a basin-wide scale.

  15. Hydrology of the Sevier-Sigurd ground-water basin and other ground-water basins, central Sevier Valley, Utah.

    USGS Publications Warehouse

    Lambert, P.M.; Mason, J.L.; Puchta, R.W

    1995-01-01

    The hydrologic system in the central Sevier Valley, and more specifically the Sevier-Sigurd basin, is a complex system in which surface- and ground-water systems are interrelated. Seepage from an extensive irrigation system is the primary source of recharge to the basin-fill aquifer in the Sevier-Sigurd basin.Water-quality data indicate that inflow from streams and subsurface inflow that intersect evaporite deposits in the Arapien Shale does not adversely affect ground-water quality in the Sevier-Sigurd basin. Stable-isotope data indicate that large sulfate concentrations in water from wells are from the dissolution of gypsum within the basin fill rather than inflow from the Arapien Shale.A ground-water-flow model of the basin-fill aquifer in the Sevier-Sigurd basin was calibrated to steady-state conditions and transient conditions using yearly water-level changes from 1957-88 and monthly water-level changes from 1958-59. Predictive simulations were made to test the effects of reduced recharge from irrigation and increased well discharge. To simulate the effects of conversion from flood to sprinkler irrigation, recharge from irrigated fields was reduced by 50 percent. After twenty years, this reduction resulted in water-level declines of 1 to 8 feet in most of the basin, and a reduction in ground-water discharge to the Sevier River of 4,800 acre-ft/yr. Water-level declines of as much as 12 feet and a reduction in recharge to the Sevier River of 4,800 acre-ft/yr were the result of increasing well discharge near Richfield and Monroe by 25,000 acre-ft/yr. 

  16. On the use of MODIS and TRMM products to simulate hydrological processes in the La Plata Basin

    NASA Astrophysics Data System (ADS)

    Saavedra Valeriano, O. C.; Koike, T.; Berbery, E. H.

    2009-12-01

    La Plata basin is targeted to establish a distributed water-energy balance model using NASA and JAXA satellite products to estimate fluxes like the river discharge at sub-basin scales. The coupled model is called the Water and Energy Budget-based Distributed Hydrological Model (WEB-DHM), already tested with success in the Little Washita basin, Oklahoma, and the upper Tone River in Japan. The model demonstrated the ability to reproduce point-scale energy fluxes, CO2 flux, and river discharges. Moreover, the model showed the ability to predict the basin-scale surface soil moisture evolution in a spatially distributed fashion. In the context of the La Plata Basin, the first step was to set-up the water balance component of the distributed hydrological model of the entire basin using available global geographical data sets. The geomorphology of the basin was extracted using 1-km DEM resolution (obtained from EROS, Hydro 1K). The total delineated watershed reached 3.246 millions km2, identifying 145 sub-basins with a computing grid of 10-km. The distribution of land cover, land surface temperature, LAI and FPAR were obtained from MODIS products. In a first instance, the model was forced by gridded rainfall from the Climate Prediction Center (derived from available rain gauges) and satellite precipitation from TRMM 3B42 (NASA & JAXA). The simulated river discharge using both sources of data was compared and the overall low flow and normal peaks were identified. It was found that the extreme peaks tend to be overestimated when using TRMM 3B42. However, TRMM data allows tracking rainfall patterns which might be missed by the sparse distribution of rain gauges over some areas of the basin.

  17. SENSITIVITY OF THE REGIONAL WATER BALANCE IN THE COLUMBIA RIVER BASIN TO CLIMATE VARIABILITY: APPLICATION OF A SPATIALLY DISTRIBUTED WATER BALANCE MODEL

    EPA Science Inventory

    A one-dimensional water balance model was developed and used to simulate water balance for the Columbia River Basin. he model was run over a 10 km X 10 km grid for the United State's portion of the basin. he regional water balance was calculated using a monthly time-step for a re...

  18. Hydrogeologic controls on the groundwater interactions with an acidic lake in karst terrain, Lake Barco, Florida

    USGS Publications Warehouse

    Lee, T.M.

    1996-01-01

    Transient groundwater interactions and lake stage were simulated for Lake Barco, an acidic seepage lake in the mantled karst of north central Florida. Karst subsidence features affected groundwater flow patterns in the basin and groundwater fluxes to and from the lake. Subsidence features peripheral to the lake intercepted potential groundwater inflow and increased leakage from the shallow perimeter of the lake bed. Simulated groundwater fluxes were checked against net groundwater flow derived from a detailed lake hydrologic budget with short-term lake evaporation computed by the energy budget method. Discrepancies between modeled and budget-derived net groundwater flows indicated that the model underestimated groundwater inflow, possibly contributed to by transient water table mounding near the lake. Recharge from rainfall reduced lake leakage by 10 to 15 times more than it increased groundwater inflow. As a result of the karst setting, the contributing groundwater basin to the lake was 2.4 ha for simulated average rainfall conditions, compared to the topographically derived drainage basin area of 81 ha. Short groundwater inflow path lines and rapid travel times limit the contribution of acid-neutralizing solutes from the basin, making Lake Barco susceptible to increased acidification by acid rain.

  19. Modelling hydrological conditions in the maritime forest region of south-western Nova Scotia

    NASA Astrophysics Data System (ADS)

    Yanni, Shelagh; Keys, Kevin; Meng, Fan-Rui; Yin, Xiwei; Clair, Tom; Arp, Paul A.

    2000-02-01

    Hydrological processes and conditions were quantified for the Mersey River Basin (two basins: one exiting below Mill Falls, and one exiting below George Lake), the Roger's Brook Basin, Moosepit Brook, and for other selected locations at and near Kejimkujik National Park in Nova Scotia, Canada, from 1967 to 1990. Addressed variables included precipitation (rain, snow, fog), air temperature, stream discharge, snowpack accumulations, throughfall, soil and subsoil moisture, soil temperature and soil frost, at a monthly resolution. It was found that monthly per hectare stream discharge was essentially independent of catchment area from <20 km2 to more than 1000 km2. The forest hydrology model ForHyM2 was used to simulate monthly rates of stream discharge, throughfall and snowpack water equivalents for mature forest conditions. These simulations were in good agreement with the historical records once the contributions of fog and mist to the area-wide water budget were taken into account, each on a monthly basis. The resulting simulations establish a hydrologically consistent, continuous, comprehensive and partially verified record for basin-wide outcomes for all major hydrological processes and conditions, be these related to stream discharge, soil moisture, soil temperature, snowpack accumulations, soil frost, throughfall, interception and soil percolation.

  20. Delineation of the Pahute Mesa–Oasis Valley groundwater basin, Nevada

    USGS Publications Warehouse

    Fenelon, Joseph M.; Halford, Keith J.; Moreo, Michael T.

    2016-01-22

    This report delineates the Pahute Mesa–Oasis Valley (PMOV) groundwater basin, where recharge occurs, moves downgradient, and discharges to Oasis Valley, Nevada. About 5,900 acre-feet of water discharges annually from Oasis Valley, an area of springs and seeps near the town of Beatty in southern Nevada. Radionuclides in groundwater beneath Pahute Mesa, an area of historical underground nuclear testing at the Nevada National Security Site, are believed to be migrating toward Oasis Valley. Delineating the boundary of the PMOV groundwater basin is necessary to adequately assess the potential for transport of radionuclides from Pahute Mesa to Oasis Valley.The PMOV contributing area is defined based on regional water-level contours, geologic controls, and knowledge of adjacent flow systems. The viability of this area as the contributing area to Oasis Valley and the absence of significant interbasin flow between the PMOV groundwater basin and adjacent basins are shown regionally and locally. Regional constraints on the location of the contributing area boundary and on the absence of interbasin groundwater flow are shown by balancing groundwater discharges in the PMOV groundwater basin and adjacent basins against available water from precipitation. Internal consistency for the delineated contributing area is shown by matching measured water levels, groundwater discharges, and transmissivities with simulated results from a single-layer, steady-state, groundwater-flow model. An alternative basin boundary extending farther north than the final boundary was rejected based on a poor chloride mass balance and a large imbalance in the northern area between preferred and simulated recharge.

Top