Sample records for integrated bioconversion process

  1. Fed-batch hydrolysate addition and cell separation by settling in high cell density lignocellulosic ethanol fermentations on AFEX™ corn stover in the Rapid Bioconversion with Integrated recycling Technology process.

    PubMed

    Sarks, Cory; Jin, Mingjie; Balan, Venkatesh; Dale, Bruce E

    2017-09-01

    The Rapid Bioconversion with Integrated recycling Technology (RaBIT) process uses enzyme and yeast recycling to improve cellulosic ethanol production economics. The previous versions of the RaBIT process exhibited decreased xylose consumption using cell recycle for a variety of different micro-organisms. Process changes were tested in an attempt to eliminate the xylose consumption decrease. Three different RaBIT process changes were evaluated in this work including (1) shortening the fermentation time, (2) fed-batch hydrolysate addition, and (3) selective cell recycling using a settling method. Shorting the RaBIT fermentation process to 11 h and introducing fed-batch hydrolysate addition eliminated any xylose consumption decrease over ten fermentation cycles; otherwise, decreased xylose consumption was apparent by the third cell recycle event. However, partial removal of yeast cells during recycle was not economical when compared to recycling all yeast cells.

  2. Pretreatment and fractionation of wheat straw for production of fuel ethanol and value-added co-products in a biorefinery

    USDA-ARS?s Scientific Manuscript database

    An integrated process has been developed for a wheat straw biorefinery. In this process wheat straw was pretreated by soaking in aqueous ammonia (SAA), which extensively removed lignin but preserved high percentages of the carbohydrate fractions for subsequent bioconversion. The pretreatment condi...

  3. [Organic waste treatment by earthworm vermicomposting and larvae bioconversion: review and perspective].

    PubMed

    Zhang, Zhi-jian; Liu, Meng; Zhu, Jun

    2013-05-01

    There is a growing attention on the environmental pollution and loss of potential regeneration of resources due to the poor handling of organic wastes, while earthworm vermicomposting and larvae bioconversion are well-known as two promising biotechnologies for sustainable wastes treatments, where earthworms or housefly larvae are employed to convert the organic wastes into humus like material, together with value-added worm product. Taken earthworm ( Eisenia foetida) and housefly larvae ( Musca domestica) as model species, this work illustrates fundamental definition and principle, operational process, technical mechanism, main factors, and bio-chemical features of organisms of these two technologies. Integrated with the physical and biochemical mechanisms, processes of biomass conversion, intestinal digestion, enzyme degradation and microflora decomposition are comprehensively reviewed on waste treatments with purposes of waste reduction, value-addition, and stabilization.

  4. An Effective Method to Detect Volatile Intermediates Generated in the Bioconversion of Coal to Methane by Gas Chromatography-Mass Spectrometry after In-Situ Extraction Using Headspace Solid-Phase Micro-Extraction under Strict Anaerobic Conditions.

    PubMed

    Liu, Jianmin; Wang, Baoyu; Tai, Chao; Wu, Li; Zhao, Han; Guan, Jiadong; Chen, Linyong

    2016-01-01

    Bioconversion of coal to methane has gained increased attention in recent decades because of its economic and environmental advantages. However, the mechanism of this process is difficult to study in depth, partly because of difficulties associated with the analysis of intermediates generated in coal bioconversion. In this investigation, we report on an effective method to analyze volatile intermediates generated in the bioconversion of coal under strict anaerobic conditions. We conduct in-situ extraction of intermediates using headspace solid-phase micro-extraction followed by detection by gas chromatography-mass spectrometry. Bioconversion simulation equipment was modified and combined with a solid-phase micro-extraction device. In-situ extraction could be achieved by using the combined units, to avoid a breakdown in anaerobic conditions and to maintain the experiment continuity. More than 30 intermediates were identified qualitatively in the conversion process, and the variation in trends of some typical intermediates has been discussed. Volatile organic acids (C2-C7) were chosen for a quantitative study of the intermediates because of their importance during coal bioconversion to methane. Fiber coating, extraction time, and solution acidity were optimized in the solid-phase micro-extraction procedure. The pressure was enhanced during the bioconversion process to investigate the influence of headspace pressure on analyte extraction. The detection limits of the method ranged from 0.0006 to 0.02 mmol/L for the volatile organic acids and the relative standard deviations were between 4.6% and 11.5%. The volatile organic acids (C2-C7) generated in the bioconversion process were 0.01-1.15 mmol/L with a recovery range from 80% to 105%. The developed method is useful for further in-depth research on the bioconversion of coal to methane.

  5. An Effective Method to Detect Volatile Intermediates Generated in the Bioconversion of Coal to Methane by Gas Chromatography-Mass Spectrometry after In-Situ Extraction Using Headspace Solid-Phase Micro-Extraction under Strict Anaerobic Conditions

    PubMed Central

    Liu, Jianmin; Wang, Baoyu; Tai, Chao; Wu, Li; Zhao, Han; Guan, Jiadong; Chen, Linyong

    2016-01-01

    Bioconversion of coal to methane has gained increased attention in recent decades because of its economic and environmental advantages. However, the mechanism of this process is difficult to study in depth, partly because of difficulties associated with the analysis of intermediates generated in coal bioconversion. In this investigation, we report on an effective method to analyze volatile intermediates generated in the bioconversion of coal under strict anaerobic conditions. We conduct in-situ extraction of intermediates using headspace solid-phase micro-extraction followed by detection by gas chromatography-mass spectrometry. Bioconversion simulation equipment was modified and combined with a solid-phase micro-extraction device. In-situ extraction could be achieved by using the combined units, to avoid a breakdown in anaerobic conditions and to maintain the experiment continuity. More than 30 intermediates were identified qualitatively in the conversion process, and the variation in trends of some typical intermediates has been discussed. Volatile organic acids (C2–C7) were chosen for a quantitative study of the intermediates because of their importance during coal bioconversion to methane. Fiber coating, extraction time, and solution acidity were optimized in the solid-phase micro-extraction procedure. The pressure was enhanced during the bioconversion process to investigate the influence of headspace pressure on analyte extraction. The detection limits of the method ranged from 0.0006 to 0.02 mmol/L for the volatile organic acids and the relative standard deviations were between 4.6% and 11.5%. The volatile organic acids (C2–C7) generated in the bioconversion process were 0.01–1.15 mmol/L with a recovery range from 80% to 105%. The developed method is useful for further in-depth research on the bioconversion of coal to methane. PMID:27695055

  6. Bioethanol production from corn stover using aqueous ammonia pretreatment and two-phase simultaneouos saccharification and fermentation (TPSSF)

    USDA-ARS?s Scientific Manuscript database

    An integrated bioconversion process was developed to convert corn-stover derived pentose and hexose to ethanol effectively. In this study, corn stover was pretreated by soaking in aqueous ammonia (SAA), which resulted in high retention of glucan (~100%) and xylan (>80%) in the solids. The pretreated...

  7. Quantifying pretreatment degradation compounds in solution and accumulated by cells during solids and yeast recycling in the Rapid Bioconversion with Integrated recycling Technology process using AFEX™ corn stover.

    PubMed

    Sarks, Cory; Higbee, Alan; Piotrowski, Jeff; Xue, Saisi; Coon, Joshua J; Sato, Trey K; Jin, Mingjie; Balan, Venkatesh; Dale, Bruce E

    2016-04-01

    Effects of degradation products (low molecular weight compounds produced during pretreatment) on the microbes used in the RaBIT (Rapid Bioconversion with Integrated recycling Technology) process that reduces enzyme usage up to 40% by efficient enzyme recycling were studied. Chemical genomic profiling was performed, showing no yeast response differences in hydrolysates produced during RaBIT enzymatic hydrolysis. Concentrations of degradation products in solution were quantified after different enzymatic hydrolysis cycles and fermentation cycles. Intracellular degradation product concentrations were also measured following fermentation. Degradation product concentrations in hydrolysate did not change between RaBIT enzymatic hydrolysis cycles; the cell population retained its ability to oxidize/reduce (detoxify) aldehydes over five RaBIT fermentation cycles; and degradation products accumulated within or on the cells as RaBIT fermentation cycles increased. Synthetic hydrolysate was used to confirm that pretreatment degradation products are the sole cause of decreased xylose consumption during RaBIT fermentations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Accelerated design of bioconversion processes using automated microscale processing techniques.

    PubMed

    Lye, Gary J; Ayazi-Shamlou, Parviz; Baganz, Frank; Dalby, Paul A; Woodley, John M

    2003-01-01

    Microscale processing techniques are rapidly emerging as a means to increase the speed of bioprocess design and reduce material requirements. Automation of these techniques can reduce labour intensity and enable a wider range of process variables to be examined. This article examines recent research on various individual microscale unit operations including microbial fermentation, bioconversion and product recovery techniques. It also explores the potential of automated whole process sequences operated in microwell formats. The power of the whole process approach is illustrated by reference to a particular bioconversion, namely the Baeyer-Villiger oxidation of bicyclo[3.2.0]hept-2-en-6-one for the production of optically pure lactones.

  9. Engineering deacetoxycephalosporin C synthase as a catalyst for the bioconversion of penicillins.

    PubMed

    Fan, Keqiang; Lin, Baixue; Tao, Yong; Yang, Keqian

    2017-05-01

    7-aminodeacetoxycephalosporanic acid (7-ADCA) is a key intermediate of many clinically useful semisynthetic cephalosporins that were traditionally prepared by processes involving chemical ring expansion of penicillin G. Bioconversion of penicillins to cephalosporins using deacetoxycephalosporin C synthase (DAOCS) is an alternative and environmentally friendly process for 7-ADCA production. Arnold Demain and co-workers pioneered such a process. Later, protein engineering efforts to improve the substrate specificity and catalytic efficiency of DAOCS for penicillins have been made by many groups, and a whole cell process using Escherichia coli for bioconversion of penicillins has been developed.

  10. Simultaneous bioconversion of barley straw to butanol and product recovery: use of concentrated sugar solution and process integration

    USDA-ARS?s Scientific Manuscript database

    As a result of increased gasoline prices, we focused on the production of butanol which contains more energy than ethanol on per gallon (or kg) basis from cellulosic agricultural biomass such as wheat straw using two different systems: i) separate hydrolysis, fermentation, and recovery (SHFR), and ...

  11. Nitrile bioconversion by Microbacterium imperiale CBS 498-74 resting cells in batch and ultrafiltration membrane bioreactors.

    PubMed

    Cantarella, M; Cantarella, L; Gallifuoco, A; Spera, A

    2006-03-01

    The biohydration of acrylonitrile, propionitrile and benzonitrile catalysed by the NHase activity contained in resting cells of Microbacterium imperiale CBS 498-74 was operated at 5, 10 and 20 degrees C in laboratory-scale batch and membrane bioreactors. The bioreactions were conducted in buffered medium (50 mM Na(2)HPO(4)/NaH(2)PO(4), pH 7.0) in the presence of distilled water or tap-water, to simulate a possible end-pipe biotreatment process. The integral bioreactor performances were studied with a cell loading (dry cell weight; DCW) varying from 0.1 mg(DCW) per reactor to 16 mg(DCW) per reactor, in order to realize near 100% bioconversion of acrylonitrile, propionitrile and benzonitrile without consistent loss of NHase activity.

  12. Lignin conversion: Opportunities and challenges for the integrated biorefinery

    DOE PAGES

    Xie, Shangxian; Ragauskas, Arthur J.; Yuan, Joshua S.

    2016-06-21

    The utilization of lignin for fungible fuels and products represents one of the most imminent challenges in the modern biorefinery because most of the bioprocesses for lignocellulosic biofuels results in a lignin-containing waste stream. Considering lignin's abundance and relatively high energy content, this waste stream can be used as a feedstock for value-added products to improve the sustainability and economic feasibility of the biorefinery. Bioconversion of lignin with microbes recently emerged as an alternative lignin-valorization approach with significant potential. Typically, the microbial bioconversion of lignin requires three major steps: lignin depolymerization, aromatic compounds catabolism, and target product biosynthesis. In thismore » review, we summarize the most recent advances in lignin bioconversion to address the challenges in each of the three steps. In conclusion, we further discuss strategies and perspectives for future research to address the challenges in bioconversion of lignin.« less

  13. Lignin conversion: Opportunities and challenges for the integrated biorefinery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Shangxian; Ragauskas, Arthur J.; Yuan, Joshua S.

    The utilization of lignin for fungible fuels and products represents one of the most imminent challenges in the modern biorefinery because most of the bioprocesses for lignocellulosic biofuels results in a lignin-containing waste stream. Considering lignin's abundance and relatively high energy content, this waste stream can be used as a feedstock for value-added products to improve the sustainability and economic feasibility of the biorefinery. Bioconversion of lignin with microbes recently emerged as an alternative lignin-valorization approach with significant potential. Typically, the microbial bioconversion of lignin requires three major steps: lignin depolymerization, aromatic compounds catabolism, and target product biosynthesis. In thismore » review, we summarize the most recent advances in lignin bioconversion to address the challenges in each of the three steps. In conclusion, we further discuss strategies and perspectives for future research to address the challenges in bioconversion of lignin.« less

  14. Comparative study of the bioconversion process using R-(+)- and S-(-)-limonene as substrates for Fusarium oxysporum 152B.

    PubMed

    Molina, Gustavo; Bution, Murillo L; Bicas, Juliano L; Dolder, Mary Anne Heidi; Pastore, Gláucia M

    2015-05-01

    This study compared the bioconversion process of S-(-)-limonene into limonene-1,2-diol with the already established biotransformation of R-(+)-limonene into α-terpineol using the same biocatalyst in both processes, Fusarium oxysporum 152B. The bioconversion of the S-(-)-isomer was tested on cell permeabilisation under anaerobic conditions and using a biphasic system. When submitted to permeabilisation trials, this biocatalyst has shown a relatively high resistance; still, no production of limonene-1,2-diol and a loss of activity of the biocatalyst were observed after intense cell treatment, indicating a complete loss of cell viability. Furthermore, the results showed that this process can be characterised as an aerobic system that was catalysed by limonene-1,2-epoxide hydrolase, had an intracellular nature and was cofactor-dependent because the final product was not detected by an anaerobic process. Finally, this is the first report to characterise the bioconversion of R-(+)- and S-(-)-limonene by cellular detoxification using ultra-structural analysis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Integrated waste management for rural development in Egypt.

    PubMed

    Shehata, S M; El Shimi, S A; Elkattan, M H; Ali, B E; El-Housseini, M; El Sayad, S A; Mahmoud, M S; Zaki, A M; Hamdi, Y A; El-Nawawy, A S

    2004-01-01

    Rural areas generate a large amount of plant and animal residues that can be recycled and utilized instead of relocation and/or burning. This will lead to increasing the benefits from agricultural sector in rural communities and ensuring a better environment. To increase the economic output and environmental benefits of recycling agricultural residues, integrated system should be considered, e.g., energy--compost-recycled water system; composting--co-composting system; food-feed compost system, ensilage of crop residues. The present work was a pilot study for optimizing integrated systems for bioconversion agricultural residues completed by establishing a Training Center for Recycling Agricultural Residues (TCRAR) thereby ensuring the dissemination of the technical, environmental, and socioeconomic aspects to farmers, live stock producers, extensions service staff, and private sector. Three integrated subsystems for bioconversion of agricultural residues were developed. They were based on (i) energy--manure-recycled water system, (ii) composting and co-composting system, and (iii) food-feed/compost system.

  16. Bioconversion of lutein by Enterobacter hormaechei to form a new compound, 8-methyl-α-ionone.

    PubMed

    Zhong, Guifang; Wang, Fangfang; Sun, Jianhong; Ye, Jianbin; Mao, Duobin; Ma, Ke; Yang, Xuepeng

    2017-07-01

    To investigate the final product of the bioconversion of lutein by a novel lutein-degrading bacterium, Enterobacter hormaechei A20, and the kinetics of the process. A new product, 8-methyl-α-ionone, was resolved by GC-MS. The compound was further identified by NMR. A conversion yield of 90% was achieved by E. hormaechei in 36 h with 10 g lutein l -1 . This is the first report of the bioconversion of lutein to form 8-methyl-α-ionone. A degradation pathway is proposed.

  17. Integrated bioconversion of syngas into bioethanol and biopolymers.

    PubMed

    Lagoa-Costa, Borja; Abubackar, Haris Nalakath; Fernández-Romasanta, María; Kennes, Christian; Veiga, María C

    2017-09-01

    Syngas bioconversion is a promising method for bioethanol production, but some VFA remains at the end of fermentation. A two-stage process was set-up, including syngas fermentation as first stage under strict anaerobic conditions using C. autoethanogenum as inoculum, with syngas (CO/CO 2 /H 2 /N 2 , 30/10/20/40) as gaseous substrate. The second stage consisted in various fed-batch assays using a highly enriched PHA accumulating biomass as inoculum, where the potential for biopolymer production from the remaining acetic acid at the end of the syngas fermentation was evaluated. All of the acetic acid was consumed and accumulated as biopolymer, while ethanol and 2,3-butanediol remained basically unused. It can be concluded that a high C/N ratio in the effluent from the syngas fermentation stage was responsible for non-consumption of alcohols. A maximum PHA content of 24% was reached at the end of the assay. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Phyto-bioconversion of hard coal in the Cynodon dactylon/coal rhizosphere.

    PubMed

    Igbinigie, Eric E; Mutambanengwe, Cecil C Z; Rose, Peter D

    2010-03-01

    Fundamental processes involved in the microbial degradation of coal and its derivatives have been well documented. A mutualistic interaction between plant roots and certain microorganisms to aid growth of plants such as Cynodon dactylon (Bermuda grass) on hard coal dumps has recently been suggested. In the present study coal bioconversion activity of nonmycorrhizal fungi was investigated in the C. dactylon/coal rhizosphere. Fungal growth on 2% Duff-agar, gutation formation on nitric acid treated coal and submerged culture activity in nitrogen-rich and -deficient broth formed part of the screening and selection of the fungi. The selected fungal isolates were confirmed to be found in pristine C. dactylon/coal rhizosphere. To simulate bioconversion, a fungal aliquot of this rhizosphere was used as inoculum for a Perfusate fixed bed bioreactor, packed with coal. The results demonstrate an enhanced coal bioconversion facilitated by low molecular weight organics and the bioconversion of coal may be initiated by an introduction of nitrogen moieties to the coal substrate. These findings suggest a phyto-bioconversion of hard coal involving plant and microbes occurring in the rhizosphere to promote the growth of C. dactylon. An understanding of this relationship can serve as a benchmark for coal dumps rehabilitation as well as for the industrial scale bioprocessing of hard coal.

  19. A novel process for enhancing oil production in algae biorefineries through bioconversion of solid by-products.

    PubMed

    Trzcinski, Antoine P; Hernandez, Ernesto; Webb, Colin

    2012-07-01

    This paper focuses on a novel process for adding value to algae residue. In current processes oleaginous microalgae are grown and harvested for lipid production leaving a lipid-free algae residue. The process described here includes conversion of the carbohydrate fraction into glucose prior to lipid extraction. This can be fermented to produce up to 15% additional lipids using another oleaginous microorganism. It was found that in situ enzymes can hydrolyze storage carbohydrates in the algae into glucose and that a temperature of 55 °C for about 20 h gave the best glucose yield. Up to 75% of available carbohydrates were converted to a generic fermentation feedstock containing 73 g/L glucose. The bioconversion step was found to increase the free water content by 60% and it was found that when the bioconversion was carried out prior to the extraction step, it improved the solvent extractability of lipids from the algae. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Enzymes and microorganisms in food industry waste processing and conversion to useful products: a review of the literature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carroad, P.A.; Wilke, C.R.

    1976-12-01

    Bioconversion of food processing wastes is receiving increased attention with the realization that waste components represent an available and utilizable resource for conversion to useful products. Liquid wastes are characterized as dilute streams containing sugars, starches, proteins, and fats. Solid wastes are generally cellulosic, but may contain other biopolymers. The greatest potential for economic bioconversion is represented by processes to convert cellulose to glucose, glucose to alcohol and protein, starch to invert sugar, and dilute waste streams to methane by anaerobic digestion. Microbial or enzymatic processes to accomplish these conversions are described.

  1. Behavior of spores of Penicillium roquefortii during fed-batch bioconversion of octanoic acid into 2-heptanone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larroche, C.; Besson, I.; Gros, J.B.

    1994-09-05

    The bioconversion of octanoic acid into 2-heptanone by spores of Penicillium roquefortii is performed using a fed-batch technique with pH control by addition of the liquid substrate itself. The early stage of this process takes place with a high bioconversion rate and high yield. These values then decrease as a result of germination and growth of the biocatalyst. An optimization strategy for the process would thus be to improve the characteristics of this first period, i.e., increase its duration and the reaction rate. An increase in duration is evidenced in two cases: (1) under oxygen limitation; and (2) when themore » spore content in the medium is less than 10[sup 7] spores/mL. These conditions give insufficient overall bioconversion rates; better optimization should be achieved without oxygen limitation and with high spore content. Characterization of the first period by material and bioenergetic balances suggests that an increase in the ethanol content of the medium, which acts as an energy source and a permeabilizer, and the use of a specific inhibitor of the Krebs cycle, may be a way to further improve the biocatalyst performance and stability.« less

  2. Advanced Chemical Design for Efficient Lignin Bioconversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Shangxian; Sun, Qining; Pu, Yunqiao

    Here, lignin depolymerization mainly involves redox reactions relying on the effective electron transfer. Even though electron mediators were previously used for delignification of paper pulp, no study has established a bioprocess to fragment and solubilize the lignin with an effective laccase–mediator system, in particular, for subsequent microbial bioconversion. Efficient lignin depolymerization was achieved by screening proper electron mediators with laccase to attain a nearly 6-fold increase of kraft lignin solubility compared to the control kraft lignin without laccase treatment. Chemical analysis suggested the release of a low molecular weight fraction of kraft lignin into the solution phase. Moreover, NMR analysismore » revealed that an efficient enzyme–mediator system can promote the lignin degradation. More importantly, the fundamental mechanisms guided the development of an efficient lignin bioconversion process, where solubilized lignin from laccase–HBT treatment served as a superior substrate for bioconversion by Rhodococcus opacus PD630. The cell growth was increased by 10 6 fold, and the lipid titer reached 1.02 g/L. Overall, the study has manifested that an efficient enzyme–mediator–microbial system can be exploited to establish a bioprocess to solubilize lignin, cleave lignin linkages, modify the structure, and produce substrates amenable to bioconversion.« less

  3. Advanced Chemical Design for Efficient Lignin Bioconversion

    DOE PAGES

    Xie, Shangxian; Sun, Qining; Pu, Yunqiao; ...

    2017-01-30

    Here, lignin depolymerization mainly involves redox reactions relying on the effective electron transfer. Even though electron mediators were previously used for delignification of paper pulp, no study has established a bioprocess to fragment and solubilize the lignin with an effective laccase–mediator system, in particular, for subsequent microbial bioconversion. Efficient lignin depolymerization was achieved by screening proper electron mediators with laccase to attain a nearly 6-fold increase of kraft lignin solubility compared to the control kraft lignin without laccase treatment. Chemical analysis suggested the release of a low molecular weight fraction of kraft lignin into the solution phase. Moreover, NMR analysismore » revealed that an efficient enzyme–mediator system can promote the lignin degradation. More importantly, the fundamental mechanisms guided the development of an efficient lignin bioconversion process, where solubilized lignin from laccase–HBT treatment served as a superior substrate for bioconversion by Rhodococcus opacus PD630. The cell growth was increased by 10 6 fold, and the lipid titer reached 1.02 g/L. Overall, the study has manifested that an efficient enzyme–mediator–microbial system can be exploited to establish a bioprocess to solubilize lignin, cleave lignin linkages, modify the structure, and produce substrates amenable to bioconversion.« less

  4. Production of (R)-3-hydroxybutyric acid by fermentation and bioconversion processes with Azohydromonas lata.

    PubMed

    Ugwu, Charles U; Tokiwa, Yutaka; Ichiba, Toshio

    2011-06-01

    Feasibility of producing (R)-3-hydroxybutyric acid ((R)-3-HB) using wild type Azohydromonas lata and its mutants (derived by UV mutation) was investigated. A. lata mutant (M5) produced 780 m g/l in the culture broth when sucrose was used as the carbon source. M5 was further studied in terms of its specificity with various bioconversion substrates for production of (R)-3-HB. (R)-3-HB concentration produced in the culture broth by M5 mutant was 2.7-fold higher than that of the wild type strain when sucrose (3% w/v) and (R,S)-1,3-butanediol (3% v/v) were used as carbon source and bioconversion substrate, respectively. Bioconversion of resting cells (M5) with glucose (1% v/w), ethylacetoacetate (2% v/v), and (R,S)-1,3-butanediol (3% v/v), resulted in (R)-3-HB concentrations of 6.5 g/l, 7.3g/l and 8.7 g/l, respectively. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Ethanol and thermotolerance in the bioconversion of xylose by yeasts

    Treesearch

    Thomas W. Jeffries; Yong-Su Jin

    2000-01-01

    The mechanisms underlying ethanol and heat tolerance are complex. Many different genes are involved, and the exact basis is not fully understood. The integrity of cytoplasmic and mitochondrial membranes is critical to maintain proton gradients for metabolic energy and nutrient uptake. Heat and ethanol stress adversely affect membrane integrity. These factors are...

  6. Optimization and cost estimation of novel wheat biorefining for continuous production of fermentation feedstock.

    PubMed

    Arifeen, Najmul; Wang, Ruohang; Kookos, Ioannis; Webb, Colin; Koutinas, Apostolis A

    2007-01-01

    A wheat-based continuous process for the production of a nutrient-complete feedstock for bioethanol production by yeast fermentation has been cost-optimized. This process could substitute for the current wheat dry milling process employed in industry for bioethanol production. Each major wheat component (bran, gluten, starch) is extracted and processed for different end-uses. The separate stages, liquefaction and saccharification, used currently in industry for starch hydrolysis have been integrated into a simplified continuous process by exploiting the complex enzymatic consortium produced by on-site fungal bioconversions. A process producing 120 m3 h-1 nutrient-complete feedstock for bioethanol production containing 250 g L-1 glucose and 0.85 g L-1 free amino nitrogen would result in a production cost of $0.126/kg glucose.

  7. Pilot scale repeated fed-batch fermentation processes of the wine yeast Dekkera bruxellensis for mass production of resveratrol from Polygonum cuspidatum.

    PubMed

    Kuo, Hsiao-Ping; Wang, Reuben; Lin, Yi-Sheng; Lai, Jinn-Tsyy; Lo, Yi-Chen; Huang, Shyue-Tsong

    2017-11-01

    Resveratrol has long been used as an ingredient in functional foods. Currently, Polygonum cuspidatum extract is the greatest natural source for resveratrol because of high concentrations of glycosidic-linked resveratrol. Thus, developing a cost-effective procedure to hydrolyze glucoside could substantially enhance resveratrol production from P. cuspidatum. This study selected Dekkera bruxellensis from several microorganisms based on its bioconversion and enzyme-specific activities. We demonstrated that the cells could be reused at least nine times while maintaining an average of 180.67U/L β-glucosidase activity. The average resveratrol bioconversion efficiency within five rounds of repeated usage was 108.77±0.88%. This process worked effectively when the volume was increased to 1200L, a volume at which approximately 35mgL -1 h -1 resveratrol per round was produced. This repeated fed-batch bioconversion process for resveratrol production is comparable to enzyme or cell immobilization strategies in terms of reusing cycles, but without incurring additional costs for immobilization. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Bio-conversion of apple pomace into ethanol and acetic acid: Enzymatic hydrolysis and fermentation.

    PubMed

    Parmar, Indu; Rupasinghe, H P Vasantha

    2013-02-01

    Enzymatic hydrolysis of cellulose present in apple pomace was investigated using process variables such as enzyme activity of commercial cellulase, pectinase and β-glucosidase, temperature, pH, time, pre-treatments and end product separation. The interaction of enzyme activity, temperature, pH and time had a significant effect (P<0.05) on release of glucose. Optimal conditions of enzymatic saccharification were: enzyme activity of cellulase, 43units; pectinase, 183units; β-glucosidase, 41units/g dry matter (DM); temperature, 40°C; pH 4.0 and time, 24h. The sugars were fermented using Saccharomyces cerevisae yielding 19.0g ethanol/100g DM. Further bio-conversion using Acetobacter aceti resulted in the production of acetic acid at a concentration of 61.4g/100g DM. The present study demonstrates an improved process of enzymatic hydrolysis of apple pomace to yield sugars and concomitant bioconversion to produce ethanol and acetic acid. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Bioconversion study conducted by JPL

    NASA Technical Reports Server (NTRS)

    Kalvinskas, J.

    1978-01-01

    The Jet Propulsion Laboratory (JPL) of Caltech conducted a study of bioconversion as a means of identifying the role of biomass for meeting the national energy fuel and chemical requirements and the role and means for JPL-Caltech involvement in bioconversion. The bioconversion study included the following categories; biomass sources, chemicals from biomass, thermochemical conversion of biomass to fuels, biological conversion of biomass to fuels and chemicals, and basic bioconversion sciences. A detailed review is included of the bioconversion fields cited with specific conclusions and recommendations given for future research and development and overall biomass system engineering and economic studies.

  10. Bioconversion of R-(+)-limonene to perillic acid by the yeast Yarrowia lipolytica

    PubMed Central

    Ferrara, Maria Antonieta; Almeida, Débora S.; Siani, Antonio C.; Lucchetti, Leonardo; Lacerda, Paulo S.B.; Freitas, André; Tappin, Marcelo R.R.; Bon, Elba P.S.

    2013-01-01

    Perillyl derivatives are increasingly important due to their flavouring and antimicrobial properties as well as their potential as anticancer agents. These terpenoid species, which are present in limited amounts in plants, may be obtained via bioconversion of selected monoterpene hydrocarbons. In this study, seventeen yeast strains were screened for their ability to oxidize the exocyclic methyl group in the p-menthene moiety of limonene into perillic acid. Of the yeast tested, the highest efficiency was observed for Yarrowia lipolytica ATCC 18942. The conversion of R (+)-limonene by Y. lipolytica was evaluated by varying the pH (3 to 8) and the temperature (25 to 30 °C) in a reaction medium containing 0.5% v/v limonene and 10 g/L of stationary phase cells (dry weight). The best results, corresponding to 564 mg/L of perillic acid, were obtained in buffered medium at pH 7.1 that was incubated at 25 °C for 48 h. The stepwise addition of limonene increased the perillic acid concentration by over 50%, reaching 855 mg/L, whereas the addition of glucose or surfactant to the reaction medium did not improve the bioconversion process. The use of Y. lipolytica showed promise for ease of further downstream processing, as perillic acid was the sole oxidised product of the bioconversion reaction. Moreover, bioprocesses using safe and easy to cultivate yeast cells have been favoured in industry. PMID:24688495

  11. Biofilm reactors for industrial bioconversion processes: employing potential of enhanced reaction rates

    PubMed Central

    Qureshi, Nasib; Annous, Bassam A; Ezeji, Thaddeus C; Karcher, Patrick; Maddox, Ian S

    2005-01-01

    This article describes the use of biofilm reactors for the production of various chemicals by fermentation and wastewater treatment. Biofilm formation is a natural process where microbial cells attach to the support (adsorbent) or form flocs/aggregates (also called granules) without use of chemicals and form thick layers of cells known as "biofilms." As a result of biofilm formation, cell densities in the reactor increase and cell concentrations as high as 74 gL-1 can be achieved. The reactor configurations can be as simple as a batch reactor, continuous stirred tank reactor (CSTR), packed bed reactor (PBR), fluidized bed reactor (FBR), airlift reactor (ALR), upflow anaerobic sludge blanket (UASB) reactor, or any other suitable configuration. In UASB granular biofilm particles are used. This article demonstrates that reactor productivities in these reactors have been superior to any other reactor types. This article describes production of ethanol, butanol, lactic acid, acetic acid/vinegar, succinic acid, and fumaric acid in addition to wastewater treatment in the biofilm reactors. As the title suggests, biofilm reactors have high potential to be employed in biotechnology/bioconversion industry for viable economic reasons. In this article, various reactor types have been compared for the above bioconversion processes. PMID:16122390

  12. Advanced Effect of Moringa oleifera Bioconversion by Rhizopus oligosporus on the Treatment of Atopic Dermatitis: Preliminary Study

    PubMed Central

    Hur, Sang-sun; Choi, Suk-won; Lee, Dong-ryul; Park, Jong-hwan

    2018-01-01

    This study was conducted to determine if topical application of Moringa oleifera extracts and its bioconversion product fermented by Rhizopus oligosporus has therapeutic properties enhancement for treatment of atopic dermatitis. Rhizopus oligosporus (KCCM 11232P) was used to ferment Moringa leaves' extracts in this study. Comparison of organic acids and flavonols in Moringa simple extracts and their fermented product by HPLC analysis revealed that concentration of organic acids and flavonols of bioconversion product was lower than that of hot water extracts. The fermentation process is used as a nutrient for isolation of each component by microorganisms and growth of microorganisms. The results demonstrated that MF extracts effectively reduced clinical features based on macrography, scratching count, and severity scores, as well as model's serum IgE level, including histopathological analyses. PMID:29576799

  13. Development of rapid bioconversion with integrated recycle technology for ethanol production from extractive ammonia pretreated corn stover.

    PubMed

    Jin, Mingjie; Liu, Yanping; da Costa Sousa, Leonardo; Dale, Bruce E; Balan, Venkatesh

    2017-08-01

    High enzyme loading and low productivity are two major issues impeding low cost ethanol production from lignocellulosic biomass. This work applied rapid bioconversion with integrated recycle technology (RaBIT) and extractive ammonia (EA) pretreatment for conversion of corn stover (CS) to ethanol at high solids loading. Enzymes were recycled via recycling unhydrolyzed solids. Enzymatic hydrolysis with recycled enzymes and fermentation with recycled yeast cells were studied. Both enzymatic hydrolysis time and fermentation time were shortened to 24 h. Ethanol productivity was enhanced by two times and enzyme loading was reduced by 30%. Glucan and xylan conversions reached as high as 98% with an enzyme loading of as low as 8.4 mg protein per g glucan. The overall ethanol yield was 227 g ethanol/kg EA-CS (191 g ethanol/kg untreated CS). Biotechnol. Bioeng. 2017;114: 1713-1720. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  14. Metabolic pathway reconstruction of eugenol to vanillin bioconversion in Aspergillus niger

    PubMed Central

    Srivastava, Suchita; Luqman, Suaib; Khan, Feroz; Chanotiya, Chandan S; Darokar, Mahendra P

    2010-01-01

    Identification of missing genes or proteins participating in the metabolic pathways as enzymes are of great interest. One such class of pathway is involved in the eugenol to vanillin bioconversion. Our goal is to develop an integral approach for identifying the topology of a reference or known pathway in other organism. We successfully identify the missing enzymes and then reconstruct the vanillin biosynthetic pathway in Aspergillus niger. The procedure combines enzyme sequence similarity searched through BLAST homology search and orthologs detection through COG & KEGG databases. Conservation of protein domains and motifs was searched through CDD, PFAM & PROSITE databases. Predictions regarding how proteins act in pathway were validated experimentally and also compared with reported data. The bioconversion of vanillin was screened on UV-TLC plates and later confirmed through GC and GC-MS techniques. We applied a procedure for identifying missing enzymes on the basis of conserved functional motifs and later reconstruct the metabolic pathway in target organism. Using the vanillin biosynthetic pathway of Pseudomonas fluorescens as a case study, we indicate how this approach can be used to reconstruct the reference pathway in A. niger and later results were experimentally validated through chromatography and spectroscopy techniques. PMID:20978605

  15. A novel cost-effective technology to convert sucrose and homocelluloses in sweet sorghum stalks into ethanol.

    PubMed

    Li, Jihong; Li, Shizhong; Han, Bing; Yu, Menghui; Li, Guangming; Jiang, Yan

    2013-11-29

    Sweet sorghum is regarded as a very promising energy crop for ethanol production because it not only supplies grain and sugar, but also offers lignocellulosic resource. Cost-competitive ethanol production requires bioconversion of all carbohydrates in stalks including of both sucrose and lignocellulose hydrolyzed into fermentable sugars. However, it is still a main challenge to reduce ethanol production cost and improve feasibility of industrial application. An integration of the different operations within the whole process is a potential solution. An integrated process combined advanced solid-state fermentation technology (ASSF) and alkaline pretreatment was presented in this work. Soluble sugars in sweet sorghum stalks were firstly converted into ethanol by ASSF using crushed stalks directly. Then, the operation combining ethanol distillation and alkaline pretreatment was performed in one distillation-reactor simultaneously. The corresponding investigation indicated that the addition of alkali did not affect the ethanol recovery. The effect of three alkalis, NaOH, KOH and Ca(OH)2 on pretreatment were investigated. The results indicated the delignification of lignocellulose by NaOH and KOH was more significant than that by Ca(OH)2, and the highest removal of xylan was caused by NaOH. Moreover, an optimized alkali loading of 10% (w/w DM) NaOH was determined. Under this favorable pretreatment condition, enzymatic hydrolysis of sweet sorghum bagasse following pretreatment was investigated. 92.0% of glucan and 53.3% of xylan conversion were obtained at enzyme loading of 10 FPU/g glucan. The fermentation of hydrolyzed slurry was performed using an engineered stain, Zymomonas mobilis TSH-01. A mass balance of the overall process was calculated, and 91.9 kg was achieved from one tonne of fresh sweet sorghum stalk. A low energy-consumption integrated technology for ethanol production from sweet sorghum stalks was presented in this work. Energy consumption for raw materials preparation and pretreatment were reduced or avoided in our process. Based on this technology, the recalcitrance of lignocellulose was destructed via a cost-efficient process and all sugars in sweet sorghum stalks lignocellulose were hydrolysed into fermentable sugars. Bioconversion of fermentable sugars released from sweet sorghum bagasse into different products except ethanol, such as butanol, biogas, and chemicals was feasible to operate under low energy-consumption conditions.

  16. A novel cost-effective technology to convert sucrose and homocelluloses in sweet sorghum stalks into ethanol

    PubMed Central

    2013-01-01

    Background Sweet sorghum is regarded as a very promising energy crop for ethanol production because it not only supplies grain and sugar, but also offers lignocellulosic resource. Cost-competitive ethanol production requires bioconversion of all carbohydrates in stalks including of both sucrose and lignocellulose hydrolyzed into fermentable sugars. However, it is still a main challenge to reduce ethanol production cost and improve feasibility of industrial application. An integration of the different operations within the whole process is a potential solution. Results An integrated process combined advanced solid-state fermentation technology (ASSF) and alkaline pretreatment was presented in this work. Soluble sugars in sweet sorghum stalks were firstly converted into ethanol by ASSF using crushed stalks directly. Then, the operation combining ethanol distillation and alkaline pretreatment was performed in one distillation-reactor simultaneously. The corresponding investigation indicated that the addition of alkali did not affect the ethanol recovery. The effect of three alkalis, NaOH, KOH and Ca(OH)2 on pretreatment were investigated. The results indicated the delignification of lignocellulose by NaOH and KOH was more significant than that by Ca(OH)2, and the highest removal of xylan was caused by NaOH. Moreover, an optimized alkali loading of 10% (w/w DM) NaOH was determined. Under this favorable pretreatment condition, enzymatic hydrolysis of sweet sorghum bagasse following pretreatment was investigated. 92.0% of glucan and 53.3% of xylan conversion were obtained at enzyme loading of 10 FPU/g glucan. The fermentation of hydrolyzed slurry was performed using an engineered stain, Zymomonas mobilis TSH-01. A mass balance of the overall process was calculated, and 91.9 kg was achieved from one tonne of fresh sweet sorghum stalk. Conclusions A low energy-consumption integrated technology for ethanol production from sweet sorghum stalks was presented in this work. Energy consumption for raw materials preparation and pretreatment were reduced or avoided in our process. Based on this technology, the recalcitrance of lignocellulose was destructed via a cost-efficient process and all sugars in sweet sorghum stalks lignocellulose were hydrolysed into fermentable sugars. Bioconversion of fermentable sugars released from sweet sorghum bagasse into different products except ethanol, such as butanol, biogas, and chemicals was feasible to operate under low energy-consumption conditions. PMID:24286508

  17. A Two-Step Bioconversion Process for Canolol Production from Rapeseed Meal Combining an Aspergillus niger Feruloyl Esterase and the Fungus Neolentinus lepideus

    PubMed Central

    Odinot, Elise; Fine, Frédéric; Sigoillot, Jean-Claude; Navarro, David; Laguna, Oscar; Bisotto, Alexandra; Peyronnet, Corinne; Lecomte, Jérôme; Faulds, Craig B.

    2017-01-01

    Rapeseed meal is a cheap and abundant raw material, particularly rich in phenolic compounds of biotechnological interest. In this study, we developed a two-step bioconversion process of naturally occurring sinapic acid (4-hydroxy-3,5-dimethoxycinnamic acid) from rapeseed meal into canolol by combining the complementary potentialities of two filamentous fungi, the micromycete Aspergillus niger and the basidiomycete Neolentinus lepideus. Canolol could display numerous industrial applications because of its high antioxidant, antimutagenic and anticarcinogenic properties. In the first step of the process, the use of the enzyme feruloyl esterase type-A (named AnFaeA) produced with the recombinant strain A. niger BRFM451 made it possible to release free sinapic acid from the raw meal by hydrolysing the conjugated forms of sinapic acid in the meal (mainly sinapine and glucopyranosyl sinapate). An amount of 39 nkat AnFaeA per gram of raw meal, at 55 °C and pH 5, led to the recovery of 6.6 to 7.4 mg of free sinapic acid per gram raw meal, which corresponded to a global hydrolysis yield of 68 to 76% and a 100% hydrolysis of sinapine. Then, the XAD2 adsorbent (a styrene and divinylbenzene copolymer resin), used at pH 4, enabled the efficient recovery of the released sinapic acid, and its concentration after elution with ethanol. In the second step, 3-day-old submerged cultures of the strain N. lepideus BRFM15 were supplied with the recovered sinapic acid as the substrate of bioconversion into canolol by a non-oxidative decarboxylation pathway. Canolol production reached 1.3 g/L with a molar yield of bioconversion of 80% and a productivity of 100 mg/L day. The same XAD2 resin, when used at pH 7, allowed the recovery and purification of canolol from the culture broth of N. lepideus. The two-step process used mild conditions compatible with green chemistry. PMID:29036919

  18. Immobilization on graphene oxide improves the thermal stability and bioconversion efficiency of D-psicose 3-epimerase for rare sugar production.

    PubMed

    Dedania, Samir R; Patel, Manisha J; Patel, Dijit M; Akhani, Rekha C; Patel, Darshan H

    2017-12-01

    D-Psicose (D-ribo-2-hexulose or D-allulose), an epimer of D-fructose is considered as a rare low-calorie sugar displaying important physiological functions. Enzymatic production using ketose 3-epimerases is the feasible process for the production of D-Psicose. However, major drawbacks in application of ketose 3-epimerases are bioconversion efficiency and reusability of the enzyme. We have attempted immobilization of ketose 3-epimerases from Agrobacterium tumefaciens (agtu) D-psicose 3-epimerase (DPEase) on graphene oxide. Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and Thermo gravimetric analysis (TGA) showed that the enzyme was successfully immobilized on the graphene oxide. Graphene oxide immobilized agtu-DPEase (GO-agtu-DPEase) shows pH optima at 7.5 and 60°C as higher working temperature. Significant improvement in thermal stability was observed which showed half-life of 720min at 60°C whereas Agrobacterium tumefaciens (agtu) DPEase displayed 3.99min. At equilibrium, 40:60 (D-psicose: D-fructose) the bioconversion efficiency was accounted for Graphene oxide immobilized DPEase which is higher than the agtu-DPEase. Graphene oxide immobilized DPEase showed bioconversion efficiency up to 10 cycles of reusability. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Bioconversion of lignocellulosic biomass to xylitol: An overview.

    PubMed

    Venkateswar Rao, Linga; Goli, Jyosthna Khanna; Gentela, Jahnavi; Koti, Sravanthi

    2016-08-01

    Lignocellulosic wastes include agricultural and forest residues which are most promising alternative energy sources and serve as potential low cost raw materials that can be exploited to produce xylitol. The strong physical and chemical construction of lignocelluloses is a major constraint for the recovery of xylose. The large scale production of xylitol is attained by nickel catalyzed chemical process that is based on xylose hydrogenation, that requires purified xylose as raw substrate and the process requires high temperature and pressure that remains to be cost intensive and energy consuming. Therefore, there is a necessity to develop an integrated process for biotechnological conversion of lignocelluloses to xylitol and make the process economical. The present review confers about the pretreatment strategies that facilitate cellulose and hemicellulose acquiescent for hydrolysis. There is also an emphasis on various detoxification and fermentation methodologies including genetic engineering strategies for the efficient conversion of xylose to xylitol. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Encapsulates for Food Bioconversions and Metabolite Production

    NASA Astrophysics Data System (ADS)

    Breguet, Véronique; Vojinovic, Vojislav; Marison, Ian W.

    The control of production costs in the food industry must be very strict as a result of the relatively low added value of food products. Since a wide variety of enzymes and/or cells are employed in the food industry for starch processing, cheese making, food preservation, lipid hydrolysis and other applications, immobilization of the cells and/or enzymes has been recognized as an attractive approach to improving food processes while minimizing costs. This is due to the fact that biocatalyst immobilization allows for easier separation/purification of the product and reutilization of the biocatalyst. The advantages of the use of immobilized systems are many, and they have a special relevance in the area of food technology, especially because industrial processes using immobilized biosystems are usually characterized by lower capital/energy costs and better logistics. The main applications of immobilization, related to the major processes of food bioconversions and metabolite production, will be described and discussed in this chapter.

  1. Studying the rapid bioconversion of lignocellulosic sugars into ethanol using high cell density fermentations with cell recycle

    PubMed Central

    2014-01-01

    Background The Rapid Bioconversion with Integrated recycle Technology (RaBIT) process reduces capital costs, processing times, and biocatalyst cost for biochemical conversion of cellulosic biomass to biofuels by reducing total bioprocessing time (enzymatic hydrolysis plus fermentation) to 48 h, increasing biofuel productivity (g/L/h) twofold, and recycling biocatalysts (enzymes and microbes) to the next cycle. To achieve these results, RaBIT utilizes 24-h high cell density fermentations along with cell recycling to solve the slow/incomplete xylose fermentation issue, which is critical for lignocellulosic biofuel fermentations. Previous studies utilizing similar fermentation conditions showed a decrease in xylose consumption when recycling cells into the next fermentation cycle. Eliminating this decrease is critical for RaBIT process effectiveness for high cycle counts. Results Nine different engineered microbial strains (including Saccharomyces cerevisiae strains, Scheffersomyces (Pichia) stipitis strains, Zymomonas mobilis 8b, and Escherichia coli KO11) were tested under RaBIT platform fermentations to determine their suitability for this platform. Fermentation conditions were then optimized for S. cerevisiae GLBRCY128. Three different nutrient sources (corn steep liquor, yeast extract, and wheat germ) were evaluated to improve xylose consumption by recycled cells. Capacitance readings were used to accurately measure viable cell mass profiles over five cycles. Conclusion The results showed that not all strains are capable of effectively performing the RaBIT process. Acceptable performance is largely correlated to the specific xylose consumption rate. Corn steep liquor was found to reduce the deleterious impacts of cell recycle and improve specific xylose consumption rates. The viable cell mass profiles indicated that reduction in specific xylose consumption rate, not a drop in viable cell mass, was the main cause for decreasing xylose consumption. PMID:24847379

  2. UPTAKE, DISTRIBUTION, AND BIOCONVERSION OF FLUORESCENT LIPID ANALOGS IN THE OYSTER PROTOZOAN PARASITE, PERKINSUS MARINUS

    EPA Science Inventory

    It has been established that host lipids play a unique role for long term survival and life cycle completion in endogenous parasites. Parasites exploit fatty acids and lipids from the host, not only for membrane synthesis, but also for modification of their surface integrity to a...

  3. Biomass pyrolysis liquid to citric acid via 2-step bioconversion.

    PubMed

    Yang, Zhiguang; Bai, Zhihui; Sun, Hongyan; Yu, Zhisheng; Li, Xingxing; Guo, Yifei; Zhang, Hongxun

    2014-12-31

    The use of fossil carbon sources for fuels and petrochemicals has serious impacts on our environment and is unable to meet the demand in the future. A promising and sustainable alternative is to substitute fossil carbon sources with microbial cell factories converting lignocellulosic biomass into desirable value added products. However, such bioprocesses require tolerance to inhibitory compounds generated during pretreatment of biomass. In this study, the process of sequential two-step bio-conversion of biomass pyrolysis liquid containing levoglucosan (LG) to citric acid without chemical detoxification has been explored, which can greatly improve the utilization efficiency of lignocellulosic biomass. The sequential two-step bio-conversion of corn stover pyrolysis liquid to citric acid has been established. The first step conversion by Phanerochaete chrysosporium (P. chrysosporium) is desirable to decrease the content of other compounds except levoglucosan as a pretreatment for the second conversion. The remaining levoglucosan in solution was further converted into citric acid by Aspergillus niger (A. niger) CBX-209. Thus the conversion of cellulose to citric acid is completed by both pyrolysis and bio-conversion technology. Under experimental conditions, levoglucosan yield is 12% based on the feedstock and the citric acid yield can reach 82.1% based on the levoglucosan content in the pyrolysis liquid (namely 82.1 g of citric acid per 100 g of levoglucosan). The study shows that P. chrysosporium and A. niger have the potential to be used as production platforms for value-added products from pyrolyzed lignocellulosic biomass. Selected P. chrysosporium is able to decrease the content of other compounds except levoglucosan and levoglucosan can be further converted into citric acid in the residual liquids by A. niger. Thus the conversion of cellulose to citric acid is completed by both pyrolysis and bio-conversion technology.

  4. Molecular characterization and expression analysis of heat shock protein 70 and 90 from Hermetia illucens reared in a food waste bioconversion pilot plant.

    PubMed

    Giannetto, Alessia; Oliva, Sabrina; Mazza, Lorenzo; Mondello, Giovanni; Savastano, Domenico; Mauceri, Angela; Fasulo, Salvatore

    2017-09-05

    Two full-length cDNAs of heat shock protein (HSP) genes (Hihsp70 and Hihsp90) were cloned from the black soldier fly (BSF) Hermetia illucens larvae reared in a food waste bioconversion pilot plant. The Hihsp70 and Hihsp90 transcripts were 2243 and 2507bp long, contained 1923 and 2166bp open reading frames encoding proteins of 640 and 721 amino acids with a molecular mass of 69.8 and 83kDa, respectively. Comparative analysis of protein sequences revealed the presence of the conserved HSP motifs in both proteins, showing high homology to their counterparts in other insect species from six different orders. Hihsp70 and Hihsp90 transcriptional expression profiles during two key developmental stages in the bioconversion process were evaluated by quantitative real time PCR showing that both genes were modulated during larval development. HiHsp70 mRNA expression levels during the II instar larvae was higher in respect to the V instar larvae. A similar difference in mRNA expression levels, but in a less extent, was found for the Hihsp90. Moreover, a diverse transcript level between the two genes at the V larval stage was observed where Hihsp90 was up-regulated compared to Hihsp70. These results suggested the involvement of Hsp70 and Hsp90 in H. illucens development and provide further evidences on the ecological and evolutionary importance of HSPs in the insect developmental processes together with valuable information on molecular features of adaptability to peculiar rearing conditions during food waste bioconversion. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Combinatorial pretreatment and fermentation optimization enabled a record yield on lignin bioconversion.

    PubMed

    Liu, Zhi-Hua; Xie, Shangxian; Lin, Furong; Jin, Mingjie; Yuan, Joshua S

    2018-01-01

    Lignin valorization has recently been considered to be an essential process for sustainable and cost-effective biorefineries. Lignin represents a potential new feedstock for value-added products. Oleaginous bacteria such as Rhodococcus opacus can produce intracellular lipids from biodegradation of aromatic substrates. These lipids can be used for biofuel production, which can potentially replace petroleum-derived chemicals. However, the low reactivity of lignin produced from pretreatment and the underdeveloped fermentation technology hindered lignin bioconversion to lipids. In this study, combinatorial pretreatment with an optimized fermentation strategy was evaluated to improve lignin valorization into lipids using R. opacus PD630. As opposed to single pretreatment, combinatorial pretreatment produced a 12.8-75.6% higher lipid concentration in fermentation using lignin as the carbon source. Gas chromatography-mass spectrometry analysis showed that combinatorial pretreatment released more aromatic monomers, which could be more readily utilized by lignin-degrading strains. Three detoxification strategies were used to remove potential inhibitors produced from pretreatment. After heating detoxification of the lignin stream, the lipid concentration further increased by 2.9-9.7%. Different fermentation strategies were evaluated in scale-up lipid fermentation using a 2.0-l fermenter. With laccase treatment of the lignin stream produced from combinatorial pretreatment, the highest cell dry weight and lipid concentration were 10.1 and 1.83 g/l, respectively, in fed-batch fermentation, with a total soluble substrate concentration of 40 g/l. The improvement of the lipid fermentation performance may have resulted from lignin depolymerization by the combinatorial pretreatment and laccase treatment, reduced inhibition effects by fed-batch fermentation, adequate oxygen supply, and an accurate pH control in the fermenter. Overall, these results demonstrate that combinatorial pretreatment, together with fermentation optimization, favorably improves lipid production using lignin as the carbon source. Combinatorial pretreatment integrated with fed-batch fermentation was an effective strategy to improve the bioconversion of lignin into lipids, thus facilitating lignin valorization in biorefineries.

  6. Direct bioconversion of brown algae into ethanol by thermophilic bacterium Defluviitalea phaphyphila.

    PubMed

    Ji, Shi-Qi; Wang, Bing; Lu, Ming; Li, Fu-Li

    2016-01-01

    Brown algae are promising feedstocks for biofuel production with inherent advantages of no structural lignin, high growth rate, and no competition for land and fresh water. However, it is difficult for one microorganism to convert all components of brown algae with different oxidoreduction potentials to ethanol. Defluviitalea phaphyphila Alg1 is the first characterized thermophilic bacterium capable of direct utilization of brown algae. Defluviitalea phaphyphila Alg1 can simultaneously utilize mannitol, glucose, and alginate to produce ethanol, and high ethanol yields of 0.47 g/g-mannitol, 0.44 g/g-glucose, and 0.3 g/g-alginate were obtained. A rational redox balance system under obligate anaerobic condition in fermenting brown algae was revealed in D. phaphyphila Alg1 through genome and redox analysis. The excess reducing equivalents produced from mannitol metabolism were equilibrated by oxidizing forces from alginate assimilation. Furthermore, D. phaphyphila Alg1 can directly utilize unpretreated kelp powder, and 10 g/L of ethanol was accumulated within 72 h with an ethanol yield of 0.25 g/g-kelp. Microscopic observation further demonstrated the deconstruction process of brown algae cell by D. phaphyphila Alg1. The integrated biomass deconstruction system of D. phaphyphila Alg1, as well as its high ethanol yield, provided us an excellent alternative for brown algae bioconversion at elevated temperature.

  7. Biosolids accumulation and biodegradation of domestic wastewater treatment plant sludge by developed liquid state bioconversion process using a batch fermenter.

    PubMed

    Alam, Md Zahangir; Fakhru'l-Razi, A; Molla, Abul H

    2003-09-01

    The biosolids accumulation and biodegradation of domestic wastewater treatment plant (DWTP) sludge by filamentous fungi have been investigated in a batch fermenter. The filamentous fungi Aspergillus niger and Penicillium corylophilum isolated from wastewater and DWTP sludge was used to evaluate the treatment performance. The optimized mixed inoculum (A. niger and P. corylophilum) and developed process conditions (co-substrate and its concentration, temperature, initial pH, inoculum size, and aeration and agitation rate) were incorporated to accelerate the DWTP sludge treatment process. The results showed that microbial treatment of higher strength of DWTP sludge (4% w/w of TSS) was highly influenced by the liquid state bioconversion (LSB) process. In developed bioconversion processes, 93.8 g/kg of biosolids was enriched with fungal biomass protein of 30 g/kg. Enrichment of nutrients such as nitrogen (N), phosphorous (P), potassium (K) in biosolids was recorded in 6.2% (w/w), 3.1% (w/w) and 0.15% (w/w) from its initial values of 4.8% (w/w), 2.0% (w/w) and 0.08% (w/w) respectively after 10 days of fungal treatment. The biodegradation results revealed that 98.8% of TSS, 98.2% of TDS, 97.3% of turbidity, 80.2% of soluble protein, 98.8% of reducing sugar and 92.7% of COD in treated DWTP sludge supernatant were removed after 8 days of microbial treatment. The specific resistance to filtration (SRF) in treated sludge (1.4x10(12) m/kg) was decreased tremendously by the microbial treatment of DWTP sludge after 6 days of fermentation compared to untreated sample (85x10(12) m/kg).

  8. Bioconversion of waste biomass to useful products

    DOEpatents

    Grady, J.L.; Chen, G.J.

    1998-10-13

    A process is provided for converting waste biomass to useful products by gasifying the biomass to produce synthesis gas and converting the synthesis gas substrate to one or more useful products. The present invention is directed to the conversion of biomass wastes including municipal solid waste, sewage sludge, plastic, tires, agricultural residues and the like, as well as coal, to useful products such as hydrogen, ethanol and acetic acid. The overall process includes the steps of gasifying the waste biomass to produce raw synthesis gas, cooling the synthesis gas, converting the synthesis gas to the desired product or products using anaerobic bioconversion, and then recovering the product or products. In accordance with a particular embodiment of the present invention, waste biomass is converted to synthesis gas containing carbon monoxide and, then, the carbon monoxide is converted to hydrogen by an anaerobic microorganism ERIH2, Bacillus smithii ATCC No. 55404. 82 figs.

  9. Bioconversion of waste biomass to useful products

    DOEpatents

    Grady, James L.; Chen, Guang Jiong

    1998-01-01

    A process is provided for converting waste biomass to useful products by gasifying the biomass to produce synthesis gas and converting the synthesis gas substrate to one or more useful products. The present invention is directed to the conversion of biomass wastes including municipal solid waste, sewage sludge, plastic, tires, agricultural residues and the like, as well as coal, to useful products such as hydrogen, ethanol and acetic acid. The overall process includes the steps of gasifying the waste biomass to produce raw synthesis gas, cooling the synthesis gas, converting the synthesis gas to the desired product or products using anaerobic bioconversion, and then recovering the product or products. In accordance with a particular embodiment of the present invention, waste biomass is converted to synthesis gas containing carbon monoxide and, then, the carbon monoxide is converted to hydrogen by an anaerobic microorganism ERIH2, bacillus smithii ATCC No. 55404.

  10. Biowaste biorefinery in Europe: opportunities and research & development needs.

    PubMed

    Fava, Fabio; Totaro, Grazia; Diels, Ludo; Reis, Maria; Duarte, Jose; Carioca, Osvaldo Beserra; Poggi-Varaldo, Héctor M; Ferreira, Bruno Sommer

    2015-01-25

    This review aims to explore the needs and opportunities of research & development in the field of biowaste biorefinery in Europe. Modern industry in recent years is giving its close attention on organic waste as a new precious bioresource. Specific biowaste valorisation pathways are focusing on food processing waste, being food sector the first manufacture in Europe. Anyway they need to be further tested and validated and then transferred at the larger scale. In particular, they also need to become integrated, combining biomass pretreatments and recovery of biogenic chemicals with bioconversion processes in order to obtain a large class of chemicals. This will help to (a) use the whole biowaste, by avoiding producing residues and providing to the approach the required environmental sustainability, and (b) producing different biobased products that enter different markets, to get the possible economical sustainability of the whole biorefinery. However, the costs of the developed integrated processes might be high, mostly for the fact that the industry dealing with such issues is still underdeveloped and therefore dominated by high processing costs. Such costs can be significantly reduced by intensifying research & development on process integration and intensification. The low or no cost of starting material along with the environmental benefits coming from the concomitant biowaste disposal would offset the high capital costs for initiating such a biorefinery. As long as the oil prices tend to increase (and they will) this strategy will become even more attractive. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Optimal Production of 7,10-dihydroxy-8(E)-hexadecenoic Acid from Palmitoleic Acid by Pseudomonas aeruginosa PR3

    USDA-ARS?s Scientific Manuscript database

    The hydroxylation of unsaturated fatty acids by bacterial strains is one type of value-adding bioconversion process. This process generates new hydroxy fatty acids (HFA) carrying special properties such as higher viscosity and reactivity compared with normal fatty acids. Among microbial strains te...

  12. Sulfite pretreatment (SPORL) for robust enzymatic saccharification of spruce and red pine

    Treesearch

    J.Y. Zhu; X.J. Pan; G.S. Wang; R. Gleisner

    2009-01-01

    This study established a novel process using sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) for robust and efficient bioconversion of softwoods. The process consists of sulfite treatment of wood chips under acidic conditions followed by mechanical size reduction using disk refining. The results indicated that after the SPORL pretreatment of...

  13. Fast Microwave-assisted Pretreatment for Bioconversion of Sawdust Lignocellulose to Glucose

    NASA Astrophysics Data System (ADS)

    Nyoman Sudiana, I.; Mitsudo, Seitaro; Endang Susilowati, Prima; Ketut Sutiari, Desak; Widana Arsana, Made; Zamrun Firihu, Muhammad; Ode Ngkoimani, La; Aba, La; Sahaluddin Hasan, Erzam; Cahyono, Edi; Sabchevski, Svilen; Aripin, Haji; Gde Suastika, Komang

    2017-05-01

    A preliminary study of application microwave energy for bioconversion of cellulosic sawdust to glucose was performed. The effects of the microwave were compared to those of the conventional method for each solvent. It was expected that a broader mechanism responsible for the microwave effects on the chemical processes, especially the pretreatment on the hydrolysis of cellulose can be explained. Reagents used were an acid (HCl), an alkali (NaOH), and distilled water (H2O). The experimental results showed that the microwave-assisted pretreatment on the lignocellulosic sawdust faster than by using conventional heating (hotplate). Moreover by using microwave a higher glucose content compared to the conventional method was found. With microwave during hydrolisis, high temperatures and high reagent concentrations were not required. Pretreatment with a microwave at 800 Watt and solvent NaOH 22,50 mg/mL at a temperature of 120°c appeared to be most efficient found in this experiment. These results indicate that microwave effective for bioconversion of cellulosic sawdust to glucose. The microstructure evaluation by using SEM and XRD should be performed to understand more detail the effect especially on their cellulosic structural evolution.

  14. An engineered microbial platform for direct biofuel production from brown macroalgae.

    PubMed

    Wargacki, Adam J; Leonard, Effendi; Win, Maung Nyan; Regitsky, Drew D; Santos, Christine Nicole S; Kim, Peter B; Cooper, Susan R; Raisner, Ryan M; Herman, Asael; Sivitz, Alicia B; Lakshmanaswamy, Arun; Kashiyama, Yuki; Baker, David; Yoshikuni, Yasuo

    2012-01-20

    Prospecting macroalgae (seaweeds) as feedstocks for bioconversion into biofuels and commodity chemical compounds is limited primarily by the availability of tractable microorganisms that can metabolize alginate polysaccharides. Here, we present the discovery of a 36-kilo-base pair DNA fragment from Vibrio splendidus encoding enzymes for alginate transport and metabolism. The genomic integration of this ensemble, together with an engineered system for extracellular alginate depolymerization, generated a microbial platform that can simultaneously degrade, uptake, and metabolize alginate. When further engineered for ethanol synthesis, this platform enables bioethanol production directly from macroalgae via a consolidated process, achieving a titer of 4.7% volume/volume and a yield of 0.281 weight ethanol/weight dry macroalgae (equivalent to ~80% of the maximum theoretical yield from the sugar composition in macroalgae).

  15. Bridging the gap between feedstock growers and users: the study of a coppice poplar-based biorefinery.

    PubMed

    Dou, Chang; Gustafson, Rick; Bura, Renata

    2018-01-01

    In the biofuel industry, land productivity is important to feedstock growers and conversion process product yield is important to the biorefinery. The crop productivity, however, may not positively correlate with bioconversion yield. Therefore, it is important to evaluate sugar yield and biomass productivity. In this study, 2-year-old poplar trees harvested in the first coppice cycle, including one low-productivity hybrid and one high-productivity hybrid, were collected from two poplar tree farms. Through steam pretreatment and enzymatic hydrolysis, the bioconversion yields of low- and high-productivity poplar hybrids were compared for both sites. The low-productivity hybrids had 9-19% higher sugar yields than the high-productivity hybrids, although they have the similar chemical composition. Economic calculations show the impact on the plantation and biorefinery of using the two feedstocks. Growing a high-productivity hybrid means the land owner would use 11-26% less land (which could be used for other crops) or collect $2.53-$3.46 MM/year extra revenue from the surplus feedstock. On the other side, the biorefinery would receive 5-10% additional revenue using the low-productivity hybrid. We propose a business model based on the integration of the plantation and the biorefinery. In this model, different feedstocks are assessed using a metric of product tonnage per unit land per year. Use of this new economic metric bridges the gap between feedstock growers and users to maximize the overall production efficiency.

  16. BIOCONVERSION AND MASS TRANSFER OF PESTICIDES IN A MODEL WETLANDS SYSTEM

    EPA Science Inventory

    The widespread use of agrichemicals over the years has impaired the nation's water quality through contamination of soil and of surface and groundwaters. A constructed wetlands environment has natural restorative processes which are attractive methods for improving water qu...

  17. Development of the University of Washington Biofuels and Biobased Chemicals Process Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gustafson, Richard

    2014-02-04

    The funding from this research grant enabled us to design and build a bioconversion steam explosion reactor and ancillary equipment such as a high pressure boiler and a fermenter to support the bioconversion process research. This equipment has been in constant use since its installation in 2012. Following are research projects that it has supported: • Investigation of novel chip production method in biofuels production • Investigation of biomass refining following steam explosion • Several studies on use of different biomass feedstocks • Investigation of biomass moisture content on pretreatment efficacy. • Development of novel instruments for biorefinery process controlmore » Having this equipment was also instrumental in the University of Washington receiving a $40 million grant from the US Department of Agriculture for biofuels development as well as several other smaller grants. The research that is being done with the equipment from this grant will facilitate the establishment of a biofuels industry in the Pacific Northwest and enable the University of Washington to launch a substantial biofuels and bio-based product research program.« less

  18. Modification of Alternan by Dextranase

    USDA-ARS?s Scientific Manuscript database

    Alternan is a unique glucan with a backbone structure of alternating alpha-(1=-6) and alpha-(1=-3) linkages. Previously, we isolated strains of Penicillium sp. that modify native, high molecular weight alternan in a novel bioconversion process to a lower molecular weight form with solution viscosit...

  19. Digital image processing based identification of nodes and internodes of chopped biomass stems

    USDA-ARS?s Scientific Manuscript database

    Chemical composition of biomass feedstock is an important parameter for optimizing the yield and economics of various bioconversion pathways. Although understandably, the chemical composition of biomass varies among species, varieties, and plant components, there is distinct variation even among ste...

  20. Life cycle evaluation of emerging lignocellulosic ethanol conversion technologies.

    PubMed

    Spatari, Sabrina; Bagley, David M; MacLean, Heather L

    2010-01-01

    Lignocellulosic ethanol holds promise for addressing climate change and energy security issues associated with personal transportation through lowering the fuel mixes' carbon intensity and petroleum demand. We compare the technological features and life cycle environmental impacts of near- and mid-term ethanol bioconversion technologies in the United States. Key uncertainties in the major processes: pre-treatment, hydrolysis, and fermentation are evaluated. The potential to reduce fossil energy use and greenhouse gas (GHG) emissions varies among bioconversion processes, although all options studied are considerably more attractive than gasoline. Anticipated future performance is found to be considerably more attractive than that published in the literature as being achieved to date. Electricity co-product credits are important in characterizing the GHG impacts of different ethanol production pathways; however, in the absence of near-term liquid transportation fuel alternatives to gasoline, optimizing ethanol facilities to produce ethanol (as opposed to co-products) is important for reducing the carbon intensity of the road transportation sector and for energy security.

  1. Enhanced biocatalytic production of L-cysteine by Pseudomonas sp. B-3 with in situ product removal using ion-exchange resin.

    PubMed

    Wang, Pu; He, Jun-Yao; Yin, Jiang-Feng

    2015-03-01

    Bioconversion of DL-2-amino-Δ(2)-thiazoline-4-carboxylic acid (DL-ATC) catalyzed by whole cells of Pseudomonas sp. was successfully applied for the production of L-cysteine. It was found, however, like most whole-cell biocatalytic processes, the accumulated L-cysteine produced obvious inhibition to the activity of biocatalyst and reduced the yield. To improve L-cysteine productivity, an anion exchange-based in situ product removal (ISPR) approach was developed. Several anion-exchange resins were tested to select a suitable adsorbent used in the bioconversion of DL-ATC for the in situ removal of L-cysteine. The strong basic anion-exchange resin 201 × 7 exhibited the highest adsorption capacity for L-cysteine and low adsorption for DL-ATC, which is a favorable option. With in situ addition of 60 g L(-1) resin 201 × 7, the product inhibition can be reduced significantly and 200 mmol L(-1) of DL-ATC was converted to L-cysteine with 90.4 % of yield and 28.6 mmol L(-1 )h(-1) of volumetric productivity. Compared to the bioconversion without the addition of resin, the volumetric productivity of L-cysteine was improved by 2.27-fold using ISPR method.

  2. Bioconversion of Sugarcane Biomass into Ethanol: An Overview about Composition, Pretreatment Methods, Detoxification of Hydrolysates, Enzymatic Saccharification, and Ethanol Fermentation

    PubMed Central

    Canilha, Larissa; Chandel, Anuj Kumar; Suzane dos Santos Milessi, Thais; Antunes, Felipe Antônio Fernandes; Luiz da Costa Freitas, Wagner; das Graças Almeida Felipe, Maria; da Silva, Silvio Silvério

    2012-01-01

    Depleted supplies of fossil fuel, regular price hikes of gasoline, and environmental damage have necessitated the search for economic and eco-benign alternative of gasoline. Ethanol is produced from food/feed-based substrates (grains, sugars, and molasses), and its application as an energy source does not seem fit for long term due to the increasing fuel, food, feed, and other needs. These concerns have enforced to explore the alternative means of cost competitive and sustainable supply of biofuel. Sugarcane residues, sugarcane bagasse (SB), and straw (SS) could be the ideal feedstock for the second-generation (2G) ethanol production. These raw materials are rich in carbohydrates and renewable and do not compete with food/feed demands. However, the efficient bioconversion of SB/SS (efficient pretreatment technology, depolymerization of cellulose, and fermentation of released sugars) remains challenging to commercialize the cellulosic ethanol. Among the technological challenges, robust pretreatment and development of efficient bioconversion process (implicating suitable ethanol producing strains converting pentose and hexose sugars) have a key role to play. This paper aims to review the compositional profile of SB and SS, pretreatment methods of cane biomass, detoxification methods for the purification of hydrolysates, enzymatic hydrolysis, and the fermentation of released sugars for ethanol production. PMID:23251086

  3. Application of Taguchi Design and Response Surface Methodology for Improving Conversion of Isoeugenol into Vanillin by Resting Cells of Psychrobacter sp. CSW4.

    PubMed

    Ashengroph, Morahem; Nahvi, Iraj; Amini, Jahanshir

    2013-01-01

    For all industrial processes, modelling, optimisation and control are the keys to enhance productivity and ensure product quality. In the current study, the optimization of process parameters for improving the conversion of isoeugenol to vanillin by Psychrobacter sp. CSW4 was investigated by means of Taguchi approach and Box-Behnken statistical design under resting cell conditions. Taguchi design was employed for screening the significant variables in the bioconversion medium. Sequentially, Box-Behnken design experiments under Response Surface Methodology (RSM) was used for further optimization. Four factors (isoeugenol, NaCl, biomass and tween 80 initial concentrations), which have significant effects on vanillin yield, were selected from ten variables by Taguchi experimental design. With the regression coefficient analysis in the Box-Behnken design, a relationship between vanillin production and four significant variables was obtained, and the optimum levels of the four variables were as follows: initial isoeugenol concentration 6.5 g/L, initial tween 80 concentration 0.89 g/L, initial NaCl concentration 113.2 g/L and initial biomass concentration 6.27 g/L. Under these optimized conditions, the maximum predicted concentration of vanillin was 2.25 g/L. These optimized values of the factors were validated in a triplicate shaking flask study and an average of 2.19 g/L for vanillin, which corresponded to a molar yield 36.3%, after a 24 h bioconversion was obtained. The present work is the first one reporting the application of Taguchi design and Response surface methodology for optimizing bioconversion of isoeugenol into vanillin under resting cell conditions.

  4. Design and characterization of a prototype enzyme microreactor: quantification of immobilized transketolase kinetics.

    PubMed

    Matosevic, S; Lye, G J; Baganz, F

    2010-01-01

    In this work, we describe the design of an immobilized enzyme microreactor (IEMR) for use in transketolase (TK) bioconversion process characterization. The prototype microreactor is based on a 200-microm ID fused silica capillary for quantitative kinetic analysis. The concept is based on the reversible immobilization of His(6)-tagged enzymes via Ni-NTA linkage to surface derivatized silica. For the initial microreactor design, the mode of operation is a stop-flow analysis which promotes higher degrees of conversion. Kinetics for the immobilized TK-catalysed synthesis of L-erythrulose from substrates glycolaldehyde (GA) and hydroxypyruvate (HPA) were evaluated based on a Michaelis-Menten model. Results show that the TK kinetic parameters in the IEMR (V(max(app)) = 0.1 +/- 0.02 mmol min(-1), K(m(app)) = 26 +/- 4 mM) are comparable with those measured in free solution. Furthermore, the k(cat) for the microreactor of 4.1 x 10(5) s(-1) was close to the value for the bioconversion in free solution. This is attributed to the controlled orientation and monolayer surface coverage of the His(6)-immobilized TK. Furthermore, we show quantitative elution of the immobilized TK and the regeneration and reuse of the derivatized capillary over five cycles. The ability to quantify kinetic parameters of engineered enzymes at this scale has benefits for the rapid and parallel evaluation of evolved enzyme libraries for synthetic biology applications and for the generation of kinetic models to aid bioconversion process design and bioreactor selection as a more efficient alternative to previously established microwell-based systems for TK bioprocess characterization.

  5. A microbial transformation using Bacillus subtilis B7-S to produce natural vanillin from ferulic acid

    PubMed Central

    Chen, Peng; Yan, Lei; Wu, Zhengrong; Li, Suyue; Bai, Zhongtian; Yan, Xiaojuan; Wang, Ningbo; Liang, Ning; Li, Hongyu

    2016-01-01

    Bacillus subtilis strain B7-S screened from18 strains is an aerobic, endospore-forming, model organism of Gram-positive bacteria which is capable to form vanillin during ferulic acid bioconversion. The bioconversion of ferulic acid to vanillin by Bacillus subtilis B7-S (B. subtilis B7-S) was investigated. Based on our results, the optimum bioconversion conditions for the production of vanillin by B. subtilis B7-S can be summarized as follows: temperature 35 °C; initial pH 9.0; inoculum volume 5%; ferulic acid concentration 0.6 g/L; volume of culture medium 20%; and shaking speed 200 r/min. Under these conditions, several repeated small-scale batch experiments showed that the maximum conversion efficiency was 63.30% after 3 h of bioconversion. The vanillin products were confirmed by spectral data achieved from UV–vis, inductively coupled plasma atomic emission spectroscope (ICP-AES) and Fourier transform infrared spectrometer (FT-IR) spectra. Scanning electron microscopy (SEM) and transmission electron spectroscopy (TEM) results confirmed that the cell surface of B. subtilis plays a role in the induction of ferulic acid tolerance. These results demonstrate that B. subtilis B7-S has the potential for use in vanillin production through bioconversion of ferulic acid. PMID:26841717

  6. A microbial transformation using Bacillus subtilis B7-S to produce natural vanillin from ferulic acid.

    PubMed

    Chen, Peng; Yan, Lei; Wu, Zhengrong; Li, Suyue; Bai, Zhongtian; Yan, Xiaojuan; Wang, Ningbo; Liang, Ning; Li, Hongyu

    2016-02-04

    Bacillus subtilis strain B7-S screened from18 strains is an aerobic, endospore-forming, model organism of Gram-positive bacteria which is capable to form vanillin during ferulic acid bioconversion. The bioconversion of ferulic acid to vanillin by Bacillus subtilis B7-S (B. subtilis B7-S) was investigated. Based on our results, the optimum bioconversion conditions for the production of vanillin by B. subtilis B7-S can be summarized as follows: temperature 35 °C; initial pH 9.0; inoculum volume 5%; ferulic acid concentration 0.6 g/L; volume of culture medium 20%; and shaking speed 200 r/min. Under these conditions, several repeated small-scale batch experiments showed that the maximum conversion efficiency was 63.30% after 3 h of bioconversion. The vanillin products were confirmed by spectral data achieved from UV-vis, inductively coupled plasma atomic emission spectroscope (ICP-AES) and Fourier transform infrared spectrometer (FT-IR) spectra. Scanning electron microscopy (SEM) and transmission electron spectroscopy (TEM) results confirmed that the cell surface of B. subtilis plays a role in the induction of ferulic acid tolerance. These results demonstrate that B. subtilis B7-S has the potential for use in vanillin production through bioconversion of ferulic acid.

  7. Bioconversion of distillers' grains hydrolysates to advanced biofuels by an Escherichia coli co-culture.

    PubMed

    Liu, Fang; Wu, Weihua; Tran-Gyamfi, Mary B; Jaryenneh, James D; Zhuang, Xun; Davis, Ryan W

    2017-11-09

    First generation bioethanol production utilizes the starch fraction of maize, which accounts for approximately 60% of the ash-free dry weight of the grain. Scale-up of this technology for fuels applications has resulted in a massive supply of distillers' grains with solubles (DGS) coproduct, which is rich in cellulosic polysaccharides and protein. It was surmised that DGS would be rapidly adopted for animal feed applications, however, this has not been observed based on inconsistency of the product stream and other logistics-related risks, especially toxigenic contaminants. Therefore, efficient valorization of DGS for production of petroleum displacing products will significantly improve the techno-economic feasibility and net energy return of the established starch bioethanol process. In this study, we demonstrate 'one-pot' bioconversion of the protein and carbohydrate fractions of a DGS hydrolysate into C4 and C5 fusel alcohols through development of a microbial consortium incorporating two engineered Escherichia coli biocatalyst strains. The carbohydrate conversion strain E. coli BLF2 was constructed from the wild type E. coli strain B and showed improved capability to produce fusel alcohols from hexose and pentose sugars. Up to 12 g/L fusel alcohols was produced from glucose or xylose synthetic medium by E. coli BLF2. The second strain, E. coli AY3, was dedicated for utilization of proteins in the hydrolysates to produce mixed C4 and C5 alcohols. To maximize conversion yield by the co-culture, the inoculation ratio between the two strains was optimized. The co-culture with an inoculation ratio of 1:1.5 of E. coli BLF2 and AY3 achieved the highest total fusel alcohol titer of up to 10.3 g/L from DGS hydrolysates. The engineered E. coli co-culture system was shown to be similarly applicable for biofuel production from other biomass sources, including algae hydrolysates. Furthermore, the co-culture population dynamics revealed by quantitative PCR analysis indicated that despite the growth rate difference between the two strains, co-culturing didn't compromise the growth of each strain. The q-PCR analysis also demonstrated that fermentation with an appropriate initial inoculation ratio of the two strains was important to achieve a balanced co-culture population which resulted in higher total fuel titer. The efficient conversion of DGS hydrolysates into fusel alcohols will significantly improve the feasibility of the first generation bioethanol process. The integrated carbohydrate and protein conversion platform developed here is applicable for the bioconversion of a variety of biomass feedstocks rich in sugars and proteins.

  8. Efficient conversion of pretreated brewer's spent grain and wheat bran by submerged cultivation of Hericium erinaceus.

    PubMed

    Wolters, Niklas; Schabronath, Christoph; Schembecker, Gerhard; Merz, Juliane

    2016-12-01

    Brewer's spent grain (BSG) and wheat bran (WB) are industrial byproducts that accumulate in millions of tons per year and are typically applied as animal feed. Since both byproducts show a great potential as substrates for fermentation, the approach developed in this study consists of utilizing these lignocellulosic byproducts for biomass production of the medicinal fungus Hericium erinaceus through submerged cultivation. To increase the biological efficiency of the bioconversion, acidic pretreatment was applied yielding a bioconversion of 38.6% for pretreated BSG and 34.8% for pretreated WB. This study shows that the complete degradation of (hemi)cellulose into monosaccharides was not required for an efficient bioconversion. The produced fungal biomass was applied in a second fermentation step to induce the secondary metabolite erinacine C production. Thus, biomass was produced as a functional food ingredient with erinacine C contents of 174.8mg/g for BSG and 99.3mg/g for WB based bioconversions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Bacterial biodegradation and bioconversion of industrial lignocellulosic streams.

    PubMed

    Mathews, Stephanie L; Pawlak, Joel; Grunden, Amy M

    2015-04-01

    Lignocellulose is a term for plant materials that are composed of matrices of cellulose, hemicellulose, and lignin. Lignocellulose is a renewable feedstock for many industries. Lignocellulosic materials are used for the production of paper, fuels, and chemicals. Typically, industry focuses on transforming the polysaccharides present in lignocellulose into products resulting in the incomplete use of this resource. The materials that are not completely used make up the underutilized streams of materials that contain cellulose, hemicellulose, and lignin. These underutilized streams have potential for conversion into valuable products. Treatment of these lignocellulosic streams with bacteria, which specifically degrade lignocellulose through the action of enzymes, offers a low-energy and low-cost method for biodegradation and bioconversion. This review describes lignocellulosic streams and summarizes different aspects of biological treatments including the bacteria isolated from lignocellulose-containing environments and enzymes which may be used for bioconversion. The chemicals produced during bioconversion can be used for a variety of products including adhesives, plastics, resins, food additives, and petrochemical replacements.

  10. Bioconversion reactor

    DOEpatents

    McCarty, Perry L.; Bachmann, Andre

    1992-01-01

    A bioconversion reactor for the anaerobic fermentation of organic material. The bioconversion reactor comprises a shell enclosing a predetermined volume, an inlet port through which a liquid stream containing organic materials enters the shell, and an outlet port through which the stream exits the shell. A series of vertical and spaced-apart baffles are positioned within the shell to force the stream to flow under and over them as it passes from the inlet to the outlet port. The baffles present a barrier to the microorganisms within the shell causing them to rise and fall within the reactor but to move horizontally at a very slow rate. Treatment detention times of one day or less are possible.

  11. Production of chemicals from C1 gases (CO, CO2) by Clostridium carboxidivorans.

    PubMed

    Fernández-Naveira, Ánxela; Abubackar, Haris Nalakath; Veiga, María C; Kennes, Christian

    2017-03-01

    Bioprocesses in conventional second generation biorefineries are mainly based on the fermentation of sugars obtained from lignocellulosic biomass or agro-industrial wastes. An alternative to this process consists in gasifying those same feedstocks or even other carbon-containing materials to obtain syngas which can also be fermented by some anaerobic bacteria to produce chemicals or fuels. Carbon monoxide, carbon dioxide and hydrogen, which are the main components of syngas, are also found in some industrial waste gases, among others in steel industries. Clostridium carboxidivorans is able to metabolise such gases to produce ethanol and higher alcohols, i.e. butanol and hexanol, following the Wood-Ljungdahl pathway. This does simultaneously allow the removal of volatile pollutants involved in climate change. The bioconversion is a two step process in which organic acids (acetate, butyrate, hexanoate) are produced first, followed by the accumulation of alcohols; although partial overlap in time of acids and alcohols production may sometimes take place as well. Several parameters, among others pH, temperature, or gas-feed flow rates in bioreactors, affect the bioconversion process. Besides, the accumulation of high concentrations of alcohols in the fermentation broth inhibits the growth and metabolic activity of C. carboxidivorans.

  12. Bioconversion of petroleum hydrocarbons in soil using apple filter cake

    PubMed Central

    Medaura, M. Cecilia; Ércoli, Eduardo C.

    2008-01-01

    The aim of this study was to investigate the feasibility of using apple filter cake, a fruit-processing waste to enhance the bioremediation of petroleum contaminated soil. A rotating barrel system was used to study the bioconversion of the xenobiotic compound by natural occurring microbial population. The soil had been accidentally polluted with a total petroleum hydrocarbon concentration of 41,000 ppm. Although this global value was maintained during the process, microbial intervention was evidenced through transformation of the petroleum fractions. Thus, fractions that represent a risk for the environment (GRO, Gasoline Range Organics i.e., C6 to C10–12; DRO, Diesel Range Organics i.e., C8–12 to C24–26 and RRO, Residual Range Organics i.e., C25 to C35) were significantly reduced, from 2.95% to 1.39%. On the contrary, heavier weight fraction from C35 plus other organics increased in value from 1.15% to 3.00%. The noticeable diminution of low molecular weight hydrocarbons content and hence environmental risk by the process plus the improvement of the physical characteristics of the soil, are promising results with regard to future application at large scale. PMID:24031241

  13. Analysis, pretreatment and enzymatic saccharification of different fractions of Scots pine.

    PubMed

    Normark, Monica; Winestrand, Sandra; Lestander, Torbjörn A; Jönsson, Leif J

    2014-03-19

    Forestry residues consisting of softwood are a major lignocellulosic resource for production of liquid biofuels. Scots pine, a commercially important forest tree, was fractionated into seven fractions of chips: juvenile heartwood, mature heartwood, juvenile sapwood, mature sapwood, bark, top parts, and knotwood. The different fractions were characterized analytically with regard to chemical composition and susceptibility to dilute-acid pretreatment and enzymatic saccharification. All fractions were characterized by a high glucan content (38-43%) and a high content of other carbohydrates (11-14% mannan, 2-4% galactan) that generate easily convertible hexose sugars, and by a low content of inorganic material (0.2-0.9% ash). The lignin content was relatively uniform (27-32%) and the syringyl-guaiacyl ratio of the different fractions were within the range 0.021-0.025. The knotwood had a high content of extractives (9%) compared to the other fractions. The effects of pretreatment and enzymatic saccharification were relatively similar, but without pretreatment the bark fraction was considerably more susceptible to enzymatic saccharification. Since sawn timber is a main product from softwood species such as Scots pine, it is an important issue whether different parts of the tree are equally suitable for bioconversion processes. The investigation shows that bioconversion of Scots pine is facilitated by that most of the different fractions exhibit relatively similar properties with regard to chemical composition and susceptibility to techniques used for bioconversion of woody biomass.

  14. Bioconversion of Airborne Methylamine by Immobilized Recombinant Amine Oxidase from the Thermotolerant Yeast Hansenula polymorpha

    PubMed Central

    Sigawi, Sasi; Nitzan, Yeshayahu

    2014-01-01

    Aliphatic amines, including methylamine, are air-pollutants, due to their intensive use in industry and the natural degradation of proteins, amino acids, and other nitrogen-containing compounds in biological samples. It is necessary to develop systems for removal of methylamine from the air, since airborne methylamine has a negative effect on human health. The primary amine oxidase (primary amine : oxygen oxidoreductase (deaminating) or amine oxidase, AMO; EC 1.4.3.21), a copper-containing enzyme from the thermotolerant yeast Hansenula polymorpha which was overexpressed in baker's yeast Saccharomyces cerevisiae, was tested for its ability to oxidize airborne methylamine. A continuous fluidized bed bioreactor (CFBR) was designed to enable bioconversion of airborne methylamine by AMO immobilized in calcium alginate (CA) beads. The results demonstrated that the bioreactor with immobilized AMO eliminates nearly 97% of the airborne methylamine. However, the enzymatic activity of AMO causes formation of formaldehyde. A two-step bioconversion process was therefore proposed. In the first step, airborne methylamine was fed into a CFBR which contained immobilized AMO. In the second step, the gas flow was passed through another CFBR, with alcohol oxidase from the yeast H. polymorpha immobilized in CA, in order to decompose the formaldehyde formed in the first step. The proposed system provided almost total elimination of the airborne methylamine and the formaldehyde. PMID:24672387

  15. Direct conversion of starch to ethanol using recombınant Saccharomyces cerevisiae containing glucoamylase gene

    NASA Astrophysics Data System (ADS)

    Purkan, P.; Baktir, A.; Puspaningsih, N. N. T.; Ni'mah, M.

    2017-09-01

    Saccharomyces cerevisiae is known for its high fermentative capacity, high ethanol yield and its high ethanol tolerance. The yeast is inability converting starch (relatively inexpensive substrate) into biofuel ethanol. Insertion of glucoamylase gene in yeast cell of Saccharomyces cerevisiae had been done to increase the yeast function in ethanol fermentation from starch. Transformation of yeast of S. cerevisiae with recombinant plasmid yEP-GLO1 carrying gene encoding glucoamylase (GLO1) produced the recombinant yeast which enable to degrade starch. Optimizing of bioconversion process of starch into ethanol by the yeast of recombinant Saccharomyces cerevisiae [yEP-GLO1] had been also done. Starch concentration which could be digested by recombinant yeast of S. cerevisiae [yEP-GLO1] was 10% (w/v). Bioconversion of starch having concentration 10% (b/v) using recombinant yeast of S. cerevisiae BY5207 [yEP-GLO1] could result ethanol as 20% (v/v) to alcoholmeter and 19,5% (v/v) to gas of chromatography. Otherwise, using recombinant yeast S. cerevisiae S. cerevisiae AS3324 [yEP-GLO1] resulted ethanol as 17% (v/v) to alcoholmeter and 17,5% (v/v) to gas of chromatography. The highest ethanol in starch bioconversion using both recombinant yeasts BY5207 and AS3324 could be resulted on 144 hours of fermentation time as well as in pH 5.

  16. Agricultural residues and energy crops as potentially economical and novel substrates for microbial production of butanol (a biofuel)

    USDA-ARS?s Scientific Manuscript database

    This review describes production of acetone butanol ethanol (ABE) from a variety of agricultural residues and energy crops employing biochemical or fermentation processes. A number of organisms are available for this bioconversion including Clostridium beijerinckii P260, C. beijerinckii BA101, C. a...

  17. Pilot-scale demonstration of SPORL for bioconversion of lodgepole pine to bioethanol and lignosulfonate

    Treesearch

    Haifeng Zhou; Junyong Zhu; Roland Gleisner; Xueqing Qiu; Eric Horn; Jose Negron

    2016-01-01

    The process sulfite pretreatment to overcome recalcitrance of lignocelluloses (SPORL) has been the focus of this study. Pilot-scale (50 kg) pretreatment of wood chips of lodgepole pine (Pinus contorta Douglas ex Loudon) killed by mountain pine beetle (Dendroctonus ponderosae Hopkins) were conducted at 165°C...

  18. Biocatalytic material comprising multilayer enzyme coated fiber

    DOEpatents

    Kim, Jungbae [Richland, WA; Kwak, Ja Hun [Richland, WA; Grate, Jay W [West Richland, WA

    2009-11-03

    The present invention relates generally to high stability, high activity biocatalytic materials and processes for using the same. The materials comprise enzyme aggregate coatings having high biocatalytic activity and stability useful in heterogeneous environment. These new materials provide a new biocatalytic immobilized enzyme system with applications in bioconversion, bioremediation, biosensors, and biofuel cells.

  19. Largely enhanced bioethanol production through the combined use of lignin-modified sugarcane and xylose fermenting yeast strain.

    PubMed

    Ko, Ja Kyong; Jung, Je Hyeong; Altpeter, Fredy; Kannan, Baskaran; Kim, Ha Eun; Kim, Kyoung Heon; Alper, Hal S; Um, Youngsoon; Lee, Sun-Mi

    2018-05-01

    The recalcitrant structure of lignocellulosic biomass is a major barrier in efficient biomass-to-ethanol bioconversion processes. The combination of feedstock engineering via modification in the lignin synthesis pathway of sugarcane and co-fermentation of xylose and glucose with a recombinant xylose utilizing yeast strain produced 148% more ethanol compared to that of the wild type biomass and control strain. The lignin reduced biomass led to a substantially increased release of fermentable sugars (glucose and xylose). The engineered yeast strain efficiently co-utilized glucose and xylose for fermentation, elevating ethanol yields. In this study, it was experimentally demonstrated that the combined efforts of engineering both feedstock and microorganisms largely enhances the bioconversion of lignocellulosic feedstock to bioethanol. This strategy will significantly improve the economic feasibility of lignocellulosic biofuels production. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Green methods of lignocellulose pretreatment for biorefinery development.

    PubMed

    Capolupo, Laura; Faraco, Vincenza

    2016-11-01

    Lignocellulosic biomass is the most abundant, low-cost, bio-renewable resource that holds enormous importance as alternative source for production of biofuels and other biochemicals that can be utilized as building blocks for production of new materials. Enzymatic hydrolysis is an essential step involved in the bioconversion of lignocellulose to produce fermentable monosaccharides. However, to allow the enzymatic hydrolysis, a pretreatment step is needed in order to remove the lignin barrier and break down the crystalline structure of cellulose. The present manuscript is dedicated to reviewing the most commonly applied "green" pretreatment processes used in bioconversion of lignocellulosic biomasses within the "biorefinery" concept. In this frame, the effects of different pretreatment methods on lignocellulosic biomass are described along with an in-depth discussion on the benefits and drawbacks of each method, including generation of potentially inhibitory compounds for enzymatic hydrolysis, effect on cellulose digestibility, and generation of compounds toxic for the environment, and energy and economic demand.

  1. Influence of ultrasonication on anaerobic bioconversion of sludge.

    PubMed

    Mao, Taohong; Show, Kuan-Yeow

    2007-04-01

    The influence of ultrasonication on hydrolysis, acidogenesis, and methanogenesis in anaerobic decomposition of sludge was investigated. The sonicated sludge exhibited prehydrolysis and preacidogenesis effects in the anaerobic decomposition process. First-order hydrolysis rates increased from 0.0384 day(-1) in the control digester to 0.0672 day(-1) in the digester fed, with sludge sonicated at 0.52 W/mL. The sonication appeared to be ineffective in relation to acidogenesis reaction rates, but it provided a better buffering capacity to diminish the adverse effect of acidification. Digesters fed with sonicated sludge demonstrated enhanced methanogenesis over the control unit. Determination by coenzyme F420 verified that sonication is able to promote the growth of methanogenic biomass and facilitate a positive methanogenic microbial development in suppressing the initial methanogenesis limitation. The results suggest that ultrasonication could enhance anaerobic decomposition of sludge, resulting in an accelerated bioconversion, improved organics degradation, improved biogas production, and increased methane content.

  2. Preliminary investigations into the bioconversion of gamma irradiated agricultural waste by Pleurotus spp.

    NASA Astrophysics Data System (ADS)

    Gbedemah, C. M.; Obodai, M.; Sawyerr, L. C.

    1998-06-01

    The application of gamma irradiation for pretreatment of lignocellulosic materials for their hydrolysis and to increase their digestibility for rumen animal have been reported in the literature. Gamma irradiation of corn stover in combination with sodium hydroxide for bioconversion of polysaccharide into protein by Pleurotus spp has also been reported. In this study experiments were designed to find out whether gamma radiation could serve both as a decontaminating agent as well as hydrolytic agent of sawdust for the bioconversion of four varieties of Pleurotus spp. Preliminary results indicate that a dose of 20kGy of gamma irradiation increase the yield of Pleurotus eous var ET-8 whilst decreasing the yield of other varieties.

  3. Can we use short rotation coppice poplar for sugar based biorefinery feedstock? Bioconversion of 2-year-old poplar grown as short rotation coppice.

    PubMed

    Dou, Chang; Marcondes, Wilian F; Djaja, Jessica E; Bura, Renata; Gustafson, Rick

    2017-01-01

    Feedstock cost is a substantial barrier to the commercialization of lignocellulosic biorefineries. Poplar grown using a short rotation coppice (SRC) system has the potential to provide a low-cost feedstock and economically viable sugar yields for fuels and chemicals production. In the coppice management regime, poplars are harvested after 2 years' growth to develop the root system and establish the trees. The biomass from these 2-year-old trees is very heterogeneous, and includes components of leaf, bark, branch, and wood chip. This material is quite different than the samples that have been used in most poplar bioconversion research, which come from mature trees of short rotation forestry (SRF) plantations. If the coppice management regime is to be used, it is important that feedstock growers maximize their revenue from this initial harvest, but the heterogeneous nature of the biomass may be challenging for bioconversion. This work evaluates bioconversion of 2-year-old poplar coppice and compares its performance to whitewood chips from 12-year-old poplar. The 2-year-old whole tree coppice (WTC) is comprised of 37% leaf, 9% bark, 12% branch, and 42% wood chip. As expected, the chemical compositions of each component were markedly different. The leaf has a low sugar content but is high in phenolics, ash, and extractives. By removing the leaves, the sugar content of the biomass increased significantly, while the phenolic, ash, and extractives contents decreased. Leaf removal improved monomeric sugar yield by 147 kg/tonne of biomass following steam pretreatment and enzymatic hydrolysis. Bioconversion of the no-leaf coppice (NLC) achieved a 67% overall sugar recovery, showing no significant difference to mature whitewood from forestry plantation (WWF, 71%). The overall sugar yield of NLC was 135 kg/tonne less than that of WWF, due to the low inherent sugar content in original biomass. An economic analysis shows the minimum ethanol selling price required to cover the operating cost of NLC bioconversion was $1.69/gallon. Leaf removal resulted in significant improvement in overall monomeric sugar production from SRC biomass. Leaf removal is essential to achieve good yields in bioconversion of poplar. Economic analysis suggests the NLC could be a reasonable feedstock provided it can be obtained at a discounted price.

  4. Microbial community structures in algae cultivation ponds for bioconversion of agricultural wastes from livestock industry for feed production

    USDA-ARS?s Scientific Manuscript database

    Dynamics of seasonal microbial community compositions in algae cultivation ponds are complex. There is very limited knowledge on community compositions that may play significant roles in the bioconversion of manure nu¬trients to animal feed. Algae production is an alternative where land area for pro...

  5. Analysis, pretreatment and enzymatic saccharification of different fractions of Scots pine

    PubMed Central

    2014-01-01

    Background Forestry residues consisting of softwood are a major lignocellulosic resource for production of liquid biofuels. Scots pine, a commercially important forest tree, was fractionated into seven fractions of chips: juvenile heartwood, mature heartwood, juvenile sapwood, mature sapwood, bark, top parts, and knotwood. The different fractions were characterized analytically with regard to chemical composition and susceptibility to dilute-acid pretreatment and enzymatic saccharification. Results All fractions were characterized by a high glucan content (38-43%) and a high content of other carbohydrates (11-14% mannan, 2-4% galactan) that generate easily convertible hexose sugars, and by a low content of inorganic material (0.2-0.9% ash). The lignin content was relatively uniform (27-32%) and the syringyl-guaiacyl ratio of the different fractions were within the range 0.021-0.025. The knotwood had a high content of extractives (9%) compared to the other fractions. The effects of pretreatment and enzymatic saccharification were relatively similar, but without pretreatment the bark fraction was considerably more susceptible to enzymatic saccharification. Conclusions Since sawn timber is a main product from softwood species such as Scots pine, it is an important issue whether different parts of the tree are equally suitable for bioconversion processes. The investigation shows that bioconversion of Scots pine is facilitated by that most of the different fractions exhibit relatively similar properties with regard to chemical composition and susceptibility to techniques used for bioconversion of woody biomass. PMID:24641769

  6. Systematic metabolic profiling and bioactivity assays for bioconversion of Aceraceae family.

    PubMed

    Park, Jinyong; Suh, Dong Ho; Singh, Digar; Lee, Sarah; Lee, Jong Seok; Lee, Choong Hwan

    2018-01-01

    Plants are an important and inexhaustible source of bioactive molecules in food, medicine, agriculture, and industry. In this study, we performed systematic liquid chromatography-mass spectrometry (LC-MS)-based metabolic profiling coupled with antioxidant assays for indigenous plant family extracts. Partial least-squares discriminant analysis of LC-MS datasets for the extracts of 34 plant species belonging to the families Aceraceae, Asteraceae, and Rosaceae showed that these species were clustered according to their respective phylogenies. In particular, seven Aceraceae species were clearly demarcated with higher average antioxidant activities, rationalizing their application for bioconversion studies. On the basis of further evaluation of the interspecies variability of metabolic profiles and antioxidant activities among Aceraceae family plants, we found that Acer tataricum (TA) extracts were clearly distinguished from those of other species, with a higher relative abundance of tannin derivatives. Further, we detected a strong positive correlation between most tannin derivatives and the observed higher antioxidant activities. Following Aspergillus oryzae-mediated fermentative bioconversion of Acer plant extracts, we observed a time-correlated (0-8 days) linear increase in antioxidant phenotypes for all species, with TA having the highest activity. Temporal analysis of the MS data revealed tannin bioconversion mechanisms with a relatively higher abundance of gallic acid (m/z 169) accumulated at the end of 8 days, particularly in TA. Similarly, quercetin precursor (glycoside) metabolites were also transformed to quercetin aglycones (m/z 301) in most Acer plant extracts. The present study underscores the efficacy of fermentative bioconversion strategies aimed at enhancing the quality and availability of bioactive metabolites from plant extracts.

  7. Bioconversion of hybrid poplar to ethanol and co-products using an organosolv fractionation process: optimization of process yields.

    PubMed

    Pan, Xuejun; Gilkes, Neil; Kadla, John; Pye, Kendall; Saka, Shiro; Gregg, David; Ehara, Katsunobu; Xie, Dan; Lam, Dexter; Saddler, Jack

    2006-08-05

    An organosolv process involving extraction with hot aqueous ethanol has been evaluated for bioconversion of hybrid poplar to ethanol. The process resulted in fractionation of poplar chips into a cellulose-rich solids fraction, an ethanol organosolv lignin (EOL) fraction, and a water-soluble fraction containing hemicellulosic sugars, sugar breakdown products, degraded lignin, and other components. The influence of four independent process variables (temperature, time, catalyst dose, and ethanol concentration) on product yields was analyzed over a broad range using a small composite design and response surface methodology. Center point conditions for the composite design (180 degrees C, 60 min, 1.25% H(2)SO(4), and 60% ethanol), yielded a solids fraction containing approximately 88% of the cellulose present in the untreated poplar. Approximately 82% of the total cellulose in the untreated poplar was recovered as monomeric glucose after hydrolysis of the solids fraction for 24 h using a low enzyme loading (20 filter paper units of cellulase/g cellulose); approximately 85% was recovered after 48 h hydrolysis. Total recovery of xylose (soluble and insoluble) was equivalent to approximately 72% of the xylose present in untreated wood. Approximately 74% of the lignin in untreated wood was recovered as EOL. Other cooking conditions resulted in either similar or inferior product yields although the distribution of components between the various fractions differed markedly. Data analysis generated regression models that describe process responses for any combination of the four variables. (c) 2006 Wiley Periodicals, Inc.

  8. Bioconversion of woody biomass to biofuel and lignin co-product using sulfite pretreatment to overcome the recalcitrance of lignocelluloses (SPORL)

    Treesearch

    Junyong Zhu; Chao Zhang; Roland Gleisner; Carl Houtman; Xuejun Pan

    2016-01-01

    Sulfite pretreatment to overcome the recalcitrance of lignocelluloses (SPORL) promises to provide efficient bioconversion of woody biomass into bioethanol and lignin co-products. Results from several laboratory and pilot-scale studies are presented to demonstrate SPORL performance, with comparisons to competing technologies. Excellent ethanol yields of up to...

  9. Development of a cost-effective production process for Halomonas levan.

    PubMed

    Erkorkmaz, Burak Adnan; Kırtel, Onur; Ateş Duru, Özlem; Toksoy Öner, Ebru

    2018-05-17

    Levan polysaccharide is an industrially important natural polymer with unique properties and diverse high-value applications. However, current bottlenecks associated with its large-scale production need to be overcome by innovative approaches leading to economically viable processes. Besides many mesophilic levan producers, halophilic Halomonas smyrnensis cultures hold distinctive industrial potential and, for the first time with this study, the advantage of halophilicity is used and conditions for non-sterile levan production were optimized. Levan productivity of Halomonas cultures in medium containing industrial sucrose from sugar beet and food industry by-product syrup, a total of ten sea, lake and rock salt samples from four natural salterns, as well as three different industrial-grade boron compounds were compared and the most suitable low-cost substitutes for sucrose, salt and boron were specified. Then, the effects of pH control, non-sterile conditions and different bioreactor modes (batch and fed-batch) were investigated. The development of a cost-effective production process was achieved with the highest yield (18.06 g/L) reported so far on this microbial system, as well as the highest theoretical bioconversion efficiency ever reported for levan-producing suspension cultures. Structural integrity and biocompatibility of the final product were also verified in vitro.

  10. Evaluation energy efficiency of bioconversion knot rejects to ethanol in comparison to other thermochemically pretreated biomass

    Treesearch

    Zhaojiang Wang; Menghua Qin; J.Y. Zhu; Guoyu Tian; Zongquan Li

    2013-01-01

    Rejects from sulfite pulp mill that otherwise would be disposed of by incineration were converted to ethanol by a combined physical–biological process that was comprised of physical refining and simultaneous saccharification and fermentation (SSF). The energy efficiency was evaluated with comparison to thermochemically pretreated biomass, such as those pretreated by...

  11. Integration of pyrolysis and anaerobic digestion--use of aqueous liquor from digestate pyrolysis for biogas production.

    PubMed

    Hübner, Tobias; Mumme, Jan

    2015-05-01

    Anaerobic digestion of aqueous pyrolysis liquor derived from pyrolysis of solid digestate was tested in batch mode using an un-adapted inoculum. Three pyrolysis liquors produced at 330°C, 430°C and 530°C in four COD-based concentrations of 3, 6, 12 and 30 g L(-1) were investigated. The three lower concentrations showed considerable biogas production, whereas the 30 g L(-1) dosage caused process inhibition. The highest methane yield of 199.1±18.5 mL g(COD)(-1) (COD removal: 56.9±5.3%) was observed for the 330°C pyrolysis liquor, followed by the 430°C sample with only slightly lower values. The 530°C sample dropped to a yield of 129.3±19.7 mL g(COD)(-1) (COD removal: 36.9±5.6%). Most VOCs contained in the pyrolysis liquor (i.e. furfural, phenol, catechol, guaiacol, and levoglucosan) were reduced below detection limit (cresol by 10-60%). Consequently, integrated pyrolysis and anaerobic digestion in addition to thermochemical conversion of digestate also promises bioconversion of pyrolysis liquors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Bioconversion of distillers’ grains hydrolysates to advanced biofuels by an Escherichia coli co-culture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Fang; Wu, Weihua; Tran-Gyamfi, Mary B.

    Here, the first generation bioethanol production utilizes the starch fraction of maize, which accounts for approximately 60% of the ash-free dry weight of the grain. Scale-up of this technology for fuels applications has resulted in a massive supply of distillers’ grains with solubles (DGS) coproduct, which is rich in cellulosic polysaccharides and protein. It was surmised that DGS would be rapidly adopted for animal feed applications, however, this has not been observed based on inconsistency of the product stream and other logistics-related risks, especially toxigenic contaminants. Therefore, efficient valorization of DGS for production of petroleum displacing products will significantly improvemore » the techno-economic feasibility and net energy return of the established starch bioethanol process. In this study, we demonstrate ‘one-pot’ bioconversion of the protein and carbohydrate fractions of a DGS hydrolysate into C4 and C5 fusel alcohols through development of a microbial consortium incorporating two engineered Escherichia coli biocatalyst strains.« less

  13. Bioconversion of distillers’ grains hydrolysates to advanced biofuels by an Escherichia coli co-culture

    DOE PAGES

    Liu, Fang; Wu, Weihua; Tran-Gyamfi, Mary B.; ...

    2017-11-09

    Here, the first generation bioethanol production utilizes the starch fraction of maize, which accounts for approximately 60% of the ash-free dry weight of the grain. Scale-up of this technology for fuels applications has resulted in a massive supply of distillers’ grains with solubles (DGS) coproduct, which is rich in cellulosic polysaccharides and protein. It was surmised that DGS would be rapidly adopted for animal feed applications, however, this has not been observed based on inconsistency of the product stream and other logistics-related risks, especially toxigenic contaminants. Therefore, efficient valorization of DGS for production of petroleum displacing products will significantly improvemore » the techno-economic feasibility and net energy return of the established starch bioethanol process. In this study, we demonstrate ‘one-pot’ bioconversion of the protein and carbohydrate fractions of a DGS hydrolysate into C4 and C5 fusel alcohols through development of a microbial consortium incorporating two engineered Escherichia coli biocatalyst strains.« less

  14. Bioconversion of rice straw into a soil-like substrate

    NASA Astrophysics Data System (ADS)

    Yu, Chengying; Liu, Hong; Xing, Yidong; Manukovsky, N. S.; Kovalev, V. S.; Gurevich, Yu. L.

    To increase the closure of bioregenerative life support systems (BLSS), the bioconversion of rice straw into a soil-like substrate (SLS) by mushrooms and worms has been studied. The results showed that rice straw could be treated better by aerobic fermentation and succeeding growth of mushrooms Pleurotus ostreatus. In this process the total content of lignocellulose in the straw was removed by 37.74%. Furthermore, 46.68 g (fresh weight) of mushrooms could be produced from 100.0 g (dry weight) of rice straw. During the conversion of rice straw into a starting SLS by mushrooms and worms, the matter loss was 77.31%. The lettuce has been planted in the SLS and the yield when lettuce was cultivated on the SLS (8.77gm-2day-1) was comparable to the yield obtained on the nutrient solution. In addition, the silicon in the SLS ash can reach upto 32% and the circulation of it is expected during the growth of rice.

  15. Evaluation energy efficiency of bioconversion knot rejects to ethanol in comparison to other thermochemically pretreated biomass.

    PubMed

    Wang, Zhaojiang; Qin, Menghua; Zhu, J Y; Tian, Guoyu; Li, Zongquan

    2013-02-01

    Rejects from sulfite pulp mill that otherwise would be disposed of by incineration were converted to ethanol by a combined physical-biological process that was comprised of physical refining and simultaneous saccharification and fermentation (SSF). The energy efficiency was evaluated with comparison to thermochemically pretreated biomass, such as those pretreated by dilute acid (DA) and sulfite pretreatment to overcome recalcitrance of lignocelluloses (SPORL). It was observed that the structure deconstruction of rejects by physical refining was indispensable to effective bioconversion but more energy intensive than that of thermochemically pretreated biomass. Fortunately, the energy consumption was compensated by the reduced enzyme dosage and the elevated ethanol yield. Furthermore, adjustment of disk-plates gap led to reduction in energy consumption with negligible influence on ethanol yield. In this context, energy efficiency up to 717.7% was achieved for rejects, much higher than that of SPORL sample (283.7%) and DA sample (152.8%). Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Bioaugmentation with Clostridium tyrobutyricum to improve butyric acid production through direct rice straw bioconversion.

    PubMed

    Chi, Xue; Li, Jianzheng; Wang, Xin; Zhang, Yafei; Leu, Shao-Yuan; Wang, Ying

    2018-05-02

    One-pot bioconversion is an economically attractive biorefinery strategy to reduce enzyme consumption. Direct conversion of lignocellulosic biomass for butyric acid production is still challenging because of competition among microorganisms. In a consolidated hydrolysis/fermentation bioprocessing (CBP) the microbial structure may eventually prefer the production of caproic acid rather than butyric acid production. This paper presents a new bioaugmentation approach for high butyric acid production from rice straw. By dosing 0.03 g/L of Clostridium tyrobutyricum ATCC 25755 in the CBP, an increase of 226% higher butyric acid was yielded. The selectivity and concentration also increased to 60.7% and 18.05 g/L, respectively. DNA-sequencing confirmed the shift of bacterial community in the augmented CBP. Butyric acid producer was enriched in the bioaugmented bacterial community and the bacteria related to long chain acids production was degenerated. The findings may be useful in future research and process design to enhance productivity of desired bio-products. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Analytical Methods for Biomass Characterization during Pretreatment and Bioconversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pu, Yunqiao; Meng, Xianzhi; Yoo, Chang Geun

    2016-01-01

    Lignocellulosic biomass has been introduced as a promising resource for alternative fuels and chemicals because of its abundance and complement for petroleum resources. Biomass is a complex biopolymer and its compositional and structural characteristics largely vary depending on its species as well as growth environments. Because of complexity and variety of biomass, understanding its physicochemical characteristics is a key for effective biomass utilization. Characterization of biomass does not only provide critical information of biomass during pretreatment and bioconversion, but also give valuable insights on how to utilize the biomass. For better understanding biomass characteristics, good grasp and proper selection ofmore » analytical methods are necessary. This chapter introduces existing analytical approaches that are widely employed for biomass characterization during biomass pretreatment and conversion process. Diverse analytical methods using Fourier transform infrared (FTIR) spectroscopy, gel permeation chromatography (GPC), and nuclear magnetic resonance (NMR) spectroscopy for biomass characterization are reviewed. In addition, biomass accessibility methods by analyzing surface properties of biomass are also summarized in this chapter.« less

  18. Bioconversion of D-glucose into D-glucosone by glucose 2-oxidase from Coriolus versicolor at moderate pressures.

    PubMed

    Karmali, Amin; Coelho, José

    2011-04-01

    Glucose 2-oxidase (pyranose oxidase, pyranose:oxygen-2-oxidoreductase, EC 1.1.3.10) from Coriolus versicolor catalyses the oxidation of D-glucose at carbon 2 in the presence of molecular O₂ producing D-glucosone (2-keto-glucose and D-arabino-2-hexosulose) and H₂O₂. It was used to convert D-glucose into D-glucosone at moderate pressures (i.e. up to 150 bar) with compressed air in a modified commercial batch reactor. Several parameters affecting biocatalysis at moderate pressures were investigated as follows: pressure, [enzyme], [glucose], pH, temperature, nature of fluid and the presence of catalase. Glucose 2-oxidase was purified by immobilized metal affinity chromatography on epoxy-activated Sepharose 6B-IDA-Cu(II) column at pH 6.0. The rate of bioconversion of D-glucose increased with the pressure since an increase in the pressure with compressed air resulted in higher rates of conversion. On the other hand, the presence of catalase increased the rate of reaction which strongly suggests that H₂O₂ acted as inhibitor for this reaction. The rate of bioconversion of D-glucose by glucose 2-oxidase in the presence of either nitrogen or supercritical CO₂ at 110 bar was very low compared with the use of compressed air at the same pressure. The optimum temperature (55 °C) and pH (5.0) of D-glucose bioconversion as well as kinetic parameters for this enzyme were determined under moderate pressure. The activation energy (E (a)) was 32.08 kJ mol⁻¹ and kinetic parameters (V(max), K(m), K(cat) and K(cat)/K(m)) for this bioconversion were 8.8 U mg⁻¹ protein, 2.95 mM, 30.81 s⁻¹ and 10,444.06 s⁻¹ M⁻¹, respectively. The biomass of C. versicolor as well as the cell-free extract containing glucose 2-oxidase activity were also useful for bioconversion of D-glucose at moderate pressures. The enzyme was apparently stable at moderate pressures since such pressures did not affect significantly the enzyme activity.

  19. Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbons: Dilute-Acid and Enzymatic Deconstruction of Biomass to Sugars and Biological Conversion of Sugars to Hydrocarbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, R.; Tao, L.; Tan, E. C. D.

    2013-10-01

    This report describes one potential conversion process to hydrocarbon products by way of biological conversion of lingnocellulosic-dervied sugars. The process design converts biomass to a hydrocarbon intermediate, a free fatty acid, using dilute-acid pretreatement, enzymatic saccharification, and bioconversion. Ancillary areas--feed handling, hydrolysate conditioning, product recovery and upgrading (hydrotreating) to a final blendstock material, wastewater treatment, lignin combusion, and utilities--are also included in the design.

  20. Characterization of hemicellulase and cellulase from the extremely thermophilic bacterium Caldicellulosiruptor owensensis and their potential application for bioconversion of lignocellulosic biomass without pretreatment.

    PubMed

    Peng, Xiaowei; Qiao, Weibo; Mi, Shuofu; Jia, Xiaojing; Su, Hong; Han, Yejun

    2015-01-01

    Pretreatment is currently the common approach for improving the efficiency of enzymatic hydrolysis on lignocellulose. However, the pretreatment process is expensive and will produce inhibitors such as furan derivatives and phenol derivatives. If the lignocellulosic biomass can efficiently be saccharified by enzymolysis without pretreatment, the bioconversion process would be simplified. The genus Caldicellulosiruptor, an obligatory anaerobic and extreme thermophile can produce a diverse set of glycoside hydrolases (GHs) for deconstruction of lignocellulosic biomass. It gives potential opportunities for improving the efficiency of converting native lignocellulosic biomass to fermentable sugars. Both of the extracellular (extra-) and intracellular (intra-) enzymes of C. owensensis cultivated on corncob xylan or xylose had cellulase (including endoglucanase, cellobiohydrolase and β-glucosidase) and hemicellulase (including xylanase, xylosidase, arabinofuranosidase and acetyl xylan esterase) activities. The enzymes of C. owensensis had high ability for degrading hemicellulose of native corn stover and corncob with the conversion rates of xylan 16.7 % and araban 60.0 %. Moreover, they had remarkable synergetic function with the commercial enzyme cocktail Cellic CTec2 (Novoyzmes). When the native corn stover and corncob were respectively, sequentially hydrolyzed by the extra-enzymes of C. owensensis and CTec2, the glucan conversion rates were 31.2 and 37.9 %,which were 1.7- and 1.9-fold of each control (hydrolyzed by CTec2 alone), whereas the glucan conversion rates of the steam-exploded corn stover and corncob hydrolyzed by CTec2 alone on the same loading rate were 38.2 and 39.6 %, respectively. These results show that hydrolysis by the extra-enzyme of C. owensensis made almost the same contribution as steam-exploded pretreatment on degradation of native lignocellulosic biomass. A new process for saccharification of lignocellulosic biomass by sequential hydrolysis is demonstrated in the present research, namely hyperthermal enzymolysis (70-80 °C) by enzymes of C. owensensis followed with mesothermal enzymolysis (50-55 °C) by commercial cellulase. This process has the advantages of no sugar loss, few inhibitors generation and consolidated with sterilization. The enzymes of C. owensensis demonstrated an enhanced ability to degrade the hemicellulose of native lignocellulose. The pretreatment and detoxification steps may be removed from the bioconversion process of the lignocellulosic biomass by using the enzymes from C. owensensis.

  1. evaluation of the bioconversion of genetically modified switchgrass using simultaneous saccharification and fermentation ans a consolidated bioprocessing approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yee, Kelsey L; Rodriguez, Jr., Miguel; Tschaplinski, Timothy J

    2012-01-01

    Abstract Background: The inherent recalcitrance of lignocellulosic biomass is one of the major economic hurdles for the production of fuels and chemicals from biomass. Additionally, lignin is recognized as having a negative impact on enzymatic hydrolysis of biomass, and as a result much interest has been placed on modifying the lignin pathway to improve bioconversion of lignocellulosic feedstocks. Results: Previous results showed down-regulation of the caffeic acid 3-O-methyl transferase (COMT) gene in the lignin pathway yielded switchgrass (Panicum virgatum) that was more susceptible to bioconversion after dilute acid pretreatment. Here we examined the response of these plant lines to mildermore » pretreatment conditions with yeast-based SSF, CBP with Clostridium thermocellum, and fermentations with the cellulolytic extreme thermophiles, Caldicellulosiruptor bescii and Caldicellulosiruptor obsidiansis. Unlike the S. cerevisiae SSF conversions, fermentations of pretreated down-regulated COMT transgenic switchgrass with C. thermocellum showed an apparent inhibition of fermentation not observed in the wild-type switchgrass. This inhibition can be eliminated by hot water extraction of the pretreated biomass which resulted in superior conversion yield with transgenic versus wild-type switchgrass for C. thermocellum, also exceeding the yeast-based SSF yield. Further fermentation evaluation of the transgenic switchgrass indicated differential inhibition for the Caldicellulosiruptor strains, which could not be rectified by additional processing conditions. Gas chromatography-mass spectrometry metabolite profiling was used to examine the fermentation broth to elucidate the relative abundance of lignin derived aromatic compounds. The types and abundance of fermentation-derived lignin constituents varied between C. thermocellum and each of the Caldicellulosiruptor strains. Conclusions: The down-regulation of the COMT gene improves the bioconversion of switchgrass relative to the wild-type regardless of the pretreatment condition or fermentation microorganism. However, bacterial fermentations demonstrated strain-dependent sensitivity to the COMT transgenic biomass, likely due to additional soluble lignin pathway-derived constituents resulting from the COMT gene disruption. Removal of these inhibitory constituents permitted completion of fermentation by C. thermocellum, but not by the Caldicellulosiruptor strains. The reason for this difference needs to be explored further.« less

  2. Bioconversion of beetle-killed lodgepole pine using SPORL: Process scale-up design, lignin co-product, and high solids fermentation without detoxification

    USDA-ARS?s Scientific Manuscript database

    Mountain pine beetle killed Lodgepole pine (Pinus contorta Douglas ex Loudon) wood chips were pretreated using an acidic sulfite solution of approximately pH = 2.0 at a liquor to wood ratio of 3 and sodium bisulfite loading of 8 wt % on wood. The combined hydrolysis factor (CHF), formulated from rea...

  3. Bioconversion of Gibberellin Fermentation Residue into Feed Supplement and Organic Fertilizer Employing Housefly (Musca domestica L.) Assisted by Corynebacterium variabile.

    PubMed

    Yang, Sen; Xie, Jiufeng; Hu, Nan; Liu, Yixiong; Zhang, Jiner; Ye, Xiaobin; Liu, Ziduo

    2015-01-01

    The accumulation of a considerable quantity of gibberellin fermentation residue (GFR) during gibberellic acid A3 (GA3) production not only results in the waste of many resources, but also poses a potential hazard to the environment, indicating that the safe treatment of GFR has become an urgent issue for GA3 industry. The key to recycle GFR is converting it into an available resource and removing the GA3 residue. To this end, we established a co-bioconversion process in this study using house fly larvae (HFL) and microbes (Corynebacterium variabile) to convert GFR into insect biomass and organic fertilizer. About 85.5% GA3 in the GFR was removed under the following optimized solid-state fermentation conditions: 60% GFR, 40% rice straw powder, pH 8.5 and 6 days at 26 °C. A total of 371 g housefly larvae meal and 2,064 g digested residue were bio-converted from 3,500 g raw GFR mixture contaning1, 400 g rice straw in the unit of (calculated) dry matter. HFL meal derived from GFR contained 56.4% protein, 21.6% fat, and several essential amino acids, suggesting that it is a potential alternative animal feed protein source. Additionally, the digested GFR could be utilized as an organic fertilizer with a content of 3.2% total nitrogen, 2.0% inorganic phosphorus, 1.3% potassium and 91.5% organic matter. This novel GFR bio-conversion method can mitigate potential environmental pollution and recycle the waste resources.

  4. Bioconversion of Gibberellin Fermentation Residue into Feed Supplement and Organic Fertilizer Employing Housefly (Musca domestica L.) Assisted by Corynebacterium variabile

    PubMed Central

    Yang, Sen; Xie, Jiufeng; Hu, Nan; Liu, Yixiong; Zhang, Jiner; Ye, Xiaobin; Liu, Ziduo

    2015-01-01

    The accumulation of a considerable quantity of gibberellin fermentation residue (GFR) during gibberellic acid A3 (GA3) production not only results in the waste of many resources, but also poses a potential hazard to the environment, indicating that the safe treatment of GFR has become an urgent issue for GA3 industry. The key to recycle GFR is converting it into an available resource and removing the GA3 residue. To this end, we established a co-bioconversion process in this study using house fly larvae (HFL) and microbes (Corynebacterium variabile) to convert GFR into insect biomass and organic fertilizer. About 85.5% GA3 in the GFR was removed under the following optimized solid-state fermentation conditions: 60% GFR, 40% rice straw powder, pH 8.5 and 6 days at 26°C. A total of 371g housefly larvae meal and 2,064g digested residue were bio-converted from 3,500g raw GFR mixture contaning1, 400g rice straw in the unit of (calculated) dry matter. HFL meal derived from GFR contained 56.4% protein, 21.6% fat, and several essential amino acids, suggesting that it is a potential alternative animal feed protein source. Additionally, the digested GFR could be utilized as an organic fertilizer with a content of 3.2% total nitrogen, 2.0% inorganic phosphorus, 1.3% potassium and 91.5% organic matter. This novel GFR bio-conversion method can mitigate potential environmental pollution and recycle the waste resources. PMID:25992605

  5. Valorization of industrial waste and by-product streams via fermentation for the production of chemicals and biopolymers.

    PubMed

    Koutinas, Apostolis A; Vlysidis, Anestis; Pleissner, Daniel; Kopsahelis, Nikolaos; Lopez Garcia, Isabel; Kookos, Ioannis K; Papanikolaou, Seraphim; Kwan, Tsz Him; Lin, Carol Sze Ki

    2014-04-21

    The transition from a fossil fuel-based economy to a bio-based economy necessitates the exploitation of synergies, scientific innovations and breakthroughs, and step changes in the infrastructure of chemical industry. Sustainable production of chemicals and biopolymers should be dependent entirely on renewable carbon. White biotechnology could provide the necessary tools for the evolution of microbial bioconversion into a key unit operation in future biorefineries. Waste and by-product streams from existing industrial sectors (e.g., food industry, pulp and paper industry, biodiesel and bioethanol production) could be used as renewable resources for both biorefinery development and production of nutrient-complete fermentation feedstocks. This review focuses on the potential of utilizing waste and by-product streams from current industrial activities for the production of chemicals and biopolymers via microbial bioconversion. The first part of this review presents the current status and prospects on fermentative production of important platform chemicals (i.e., selected C2-C6 metabolic products and single cell oil) and biopolymers (i.e., polyhydroxyalkanoates and bacterial cellulose). In the second part, the qualitative and quantitative characteristics of waste and by-product streams from existing industrial sectors are presented. In the third part, the techno-economic aspects of bioconversion processes are critically reviewed. Four case studies showing the potential of case-specific waste and by-product streams for the production of succinic acid and polyhydroxyalkanoates are presented. It is evident that fermentative production of chemicals and biopolymers via refining of waste and by-product streams is a highly important research area with significant prospects for industrial applications.

  6. Lipase-catalyzed production of short-chain acids terpenyl esters of interest to the food industry.

    PubMed

    Laboret, F; Perraud, R

    1999-12-01

    The production of low molecular weight esters as flavor compounds by biotechnological processes has a potential interest for the food industry. The use of natural available substrates and enzymes is an essential part of the process design, because the products may obtain natural label. In this study, direct esterification of citronellol and geraniol with short-chain fatty acids catalyzed by free lipase from Mucor miehei was performed with high yields in n-hexane. The effects of the acid:alcohol ratio on the bioconversion rate of increasing chain length esters was investigated. To reach the optimum yield, substrates and enzyme concentration were determined. The inhibiting effects of acid are strongly attenuated by reducing the quantity of acid and increasing the amount of enzyme in media following the optimum values. Improvements have been made to increase the ester purity. The consumption of excess substrate by adding calculated amounts of acid gives a 10% yield enhancement, and leads to 100% pure terpenyl esters. The first steps to a scale-up application were attempted using a reactor that allowed us to produce ester quantities up to 100 cm3. Separation and purification of the products were treated with success, underlining the lipase stability and efficiency under the conditions of this study. The ability to recover the enzyme, and reusing it in bioconversions, plays a major role in reducing the cost of the overall process.

  7. Designer biomass for next-generation biorefineries: leveraging recent insights into xylan structure and biosynthesis.

    PubMed

    Smith, Peter J; Wang, Hsin-Tzu; York, William S; Peña, Maria J; Urbanowicz, Breeanna R

    2017-01-01

    Xylans are the most abundant noncellulosic polysaccharides in lignified secondary cell walls of woody dicots and in both primary and secondary cell walls of grasses. These polysaccharides, which comprise 20-35% of terrestrial biomass, present major challenges for the efficient microbial bioconversion of lignocellulosic feedstocks to fuels and other value-added products. Xylans play a significant role in the recalcitrance of biomass to degradation, and their bioconversion requires metabolic pathways that are distinct from those used to metabolize cellulose. In this review, we discuss the key differences in the structural features of xylans across diverse plant species, how these features affect their interactions with cellulose and lignin, and recent developments in understanding their biosynthesis. In particular, we focus on how the combined structural and biosynthetic knowledge can be used as a basis for biomass engineering aimed at developing crops that are better suited as feedstocks for the bioconversion industry.

  8. Engineering Ligninolytic Consortium for Bioconversion of Lignocelluloses to Ethanol and Chemicals.

    PubMed

    Bilal, Muhammad; Nawaz, Muhammad Zohaib; Iqbal, Hafiz M N; Hou, Jialin; Mahboob, Shahid; Al-Ghanim, Khalid A; Cheng, Hairong

    2018-01-01

    Rising environmental concerns and recent global scenario of cleaner production and consumption are leading to the design of green industrial processes to produce alternative fuels and chemicals. Although bioethanol is one of the most promising and eco-friendly alternatives to fossil fuels yet its production from food and feed has received much negative criticism. The main objective of this study was to present the noteworthy potentialities of lignocellulosic biomass as an enormous and renewable biological resource. The particular focus was also given on engineering ligninolytic consortium for bioconversion of lignocelluloses to ethanol and chemicals on sustainable and environmentally basis. Herein, an effort has been made to extensively review, analyze and compile salient information related to the topic of interest. Several authentic bibliographic databases including PubMed, Scopus, Elsevier, Springer, Bentham Science and other scientific databases were searched with utmost care, and inclusion/ exclusion criterion was adopted to appraise the quality of retrieved peer-reviewed research literature. Bioethanol production from lignocellulosic biomass can largely satisfy the possible inconsistency of first-generation ethanol since it utilizes inedible lignocellulosic feedstocks, primarily sourced from agriculture and forestry wastes. Two major polysaccharides in lignocellulosic biomass namely, cellulose and hemicellulose constitute a complex lignocellulosic network by connecting with lignin, which is highly recalcitrant to depolymerization. Several attempts have been made to reduce the cost involved in the process through improving the pretreatment process. While, the ligninolytic enzymes of white rot fungi (WRF) including laccase, lignin peroxidase (LiP), and manganese peroxidase (MnP) have appeared as versatile biocatalysts for delignification of several lignocellulosic residues. The first part of the review is mainly focused on engineering ligninolytic consortium. In the second part, WRF and its unique ligninolytic enzyme-based bio-delignification of lignocellulosic biomass, enzymatic hydrolysis, and fermentation of hydrolyzed feedstock are discussed. The metabolic engineering, enzymatic engineering, synthetic biology aspects for ethanol production and platform chemicals production are comprehensively reviewed in the third part. Towards the end information is also given on futuristic viewpoints. In conclusion, given the present unpredicted scenario of energy and fuel crisis accompanied by global warming, lignocellulosic bioethanol holds great promise as an alternative to petroleum. Apart from bioethanol, the simultaneous production of other value-added products may improve the economics of lignocellulosic bioethanol bioconversion process. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Integrated bioprocess for conversion of gaseous substrates to liquids

    PubMed Central

    Hu, Peng; Chakraborty, Sagar; Kumar, Amit; Woolston, Benjamin; Liu, Hongjuan; Emerson, David; Stephanopoulos, Gregory

    2016-01-01

    In the quest for inexpensive feedstocks for the cost-effective production of liquid fuels, we have examined gaseous substrates that could be made available at low cost and sufficiently large scale for industrial fuel production. Here we introduce a new bioconversion scheme that effectively converts syngas, generated from gasification of coal, natural gas, or biomass, into lipids that can be used for biodiesel production. We present an integrated conversion method comprising a two-stage system. In the first stage, an anaerobic bioreactor converts mixtures of gases of CO2 and CO or H2 to acetic acid, using the anaerobic acetogen Moorella thermoacetica. The acetic acid product is fed as a substrate to a second bioreactor, where it is converted aerobically into lipids by an engineered oleaginous yeast, Yarrowia lipolytica. We first describe the process carried out in each reactor and then present an integrated system that produces microbial oil, using synthesis gas as input. The integrated continuous bench-scale reactor system produced 18 g/L of C16-C18 triacylglycerides directly from synthesis gas, with an overall productivity of 0.19 g⋅L−1⋅h−1 and a lipid content of 36%. Although suboptimal relative to the performance of the individual reactor components, the presented integrated system demonstrates the feasibility of substantial net fixation of carbon dioxide and conversion of gaseous feedstocks to lipids for biodiesel production. The system can be further optimized to approach the performance of its individual units so that it can be used for the economical conversion of waste gases from steel mills to valuable liquid fuels for transportation. PMID:26951649

  10. Pretreatment of corn stover by low moisture anhydrous ammonia (LMMA) in a pilot-scale reactor and bioconversion to fuel ethanol and industrial chemicals

    USDA-ARS?s Scientific Manuscript database

    Corn stover (CS) adjusted to 50%, 66% and 70% moisture was pretreated by the low moisture anhydrous ammonia (LMAA) process in a pilot-scale ammoniation reactor. After ammoniation, the 70% moisture CS was treated at 90 degree C and 100 degree C whereas the others were treated at 90 degree C only. The...

  11. Bioconversion of Beetle-Killed Lodgepole Pine Using SPORL: Process Scale-up Design, Lignin Coproduct, and High Solids Fermentation without detoxification

    Treesearch

    Haifeng Zhou; J.Y. Zhu; Xiaolin Luo; Shao-Yuan Leu; Xiaolei Wu; Roland Gleisner; Bruce S. Dien; Ronald E. Hector; Dongjie Yang; Xueqing Qiu; Eric Horn; Jose Negron

    2013-01-01

    Mountain pine beetle killed Lodgepole pine (Pinus contorta Douglas ex Loudon) wood chips were pretreated using an acidic sulfite solution of approximately pH = 2.0 at a liquor to wood ratio of 3 and sodium bisulfite loading of 8 wt % on wood. The combined hydrolysis factor (CHF), formulated from reaction kinetics, was used to design a scale-up...

  12. Quantitative investigation of non-hydrolytic disruptive activity on crystalline cellulose and application to recombinant swollenin.

    PubMed

    Wang, Yuguo; Tang, Rentao; Tao, Jin; Gao, Gui; Wang, Xiaonan; Mu, Ying; Feng, Yan

    2011-09-01

    For the efficient degradation and bioconversion of cellulosic biomass, it is important to efficiently disrupt and convert crystalline regions of cellulose into easily hydrolyzable regions than to simply hydrolyze cellulose. Expansin-like proteins such as swollenins have disruptive functions on lignocellulose, including crystalline cellulose, via non-hydrolytic mechanisms. In this work, we produced the swollenin from Trichoderma asperellum in Escherichia coli. The recombinant protein was then refolded into the bioactive form with simultaneous purification via a novel cellulose-assisted process. We devised a novel, simple, and efficient method to quantitatively determine the non-hydrolytic disruptive activity of swollenin on crystalline cellulose. This method is based on the synergism of the swollenin and the endoglucanase FnCel5A from Fervidobacterium nodosum. The change from crystalline regions into easily hydrolyzable forms, due to non-hydrolytic disruption, might be slight and not easily be observed. However, disrupted regions of cellulose could be hydrolyzed by FnCel5A, and reducing sugars were formed by the synergism. The disruptive function of the swollenin was quantitatively characterized by measuring the release of reducing sugars. These methods and processes will be useful for further research on non-hydrolytic disruptive bioactivities and provide novel approaches for the efficient and economical bioconversion of cellulosic biomass.

  13. Influence of dietary spices on the in vivo absorption of ingested β-carotene in experimental rats.

    PubMed

    Veda, Supriya; Srinivasan, Krishnapura

    2011-05-01

    Animal studies were conducted to evaluate the influence of dietary spice compounds, piperine, capsaicin and ginger, on the absorption of orally administered β-carotene and its conversion to vitamin A. In rats maintained on these spice-containing diets for 8 weeks, concentrations of β-carotene and retinol were determined in the serum, liver and intestine 4 h after a single oral administration of β-carotene. β-Carotene concentration was significantly increased in the serum, liver and intestine of piperine- and ginger-fed rats, suggesting improved absorption of β-carotene. However, retinol concentration was not significantly changed in these animals, suggesting that the bioconversion of β-carotene to vitamin A was not similarly influenced. Between the two enzymes involved in the bioconversion of β-carotene to vitamin A, the activity of intestinal and hepatic β-carotene 15,15'-dioxygenase was either unaffected or lowered by these spice treatments. The activity of intestinal and hepatic retinal reductase was unaffected by the dietary spices. Activities of these two enzymes involved in the bioconversion of β-carotene to retinal were inhibited by the test spices in vitro, thus corroborating with the in vivo observation. Although the bioconversion of β-carotene was not promoted, increased absorption and tissue levels of β-carotene by the dietary spices may contribute to a higher antioxidant protection.

  14. Bioconversion of dilute-acid pretreated sorghum bagasse to ethanol by Neurospora crassa.

    PubMed

    Dogaris, Ioannis; Gkounta, Olga; Mamma, Diomi; Kekos, Dimitris

    2012-07-01

    Bioethanol production from sweet sorghum bagasse (SB), the lignocellulosic solid residue obtained after extraction of sugars from sorghum stalks, can further improve the energy yield of the crop. The aim of the present work was to evaluate a cost-efficient bioconversion of SB to ethanol at high solids loadings (16 % at pretreatment and 8 % at fermentation), low cellulase activities (1-7 FPU/g SB) and co-fermentation of hexoses and pentoses. The fungus Neurospora crassa DSM 1129 was used, which exhibits both depolymerase and co-fermentative ability, as well as mixed cultures with Saccharomyces cerevisiae 2541. A dilute-acid pretreatment (sulfuric acid 2 g/100 g SB; 210 °C; 10 min) was implemented, with high hemicellulose decomposition and low inhibitor formation. The bioconversion efficiency of N. crassa was superior to S. cerevisiae, while their mixed cultures had negative effect on ethanol production. Supplementing the in situ produced N. crassa cellulolytic system (1.0 FPU/g SB) with commercial cellulase and β-glucosidase mixture at low activity (6.0 FPU/g SB) increased ethanol production to 27.6 g/l or 84.7 % of theoretical yield (based on SB cellulose and hemicellulose sugar content). The combined dilute-acid pretreatment and bioconversion led to maximum cellulose and hemicellulose hydrolysis 73.3 % and 89.6 %, respectively.

  15. Process for preparing multilayer enzyme coating on a fiber

    DOEpatents

    Kim, Jungbae [Richland, WA; Kwak, Ja Hun [Richland, WA; Grate, Jay W [West Richland, WA

    2009-11-03

    A process for preparing high stability, high activity biocatalytic materials is disclosed and processes for using the same. The process involves coating of a material or fiber with enzymes and enzyme aggregate providing a material or fiber with high biocatalytic activity and stability useful in heterogeneous environments. In one illustrative approach, enzyme "seeds" are covalently attached to polymer nanofibers followed by treatment with a reagent that crosslinks additional enzyme molecules to the seed enzymes forming enzyme aggregates thereby improving biocatalytic activity due to increased enzyme loading and enzyme stability. This approach creates a useful new biocatalytic immobilized enzyme system with potential applications in bioconversion, bioremediation, biosensors, and biofuel cells.

  16. Metabolic engineering for improved microbial pentose fermentation.

    PubMed

    Fernandes, Sara; Murray, Patrick

    2010-01-01

    Global concern over the depletion of fossil fuel reserves, and the detrimental impact that combustion of these materials has on the environment, is focusing attention on initiatives to create sustainable approaches for the production and use of biofuels from various biomass substrates. The development of a low-cost, safe and eco-friendly process for the utilization of renewable resources to generate value-added products with biotechnological potential as well as robust microorganisms capable of efficient fermentation of all types of sugars are essential to underpin the economic production of biofuels from biomass feedstocks. Saccharomyces cerevisiae, the most established fermentation yeast used in large scale bioconversion strategies, does not however metabolise the pentose sugars, xylose and arabinose and bioengineering is required for introduction of efficient pentose metabolic pathways and pentose sugar transport proteins for bioconversion of these substrates. Our approach provided a basis for future experiments that may ultimately lead to the development of industrial S. cerevisiae strains engineered to express pentose metabolising proteins from thermophilic fungi living on decaying plant material and here we expand our original article and discuss the strategies implemented to improve pentose fermentation. © 2010 Landes Bioscience

  17. The Influence of Sugar Cane Bagasse Type and Its Particle Size on Xylose Production and Xylose-to-Xylitol Bioconversion with the Yeast Debaryomyces hansenii.

    PubMed

    Aghcheh, Razieh Karimi; Bonakdarpour, Babak; Ashtiani, Farzin Zokaee

    2016-11-01

    In the present study, the effect of the type of sugar cane bagasse (non-depithed or depithed) and its particle size on the production of xylose and its subsequent fermentation to xylitol by Debaryomyces hansenii CBS767 was investigated using a full factorial experimental design. It was found that the particle size range and whether bagasse was depithed or not had a significant effect on the concentration and yield of xylose in the resulting hemicellulose hydrolysate. Depithed bagasse resulted in higher xylose concentrations compared to non-depithed bagasse. The corresponding detoxified hemicellulose hydrolysates were used as fermentation media for the production of xylitol. The hemicellulose hydrolysate prepared from depithed bagasse also yielded meaningfully higher xylitol fermentation rates compared to non-depithed bagasse. However, in the case of non-depithed bagasse, the hemicellulose hydrolysate prepared from larger particle size range resulted in higher xylitol fermentation rates, whereas the effect in the case of non-depithed bagasse was not pronounced. Therefore, depithing of bagasse is an advantageous pretreatment when it is to be employed in bioconversion processes.

  18. Bioconversion of Agave tequilana fructans by exo-inulinases from indigenous Aspergillus niger CH-A-2010 enhances ethanol production from raw Agave tequilana juice.

    PubMed

    Huitrón, Carlos; Pérez, Rosalba; Gutiérrez, Luís; Lappe, Patricia; Petrosyan, Pavel; Villegas, Jesús; Aguilar, Cecilia; Rocha-Zavaleta, Leticia; Blancas, Abel

    2013-01-01

    Agave tequilana fructans are the source of fermentable sugars for the production of tequila. Fructans are processed by acid hydrolysis or by cooking in ovens at high temperature. Enzymatic hydrolysis is considered an alternative for the bioconversion of fructans. We previously described the isolation of Aspergillus niger CH-A-2010, an indigenous strain that produces extracellular inulinases. Here we evaluated the potential application of A. niger CH-A-2010 inulinases for the bioconversion of A. tequilana fructans, and its impact on the production of ethanol. Inulinases were analyzed by Western blotting and thin layer chromatography. Optimal pH and temperature conditions for inulinase activity were determined. The efficiency of A. niger CH-A-2010 inulinases was compared with commercial enzymes and with acid hydrolysis. The hydrolysates obtained were subsequently fermented by Saccharomyces cerevisiae to determine the efficiency of ethanol production. Results indicate that A. niger CH-A-2010 predominantly produces an exo-inulinase activity. Optimal inulinase activity occurred at pH 5.0 and 50 °C. Hydrolysis of raw agave juice by CH-A-2010 inulinases yielded 33.5 g/l reducing sugars, compared with 27.3 g/l by Fructozyme(®) (Novozymes Corp, Bagsværd, Denmark) and 29.4 g/l by acid hydrolysis. After fermentation of hydrolysates, we observed that the conversion efficiency of sugars into ethanol was 97.5 % of the theoretical ethanol yield for enzymatically degraded agave juice, compared to 83.8 % for acid-hydrolyzed juice. These observations indicate that fructans from raw Agave tequilana juice can be efficiently hydrolyzed by using A. niger CH-A-2010 inulinases, and that this procedure impacts positively on the production of ethanol.

  19. Effect of initial moisture content and chip size on the bioconversion efficiency of softwood lignocellulosics.

    PubMed

    Cullis, Ian F; Saddler, John N; Mansfield, Shawn D

    2004-02-20

    Previous optimization strategies for the bioconversion of lignocellulosics by steam explosion technologies have focused on the effects of temperature, pH, and treatment time, but have not accounted for changes in severity brought about by properties inherent in the starting feedstock. Consequently, this study evaluated the effects of chip properties, feedstock size (40-mesh, 1.5 x 1.5 cm, 5 x 5 cm), and moisture content (12% and 30%) on the overall bioconversion process, and more specifically on the efficacy of removal of recalcitrant lignin from the lignocellulosic substrates following steam explosion. Increasing chip size resulted in an improvement in the solids recovery, with concurrent increases in the water soluble, hemicellulose-derived sugar recovery (7.5%). This increased recovery is a result of a decrease in the "relative severity" of the pretreatment as chip size increases. Additionally, the decreased relative severity minimized the condensation of the recalcitrant residual lignin and therefore increased the efficacy of peroxide fractionation, where a 60% improvement in lignin removal was possible with chips of larger initial size. Similarly, increased initial moisture content reduced the relative severity of the pretreatment, generating improved solids and hemicellulose-derived carbohydrate recovery. Both increased chip size and higher initial moisture content results in a substrate that performs better during peroxide delignification, and consequently enzymatic hydrolysis. Furthermore, a post steam-explosion refining step increased hemicellulose-derived sugar recovery and was most effectively delignified (to as low as 6.5%). The refined substrate could be enzymatically hydrolyzed to very high levels (98%) and relatively fast rates (1.23 g/L/h). Copyright 2004 Wiley Periodicals, Inc.

  20. Optimization of process parameters for pilot-scale liquid-state bioconversion of sewage sludge by mixed fungal inoculation.

    PubMed

    Rahman, Roshanida A; Molla, Abul Hossain; Barghash, Hind F A; Fakhru'l-Razi, Ahmadun

    2016-01-01

    Liquid-state bioconversion (LSB) technique has great potential for application in bioremediation of sewage sludge. The purpose of this study is to determine the optimum level of LSB process of sewage sludge treatment by mixed fungal (Aspergillus niger and Penicillium corylophilum) inoculation in a pilot-scale bioreactor. The optimization of process factors was investigated using response surface methodology based on Box-Behnken design considering hydraulic retention time (HRT) and substrate influent concentration (S0) on nine responses for optimizing and fitted to the regression model. The optimum region was successfully depicted by optimized conditions, which was identified as the best fit for convenient multiple responses. The results from process verification were in close agreement with those obtained through predictions. Considering five runs of different conditions of HRT (low, medium and high 3.62, 6.13 and 8.27 days, respectively) with the range of S0 value (the highest 12.56 and the lowest 7.85 g L(-1)), it was monitored as the lower HRT was considered as the best option because it required minimum days of treatment than the others with influent concentration around 10 g L(-1). Therefore, optimum process factors of 3.62 days for HRT and 10.12 g L(-1) for S0 were identified as the best fit for LSB process and its performance was deviated by less than 5% in most of the cases compared to the predicted values. The recorded optimized results address a dynamic development in commercial-scale biological treatment of wastewater for safe and environment-friendly disposal in near future.

  1. Fungal Bioconversion of Lignocellulosic Residues; Opportunities & Perspectives

    PubMed Central

    Dashtban, Mehdi; Schraft, Heidi; Qin, Wensheng

    2009-01-01

    The development of alternative energy technology is critically important because of the rising prices of crude oil, security issues regarding the oil supply, and environmental issues such as global warming and air pollution. Bioconversion of biomass has significant advantages over other alternative energy strategies because biomass is the most abundant and also the most renewable biomaterial on our planet. Bioconversion of lignocellulosic residues is initiated primarily by microorganisms such as fungi and bacteria which are capable of degrading lignocellulolytic materials. Fungi such as Trichoderma reesei and Aspergillus niger produce large amounts of extracellular cellulolytic enzymes, whereas bacterial and a few anaerobic fungal strains mostly produce cellulolytic enzymes in a complex called cellulosome, which is associated with the cell wall. In filamentous fungi, cellulolytic enzymes including endoglucanases, cellobiohydrolases (exoglucanases) and β-glucosidases work efficiently on cellulolytic residues in a synergistic manner. In addition to cellulolytic/hemicellulolytic activities, higher fungi such as basidiomycetes (e.g. Phanerochaete chrysosporium) have unique oxidative systems which together with ligninolytic enzymes are responsible for lignocellulose degradation. This review gives an overview of different fungal lignocellulolytic enzymatic systems including extracellular and cellulosome-associated in aerobic and anaerobic fungi, respectively. In addition, oxidative lignocellulose-degradation mechanisms of higher fungi are discussed. Moreover, this paper reviews the current status of the technology for bioconversion of biomass by fungi, with focus on mutagenesis, co-culturing and heterologous gene expression attempts to improve fungal lignocellulolytic activities to create robust fungal strains. PMID:19774110

  2. Engineering a Synthetic Microbial Consortium for Comprehensive Conversion of Algae Biomass into Terpenes for Advanced Biofuels and Bioproducts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Weihua; Wu, Benjamin Chiau-Pin; Davis, Ryan Wesley

    Recent strategies for algae-based biofuels have primarily focused on biodiesel production by exploiting high algal lipid yields under nutrient stress conditions. However, under conditions supporting robust algal biomass accumulation, carbohydrate and proteins typically comprise up to ~80% of the ash-free dry weight of algae biomass. Therefore, comprehensive utilization of algal biomass for production of multipurpose intermediate- to high-value bio-based products will promote scale-up of algae production and processing to commodity volumes. Terpenes are hydrocarbon and hydrocarbon-like (C:O>10:1) compounds with high energy density, and are therefore potentially promising candidates for the next generation of value added bio-based chemicals and “drop-in” replacementsmore » for petroleum-based fuels. In this study, we demonstrated the feasibility of bioconversion of proteins into sesquiterpene compounds as well as comprehensive bioconversion of algal carbohydrates and proteins into biofuels. To achieve this, the mevalonate pathway was reconstructed into an E. coli chassis with six different terpene synthases (TSs). Strains containing the various TSs produced a spectrum of sesquiterpene compounds in minimal medium containing amino acids as the sole carbon source. The sesquiterpene production was optimized through three different regulation strategies using chamigrene synthase as an example. The highest total terpene titer reached 166 mg/L, and was achieved by applying a strategy to minimize mevalonate accumulation in vivo. The highest yields of total terpene were produced under reduced IPTG induction levels (0.25 mM), reduced induction temperature (25°C), and elevated substrate concentration (20 g/L amino acid mixture). A synthetic bioconversion consortium consisting of two engineering E. coli strains (DH1-TS and YH40-TS) with reconstructed terpene biosynthetic pathways was designed for comprehensive single-pot conversion of algal carbohydrates and proteins to sesquiterpenes. The consortium yielded the highest total terpene yields (187 mg/L) at an inoculum ratio 2:1 of strain YH40-TS: DH1-TS, corresponding to 31 mg fuel/g algae biomass ash free dry weight. This study therefore demonstrates a feasible process for comprehensive algal biofuel production.« less

  3. CNRS interdisciplinary research program for solar energy development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The contributions of CNRS to the French national solar energy R and D program are reviewed. The three principal processes in which solar radiation is converted into other, directly usable energy forms are discussed in detail. These include thermodynamic conversion, photovoltaic conversion, and bioconversion to produce a substitute fuel. Related research on insolation and the weather is mentioned and relations with the industrial sector are considered. French collaboration with other countries in solar energy is discussed.

  4. Fungal synthesis of size-defined nanoparticles

    NASA Astrophysics Data System (ADS)

    Zielonka, Aleksandra; Klimek-Ochab, Magdalena

    2017-12-01

    Fungi with metabolic capacities can efficiently synthesize a wide range of nanoparticles (NPs). This biotransformation process and its product have extensive applications especially for industry, agriculture and medicine, where NPs size and shape is essential and can be defined by specific analytical methods. Fungi cultivation and further bioconversion can be fully controlled to obtain the desired nanoparticles. Additionally, this review provides information about the fungus F. oxysporum, which is able to synthesize the largest amount of different types of NPs.

  5. Developments toward large-scale bacterial bioprocesses in the presence of bulk amounts of organic solvents.

    PubMed

    Schmid, A; Kollmer, A; Mathys, R G; Witholt, B

    1998-08-01

    Many pseudomonads and other bacteria can grow on aliphatic and aromatic hydrocarbons that occur in the environment. We are examining the potential of such organisms as biocatalysts for the oxidation of a variety of substituted aliphatic and aromatic compounds. To attain a high production rate of oxidation products via such biotransformations, we have focused on two-liquid phase culture systems. In these systems, cells are grown in liquid media consisting of an aqueous phase containing water-soluble growth substrates and droplets of a water-immicible organic solvent containing bioconversion substrates and products. For industrial applications of such two-liquid phase processes, several questions remain. What are the maximum rates at which apolar compounds can be transferred from the apolar phase to cells growing in the aqueous phase, i.e., what are the maximum space-time yields attainable in two-liquid phase fermentations under practical conditions? What does an efficient downstream processing of two-liquid phase medium involve? What safety regimes should be considered in working with flammable organic solvents? Can elevated pressure be used to increase oxygen transfer? Based on answers to these questions, we have recently developed a high-pressure, explosion-proof bioreactor system with Bioengineering AG (Wald, Switzerland), which will be installed in our pilot plant and used to explore two-liquid phase bioconversions at a pilot scale.

  6. Production of bioethanol by direct bioconversion of oil-palm industrial effluent in a stirred-tank bioreactor.

    PubMed

    Alam, Md Zahangir; Kabbashi, Nassereldeen A; Hussin, S Nahdatul I S

    2009-06-01

    The purpose of this study was to evaluate the feasibility of producing bioethanol from palm-oil mill effluent generated by the oil-palm industries through direct bioconversion process. The bioethanol production was carried out through the treatment of compatible mixed cultures such as Thrichoderma harzianum, Phanerochaete chrysosporium, Mucor hiemalis, and yeast, Saccharomyces cerevisiae. Simultaneous inoculation of T. harzianum and S. cerevisiae was found to be the mixed culture that yielded the highest ethanol production (4% v/v or 31.6 g/l). Statistical optimization was carried out to determine the operating conditions of the stirred-tank bioreactor for maximum bioethanol production by a two-level fractional factorial design with a single central point. The factors involved were oxygen saturation level (pO(2)%), temperature, and pH. A polynomial regression model was developed using the experimental data including the linear, quadratic, and interaction effects. Statistical analysis showed that the maximum ethanol production of 4.6% (v/v) or 36.3 g/l was achieved at a temperature of 32 degrees C, pH of 6, and pO(2) of 30%. The results of the model validation test under the developed optimum process conditions indicated that the maximum production was increased from 4.6% (v/v) to 6.5% (v/v) or 51.3 g/l with 89.1% chemical-oxygen-demand removal.

  7. Functional diversity of carbohydrate-active enzymes enabling a bacterium to ferment plant biomass.

    PubMed

    Boutard, Magali; Cerisy, Tristan; Nogue, Pierre-Yves; Alberti, Adriana; Weissenbach, Jean; Salanoubat, Marcel; Tolonen, Andrew C

    2014-11-01

    Microbial metabolism of plant polysaccharides is an important part of environmental carbon cycling, human nutrition, and industrial processes based on cellulosic bioconversion. Here we demonstrate a broadly applicable method to analyze how microbes catabolize plant polysaccharides that integrates carbohydrate-active enzyme (CAZyme) assays, RNA sequencing (RNA-seq), and anaerobic growth screening. We apply this method to study how the bacterium Clostridium phytofermentans ferments plant biomass components including glucans, mannans, xylans, galactans, pectins, and arabinans. These polysaccharides are fermented with variable efficiencies, and diauxies prioritize metabolism of preferred substrates. Strand-specific RNA-seq reveals how this bacterium responds to polysaccharides by up-regulating specific groups of CAZymes, transporters, and enzymes to metabolize the constituent sugars. Fifty-six up-regulated CAZymes were purified, and their activities show most polysaccharides are degraded by multiple enzymes, often from the same family, but with divergent rates, specificities, and cellular localizations. CAZymes were then tested in combination to identify synergies between enzymes acting on the same substrate with different catalytic mechanisms. We discuss how these results advance our understanding of how microbes degrade and metabolize plant biomass.

  8. Bioconversion of Sugarcane Vinasse into High-Added Value Products and Energy

    PubMed Central

    Machado, Antonio Carlos de Oliveira

    2017-01-01

    Vinasse, a residue from bioethanol production containing high organic matter concentration, was used as substrate in submerged fermentation of Pseudomonas aeruginosa PA1 for biosurfactant production. About 2.7 g/L of rhamnolipids was obtained, with surface tension of 29.2 mN/m and critical micelle concentration of 80.3 mg/L. After separation of rhamnolipid and biomass, residual fermentation media were submitted to anaerobic biodegradation in mesophilic conditions. The residual medium derived from fermentation with vinasse diluted to 1 : 1, without addition of nitrogen, C : N 21, and for 168 h, led to 63.2% chemical oxygen demand (COD) removal and 97.6 mL CH4/g CODremoved. Compared to results obtained with fresh vinasse (73.7% COD removal and 112.4 mL CH4/g CODremoved), it could be concluded that both processes can be integrated in order to add value to the residue and obtain energy, reducing production costs and at the same time environmental impacts related to vinasse disposal. PMID:29250551

  9. Bioconversion of fish solid waste into PHB using Bacillus subtilis based submerged fermentation process.

    PubMed

    Mohapatra, S; Sarkar, B; Samantaray, D P; Daware, A; Maity, S; Pattnaik, S; Bhattacharjee, S

    2017-12-01

    Currently, one of the major problem affecting the world is solid waste management, predominantly petroleum-based plastic and fish solid waste (FSW). However, it is very difficult to reduce the consumption of plastic as well as fish products, but it is promising to convert FSW to biopolymer to reduce eco-pollution. On account of that, the bioconversion of FSW extract to polyhydroxybutyrate (PHB) was undertaken by using Bacillus subtilis (KP172548). Under optimized conditions, 1.62 g/L of PHB has been produced by the bacterium. The purified compound was further characterized by advanced analytical technologies to elucidate its chemical structure. Results indicated that the biopolymer was found to be PHB, the most common homopolymer of polyhydroxyalkanoates (PHAs). This is the first report demonstrating the efficacy of B. subtilis to utilize FSW extract to produce biopolymer. The biocompatibility of the PHB against murine macrophage cell line RAW264.7 demonstrated that, it was comparatively less toxic, favourable for surface attachment and proliferation in comparison with poly-lactic acid (PLA) and commercially available PHB. Thus, further exploration is highly indispensable to use FSW extract as a substrate for production of PHB at pilot scale.

  10. Novel Magnetic Cross-Linked Cellulase Aggregates with a Potential Application in Lignocellulosic Biomass Bioconversion.

    PubMed

    Jia, Junqi; Zhang, Weiwei; Yang, Zengjie; Yang, Xianling; Wang, Na; Yu, Xiaoqi

    2017-02-10

    The utilization of renewable biomass resources to produce high-value chemicals by enzymatic processes is beneficial for alternative energy production, due to the accelerating depletion of fossil fuels. As immobilization techniques can improve enzyme stability and reusability, a novel magnetic cross-linked cellulase aggregate has been developed and applied for biomass bioconversion. The crosslinked aggregates could purify and immobilize enzymes in a single operation, and could then be combined with magnetic nanoparticles (MNPs), which provides easy separation of the materials. The immobilized cellulase showed a better activity at a wider temperature range and pH values than that of the free cellulase. After six cycles of consecutive reuse, the immobilized cellulase performed successful magnetic separation and retained 74% of its initial activity when carboxylmethyl cellulose (CMC) was used as the model substrate. Furthermore, the structure and morphology of the immobilized cellulase were studied by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). Moreover, the immobilized cellulase was shown to hydrolyze bamboo biomass with a yield of 21%, and was re-used in biomass conversion up to four cycles with 38% activity retention, which indicated that the immobilized enzyme has good potential for biomass applications.

  11. Reverse membrane bioreactor: Introduction to a new technology for biofuel production.

    PubMed

    Mahboubi, Amir; Ylitervo, Päivi; Doyen, Wim; De Wever, Heleen; Taherzadeh, Mohammad J

    2016-01-01

    The novel concept of reverse membrane bioreactors (rMBR) introduced in this review is a new membrane-assisted cell retention technique benefiting from the advantageous properties of both conventional MBRs and cell encapsulation techniques to tackle issues in bioconversion and fermentation of complex feeds. The rMBR applies high local cell density and membrane separation of cell/feed to the conventional immersed membrane bioreactor (iMBR) set up. Moreover, this new membrane configuration functions on basis of concentration-driven diffusion rather than pressure-driven convection previously used in conventional MBRs. These new features bring along the exceptional ability of rMBRs in aiding complex bioconversion and fermentation feeds containing high concentrations of inhibitory compounds, a variety of sugar sources and high suspended solid content. In the current review, the similarities and differences between the rMBR and conventional MBRs and cell encapsulation regarding advantages, disadvantages, principles and applications for biofuel production are presented and compared. Moreover, the potential of rMBRs in bioconversion of specific complex substrates of interest such as lignocellulosic hydrolysate is thoroughly studied. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Interaction of Microbial and Abiotic Processes in Soil Leading to the (Bio)Conversion and Ultimate Attenuation of New Insensitive Munitions Compounds

    DTIC Science & Technology

    2016-12-30

    Toxicity is expressed as percentage of toxicant- free activity 125 Figure 4.12-1. Panel A: (Bio)transformation pathways of DNAN in anaerobic incubations...O-demethylation of the methoxy group was confirmed by formation of formaldehye. Cell free extracts of the Bacillus culture yielded formation of 2...periodically until the production of methane became constant in the toxicant- free controls. The maximum specific methanogenic activity of the

  13. A novel process for volatile fatty acids production from syngas by integrating with mesophilic alkaline fermentation of waste activated sludge.

    PubMed

    Rao, Yue; Wan, Jingjing; Liu, Yafeng; Angelidaki, Irini; Zhang, Shicheng; Zhang, Yalei; Luo, Gang

    2018-08-01

    The present study proposed and demonstrated a novel process for the bioconversion of syngas (mainly CO and H 2 ) to valuable volatile fatty acids (VFA) by integrating with mesophilic alkaline fermentation of waste activated sludge (WAS). The results showed that although pH 9 was suitable for VFA production from WAS, 62.5% of the consumed CO was converted to methane due to the presence of hydrogenogenic pathway for CO conversion. The increase of pH from 9 to 9.5 inhibited the methane production from CO because of the possible presence of only acetogenic pathway for CO conversion. However, methane was still produced from H 2 contained in syngas through hydrogenotrophic methanogenesis, and around 32-34% of the consumed syngas was converted to methane. At both pH 9 and 9.5, methane was produced by hydrogenotrophic methanogens Methanobacteriales. Further increase of pH to 10 effectively inhibited methane production from syngas, and efficient VFA (mainly acetate with the concentration of around 135 mM) production by simultaneous conversion of syngas and WAS was achieved. High acetate concentrations (>150 mM) were shown to have serious negative effects on the conversion of syngas. The addition of syngas to the mesophilic alkaline fermentation of WAS at pH 10 not only resulted in the enrichment of some known bacteria related with syngas conversion, but also changed the microbial community compositions for the fermentation of WAS. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Bioconversion of D-psicose to D-tagatose and D-talitol by Mucoraceae fungi.

    PubMed

    Yoshihara, Kazutoshi; Shinohara, Yoshihiro; Hirotsu, Takahiro; Izumori, Ken

    2006-03-01

    Rhizopus oryzae MYA-2483, which cannot utilize D-psicose as a sole source of carbon, converted D-psicose to two other compounds. These compounds were identified by NMR and IR as D-tagatose and D-talitol. In this study, we describe for the first time the bioconversion of D-psicose to D-tagatose. Various strains of Mucoraceae fungi, to which R. oryzae MYA-2483 belongs, exhibited conversion activity similar to that of R. oryzae MYA-2483. There is the possibility that a considerable number of fungi belonging to Mucoraceae possess such D-psicose conversion activity.

  15. Limitations of in silico predictability of specificity of co-immobilised cytochromes P450 and mimics in food-bioprocessing.

    PubMed

    Wiseman, Alan

    2003-04-01

    Cytochromes P450 (EC 1.14.14.1) are mixed function oxidases (oxygenases) that can catalyse redox bioconversions of food components. Also, efficacious removal of undesirable components can be achieved using solid-support immobilised enzyme (IME) of a selection from 2700 isoforms of cytochromes P450 (CYP). Cytochromes P450 co-immobilised with other enzymes, or protein receptors, may be used to confer a secondary order of regio- or stereo-specificity of chiral bioconversion: these can be predictable in silico by utilisation of QSARs (quantitative structure/activity relationships).

  16. The acid-tolerant L-arabinose isomerase from the mesophilic Shewanella sp. ANA-3 is highly active at low temperatures

    PubMed Central

    2011-01-01

    Background L-arabinose isomerases catalyse the isomerization of L-arabinose into L-ribulose at insight biological systems. At industrial scale of this enzyme is used for the bioconversion of D-galactose into D-tagatose which has many applications in pharmaceutical and agro-food industries. The isomerization reaction is thermodynamically equilibrated, and therefore the bioconversion rates is shifted towards tagatose when the temperature is increased. Moreover, to prevent secondary reactions it will be of interest to operate at low pH. The profitability of this D-tagatose production process is mainly related to the use of lactose as cheaper raw material. In many dairy products it will be interesting to produce D-tagatose during storage. This requires an efficient L-arabinose isomerase acting at low temperature and pH values. Results The gene encoding the L-arabinose isomerase from Shewanella sp. ANA-3 was cloned and overexpressed in Escherichia coli. The purified protein has a tetrameric arrangement composed by four identical 55 kDa subunits. The biochemical characterization of this enzyme showed that it was distinguishable by its maximal activity at low temperatures comprised between 15-35°C. Interestingly, this biocatalyst preserves more than 85% of its activity in a broad range of temperatures from 4.0 to 45°C. Shewanella sp. ANA-3 L-arabinose isomerase was also optimally active at pH 5.5-6.5 and maintained over 80% of its activity at large pH values from 4.0 to 8.5. Furthermore, this enzyme exhibited a weak requirement for metallic ions for its activity evaluated at 0.6 mM Mn2+. Stability studies showed that this protein is highly stable mainly at low temperature and pH values. Remarkably, T268K mutation clearly enhances the enzyme stability at low pH values. Use of this L-arabinose isomerase for D-tagatose production allows the achievement of attractive bioconversion rates of 16% at 4°C and 34% at 35°C. Conclusions Here we reported the purification and the biochemical characterization of the novel Shewanella sp. ANA-3 L-arabinose isomerase. Determination of the biochemical properties demonstrated that this enzyme was highly active at low temperatures. The generated T268K mutant displays an increase of the enzyme stability essentially at low pH. These features seem to be very attractive for the bioconversion of D-galactose into D-tagatose at low temperature which is very interesting from industrial point of view. PMID:22074172

  17. Hydrocarbon bio-jet fuel from bioconversion of poplar biomass: life cycle assessment.

    PubMed

    Budsberg, Erik; Crawford, Jordan T; Morgan, Hannah; Chin, Wei Shan; Bura, Renata; Gustafson, Rick

    2016-01-01

    Bio-jet fuels compatible with current aviation infrastructure are needed as an alternative to petroleum-based jet fuel to lower greenhouse gas emissions and reduce dependence on fossil fuels. Cradle to grave life cycle analysis is used to investigate the global warming potential and fossil fuel use of converting poplar biomass to drop-in bio-jet fuel via a novel bioconversion platform. Unique to the biorefinery designs in this research is an acetogen fermentation step. Following dilute acid pretreatment and enzymatic hydrolysis, poplar biomass is fermented to acetic acid and then distilled, hydroprocessed, and oligomerized to jet fuel. Natural gas steam reforming and lignin gasification are proposed to meet hydrogen demands at the biorefineries. Separate well to wake simulations are performed using the hydrogen production processes to obtain life cycle data. Both biorefinery designs are assessed using natural gas and hog fuel to meet excess heat demands. Global warming potential of the natural gas steam reforming and lignin gasification bio-jet fuel scenarios range from CO2 equivalences of 60 to 66 and 32 to 73 g MJ(-1), respectively. Fossil fuel usage of the natural gas steam reforming and lignin gasification bio-jet fuel scenarios range from 0.78 to 0.84 and 0.71 to 1.0 MJ MJ(-1), respectively. Lower values for each impact category result from using hog fuel to meet excess heat/steam demands. Higher values result from using natural gas to meet the excess heat demands. Bio-jet fuels produced from the bioconversion of poplar biomass reduce the global warming potential and fossil fuel use compared with petroleum-based jet fuel. Production of hydrogen is identified as a major source of greenhouse gas emissions and fossil fuel use in both the natural gas steam reforming and lignin gasification bio-jet simulations. Using hog fuel instead of natural gas to meet heat demands can help lower the global warming potential and fossil fuel use at the biorefineries.

  18. Selection for high muscle fat in rainbow trout induces potentially higher chylomicron synthesis and PUFA biosynthesis in the intestine.

    PubMed

    Kamalam, Biju Sam; Panserat, Stephane; Aguirre, Peyo; Geurden, Inge; Fontagné-Dicharry, Stéphanie; Médale, Françoise

    2013-02-01

    Two lines of rainbow trout divergently selected for muscle fat content, fat line (F) and lean line (L) were used to investigate the effect of genetic selection on digestion, intestinal nutrient transport and fatty acid bioconversion, in relation to dietary starch intake. This study involved a digestibility trial for 2 weeks using Cr(2)O(3) as inert marker, followed by a feeding trial for 4 weeks. For the entire duration, juvenile trout from the two lines were fed diets with or without gelatinized starch. Blood, pyloric ceca, midgut and hindgut were sampled at 24 h after the last meal. Transcripts of the proteins involved in nutrient transport and fatty acid bioconversion were abundant in the proximal intestine. GLUT2 transcripts were slightly higher in the F line ceca than in the L line. Dietary starch intake did not enhance the transcription of intestinal glucose transporters, SGLT1 and GLUT2; but it was associated with the higher expression of ApoA1 and PepT1 in the midgut. Significantly, the F line exhibited higher intestinal mRNA levels of MTP, ApoA4, Elovl2, Elovl5 and D6D than the L line, linked to chylomicron assembly and fatty acid bioconversion. Apparent digestibility coefficients of protein, lipid and starch were high in both lines, but not significantly different between them. In conclusion, we found a higher potential of chylomicron synthesis and fatty acid bioconversion in the intestine of F line, but no adaptive transcriptional response of glucose transporters to dietary starch and no genotypic differences in nutrient digestibility. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Bioconversion of low quality lignocellulosic agricultural waste into edible protein by Pleurotus sajor-caju (Fr.) Singer

    PubMed Central

    Mane, Vijay Panjabrao; Patil, Shyam Sopanrao; Syed, Abrar Ahmed; Baig, Mirza Mushtaq Vaseem

    2007-01-01

    Pleurotus sajor-caju (Fr.) Singer was cultivated on selected agro wastes viz. cotton stalks, groundnut haulms, soybean straw, pigeon pea stalks and leaves and wheat straw, alone or in combinations. Cotton stalks, pigeon pea stalks and wheat straw alone or in combination were found to be more suitable than groundnut haulms and soybean straw for the cultivation. Organic supplements such as groundnut oilseed cake, gram powder and rice bran not only affected growth parameters but also increased yields. Thus bioconversion of lignocellulosic biomass by P. sajor-caju offers a promising way to convert low quality biomass into an improved human food. PMID:17910118

  20. Growth, bioconversion of isoflavones and probiotic properties of parent and subsequent passages of Lactobacillus upon ultraviolet radiation.

    PubMed

    Yeo, Siok-Koon; Liong, Min-Tze

    2012-11-01

    The objective of this study was to evaluate the effects of ultraviolet (UV) radiation (UVB; 90 J/m²) on growth, bioconversion of isoflavones and probiotic properties of parent and subsequent passages of L. casei FTDC 2113. UV radiation significantly enhanced (P < 0.05) the growth of parent cells in mannitol-soymilk fermented at 37°C for 24 h. This had led to an enhanced intracellular and extracellular β-glucosidase activity with a subsequent increase in bioconversion of isoflavones in mannitol-soymilk (P < 0.05). UV radiation also promoted (P < 0.05) the tolerance of parent cells towards acidic condition (pH 2 and 3) and intestinal bile salts (oxgall, taurocholic and cholic acid). In addition, parent treated cells also exhibited better (P < 0.05) adhesion ability to mucin and antimicrobial activity compared to that of the control. All these positive effects of UV radiation were only prevalent in the parent cells without inheritance by first, second and third passage of cells. Although temporary, our results suggested that UV radiation could enhance the bioactive and probiotic potentials of L. casei FTDC 2113, and thus could be applied for the production of probiotic products with enhanced bioactivity.

  1. Grass Lignocellulose

    NASA Astrophysics Data System (ADS)

    Akin, Danny E.

    Grass lignocelluloses are limited in bioconversion by aromatic constituents, which include both lignins and phenolic acids esters. Histochemistry, ultraviolet absorption microspectrophotometry, and response to microorganisms and specific enzymes have been used to determine the significance of aromatics toward recalcitrance. Coniferyl lignin appears to be the most effective limitation to biodegradation, existing in xylem cells of vascular tissues; cell walls with syringyl lignin, for example, leaf sclerenchyma, are less recalcitrant. Esterified phenolic acids, i.e., ferulic and p-coumaric acids, often constitute a major chemical limitation in nonlignified cell walls to biodegradation in grasses, especially warm-season species. Methods to improve biodegradability through modification of aromatics include: plant breeding, use of lignin-degrading white-rot fungi, and addition of esterases. Plant breeding for new cultivars has been especially effective for nutritionally improved forages, for example, bermudagrasses. In laboratory studies, selective white-rot fungi that lack cellulases delignified the lignocellulosic materials and improved fermentation of residual carbohydrates. Phenolic acid esterases released p-coumaric and ferulic acids for potential coproducts, improved the available sugars for fermentation, and improved biodegradation. The separation and removal of the aromatic components for coproducts, while enhancing the availability of sugars for bioconversion, could improve the economics of bioconversion.

  2. The modeling of ethanol production by Kluyveromyces marxianus using whey as substrate in continuous A-Stat bioreactors.

    PubMed

    Gabardo, Sabrina; Pereira, Gabriela Feix; Rech, Rosane; Ayub, Marco Antônio Záchia

    2015-09-01

    We investigated the kinetics of whey bioconversion into ethanol by Kluyveromyces marxianus in continuous bioreactors using the "accelerostat technique" (A-stat). Cultivations using free and Ca-alginate immobilized cells were evaluated using two different acceleration rates (a). The kinetic profiles of these systems were modeled using four different unstructured models, differing in the expressions for the specific growth (μ) and substrate consumption rates (r s), taking into account substrate limitation and product inhibition. Experimental data showed that the dilution rate (D) directly affected cell physiology and metabolism. The specific growth rate followed the dilution rate (μ≈D) for the lowest acceleration rate (a = 0.0015 h(-2)), condition in which the highest ethanol yield (0.52 g g(-1)) was obtained. The highest acceleration rate (a = 0.00667 h(-2)) led to a lower ethanol yield (0.40 g g(-1)) in the system where free cells were used, whereas with immobilized cells ethanol yields increased by 23 % (0.49 g g(-1)). Among the evaluated models, Monod and Levenspiel combined with Ghose and Tyagi models were found to be more appropriate for describing the kinetics of whey bioconversion into ethanol. These results may be useful in scaling up the process for ethanol production from whey.

  3. Enzymatic saccharification and fermentation of cellulosic date palm wastes to glucose and lactic acid.

    PubMed

    Alrumman, Sulaiman A

    2016-01-01

    The bioconversion of cellulosic wastes into high-value bio-products by saccharification and fermentation processes is an important step that can reduce the environmental pollution caused by agricultural wastes. In this study, enzymatic saccharification of treated and untreated date palm cellulosic wastes by the cellulases from Geobacillus stearothermophilus was optimized. The alkaline pre-treatment of the date palm wastes was found to be effective in increasing the saccharification percentage. The maximum rate of saccharification was found at a substrate concentration of 4% and enzyme concentration of 30 FPU/g of substrate. The optimum pH and temperature for the bioconversions were 5.0 and 50°C, respectively, after 24h of incubation, with a yield of 31.56mg/mL of glucose at a saccharification degree of 71.03%. The saccharification was increased to 94.88% by removal of the hydrolysate after 24h by using a two-step hydrolysis. Significant lactic acid production (27.8mg/mL) was obtained by separate saccharification and fermentation after 72h of incubation. The results indicate that production of fermentable sugar and lactic acid is feasible and may reduce environmental pollution by using date palm wastes as a cheap substrate. Copyright © 2015 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  4. Highly Selective Bioconversion of Ginsenoside Rb1 to Compound K by the Mycelium of Cordyceps sinensis under Optimized Conditions.

    PubMed

    Wang, Wei-Nan; Yan, Bing-Xiong; Xu, Wen-Di; Qiu, Ye; Guo, Yun-Long; Qiu, Zhi-Dong

    2015-10-23

    Compound K (CK), a highly active and bioavailable derivative obtained from protopanaxadiol ginsenosides, displays a wide variety of pharmacological properties, especially antitumor activity. However, the inadequacy of natural sources limits its application in the pharmaceutical industry. In this study, we firstly discovered that Cordyceps sinensis was a potent biocatalyst for the biotransformation of ginsenoside Rb1 into CK. After a series of investigations on the biotransformation parameters, an optimal composition of the biotransformation culture was found to be lactose, soybean powder and MgSO₄ without controlling the pH. Also, an optimum temperature of 30 °C for the biotransformation process was suggested in a range of 25 °C-50 °C. Then, a biotransformation pathway of Rb1→Rd→F2→CK was established using high performance liquid chromatography/quadrupole time-of-flight mass spectrometry (HPLC-Q-TOF-MS). Our results demonstrated that the molar bioconversion rate of Rb1 to CK was more than 82% and the purity of CK produced by C. sinensis under the optimized conditions was more than 91%. In conclusion, the combination of C. sinensis and the optimized conditions is applicable for the industrial preparation of CK for medicinal purposes.

  5. Enzymatic saccharification and fermentation of cellulosic date palm wastes to glucose and lactic acid

    PubMed Central

    Alrumman, Sulaiman A.

    2016-01-01

    The bioconversion of cellulosic wastes into high-value bio-products by saccharification and fermentation processes is an important step that can reduce the environmental pollution caused by agricultural wastes. In this study, enzymatic saccharification of treated and untreated date palm cellulosic wastes by the cellulases from Geobacillus stearothermophilus was optimized. The alkaline pre-treatment of the date palm wastes was found to be effective in increasing the saccharification percentage. The maximum rate of saccharification was found at a substrate concentration of 4% and enzyme concentration of 30 FPU/g of substrate. The optimum pH and temperature for the bioconversions were 5.0 and 50 °C, respectively, after 24 h of incubation, with a yield of 31.56 mg/mL of glucose at a saccharification degree of 71.03%. The saccharification was increased to 94.88% by removal of the hydrolysate after 24 h by using a two-step hydrolysis. Significant lactic acid production (27.8 mg/mL) was obtained by separate saccharification and fermentation after 72 h of incubation. The results indicate that production of fermentable sugar and lactic acid is feasible and may reduce environmental pollution by using date palm wastes as a cheap substrate. PMID:26887233

  6. Multi-scale individual-based model of microbial and bioconversion dynamics in aerobic granular sludge.

    PubMed

    Xavier, Joao B; De Kreuk, Merle K; Picioreanu, Cristian; Van Loosdrecht, Mark C M

    2007-09-15

    Aerobic granular sludge is a novel compact biological wastewater treatment technology for integrated removal of COD (chemical oxygen demand), nitrogen, and phosphate charges. We present here a multiscale model of aerobic granular sludge sequencing batch reactors (GSBR) describing the complex dynamics of populations and nutrient removal. The macro scale describes bulk concentrations and effluent composition in six solutes (oxygen, acetate, ammonium, nitrite, nitrate, and phosphate). A finer scale, the scale of one granule (1.1 mm of diameter), describes the two-dimensional spatial arrangement of four bacterial groups--heterotrophs, ammonium oxidizers, nitrite oxidizers, and phosphate accumulating organisms (PAO)--using individual based modeling (IbM) with species-specific kinetic models. The model for PAO includes three internal storage compounds: polyhydroxyalkanoates (PHA), poly phosphate, and glycogen. Simulations of long-term reactor operation show how the microbial population and activity depends on the operating conditions. Short-term dynamics of solute bulk concentrations are also generated with results comparable to experimental data from lab scale reactors. Our results suggest that N-removal in GSBR occurs mostly via alternating nitrification/denitrification rather than simultaneous nitrification/denitrification, supporting an alternative strategy to improve N-removal in this promising wastewater treatment process.

  7. Integrated cellulosic enzymes hydrolysis and fermentative advanced yeast bioconversion solution ready for biomass biorefineries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Manoj

    2011-05-04

    These are slides from this conference. Lignocellulosic biomass is the most abundant, least expensive renewable natural biological resource for the production of biobased products and bioenergy is important for the sustainable development of human civilization in 21st century. For making the fermentable sugars from lignocellulosic biomass, a reduction in cellulase production cost, an improvement in cellulase performance, and an increase in sugar yields are all vital to reduce the processing costs of biorefineries. Improvements in specific cellulase activities for non-complexed cellulase mixtures can be implemented through cellulase engineering based on rational design or directed evolution for each cellulase component enzyme,more » as well as on the reconstitution of cellulase components. In this paper, we will provide DSM's efforts in cellulase research and developments and focus on limitations. Cellulase improvement strategies based on directed evolution using screening on relevant substrates, screening for higher thermal tolerance based on activity screening approaches such as continuous culture using insoluble cellulosic substrates as a powerful selection tool for enriching beneficial cellulase mutants from the large library. We will illustrate why and how thermostable cellulases are vital for economic delivery of bioproducts from cellulosic biomass using biochemical conversion approach.« less

  8. Advanced modelling, monitoring, and process control of bioconversion systems

    NASA Astrophysics Data System (ADS)

    Schmitt, Elliott C.

    Production of fuels and chemicals from lignocellulosic biomass is an increasingly important area of research and industrialization throughout the world. In order to be competitive with fossil-based fuels and chemicals, maintaining cost-effectiveness is critical. Advanced process control (APC) and optimization methods could significantly reduce operating costs in the biorefining industry. Two reasons APC has previously proven challenging to implement for bioprocesses include: lack of suitable online sensor technology of key system components, and strongly nonlinear first principal models required to predict bioconversion behavior. To overcome these challenges batch fermentations with the acetogen Moorella thermoacetica were monitored with Raman spectroscopy for the conversion of real lignocellulosic hydrolysates and a kinetic model for the conversion of synthetic sugars was developed. Raman spectroscopy was shown to be effective in monitoring the fermentation of sugarcane bagasse and sugarcane straw hydrolysate, where univariate models predicted acetate concentrations with a root mean square error of prediction (RMSEP) of 1.9 and 1.0 g L-1 for bagasse and straw, respectively. Multivariate partial least squares (PLS) models were employed to predict acetate, xylose, glucose, and total sugar concentrations for both hydrolysate fermentations. The PLS models were more robust than univariate models, and yielded a percent error of approximately 5% for both sugarcane bagasse and sugarcane straw. In addition, a screening technique was discussed for improving Raman spectra of hydrolysate samples prior to collecting fermentation data. Furthermore, a mechanistic model was developed to predict batch fermentation of synthetic glucose, xylose, and a mixture of the two sugars to acetate. The models accurately described the bioconversion process with an RMSEP of approximately 1 g L-1 for each model and provided insights into how kinetic parameters changed during dual substrate fermentation with diauxic growth. Model predictive control (MPC), an advanced process control strategy, is capable of utilizing nonlinear models and sensor feedback to provide optimal input while ensuring critical process constraints are met. Using the microorganism Saccharomyces cerevisiae, a commonly used microorganism for biofuel production, and work performed with M. thermoacetica, a nonlinear MPC was implemented on a continuous membrane cell-recycle bioreactor (MCRB) for the conversion of glucose to ethanol. The dilution rate was used to control the ethanol productivity of the system will maintaining total substrate conversion above the constraint of 98%. PLS multivariate models for glucose (RMSEP 1.5 g L-1) and ethanol (RMSEP 0.4 g L-1) were robust in predicting concentrations and a mechanistic kinetic model built accurately predicted continuous fermentation behavior. A setpoint trajectory, ranging from 2 - 4.5 g L-1 h-1 for productivity was closely tracked by the fermentation system using Raman measurements and an extended Kalman filter to estimate biomass concentrations. Overall, this work was able to demonstrate an effective approach for real-time monitoring and control of a complex fermentation system.

  9. In vitro bioconversion of chitin to pyruvate with thermophilic enzymes.

    PubMed

    Honda, Kohsuke; Kimura, Keisuke; Ninh, Pham Huynh; Taniguchi, Hironori; Okano, Kenji; Ohtake, Hisao

    2017-09-01

    Chitin is the second most abundant organic compound on the planet and thus has been regarded as an alternative resource to petroleum feedstocks. One of the key challenges in the biological conversion of biomass-derived polysaccharides, such as cellulose and chitin, is to close the gap between optimum temperatures for enzymatic saccharification and microbial fermentation and to implement them in a single bioreactor. To address this issue, in the present study, we aimed to perform an in vitro, one-pot bioconversion of chitin to pyruvate, which is a precursor of a wide range of useful metabolites. Twelve thermophilic enzymes, including that for NAD + regeneration, were heterologously produced in Escherichia coli and semi-purified by heat treatment of the crude extract of recombinant cells. When the experimentally decided concentrations of enzymes were incubated with 0.5 mg mL -1 colloidal chitin (equivalent to 2.5 mM N-acetylglucosamine unit) and an adequate set of cofactors at 70°C, 0.62 mM pyruvate was produced in 5 h. Despite the use of a cofactor-balanced pathway, determination of the pool sizes of cofactors showed a rapid decrease in ATP concentration, most probably due to the thermally stable ATP-degrading enzyme(s) derived from the host cell. Integration of an additional enzyme set of thermophilic adenylate kinase and polyphosphate kinase led to the deceleration of ATP degradation, and the final product titer was improved to 2.1 mM. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  10. Metabolic responses in Candida tropicalis to complex inhibitors during xylitol bioconversion.

    PubMed

    Wang, Shizeng; Li, Hao; Fan, Xiaoguang; Zhang, Jingkun; Tang, Pingwah; Yuan, Qipeng

    2015-09-01

    During xylitol fermentation, Candida tropicalis is often inhibited by inhibitors in hemicellulose hydrolysate. The mechanisms involved in the metabolic responses to inhibitor stress and the resistances to inhibitors are still not clear. To understand the inhibition mechanisms and the metabolic responses to inhibitors, a GC/MS-based metabolomics approach was performed on C. tropicalis treated with and without complex inhibitors (CI, including furfural, phenol and acetic acid). Partial least squares discriminant analysis was used to determine the metabolic variability between CI-treated groups and control groups, and 25 metabolites were identified as possible entities responsible for the discrimination caused by inhibitors. We found that xylose uptake rate and xylitol oxidation rate were promoted by CI treatment. Metabolomics analysis showed that the flux from xylulose to pentose phosphate pathway increased, and tricarboxylic acid cycle was disturbed by CI. Moreover, the changes in levels of 1,3-propanediol, trehalose, saturated fatty acids and amino acids showed different mechanisms involved in metabolic responses to inhibitor stress. The increase of 1,3-propanediol was considered to be correlated with regulating redox balance and osmoregulation. The increase of trehalose might play a role in protein stabilization and cellular membranes protection. Saturated fatty acids could cause the decrease of membrane fluidity and make the plasma membrane rigid to maintain the integrity of plasma membrane. The deeper understanding of the inhibition mechanisms and the metabolic responses to inhibitors will provide us with more information on the metabolism regulation during xylitol bioconversion and the construction of industrial strains with inhibitor tolerance for better utilization of bioresource. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Simultaneous utilization of cellobiose, xylose, and acetic acid from lignocellulosic biomass for biofuel production by an engineered yeast platform.

    PubMed

    Wei, Na; Oh, Eun Joong; Million, Gyver; Cate, Jamie H D; Jin, Yong-Su

    2015-06-19

    The inability of fermenting microorganisms to use mixed carbon components derived from lignocellulosic biomass is a major technical barrier that hinders the development of economically viable cellulosic biofuel production. In this study, we integrated the fermentation pathways of both hexose and pentose sugars and an acetic acid reduction pathway into one Saccharomyces cerevisiae strain for the first time using synthetic biology and metabolic engineering approaches. The engineered strain coutilized cellobiose, xylose, and acetic acid to produce ethanol with a substantially higher yield and productivity than the control strains, and the results showed the unique synergistic effects of pathway coexpression. The mixed substrate coutilization strategy is important for making complete and efficient use of cellulosic carbon and will contribute to the development of consolidated bioprocessing for cellulosic biofuel. The study also presents an innovative metabolic engineering approach whereby multiple substrate consumption pathways can be integrated in a synergistic way for enhanced bioconversion.

  12. Enantioselectivity of the bioconversion of chiral citronellal during the inhibition of wheat seeds germination.

    PubMed

    Cavalieri, Andrea; Fischer, Ravit; Larkov, Olga; Dudai, Nativ

    2014-03-01

    Citronellal is one of the most prominent monoterpenes present in many essential oils. Low persistence of essential oils as bioherbicides has often been addressed because of the high volatility of these compounds. Bioconversion of citronellal by wheat seeds releases less aggressive and injurious compounds as demonstrated by their diminished germination. We demonstrated that optically pure citronellal enantiomers were reduced to optically pure citronellol enantiomers with retention of the configuration both in isolated wheat embryos and endosperms. Our findings reveal the potential of essential oils as allelopathic agents providing an insight into their mechanism of action and persistence. Copyright © 2014 Verlag Helvetica Chimica Acta AG, Zürich.

  13. Restructuring upstream bioprocessing: technological and economical aspects for production of a generic microbial feedstock from wheat.

    PubMed

    Koutinas, A A; Wang, R; Webb, C

    2004-03-05

    Restructuring and optimization of the conventional fermentation industry for fuel and chemical production is necessary to replace petrochemical production routes. Guided by this concept, a novel biorefinery process has been developed as an alternative to conventional upstream processing routes, leading to the production of a generic fermentation feedstock from wheat. The robustness of Aspergillus awamori as enzyme producer is exploited in a continuous fungal fermentation on whole wheat flour. Vital gluten is extracted as an added-value byproduct by the conventional Martin process from a fraction of the overall wheat used. Enzymatic hydrolysis of gluten-free flour by the enzyme complex produced by A. awamori during fermentation produces a liquid stream rich in glucose (320 g/L). Autolysis of fungal cells produces a micronutrient-rich solution similar to yeast extract (1.6 g/L nitrogen, 0.5 g/L phosphorus). The case-specific combination of these two liquid streams can provide a nutrient-complete fermentation medium for a spectrum of microbial bioconversions for the production of such chemicals as organic acids, amino acids, bioethanol, glycerol, solvents, and microbial biodegradable plastics. Preliminary economic analysis has shown that the operating cost required to produce the feedstock is dependent on the plant capacity, cereal market price, presence and market value of added-value byproducts, labor costs, and mode of processing (batch or continuous). Integration of this process in an existing fermentation plant could lead to the production of a generic feedstock at an operating cost lower than the market price of glucose syrup (90% to 99% glucose) in the EU, provided that the plant capacity exceeds 410 m(3)/day. Further process improvements are also suggested. Copyright 2004 Wiley Periodicals, Inc.

  14. Potential of biohydrogen production from effluents of citrus processing industry using anaerobic bacteria from sewage sludge.

    PubMed

    Torquato, Lilian D M; Pachiega, Renan; Crespi, Marisa S; Nespeca, Maurílio Gustavo; de Oliveira, José Eduardo; Maintinguer, Sandra I

    2017-01-01

    Citrus crops are among the most abundant crops in the world, which processing is mainly based on juice extraction, generating large amounts of effluents with properties that turn them into potential pollution sources if they are improperly discarded. This study evaluated the potential for bioconversion of effluents from citrus-processing industry (wastewater and vinasse) into hydrogen through the dark fermentation process, by applying anaerobic sewage sludge as inoculum. The inoculum was previously heat treated to eliminate H 2 -consumers microorganisms and improve its activity. Anaerobic batch reactors were operated in triplicate with increasing proportions (50, 80 and 100%) of each effluent as substrate at 37°C, pH 5.5. Citrus effluents had different effects on inoculum growth and H 2 yields, demonstrated by profiles of acetic acid, butyric acid, propionic acid and ethanol, the main by-products generated. It was verified that there was an increase in the production of biogas with the additions of either wastewater (7.3, 33.4 and 85.3mmolL -1 ) or vinasse (8.8, 12.7 and 13.4mmolL -1 ) in substrate. These effluents demonstrated remarkable energetic reuse perspectives: 24.0MJm -3 and 4.0MJm -3 , respectively. Besides promoting the integrated management and mitigation of anaerobic sludge and effluents from citrus industry, the biohydrogen production may be an alternative for the local energy supply, reducing the operational costs in their own facilities, while enabling a better utilization of the biological potential contained in sewage sludges. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Novel Halomonas sp. B15 isolated from Larnaca Salt Lake in Cyprus that generates vanillin and vanillic acid from ferulic acid.

    PubMed

    Vyrides, Ioannis; Agathangelou, Maria; Dimitriou, Rodothea; Souroullas, Konstantinos; Salamex, Anastasia; Ioannou, Aristostodimos; Koutinas, Michalis

    2015-08-01

    Vanillin is a high value added product with many applications in the food, fragrance and pharmaceutical industries. A natural and low-cost method to produce vanillin is by microbial bioconversions through ferulic acid. Until now, limited microorganisms have been found capable of bioconverting ferulic acid to vanillin at high yield. This study aimed to screen halotolerant strains of bacteria from Larnaca Salt Lake which generate vanillin and vanillic acid from ferulic acid. From a total of 50 halotolenant/halophilic strains 8 grew in 1 g/L ferulic acid and only 1 Halomonas sp. B15 and 3 Halomonas elognata strains were capable of bioconverting ferulic acid to vanillic acid at 100 g NaCl/L. The highest vanillic acid (365 mg/L) at these conditions generated by Halomonas sp. B15 which corresponds to ferulic acid bioconversion yield of 36.5%. Using the resting cell technique with an initial ferulic acid concentration of 0.5 g/L at low salinity, the highest production of vanillin (245 mg/L) took place after 48 h, corresponding to a bioconversion yield of 49%. This is the first reported Halomonas sp. with high yield of vanillin production from ferulic acid at low salinity.

  16. [Phase transfer catalyzed bioconversion of penicillin G to 6-APA by immobilized penicillin acylase in recyclable aqueous two-phase systems with light/pH sensitive copolymers].

    PubMed

    Jin, Ke-ming; Cao, Xue-jun; Su, Jin; Ma, Li; Zhuang, Ying-ping; Chu, Ju; Zhang, Si-liang

    2008-03-01

    Immobilized penicillin acylase was used for bioconversion of penicillin PG into 6-APA in aqueous two-phase systems consisting of a light-sensitive polymer PNBC and a pH-sensitive polymer PADB. Partition coefficients of 6-APA was found to be about 5.78 in the presence of 1% NaCl. Enzyme kinetics showed that the reaction reached equilibrium at roughly 7 h. The 6-APA mole yields were 85.3% (pH 7.8, 20 degrees C), with about 20% increment as compared with the reaction of single aqueous phase buffer. The partition coefficient of PG (Na) varied scarcely, while that of the product, 6-APA and phenylacetic acid (PA) significantly varied due to Donnan effect of the phase systems and hydrophobicity of the products. The variation of the partition coefficients of the products also affected the bioconversion yield of the products. In the aqueous two-phase systems, the substrate, PG, the products of 6-APA and PA were biased in the top phase, while immobilized penicillin acylase at completely partitioned at the bottom. The substrate and PG entered the bottom phase, where it was catalyzed into 6-APA and PA and entered the top phase. Inhibition of the substrate and products was removed to result in improvement of the product yield, and the immobilized enzyme showed higher efficiency than the immobilized cells and occupied smaller volume. Compared with the free enzyme, immobilized enzyme had greater stability, longer life-time, and was completely partitioned in the bottom phase and recycle. Bioconversion in two-phase systems using immobilized penicillin acylase showed outstanding advantage. The light-sensitive copolymer forming aqueous two-phase systems could be recovered by laser radiation at 488 nm or filtered 450 nm light, while pH-sensitive polymer PADB could be recovered at the isoelectric point (pH 4.1). The recovery of the two copolymers was between 95% and 99%.

  17. Temperature Increase Negatively Affects the Fatty Acid Bioconversion Capacity of Rainbow Trout (Oncorhynchus mykiss) Fed a Linseed Oil-Based Diet

    PubMed Central

    Mellery, Julie; Geay, Florian; Tocher, Douglas R.; Kestemont, Patrick; Debier, Cathy; Rollin, Xavier; Larondelle, Yvan

    2016-01-01

    Aquaculture is meant to provide fish rich in omega-3 long chain polyunsaturated fatty acids (n-3 LC-PUFA). This objective must be reached despite (1) the necessity to replace the finite and limited fish oil in feed production and (2) the increased temperature of the supply water induced by the global warming. The objective of the present paper was to determine to what extent increased water temperature influences the fatty acid bioconversion capacity of rainbow trout (Oncorhynchus mykiss) fed a plant-derived diet. Fish were fed two diets formulated with fish oil (FO) or linseed oil (LO) as only added lipid source at the optimal water temperature of 15°C or at the increased water temperature of 19°C for 60 days. We observed that a temperature increase close to the upper limit of the species temperature tolerance range negatively affected the feed efficiency of rainbow trout fed LO despite a higher feed intake. The negative impact of increased water temperature on fatty acid bioconversion capacity appeared also to be quite clear considering the reduced expression of fatty acid desaturase 2 in liver and intestine and the reduced Δ6 desaturase enzymatic activity in intestinal microsomes. The present results also highlighted a negative impact of increased temperature on the apparent in vivo enzymatic activity of Δ5 and Δ6 desaturases of fish fed LO. Interestingly, this last parameter appeared less affected than those mentioned above. This study highlights that the increased temperature that rainbow trout may face due to global warming could reduce their fatty acid bioconversion capacity. The unavoidable replacement of finite fish oil by more sustainable, readily available and economically viable alternative lipid sources in aquaculture feeds should take this undeniable environmental issue on aquaculture productivity into account. PMID:27736913

  18. Temperature Increase Negatively Affects the Fatty Acid Bioconversion Capacity of Rainbow Trout (Oncorhynchus mykiss) Fed a Linseed Oil-Based Diet.

    PubMed

    Mellery, Julie; Geay, Florian; Tocher, Douglas R; Kestemont, Patrick; Debier, Cathy; Rollin, Xavier; Larondelle, Yvan

    2016-01-01

    Aquaculture is meant to provide fish rich in omega-3 long chain polyunsaturated fatty acids (n-3 LC-PUFA). This objective must be reached despite (1) the necessity to replace the finite and limited fish oil in feed production and (2) the increased temperature of the supply water induced by the global warming. The objective of the present paper was to determine to what extent increased water temperature influences the fatty acid bioconversion capacity of rainbow trout (Oncorhynchus mykiss) fed a plant-derived diet. Fish were fed two diets formulated with fish oil (FO) or linseed oil (LO) as only added lipid source at the optimal water temperature of 15°C or at the increased water temperature of 19°C for 60 days. We observed that a temperature increase close to the upper limit of the species temperature tolerance range negatively affected the feed efficiency of rainbow trout fed LO despite a higher feed intake. The negative impact of increased water temperature on fatty acid bioconversion capacity appeared also to be quite clear considering the reduced expression of fatty acid desaturase 2 in liver and intestine and the reduced Δ6 desaturase enzymatic activity in intestinal microsomes. The present results also highlighted a negative impact of increased temperature on the apparent in vivo enzymatic activity of Δ5 and Δ6 desaturases of fish fed LO. Interestingly, this last parameter appeared less affected than those mentioned above. This study highlights that the increased temperature that rainbow trout may face due to global warming could reduce their fatty acid bioconversion capacity. The unavoidable replacement of finite fish oil by more sustainable, readily available and economically viable alternative lipid sources in aquaculture feeds should take this undeniable environmental issue on aquaculture productivity into account.

  19. High-level expression of thermostable cellulolytic enzymes in tobacco transplastomic plants and their use in hydrolysis of an industrially pretreated Arundo donax L. biomass.

    PubMed

    Castiglia, Daniela; Sannino, Lorenza; Marcolongo, Loredana; Ionata, Elena; Tamburino, Rachele; De Stradis, Angelo; Cobucci-Ponzano, Beatrice; Moracci, Marco; La Cara, Francesco; Scotti, Nunzia

    2016-01-01

    Biofuels production from plant biomasses is a complex multi-step process with important economic burdens. Several biotechnological approaches have been pursued to reduce biofuels production costs. The aim of the present study was to explore the production in tobacco plastome of three genes encoding (hemi)cellulolytic enzymes from thermophilic and hyperthermophilic bacterium and Archaea, respectively, and test their application in the bioconversion of an important industrially pretreated biomass feedstock (A. donax) for production of second-generation biofuels. The selected enzymes, endoglucanase, endo-β-1,4-xylanase and β-glucosidase, were expressed in tobacco plastome with a protein yield range from 2 % to more than 75 % of total soluble proteins (TSP). The accumulation of endoglucanase (up to 2 % TSP) gave altered plant phenotypes whose severity was directly linked to the enzyme yield. The most severe seedling-lethal phenotype was due to the impairment of plastid development associated to the binding of endoglucanase protein to thylakoids. Endo-β-1,4-xylanase and β-glucosidase, produced at very high level without detrimental effects on plant development, were enriched (fourfold) by heat treatment (105.4 and 255.4 U/mg, respectively). Both plastid-derived biocatalysts retained the main features of the native or recombinantly expressed enzymes with interesting differences. Plastid-derived xylanase and β-glucosidase resulted more thermophilic than the E. coli recombinant and native counterpart, respectively. Bioconversion experiments, carried out at 50 and 60 °C, demonstrated that plastid-derived enzymes were able to hydrolyse an industrially pretreated giant reed biomass. In particular, the replacement of commercial enzyme with plastid-derived xylanase, at 60 °C, produced an increase of both xylose recovery and hydrolysis rate; whereas the replacement of both xylanase and β-glucosidase produced glucose levels similar to those observed with the commercial cocktails, and xylose yields always higher in the whole 24-72 h range. The very high production level of thermophilic and hyperthermophilic enzymes, their stability and bioconversion efficiencies described in this study demonstrate that plastid transformation represents a real cost-effective production platform for cellulolytic enzymes.

  20. Lignocellulosic Biomass: A Sustainable Bioenergy Source for the Future.

    PubMed

    Fatma, Shabih; Hameed, Amir; Noman, Muhammad; Ahmed, Temoor; Shahid, Muhammad; Tariq, Mohsin; Sohail, Imran; Tabassum, Romana

    2018-01-01

    Increasing population and industrialization are continuously oppressing the existing energy resources and depleting the global fuel reservoirs. The elevated pollutions from the continuous consumption of non-renewable fossil fuels also seriously contaminating the surrounding environment. The use of alternate energy sources can be an environment-friendly solution to cope these challenges. Among the renewable energy sources biofuels (biomass-derived fuels) can serve as a better alternative to reduce the reliance on non-renewable fossil fuels. Bioethanol is one of the most widely consumed biofuels of today's world. The main objective of this review is to highlight the significance of lignocellulosic biomass as a potential source for the production of biofuels like bioethanol, biodiesel or biogas. We discuss the application of various methods for the bioconversion of lignocellulosic biomass to end products i.e. biofuels. The lignocellulosic biomass must be pretreated to disintegrate lignocellulosic complexes and to expose its chemical components for downstream processes. After pretreatment, the lignocellulosic biomass is then subjected to saccharification either via acidic or enzymatic hydrolysis. Thereafter, the monomeric sugars resulted from hydrolysis step are further processed into biofuel i.e. bioethanol, biodiesel or butanol etc. through the fermentation process. The fermented impure product is then purified through the distillation process to obtain pure biofuel. Renewable energy sources represent the potential fuel alternatives to overcome the global energy crises in a sustainable and eco-friendly manner. In future, biofuels may replenish the conventional non-renewable energy resources due to their renewability and several other advantages. Lignocellulosic biomass offers the most economical biomass to generate biofuels. However, extensive research is required for the commercial production of an efficient integrated biotransformation process for the production of lignocellulose mediated biofuels. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Uncovering the Potential of Termite Gut Microbiome for Lignocellulose Bioconversion in Anaerobic Batch Bioreactors

    PubMed Central

    Auer, Lucas; Lazuka, Adèle; Sillam-Dussès, David; Miambi, Edouard; O'Donohue, Michael; Hernandez-Raquet, Guillermina

    2017-01-01

    Termites are xylophages, being able to digest a wide variety of lignocellulosic biomass including wood with high lignin content. This ability to feed on recalcitrant plant material is the result of complex symbiotic relationships, which involve termite-specific gut microbiomes. Therefore, these represent a potential source of microorganisms for the bioconversion of lignocellulose in bioprocesses targeting the production of carboxylates. In this study, gut microbiomes of four termite species were studied for their capacity to degrade wheat straw and produce carboxylates in controlled bioreactors. All of the gut microbiomes successfully degraded lignocellulose and up to 45% w/w of wheat straw degradation was observed, with the Nasutitermes ephratae gut-microbiome displaying the highest levels of wheat straw degradation, carboxylate production and enzymatic activity. Comparing the 16S rRNA gene diversity of the initial gut inocula to the bacterial communities in lignocellulose degradation bioreactors revealed important changes in community diversity. In particular, taxa such as Spirochaetes and Fibrobacteres that were highly abundant in the initial gut inocula were replaced by Firmicutes and Proteobacteria at the end of incubation in wheat straw bioreactors. Overall, this study demonstrates that termite-gut microbiomes constitute a reservoir of lignocellulose-degrading bacteria that can be harnessed in artificial conditions for biomass conversion processes that lead to the production of useful molecules. PMID:29312279

  2. Bioconversion of natural gas to liquid fuel: opportunities and challenges.

    PubMed

    Fei, Qiang; Guarnieri, Michael T; Tao, Ling; Laurens, Lieve M L; Dowe, Nancy; Pienkos, Philip T

    2014-01-01

    Natural gas is a mixture of low molecular weight hydrocarbon gases that can be generated from either fossil or anthropogenic resources. Although natural gas is used as a transportation fuel, constraints in storage, relatively low energy content (MJ/L), and delivery have limited widespread adoption. Advanced utilization of natural gas has been explored for biofuel production by microorganisms. In recent years, the aerobic bioconversion of natural gas (or primarily the methane content of natural gas) into liquid fuels (Bio-GTL) by biocatalysts (methanotrophs) has gained increasing attention as a promising alternative for drop-in biofuel production. Methanotrophic bacteria are capable of converting methane into microbial lipids, which can in turn be converted into renewable diesel via a hydrotreating process. In this paper, biodiversity, catalytic properties and key enzymes and pathways of these microbes are summarized. Bioprocess technologies are discussed based upon existing literature, including cultivation conditions, fermentation modes, bioreactor design, and lipid extraction and upgrading. This review also outlines the potential of Bio-GTL using methane as an alternative carbon source as well as the major challenges and future research needs of microbial lipid accumulation derived from methane, key performance index, and techno-economic analysis. An analysis of raw material costs suggests that methane-derived diesel fuel has the potential to be competitive with petroleum-derived diesel. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Grain sorghum is a viable feedstock for ethanol production.

    PubMed

    Wang, D; Bean, S; McLaren, J; Seib, P; Madl, R; Tuinstra, M; Shi, Y; Lenz, M; Wu, X; Zhao, R

    2008-05-01

    Sorghum is a major cereal crop in the USA. However, sorghum has been underutilized as a renewable feedstock for bioenergy. The goal of this research was to improve the bioconversion efficiency for biofuels and biobased products from processed sorghum. The main focus was to understand the relationship among "genetics-structure-function-conversion" and the key factors impacting ethanol production, as well as to develop an energy life cycle analysis model (ELCAM) to quantify and prioritize the saving potential from factors identified in this research. Genetic lines with extremely high and low ethanol fermentation efficiency and some specific attributes that may be manipulated to improve the bioconversion rate of sorghum were identified. In general, ethanol yield increased as starch content increased. However, no linear relationship between starch content and fermentation efficiency was found. Key factors affecting the ethanol fermentation efficiency of sorghum include protein digestibility, level of extractable proteins, protein and starch interaction, mash viscosity, amount of phenolic compounds, ratio of amylose to amylopectin, and formation of amylose-lipid complexes in the mash. A platform ELCAM with a base case showed a positive net energy value (NEV) = 25,500 Btu/gal EtOH. ELCAM cases were used to identify factors that most impact sorghum use. For example, a yield increase of 40 bu/ac resulted in NEV increasing from 7 million to 12 million Btu/ac. An 8% increase in starch provided an incremental 1.2 million Btu/ac.

  4. Biosynthesis of tert-butyl (3R,5S)-6-chloro-3,5-dihydroxyhexanoate by carbonyl reductase from Rhodosporidium toruloides in mono and biphasic media.

    PubMed

    Liu, Zhi-Qiang; Wu, Lin; Zheng, Ling; Wang, Wen-Zhong; Zhang, Xiao-Jian; Jin, Li-Qun; Zheng, Yu-Guo

    2018-02-01

    tert-Butyl (3R,5S)-6-chloro-3,5-dihydroxyhexanoate ((3R,5S)-CDHH) is the key intermediate for synthesis of atorvastatin and rosuvastatin. Carbonyl reductase exhibits excellent activity toward tert-butyl (S)-6-chloro-5-hydroxy-3-oxohexanoate ((S)-CHOH) to synthesize (3R,5S)-CDHH. In this study, a whole cell biosynthesis reaction system to produce (3R,5S)-CDHH was constructed in organic solvents. A solution of 10% (v/v) Tween-80 was introduced to the reaction system as a co-solvent, which greatly enhanced biotransformation process, giving 98.9% yield, >99% ee and 1.8-fold higher space time yield in 5 h bioconversion of 1 M (S)-CHOH, compared with 98.7% yield and >99% ee in 9 h bioconversion of a purely aqueous reaction system. Moreover, a water-octanol biphasic reaction system was built and 20% of octanol was added as reservoir of substrate resulting in 98% yield, >99% ee and 4.08 mmol L -1  h -1  g -1 (wet cell weight) space time yield. This study paved a way for the whole cell biosynthesis of (3R,5S)-CDHH in mono and biphasic media. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Evaluation of process performance, energy consumption and microbiota characterization in a ceramic membrane bioreactor for ex-situ biomethanation of H2 and CO2.

    PubMed

    Alfaro, Natalia; Fdz-Polanco, María; Fdz-Polanco, Fernando; Díaz, Israel

    2018-06-01

    The performance of a pilot ceramic membrane bioreactor for the bioconversion of H 2 and CO 2 to bioCH 4 was evaluated in thermophilic conditions. The loading rate was between 10 and 30 m 3  H 2 /m 3 reactor  d and the system transformed 95% of H 2 fed. The highest methane yield found was 0.22 m 3  CH 4 /m 3  H 2 , close to the maximum stoichiometric value (0.25 m 3  CH 4 /m 3  H 2 ) thus indicating that archaeas employed almost all H 2 transferred to produce CH 4 . k L a value of 268 h -1 was reached at 30 m 3  H 2 /m 3 reactor  d. DGGE and FISH revealed a remarkable archaeas increase related to the selection-effect of H 2 on community composition over time. Methanothermobacter thermautotrophicus was the archaea found with high level of similarity. This study verified the successful application of membrane technology to efficiently transfer H 2 from gas to the liquid phase, the development of a hydrogenotrophic community from a conventional thermophilic sludge and the technical feasibility of the bioconversion. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Bioconversion of Natural Gas to Liquid Fuel. Opportunities and Challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fei, Qiang; Guarnieri, Michael T.; Tao, Ling

    2014-05-01

    Natural gas is a mixture of low molecular weight hydrocarbon gases that can be generated from either fossil or anthropogenic resources. Although natural gas is used as a transportation fuel, constraints in storage, relatively low energy content (MJ/L), and delivery have limited widespread adoption. Advanced utilization of natural gas has been explored for biofuel production by microorganisms. In recent years, the aerobic bioconversion of natural gas (or primarily the methane content of natural gas) into liquid fuels (Bio-GTL) by biocatalysts (methanotrophs) has gained increasing attention as a promising alternative for drop-in biofuel production. Moreover, methanotrophic bacteria are capable of convertingmore » methane into microbial lipids, which can in turn be converted into renewable diesel via a hydrotreating process. In this paper, biodiversity, catalytic properties and key enzymes and pathways of these microbes are summarized. Bioprocess technologies are discussed based upon existing literature, including cultivation conditions, fermentation modes, bioreactor design, and lipid extraction and upgrading. Our review also outlines the potential of Bio-GTL using methane as an alternative carbon source as well as the major challenges and future research needs of microbial lipid accumulation derived from methane, key performance index, and techno-economic analysis. An analysis of raw material costs suggests that methane-derived diesel fuel has the potential to be competitive with petroleum-derived diesel.« less

  7. Bioconversion of natural gas to liquid fuel: Opportunities and challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fei, Q; Guarnieri, MT; Tao, L

    2014-05-01

    Natural gas is a mixture of low molecular weight hydrocarbon gases that can be generated from either fossil or anthropogenic resources. Although natural gas is used as a transportation fuel, constraints in storage, relatively low energy content (MJ/L), and delivery have limited widespread adoption. Advanced utilization of natural gas has been explored for biofuel production by microorganisms. In recent years, the aerobic bioconversion of natural gas (or primarily the methane content of natural gas) into liquid fuels (Bio-GTL) by biocatalysts (methanotrophs) has gained increasing attention as a promising alternative for drop-in biofuel production. Methanotrophic bacteria are capable of converting methanemore » into microbial lipids, which can in turn be converted into renewable diesel via a hydrotreating process. In this paper, biodiversity, catalytic properties and key enzymes and pathways of these microbes are summarized. Bioprocess technologies are discussed based upon existing literature, including cultivation conditions, fermentation modes, bioreactor design, and lipid extraction and upgrading. This review also outlines the potential of Bio-GTL using methane as an alternative carbon source as well as the major challenges and future research needs of microbial lipid accumulation derived from methane, key performance index, and techno-economic analysis. An analysis of raw material costs suggests that methane-derived diesel fuel has the potential to be competitive with petroleum-derived diesel. (C) 2014 The Authors. Published by Elsevier Inc.« less

  8. Application of a chitosan-immobilized Talaromyces thermophilus lipase to a batch biodiesel production from waste frying oils.

    PubMed

    Romdhane, Ines Belhaj-Ben; Romdhane, Zamen Ben; Bouzid, Maha; Gargouri, Ali; Belghith, Hafedh

    2013-12-01

    Waste frying oil, which not only harms people's health but also causes environmental pollution, can be a good alternative to partially substitute petroleum diesel through transesterification reaction. This oil contained 8.8 % of free fatty acids, which cause a problem in a base-catalyzed process. In this study, synthesis of biodiesel was efficiently catalyzed by the covalently immobilized Talaromyces thermophilus lipase and allowed bioconversion yield up to 92 % after 24 h of reaction time. The optimal molar ratio was four to six parts of methanol to one part of oil with a biocatalyst loaded of 25 wt.% of oil. Further, experiments revealed that T. thermophilus lipase, immobilized by a multipoint covalent liaison onto activated chitosan via a short spacer (glutaraldehyde), was sufficiently tolerant to methanol. In fact, using the stepwise addition of methanol, no significant difference was observed from the one-step whole addition at the start of reaction. The batch biodiesel synthesis was performed in a fixed bed reactor with a lipase loaded of 10 g. The bioconversion yield of 98 % was attained after a 5-h reaction time. The bioreactor was operated successfully for almost 150 h without any changes in the initial conversion yield. Most of the chemical and physical properties of the produced biodiesel meet the European and USA standard specifications of biodiesel fuels.

  9. [Effect of ensilage on bioconversion of switchgrass to ethanol based on liquid hot water pretreatment].

    PubMed

    Wu, Wentao; Ju, Meiting; Liu, Jinpeng; Liu, Boqun

    2016-04-25

    Ensilage is a traditional way of preserving fresh biomass. However, in order to apply ensilage to the ethanol biorefinery, two parameters need to be evaluated: quantity and quality changes of the biomass; and its effects on bioconversion process. To study these two aspects, switchgrass harvested on three different time points (Early, mid and late fall) were used as feedstock. The early fall harvested biomass was ensiled at 5 moisture levels ranging from 30% to 70%. Silage of 40% moisture and 3 other raw switchgrass were pretreated with liquid hot water, followed by enzymatic hydrolysis as well as simultaneous saccharification and fermentation. After 21 days storage pH values of all silages decreased below 4.0 and the dry matter losses were less than 2.0%, and structural sugars contents did not change dramatically. Liquid hot water caused more hemicellulose dissolution in the silage than in unensiled switchgrass. However, ensilage also increased the risk of releasing more sugar degradation products; After enzymatic hydrolysis, silage obtained higher total glucose, xylose and galactose yields than raw materials; After simultaneous saccharification and fermentation, ethanol concentration in silage was 12.1 g/L, higher than the unensiled switchgrass (10.3 g/L, 9.7 g/L and 10.6 g/L for early, mid and late fall respectively). Our results suggest that ensilage helps increase pretreatment efficiency and sugar yield, which increases final ethanol production.

  10. Highly effective, regiospecific reduction of chalcone by cyanobacteria leads to the formation of dihydrochalcone: two steps towards natural sweetness.

    PubMed

    Żyszka, Beata; Anioł, Mirosław; Lipok, Jacek

    2017-08-04

    Chalcones are the biogenetic precursors of all known flavonoids, which play an essential role in various metabolic processes in photosynthesizing organisms. The use of whole cyanobacteria cells in a two-step, light-catalysed regioselective bio-reduction of chalcone, leading to the formation of the corresponding dihydrochalcone, is reported. The prokaryotic microalgae cyanobacteria are known to produce phenolic compounds, including flavonoids, as natural components of cells. It seems logical that organisms producing such compounds possess a suitable "enzymatic apparatus" to carry out their biotransformation. Therefore, determination of the ability of whole cells of selected cyanobacteria to carry out biocatalytic transformations of chalcone, the biogenetic precursor of all known flavonoids, was the aim of our study. Chalcone was found to be converted to dihydrochalcone by all examined cyanobacterial strains; however, the effectiveness of this process depends on the strain with biotransformation yields ranging from 3% to >99%. The most effective biocatalysts are Anabaena laxa, Aphanizomenon klebahnii, Nodularia moravica, Synechocystis aquatilis (>99% yield) and Merismopedia glauca (92% yield). The strains Anabaena sp. and Chroococcus minutus transformed chalcone in more than one way, forming a few products; however, dihydrochalcone was the dominant product. The course of biotransformation shed light on the pathway of chalcone conversion, indicating that the process proceeds through the intermediate cis-chalcone. The scaled-up process, conducted on a preparative scale and by using a mini-pilot photobioreactor, fully confirmed the high effectiveness of this bioconversion. Moreover, in the case of the mini-pilot photobioreactor batch cultures, the optimization of culturing conditions allowed the shortening of the process conducted by A. klebahnii by 50% (from 8 to 4 days), maintaining its >99% yield. This is the first report related to the use of whole cells of halophilic and freshwater cyanobacteria strains in a two-step, light-catalysed regioselective bio-reduction of chalcone, leading to the formation of the corresponding dihydrochalcone. The total bioconversion of chalcone in analytical, preparative, and mini-pilot scales of this process creates the possibility of its use in the food industry for the production of natural sweeteners.

  11. Platform construction of molecular breeding for utilization of brown macroalgae.

    PubMed

    Takagi, Toshiyuki; Kuroda, Kouichi; Ueda, Mitsuyoshi

    2018-01-01

    Brown macroalgae are characterized by a large size and high productivity without requiring arable land, fresh water, and fertilizer. Furthermore, since brown macroalgae contain little or no lignin, simple biorefinery processing can efficiently produce sugars from this material. Therefore, brown macroalgae have attracted attention as an alternative feedstock for bioethanol production. However, the utilization of biotechnologies previously developed for terrestrial biomass processing results in difficulties in the bioconversion of brown macroalgae. Recently, several studies have developed biotechnologies for using major carbohydrates of brown macroalgae, such as laminarin, mannitol, and alginate. This review focuses on these fermentation biotechnologies using natural or engineered microorganisms. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  12. Application of rumen microorganisms for anaerobic bioconversion of lignocellulosic biomass.

    PubMed

    Yue, Zheng-Bo; Li, Wen-Wei; Yu, Han-Qing

    2013-01-01

    Rumen in the mammalian animals is a natural cellulose-degrading system and the microorganisms inside have been found to be able to effectively digest lignocellulosic biomass. Furthermore, methane or volatile fatty acids, which could be further converted to other biofuels, are the two major products in such a system. This paper offers an overview of recent development in the application of rumen microorganisms for lignocellulosic biomass conversion. Application of recent molecular tools in the analysis of rumen microbial community, progress in the development of artificial rumen reactors, the latest research results about characterizing rumen-dominated anaerobic digestion process and energy products are summarized. Also, the potential application of such a rumen-dominated process is discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Sulfur deficiency changes mycosporine-like amino acid (MAA) composition of Anabaena variabilis PCC 7937: a possible role of sulfur in MAA bioconversion.

    PubMed

    Singh, Shailendra P; Klisch, Manfred; Sinha, Rajeshwar P; Häder, Donat-Peter

    2010-01-01

    In the present investigation we show for the first time that bioconversion of a primary mycosporine-like amino acid (MAA) into a secondary MAA is regulated by sulfur deficiency in the cyanobacterium Anabaena variabilis PCC 7937. This cyanobacterium synthesizes the primary MAA shinorine (RT = 2.2 min, lambda(max) = 334 nm) under normal conditions (PAR + UV-A + UV-B); however, under sulfur deficiency, a secondary MAA palythine-serine (RT = 3.9 min, lambda(max) = 320 nm) appears. Addition of methionine to sulfur-deficient cultures resulted in the disappearance of palythine-serine, suggesting the role of primary MAAs under sulfur deficiency in recycling of methionine by donating the methyl group from the glycine subunit of shinorine to tetrahydrofolate to regenerate the methionine from homocysteine. This is also the first report for the synthesis of palythine-serine by cyanobacteria which has so far been reported only from corals. Addition of methionine also affected the conversion of mycosporine-glycine into shinorine, consequently, resulted in the appearance of mycosporine-glycine (RT = 3.6 min, lambda(max) = 310 nm). Our results also suggest that palythine-serine is synthesized from shinorine. Based on these results we propose that glycine decarboxylase is the potential enzyme that catalyzes the bioconversion of shinorine to palythine-serine by decarboxylation and demethylation of the glycine unit of shinorine.

  14. Fermentation of lignocellulosic sugars to acetic acid by Moorella thermoacetica.

    PubMed

    Ehsanipour, Mandana; Suko, Azra Vajzovic; Bura, Renata

    2016-06-01

    A systematic study of bioconversion of lignocellulosic sugars to acetic acid by Moorella thermoacetica (strain ATCC 39073) was conducted. Four different water-soluble fractions (hydrolysates) obtained after steam pretreatment of lignocellulosic biomass were selected and fermented to acetic acid in batch fermentations. M. thermoacetica can effectively ferment xylose and glucose in hydrolysates from wheat straw, forest residues, switchgrass, and sugarcane straw to acetic acid. Xylose and glucose were completely utilized, with xylose being consumed first. M. thermoacetica consumed up to 62 % of arabinose, 49 % galactose and 66 % of mannose within 72 h of fermentation in the mixture of lignocellulosic sugars. The highest acetic acid yield was obtained from sugarcane straw hydrolysate, with 71 % of theoretical yield based on total sugars (17 g/L acetic acid from 24 g/L total sugars). The lowest acetic acid yield was observed in forest residues hydrolysate, with 39 % of theoretical yield based on total sugars (18 g/L acetic acid from 49 g/L total sugars). Process derived compounds from steam explosion pretreatment, including 5-hydroxymethylfurfural (0.4 g/L), furfural (0.1 g/L) and total phenolics (3 g/L), did not inhibit microbial growth and acetic acid production yield. This research identified two major factors that adversely affected acetic acid yield in all hydrolysates, especially in forest residues: (i) glucose to xylose ratio and (ii) incomplete consumption of arabinose, galactose and mannose. For efficient bioconversion of lignocellulosic sugars to acetic acid, it is imperative to have an appropriate balance of sugars in a hydrolysate. Hence, the choice of lignocellulosic biomass and steam pretreatment design are fundamental steps for the industrial application of this process.

  15. Systems metabolic engineering: the creation of microbial cell factories by rational metabolic design and evolution.

    PubMed

    Furusawa, Chikara; Horinouchi, Takaaki; Hirasawa, Takashi; Shimizu, Hiroshi

    2013-01-01

    It is widely acknowledged that in order to establish sustainable societies, production processes should shift from petrochemical-based processes to bioprocesses. Because bioconversion technologies, in which biomass resources are converted to valuable materials, are preferable to processes dependent on fossil resources, the former should be further developed. The following two approaches can be adopted to improve cellular properties and obtain high productivity and production yield of target products: (1) optimization of cellular metabolic pathways involved in various bioprocesses and (2) creation of stress-tolerant cells that can be active even under severe stress conditions in the bioprocesses. Recent progress in omics analyses has facilitated the analysis of microorganisms based on bioinformatics data for molecular breeding and bioprocess development. Systems metabolic engineering is a new area of study, and it has been defined as a methodology in which metabolic engineering and systems biology are integrated to upgrade the designability of industrially useful microorganisms. This chapter discusses multi-omics analyses and rational design methods for molecular breeding. The first is an example of the rational design of metabolic networks for target production by flux balance analysis using genome-scale metabolic models. Recent progress in the development of genome-scale metabolic models and the application of these models to the design of desirable metabolic networks is also described in this example. The second is an example of evolution engineering with omics analyses for the creation of stress-tolerant microorganisms. Long-term culture experiments to obtain the desired phenotypes and omics analyses to identify the phenotypic changes are described here.

  16. A review of biological delignification and detoxification methods for lignocellulosic bioethanol production.

    PubMed

    Moreno, Antonio D; Ibarra, David; Alvira, Pablo; Tomás-Pejó, Elia; Ballesteros, Mercedes

    2015-01-01

    Future biorefineries will integrate biomass conversion processes to produce fuels, power, heat and value-added chemicals. Due to its low price and wide distribution, lignocellulosic biomass is expected to play an important role toward this goal. Regarding renewable biofuel production, bioethanol from lignocellulosic feedstocks is considered the most feasible option for fossil fuels replacement since these raw materials do not compete with food or feed crops. In the overall process, lignin, the natural barrier of the lignocellulosic biomass, represents an important limiting factor in biomass digestibility. In order to reduce the recalcitrant structure of lignocellulose, biological pretreatments have been promoted as sustainable and environmentally friendly alternatives to traditional physico-chemical technologies, which are expensive and pollute the environment. These approaches include the use of diverse white-rot fungi and/or ligninolytic enzymes, which disrupt lignin polymers and facilitate the bioconversion of the sugar fraction into ethanol. As there is still no suitable biological pretreatment technology ready to scale up in an industrial context, white-rot fungi and/or ligninolytic enzymes have also been proposed to overcome, in a separated or in situ biodetoxification step, the effect of the inhibitors produced by non-biological pretreatments. The present work reviews the latest studies regarding the application of different microorganisms or enzymes as useful and environmentally friendly delignification and detoxification technologies for lignocellulosic biofuel production. This review also points out the main challenges and possible ways to make these technologies a reality for the bioethanol industry.

  17. How to Establish a Bioregenerative Life Support System for Long-Term Crewed Missions to the Moon or Mars.

    PubMed

    Fu, Yuming; Li, Leyuan; Xie, Beizhen; Dong, Chen; Wang, Mingjuan; Jia, Boyang; Shao, Lingzhi; Dong, Yingying; Deng, Shengda; Liu, Hui; Liu, Guanghui; Liu, Bojie; Hu, Dawei; Liu, Hong

    2016-12-01

    To conduct crewed simulation experiments of bioregenerative life support systems on the ground is a critical step for human life support in deep-space exploration. An artificial closed ecosystem named Lunar Palace 1 was built through integrating efficient higher plant cultivation, animal protein production, urine nitrogen recycling, and bioconversion of solid waste. Subsequently, a 105-day, multicrew, closed integrative bioregenerative life support systems experiment in Lunar Palace 1 was carried out from February through May 2014. The results show that environmental conditions as well as the gas balance between O 2 and CO 2 in the system were well maintained during the 105-day experiment. A total of 21 plant species in this system kept a harmonious coexistent relationship, and 20.5% nitrogen recovery from urine, 41% solid waste degradation, and a small amount of insect in situ production were achieved. During the 105-day experiment, oxygen and water were recycled, and 55% of the food was regenerated. Key Words: Bioregenerative life support systems (BLSS)-Space agriculture-Space life support-Waste recycle-Water recycle. Astrobiology 16, 925-936.

  18. Effects of moisture content of food waste on residue separation, larval growth and larval survival in black soldier fly bioconversion.

    PubMed

    Cheng, Jack Y K; Chiu, Sam L H; Lo, Irene M C

    2017-09-01

    In order to foster sustainable management of food waste, innovations in food waste valorization technologies are crucial. Black soldier fly (BSF) bioconversion is an emerging technology that can turn food waste into high-protein fish feed through the use of BSF larvae. The conventional method of BSF bioconversion is to feed BSF larvae with food waste directly without any moisture adjustment. However, it was reported that difficulty has been experienced in the separation of the residue (larval excreta and undigested material) from the insect biomass due to excessive moisture. In addition to the residue separation problem, the moisture content of the food waste may also affect the growth and survival aspects of BSF larvae. This study aims to determine the most suitable moisture content of food waste that can improve residue separation as well as evaluate the effects of the moisture content of food waste on larval growth and survival. In this study, pre-consumer and post-consumer food waste with different moisture content (70%, 75% and 80%) was fed to BSF larvae in a temperature-controlled rotary drum reactor. The results show that the residue can be effectively separated from the insect biomass by sieving using a 2.36mm sieve, for both types of food waste at 70% and 75% moisture content. However, sieving of the residue was not feasible for food waste at 80% moisture content. On the other hand, reduced moisture content of food waste was found to slow down larval growth. Hence, there is a trade-off between the sieving efficiency of the residue and the larval growth rate. Furthermore, the larval survival rate was not affected by the moisture content of food waste. A high larval survival rate of at least 95% was achieved using a temperature-controlled rotary drum reactor for all treatment groups. The study provides valuable insights for the waste management industry on understanding the effects of moisture content when employing BSF bioconversion for food waste recycling. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Amide-transforming activity of Streptomyces: possible application to the formation of hydroxy amides and aminoalcohols.

    PubMed

    Yamada, Shinya; Miyagawa, Taka-Aki; Yamada, Ren; Shiratori-Takano, Hatsumi; Sayo, Noboru; Saito, Takao; Takano, Hideaki; Beppu, Teruhiko; Ueda, Kenji

    2013-07-01

    To develop an efficient bioconversion process for amides, we screened our collection of Streptomyces strains, mostly obtained from soil, for effective transformers. Five strains, including the SY007 (NBRC 109343) and SY435 (NBRC 109344) of Streptomyces sp., exhibited marked conversion activities from the approximately 700 strains analyzed. These strains transformed diverse amide compounds such as N-acetyltetrahydroquinoline, N-benzoylpyrrolidine, and N-benzoylpiperidine into alcohols or N,O-acetals with high activity and regioselectivity. N,O-acetal was transformed into alcohol by serial tautomerization and reduction reactions. As such, Streptomyces spp. can potentially be used for the efficient preparation of hydroxy amides and aminoalcohols.

  20. Final Scientific/Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Yanna

    To increase our understanding of coal biogasification and move this technology closer toward field scale demonstration, we have thoroughly investigated coal bioconversion both ex situ and in situ. Specifically, we have screened a total of 12 parameters and identified those that exert statistically positive influence on coal biogasification. Based on these evaluations, a recipe for a nutrient solution was developed. With the addition of this nutrient solution, methane yield from Illinois coal was enhanced dramatically. In addition, we have demonstrated that coal bioconversion can be sustained over a long period of time as long as suitable conditions were maintained. Furthermore,more » biogasification of coal was tested under pressure simulating in situ conditions. Surprisingly, pressure was found to have no negative effects on microbial activities. Thus, the same recipe developed for ex situ may be used in situ as well.« less

  1. Characterization of hydrocortisone bioconversion and 16S RNA gene in Synechococcus nidulans cultures.

    PubMed

    Rasoul-Amini, S; Ghasemi, Y; Morowvat, M H; Ghoshoon, M B; Raee, M J; Mosavi-Azam, S B; Montazeri-Najafabady, N; Nouri, F; Parvizi, R; Negintaji, N; Khoubani, S

    2010-01-01

    A unicellular cyanobacterium, Synechococcus nidulans (Pringsheim) Komárek, was isolated from paddy-fields and applied in the biotransformation experiment of hydrocortisone (1). This strain has not been previously tested for steroid bioconversion. Fermentation was carried out in BG-11 medium supplemented with 0.05% substrate at 25 degrees C for 14 days of incubation. The obtained products were chromatographically purified followed by their characterization using spectroscopic methods. 11beta,17beta-dihydroxyandrost-4-en-3-one (2), 11beta-hydroxyandrost-4-en-3,17-dione (3), and androst-4-ene-3,17-dione (4) were the main bioproducts in the hydrocortisone bioconversion. The observed bioreaction characteristics were the side chain degradation of the substrate to prepare compounds (2) and (3) following the 11beta-dehydroxylation for accumulation of the compound (4). Time course study showed the accumulation of the product (2) from the second day of the fermentation and compounds (3) and (4) from the third day. All the metabolites reached their maximum concentration in seven days. Cyanobacterial 16S rRNA gene was also amplified by PCR. Sequences were amplified using the universal prokaryotic primers which amplify a approximately 400-bp region of the 16S rRNA gene. PCR products were sequenced to confirm their authenticity as 16S rRNA gene of cyanobacteria. The result of PCR blasted with other sequenced cyanobacteria in NCBI showed 99% identity to the 16S small subunit rRNA of seven Synechococcus species.

  2. Directed evolution of toluene dioxygenase from Pseudomonas putida for improved selectivity toward cis-indandiol during indene bioconversion.

    PubMed

    Zhang, N; Stewart, B G; Moore, J C; Greasham, R L; Robinson, D K; Buckland, B C; Lee, C

    2000-10-01

    Toluene dioxygenase (TDO) from Pseudomonas putida F1 converts indene to a mixture of cis-indandiol (racemic), 1-indenol, and 1-indanone. The desired product, cis-(1S,2R)-indandiol, is a potential key intermediate in the chemical synthesis of indinavir sulfate (Crixivan), Merck's HIV-1 protease inhibitor for the treatment of AIDS. To reduce the undesirable byproducts 1-indenol and 1-indanone formed during indene bioconversion, the recombinant TDO expressed in Escherichia coli was evolved by directed evolution using the error-prone polymerase chain reaction (epPCR) method. High-throughput fluorometric and spectrophotometric assays were developed for rapid screening of the mutant libraries in a 96-well format. Mutants with reduced 1-indenol by-product formation were identified, and the individual indene bioconversion product profiles of the selected mutants were confirmed by HPLC. Changes in the amino acid sequence of the mutant enzymes were identified by analyzing the nucleotide sequence of the genes. A mutant with the most desirable product profile from each library, defined as the most reduced 1-indenol concentration and with the highest cis-(1S,2R)-indandiol enantiomeric excess, was used to perform each subsequent round of mutagenesis. After three rounds of mutagenesis and screening, mutant 1C4-3G was identified to have a threefold reduction in 1-indenol formation over the wild type (20% vs 60% of total products) and a 40% increase of product (cis-indandiol) yield.

  3. Microplate-Based Evaluation of the Sugar Yield from Giant Reed, Giant Miscanthus and Switchgrass after Mild Chemical Pre-Treatments and Hydrolysis with Tailored Trichoderma Enzymatic Blends.

    PubMed

    Cianchetta, Stefano; Bregoli, Luca; Galletti, Stefania

    2017-11-01

    Giant reed, miscanthus, and switchgrass are considered prominent lignocellulosic feedstocks to obtain fermentable sugars for biofuel production. The bioconversion into sugars requires a delignifying pre-treatment step followed by hydrolysis with cellulase and other accessory enzymes like xylanase, especially in the case of alkali pre-treatments, which retain the hemicellulose fraction. Blends richer in accessory enzymes than commercial mix can be obtained growing fungi on feedstock-based substrates, thus ten selected Trichoderma isolates, including the hypercellulolytic strain Trichoderma reesei Rut-C30, were grown on giant reed, miscanthus, or switchgrass-based substrates. The produced enzymes were used to saccharify the corresponding feedstocks, compared to a commercial enzymatic mix (6 FPU/g). Feedstocks were acid (H 2 SO 4 0.2-2%, w/v) or alkali (NaOH 0.02-0.2%, w/v) pre-treated. A microplate-based approach was chosen for most of the experimental steps due to the large number of samples. The highest bioconversion was generally obtained with Trichoderma harzianum Or4/99 enzymes (78, 89, and 94% final sugar yields at 48 h for giant reed, miscanthus, and switchgrass, respectively), with significant increases compared to the commercial mix, especially with alkaline pre-treatments. The differences in bioconversion yields were only partially caused by xylanases (maximum R 2  = 0.5), indicating a role for other accessory enzymes.

  4. A novel bioconversion for value-added products from food waste using Musca domestica.

    PubMed

    Niu, Yi; Zheng, Dong; Yao, Binghua; Cai, Zizhe; Zhao, Zhimin; Wu, Shengqing; Cong, Peiqing; Yang, Depo

    2017-03-01

    Food waste, as a major part of the municipal solid waste has been generated increasingly worldwide. Efficient and feasible utilization of this waste material for productivity process is significant for both economical and environmental reasons. In the present study, Musca domestica larva was used as the carrier to conduct a bioconversion with food waste to get the value-added maggot protein, oil and organic fertilizers. Methods of adult flies rearing, culture medium adjuvant selection, maggot culture conditions, stocking density and the valorization of the waste have been explored. From the experimental results, every 1000g culture mediums (700g food waste and 300g adjuvant) could be disposed by 1.5g M. domestica eggs under proper culture conditions after emergence in just 4days, 42.95±0.25% of which had been consumed and the culture medium residues could be used as good organic fertilizers, accompanying with the food waste consumption, ∼53.08g dried maggots that contained 57.06±2.19% protein and 15.07±2.03% oil had been produced. The maggot protein for its outstanding pharmacological activities is regarded as a good raw material in the field of medicine and animal feeding. Meanwhile, the maggot oil represents a potential alternative feedstock for biodiesel production. In our study, the maggot biodiesel was obtained after the procedure of transesterification reaction with methanol and the productivity was 87.71%. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Cascade catalysis in membranes with enzyme immobilization for multi-enzymatic conversion of CO2 to methanol.

    PubMed

    Luo, Jianquan; Meyer, Anne S; Mateiu, R V; Pinelo, Manuel

    2015-05-25

    Facile co-immobilization of enzymes is highly desirable for bioconversion methods involving multi-enzymatic cascade reactions. Here we show for the first time that three enzymes can be immobilized in flat-sheet polymeric membranes simultaneously or separately by simple pressure-driven filtration (i.e. by directing membrane fouling formation), without any addition of organic solvent. Such co-immobilization and sequential immobilization systems were examined for the production of methanol from CO2 with formate dehydrogenase (FDH), formaldehyde dehydrogenase (FaldDH) and alcohol dehydrogenase (ADH). Enzyme activity was fully retained by this non-covalent immobilization strategy. The two immobilization systems had similar catalytic efficiencies because the second reaction (formic acid→formaldehyde) catalyzed by FaldDH was found to be the cascade bottleneck (a threshold substrate concentration was required). Moreover, the trade-off between the mitigation of product inhibition and low substrate concentration for the adjacent enzymes probably made the co-immobilization meaningless. Thus, sequential immobilization could be used for multi-enzymatic cascade reactions, as it allowed the operational conditions for each single step to be optimized, not only during the enzyme immobilization but also during the reaction process, and the pressure-driven mass transfer (flow-through mode) could overcome the diffusion resistance between enzymes. This study not only offers a green and facile immobilization method for multi-enzymatic cascade systems, but also reveals the reaction bottleneck and provides possible solutions for the bioconversion of CO2 to methanol. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Helically agitated mixing in dry dilute acid pretreatment enhances the bioconversion of corn stover into ethanol

    PubMed Central

    2014-01-01

    Background Dry dilute acid pretreatment at extremely high solids loading of lignocellulose materials demonstrated promising advantages of no waste water generation, less sugar loss, and low steam consumption while maintaining high hydrolysis yield. However, the routine pretreatment reactor without mixing apparatus was found not suitable for dry pretreatment operation because of poor mixing and mass transfer. In this study, helically agitated mixing was introduced into the dry dilute acid pretreatment of corn stover and its effect on pretreatment efficiency, inhibitor generation, sugar production, and bioconversion efficiency through simultaneous saccharification and ethanol fermentation (SSF) were evaluated. Results The overall cellulose conversion taking account of cellulose loss in pretreatment was used to evaluate the efficiency of pretreatment. The two-phase computational fluid dynamics (CFD) model on dry pretreatment was established and applied to analyze the mixing mechanism. The results showed that the pretreatment efficiency was significantly improved and the inhibitor generation was reduced by the helically agitated mixing, compared to the dry pretreatment without mixing: the ethanol titer and yield from cellulose in the SSF reached 56.20 g/L and 69.43% at the 30% solids loading and 15 FPU/DM cellulase dosage, respectively, corresponding to a 26.5% increase in ethanol titer and 17.2% increase in ethanol yield at the same fermentation conditions. Conclusions The advantage of helically agitated mixing may provide a prototype of dry dilute acid pretreatment processing for future commercial-scale production of cellulosic ethanol. PMID:24387051

  7. Bioconversion of D-galactose to D-tagatose: continuous packed bed reaction with an immobilized thermostable L-arabinose isomerase and efficient purification by selective microbial degradation.

    PubMed

    Liang, Min; Chen, Min; Liu, Xinying; Zhai, Yafei; Liu, Xian-wei; Zhang, Houcheng; Xiao, Min; Wang, Peng

    2012-02-01

    The continuous enzymatic conversion of D-galactose to D-tagatose with an immobilized thermostable L-arabinose isomerase in packed-bed reactor and a novel method for D-tagatose purification were studied. L-arabinose isomerase from Thermoanaerobacter mathranii (TMAI) was recombinantly overexpressed and immobilized in calcium alginate. The effects of pH and temperature on D-tagatose production reaction catalyzed by free and immobilized TMAI were investigated. The optimal condition for free enzyme was pH 8.0, 60°C, 5 mM MnCl(2). However, that for immobilized enzyme was pH 7.5, 75°C, 5 mM MnCl(2). In addition, the catalytic activity of immobilized enzyme at high temperature and low pH was significantly improved compared with free enzyme. The optimum reaction yield with immobilized TMAI increased by four percentage points to 43.9% compared with that of free TMAI. The highest productivity of 10 g/L h was achieved with the yield of 23.3%. Continuous production was performed at 70°C; after 168 h, the reaction yield was still above 30%. The resultant syrup was then incubated with Saccharomyces cerevisiae L1 cells. The selective degradation of D-galactose was achieved, obtaining D-tagatose with the purity above 95%. The established production and separation methods further potentiate the industrial production of D-tagatose via bioconversion and biopurification processes.

  8. An overview: Recycling of solid barley waste generated as a by-product in distillery and brewery.

    PubMed

    Nigam, Poonam Singh

    2017-04-01

    This overview has focused on the options available for the utilisation of residual-biomass generated in distillery and brewery for the production of added-value products. Bio-processing approaches have been reviewed and discussed for the economical bioconversion and utilisation of this waste for the production of bioproducts, such as lactic acid, enzymes, xylitol and animal feed. Though this overview provides several options for the bioprocessing of this residual material, a more suitable one could be chosen according to the processing-facilities available and the amount of residue available in local area. The feasibility of any chosen process should be evaluated on the basis of cost of material available, its local utilisation for animal feed, and the overall economical advantages that could be gained by changing its current traditional landfill use to produce higher added value products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Heliosynthesis: A solar biotechnology based on direct bioconversion of solar energy by photosynthetic cells

    NASA Astrophysics Data System (ADS)

    Gudin, C.

    1982-12-01

    Certain limiting aspects of current technology should be studied, such as the lifetimes of tubing material and the utilization of renewable sources of energy for pumping. Only exocellular or cellular biomass with high specific value, involving small markets and small plant areas (less than 1 ha), will be economically possible for the short term and will allow improvement of this technology. A valorization of the totality of photosynthetic biomass with respect to economics and energy is an absolute necessity. There is an immediate need for genetic studies of microalgae that will allow enhancement or even creation of chemical production satisfying economic and energy needs. Such efforts should permit the rapid establishment of an aggressive and sophisticated solar biotechnology that integrates scientific and technical' developments to meet the new needs of humanity for food, chemicals, and energy, thereby complementing agriculture with a sort of cellular horticulture.

  10. Willow bioenergy plantation research in the Northeast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, E.H.; Abrahamson, L.P.; Kopp, R.F.

    1993-12-31

    Experiments were established in Central New York in the spring of 1987 to evaluate the potential of Salix for biomass production in bioenergy plantations. Emphasis of the research was on developing and refining establishment, tending and maintenance techniques, with complimentary study of breeding, coppice physiology, pests, nutrient use and bioconversion to energy products. Current yields utilizing salix clones developed in cooperation with the University of Toronto in short-rotation intensive culture bioenergy plantations in the Northeast approximate 8 oven dry tons per acre per year with annual harvesting. Successful clones have been identified and culture techniques refined. The results are nowmore » being integrated to establish a 100 acre Salix large-scale bioenergy farm to demonstrate current successful biomass production technology and to provide plantations of sufficient size to test harvesters; adequately assess economics of the systems; and provide large quantities of uniform biomass for pilot-scale conversion facilities.« less

  11. New cost-effective bioconversion process of palm kernel cake into bioinsecticides based on Beauveria bassiana and Isaria javanica.

    PubMed

    do Nascimento Silva, Jaqueline; Mascarin, Gabriel Moura; Dos Santos Gomes, Isabel Cristina; Tinôco, Ricardo Salles; Quintela, Eliane Dias; Dos Reis Castilho, Leda; Freire, Denise Maria Guimarães

    2018-03-01

    The present study aimed to add value to palm oil by-products as substrates to efficiently produce conidia of Beauveria bassiana and Isaria javanica (Hypocreales: Cordycipitaceae) for biological control of the whitefly Bemisia tabaci (Hemiptera: Aleyrodidae), through a solid-state fermentation process using palm kernel cake and palm fiber as nutrient source and solid matrix, respectively. The optimum culture conditions yielded high concentrations of viable conidia after air-drying, when the fungi were grown on palm kernel cake (B. bassiana 7.65 × 10 9 and I. javanica 2.91 × 10 9  conidia g -1 dry substrate) after 6 days under optimal growth conditions set to 60% substrate moisture and 32 °C. Both fungal strains exhibited high efficacy against third-instar whitefly nymphs, inducing mortality up to 62.9 and 56.6% by B. bassiana and I. javanica, respectively, assessed after 9 days post-application in a screenhouse. Furthermore, we noted that insect mortality was strongly correlated with high atmospheric moisture, while B. bassiana appeared to require shorter accumulative hours under high moisture to kill whitefly nymphs compared to I. javanica. Our results underpin a feasible and cost-effective mass production method for aerial conidia, using palm kernel as the main substrate in order to produce efficacious fungal bioinsecticides against an invasive whitefly species in Brazil. Finally, our fermentation process may offer a sustainable and cost-effective means to produce eco-friendly mycoinsecticides, using an abundant agro-industrial by-product from Brazil that will ultimately assist in the integrated management of agricultural insect pests.

  12. Hydroxylative activity of Aspergillus niger towards androst-4-ene and androst-5-ene steroids.

    PubMed

    Świzdor, Alina; Panek, Anna; Milecka-Tronina, Natalia

    2017-10-01

    Aspergillus niger, one of fungal species most frequently used for experimental and industrial-scale biotransformations of various organic compounds, is generally known to transform steroids at 16β position. In this work, application of the strain A. niger KCH910 to bioconversion of dehydroepiandrosterone (DHEA), androstenediol and testosterone is described, with emphasis on the metabolic steps leading to the products. Evidence from this study indicated that incubated 5-ene steroids underwent bioconversion within two metabolic pathways: oxidation by the action of 3β-HSD (3β-hydroxysteroid dehydrogenase) to 4-ene steroids, and minor allylic hydroxylation to epimeric 7-alcohols. Further transformation of the 3-oxo-4-ene metabolites resulted in non-selective 16-hydroxylation. It is the first report on an A. niger strain able to introduce not only 16β- but also 16α-hydroxyl function into steroids. Copyright © 2017. Published by Elsevier Inc.

  13. Bioconversion Using Lactic Acid Bacteria: Ginsenosides, GABA, and Phenolic Compounds.

    PubMed

    Lee, Na-Kyoung; Paik, Hyun-Dong

    2017-05-28

    Lactic acid bacteria (LAB) are used as fermentation starters in vegetable and dairy products and influence the pH and flavors of foods. For many centuries, LAB have been used to manufacture fermented foods; therefore, they are generally regarded as safe. LAB produce various substances, such as lactic acid, β-glucosidase, and β-galactosidase, making them useful as fermentation starters. Existing functional substances have been assessed as fermentation substrates for better component bioavailability or other functions. Representative materials that were bioconverted using LAB have been reported and include minor ginsenosides, γ-aminobutyric acid, equol, aglycones, bioactive isoflavones, genistein, and daidzein, among others. Fermentation mainly involves polyphenol and polysaccharide substrates and is conducted using bacterial strains such as Streptococcus thermophilus, Lactobacillus plantarum, and Bifidobacterium sp. In this review, we summarize recent studies of bioconversion using LAB and discuss future directions for this field.

  14. [Induction and regulation of cellulase expression in filamentous fungi: a review].

    PubMed

    Zhang, Fei; Bai, Fengwu; Zhao, Xinqing

    2016-11-25

    Production of bioenergy and bio-based chemicals by using fermentable sugars released from low-cost renewable lignocellulosic biomass has received great attention. Efficient cellulolytic enzymes are crucial for lignocellulose bioconversion, but high cellulase production cost is limiting the bioconversion efficiency of cellulosic biomass and industrial applications of lignocellulose biorefinery. Studies on induction and regulation of cellulase in filamentous fungi will help to further develop superior fungal strains for efficient cellulase production and reduce cellulase production cost. With the advances in high-throughput sequencing and gene manipulation technology using fungal strains, an in-depth understanding of cellulase induction and regulation mechanisms of enzyme expression has been achieved. We reviewed recent progresses in the induction and regulation of cellulase expression in several model filamentous fungi, emphasizing sugar transporters, transcription factors and chromatin remodeling. Future prospects in application of artificial zinc finger proteins for cellulase induction and regulation in filamentous fungi were discussed.

  15. Metabolic Engineering toward Sustainable Production of Nylon-6.

    PubMed

    Turk, Stefan C H J; Kloosterman, Wigard P; Ninaber, Dennis K; Kolen, Karin P A M; Knutova, Julia; Suir, Erwin; Schürmann, Martin; Raemakers-Franken, Petronella C; Müller, Monika; de Wildeman, Stefaan M A; Raamsdonk, Leonie M; van der Pol, Ruud; Wu, Liang; Temudo, Margarida F; van der Hoeven, Rob A M; Akeroyd, Michiel; van der Stoel, Roland E; Noorman, Henk J; Bovenberg, Roel A L; Trefzer, Axel C

    2016-01-15

    Nylon-6 is a bulk polymer used for many applications. It consists of the non-natural building block 6-aminocaproic acid, the linear form of caprolactam. Via a retro-synthetic approach, two synthetic pathways were identified for the fermentative production of 6-aminocaproic acid. Both pathways require yet unreported novel biocatalytic steps. We demonstrated proof of these bioconversions by in vitro enzyme assays with a set of selected candidate proteins expressed in Escherichia coli. One of the biosynthetic pathways starts with 2-oxoglutarate and contains bioconversions of the ketoacid elongation pathway known from methanogenic archaea. This pathway was selected for implementation in E. coli and yielded 6-aminocaproic acid at levels up to 160 mg/L in lab-scale batch fermentations. The total amount of 6-aminocaproic acid and related intermediates generated by this pathway exceeded 2 g/L in lab-scale fed-batch fermentations, indicating its potential for further optimization toward large-scale sustainable production of nylon-6.

  16. Thermochemical pretreatments for enhancing succinic acid production from industrial hemp (Cannabis sativa L.).

    PubMed

    Gunnarsson, Ingólfur B; Kuglarz, Mariusz; Karakashev, Dimitar; Angelidaki, Irini

    2015-04-01

    The aim of this study was to develop an efficient thermochemical method for treatment of industrial hemp biomass, in order to increase its bioconversion to succinic acid. Industrial hemp was subjected to various thermochemical pretreatments using 0-3% H2SO4, NaOH or H2O2 at 121-180°C prior to enzymatic hydrolysis. The influence of the different pretreatments on hydrolysis and succinic acid production by Actinobacillus succinogenes 130Z was investigated in batch mode, using anaerobic bottles and bioreactors. Enzymatic hydrolysis and fermentation of hemp material pretreated with 3% H2O2 resulted in the highest overall sugar yield (73.5%), maximum succinic acid titer (21.9 g L(-1)), as well as the highest succinic acid yield (83%). Results obtained clearly demonstrated the impact of different pretreatments on the bioconversion efficiency of industrial hemp into succinic acid. Copyright © 2015. Published by Elsevier Ltd.

  17. Multi-scale process and supply chain modelling: from lignocellulosic feedstock to process and products

    PubMed Central

    Hosseini, Seyed Ali; Shah, Nilay

    2011-01-01

    There is a large body of literature regarding the choice and optimization of different processes for converting feedstock to bioethanol and bio-commodities; moreover, there has been some reasonable technological development in bioconversion methods over the past decade. However, the eventual cost and other important metrics relating to sustainability of biofuel production will be determined not only by the performance of the conversion process, but also by the performance of the entire supply chain from feedstock production to consumption. Moreover, in order to ensure world-class biorefinery performance, both the network and the individual components must be designed appropriately, and allocation of resources over the resulting infrastructure must effectively be performed. The goal of this work is to describe the key challenges in bioenergy supply chain modelling and then to develop a framework and methodology to show how multi-scale modelling can pave the way to answer holistic supply chain questions, such as the prospects for second generation bioenergy crops. PMID:22482032

  18. Modeling of acetate-type fermentation of sugar-containing wastewater under acidic pH conditions.

    PubMed

    Huang, Liang; Pan, Xin-Rong; Wang, Ya-Zhou; Li, Chen-Xuan; Chen, Chang-Bin; Zhao, Quan-Bao; Mu, Yang; Yu, Han-Qing; Li, Wen-Wei

    2018-01-01

    In this study, a kinetic model was developed based on Anaerobic Digestion Model No. 1 to provide insights into the directed production of acetate and methane from sugar-containing wastewater under low pH conditions. The model sufficiently described the dynamics of liquid-phase and gaseous products in an anaerobic membrane bioreactor by comprehensively considering the syntrophic bioconversion steps of sucrose hydrolysis, acidogenesis, acetogenesis and methanogenesis under acidic pH conditions. The modeling results revealed a significant pH-dependency of hydrogenotrophic methanogenesis and ethanol-producing processes that govern the sucrose fermentative pathway through changing the hydrogen yield. The reaction thermodynamics of such acetate-type fermentation were evaluated, and the implications for process optimization by adjusting the hydraulic retention time were discussed. This work sheds light on the acid-stimulated acetate-type fermentation process and may lay a foundation for optimization of resource-oriented processes for treatment of food wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Complete genome sequence of 'Mycobacterium neoaurum' NRRL B-3805, an androstenedione (AD) producer for industrial biotransformation of sterols.

    PubMed

    Rodríguez-García, Antonio; Fernández-Alegre, Estela; Morales, Alejandro; Sola-Landa, Alberto; Lorraine, Jess; Macdonald, Sandy; Dovbnya, Dmitry; Smith, Margaret C M; Donova, Marina; Barreiro, Carlos

    2016-04-20

    Microbial bioconversion of sterols into high value steroid precursors, such as 4-androstene-3,17-dione (AD), is an industrial challenge. Genes and enzymes involved in sterol degradation have been proposed, although the complete pathway is not yet known. The genome sequencing of the AD producer strain 'Mycobacterium neoaurum' NRRL B-3805 (formerly Mycobacterium sp. NRRL B-3805) will serve to elucidate the critical steps for industrial processes and will provide the basis for further genetic engineering. The genome comprises a circular chromosome (5 421 338bp), is devoid of plasmids and contains 4844 protein-coding genes. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Bioconversion of oil sludge into biomass of lipid metabolites for use as a source of biofuel

    NASA Astrophysics Data System (ADS)

    Shchemelinina, T. N.; Matistov, N. V.; Markarova, M. Yu; Anchugova, E. M.

    2018-01-01

    The possibilities for the generation of biofuel from the results of the accumulation of lipids in oil-contaminated environments were studied. This type of accumulation occurs in the biomass of yeast strains Rhodotorula sp. VKM Y-2993D; in bacteria like Pseudomonas libanensis B-3041D and in consortia of microalgal strains such as Acutodesmus obliquus Syko-A Ch-055-12, Chlorella sp. SYKO A Ch-011-10, Monoraphidium sp., and Anabaena sp. The most promising of these for processing petroleum hydrocarbons into biofuels was found to be the consortium of microalgal strains, the content of palmitic acid of which reached 49.0 %, thereby achieving a mid-range cetane number.

  1. Production of dihydrodaidzein and dihydrogenistein by a novel oxygen-tolerant bovine rumen bacterium in the presence of atmospheric oxygen.

    PubMed

    Zhao, Hui; Wang, Xiu-Ling; Zhang, Hong-Lei; Li, Chao-Dong; Wang, Shi-Ying

    2011-11-01

    The original bovine rumen bacterial strain Niu-O16, capable of anaerobically bioconverting isoflavones daidzein and genistein to dihydrodaidzein (DHD) and dihydrogenistein (DHG), respectively, is a rod-shaped obligate anaerobic bacterium. After a long-term domestication, an oxygen-tolerant bacterium, which we named Aeroto-Niu-O16 was obtained. Strain Aeroto-Niu-O16, which can grow in the presence of atmospheric oxygen, differed from the original obligate anaerobic bacterium Niu-O16 by various characteristics, including a change in bacterial shape (from rod to filament), in biochemical traits (from indole negative to indole positive and from amylohydrolysis positive to negative), and point mutations in 16S rRNA gene (G398A and G438A). We found that strain Aeroto-Niu-O16 not only grew aerobically but also converted isoflavones daidzein and genistein to DHD and DHG in the presence of atmospheric oxygen. The bioconversion rate of daidzein and genistein by strain Aeroto-Niu-O16 was 60.3% and 74.1%, respectively. And the maximum bioconversion capacity for daidzein was 1.2 and 1.6 mM for genistein. Furthermore, when we added ascorbic acid (0.15%, m/v) in the cultural medium, the bioconversion rate of daidzein was increased from 60.3% to 71.7%, and that of genistein from 74.1% to 89.2%. This is the first reported oxygen-tolerant isoflavone biotransforming pure culture capable of both growing and executing the reductive activity under aerobic conditions. © Springer-Verlag 2011

  2. Immobilised enzyme microreactor for screening of multi-step bioconversions: characterisation of a de novo transketolase-ω-transaminase pathway to synthesise chiral amino alcohols.

    PubMed

    Matosevic, S; Lye, G J; Baganz, F

    2011-09-20

    Complex molecules are synthesised via a number of multi-step reactions in living cells. In this work, we describe the development of a continuous flow immobilized enzyme microreactor platform for use in evaluation of multi-step bioconversion pathways demonstrating a de novo transketolase/ω-transaminase-linked asymmetric amino alcohol synthesis. The prototype dual microreactor is based on the reversible attachment of His₆-tagged enzymes via Ni-NTA linkage to two surface derivatised capillaries connected in series. Kinetic parameters established for the model transketolase (TK)-catalysed conversion of lithium-hydroxypyruvate (Li-HPA) and glycolaldehyde (GA) to L-erythrulose using a continuous flow system with online monitoring of reaction output was in good agreement with kinetic parameters determined for TK in stop-flow mode. By coupling the transketolase catalysed chiral ketone forming reaction with the biocatalytic addition of an amine to the TK product using a transaminase (ω-TAm) it is possible to generate chiral amino alcohols from achiral starting compounds. We demonstrated this in a two-step configuration, where the TK reaction was followed by the ω-TAm-catalysed amination of L-erythrulose to synthesise 2-amino-1,3,4-butanetriol (ABT). Synthesis of the ABT product via the dual reaction and the on-line monitoring of each component provided a full profile of the de novo two-step bioconversion and demonstrated the utility of this microreactor system to provide in vitro multi-step pathway evaluation. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Production of raw starch-degrading enzyme by Aspergillus sp. and its use in conversion of inedible wild cassava flour to bioethanol.

    PubMed

    Moshi, Anselm P; Hosea, Ken M M; Elisante, Emrode; Mamo, Gashaw; Önnby, Linda; Nges, Ivo Achu

    2016-04-01

    The major bottlenecks in achieving competitive bioethanol fuel are the high cost of feedstock, energy and enzymes employed in pretreatment prior to fermentation. Lignocellulosic biomass has been proposed as an alternative feedstock, but because of its complexity, economic viability is yet to be realized. Therefore, research around non-conventional feedstocks and deployment of bioconversion approaches that downsize the cost of energy and enzymes is justified. In this study, a non-conventional feedstock, inedible wild cassava was used for bioethanol production. Bioconversion of raw starch from the wild cassava to bioethanol at low temperature was investigated using both a co-culture of Aspergillus sp. and Saccharomyces cerevisiae, and a monoculture of the later with enzyme preparation from the former. A newly isolated strain of Aspergillus sp. MZA-3 produced raw starch-degrading enzyme which displayed highest activity of 3.3 U/mL towards raw starch from wild cassava at 50°C, pH 5.5. A co-culture of MZA-3 and S. cerevisiae; and a monoculture of S. cerevisiae and MZA-3 enzyme (both supplemented with glucoamylase) resulted into bioethanol yield (percentage of the theoretical yield) of 91 and 95 at efficiency (percentage) of 84 and 96, respectively. Direct bioconversion of raw starch to bioethanol was achieved at 30°C through the co-culture approach. This could be attractive since it may significantly downsize energy expenses. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  4. Sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) for robust enzymatic saccharification of hardwoods

    Treesearch

    G. S. Wang; X. J. Pan; Junyong Zhu; Roland Gleisner; D. Rockwood

    2009-01-01

    This study demonstrates sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) for robust bioconversion of hardwoods. With only about 4% sodium bisulfite charge on aspen and 30-min pretreatment at temperature 180[...

  5. Saccharification of rice straw by cellulase from a local Trichoderma harzianum SNRS3 for biobutanol production.

    PubMed

    Rahnama, Nooshin; Foo, Hooi Ling; Abdul Rahman, Nor Aini; Ariff, Arbakariya; Md Shah, Umi Kalsom

    2014-12-12

    Rice straw has shown to be a promising agricultural by-product in the bioconversion of biomass to value-added products. Hydrolysis of cellulose, a main constituent of lignocellulosic biomass, is a requirement for fermentable sugar production and its subsequent bioconversion to biofuels such as biobutanol. The high cost of commercial enzymes is a major impediment to the industrial application of cellulases. Therefore, the use of local microbial enzymes has been suggested. Trichoderma harzianum strains are potential CMCase and β-glucosidase producers. However, few researches have been reported on cellulase production by T. harzianum and the subsequent use of the crude cellulase for cellulose enzymatic hydrolysis. For cellulose hydrolysis to be efficiently performed, the presence of the whole set of cellulase components including exoglucanase, endoglucanase, and β-glucosidase at a considerable concentration is required. Biomass recalcitrance is also a bottleneck in the bioconversion of agricultural residues to value-added products. An effective pretreatment could be of central significance in the bioconversion of biomass to biofuels. Rice straw pretreated using various concentrations of NaOH was subjected to enzymatic hydrolysis. The saccharification of rice straw pretreated with 2% (w/v) NaOH using crude cellulase from local T. harzianum SNRS3 resulted in the production of 29.87 g/L reducing sugar and a yield of 0.6 g/g substrate. The use of rice straw hydrolysate as carbon source for biobutanol fermentation by Clostridium acetobutylicum ATCC 824 resulted in an ABE yield, ABE productivity, and biobutanol yield of 0.27 g/g glucose, 0.04 g/L/h and 0.16 g/g glucose, respectively. As a potential β-glucosidase producer, T. harzianum SNRS3 used in this study was able to produce β-glucosidase at the activity of 173.71 U/g substrate. However, for cellulose hydrolysis to be efficient, Filter Paper Activity at a considerable concentration is also required to initiate the hydrolytic reaction. According to the results of our study, FPase is a major component of cellulose hydrolytic enzyme complex system and the reducing sugar rate-limiting enzyme. Our study revealed that rice straw hydrolysate served as a potential substrate for biobutanol production and FPase is a rate-limiting enzyme in saccharification.

  6. Efficient bioconversion of organic wastes to high optical activity of l-lactic acid stimulated by cathode in mixed microbial consortium.

    PubMed

    Xue, Gang; Lai, Sizhou; Li, Xiang; Zhang, Wenjuan; You, Jiguang; Chen, Hong; Qian, Yajie; Gao, Pin; Liu, Zhenhong; Liu, Yanan

    2017-12-12

    Lactic acid is one of the emerging top biomass derived platform chemicals that can be fermented from organic wastes. This study evaluated the potential of Cathodic Electro-Fermentation (CEF) as a novel approach to enhance the yield of high optical activity (OA) of l-lactic acid from organic wastes using mixed microbial consortium. The fermentation process was stimulated through the cathode applied with -100 mV versus standard hydrogen electrode (SHE), which contributed to 4.73 times higher lactic acid productivity (0.6578 g L -1 h -1 ) compared to that in the open circuit control (0.1392 g L -1 h -1 ), and an improved OA of l-lactic acid was also observed (42.3% vs. 3.6% of the open circuit control). The study elucidated that the optimal voltage at -100 mV promoted the conversion of pyruvate to l-lactate by 77.9% compared to the Blank, which triggered the generation of l-lactic acid to occur rapidly even at low concentration of pyruvate. The significant variation of microbial community in family- and genus-level distributions were observed in CEF system. Furthermore, the open-circuit operation test demonstrated that the cathode providing in-situ electron supply was essential to achieve high efficient bioconversion of organic wastes to lactic acid. Our work highlights the feasibility of CEF to steer high value-added fermentation products deriving from organic wastes by the mixed microbial consortium. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Efficient butanol-ethanol (B-E) production from carbon monoxide fermentation by Clostridium carboxidivorans.

    PubMed

    Fernández-Naveira, Ánxela; Abubackar, Haris Nalakath; Veiga, María C; Kennes, Christian

    2016-04-01

    The fermentation of waste gases rich in carbon monoxide using acetogens is an efficient way to obtain valuable biofuels like ethanol and butanol. Different experiments were carried out with the bacterial species Clostridium carboxidivorans as biocatalyst. In batch assays with no pH regulation, after complete substrate exhaustion, acetic acid, butyric acid, and ethanol were detected while only negligible butanol production was observed. On the other side, in bioreactors, with continuous carbon monoxide supply and pH regulation, both C2 and C4 fatty acids were initially formed as well as ethanol and butanol at concentrations never reported before for this type of anaerobic bioconversion of gaseous C1 compounds, showing that the operating conditions significantly affect the metabolic fermentation profile and butanol accumulation. Maximum ethanol and butanol concentrations in the bioreactors were obtained at pH 5.75, reaching values of 5.55 and 2.66 g/L, respectively. The alcohols were produced both from CO fermentation as well as from the bioconversion of previously accumulated acetic and butyric acids, resulting in low residual concentrations of such acids at the end of the bioreactor experiments. CO consumption was often around 50% and reached up to more than 80%. Maximum specific rates of ethanol and butanol production were reached at pH 4.75, with values of 0.16 g/h*g of biomass and 0.07 g/h*g of biomass, respectively, demonstrating that a low pH was more favorable to solventogenesis in this process, although it negatively affects biomass growth which does also play a role in the final alcohol titer.

  8. The prospects of cellulase-producing bacteria for the bioconversion of lignocellulosic biomass.

    PubMed

    Maki, Miranda; Leung, Kam Tin; Qin, Wensheng

    2009-07-29

    Lignocellulosic biomass is a renewable and abundant resource with great potential for bioconversion to value-added bioproducts. However, the biorefining process remains economically unfeasible due to a lack of biocatalysts that can overcome costly hurdles such as cooling from high temperature, pumping of oxygen/stirring, and, neutralization from acidic or basic pH. The extreme environmental resistance of bacteria permits screening and isolation of novel cellulases to help overcome these challenges. Rapid, efficient cellulase screening techniques, using cellulase assays and metagenomic libraries, are a must. Rare cellulases with activities on soluble and crystalline cellulose have been isolated from strains of Paenibacillus and Bacillus and shown to have high thermostability and/or activity over a wide pH spectrum. While novel cellulases from strains like Cellulomonas flavigena and Terendinibacter turnerae, produce multifunctional cellulases with broader substrate utilization. These enzymes offer a framework for enhancement of cellulases including: specific activity, thermalstability, or end-product inhibition. In addition, anaerobic bacteria like the clostridia offer potential due to species capable of producing compound multienzyme complexes called cellulosomes. Cellulosomes provide synergy and close proximity of enzymes to substrate, increasing activity towards crystalline cellulose. This has lead to the construction of designer cellulosomes enhanced for specific substrate activity. Furthermore, cellulosome-producing Clostridium thermocellum and its ability to ferment sugars to ethanol; its amenability to co-culture and, recent advances in genetic engineering, offer a promising future in biofuels. The exploitation of bacteria in the search for improved enzymes or strategies provides a means to upgrade feasibility for lignocellulosic biomass conversion, ultimately providing means to a 'greener' technology.

  9. The prospects of cellulase-producing bacteria for the bioconversion of lignocellulosic biomass

    PubMed Central

    Maki, Miranda; Leung, Kam Tin; Qin, Wensheng

    2009-01-01

    Lignocellulosic biomass is a renewable and abundant resource with great potential for bioconversion to value-added bioproducts. However, the biorefining process remains economically unfeasible due to a lack of biocatalysts that can overcome costly hurdles such as cooling from high temperature, pumping of oxygen/stirring, and, neutralization from acidic or basic pH. The extreme environmental resistance of bacteria permits screening and isolation of novel cellulases to help overcome these challenges. Rapid, efficient cellulase screening techniques, using cellulase assays and metagenomic libraries, are a must. Rare cellulases with activities on soluble and crystalline cellulose have been isolated from strains of Paenibacillus and Bacillus and shown to have high thermostability and/or activity over a wide pH spectrum. While novel cellulases from strains like Cellulomonas flavigena and Terendinibacter turnerae, produce multifunctional cellulases with broader substrate utilization. These enzymes offer a framework for enhancement of cellulases including: specific activity, thermalstability, or end-product inhibition. In addition, anaerobic bacteria like the clostridia offer potential due to species capable of producing compound multienzyme complexes called cellulosomes. Cellulosomes provide synergy and close proximity of enzymes to substrate, increasing activity towards crystalline cellulose. This has lead to the construction of designer cellulosomes enhanced for specific substrate activity. Furthermore, cellulosome-producing Clostridium thermocellum and its ability to ferment sugars to ethanol; its amenability to co-culture and, recent advances in genetic engineering, offer a promising future in biofuels. The exploitation of bacteria in the search for improved enzymes or strategies provides a means to upgrade feasibility for lignocellulosic biomass conversion, ultimately providing means to a 'greener' technology. PMID:19680472

  10. Sustainable conversion of coffee and other crop wastes to biofuels and bioproducts using coupled biochemical and thermochemical processes in a multi-stage biorefinery concept.

    PubMed

    Hughes, Stephen R; López-Núñez, Juan Carlos; Jones, Marjorie A; Moser, Bryan R; Cox, Elby J; Lindquist, Mitch; Galindo-Leva, Luz Angela; Riaño-Herrera, Néstor M; Rodriguez-Valencia, Nelson; Gast, Fernando; Cedeño, David L; Tasaki, Ken; Brown, Robert C; Darzins, Al; Brunner, Lane

    2014-10-01

    The environmental impact of agricultural waste from the processing of food and feed crops is an increasing concern worldwide. Concerted efforts are underway to develop sustainable practices for the disposal of residues from the processing of such crops as coffee, sugarcane, or corn. Coffee is crucial to the economies of many countries because its cultivation, processing, trading, and marketing provide employment for millions of people. In coffee-producing countries, improved technology for treatment of the significant amounts of coffee waste is critical to prevent ecological damage. This mini-review discusses a multi-stage biorefinery concept with the potential to convert waste produced at crop processing operations, such as coffee pulping stations, to valuable biofuels and bioproducts using biochemical and thermochemical conversion technologies. The initial bioconversion stage uses a mutant Kluyveromyces marxianus yeast strain to produce bioethanol from sugars. The resulting sugar-depleted solids (mostly protein) can be used in a second stage by the oleaginous yeast Yarrowia lipolytica to produce bio-based ammonia for fertilizer and are further degraded by Y. lipolytica proteases to peptides and free amino acids for animal feed. The lignocellulosic fraction can be ground and treated to release sugars for fermentation in a third stage by a recombinant cellulosic Saccharomyces cerevisiae, which can also be engineered to express valuable peptide products. The residual protein and lignin solids can be jet cooked and passed to a fourth-stage fermenter where Rhodotorula glutinis converts methane into isoprenoid intermediates. The residues can be combined and transferred into pyrocracking and hydroformylation reactions to convert ammonia, protein, isoprenes, lignins, and oils into renewable gas. Any remaining waste can be thermoconverted to biochar as a humus soil enhancer. The integration of multiple technologies for treatment of coffee waste has the potential to contribute to economic and environmental sustainability.

  11. Nanostructure enzyme assemblies for biomass conversion

    USDA-ARS?s Scientific Manuscript database

    Biomass represents a vast resource for production of the world’s fuel and chemical feedstock needs. The use of enzymes to effect these bioconversions offers an alternative that is potentially more specific and environmentally-friendly than harsher chemical methodologies. Some species of anaerobic ...

  12. Bioconversion of oxygen-pretreated Kraft lignin to microbial lipid with oleaginous Rhodococcus opacus DSM 1069

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Zhen; Zeng, Guangming; Huang, Fang

    2015-04-09

    Kraft lignin (KL) from black liquor is an abundantly available, inexpensive aromatic resource that is regarded as a low value compound by the pulp and paper industry, necessitating the development of new applications.

  13. Science and Technology in a Conserving Society.

    ERIC Educational Resources Information Center

    Press, Frank

    1979-01-01

    The science and technology advisor to the President of the United States presents the challenges facing Americans today in the fields of science and technology. The major topics focused on are people and development, agriculture, biomass and bioconversion, and regulation. (SA)

  14. Integration of Artificial Photosynthesis System for Enhanced Electronic Energy-Transfer Efficacy: A Case Study for Solar-Energy Driven Bioconversion of Carbon Dioxide to Methanol.

    PubMed

    Ji, Xiaoyuan; Su, Zhiguo; Wang, Ping; Ma, Guanghui; Zhang, Songping

    2016-09-01

    Biocatalyzed artificial photosynthesis systems provide a promising strategy to store solar energy in a great variety of chemicals. However, the lack of direct interface between the light-capturing components and the oxidoreductase generally hinders the trafficking of the chemicals and photo-excited electrons into the active center of the redox biocatalysts. To address this problem, a completely integrated artificial photosynthesis system for enhanced electronic energy-transfer efficacy is reported by combining co-axial electrospinning/electrospray and layer-by-layer (LbL) self-assembly. The biocatalysis part including multiple oxidoreductases and coenzymes NAD(H) was in situ encapsulated inside the lumen polyelectrolyte-doped hollow nanofibers or microcapsules fabricated via co-axial electrospinning/electrospray; while the precise and spatial arrangement of the photocatalysis part, including electron mediator and photosensitizer for photo-regeneration of the coenzyme, was achieved by ion-exchange interaction-driven LbL self-assembly. The feasibility and advantages of this integrated artificial photosynthesis system is fully demonstrated by the catalyzed cascade reduction of CO2 to methanol by three dehydrogenases (formate, formaldehyde, and alcohol dehydrogenases), incorporating the photo-regeneration of NADH under visible-light irradiation. Compared to solution-based systems, the methanol yield increases from 35.6% to 90.6% using the integrated artificial photosynthesis. This work provides a novel platform for the efficient and sustained production of a broad range of chemicals and fuels from sunlight. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Bioconversion of giant reed (Arundo donax L.) hemicellulose hydrolysate to ethanol by Scheffersomyces stipitis CBS6054

    Treesearch

    Danilo Scordia; Salvatore L. Cosentino; Jae-Won Lee; Thomas W. Jeffries

    2012-01-01

    The objective of this study was to evaluate the production of ethanol by Scheffersomyces (Pichia) stipitis CBS6054, a native xylose fermenting yeast, from sugars contained in the giant reed (Arundo donax L.) hemicellulosic hydrolysate.

  16. Pretreatment methods for bioethanol production.

    PubMed

    Xu, Zhaoyang; Huang, Fang

    2014-09-01

    Lignocellulosic biomass, such as wood, grass, agricultural, and forest residues, are potential resources for the production of bioethanol. The current biochemical process of converting biomass to bioethanol typically consists of three main steps: pretreatment, enzymatic hydrolysis, and fermentation. For this process, pretreatment is probably the most crucial step since it has a large impact on the efficiency of the overall bioconversion. The aim of pretreatment is to disrupt recalcitrant structures of cellulosic biomass to make cellulose more accessible to the enzymes that convert carbohydrate polymers into fermentable sugars. This paper reviews several leading acidic, neutral, and alkaline pretreatments technologies. Different pretreatment methods, including dilute acid pretreatment (DAP), steam explosion pretreatment (SEP), organosolv, liquid hot water (LHW), ammonia fiber expansion (AFEX), soaking in aqueous ammonia (SAA), sodium hydroxide/lime pretreatments, and ozonolysis are intensively introduced and discussed. In this minireview, the key points are focused on the structural changes primarily in cellulose, hemicellulose, and lignin during the above leading pretreatment technologies.

  17. A n-3 PUFA depletion applied to rainbow trout fry (Oncorhynchus mykiss) does not modulate its subsequent lipid bioconversion capacity.

    PubMed

    Mellery, Julie; Brel, Jonathan; Dort, Junio; Geay, Florian; Kestemont, Patrick; Francis, David S; Larondelle, Yvan; Rollin, Xavier

    2017-01-01

    Nutritional strategies are currently developed to produce farmed fish rich in n-3 long-chain PUFA (LC-PUFA) whilst replacing fish oil by plant-derived oils in aquafeeds. The optimisation of such strategies requires a thorough understanding of fish lipid metabolism and its nutritional modulation. The present study evaluated the fatty acid bioconversion capacity of rainbow trout (Oncorhynchus mykiss) fry previously depleted in n-3 PUFA through a 60-d pre-experimental feeding period with a sunflower oil-based diet (SO) followed by a 36-d experimental period during which fish were fed either a linseed oil-based diet (LO) (this treatment being called SO/LO) or a fish oil-based diet (FO) (this treatment being called SO/FO). These treatments were compared with fish continuously fed on SO, LO or FO for 96 d. At the end of the 36-d experimental period, SO/LO and SO/FO fish recovered >80 % of the n-3 LC-PUFA reported for LO and FO fish, respectively. Fish fed on LO showed high apparent in vivo elongation and desaturation activities along the n-3 biosynthesis pathway. However, at the end of the experimental period, no impact of the fish n-3 PUFA depletion was observed on apparent in vivo elongation and desaturation activities of SO/LO fish as compared with LO fish. In contrast, the fish n-3 PUFA depletion negatively modulated the n-6 PUFA bioconversion capacity of fish in terms of reduced apparent in vivo elongation and desaturation activities. The effects were similar after 10 or 36 d of the experimental period, indicating the absence of short-term effects.

  18. Chip calorimetry for evaluation of biofilm treatment with biocides, antibiotics, and biological agents.

    PubMed

    Morais, Frida Mariana; Buchholz, Friederike; Maskow, Thomas

    2014-01-01

    Any growth or bioconversion in biofilms is accompanied by the release of heat. The heat (in J) is tightly related to the stoichiometry of the respective process via law of Hess, and the heat production rate (in W or J/s) is additionally related to the process kinetics. This heat and the heat production rate can nowadays be measured by modern calorimetry with extremely high sensitivity. Flow-through calorimetry allows the measurement of bioprocesses in biofilms in real time, without the need of invasive sample preparation and disturbing of biofilm processes. Furthermore, it can be applied for long-term measurements and is even applicable to turbid media. Chip or miniaturized calorimeters have the additional advantages of extremely short thermal equilibration times and the requirement of very small amounts of media and chemicals. The precision of flow-through chip calorimeters (about 3 mW/L) allows the detection of early stages of biofilm development (about 10(5) bacteria cm(-2)).

  19. Intra- and Extra-cellular Proteome Analyses of Steroid-Producer Mycobacteria.

    PubMed

    Barreiro, Carlos; Morales, Alejandro; Vázquez-Iglesias, Inés; Sola-Landa, Alberto

    2017-01-01

    The importance of the pathogenic mycobacteria has mainly focused the omic analyses on different aspects of their clinical significance. In contrast, those industrially relevant mycobacteria have received less attention, even though the steroids market sales in 2011, in example, were estimated in $8 billion.The extra-cellular proteome, due to its relevance in the sterols processing and uptake; as well as the intra-cellular proteome, because of its role in steroids bioconversion, are the core of the present chapter. As a proof of concept, the obtaining methods for both sub-proteomes of Mycobacterium neoaurum NRRL B-3805, a relevant industrial strain involved in steroids production, have been developed. Thus, procedures and relevant key points of these proteomes analyses are fully described.

  20. Mulberry anthocyanin biotransformation by intestinal probiotics.

    PubMed

    Cheng, Jing-Rong; Liu, Xue-Ming; Chen, Zhi-Yi; Zhang, You-Sheng; Zhang, Ye-Hui

    2016-12-15

    This study was designed to evaluate mulberry anthocyanins bioconversion traits for intestinal probiotics. Five intestinal beneficial bacteria were incubated with mulberry anthocyanins under anaerobic conditions at 37°C, and bacterial β-glucosidase activity and anthocyanin level were determined. Results demonstrated that all strains could convert mulberry anthocyanins to some extent. With high β-glucosidase production capacity, Streptococcus thermophiles GIM 1.321 and Lactobacillus plantarum GIM 1.35 degraded mulberry anthocyanins by 46.17% and 43.62%, respectively. Mulberry anthocyanins were mainly biotransformed to chlorogenic acid, crypto-chlorogenic acid, caffeic acid, and ferulic acid during the anaerobic process. Non-enzymatic deglycosylation of anthocyanins also occurred and approximately 19.42% of the anthocyanins were degraded within 48h by this method. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Science Packets.

    ERIC Educational Resources Information Center

    Maine Audubon Society, Falmouth.

    This publication is an energy guide for teachers. It contains discussions and illustrations of five major topics: the sun's radiant energy, solar collection, solar cells, bioconversion (wood, grains, waste), and wind. Each section includes a listing of the concepts contained within and a brief discussion-explanation section. There is a short…

  2. Using isolated cell wall xylan to identify recalcitrant oligosaccharides

    USDA-ARS?s Scientific Manuscript database

    Herbaceous biomass is a renewable source of carbohydrates with potential for use in microbial conversion to biofuels. Xylan comprises 20-40% of herbaceous biomass cell wall material and its full depolymerization benefits the economics of bioconversion. To understand the limitations of commercial enz...

  3. Bioconversion of marine carotenoids and their health functions

    USDA-ARS?s Scientific Manuscript database

    Fucoxanthin (FX), found in edible brown seaweeds, exhibits anti-obesity and anti-diabetic effects. In the body, FX is converted to fucoxanthinol (FXOH) and amarouciaxanthin A and accumulates in adipose tissue and other tissues. It was suggested that FXOH and amarouciaxanthin A were active metaboli...

  4. Physiological activities of hydroxyl fatty acids

    USDA-ARS?s Scientific Manuscript database

    In the search of value-added products from surplus soybean oil, we produced many new hydroxy fatty acids through microbial bioconversion. Hydroxy fatty acids are used in a wide range of industrial products, such as resins, waxes, nylons plastics, lubricants, cosmetics, and additives in coatings and...

  5. Combined submerged and solid substrate fermentation for the bioconversion of lignocellulose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Viesturs, U.E.; Strikauska, S.V.; Leite, M.P.

    1987-01-01

    A novel two-stage bioreactor has been designed for a combined submerged (SF) and solid substrate fermentation (SSF) of wheat straw. The straw was pretreated with steam, and cellulases from the culture fluid of Trichoderma reesei were adsorbed on it for increased bio-convertibility. SSF was conducted in the top part of the bioreactor by inoculating the straw with a 36-h mycelial culture of T. reesei, or Coriolus versicolor. In the bottom part of the fermenter, Endomycopsis fibuliger was grown in SF. The SF liquor was recirculated through the SSF stage at 24 hour intervals to remove glucose and other metabolites thatmore » may inhibit growth, and to maintain optimum moisture level and temperature. The removed glucose and other metabolites provided nutrients for the yeast in the SF stage. The combined fermentation resulted in overall higher biomass yield, increased bioconversion, increased cellulase production, and increased digestibility compared with single SSF or SF. (Refs. 16).« less

  6. Glucose bioconversion profile in the syngas-metabolizing species Clostridium carboxidivorans.

    PubMed

    Fernández-Naveira, Ánxela; Veiga, María C; Kennes, Christian

    2017-11-01

    Some clostridia produce alcohols (ethanol, butanol, hexanol) from gases (CO, CO 2 , H 2 ) and others from carbohydrates (e.g., glucose). C. carboxidivorans can metabolize both gases as well as glucose. However, its bioconversion profile on glucose had not been reported. It was observed that C. carboxidivorans does not follow a typical solventogenic stage when grown on glucose. Indeed, at pH 6.2, it produced first a broad range of acids (acetic, butyric, hexanoic, formic, and lactic acids), several of which are generally not found, under similar conditions, during gas fermentation. Medium acidification did not allow the conversion of fatty acids into solvents. Production of some alcohols from glucose was observed in C. carboxidivorans but at high pH rather than under acidic conditions, and the total concentration of those solvents was low. At high pH, formic acid was produced first and later converted to acetic acid, but organic acids were not metabolized at low pH. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Isolation and Characterization of a Novel Rebaudioside M Isomer from a Bioconversion Reaction of Rebaudioside A and NMR Comparison Studies of Rebaudioside M Isolated from Stevia rebaudiana Bertoni and Stevia rebaudiana Morita

    PubMed Central

    Prakash, Indra; Bunders, Cynthia; Devkota, Krishna P.; Charan, Romila D.; Ramirez, Catherine; Priedemann, Christopher; Markosyan, Avetik

    2014-01-01

    A minor product, rebaudioside M2 (2), from the bioconversion reaction of rebaudioside A (4) to rebaudioside D (3), was isolated and the complete structure of the novel steviol glycoside was determined. Rebaudioside M2 (2) is considered an isomer of rebaudioside M (1) and contains a relatively rare 1→6 sugar linkage. It was isolated and characterized with NMR (1H, 13C, COSY, HSQC-DEPT, HMBC, 1D-TOCSY, and NOESY) and mass spectral data. Additionally, we emphasize the importance of 1D and 2D NMR techniques when identifying complex steviol glycosides. Numerous NMR spectroscopy studies of rebaudioside M (1), rebaudioside D (3), and mixture of 1 and 3 led to the discovery that SG17 which was previously reported in literature, is a mixture of rebaudioside D (3), rebaudioside M (1), and possibly other related steviol glycosides. PMID:24970220

  8. Isolation and Characterization of a Human Intestinal Bacterium Eggerthella sp. AUH-JLD49s for the Conversion of (-)-3'-Desmethylarctigenin.

    PubMed

    Wang, Ye; Yu, Fei; Liu, Ming-Yue; Zhao, Yi-Kai; Wang, Dong-Ming; Hao, Qing-Hong; Wang, Xiu-Ling

    2017-05-24

    Arctiin is the most abundant bioactive compound contained in the Arctium lappa plant. In our previous study, we isolated one single bacterium capable of bioconverting arctigenin, an aglycone of arctiin, to 3'-desmethylarctigenin (3'-DMAG) solely. However, to date, a specific bacterium capable of producing other arctiin metabolites has not been reported. In this study, we isolated one single bacterium, which we named Eggerthella sp. AUH-JLD49s, capable of bioconverting 3'-DMAG under anaerobic conditions. The metabolite of 3'-DMAG by strain AUH-JLD49s was identified as 3'-desmethyl-4'-dehydroxyarctigenin (DMDH-AG) based on electrospray ionization mass spectrometry (ESI-MS) and 1 H and 13 C nuclear magnetic resonance spectroscopy. The bioconversion kinetics and bioconversion capacity of strain AUH-JLD49s were investigated. In addition, the metabolite DMDH-AG showed an inhibitory effect on cell growth of human colon cancer cell line HCT116 and human breast cancer cell line MDA-MB-231.

  9. Yeast metabolic engineering for hemicellulosic ethanol production

    Treesearch

    Jennifer Van Vleet; Thomas W. Jeffries

    2009-01-01

    Efficient fermentation of hemicellulosic sugars is critical for the bioconversion of lignocellulosics to ethanol. Efficient sugar uptake through the heterologous expression of yeast and fungal xylose/glucose transporters can improve fermentation if other metabolic steps are not rate limiting. Rectification of cofactor imbalances through heterologous expression of...

  10. Lactobacillus acidophilus Metabolizes Dietary Plant Glucosides and Externalizes Their Bioactive Phytochemicals.

    PubMed

    Theilmann, Mia C; Goh, Yong Jun; Nielsen, Kristian Fog; Klaenhammer, Todd R; Barrangou, Rodolphe; Abou Hachem, Maher

    2017-11-21

    Therapeutically active glycosylated phytochemicals are ubiquitous in the human diet. The human gut microbiota (HGM) modulates the bioactivities of these compounds, which consequently affect host physiology and microbiota composition. Despite a significant impact on human health, the key players and the underpinning mechanisms of this interplay remain uncharacterized. Here, we demonstrate the growth of Lactobacillus acidophilus on mono- and diglucosyl dietary plant glycosides (PGs) possessing small aromatic aglycones. Transcriptional analysis revealed the upregulation of host interaction genes and identified two loci that encode phosphotransferase system (PTS) transporters and phospho-β-glucosidases, which mediate the uptake and deglucosylation of these compounds, respectively. Inactivating these transport and hydrolysis genes abolished or severely reduced growth on PG, establishing the specificity of the loci to distinct groups of PGs. Following intracellular deglucosylation, the aglycones of PGs are externalized, rendering them available for absorption by the host or for further modification by other microbiota taxa. The PG utilization loci are conserved in L. acidophilus and closely related lactobacilli, in correlation with versatile growth on these compounds. Growth on the tested PG appeared more common among human gut lactobacilli than among counterparts from other ecologic niches. The PGs that supported the growth of L. acidophilus were utilized poorly or not at all by other common HGM strains, underscoring the metabolic specialization of L. acidophilus These findings highlight the role of human gut L. acidophilus and select lactobacilli in the bioconversion of glycoconjugated phytochemicals, which is likely to have an important impact on the HGM and human host. IMPORTANCE Thousands of therapeutically active plant-derived compounds are widely present in berries, fruits, nuts, and beverages like tea and wine. The bioactivity and bioavailability of these compounds, which are typically glycosylated, are altered by microbial bioconversions in the human gut. Remarkably, little is known about the bioconversion of PGs by the gut microbial community, despite the significance of this metabolic facet to human health. Our work provides the first molecular insights into the metabolic routes of diet relevant and therapeutically active PGs by Lactobacillus acidophilus and related human gut lactobacilli. This taxonomic group is adept at metabolizing the glucoside moieties of select PG and externalizes their aglycones. The study highlights an important role of lactobacilli in the bioconversion of dietary PG and presents a framework from which to derive molecular insights into their metabolism by members of the human gut microbiota. Copyright © 2017 Theilmann et al.

  11. Real-time understanding of lignocellulosic bioethanol fermentation by Raman spectroscopy

    PubMed Central

    2013-01-01

    Background A substantial barrier to commercialization of lignocellulosic ethanol production is a lack of process specific sensors and associated control strategies that are essential for economic viability. Current sensors and analytical techniques require lengthy offline analysis or are easily fouled in situ. Raman spectroscopy has the potential to continuously monitor fermentation reactants and products, maximizing efficiency and allowing for improved process control. Results In this paper we show that glucose and ethanol in a lignocellulosic fermentation can be accurately monitored by a 785 nm Raman spectroscopy instrument and novel immersion probe, even in the presence of an elevated background thought to be caused by lignin-derived compounds. Chemometric techniques were used to reduce the background before generating calibration models for glucose and ethanol concentration. The models show very good correlation between the real-time Raman spectra and the offline HPLC validation. Conclusions Our results show that the changing ethanol and glucose concentrations during lignocellulosic fermentation processes can be monitored in real-time, allowing for optimization and control of large scale bioconversion processes. PMID:23425590

  12. A high throughput screen for biomining cellulase activity from metagenomic libraries.

    PubMed

    Mewis, Keith; Taupp, Marcus; Hallam, Steven J

    2011-02-01

    Cellulose, the most abundant source of organic carbon on the planet, has wide-ranging industrial applications with increasing emphasis on biofuel production (1). Chemical methods to modify or degrade cellulose typically require strong acids and high temperatures. As such, enzymatic methods have become prominent in the bioconversion process. While the identification of active cellulases from bacterial and fungal isolates has been somewhat effective, the vast majority of microbes in nature resist laboratory cultivation. Environmental genomic, also known as metagenomic, screening approaches have great promise in bridging the cultivation gap in the search for novel bioconversion enzymes. Metagenomic screening approaches have successfully recovered novel cellulases from environments as varied as soils (2), buffalo rumen (3) and the termite hind-gut (4) using carboxymethylcellulose (CMC) agar plates stained with congo red dye (based on the method of Teather and Wood (5)). However, the CMC method is limited in throughput, is not quantitative and manifests a low signal to noise ratio (6). Other methods have been reported (7,8) but each use an agar plate-based assay, which is undesirable for high-throughput screening of large insert genomic libraries. Here we present a solution-based screen for cellulase activity using a chromogenic dinitrophenol (DNP)-cellobioside substrate (9). Our library was cloned into the pCC1 copy control fosmid to increase assay sensitivity through copy number induction (10). The method uses one-pot chemistry in 384-well microplates with the final readout provided as an absorbance measurement. This readout is quantitative, sensitive and automated with a throughput of up to 100X 384-well plates per day using a liquid handler and plate reader with attached stacking system.

  13. Identification and production of local carotene-rich foods to combat vitamin A malnutrition.

    PubMed

    Solomons, N W; Bulux, J

    1997-11-01

    To address, with respect to improvement of human vitamin A status by dietary approaches, the three theoretical postulates that: 1) the most practical and economical manner to increase the amount of dietary vitamin A available to low-income persons in low-income nations is through plant sources of provitamin A carotenoids; 2) there will be constraints and limitation to the efficiency of a given intervention approach related to behavioural, cultural, biological and botanical considerations; and 3) the nature of these constraints and limitations must be understood, and then overcome where possible, to maximize the impact of such interventions on the vitamin A status of developing country populations. We review how local plant sources of provitamin A that would be acceptable for the at-risk populations and outline six settings and scenarios for the processing of carotene-rich foods: 1) cooking for hygiene; 2) long-term preservation; 3) compacting to reduce volume; 4) formulation for specific consumers; 5) improving bioavailability and bioconversion; and 6) to increase 'value added' in commerce. We describe our experiences in Guatemala (with sweet potato flakes), and those of others in the Caribbean, the African Sahel, and East Africa (with solar-drying for preservation of a variety of plants), and in Sri Lanka (with leaf concentrates) in promoting increased carotene-rich food intake, and the lessons learned from their evaluations. This overall approach to combatting endemic hypovitaminosis A in developing countries is evaluated within the constraints of: 1) the volumes of plant-based foods required to satisfy vitamin A requirements; and 2) the controversy over the true bioconversion efficiency of provitamin A from plant sources into the biologically-available active vitamin.

  14. Xylose-fermenting Pichia stipitis by genome shuffling for improved ethanol production.

    PubMed

    Shi, Jun; Zhang, Min; Zhang, Libin; Wang, Pin; Jiang, Li; Deng, Huiping

    2014-03-01

    Xylose fermentation is necessary for the bioconversion of lignocellulose to ethanol as fuel, but wild-type Saccharomyces cerevisiae strains cannot fully metabolize xylose. Several efforts have been made to obtain microbial strains with enhanced xylose fermentation. However, xylose fermentation remains a serious challenge because of the complexity of lignocellulosic biomass hydrolysates. Genome shuffling has been widely used for the rapid improvement of industrially important microbial strains. After two rounds of genome shuffling, a genetically stable, high-ethanol-producing strain was obtained. Designated as TJ2-3, this strain could ferment xylose and produce 1.5 times more ethanol than wild-type Pichia stipitis after fermentation for 96 h. The acridine orange and propidium iodide uptake assays showed that the maintenance of yeast cell membrane integrity is important for ethanol fermentation. This study highlights the importance of genome shuffling in P. stipitis as an effective method for enhancing the productivity of industrial strains. © 2013 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  15. Recent advances in yeast cell-surface display technologies for waste biorefineries.

    PubMed

    Liu, Zhuo; Ho, Shih-Hsin; Hasunuma, Tomohisa; Chang, Jo-Shu; Ren, Nan-Qi; Kondo, Akihiko

    2016-09-01

    Waste biorefinery aims to maximize the output of value-added products from various artificial/agricultural wastes by using integrated bioprocesses. To make waste biorefinery economically feasible, it is thus necessary to develop a low-cost, environment-friendly technique to perform simultaneous biodegradation and bioconversion of waste materials. Cell-surface display engineering is a novel, cost-effective technique that can auto-immobilize proteins on the cell exterior of microorganisms, and has been applied for use with waste biofinery. Through tethering different enzymes (e.g., cellulase, lipase, and protease) or metal-binding peptides on cell surfaces, various yeast strains can effectively produce biofuels and biochemicals from sugar/protein-rich waste materials, catalyze waste oils into biodiesels, or retrieve heavy metals from wastewater. This review critically summarizes recent applications of yeast cell-surface display on various types of waste biorefineries, highlighting its potential and future challenges with regard to commercializing this technology. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Switchgrass biomass composition traits and their effects on its digestion by ruminants and bioconversion to ethanol

    USDA-ARS?s Scientific Manuscript database

    Six generations of divergent breeding in switchgrass (Panicum virgatum L.) for forage in vitro digestibility (IVDMD) resulted in significant changes in 20 biomass composition traits. Stepwise multi-regression was used to determine which of the 20 composition traits had largest significant effects on...

  17. A Comparative Study of Dilute acid and Ionic Liquid Pretreatment of Biomass and Model Lignocellulosics

    USDA-ARS?s Scientific Manuscript database

    Lignocellulosic biomass has the great potential to serve as the low cost and abundant feedstock for bioconversion into fermentable sugars, which can be further utilized for biofuel production. However, high lignin content, crystalline cellulose structure and the presence of ester linkages between l...

  18. Fungal Bioconversion of Bio-Solids and Chicken Manure to Increase Soil Quality

    USDA-ARS?s Scientific Manuscript database

    The utilization of agro-chemical products such as pesticides and fertilizers has allowed the increase in food production. Poultry manure and manure from different animals have been used as alternative to improve soil quality, and therefore, helped increase crop production. Nevertheless, removal of t...

  19. Biological Life Support Systems

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Session MP2 includes short reports on: (1) Crew Regenerative Life Support in Long Duration Space Missions; (2) Bioconversion Systems for Food and Water on Long Term Space Missions; (3) Novel Laboratory Approaches to Multi-purpose Aquatic Biogenerative Closed-Loop Food Production Systems; and (4) Artificial Neural Network Derived Plant Growth Models.

  20. Bioconversion potential of Trichoderma viride HN1 cellulase for a lignocellulosic biomass Saccharum spontaneum.

    PubMed

    Iqtedar, Mehwish; Nadeem, Mohammad; Naeem, Hira; Abdullah, Roheena; Naz, Shagufta; Qurat ul Ain Syed; Kaleem, Afshan

    2015-01-01

    The industrialisation of lignocellulose conversion is impeded by expensive cellulase enzymes required for saccharification in bioethanol production. Current research undertakes cellulase production from pretreated Saccharum spontaneum through Trichoderma viride HN1 under submerged fermentation conditions. Pretreatment of substrate with 2% NaOH resulted in 88% delignification. Maximum cellulase production (2603 ± 16.39 U/mL/min carboxymethyl cellulase and 1393 ± 25.55 U/mL/min FPase) was achieved at 6% substrate at pH 5.0, with 5% inoculum, incubated at 35°C for 120 h of fermentation period. Addition of surfactant, Tween 80 and metal ion Mn(+2), significantly enhanced cellulase yield. This study accounts proficient cellulase yield through process optimisation by exploiting cheaper substrate to escalate their commercial endeavour.

  1. Method and apparatus for the removal of bioconversion of constituents of organic liquids

    DOEpatents

    Scott, Timothy; Scott, Charles D.

    1994-01-01

    A method and apparatus for the removal or conversion of constituents from bulk organic liquids. A countercurrent biphasic bioreactor system is utilized to disperse and recoalesce a biocatalyst contained in the aqueous liquid phase into the organic liquid phase containing the constituent. Two transient, high-intensity electrical fields rupture the aqueous drops into a plurality of microdroplets and induce continuous coalescence and redispersion as the microdroplets travel through the organic phase, thus increasing surface area. As the aqueous microdroplets progress through the organic phase, the biocatalyst then reacts with the constituent to produce a product which is then removed from the bioreactor in the aqueous phase or retained in the organic phase. The organic liquid, now free of the original constituents, is ready for immediate use or further processing.

  2. Refining each process step to accelerate the development of biorefineries

    DOE PAGES

    Chandra, Richard P.; Ragauskas, Art J.

    2016-06-21

    Research over the past decade has been mainly focused on overcoming hurdles in the pretreatment, enzymatic hydrolysis, and fermentation steps of biochemical processing. Pretreatments have improved significantly in their ability to fractionate and recover the cellulose, hemicellulose, and lignin components of biomass while producing substrates containing carbohydrates that can be easily broken down by hydrolytic enzymes. There is a rapid movement towards pretreatment processes that incorporate mechanical treatments that make use of existing infrastructure in the pulp and paper industry, which has experienced a downturn in its traditional markets. Enzyme performance has also made great strides with breakthrough developments inmore » nonhydrolytic protein components, such as lytic polysaccharide monooxygenases, as well as the improvement of enzyme cocktails.The fermentability of pretreated and hydrolyzed sugar streams has been improved through strategies such as the use of reducing agents for detoxification, strain selection, and strain improvements. Although significant progress has been made, tremendous challenges still remain to advance each step of biochemical conversion, especially when processing woody biomass. In addition to technical and scale-up issues within each step of the bioconversion process, biomass feedstock supply and logistics challenges still remain at the forefront of biorefinery research.« less

  3. Development of a more efficient process for production of fuel ethanol from bamboo.

    PubMed

    Sun, Zhao-Yong; Wang, Ting; Tan, Li; Tang, Yue-Qin; Kida, Kenji

    2015-06-01

    A process for production of fuel ethanol from bamboo treated with concentrated sulfuric acid has been previously proposed. To improve efficiency of the process, we tested saccharification with 70 weight% (wt%) sulfuric acid, acid-sugar separation by ion exclusion, addition of nutrients to the ethanol fermentation, and bioconversion of xylose to xylitol. A high efficiency of both sugar recovery (82.5 %) and acid recovery (97.5 %) was achieved in the saccharification process and in the continuous acid-sugar separation using a modified anion exchange resin, respectively. Reduction of the amount of mineral salts added to the saccharified liquid after acid-sugar separation did not negatively affect performance of the continuous ethanol fermentation. The ethanol yield and productivity were 93.7 % and 6 g/l h, respectively, at 35 °C and pH 4.0. And the ethanol yield and productivity were almost the same even at pH 3.5. Moreover, the xylose remaining in the fermented mash was efficiently converted to xylitol in batch fermentation by Candida tropicalis strain 2.1776. These results demonstrate a more efficient process for the production of fuel ethanol from bamboo.

  4. Assessing the specific energy consumption and physical properties of comminuted Douglas-fir chips for bioconversion

    Treesearch

    Yalan Liu; Jinwu Wang; Michael P. Wolcott

    2016-01-01

    Size reduction homogenizes the bulk biomass and facilitates downstream feedstock handling, transportation, and storage. Effects of feeding rate, mill-type (hammer and knife mill), screen size, and moisture content on comminution energy consumption of commercial Douglas-fir (Pseudotsuga menziesii) pulp chips were quantified. The resulting particles...

  5. Pretreatment of microbial sludges

    DOEpatents

    Rivard, Christopher J.; Nagle, Nicholas J.

    1995-01-01

    Methods are described for pretreating microbial sludges to break cells and disrupt organic matter. One method involves the use of sonication, and another method involves the use of shear forces. The pretreatment of sludge enhances bioconversion of the organic fraction. This allows for efficient dewatering of the sludge and reduces the cost for final disposal of the waste.

  6. Biomass Feedstocks | Bioenergy | NREL

    Science.gov Websites

    publications. Photo of a group of smiling men and women posing in a casual office setting. Thermochemical xylose) from bioconversion of pelleted and non-pelleted corn stover (CS), Switchgrass (SWG), and Hybrid Variety on the x-axis, showing Non-pelleted (yellow) and Pelleted (orange) results for five groups of data

  7. Lignosulfonate-mediated cellulase adsorption: enhanced enzymatic saccharification of lignocellulose through weakening nonproductive binding to lignin

    Treesearch

    Zhaojiang Wang; JY Zhu; Yingjuan Fu; Menghua Qin; Zhiyong Shao; Jungang Jiang; Fang Yang

    2013-01-01

    Thermochemical pretreatment of lignocellulose is crucial to bioconversion in the fields of biorefinery and biofuels. However, the enzyme inhibitors in pretreatment hydrolysate make solid substrate washing and hydrolysate detoxification indispensable prior to enzymatic hydrolysis. Sulfite pretreatment to overcome recalcitrance of lignocelluloses (SPORL) is a relatively...

  8. Microbial Production of Xylitol from L-arabinose by Metabolically Engineered Escherichia coli

    USDA-ARS?s Scientific Manuscript database

    An Escherichia coli strain, ZUC99(pATX210), which can produce xylitol from L-arabinose at a high yield has been created by introducing a new bioconversion pathway into cells. This pathway consists of three enzymes: L-arabinose isomerase, which converts L-arabinose to L-ribulose; D-psicose 3-epimer...

  9. Metabolic engineering for improved fermentation of pentoses by yeasts

    Treesearch

    T. W. Jeffries; Jin. Y.-S.

    2004-01-01

    The fermentation of xylose is essential for the bioconversion of lignocellulose to fuels and chemicals, but wild-type strains of Saccharomyces cerevisiae do not metabolize xylose, so researchers have engineered xylose metabolism in this yeast. Glucose transporters mediate xylose uptake, but no transporter specific for xylose has yet been identified. Over-expressing...

  10. Pretreatment of microbial sludges

    DOEpatents

    Rivard, C.J.; Nagle, N.J.

    1995-01-10

    Methods are described for pretreating microbial sludges to break cells and disrupt organic matter. One method involves the use of sonication, and another method involves the use of shear forces. The pretreatment of sludge enhances bioconversion of the organic fraction. This allows for efficient dewatering of the sludge and reduces the cost for final disposal of the waste.

  11. Bioconversion of 7-hydroxyflavanone: isolation, characterization and bioactivity evaluation of twenty-one phase I and phase II microbial metaboites

    USDA-ARS?s Scientific Manuscript database

    Microbial metabolism of 7-hydroxyflavanone (1) with fungal culture Cunninghamella blakesleeana (ATCC 8688a), yielded flavanone 7-sulfate (2), 7,4’-dihydroxyflavanone (3), 6,7-dihydroxyflavanone (4), 6-hydroxyflavanone 7-sulfate (5), and 7-hydroxyflavanone 6-sulfate (6). Mortierella zonata (ATCC 1330...

  12. Cellulosic butanol production from agricultural biomass and residues: Recent advances in technology

    USDA-ARS?s Scientific Manuscript database

    This chapter details the recent advances made on bioconversion of lignocellulosic biomass to butanol, a superior biofuel that can be used in internal combustion engines or transportation industry. It should be noted that butanol producing cultures cannot tolerate or produce more than 20-30 g/L of ac...

  13. Second generation bioethanol production from Saccharum spontaneum L. ssp. aegyptiacum (Willd.) Hack.

    Treesearch

    Danilo Scordia; Salvatore L. Consentino; Thomas W. Jeffries

    2010-01-01

    Saccharum (Saccharum spontaneum L. ssp. aegyptiacum (Willd.) Hack.), is a rapidly growing, wide ranging high-yield perennial, suitable for second generation bioethanol production. This study evaluated oxalic acid as a pretreatment for bioconversion. Overall sugar yields, sugar degradation products, enzymatic glucan hydrolysis and ethanol production were studied as...

  14. Biological conversion system

    DOEpatents

    Scott, C.D.

    A system for bioconversion of organic material comprises a primary bioreactor column wherein a biological active agent (zymomonas mobilis) converts the organic material (sugar) to a product (alcohol), a rejuvenator column wherein the biological activity of said biological active agent is enhanced, and means for circulating said biological active agent between said primary bioreactor column and said rejuvenator column.

  15. Biodegradation and bioconversion of coals by fungi. Quarterly progress report No. 1, October 1-December 31, 1985. [Candida sp. and T. versicolor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, B.

    1985-01-01

    Following a month-long start-up period during which the principal investigator traveled to several sites of lignite outcrops to collect samples, efforts were begun to isolate new strains of coal-bioconverting fungal strains. Out of about thirty different organisms isolated from weathered samples of three different types of lignite, three isolates exhibited biosolubilization of the one lignite tested to date. These organisms have not yet been identified but they appear to be new strains of lignite-degrading fungi. We have observed that degree of biosolubilization varies among apparently similar samples of the same lignite. Weathered lignite is more readily solubilized than is previouslymore » unexposed lignite, but even tests on weathered coal have not been consistently repeatable. We have begun experiments designed to identify one or more factors of weathering which render coal more readily attacked by fungi. We hope to establish methods whereby consistently repeatable assays can be performed on bioconversion of coals. 2 refs., 1 fig., 1 tab.« less

  16. Methanogenic degradation of toilet-paper cellulose upon sewage treatment in an anaerobic membrane bioreactor at room temperature.

    PubMed

    Chen, Rong; Nie, Yulun; Kato, Hiroyuki; Wu, Jiang; Utashiro, Tetsuya; Lu, Jianbo; Yue, Shangchao; Jiang, Hongyu; Zhang, Lu; Li, Yu-You

    2017-03-01

    Toilet-paper cellulose with rich but refractory carbon sources, are the main insoluble COD fractions in sewage. An anaerobic membrane bioreactor (AnMBR) was configured for sewage treatment at room temperature and its performance on methanogenic degradation of toilet paper was highlighted. The results showed, high organic removal (95%), high methane conversion (90%) and low sludge yield (0.08gVSS/gCOD) were achieved in the AnMBR. Toilet-paper cellulose was fully biodegraded without accumulation in the mixed liquor and membrane cake layer. Bioconversion efficiency of toilet paper approached 100% under a high organic loading rate (OLR) of 2.02gCOD/L/d and it could provide around 26% of total methane generation at most of OLRs. Long sludge retention time and co-digestion of insoluble/soluble COD fractions achieving mutualism of functional microorganisms, contributed to biodegradation of toilet-paper cellulose. Therefore the AnMBR successfully implemented simultaneously methanogenic bioconversion of toilet-paper cellulose and soluble COD in sewage at room temperature. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Functional characterization of CYP52G3 from Aspergillus oryzae and its application for bioconversion and synthesis of hydroxyl flavanone and steroids.

    PubMed

    Uno, Tomohide; Yanase, Takeshi; Imaishi, Hiromasa

    2017-05-01

    Aspergillus oryzae is a fungus widely used in traditional Japanese fermentation industries. Cytochrome P450 (CYP) proteins are ubiquitously distributed in nature and display a broad range of enzymatic activities. A novel CYP52 (CYP52G3) gene was found in A. oryzae. In this study, we report the functional characterization of CYP52G3. The recombinant protein was expressed heterologously in Escherichia coli, and its membrane fraction isolated. CYP52G3 showed activities for 7-ethoxycoumarin and α-naphtoflavone. Furthermore, CYP52G3 hydroxylated flavanone at the 4' and 6 position and metabolized some hydroxyl-flavanones and steroids. Bioconversion experiments indicated that CYP52G3 could convert flavanone and testosterone in a synthetic medium. The conversion rates of flavanone and testosterone at 24 H were 50% and 70%, respectively. These results support that CYP52G3 could prove a useful enzyme for the efficient production of new compounds from flavonoids and steroids. © 2016 International Union of Biochemistry and Molecular Biology, Inc.

  18. Construction of a highly efficient Bacillus subtilis 168 whole-cell biocatalyst and its application in the production of L-ornithine.

    PubMed

    Wang, Meizhou; Xu, Meijuan; Rao, Zhiming; Yang, Taowei; Zhang, Xian

    2015-11-01

    L-Ornithine, a non-protein amino acid, is usually extracted from hydrolyzed protein as well as produced by microbial fermentation. Here, we focus on a highly efficient whole-cell biocatalyst for the production of L-ornithine. The gene argI, encoding arginase, which catalyzes the hydrolysis of L-arginine to L-ornithine and urea, was cloned from Bacillus amyloliquefaciens B10-127 and expressed in GRAS strain Bacillus subtilis 168. The recombinant strain exhibited an arginase activity of 21.9 U/mg, which is 26.7 times that of wild B. subtilis 168. The optimal pH and temperature of the purified recombinant arginase were 10.0 and 40 °C, respectively. In addition, the recombinant arginase exhibited a strong Mn(2+) preference. When using whole-cell biocatalyst-based bioconversion, a hyper L-ornithine production of 356.9 g/L was achieved with a fed-batch strategy in a 5-L reactor within 12 h. This whole-cell bioconversion study demonstrates an environmentally friendly strategy for L-ornithine production in industry.

  19. Genetic improvement of native xylose-fermenting yeasts for ethanol production.

    PubMed

    Harner, Nicole K; Wen, Xin; Bajwa, Paramjit K; Austin, Glen D; Ho, Chi-Yip; Habash, Marc B; Trevors, Jack T; Lee, Hung

    2015-01-01

    Lignocellulosic substrates are the largest source of fermentable sugars for bioconversion to fuel ethanol and other valuable compounds. To improve the economics of biomass conversion, it is essential that all sugars in potential hydrolysates be converted efficiently into the desired product(s). While hexoses are fermented into ethanol and some high-value chemicals, the bioconversion of pentoses in hydrolysates remains inefficient. This remains one of the key challenges in lignocellulosic biomass conversion. Native pentose-fermenting yeasts can ferment both glucose and xylose in lignocellulosic biomass to ethanol. However, they perform poorly in the presence of hydrolysate inhibitors, exhibit low ethanol tolerance and glucose repression, and ferment pentoses less efficiently than the main hexoses glucose and mannose. This paper reviews classical and molecular strain improvement strategies applied to native pentose-fermenting yeasts for improved ethanol production from xylose and lignocellulosic substrates. We focus on Pachysolen tannophilus, Scheffersomyces (Candida) shehatae, Scheffersomyces (Pichia) stipitis, and Spathaspora passalidarum which are good ethanol producers among the native xylose-fermenting yeasts. Strains obtained thus far are not robust enough for efficient ethanol production from lignocellulosic hydrolysates and can benefit from further improvements.

  20. Pilot-scale bioconversion of rice and sunflower agro-residues into medicinal mushrooms and laccase enzymes through solid-state fermentation with Ganoderma lucidum.

    PubMed

    Postemsky, P D; Bidegain, M A; González-Matute, R; Figlas, N D; Cubitto, M A

    2017-05-01

    Solid-state fermentation was evaluated at the pilot-scale for the bioconversion and valorization of rice husks and straw (RSH), or sunflower seed hulls (SSH), into medicinal mushrooms and crude extracts, with laccase activity. The average mushroom yield was 56kg dry weight per ton of agro-residues. Laccase activity in crude aqueous extracts showed its maximum value of 10,927Ukg -1 in RSH (day 10, Exudate phase) and 16,442Ukg -1 in SSH (day 5, Full colonization phase), the activity at the Residual substrate phase being 511Ukg -1 in RSH and 803Ukg -1 in SSH, respectively. Crude extracts obtained with various protocols revealed differences in the extraction yields. Lyophilization followed by storage at 4°C allowed the preservation of laccase activity for more than one month. It is proposed that standard mushroom farms could increase their profits by obtaining laccase as a byproduct during the gaps in mycelium running. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Isolation and characterization of Bacillus subtilis strain BY-3, a thermophilic and efficient cellulase-producing bacterium on untreated plant biomass.

    PubMed

    Meng, F; Ma, L; Ji, S; Yang, W; Cao, B

    2014-09-01

    Bioconversion of biomass, particularly crop wastes, into biofuels is being developed as an alternative approach in meeting the high energy demand. In this study, a thermophilic bacterial strain BY-3 that exhibits cellulolytic potential was isolated from faecal samples of Tibetan pigs; this strain was identified as Bacillus subtilis. The strain can produce cellulase when grown on various substrates, including carboxymethyl cellulose, rice straw, corn stover, soluble starch and wheat bran. The maximum cellulase activity of the strain was up to 4·323 ± 0·065 U ml(-1) when cultivated in the medium containing corn stover (30 g l(-1) ) for 24 h. The results demonstrated that corn stover is the most suitable substrate for cellulase production by the strain BY-3. The crude cellulase of strain BY-3 was most active at pH 5·5 and 60°C, and the enzyme in acetate buffer (50 mmol l(-1) ) demonstrated a good stability at 60°C for at least 1 h. The crude cellulase exhibited a strong antibacterial activity against Staphylococcus aureus. The strain can be used in cost-efficient cellulase production for bioconversion of agricultural residual biomass into biofuels. The increased consumption of fossil fuels has caused serious energy crisis and environmental problem. Thus, an alternative energy source is necessary. Bioconversion of biomass, particularly agricultural residuals, into value-added bioproducts, such as biofuels and chemical solvents, has received considerable attention. In this study, the newly isolated thermophilic Bacillus subtilis strain BY-3 produces cellulase efficiently with the use of untreated corn stover as a sole carbon source. This strain possesses the thermostable cellulase that is active with diverse crop wastes with a broad pH range and is a highly promising candidate for agricultural waste management. © 2014 The Society for Applied Microbiology.

  2. Trends in food waste valorization for the production of chemicals, materials and fuels: Case study South and Southeast Asia.

    PubMed

    Ong, Khai Lun; Kaur, Guneet; Pensupa, Nattha; Uisan, Kristiadi; Lin, Carol Sze Ki

    2018-01-01

    Staggering amounts of food waste are being generated in Asia by means of agricultural processing, food transportation and storage, and human food consumption activities. This along with the recent sustainable development goals of food security, environmental protection, and energy efficiency are the key drivers for food waste valorization. The aim of this review is to provide an insight on the latest trends in food waste valorization in Asian countries such as India, Thailand, Singapore, Malaysia and Indonesia. Landfilling, incineration, and composting are the first-generation food waste processing technologies. The advancement of valorisation alternatives to tackle the food waste issue is the focus of this review. Furthermore, a series of examples of key food waste valorization schemes in this Asian region as case studies to demonstrate the advancement in bioconversions in these countries are described. Finally, important legislation aspects for food waste disposal in these Asian countries are also reported. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Improved Release and Metabolism of Flavonoids by Steered Fermentation Processes: A Review

    PubMed Central

    Nguyen Thai, Huynh; Van Camp, John; Smagghe, Guy; Raes, Katleen

    2014-01-01

    This paper provides an overview on steered fermentation processes to release phenolic compounds from plant-based matrices, as well as on their potential application to convert phenolic compounds into unique metabolites. The ability of fermentation to improve the yield and to change the profile of phenolic compounds is mainly due to the release of bound phenolic compounds, as a consequence of the degradation of the cell wall structure by microbial enzymes produced during fermentation. Moreover, the microbial metabolism of phenolic compounds results in a large array of new metabolites through different bioconversion pathways such as glycosylation, deglycosylation, ring cleavage, methylation, glucuronidation and sulfate conjugation, depending on the microbial strains and substrates used. A whole range of metabolites is produced, however metabolic pathways related to the formation and bioactivities, and often quantification of the metabolites are highly underinvestigated. This strategy could have potential to produce extracts with a high-added value from plant-based matrices. PMID:25347275

  4. Enzyme conversion of lignocellulosic plant materials for resource recovery in a controlled ecological life support system

    NASA Astrophysics Data System (ADS)

    Kohlmann, K. L.; Westgate, P.; Velayudhan, A.; Weil, J.; Sarikaya, A.; Brewer, M. A.; Hendrickson, R. L.; Ladisch, M. R.

    1996-01-01

    A large amount of inedible plant material composed primarily of the carbohydrate materials cellulose, hemicellulose, and lignin is generated as a result of plant growth in a Controlled Ecological Life-Support System (CELSS). Cellulose is a linear homopolymer of glucose, which when properly processed will yield glucose, a valuable sugar because it can be added directly to human diets. Hemicellulose is a heteropolymer of hexoses and pentoses that can be treated to give a sugar mixture that is potentially a valuable fermentable carbon source. Such fermentations yield desirable supplements to the edible products from hydroponically-grown plants such as rapeseed, soybean, cowpea, or rice. Lignin is a three-dimensionally branched aromatic polymer, composed of phenyl propane units, which is susceptible to bioconversion through the growth of the white rot fungus, Pluerotus ostreatus. Processing conditions, that include both a hot water pretreatment and fungal growth and that lead to the facile conversion of plant polysaccharides to glucose, are presented.

  5. Microbial enzymes with special characteristics for biotechnological applications.

    PubMed

    Nigam, Poonam Singh

    2013-08-23

    This article overviews the enzymes produced by microorganisms, which have been extensively studied worldwide for their isolation, purification and characterization of their specific properties. Researchers have isolated specific microorganisms from extreme sources under extreme culture conditions, with the objective that such isolated microbes would possess the capability to bio-synthesize special enzymes. Various Bio-industries require enzymes possessing special characteristics for their applications in processing of substrates and raw materials. The microbial enzymes act as bio-catalysts to perform reactions in bio-processes in an economical and environmentally-friendly way as opposed to the use of chemical catalysts. The special characteristics of enzymes are exploited for their commercial interest and industrial applications, which include: thermotolerance, thermophilic nature, tolerance to a varied range of pH, stability of enzyme activity over a range of temperature and pH, and other harsh reaction conditions. Such enzymes have proven their utility in bio-industries such as food, leather, textiles, animal feed, and in bio-conversions and bio-remediations.

  6. Engineering the cell wall by reducing de-methyl-esterified homogalacturonan improves saccharification of plant tissues for bioconversion.

    PubMed

    Lionetti, Vincenzo; Francocci, Fedra; Ferrari, Simone; Volpi, Chiara; Bellincampi, Daniela; Galletti, Roberta; D'Ovidio, Renato; De Lorenzo, Giulia; Cervone, Felice

    2010-01-12

    Plant cell walls represent an abundant, renewable source of biofuel and other useful products. The major bottleneck for the industrial scale-up of their conversion to simple sugars (saccharification), to be subsequently converted by microorganisms into ethanol or other products, is their recalcitrance to enzymatic saccharification. We investigated whether the structure of pectin that embeds the cellulose-hemicellulose network affects the exposure of cellulose to enzymes and consequently the process of saccharification. Reduction of de-methyl-esterified homogalacturonan (HGA) in Arabidopsis plants through the expression of a fungal polygalacturonase (PG) or an inhibitor of pectin methylesterase (PMEI) increased the efficiency of enzymatic saccharification. The improved enzymatic saccharification efficiency observed in transformed plants could also reduce the need for acid pretreatment. Similar results were obtained in PG-expressing tobacco plants and in PMEI-expressing wheat plants, indicating that reduction of de-methyl-esterified HGA may be used in crop species to facilitate the process of biomass saccharification.

  7. Enzyme conversion of lignocellulosic plant materials for resource recovery in a Controlled Ecological Life Support System

    NASA Technical Reports Server (NTRS)

    Kohlmann, K. L.; Westgate, P.; Velayudhan, A.; Weil, J.; Sarikaya, A.; Brewer, M. A.; Hendrickson, R. L.; Ladisch, M. R.; Mitchell, C. A. (Principal Investigator)

    1996-01-01

    A large amount of inedible plant material composed primarily of the carbohydrate materials cellulose, hemicellulose, and lignin is generated as a result of plant growth in a Controlled Ecological Life-Support System (CELSS). Cellulose is a linear homopolymer of glucose, which when properly processed will yield glucose, a valuable sugar because it can be added directly to human diets. Hemicellulose is a heteropolymer of hexoses and pentoses that can be treated to give a sugar mixture that is potentially a valuable fermentable carbon source. Such fermentations yield desirable supplements to the edible products from hydroponically-grown plants such as rapeseed, soybean, cowpea, or rice. Lignin is a three-dimensionally branched aromatic polymer, composed of phenyl propane units, which is susceptible to bioconversion through the growth of the white rot fungus, Pluerotus ostreatus. Processing conditions, that include both a hot water pretreatment and fungal growth and that lead to the facile conversion of plant polysaccharides to glucose, are presented.

  8. Cofermentation of Glucose, Xylose, and Cellobiose by the Beetle-Associated Yeast Spathaspora passalidarum

    Treesearch

    Tanya M. Long; Yi-Kai Su; Jennifer Headman; Alan Higbee; Laura B. Willis; Thomas W. Jeffries

    2012-01-01

    Fermentation of cellulosic and hemicellulosic sugars from biomass could resolve food-versus-fuel conflicts inherent in the bioconversion of grains. However, the inability to coferment glucose and xylose is a major challenge to the economical use of lignocellulose as a feedstock. Simultaneous cofermentation of glucose, xylose, and cellobiose is problematic for most...

  9. Method and apparatus for the removal or bioconversion of constituents of organic liquids

    DOEpatents

    Scott, T.; Scott, C.D.

    1994-10-25

    A method and apparatus are disclosed for the removal or conversion of constituents from bulk organic liquids. A countercurrent biphasic bioreactor system is utilized to disperse and recoalesce a biocatalyst contained in the aqueous liquid phase into the organic liquid phase containing the constituent. Two transient, high-intensity electrical fields rupture the aqueous drops into a plurality of microdroplets and induce continuous coalescence and redispersion as the microdroplets travel through the organic phase, thus increasing surface area. As the aqueous microdroplets progress through the organic phase, the biocatalyst then reacts with the constituent to produce a product which is then removed from the bioreactor in the aqueous phase or retained in the organic phase. The organic liquid, now free of the original constituents, is ready for immediate use or further processing. 1 fig.

  10. Extrusion Pretreatment of Lignocellulosic Biomass: A Review

    PubMed Central

    Zheng, Jun; Rehmann, Lars

    2014-01-01

    Bioconversion of lignocellulosic biomass to bioethanol has shown environmental, economic and energetic advantages in comparison to bioethanol produced from sugar or starch. However, the pretreatment process for increasing the enzymatic accessibility and improving the digestibility of cellulose is hindered by many physical-chemical, structural and compositional factors, which make these materials difficult to be used as feedstocks for ethanol production. A wide range of pretreatment methods has been developed to alter or remove structural and compositional impediments to (enzymatic) hydrolysis over the last few decades; however, only a few of them can be used at commercial scale due to economic feasibility. This paper will give an overview of extrusion pretreatment for bioethanol production with a special focus on twin-screw extruders. An economic assessment of this pretreatment is also discussed to determine its feasibility for future industrial cellulosic ethanol plant designs. PMID:25334065

  11. (-)-Epicatechin derivate from Orostachys japonicus as potential inhibitor of the human butyrylcholinesterase.

    PubMed

    Kim, Jang Hoon; Lee, Sang-Hyun; Lee, Hyun Woo; Sun, Ya Nan; Jang, Won-Hee; Yang, Seo-Young; Jang, Hae-Dong; Kim, Young Ho

    2016-10-01

    Cholinesterase inhibitors block the bioconversion of neurotransmitters by cholinesterase in the nervous system. Epicatechin derivatives (1, 3 and 5), polyphenols (6 and 7) from Orostachys japonicus, and catechin derivatives (2 and 4) from our in-house library were evaluated for their inhibitory activity on cholinesterase. Compound 5 exhibited IC50 values of 58.3±2.4 and 17.8±3.8μg/mL on AChE and BuChE, respectively. Compound 5 inhibited BuChE more strongly than AChE through a competitive behavior. In silico binding positions of 5 in the active site were predicted using Autodock 4.2 and processed in a 10000-ps molecular dynamics simulation to assess the stability of compound 5 binding. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Use of immobilised biocatalysts in the processing of cheese whey.

    PubMed

    Kosseva, Maria R; Panesar, Parmjit S; Kaur, Gurpreet; Kennedy, John F

    2009-12-01

    Food processing industry operations need to comply with increasingly more stringent environmental regulations related to the disposal or utilisation of by-products and wastes. These include growing restrictions on land spraying with agro-industrial wastes, and on disposal within landfill operations, and the requirements to produce end products that are stabilised and hygienic. Much of the material generated as wastes by the dairy processing industries contains components that could be utilised as substrates and nutrients in a variety of microbial/enzymatic processes, to give rise to added-value products. A good example of a waste that has received considerable attention as a source of added-value products is cheese whey. The carbohydrate reservoir of lactose (4-5%) in whey and the presence of other essential nutrients make it a good natural medium for the growth of microorganisms and a potential substrate for bioprocessing through microbial fermentation. Immobilised cell and enzyme technology has also been applied to whey bioconversion processes to improve the economics of such processes. This review focuses upon the elaboration of a range of immobilisation techniques that have been applied to produce valuable whey-based products. A comprehensive literature survey is also provided to illustrate numerous immobilisation procedures with particular emphasis upon lactose hydrolysis, and ethanol and lactic acid production using immobilised biocatalysts.

  13. Comparative and Functional Genomics of Rhodococcus opacus PD630 for Biofuels Development

    PubMed Central

    Holder, Jason W.; Ulrich, Jil C.; DeBono, Anthony C.; Godfrey, Paul A.; Desjardins, Christopher A.; Zucker, Jeremy; Zeng, Qiandong; Leach, Alex L. B.; Ghiviriga, Ion; Dancel, Christine; Abeel, Thomas; Gevers, Dirk; Kodira, Chinnappa D.; Desany, Brian; Affourtit, Jason P.; Birren, Bruce W.; Sinskey, Anthony J.

    2011-01-01

    The Actinomycetales bacteria Rhodococcus opacus PD630 and Rhodococcus jostii RHA1 bioconvert a diverse range of organic substrates through lipid biosynthesis into large quantities of energy-rich triacylglycerols (TAGs). To describe the genetic basis of the Rhodococcus oleaginous metabolism, we sequenced and performed comparative analysis of the 9.27 Mb R. opacus PD630 genome. Metabolic-reconstruction assigned 2017 enzymatic reactions to the 8632 R. opacus PD630 genes we identified. Of these, 261 genes were implicated in the R. opacus PD630 TAGs cycle by metabolic reconstruction and gene family analysis. Rhodococcus synthesizes uncommon straight-chain odd-carbon fatty acids in high abundance and stores them as TAGs. We have identified these to be pentadecanoic, heptadecanoic, and cis-heptadecenoic acids. To identify bioconversion pathways, we screened R. opacus PD630, R. jostii RHA1, Ralstonia eutropha H16, and C. glutamicum 13032 for growth on 190 compounds. The results of the catabolic screen, phylogenetic analysis of the TAGs cycle enzymes, and metabolic product characterizations were integrated into a working model of prokaryotic oleaginy. PMID:21931557

  14. Molecular Breeding Algae For Improved Traits For The Conversion Of Waste To Fuels And Commodities.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bagwell, C.

    This Exploratory LDRD aimed to develop molecular breeding methodology for biofuel algal strain improvement for applications in waste to energy / commodity conversion technologies. Genome shuffling technologies, specifically protoplast fusion, are readily available for the rapid production of genetic hybrids for trait improvement and have been used successfully in bacteria, yeast, plants and animals. However, genome fusion has not been developed for exploiting the remarkable untapped potential of eukaryotic microalgae for large scale integrated bio-conversion and upgrading of waste components to valued commodities, fuel and energy. The proposed molecular breeding technology is effectively sexual reproduction in algae; though compared tomore » traditional breeding, the molecular route is rapid, high-throughput and permits selection / improvement of complex traits which cannot be accomplished by traditional genetics. Genome fusion technologies are the cutting edge of applied biotechnology. The goals of this Exploratory LDRD were to 1) establish reliable methodology for protoplast production among diverse microalgal strains, and 2) demonstrate genome fusion for hybrid strain production using a single gene encoded trait as a proof of the concept.« less

  15. Combined strategy of transcription factor manipulation and β-glucosidase gene overexpression in Trichoderma reesei and its application in lignocellulose bioconversion.

    PubMed

    Xia, Ying; Yang, Lirong; Xia, Liming

    2018-06-16

    The industrial application of Trichoderma reesei has been greatly limited by insufficient β-glucosidase activity in its cellulase system. In this study, a novel β-glucosidase expression cassette was constructed and integrated at the target site in T. reesei ZU-02, which achieved the overexpression of β-glucosidase gene and in situ disruption of the cellulase transcriptional repressor ACE1. The resulting transformants showed significant increase in both β-glucosidase activity (BGA) and filter paper activity (FPA). The BGA and FPA increased to 25.13 IU/mL and 20.06 FPU/mL, respectively, 167- and 2.45-fold higher than that of the host strain. Meanwhile, the obtained cellulase system exhibited improved ratio of BGA to FPA, leading to better synergistic effect between cellulase components. Furthermore, submerged fermentation of the transformant was established in 50 m 3 fermenter yielding 112.2 IU/mL β-glucosidase and 89.76 FPU/mL total cellulase. The newly constructed T. reesei transformant achieved improved hydrolysis yield (90.6%) with reduced enzyme loading (15 FPU/g substrate).

  16. Quantitative predictions of bioconversion of aspen by dilute acid and SPORL pretreatments using a unified combined hydrolysis factor (CHF)

    Treesearch

    W. Zhu; Carl J. Houtman; J.Y. Zhu; Roland Gleisner; K.F. Chen

    2012-01-01

    A combined hydrolysis factor (CHF) was developed to predict xylan hydrolysis during pretreatments of native aspen (Populus tremuloides) wood chips. A natural extension of previously developed kinetic models allowed us to account for the effect of catalysts by dilute acid and two sulfite pretreatments at different pH values....

  17. Genome sequence of the lignocellulose-bioconverting and xylose-fermenting yeast Pichia stipitis

    Treesearch

    Thomas W. Jeffries; Igor V. Grigroriev; Jane Grimwood; Jose M. Laplaza; Andrea Aerts; Asaf Salamov; Jeremy Schmutz; Erika Lindquist; Paramvir Dehal; Harris Shapiro; Yong-Su Jin; Volkmar Passoth; Paul M. Richardson

    2007-01-01

    Xylose is a major constituent of plant lignocellulose, and its fermentation is important for the bioconversion of plant biomass to fuels and chemicals. Pichia stipitis is a well-studied, native xylose-fermenting yeast. The mechanism and regulation of xylose metabolism in P. stipitis have been characterized and genes from P. stipitis have been used to engineer xylose...

  18. Bioconversion of Cyanidin-3-Rutinoside to Cyanidin-3-Glucoside in Black Raspberry by Crude α-L-Rhamnosidase from Aspergillus Species.

    PubMed

    Lim, Taehwan; Jung, Hana; Hwang, Keum Taek

    2015-11-01

    Cyanidin-3-glucoside (C3G) has been known to be more bioavailable than cyanidin-3- rutinoside (C3R), the most abundant anthocyanin in black raspberry (Rubus occidentalis). The aim of this study was to enhance the bioavailability of anthocyanins in black raspberry by cleaving L-rhamnose in C3R using crude enzyme extracts (CEEs) from Aspergillus usamii KCTC 6956, A. awamori KCTC 60380, A. niger KCCM 11724, A. oryzae KCCM 12698, and A. kawachii KCCM 32819. The enzyme activities of the CEEs were determined by a spectrophotometric method using rho-nitrophenyl-rhamnopyranoside and rho-nitrophenyl-glucopyranoside. The CEE from A. usamii had the highest α-L-rhamnosidase activity with 2.73 U/ml at 60°C, followed by those from A. awamori and A. niger. When bioconversion of C3R to C3G in black raspberry was analyzed by HPLC-DAD, the CEEs from A. usamii and A. awamori hydrolyzed 95.7% and 95.6% of C3R to C3G, respectively, after 2 h incubation. The CEEs from A. kawachii and A. oryzae did not convert C3R to C3G in black raspberry.

  19. Hydrogel Film-Immobilized Lactobacillus brevis RK03 for γ-Aminobutyric Acid Production

    PubMed Central

    Hsueh, Yi-Huang; Liaw, Wen-Chang; Kuo, Jen-Min; Deng, Chi-Shin

    2017-01-01

    Hydrogels of 2-hydroxyethyl methacrylate/polyethylene glycol diacrylate (HEMA/PEGDA) have been extensively studied for their use in biomedical and pharmaceutical applications owing to their nontoxic and highly hydrophilic characteristics. Recently, cells immobilized by HEMA/PEGDA hydrogels have also been studied for enhanced production in fermentation. Hydrogel films of HEMA/PEGDA copolymer were generated by Ultraviolet (UV)-initiated photopolymerization. The hydrogel films were used to immobilize viable Lactobacillus brevis RK03 cells for the bioconversion of monosodium glutamate (MSG) to γ-aminobutyric acid (GABA). The mechanical properties and fermentation yields of the L. brevis RK03 cells immobilized on polyacrylate hydrogel films with different monomeric formulations were investigated. Fermentation was carried out in 75 mL de Man, Rogosa and Sharpe (MRS) medium containing various concentrations of MSG. We found that HEMA (93%)/PEGDA (3%) hydrogels (sample H) maximized GABA production. The conversion rate of MSG to GABA reached a maximum value of 98.4% after 240 h. Bioconversion activity gradually declined after 420 h to 83.8% after five cycles of semi-continuous fermentation. Our results suggest that HEMA (93%)/PEGDA (3%) hydrogels have great potential for use in GABA production via semi-continuous fermentation. PMID:29099794

  20. Characterization and enzymatic hydrolysis of wood from transgenic Pinus taeda engineered with syringyl lignin or reduced lignin content

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edmunds, Charles W.; Peralta, Perry; Kelley, Stephen S.

    Softwood is an abundant resource; however, currently its utilization for bioconversion to obtain platform sugars is limited. Pinus taeda trees which were genetically modified to either produce S lignin or to decrease lignin content were characterized with a suite of analytic techniques. Syringyl lignin was visualized in the secondary xylem of one genetic line with Maule staining. Solid-state nuclear magnetic resonance identified the S lignin units were coupled into the lignin through β-O-4 linkages, and thioacidolysis measured approximately 13% S lignin content in the same sample. Reductions of the lignin of as much as 33% were observed in the transgenics.more » To better understand how these modifications affect bioconversion, their amenability to hot water and dilute acid pretreatments and enzymatic hydrolysis was evaluated. Lignin reductions resulted in 1.9-3.2-fold increases in glucose release compared to the control. However, no apparent benefit was observed by S lignin incorporation at the concentrations reported in this study. Finally, these results highlight the potential for softwood cell wall properties to be improved for bioenergy/biochemical applications.« less

  1. Elimination of sulphur odours at landfills by bioconversion and the corona discharge plasma technique.

    PubMed

    Xia, Fangfang; Liu, Xin; Kang, Ying; He, Ruo; Wu, Zucheng

    2015-01-01

    Hydrogen sulphide (H2S) contributes a lot to odours at landfills, which is a threat to the environment and the health of the staff therein. To mitigate its emission, the bioconversion within landfill cover soils (LCSs) was introduced. H2S emission and concentration both in the field air above the landfill and in microcosm testing were surveyed. Results indicated that H2S emission and concentration in the landfill varied with landfill seasons and sites. There existed relationship between H2S concentration and fluxes spatially and temporally. To characterize and assess the spatial and temporal diversity of sulphur-oxidizing bacteria (SOB) and sulphate-reducing bacteria (SRB) in the LCSs, the terminal-restriction fragment length polymorphism technique was employed. Using the functional genes of dsrB and soxB, SOB, including Halothiobacillus, Rhodothalassium, Paracocccus, Allochromatium, and Thiobacillus, and SRB, including Desulfovibrio, Syntrophobacter, Desulfomonile and Desulfobacca, were identical and exhibited the dominant role in the LCSs. By employing an alternative available corona reactor, more than 90% removal efficiencies of sulphides were demonstrated, suggesting that the LCSs for eliminating odours in a lower concentration would be feasible.

  2. Characterization and enzymatic hydrolysis of wood from transgenic Pinus taeda engineered with syringyl lignin or reduced lignin content

    DOE PAGES

    Edmunds, Charles W.; Peralta, Perry; Kelley, Stephen S.; ...

    2017-02-22

    Softwood is an abundant resource; however, currently its utilization for bioconversion to obtain platform sugars is limited. Pinus taeda trees which were genetically modified to either produce S lignin or to decrease lignin content were characterized with a suite of analytic techniques. Syringyl lignin was visualized in the secondary xylem of one genetic line with Maule staining. Solid-state nuclear magnetic resonance identified the S lignin units were coupled into the lignin through β-O-4 linkages, and thioacidolysis measured approximately 13% S lignin content in the same sample. Reductions of the lignin of as much as 33% were observed in the transgenics.more » To better understand how these modifications affect bioconversion, their amenability to hot water and dilute acid pretreatments and enzymatic hydrolysis was evaluated. Lignin reductions resulted in 1.9-3.2-fold increases in glucose release compared to the control. However, no apparent benefit was observed by S lignin incorporation at the concentrations reported in this study. Finally, these results highlight the potential for softwood cell wall properties to be improved for bioenergy/biochemical applications.« less

  3. Effect of irradiation, as a pretreatment, on bioconversion of corn stover into protein-rich mycelial biomass of Pleurotus sajor-caju

    NASA Astrophysics Data System (ADS)

    Awafo, V. A.; Chahal, D. S.; Charbonneau, R.

    1995-09-01

    Application of irradiation for food preservation, for pretreatment of lignocellulosic materials for their hydrolysis and to increase the digestibility of lignocellulosic materials for rumen animals have been reported in the literature. In the present study, irradiation (100 KGy to 1.7 MGy) of corn stover as a pretreatment to make it susceptible for its bioconversion into protein-rich mycelial biomass of Pleurotus sajor-caju NRRL 18757 has been compared with that of mild alkali treatment (0.01 to 0.15 g NaOH/g corn stover), the most commonly used pretreatment. Protein synthesis increased with the increase in doses of irradiation as well as with the increase in concentration of NaOH. Combination pretreatment with NaOH and γ-irradiation reduced the quantity of NaOH and doses of irradiation required to get optimum yields of protein indicating a strong synergistic effect. The highest protein content of the final product, mycelial biomass, was about 45% on dry weight basis. More than 90% utilization of corn stover polysaccharides for the synthesis of protein-rich mycelial biomass of P. sajor-caju was recorded

  4. Bioconversion of Lignocellulosic Biomass to Fermentable Sugars by Immobilized Magnetic Cellulolytic Enzyme Cocktails.

    PubMed

    Periyasamy, Karthik; Santhalembi, Laishram; Mortha, Gérard; Aurousseau, Marc; Boyer, Agnès; Subramanian, Sivanesan

    2018-06-05

    Enzyme cocktails of reusable, highly stable cellulolytic enzymes play an inevitable role in bioconversion of biomass to biofuels economically. Cellulase, xylanase and β-1,3-glucanase bound silica-amine functionalized iron oxide magnetic nanoparticles (ISN-CLEAs) were prepared and used as the biocatalyst for the depolymerization of cellulosic biomass into monomeric sugar in the present study. The Fe 3 O 4 -NPs and Fe 3 O 4 @SiO 2 -NH 2 -NPs and ISN-CLEAs had an average hydrodynamic size of 82.2, 86.4, and 976.9 nm, respectively, which was confirmed by dynamic light scattering (DLS). About 97% of protein binding was achieved with 135 mM glutaraldehyde at 10 h of cross-linking time and successful binding was confirmed by Fourier transform infrared spectroscopy (FTIR). The ISN-CLEAs exhibited the highest thermal stability of 95% at 50 °C for 2 h and retained extended storage stability of 97% compared to 60% of its free counterpart. Besides, cross-linking allowed ISN-CLEAs reuse for at least eight consecutive cycles retaining over 70% of its initial activity. ISN-CLEAs exhibited approximately 15% increase in carbohydrate digestibility on sugar cane bagasse and eucalyptus pulp than the free enzyme.

  5. Effect of cell-surface hydrophobicity on bacterial conversion of water-immiscible chemicals in two-liquid-phase culture systems.

    PubMed

    Hamada, Takahiro; Maeda, Yusuke; Matsuda, Hiroyuki; Sameshima, Yuka; Honda, Kohsuke; Omasa, Takeshi; Kato, Junichi; Ohtake, Hisao

    2009-08-01

    The effect of bacterial cell-surface hydrophobicity on the bioconversion of water-immiscible chemicals in an aqueous-organic (A/O) two-liquid-phase culture system was investigated. Escherichia coli JM109 and Rhodococcus opacus B-4 were used as hydrophilic and hydrophobic whole-cell catalysts, respectively. Hydroxylation reactions of monoaromatics, including toluene (log P(ow)=2.9), ethylbenzene (3.1), n-propylbenzene (3.4), and sec-butylbenzene (3.7), were employed as model conversions. When the todC1C2BA genes encoding Pseudomonas putida toluene dioxygenase were expressed in E. coli JM109, the yield of hydroxylated monoaromatics decreased with increasing substrate hydrophobicity. By contrast, R. opacus transformants, which expressed the todC1C2BA genes, showed high performance in the hydroxylation of monoaromatics, irrespective of substrate hydrophobicity. When the R. opacus transformants were examined for their ability to hydroxylate monoaromatics in an aqueous single-liquid-phase culture, the reaction velocity was markedly lower than that observed in the A/O two-liquid-phase culture. These results suggested that R. opacus B-4 accessed the hydrophobic substrates in the oil phase, thus making it more effective for the bioconversion reactions.

  6. Steroid biotransformations in biphasic systems with Yarrowia lipolytica expressing human liver cytochrome P450 genes

    PubMed Central

    2012-01-01

    Background Yarrowia lipolytica efficiently metabolizes and assimilates hydrophobic compounds such as n-alkanes and fatty acids. Efficient substrate uptake is enabled by naturally secreted emulsifiers and a modified cell surface hydrophobicity and protrusions formed by this yeast. We were examining the potential of recombinant Y. lipolytica as a biocatalyst for the oxidation of hardly soluble hydrophobic steroids. Furthermore, two-liquid biphasic culture systems were evaluated to increase substrate availability. While cells, together with water soluble nutrients, are maintained in the aqueous phase, substrates and most of the products are contained in a second water-immiscible organic solvent phase. Results For the first time we have co-expressed the human cytochromes P450 2D6 and 3A4 genes in Y. lipolytica together with human cytochrome P450 reductase (hCPR) or Y. lipolytica cytochrome P450 reductase (YlCPR). These whole-cell biocatalysts were used for the conversion of poorly soluble steroids in biphasic systems. Employing a biphasic system with the organic solvent and Y. lipolytica carbon source ethyl oleate for the whole-cell bioconversion of progesterone, the initial specific hydroxylation rate in a 1.5 L stirred tank bioreactor was further increased 2-fold. Furthermore, the product formation was significantly prolonged as compared to the aqueous system. Co-expression of the human CPR gene led to a 4-10-fold higher specific activity, compared to the co-overexpression of the native Y. lipolytica CPR gene. Multicopy transformants showed a 50-70-fold increase of activity as compared to single copy strains. Conclusions Alkane-assimilating yeast Y. lipolytica, coupled with the described expression strategies, demonstrated its high potential for biotransformations of hydrophobic substrates in two-liquid biphasic systems. Especially organic solvents which can be efficiently taken up and/or metabolized by the cell might enable more efficient bioconversion as compared to aqueous systems and even enable simple, continuous or at least high yield long time processes. PMID:22876969

  7. Comparative biochemical analysis after steam pretreatment of lignocellulosic agricultural waste biomass from Williams Cavendish banana plant (Triploid Musa AAA group).

    PubMed

    Kamdem, Irénée; Jacquet, Nicolas; Tiappi, Florian Mathias; Hiligsmann, Serge; Vanderghem, Caroline; Richel, Aurore; Jacques, Philippe; Thonart, Philippe

    2015-11-01

    The accessibility of fermentable substrates to enzymes is a limiting factor for the efficient bioconversion of agricultural wastes in the context of sustainable development. This paper presents the results of a biochemical analysis performed on six combined morphological parts of Williams Cavendish Lignocellulosic Biomass (WCLB) after steam cracking (SC) and steam explosion (SE) pretreatments. Solid (S) and liquid (L) fractions (Fs) obtained from SC pretreatment performed at 180°C (SLFSC180) and 210°C (SLFSC210) generated, after diluted acid hydrolysis, the highest proportions of neutral sugar (NS) contents, specifically 52.82 ± 3.51 and 49.78 ± 1.39%w/w WCLB dry matter (DM), respectively. The highest proportions of glucose were found in SFSC210 (53.56 ± 1.33%w/w DM) and SFSC180 (44.47 ± 0.00%w/w DM), while the lowest was found in unpretreated WCLB (22.70 ± 0.71%w/w DM). Total NS content assessed in each LF immediately after SC and SE pretreatments was less than 2%w/w of the LF DM, thus revealing minor acid autohydrolysis consequently leading to minor NS production during the steam pretreatment. WCLB subjected to SC at 210 °C (SC210) generated up to 2.7-fold bioaccessible glucan and xylan. SC and SE pretreatments showed potential for the deconstruction of WCLB (delignification, depolymerization, decrystallization and deacetylation), enhancing its enzymatic hydrolysis. The concentrations of enzymatic inhibitors, such as 2-furfuraldehyde and 5-(hydroxymethyl)furfural from LFSC210, were the highest (41 and 21 µg ml(-1), respectively). This study shows that steam pretreatments in general and SC210 in particular are required for efficient bioconversion of WCLB. Yet, biotransformation through biochemical processes (e.g., anaerobic digestion) must be performed to assess the efficiency of these pretreatments. © The Author(s) 2015.

  8. Comparison of Ultrasonic and CO2 Laser Pretreatment Methods on Enzyme Digestibility of Corn Stover

    PubMed Central

    Tian, Shuang-Qi; Wang, Zhen-Yu; Fan, Zi-Luan; Zuo, Li-Li

    2012-01-01

    To decrease the cost of bioethanol production, biomass recalcitrance needs to be overcome so that the conversion of biomass to bioethanol becomes more efficient. CO2 laser irradiation can disrupt the lignocellulosic physical structure and reduce the average size of fiber. Analyses with Fourier transform infrared spectroscopy, specific surface area, and the microstructure of corn stover were used to elucidate the enhancement mechanism of the pretreatment process by CO2 laser irradiation. The present work demonstrated that the CO2 laser had potential to enhance the bioconversion efficiency of lignocellulosic waste to renewable bioethanol. The saccharification rate of the CO2 laser pretreatment was significantly higher than ultrasonic pretreatment, and reached 27.75% which was 1.34-fold of that of ultrasonic pretreatment. The results showed the impact of CO2 laser pretreatment on corn stover to be more effective than ultrasonic pretreatment. PMID:22605970

  9. Comparison of ultrasonic and CO₂laser pretreatment methods on enzyme digestibility of corn stover.

    PubMed

    Tian, Shuang-Qi; Wang, Zhen-Yu; Fan, Zi-Luan; Zuo, Li-Li

    2012-01-01

    To decrease the cost of bioethanol production, biomass recalcitrance needs to be overcome so that the conversion of biomass to bioethanol becomes more efficient. CO(2) laser irradiation can disrupt the lignocellulosic physical structure and reduce the average size of fiber. Analyses with Fourier transform infrared spectroscopy, specific surface area, and the microstructure of corn stover were used to elucidate the enhancement mechanism of the pretreatment process by CO(2) laser irradiation. The present work demonstrated that the CO(2) laser had potential to enhance the bioconversion efficiency of lignocellulosic waste to renewable bioethanol. The saccharification rate of the CO(2) laser pretreatment was significantly higher than ultrasonic pretreatment, and reached 27.75% which was 1.34-fold of that of ultrasonic pretreatment. The results showed the impact of CO(2) laser pretreatment on corn stover to be more effective than ultrasonic pretreatment.

  10. Biodiesel production by various oleaginous microorganisms from organic wastes.

    PubMed

    Cho, Hyun Uk; Park, Jong Moon

    2018-05-01

    Biodiesel is a biodegradable and renewable fuel. A large amount of research has considered microbial oil production using oleaginous microorganisms, but the commercialization of microbial lipids produced in this way remains uncertain due to the high cost of feedstock or low lipid yield. Microbial lipids can be typically produced by microalgae, yeasts, and bacteria; the lipid yields of these microorganisms can be improved by using sufficient concentrations of organic carbon sources. Therefore, combining low-cost organic compounds contained in organic wastes with cultivation of oleaginous microorganisms can be a promising approach to obtain commercial viability. However, to achieve effective bioconversion of low-cost substrates to microbial lipids, the characteristics of each microorganism and each substrate should be considered simultaneously. This article discusses recent approaches to developing cost-effective microbial lipid production processes that use various oleaginous microorganisms and organic wastes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Study on potency of municipal solid waste conversion into renewable energy by thermal incineration and bioconversion: case study of Medan city

    NASA Astrophysics Data System (ADS)

    Sarah, Maya; Misran, Erni

    2018-03-01

    Municipal solid waste (MSW) in Medan City is facing problems either with the quantity and management of MSW. Local authority only dumped approximately 73.9% MSW in the landfill over the years. Spontaneous phenomena of methane formation in dumping site indicates the potency of MSW conversion into energy by biochemical conversion. On the contrary, the presence of plastics, woods, papers, etc. in the MSW show the potency of MSW to be treated by thermal conversion. Both thermal incineration and anaerobic digestion may convert MSW Medan City into energy. This study evaluates potency of MSW conversion into renewable energy using proximate and ultimate analysis. Overall, MSW of Medan City has the opportunities to be converted into energy by both thermal and biochemical conversion with a special requirement such as pre-dry the MSW prior incineration process and degrade organic MSW in a bioreactor.

  12. Coupling of Solar Energy to Hydrogen Peroxide Production in the Cyanobacterium Anacystis nidulans

    PubMed Central

    Roncel, Mercedes; Navarro, José A.; De la Rosa, Miguel A.

    1989-01-01

    Hydrogen peroxide production by blue-green algae (cyanobacteria) under photoautotrophic conditions is of great interest as a model system for the bioconversion of solar energy. Our experimental system was based on the photosynthetic reduction of molecular oxygen with electrons from water by Anacystis nidulans 1402-1 as the biophotocatalyst and methyl viologen as a redox intermediate. It has been demonstrated that the metabolic conditions of the algae in their different growth stages strongly influence the capacity for hydrogen peroxide photoproduction, and so the initial formation rate and net peroxide yield became maximum in the mid-log phase of growth. The overall process can be optimized in the presence of certain metabolic inhibitors such as iodoacetamide and p-hydroxymercuribenzoate, as well as by permeabilization of the cellular membrane after drastic temperature changes and by immobilization of the cells in inert supports such as agar and alginate. PMID:16347855

  13. Microbial and Bioconversion Production of D-xylitol and Its Detection and Application

    PubMed Central

    Chen, Xi; Jiang, Zi-Hua; Chen, Sanfeng; Qin, Wensheng

    2010-01-01

    D-Xylitol is found in low content as a natural constituent of many fruits and vegetables. It is a five-carbon sugar polyol and has been used as a food additive and sweetening agent to replace sucrose, especially for non-insulin dependent diabetics. It has multiple beneficial health effects, such as the prevention of dental caries, and acute otitis media. In industry, it has been produced by chemical reduction of D-xylose mainly from photosynthetic biomass hydrolysates. As an alternative method of chemical reduction, biosynthesis of D-xylitol has been focused on the metabolically engineered Saccharomyces cerevisiae and Candida strains. In order to detect D-xylitol in the production processes, several detection methods have been established, such as gas chromatography (GC)-based methods, high performance liquid chromatography (HPLC)-based methods, LC-MS methods, and capillary electrophoresis methods (CE). The advantages and disadvantages of these methods are compared in this review. PMID:21179590

  14. Bioconversion of AHX to AOH by resting cells of Burkholderia contaminans CH-1.

    PubMed

    Choi, Jae-Hoon; Kikuchi, Ayaka; Pumkaeo, Panyapon; Hirai, Hirofumi; Tokuyama, Shinji; Kawagishi, Hirokazu

    2016-10-01

    Fairy rings are zones of stimulated grass growth owing to the interaction between a fungus and a plant. We previously reported the discovery of two novel plant-growth regulating compounds related to forming fairy rings, 2-azahypoxanthine (AHX) and 2-aza-8-oxohypoxanthine (AOH). In this study, a bacterial strain CH-1 was isolated from an airborne-contaminated nutrient medium containing AHX. The strain converted AHX to AOH and identified as Burkholderia contaminans based on the gene sequence of its 16S rDNA. The quantitative production of AOH by resting cells of the strain was achieved. Among seven Burkholderia species, two bacteria and two yeasts tested, B. contaminans CH-1 showed the highest rate of conversion of AHX to AOH. By batch system, up to 10.6 mmol AHX was converted to AOH using the resting cells. The yield of this process reached at 91%.

  15. Biosynthesis, structural architecture and biotechnological potential of bacterial tannase: a molecular advancement.

    PubMed

    Jana, Arijit; Halder, Suman Kumar; Banerjee, Amrita; Paul, Tanmay; Pati, Bikash Ranjan; Mondal, Keshab Chandra; Das Mohapatra, Pradeep Kumar

    2014-04-01

    Tannin-rich materials are abundantly generated as wastes from several agroindustrial activities. Therefore, tannase is an interesting hydrolase, for bioconversion of tannin-rich materials into value added products by catalyzing the hydrolysis of ester and depside bonds and unlocked a new prospect in different industrial sectors like food, beverages, pharmaceuticals, etc. Microorganisms, particularly bacteria are one of the major sources of tannase. In the last decade, cloning and heterologous expression of novel tannase genes and structural study has gained momentum. In this article, we have emphasized critically on bacterial tannase that have gained worldwide research interest for their diverse properties. The present paper delineate the developments that have taken place in understanding the role of tannase action, microbial sources, various cultivation aspects, downstream processing, salient biochemical properties, structure and active sites, immobilization, efforts in cloning and overexpression and with special emphasis on recent molecular and biotechnological achievements. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Bioconversion of L-phenylalanine to 2-phenylethanol by the novel stress-tolerant yeast Candida glycerinogenes WL2002-5

    PubMed Central

    Lu, Xinyao; Wang, Yuqin; Zong, Hong; Ji, Hao; Zhuge, Bin; Dong, Zhuoli

    2016-01-01

    ABSTRACT 2-Phenylethanol (2-PE) is a high value aromatic alcohol with a rose-like odor that is utilized in the cosmetics and other industries. Although the chemical routes of 2-PE production have been altered by some microbial transformation processes, the poor tolerance to organic solvents of these microorganisms has limited the 2-PE yield. In this study, the stress-tolerant yeast Candida glycerinogenes WL2002-5 showed a 2-PE tolerance to 4 g/l, which is the highest reported to date. Moreover, the 2-PE titer in a batch fermentation from L-phenylalanine reached 5g/l, which is the highest level achieved by fermentation without in situ product recovery. These results suggest C. glycerinogenes WL2002-5 is a robust strain for the bioproduction of 2-PE with potential for commercial exploitation. PMID:27435817

  17. Bioconversion of L-phenylalanine to 2-phenylethanol by the novel stress-tolerant yeast Candida glycerinogenes WL2002-5.

    PubMed

    Lu, Xinyao; Wang, Yuqin; Zong, Hong; Ji, Hao; Zhuge, Bin; Dong, Zhuoli

    2016-11-01

    2-Phenylethanol (2-PE) is a high value aromatic alcohol with a rose-like odor that is utilized in the cosmetics and other industries. Although the chemical routes of 2-PE production have been altered by some microbial transformation processes, the poor tolerance to organic solvents of these microorganisms has limited the 2-PE yield. In this study, the stress-tolerant yeast Candida glycerinogenes WL2002-5 showed a 2-PE tolerance to 4 g/l, which is the highest reported to date. Moreover, the 2-PE titer in a batch fermentation from L-phenylalanine reached 5g/l, which is the highest level achieved by fermentation without in situ product recovery. These results suggest C. glycerinogenes WL2002-5 is a robust strain for the bioproduction of 2-PE with potential for commercial exploitation.

  18. Ionic liquid-tolerant microorganisms and microbial communities for lignocellulose conversion to bioproducts

    DOE PAGES

    Yu, Chaowei; Simmons, Blake A.; Singer, Steven W.; ...

    2016-11-12

    Chemical and physical pretreatment of biomass is a critical step in the conversion of lignocellulose to biofuels and bioproducts. Ionic liquid (IL) pretreatment has attracted significant attention due to the unique ability of certain ILs to solubilize some or all components of the plant cell wall. However, these ILs inhibit not only the enzyme activities but also the growth and productivity of microorganisms used in downstream hydrolysis and fermentation processes. While pretreated biomass can be washed to remove residual IL and reduce inhibition, extensive washing is costly and not feasible in large-scale processes. IL-tolerant microorganisms and microbial communities have beenmore » discovered from environmental samples and studies begun to elucidate mechanisms of IL tolerance. The discovery of IL tolerance in environmental microbial communities and individual microbes has lead to the proposal of molecular mechanisms of resistance. Here, we review recent progress on discovering IL-tolerant microorganisms, identifying metabolic pathways and mechanisms of tolerance, and engineering microorganisms for IL tolerance. Research in these areas will yield new approaches to overcome inhibition in lignocellulosic biomass bioconversion processes and increase opportunities for the use of ILs in biomass pretreatment.« less

  19. Ionic liquid-tolerant microorganisms and microbial communities for lignocellulose conversion to bioproducts.

    PubMed

    Yu, Chaowei; Simmons, Blake A; Singer, Steven W; Thelen, Michael P; VanderGheynst, Jean S

    2016-12-01

    Chemical and physical pretreatment of biomass is a critical step in the conversion of lignocellulose to biofuels and bioproducts. Ionic liquid (IL) pretreatment has attracted significant attention due to the unique ability of certain ILs to solubilize some or all components of the plant cell wall. However, these ILs inhibit not only the enzyme activities but also the growth and productivity of microorganisms used in downstream hydrolysis and fermentation processes. While pretreated biomass can be washed to remove residual IL and reduce inhibition, extensive washing is costly and not feasible in large-scale processes. IL-tolerant microorganisms and microbial communities have been discovered from environmental samples and studies begun to elucidate mechanisms of IL tolerance. The discovery of IL tolerance in environmental microbial communities and individual microbes has lead to the proposal of molecular mechanisms of resistance. In this article, we review recent progress on discovering IL-tolerant microorganisms, identifying metabolic pathways and mechanisms of tolerance, and engineering microorganisms for IL tolerance. Research in these areas will yield new approaches to overcome inhibition in lignocellulosic biomass bioconversion processes and increase opportunities for the use of ILs in biomass pretreatment.

  20. Ionic liquid-tolerant microorganisms and microbial communities for lignocellulose conversion to bioproducts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Chaowei; Simmons, Blake A.; Singer, Steven W.

    Chemical and physical pretreatment of biomass is a critical step in the conversion of lignocellulose to biofuels and bioproducts. Ionic liquid (IL) pretreatment has attracted significant attention due to the unique ability of certain ILs to solubilize some or all components of the plant cell wall. However, these ILs inhibit not only the enzyme activities but also the growth and productivity of microorganisms used in downstream hydrolysis and fermentation processes. While pretreated biomass can be washed to remove residual IL and reduce inhibition, extensive washing is costly and not feasible in large-scale processes. IL-tolerant microorganisms and microbial communities have beenmore » discovered from environmental samples and studies begun to elucidate mechanisms of IL tolerance. The discovery of IL tolerance in environmental microbial communities and individual microbes has lead to the proposal of molecular mechanisms of resistance. Here, we review recent progress on discovering IL-tolerant microorganisms, identifying metabolic pathways and mechanisms of tolerance, and engineering microorganisms for IL tolerance. Research in these areas will yield new approaches to overcome inhibition in lignocellulosic biomass bioconversion processes and increase opportunities for the use of ILs in biomass pretreatment.« less

  1. Structural insight into catalytic mechanism of PET hydrolase.

    PubMed

    Han, Xu; Liu, Weidong; Huang, Jian-Wen; Ma, Jiantao; Zheng, Yingying; Ko, Tzu-Ping; Xu, Limin; Cheng, Ya-Shan; Chen, Chun-Chi; Guo, Rey-Ting

    2017-12-13

    PET hydrolase (PETase), which hydrolyzes polyethylene terephthalate (PET) into soluble building blocks, provides an attractive avenue for the bioconversion of plastics. Here we present the structures of a novel PETase from the PET-consuming microbe Ideonella sakaiensis in complex with substrate and product analogs. Through structural analyses, mutagenesis, and activity measurements, a substrate-binding mode is proposed, and several features critical for catalysis are elucidated.

  2. Responsive polymer-based colloids for drug delivery and bioconversion

    NASA Astrophysics Data System (ADS)

    Kudina, Olena

    Responsive polymer-based colloids (RPBC) are the colloidal structures containing responsive polymeric component which is able to adapt its physico-chemical properties to the environment by undergoing chemical and/or conformational changes. The goal of the dissertation is to develop and characterize several groups of RPBC with different morphological complexity and explore their potential in drug delivery and bioconversion. The role of RPBC morphology for these specific applications is discussed in details. Three groups of RPBC were fabricated: i. polymeric micelles; ii. mixed polymeric micelles; iii. hybrid polymer-inorganic particles. All fabricated RPBCs contain polymeric component in their structure. The dissertation investigates how the changes of the responsive polymeric component properties are reflected in morphologies of RPBC. The first group of RPBC, polymeric micelles, was formed by the self-assembly of amphiphilic invertible polymers (AIPs) synthesized in our group. AIPs self-assemble into invertible micellar assemblies (IMAs) in solvents of different polarity. In this work, IMAs ability to invert the structure as a response to the change in solvent polarity was demonstrated using 1H NMR spectroscopy and SANS. It was shown that the IMAs incorporate hydrophobic cargo either in the core or in the shell, depending on the chemical structure of cargo molecules. Following in vitro study demonstrates that loaded with drug (curcumin) IMAs are cytotoxic to osteosarcoma cells. Mixed polymeric micelles represent another, more complex, RPBC morphologies studied in the dissertation. Mixed micelles were fabricated from AIPs and amphiphilic oligomers synthesized from pyromellitic dianhydride, polyethylene glycol methyl ethers, and alkanols/cholesterol. The combination of selected AIP and oligomers based on cholesterol results in mixed micelles with an increased drug-loading capacity (from 10% w/w loaded curcumin in single component IMAs to 26%w/w in mixed micelles). Even more complex colloids are hybrid polymer-inorganic particles, the third RPBC group studied in dissertation. Material was designed as core--shell particles with superparamagnetic core engulfed by grafted polymer brushes. These particles were loaded with enzymes (cellulases), thus, are turned into enzymogels for cellulose bioconversion. The study demonstrates that such RPBCs can be used multiple times during hydrolysis and provide an about four-fold increase in glucose production in comparison to free enzymes.

  3. Bioconversion of biodiesel-derived crude glycerol into lipids and carotenoids by an oleaginous red yeast Sporidiobolus pararoseus KM281507 in an airlift bioreactor.

    PubMed

    Manowattana, Atchara; Techapun, Charin; Watanabe, Masanori; Chaiyaso, Thanongsak

    2018-01-01

    Here we tested the bioconversion of biodiesel-derived crude glycerol by the oleaginous red yeast Sporidiobolus pararoseus KM281507 in two bioreactors types (stirred-tank and airlift). High production yields (biomass, 10.62 ± 0.21 g/L; lipids, 3.26 ± 0.13 g/L; β-carotene, 30.64 ± 0.05 mg/L; total carotenoids, 46.59 ± 0.07 mg/L) were achieved in a 3.0 L airlift bioreactor under uncontrolled pH regimes (initial pH 5.63). Under optimized conditions (6.0 vvm aeration rate; 60 ± 5% constant dissolved oxygen [DO] maintained by flushing pure oxygen [O 2 ] into the vessel; 10,000 Lux light irradiation) volumetric production in the airlift bioreactor was further increased (biomass, 19.30 ± 1.07 g/L; lipids, 6.61 ± 0.04 g/L, β-carotene, 109.75 ± 0.21 mg/L; total carotenoids 151.00 ± 2.71 mg/L). Production was also recorded at a S. pararoseus KM281507 growth rate of 0.16 ± 0.00 h -1 (lipids, 0.94 ± 0.04 g/L/d; β-carotene, 15.68 ± 0.40 mg/L/d; total carotenoids, 21.56 ± 0.20 mg/L/d). Lipids from S. pararoseus KM281507 had a high unsaturated fatty acid content, with oleic acid (C18:1) accounting for 80% of all fatty acids. This high oleic acid content makes S. pararoseus KM281507 well-suited as a third generation biodiesel feedstock. Our findings show that airlift bioreactors are suitable for bioconversion of crude glycerol into lipids and carotenoids using S. pararoseus KM281507. This approach is advantageous because of its ease of operation, cost efficiency, and low energy consumption. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  4. Hemicellulosic ethanol production by immobilized cells of Scheffersomyces stipitis: Effect of cell concentration and stirring

    PubMed Central

    Milessi, Thais S S; Antunes, Felipe A F; Chandel, Anuj K; da Silva, Silvio S

    2015-01-01

    Bioconversion of hemicellulosic hydrolysate into ethanol plays a pivotal role in the overall success of biorefineries. For the efficient fermentative conversion of hemicellulosic hydrolysates into ethanol, the use of immobilized cells system could provide the enhanced ethanol productivities with significant time savings. Here, we investigated the effect of 2 important factors (e.g., cell concentration and stirring) on ethanol production from sugarcane bagasse hydrolysate using the yeast Scheffersomyces stipitis immobilized in calcium alginate matrix. A 22 full factorial design of experiment was performed considering the process variables- immobilized cell concentration (3.0, 6.5 and 10.0 g/L) and stirring (100, 200 and 300 rpm). Statistical analysis showed that stirring has the major influence on ethanol production. Maximum ethanol production (8.90 g/l) with ethanol yield (Yp/s) of 0.33 g/g and ethanol productivity (Qp) of 0.185 g/l/h was obtained under the optimized process conditions (10.0 g/L of cells and 100 rpm). PMID:25488725

  5. Destination bioeconomy - The path towards a smarter, more sustainable future.

    PubMed

    Dupont-Inglis, Joanna; Borg, Agnes

    2018-01-25

    Five years following the publication of the EU Bioeconomy Strategy, this article discusses the state of play of the bioeconomy in Europe. Placing specific focus on Industrial Biotech, it outlines ten pragmatic recommendations from BIO-TIC [BIO-TIC, A roadmap to a thriving industrial biotechnology sector in Europe, 2015], an EU FP7 funded project completed in 2015 and coordinated by EuropaBio, comprehensively examining the hurdles to the development of a bioeconomy in Europe, enabled by industrial biotech. These include improving opportunities for feedstock producers within the bioeconomy; investigating the scope for using novel biomass; developing a workforce which can maintain Europe's competitiveness in industrial biotechnology; introducing a long-term, stable and transparent policy and incentive framework to promote the bioeconomy; improving public perception and awareness of industrial biotechnology and bio-based products; identifying, leveraging and building upon EU capabilities for pilot and demonstration facilities; promoting the use of co-products from processing; improving the bioconversion and downstream processing steps; improving access to financing for large-scale biorefinery projects; developing stronger relationships between conventional and non-conventional players. Copyright © 2017. Published by Elsevier B.V.

  6. Arsenic in the human food chain, biotransformation and toxicology--Review focusing on seafood arsenic.

    PubMed

    Molin, Marianne; Ulven, Stine Marie; Meltzer, Helle Margrete; Alexander, Jan

    2015-01-01

    Fish and seafood are main contributors of arsenic (As) in the diet. The dominating arsenical is the organoarsenical arsenobetaine (AB), found particularly in finfish. Algae, blue mussels and other filter feeders contain less AB, but more arsenosugars and relatively more inorganic arsenic (iAs), whereas fatty fish contain more arsenolipids. Other compounds present in smaller amounts in seafood include trimethylarsine oxide (TMAO), trimethylarsoniopropionate (TMAP), dimethylarsenate (DMA), methylarsenate (MA) and sulfur-containing arsenicals. The toxic and carcinogenic arsenical iAs is biotransformed in humans and excreted in urine as the carcinogens dimethylarsinate (DMA) and methylarsonate (MA), producing reactive intermediates in the process. Less is known about the biotransformation of organoarsenicals, but new insight indicates that bioconversion of arsenosugars and arsenolipids in seafood results in urinary excretion of DMA, possibly also producing reactive trivalent arsenic intermediates. Recent findings also indicate that the pre-systematic metabolism by colon microbiota play an important role for human metabolism of arsenicals. Processing of seafood may also result in transformation of arsenicals. Copyright © 2015 Elsevier GmbH. All rights reserved.

  7. Metabolic engineering of E. coli top 10 for production of vanillin through FA catabolic pathway and bioprocess optimization using RSM.

    PubMed

    Chakraborty, Debkumar; Gupta, Gaganjot; Kaur, Baljinder

    2016-12-01

    Metabolic engineering and construction of recombinant Escherichia coli strains carrying feruloyl-CoA synthetase and enoyl-CoA hydratase genes for the bioconversion of ferulic acid to vanillin offers an alternative way to produce vanillin. Isolation and designing of fcs and ech genes was carried out using computer assisted protocol and the designed vanillin biosynthetic gene cassette was cloned in pCCIBAC expression vector for introduction in E. coli top 10. Recombinant strain was implemented for the statistical optimization of process parameters influencing F A to vanillin biotransformation. CCD matrix constituted of process variables like FA concentration, time, temperature and biomass with intracellular, extracellular and total vanillin productions as responses. Production was scaled up and 68 mg/L of vanillin was recovered from 10 mg/L of FA using cell extracts from 1 mg biomass within 30 min. Kinetic activity of enzymes were characterized. From LCMS-ESI analysis a metabolic pathway of FA degradation and vanillin production was predicted. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Thermodynamic analysis of the energy recovery from the aerobic bioconversion of solid urban waste organic fraction.

    PubMed

    Di Maria, Francesco; Benavoli, Manuel; Zoppitelli, Mirco

    2008-01-01

    Waste management is of the utmost importance for many countries and especially for highly developed ones due to its implications on society. In particular, proper treatment before disposal of the solid urban waste organic fraction is one of the main issues that is addressed in waste management. In fact, the organic fraction is particularly reactive and if disposed in sanitary landfills without previous adequate treatment, a large amount of dangerous and polluting gaseous, liquid and solid substances can be produced. Some waste treatment processes can also present an opportunity to produce other by-products like energy, recycled materials and other products with both economic and environmental benefits. In this paper, the aerobic treatment of the organic fraction of solid urban waste, performed in a biocell plant with the possibility of recovering heat for civil or industrial needs, was examined from the thermodynamic point of view. A theoretical model was proposed both for the biological process of the organic fraction, as well as for the heat recovery system. The most significant results are represented and discussed.

  9. Physico-Chemical Alternatives in Lignocellulosic Materials in Relation to the Kind of Component for Fermenting Purposes

    PubMed Central

    Coz, Alberto; Llano, Tamara; Cifrián, Eva; Viguri, Javier; Maican, Edmond; Sixta, Herbert

    2016-01-01

    The complete bioconversion of the carbohydrate fraction is of great importance for a lignocellulosic-based biorefinery. However, due to the structure of the lignocellulosic materials, and depending basically on the main parameters within the pretreatment steps, numerous byproducts are generated and they act as inhibitors in the fermentation operations. In this sense, the impact of inhibitory compounds derived from lignocellulosic materials is one of the major challenges for a sustainable biomass-to-biofuel and -bioproduct industry. In order to minimise the negative effects of these compounds, numerous methodologies have been tested including physical, chemical, and biological processes. The main physical and chemical treatments have been studied in this work in relation to the lignocellulosic material and the inhibitor in order to point out the best mechanisms for fermenting purposes. In addition, special attention has been made in the case of lignocellulosic hydrolysates obtained by chemical processes with SO2, due to the complex matrix of these materials and the increase in these methodologies in future biorefinery markets. Recommendations of different detoxification methods have been given. PMID:28773700

  10. Using sulfite chemistry for robust bioconversion of Douglas-fir forest residue to bioethanol at high titer and lignosulfonate: A pilot-scale evaluation

    Treesearch

    J.Y. Zhu; M. Subhosh Chandra; Feng Gu; Roland Gleisner; J.Y. Zhu; John Sessions; Gevan Marrs; Johnway Gao; Dwight Anderson

    2015-01-01

    This study demonstrated at the pilot-scale (50 kg) use of Douglas-fir forest harvest residue, an underutilized forest biomass, for the production of high titer and high yield bioethanol using sulfite chemistry without solid–liquor separation and detoxification. Sulfite Pretreatment to Overcome the Recalcitrance of Lignocelluloses (SPORL) was directly applied to the...

  11. Changes in pore structure of coal caused by coal-to-gas bioconversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Rui; Liu, Shimin; Bahadur, Jitendra

    Microbial enhanced coalbed methane (ME-CBM) recovery is critically examined as a viable technology for natural gas recovery from coalbed methane (CBM) reservoirs. Since the majority of gas-in-place (GIP) is stored as an adsorbed phase in fine pores of coal matrix, the nano-pore structure directly influences gas storage and transport properties. Only limited studies have quantified the alteration of the nano-pore structure due to ME-CBM treatment. This study examines the evolution of the pore structure using a combination of small angle X-ray scattering (SAXS), low-pressure N 2 and CO 2 adsorption (LPGA) and high-pressure methane adsorption methods. The results show thatmore » the surface fractal dimension decreases for the two bioconverted coals compared to the untreated coal. After bio-treatment, the mesopore surface area and pore volume decrease with the average pore diameter increases, while the micropore surface area increases with pore volume decreases. Both inaccessible meso-/micropore size distributions decrease after bioconversion, while the accessible micropore size distribution increases, making a portion of closed micropore network accessible. In addition, the methane adsorption capacities increase after bio-treatment, which is confirmed by the increase of micropore surface area. A conceptual physical model of methanogenesis is proposed based on the evolution of the pore structure.« less

  12. Changes in pore structure of coal caused by coal-to-gas bioconversion

    DOE PAGES

    Zhang, Rui; Liu, Shimin; Bahadur, Jitendra; ...

    2017-06-19

    Microbial enhanced coalbed methane (ME-CBM) recovery is critically examined as a viable technology for natural gas recovery from coalbed methane (CBM) reservoirs. Since the majority of gas-in-place (GIP) is stored as an adsorbed phase in fine pores of coal matrix, the nano-pore structure directly influences gas storage and transport properties. Only limited studies have quantified the alteration of the nano-pore structure due to ME-CBM treatment. This study examines the evolution of the pore structure using a combination of small angle X-ray scattering (SAXS), low-pressure N 2 and CO 2 adsorption (LPGA) and high-pressure methane adsorption methods. The results show thatmore » the surface fractal dimension decreases for the two bioconverted coals compared to the untreated coal. After bio-treatment, the mesopore surface area and pore volume decrease with the average pore diameter increases, while the micropore surface area increases with pore volume decreases. Both inaccessible meso-/micropore size distributions decrease after bioconversion, while the accessible micropore size distribution increases, making a portion of closed micropore network accessible. In addition, the methane adsorption capacities increase after bio-treatment, which is confirmed by the increase of micropore surface area. A conceptual physical model of methanogenesis is proposed based on the evolution of the pore structure.« less

  13. Optimization of Eisenia fetida stocking density for the bioconversion of rock phosphate enriched cow dung-waste paper mixtures.

    PubMed

    Unuofin, F O; Mnkeni, P N S

    2014-11-01

    Vermitechnology is gaining recognition as an environmental friendly waste management strategy. Its successful implementation requires that the key operational parameters like earthworm stocking density be established for each target waste/waste mixture. One target waste mixture in South Africa is waste paper mixed with cow dung and rock phosphate (RP) for P enrichment. This study sought to establish optimal Eisenia fetida stocking density for maximum P release and rapid bioconversion of RP enriched cow dung-paper waste mixtures. E. fetida stocking densities of 0, 7.5, 12.5, 17.5 and 22.5 g-worms kg(-1) dry weight of cow dung-waste paper mixtures were evaluated. The stocking density of 12.5 g-worms kg(-1) resulted in the highest earthworm growth rate and humification of the RP enriched waste mixture as reflected by a C:N ratio of <12 and a humic acid/fulvic acid ratio of >1.9 in final vermicomposts. A germination test revealed that the resultant vermicompost had no inhibitory effect on the germination of tomato, carrot, and radish. Extractable P increased with stocking density up to 22.5 g-worm kg(-1) feedstock suggesting that for maximum P release from RP enriched wastes a high stocking density should be considered. Copyright © 2014. Published by Elsevier Ltd.

  14. A metabolic pathway for catabolizing levulinic acid in bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rand, Jacqueline M.; Pisithkul, Tippapha; Clark, Ryan L.

    Microorganisms can catabolize a wide range of organic compounds and therefore have the potential to perform many industrially relevant bioconversions. One barrier to realizing the potential of biorefining strategies lies in our incomplete knowledge of metabolic pathways, including those that can be used to assimilate naturally abundant or easily generated feedstocks. For instance, levulinic acid (LA) is a carbon source that is readily obtainable as a dehydration product of lignocellulosic biomass and can serve as the sole carbon source for some bacteria. Yet, the genetics and structure of LA catabolism have remained unknown. Here, we report the identification and characterizationmore » of a seven-gene operon that enables LA catabolism in Pseudomonas putida KT2440. When the pathway was reconstituted with purified proteins, we observed the formation of four acyl-CoA intermediates, including a unique 4-phosphovaleryl-CoA and the previously observed 3-hydroxyvaleryl-CoA product. Using adaptive evolution, we obtained a mutant of Escherichia coli LS5218 with functional deletions of fadE and atoC that was capable of robust growth on LA when it expressed the five enzymes from the P. putida operon. Here, this discovery will enable more efficient use of biomass hydrolysates and metabolic engineering to develop bioconversions using LA as a feedstock.« less

  15. A metabolic pathway for catabolizing levulinic acid in bacteria

    DOE PAGES

    Rand, Jacqueline M.; Pisithkul, Tippapha; Clark, Ryan L.; ...

    2017-09-25

    Microorganisms can catabolize a wide range of organic compounds and therefore have the potential to perform many industrially relevant bioconversions. One barrier to realizing the potential of biorefining strategies lies in our incomplete knowledge of metabolic pathways, including those that can be used to assimilate naturally abundant or easily generated feedstocks. For instance, levulinic acid (LA) is a carbon source that is readily obtainable as a dehydration product of lignocellulosic biomass and can serve as the sole carbon source for some bacteria. Yet, the genetics and structure of LA catabolism have remained unknown. Here, we report the identification and characterizationmore » of a seven-gene operon that enables LA catabolism in Pseudomonas putida KT2440. When the pathway was reconstituted with purified proteins, we observed the formation of four acyl-CoA intermediates, including a unique 4-phosphovaleryl-CoA and the previously observed 3-hydroxyvaleryl-CoA product. Using adaptive evolution, we obtained a mutant of Escherichia coli LS5218 with functional deletions of fadE and atoC that was capable of robust growth on LA when it expressed the five enzymes from the P. putida operon. Here, this discovery will enable more efficient use of biomass hydrolysates and metabolic engineering to develop bioconversions using LA as a feedstock.« less

  16. Bioconversion of 6-(N-methyl-N-phenyl)aminomethyl androstane steroids by Nocardioides simplex.

    PubMed

    Sukhodolskaya, Galina; Fokina, Victoria; Shutov, Andrei; Nikolayeva, Vera; Savinova, Tatiana; Grishin, Yuri; Kazantsev, Alexey; Lukashev, Nikolay; Donova, Marina

    2017-02-01

    The newly synthesized (α/β)-diastereomers of 6-(N-methyl-N-phenyl)aminomethylandrost-4-ene-3,17-dione (5) and 6-(N-methyl-N-phenyl)aminomethylandrost-4-en-17β-ol-3-one (6) were firstly investigated as substrates for the whole cells of Nocardioides simplex VKM Ac-2033D in comparison with their unsubstituted analogs, - androst-4-ene-3,17-dione (1) and androst-4-en-17β-ol-3-one (2). 1(2)-Dehydroderivatives were identified as the major bioconversion products from all the substrates tested. When using the mixtures of (α/β)-stereoisomers of 5 and 6 as the substrates, only β-stereoisomers of the corresponding 1,4-diene-steroids were formed. Along with 1(2)-dehydrogenation, N. simplex VKM Ac-2033D promoted oxidation of the hydroxyl group at C-17 position of 6: both 6(α) and 6(β) were transformed to the corresponding 17-keto derivatives. No steroid core destruction was observed during the conversion of the 6-substituted androstanes 5 and 6, while it was significant when 1 or 2 was used as the substrate. The results suggested high potentials of N. simplex VKM Ac-2033D for the generation of novel 1(2)-dehydroanalogs. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Screening tests for assessing the anaerobic biodegradation of pollutant chemicals in subsurface environments

    USGS Publications Warehouse

    Suflita, Joseph M.; Concannon, Frank

    1995-01-01

    Screening methods were developed to assess the susceptibility of ground water contaminants to anaerobic biodegradation. One method was an extrapolation of a procedure previously used to measure biodegradation activity in dilute sewage sludge. Aquifer solids and ground water with no additional nutritive media were incubated anaerobically in 160-ml serum bottles containing 250 mg·l−1 carbon of the substrate of interest. This method relied on the detection of gas pressure or methane production in substrateamended microcosms relative to background controls. Other screening procedures involved the consumption of stoichiometrically required amounts of sulfate or nitrate from the same type of incubations. Close agreement was obtained between the measured and calculated amounts of substrate bioconversion based on the measured biogas pressure in methanogenic microcosms. Storage of the microcosms for up to 6 months did not adversely influence the onset or rate of benzoic acid mineralization. The lower detection limits of the methanogenic assay were found to be a function of the size of the microcosm headspace, the mean oxidation state of the substrate carbon, and the method used to correct for background temperature fluctuations. Using these simple screening procedures, biodegradation information of regulatory interest could be generated, including, (i) the length of the adaptation period, (ii) the rate of substrate decay and (iii) the completeness of the bioconversion.

  18. Expression of a bacterial, phenylpropanoid-metabolizing enzyme in tobacco reveals essential roles of phenolic precursors in normal leaf development and growth.

    PubMed

    Merali, Zara; Mayer, Melinda J; Parker, Mary L; Michael, Anthony J; Smith, Andrew C; Waldron, Keith W

    2012-06-01

    Tobacco plants (Nicotiana tabacum cv XHFD 8) were genetically modified to express a bacterial 4-hydroxycinnamoyl-CoA hydratase/lyase (HCHL) enzyme which is active with intermediates of the phenylpropanoid pathway. We have previously shown that HCHL expression in tobacco stem resulted in various pleiotropic effects, indicative of a reduction in the carbon flux through the phenylpropanoid pathway, accompanied by an abnormal phenotype. Here, we report that in addition to the reduction in lignin and phenolic biosynthesis, HCHL expression also resulted in several gross morphological changes in poorly lignified tissue, such as abnormal mesophyll and palisade. The effect of HCHL expression was also noted in lignin-free single cells, with suspension cultures displaying an altered shape and different growth patterns. Poorly/non-lignified cell walls also exhibited a greater ease of alkaline extractability of simple phenolics and increased levels of incorporation of vanillin and vanillic acid. However, HCHL expression had no significant effect on the cell wall carbohydrate chemistry of these tissues. Evidence from this study suggests that changes in the transgenic lines result from a reduction in phenolic intermediates which have an essential role in maintaining structural integrity of low-lignin or lignin-deprived cell walls. These results emphasize the importance of the intermediates and products of phenylpropanoid pathway in modulating aspects of normal growth and development of tobacco. Analysis of these transgenic plants also shows the plasticity of the lignification process and reveals the potential to bioengineer plants with reduced phenolics (without deleterious effects) which could enhance the bioconversion of lignocellulose for industrial applications. Copyright © Physiologia Plantarum 2012.

  19. Performance assessment of two-stage anaerobic digestion of kitchen wastes.

    PubMed

    Bo, Zhang; Pin-Jing, He

    2014-01-01

    This study is aimed at investigating the performance of the two-phase anaerobic digestion of kitchen wastes in a lab-scale setup. The semi-continuous experiment showed that the two-phase anaerobic digestion of kitchen wastes had a bioconversion rate of 83%, biogas yield of 338 mL x (g chemical oxygen demand (COD))(-1) and total solid conversion of 63% when the entire two-phase anaerobic digestion process was subjected to an organic loading rate (OLR) of 10.7 g x (L d)(-1). In the hydrolysis-acidogenesis process, the efficiency of solubilization decreased from 72.6% to 41.1%, and the acidogenesis efficiency decreased from 31.8% to 17.8% with an increase in the COD loading rate. On the other hand, the performance of the subsequent methanogenic process was not susceptible to the increase in the feeding COD loading rate in the hydrolysis-acidogenesis stage. Lactic acid was one of the main fermentation products, accounting for over 40% of the total soluble COD in the fermentation liquid. The batch experiments indicated that the lactic acid was the earliest predominant fermentation product, and distributions of fermentation products were pH dependent. Results showed that increasing the feeding OLR of kitchen wastes made the two-stage anaerobic digestion process more effective. Moreover, there was a potential improvement in the performance of anaerobic digestion of kitchen wastes with a corresponding improvement in the hydrolysis process.

  20. Demonstration-scale evaluation of a novel high-solids anaerobic digestion process for converting organic wastes to fuel gas and compost.

    PubMed

    Rivard, C J; Duff, B W; Dickow, J H; Wiles, C C; Nagle, N J; Gaddy, J L; Clausen, E C

    1998-01-01

    Early evaluations of the bioconversion potential for combined wastes such as tuna sludge and sorted municipal solid waste (MSW) were conducted at laboratory scale and compared conventional low-solids, stirred-tank anaerobic systems with the novel, high-solids anaerobic digester (HSAD) design. Enhanced feedstock conversion rates and yields were determined for the HSAD system. In addition, the HSAD system demonstrated superior resiliency to process failure. Utilizing relatively dry feedstocks, the HSAD system is approximately one-tenth the size of conventional low-solids systems. In addition, the HSAD system is capable of organic loading rates (OLRs) on the order of 20-25 g volatile solids per liter digester volume per d (gVS/L/d), roughly 4-5 times those of conventional systems. Current efforts involve developing a demonstration-scale (pilot-scale) HSAD system. A two-ton/d plant has been constructed in Stanton, CA and is currently in the commissioning/startup phase. The purposes of the project are to verify laboratory- and intermediate-scale process performance; test the performance of large-scale prototype mechanical systems; demonstrate the long-term reliability of the process; and generate the process and economic data required for the design, financing, and construction of full-scale commercial systems. This study presents conformational fermentation data obtained at intermediate-scale and a snapshot of the pilot-scale project.

  1. Anaerobic digestion as a waste disposal option for American Samoa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivard, C

    1993-01-01

    Tuna sludge and municipal solid waste (MSW) generated on Tutuila Island, American Samoa, represent an ongoing disposal problem as well as an emerging opportunity for use in renewable fuel production. This research project focuses on the biological conversion of the organic fraction of these wastes to useful products including methane and fertilizer-grade residue through anaerobic high solids digestion. In this preliminary study, the anaerobic bioconversion of tuna sludge with MSW appears promising.

  2. Bioreactors for lignocellulose conversion into fermentable sugars for production of high added value products.

    PubMed

    Liguori, Rossana; Ventorino, Valeria; Pepe, Olimpia; Faraco, Vincenza

    2016-01-01

    Lignocellulosic biomasses derived from dedicated crops and agro-industrial residual materials are promising renewable resources for the production of fuels and other added value bioproducts. Due to the tolerance to a wide range of environments, the dedicated crops can be cultivated on marginal lands, avoiding conflict with food production and having beneficial effects on the environment. Besides, the agro-industrial residual materials represent an abundant, available, and cheap source of bioproducts that completely cut out the economical and environmental issues related to the cultivation of energy crops. Different processing steps like pretreatment, hydrolysis and microbial fermentation are needed to convert biomass into added value bioproducts. The reactor configuration, the operative conditions, and the operation mode of the conversion processes are crucial parameters for a high yield and productivity of the biomass bioconversion process. This review summarizes the last progresses in the bioreactor field, with main attention on the new configurations and the agitation systems, for conversion of dedicated energy crops (Arundo donax) and residual materials (corn stover, wheat straw, mesquite wood, agave bagasse, fruit and citrus peel wastes, sunflower seed hull, switchgrass, poplar sawdust, cogon grass, sugarcane bagasse, sunflower seed hull, and poplar wood) into sugars and ethanol. The main novelty of this review is its focus on reactor components and properties.

  3. Realm of Thermoalkaline Lipases in Bioprocess Commodities.

    PubMed

    Lajis, Ahmad Firdaus B

    2018-01-01

    For decades, microbial lipases are notably used as biocatalysts and efficiently catalyze various processes in many important industries. Biocatalysts are less corrosive to industrial equipment and due to their substrate specificity and regioselectivity they produced less harmful waste which promotes environmental sustainability. At present, thermostable and alkaline tolerant lipases have gained enormous interest as biocatalyst due to their stability and robustness under high temperature and alkaline environment operation. Several characteristics of the thermostable and alkaline tolerant lipases are discussed. Their molecular weight and resistance towards a range of temperature, pH, metal, and surfactants are compared. Their industrial applications in biodiesel, biodetergents, biodegreasing, and other types of bioconversions are also described. This review also discusses the advance of fermentation process for thermostable and alkaline tolerant lipases production focusing on the process development in microorganism selection and strain improvement, culture medium optimization via several optimization techniques (i.e., one-factor-at-a-time, surface response methodology, and artificial neural network), and other fermentation parameters (i.e., inoculums size, temperature, pH, agitation rate, dissolved oxygen tension (DOT), and aeration rate). Two common fermentation techniques for thermostable and alkaline tolerant lipases production which are solid-state and submerged fermentation methods are compared and discussed. Recent optimization approaches using evolutionary algorithms (i.e., Genetic Algorithm, Differential Evolution, and Particle Swarm Optimization) are also highlighted in this article.

  4. Mathematical modeling of simultaneous carbon-nitrogen-sulfur removal from industrial wastewater.

    PubMed

    Xu, Xi-Jun; Chen, Chuan; Wang, Ai-Jie; Ni, Bing-Jie; Guo, Wan-Qian; Yuan, Ye; Huang, Cong; Zhou, Xu; Wu, Dong-Hai; Lee, Duu-Jong; Ren, Nan-Qi

    2017-01-05

    A mathematical model of carbon, nitrogen and sulfur removal (C-N-S) from industrial wastewater was constructed considering the interactions of sulfate-reducing bacteria (SRB), sulfide-oxidizing bacteria (SOB), nitrate-reducing bacteria (NRB), facultative bacteria (FB), and methane producing archaea (MPA). For the kinetic network, the bioconversion of C-N by heterotrophic denitrifiers (NO 3 - →NO 2 - →N 2 ), and that of C-S by SRB (SO 4 2- →S 2- ) and SOB (S 2- →S 0 ) was proposed and calibrated based on batch experimental data. The model closely predicted the profiles of nitrate, nitrite, sulfate, sulfide, lactate, acetate, methane and oxygen under both anaerobic and micro-aerobic conditions. The best-fit kinetic parameters had small 95% confidence regions with mean values approximately at the center. The model was further validated using independent data sets generated under different operating conditions. This work was the first successful mathematical modeling of simultaneous C-N-S removal from industrial wastewater and more importantly, the proposed model was proven feasible to simulate other relevant processes, such as sulfate-reducing, sulfide-oxidizing process (SR-SO) and denitrifying sulfide removal (DSR) process. The model developed is expected to enhance our ability to predict the treatment of carbon-nitrogen-sulfur contaminated industrial wastewater. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Soymilk residue (okara) as a natural immobilization carrier for Lactobacillus plantarum cells enhances soymilk fermentation, glucosidic isoflavone bioconversion, and cell survival under simulated gastric and intestinal conditions

    PubMed Central

    Xiudong, Xia; Ying, Wang; Xiaoli, Liu; Ying, Li

    2016-01-01

    Cell immobilization is an alternative to microencapsulation for the maintenance of cells in a liquid medium. However, artificial immobilization carriers are expensive and pose a high safety risk. Okara, a food-grade byproduct from soymilk production, is rich in prebiotics. Lactobacilli could provide health enhancing effects to the host. This study aimed to evaluate the potential of okara as a natural immobilizer for L. plantarum 70810 cells. The study also aimed to evaluate the effects of okara-immobilized L. plantarum 70810 cells (IL) on soymilk fermentation, glucosidic isoflavone bioconversion, and cell resistance to simulated gastric and intestinal stresses. Scanning electron microscopy (SEM) was used to show cells adherence to the surface of okara. Lactic acid, acetic acid and isoflavone analyses in unfermented and fermented soymilk were performed by HPLC with UV detection. Viability and growth kinetics of immobilized and free L. plantarum 70810 cells (FL) were followed during soymilk fermentation. Moreover, changes in pH, titrable acidity and viscosity were measured by conventional methods. For in vitro testing of simulated gastrointestinal resistance, fermented soymilk was inoculated with FL or IL and an aliquot incubated into acidic MRS broth which was conveniently prepared to simulate gastric, pancreatic juices and bile salts. Survival to simulated gastric and intestinal stresses was evaluated by plate count of colony forming units on MRS agar. SEM revealed that the lactobacilli cells attached and bound to the surface of okara. Compared with FL, IL exhibited a significantly higher specific growth rate, shorter lag phase of growth, higher productions of lactic and acetic acids, a faster decrease in pH and increase in titrable acidity, and a higher soymilk viscosity. Similarly, IL in soymilk showed higher productions of daizein and genistein compared with the control. Compared with FL, IL showed reinforced resistance to simulatedgastric and intestinal stresses in vitro that included low pH, low pH plus pepsin, pancreatin, and bile salt. Our results indicate that okara is a new potential immobilization carrier to enhance the growth and glucosidic isoflavone bioconversion activities of L. plantarum in soymilk and improve cell survivability following simulated gastric and intestinal conditions. PMID:27867770

  6. Soymilk residue (okara) as a natural immobilization carrier for Lactobacillus plantarum cells enhances soymilk fermentation, glucosidic isoflavone bioconversion, and cell survival under simulated gastric and intestinal conditions.

    PubMed

    Xiudong, Xia; Ying, Wang; Xiaoli, Liu; Ying, Li; Jianzhong, Zhou

    2016-01-01

    Cell immobilization is an alternative to microencapsulation for the maintenance of cells in a liquid medium. However, artificial immobilization carriers are expensive and pose a high safety risk. Okara, a food-grade byproduct from soymilk production, is rich in prebiotics. Lactobacilli could provide health enhancing effects to the host. This study aimed to evaluate the potential of okara as a natural immobilizer for L. plantarum 70810 cells. The study also aimed to evaluate the effects of okara-immobilized L. plantarum 70810 cells (IL) on soymilk fermentation, glucosidic isoflavone bioconversion, and cell resistance to simulated gastric and intestinal stresses. Scanning electron microscopy (SEM) was used to show cells adherence to the surface of okara. Lactic acid, acetic acid and isoflavone analyses in unfermented and fermented soymilk were performed by HPLC with UV detection. Viability and growth kinetics of immobilized and free L. plantarum 70810 cells (FL) were followed during soymilk fermentation. Moreover, changes in pH, titrable acidity and viscosity were measured by conventional methods. For in vitro testing of simulated gastrointestinal resistance, fermented soymilk was inoculated with FL or IL and an aliquot incubated into acidic MRS broth which was conveniently prepared to simulate gastric, pancreatic juices and bile salts. Survival to simulated gastric and intestinal stresses was evaluated by plate count of colony forming units on MRS agar. SEM revealed that the lactobacilli cells attached and bound to the surface of okara. Compared with FL, IL exhibited a significantly higher specific growth rate, shorter lag phase of growth, higher productions of lactic and acetic acids, a faster decrease in pH and increase in titrable acidity, and a higher soymilk viscosity. Similarly, IL in soymilk showed higher productions of daizein and genistein compared with the control. Compared with FL, IL showed reinforced resistance to simulatedgastric and intestinal stresses in vitro that included low pH, low pH plus pepsin, pancreatin, and bile salt. Our results indicate that okara is a new potential immobilization carrier to enhance the growth and glucosidic isoflavone bioconversion activities of L. plantarum in soymilk and improve cell survivability following simulated gastric and intestinal conditions.

  7. Microbiological degradation of pesticides in yard waste composting.

    PubMed

    Fogarty, A M; Tuovinen, O H

    1991-06-01

    Changes in public opinion and legislation have led to the general recognition that solid waste treatment practices must be changed. Solid-waste disposal by landfill is becoming increasingly expensive and regulated and no longer represents a long-term option in view of limited land space and environmental problems. Yard waste, a significant component of municipal solid waste, has previously not been separated from the municipal solid-waste stream. The treatment of municipal solid waste including yard waste must urgently be addressed because disposal via landfill will be prohibited by legislation. Separation of yard waste from municipal solid waste will be mandated in many localities, thus stressing the importance of scrutinizing current composting practices in treating grass clippings, leaves, and other yard residues. Yard waste poses a potential environmental health problem as a result of the widespread use of pesticides in lawn and tree care and the persistence of the residues of these chemicals in plant tissue. Yard waste containing pesticides may present a problem due to the recalcitrant and toxic nature of the pesticide molecules. Current composting processes are based on various modifications of either window systems or in-vessel systems. Both types of processes are ultimately dependent on microbial bioconversions of organic material to innocuous end products. The critical stage of the composting process is the thermophilic phase. The fate and mechanism of removal of pesticides in composting processes is largely unknown and in need of comprehensive analysis.

  8. Proteins for breaking barriers in lignocellulosic bioethanol production.

    PubMed

    Ulaganathan, Kandasamy; Goud, Burragoni S; Reddy, Mettu M; Kumar, Vanaparthi P; Balsingh, Jatoth; Radhakrishna, Surabhi

    2015-01-01

    Reduction in fossil fuel consumption by using alternate sources of energy is a major challenge facing mankind in the coming decades. Bioethanol production using lignocellulosic biomass is the most viable option for addressing this challenge. Industrial bioconversion of lignocellulosic biomass, though possible now, is not economically viable due to presence of barriers that escalate the cost of production. As cellulose and hemicellulose are the major constituents of terrestrial biomass, which is available in massive quantities, hydrolysis of cellulose and hemicellulose by the microorganisms are the most prominent biochemical processes happening in the earth. Microorganisms possess different categories of proteins associated with different stages of bioethanol production and a number of them are already found and characterized. Many more of these proteins need to be identified which suit the specificities needed for the bioethanol production process. Discovery of proteins with novel specificities and application of genetic engineering technologies to harvest the synergies existing between them with the aim to develop consolidated bioprocess is the major direction of research in the future. In this review, we discuss the different categories of proteins used for bioethanol production in the context of breaking the barriers existing for the economically feasible lignocellulosic bioethanol production.

  9. Valorisation of mixed bakery waste in non-sterilized fermentation for L-lactic acid production by an evolved Thermoanaerobacterium sp. strain.

    PubMed

    Yang, Xiaofeng; Zhu, Muzi; Huang, Xiongliang; Lin, Carol Sze Ki; Wang, Jufang; Li, Shuang

    2015-12-01

    In this study, an advanced biorefinery technology that uses mixed bakery waste has been developed to produce l-lactic acid using an adaptively evolved Thermoanaerobacterium aotearoense LA1002-G40 in a non-sterilized system. Under these conditions, mixed bakery waste was directly hydrolysed by Aspergillus awamori and Aspergillus oryzae, resulting in a nutrient-rich hydrolysate containing 83.6g/L glucose, 9.5 g/L fructose and 612 mg/L free amino nitrogen. T. aotearoense LA1002-G40 was evaluated and then adaptively evolved to grow in this nutrient-rich hydrolysate. Using a 5-L fermenter, the overall lactic acid production from mixed bakery waste was 0.18 g/g with a titer, productivity and yield of 78.5 g/L, 1.63 g/L/h and 0.85 g/g, respectively. This is an innovative procedure involving a complete bioconversion process for l-lactic acid produced from mixed bakery waste under non-sterilized conditions. The proposed process could be potentially applied to turn food waste into l-lactic acid in an economically feasible way. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Industrial bioconversion of renewable resources as an alternative to conventional chemistry.

    PubMed

    Willke, Th; Vorlop, K-D

    2004-12-01

    There are numerous possibilities for replacing chemical techniques with biotechnological methods based on renewable resources. The potential of biotechnology (products, technologies, metabolic pathways) is for the most part well known. Often the costs are still the problem. Biotechnological advances have the best chances for replacing some fine chemicals. While the raw material costs are less of a consideration here, the environmental benefit is huge, as chemical-technical processes often produce a wide range of undesirable/harmful by-products or waste. In the case of bulk chemicals (<1 US dollar/kg) the product price is affected mainly by raw material costs. As long as fossil raw materials are still relatively inexpensive, alternatives based on renewable resources cannot establish themselves. Residues and waste, which are available even at no cost in some cases, are an exception. The introduction of new technologies for the efficient use of such raw materials is currently being promoted. The utilisation of residual wood, plant parts, waste fat, and crude glycerol, for example, provides great potential. For industrial chemicals (2-4 US dollars/kg), process and recovery costs play a greater role. Here, innovative production technologies and product recovery techniques (e.g. on-line product separation) can increase competitiveness.

  11. Two-Step Production of Phenylpyruvic Acid from L-Phenylalanine by Growing and Resting Cells of Engineered Escherichia coli: Process Optimization and Kinetics Modeling.

    PubMed

    Hou, Ying; Hossain, Gazi Sakir; Li, Jianghua; Shin, Hyun-Dong; Liu, Long; Du, Guocheng; Chen, Jian

    2016-01-01

    Phenylpyruvic acid (PPA) is widely used in the pharmaceutical, food, and chemical industries. Here, a two-step bioconversion process, involving growing and resting cells, was established to produce PPA from l-phenylalanine using the engineered Escherichia coli constructed previously. First, the biotransformation conditions for growing cells were optimized (l-phenylalanine concentration 20.0 g·L-1, temperature 35°C) and a two-stage temperature control strategy (keep 20°C for 12 h and increase the temperature to 35°C until the end of biotransformation) was performed. The biotransformation conditions for resting cells were then optimized in 3-L bioreactor and the optimized conditions were as follows: agitation speed 500 rpm, aeration rate 1.5 vvm, and l-phenylalanine concentration 30 g·L-1. The total maximal production (mass conversion rate) reached 29.8 ± 2.1 g·L-1 (99.3%) and 75.1 ± 2.5 g·L-1 (93.9%) in the flask and 3-L bioreactor, respectively. Finally, a kinetic model was established, and it was revealed that the substrate and product inhibition were the main limiting factors for resting cell biotransformation.

  12. Enhancing the Bioconversion of Winery and Olive Mill Waste Mixtures into Lignocellulolytic Enzymes and Animal Feed by Aspergillus uvarum Using a Packed-Bed Bioreactor.

    PubMed

    Salgado, José Manuel; Abrunhosa, Luís; Venâncio, Armando; Domínguez, José Manuel; Belo, Isabel

    2015-10-28

    Wineries and olive oil industries are dominant agro-industrial activities in southern European regions. Olive pomace, exhausted grape marc, and vine shoot trimmings are lignocellulosic residues generated by these industries, which could be valued biotechnologically. In the present work these residues were used as substrate to produce cellulases and xylanases through solid-state fermentation using Aspergillus uvarum MUM 08.01. For that, two factorial designs (3(2)) were first planned to optimize substrate composition, temperature, and initial moisture level. Subsequently, the kinectics of cellulolytic enzyme production, fungal growth, and fermented solid were characterized. Finally, the process was performed in a packed-bed bioreactor. The results showed that cellulase activity improved with the optimization processes, reaching 33.56 U/g, and with the packed-bed bioreactor aeration of 0.2 L/min, reaching 38.51 U/g. The composition of fermented solids indicated their potential use for animal feed because cellulose, hemicellulose, lignin, and phenolic compounds were partially degraded 28.08, 10.78, 13.3, and 28.32%, respectively, crude protein was increased from 8.47 to 17.08%, and the mineral contents meet the requirements of main livestock.

  13. Small intestinal sulphoxidation of albendazole.

    PubMed

    Villaverde, C; Alvarez, A I; Redondo, P; Voces, J; Del Estal, J L; Prieto, J G

    1995-05-01

    1. The in vitro sulphoxidation of Albendazole (ABZ) by rat intestinal microsomes has been examined. The results revealed intestinal sulphoxidation of ABZ by intestinal microsomes in a NADPH-dependent enzymatic system. The kinetic constants for sulphoxidase activity were Vmax = 46 pmol/min/mg protein and Michaelis constant Km = 6.8 microM. 2. The possible effect of inducers (Arochlor 1254 and ABZ pretreatment) and inhibitors (erythromycin, methimazole, carbon monoxide and fenbendazole), was also studied. In rat pretreated with Arochlor 1254, Vmax was 52 pmol/min/mg protein, whereas oral administration of ABZ increased the intestinal sulphoxidation of the drug, Vmax being 103 pmol/min/mg protein. 3. Erythromycin did not change the enzymatic bioconversion of ABZ, but methimazole and carbon monoxide inhibited the enzyme activity by approximately 60 and 30% respectively. Fenbendazole (a structural analogue of ABZ) was a competitive inhibitor of the sulphoxidation process, characterized by a Ki or 69 microM. 4. These data demonstrate that the intestinal enzymes contributing to the initial sulphoxidation of ABZ may be similar to the hepatic enzymes involved in the biotransformation process by the P450 and FMO systems, a conclusion that needs to be further established.

  14. Auto-flotation of heterocyst enables the efficient production of renewable energy in cyanobacteria

    PubMed Central

    Chen, Ming; Li, Jihong; Zhang, Lei; Chang, Sandra; Liu, Chen; Wang, Jianlong; Li, Shizhong

    2014-01-01

    Utilizing cyanobacteria as a bioenergy resource is difficult due to the cost and energy consuming harvests of microalgal biomass. In this study, an auto-floating system was developed by increasing the photobiological H2 production in the heterocysts of filamentous cyanobacteria. An amount of 1.0 μM of diuron, which inhibited O2 production in cyanobacteria, resulted in a high rate of H2 production in heterocysts. The auto-floating process recovered 91.71% ± 1.22 of the accumulated microalgal biomass from the liquid media. Quantification analysis revealed that 0.72–1.10 μmol H2 per mg dry weight microalgal biomass was necessary to create this auto-floating system. Further bio-conversion by using anaerobic digestion converted the harvested microalgal biomass into biogas. Through this novel coupled system of photobiological H2 production and anaerobic digestion, a high level of light energy conversion efficiency from solar energy to bioenergy was attained with the values of 3.79% ± 0.76. PMID:24499777

  15. Tart Cherries and health: Current knowledge and need for a better understanding of the fate of phytochemicals in the human gastrointestinal tract.

    PubMed

    Alba C, Mayta-Apaza; Daya, Marasini; Franck, Carbonero

    2017-09-28

    Tart cherries are increasingly popular due to purported health benefits. This Prunus cesarus species is cultivated worldwide, and its market has increased significantly in the last two decades due to improvements in agricultural practices and food processing technology. Tart cherries are rich in polyphenols, with a very specific profile combining anthocyanins and flavonols (berries-like) and chlorogenic acid (coffee-like). Tart cherries have been suggested to exert several potentially beneficial health effects including: lowering blood pressure, modulating blood glucose, enhancing cognitive function, protecting against oxidative stress and reducing inflammation. Studies focusing on tart cherry consumption have demonstrated particular benefits in recovery from exercise-induced muscle damage and diabetes associated parameters. However, the bioconversion of tart cherry polyphenols by resident colonic microbiota has never been considered, considerably reducing the impact of in vitro studies that have relied on fruit polyphenol extracts. In vitro and in vivo gut microbiota and metabolome studies are necessary to reinforce health claims linked to tart cherries consumption.

  16. Biogasification of sorghum in a novel anaerobic digester

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srivastava, V.J.; Biljetina, R.; Isaacson, H.R.

    1987-01-01

    The Institute of Gas Technology (IGT) conducted pilot-scale anaerobic digestion experiments with ensiled sorghum in a 160 ft/sup 3/ digester at the experimental test unit (ETU) facility at the Walt Disney World Resort Complex in Florida. The study focused on improving bioconversion efficiencies and process stability by employing a novel reactor concept developed at IGT. Steady-state performance data were collected from the ETU as well as from a laboratory-scale conventional stirred tank reactor (CSTR) at loading rates of 0.25 and 0.50 lb organic matter/ft/sup 3/-day at mesophilic and thermophilic temperatures, respectively. This paper will describe the ETU facility, novel digestermore » design and operating techniques, and the results obtained during 12 months of stable and uninterrupted operation of the ETU and the CSTR which showed that methane yields anad rates from the ETU were 20% to 50% higher than those of the CSTR. 10 refs., 7 figs., 5 tabs.« less

  17. Assessment of Two Solid Anaerobic Digestate Soil Amendments for Effects on Soil Quality and Biosolarization Efficacy.

    PubMed

    Fernández-Bayo, Jesús D; Achmon, Yigal; Harrold, Duff R; McCurry, Dlinka G; Hernandez, Katie; Dahlquist-Willard, Ruth M; Stapleton, James J; VanderGheynst, Jean S; Simmons, Christopher W

    2017-05-03

    Anaerobic digestion is an organic waste bioconversion process that produces biofuel and digestates. Digestates have potential to be applied as soil amendment to improve properties for crop production including phytonutrient content and pest load. Our objective was to assess the impact of solid anaerobic digestates on weed seed inactivation and soil quality upon soil biosolarization (a pest control technique that combines solar heating and amendment-induced microbial activity). Two solid digestates from thermophilic (TD) and mesophilic (MD) digesters were tested. The solarized TD-amended samples presented significantly higher mortality of Brassica nigra (71%, P = 0.032) than its equivalent incubated at room temperature. However, biosolarization with digestate amendment led to decreased weed seed mortality in certain treatments. The plant-available water, total C, and extractable P and K were significantly increased (P < 0.05) in the incubated amended soils. The results confirm the potential of digestates as beneficial soil amendments. Further studies are needed to elucidate the impacts of digestate stability on biosolarization efficacy and soil properties.

  18. Impact of anti-acidification microbial consortium on carbohydrate metabolism of key microbes during food waste composting.

    PubMed

    Song, Caihong; Li, Mingxiao; Qi, Hui; Zhang, Yali; Liu, Dongming; Xia, Xunfeng; Pan, Hongwei; Xi, Beidou

    2018-07-01

    This study investigated the effect of anti-acidification microbial consortium (AAMC), which act synergistically for rapid bioconversion of organic acids on carbohydrate metabolism of key microbes in the course of food waste (FW) composting by metaproteomics. AAMC was inoculated to the composting mass and compared with treatment with alkaline compounds and the control without any amendment. Inoculating AAMC could effectively accelerate carbohydrate degradation process and improve composting efficiency. Carbohydrate metabolic network profiles showed the inoculation with AAMC could increase significantly the types of enzymes catalysing the degradation of lignin, cellulose and hemicellulose. Furthermore, AAMC inoculum could increase not only diversities of microbes producing key enzymes in metabolism pathways of acetic and propionic acids, but also the amounts of these key enzymes. The increase of diversities of microbes could disperse the pressure from acidic adversity on microorganisms which were capable to degrade acetic and propionic acids. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Auto-flotation of heterocyst enables the efficient production of renewable energy in cyanobacteria.

    PubMed

    Chen, Ming; Li, Jihong; Zhang, Lei; Chang, Sandra; Liu, Chen; Wang, Jianlong; Li, Shizhong

    2014-02-06

    Utilizing cyanobacteria as a bioenergy resource is difficult due to the cost and energy consuming harvests of microalgal biomass. In this study, an auto-floating system was developed by increasing the photobiological H2 production in the heterocysts of filamentous cyanobacteria. An amount of 1.0 μM of diuron, which inhibited O2 production in cyanobacteria, resulted in a high rate of H2 production in heterocysts. The auto-floating process recovered 91.71% ± 1.22 of the accumulated microalgal biomass from the liquid media. Quantification analysis revealed that 0.72-1.10 μmol H2 per mg dry weight microalgal biomass was necessary to create this auto-floating system. Further bio-conversion by using anaerobic digestion converted the harvested microalgal biomass into biogas. Through this novel coupled system of photobiological H2 production and anaerobic digestion, a high level of light energy conversion efficiency from solar energy to bioenergy was attained with the values of 3.79% ± 0.76.

  20. Dry fractionation process as an important step in current and future lignocellulose biorefineries: a review.

    PubMed

    Barakat, Abdellatif; de Vries, Hugo; Rouau, Xavier

    2013-04-01

    The use of lignocellulosic biomass is promising for biofuels and materials and new technologies for the conversion need to be developed. However, the inherent properties of native lignocellulosic materials make them resistant to enzymatic and chemical degradation. Lignocellulosic biomass requires being pretreated to change the physical and chemical properties of lignocellulosic matrix in order to increase cell wall polymers accessibility and bioavailability. Mechanical size reduction may be chemical free intensive operation thanks to decreasing particles size and cellulose crystallinity, and increasing accessible surface area. Changes in these parameters improve the digestibility and the bioconversion of lignocellulosic biomass. However, mechanical size reduction requires cost-effective approaches from an energy input point of view. Therefore, the energy consumption in relation to physicochemical properties of lignocellulosic biomass was discussed. Even more, chemical treatments combined with physicochemical size reduction approaches are proposed to reduce energy consumption in this review. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Mini review: hydrogen and ethanol co-production from waste materials via microbial fermentation.

    PubMed

    Soo, Chiu-Shyan; Yap, Wai-Sum; Hon, Wei-Min; Phang, Lai-Yee

    2015-10-01

    The simultaneous production of hydrogen and ethanol by microorganisms from waste materials in a bioreactor system would establish cost-effective and time-saving biofuel production. This review aims to present the current status of fermentation processes producing hydrogen accompanied by ethanol as a co-product. We outlined the microbes used and their fundamental pathways for hydrogen and ethanol fermentation. Moreover, we discussed the exploitation of renewable and sustainable waste materials as promising feedstock and the limitations encountered. The low substrate bioconversion rate in hydrogen and ethanol co-production is regarded as the primary constraint towards the development of large scale applications. Thus, microbes with an enhanced capability have been generated via genetic manipulation to diminish the inefficiency of substrate consumption. In this review, other potential approaches to improve the performance of co-production through fermentation were also elaborated. This review will be a useful guide for the future development of hydrogen and ethanol co-production using waste materials.

  2. High glucose recovery from direct enzymatic hydrolysis of bisulfite-pretreatment on non-detoxified furfural residues.

    PubMed

    Xing, Yang; Bu, Lingxi; Sun, Dafeng; Liu, Zhiping; Liu, Shijie; Jiang, Jianxin

    2015-10-01

    This study reports four schemes to pretreat wet furfural residues (FRs) with sodium bisulfite for production of fermentable sugar. The results showed that non-detoxified FRs (pH 2-3) had great potential to lower the cost of bioconversion. The optimal process was that unwashed FRs were first pretreated with bisulfite, and the whole slurry was then directly used for enzymatic hydrolysis. A maximum glucose yield of 99.4% was achieved from substrates pretreated with 0.1 g NaHSO3/g dry substrate (DS), at a relatively low temperature of 100 °C for 3 h. Compared with raw material, enzymatic hydrolysis at a high-solid of 16.5% (w/w) specifically showed more excellent performance with bisulfite treated FRs. Direct bisulfite pretreatment improved the accessibility of substrates and the total glucose recovery. Lignosulfonate in the non-detoxified slurry decreased the non-productive adsorption of cellulase on the substrate, thus improving enzymatic hydrolysis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Bioconversion of paper mill sludge to bioethanol in the presence of accelerants or hydrogen peroxide pretreatment.

    PubMed

    Gurram, Raghu Nandan; Al-Shannag, Mohammad; Lecher, Nicholas Joshua; Duncan, Shona M; Singsaas, Eric Lawrence; Alkasrawi, Malek

    2015-09-01

    In this study we investigated the technical feasibility of convert paper mill sludge into fuel ethanol. This involved the removal of mineral fillers by using either chemical pretreatment or mechanical fractionation to determine their effects on cellulose hydrolysis and fermentation to ethanol. In addition, we studied the effect of cationic polyelectrolyte (as accelerant) addition and hydrogen peroxide pretreatment on enzymatic hydrolysis and fermentation. We present results showing that removing the fillers content (ash and calcium carbonate) from the paper mill sludge increases the enzymatic hydrolysis performance dramatically with higher cellulose conversion at faster rates. The addition of accelerant and hydrogen peroxide pretreatment further improved the hydrolysis yields by 16% and 25% (g glucose / g cellulose), respectively with the de-ashed sludge. The fermentation process of produced sugars achieved up to 95% of the maximum theoretical ethanol yield and higher ethanol productivities within 9h of fermentation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. High-yield production of mannitol by Leuconostoc pseudomesenteroides CTCC G123 from chicory-derived inulin hydrolysate.

    PubMed

    Zhang, Min; Gu, Lei; Cheng, Chao; Zhu, Junru; Wu, Hao; Ma, Jiangfeng; Dong, Weiliang; Kong, Xiangping; Jiang, Min; Ouyang, Pingkai

    2017-08-01

    Chicory is an agricultural plant with considerable potential as a carbohydrate substrate for low-cost production of biochemicals. In this work, the production of mannitol by Leuconostoc pseudomesenteroides CTCC G123 from chicory-derived inulin hydrolysate was investigated. The bioconversion process initially suffered from the leakage of fructose to the phosphoketolase pathway, resulting in a low mannitol yield. When inulin hydrolysate was supplemented with glucose as a substrate for mannitol production in combination with aeration induction and nicotinic acid induced redox modulation strategies, the mannitol yield greatly improved. Under these conditions, significant improvement in the glucose consumption rate, intracellular NADH levels and mannitol dehydrogenase specific activity were observed, with mannitol production increasing from 64.6 to 88.1 g/L and overall yield increase from 0.69 to 0.94 g/g. This work demonstrated an efficient method for the production of mannitol from inulin hydrolysate with a high overall yield.

  5. Thermostable, haloalkaline cellulase from Bacillus halodurans CAS 1 by conversion of lignocellulosic wastes.

    PubMed

    Annamalai, Neelamegam; Rajeswari, Mayavan Veeramuthu; Elayaraja, Sivaramasamy; Balasubramanian, Thangavel

    2013-04-15

    An extracellular thermostable, haloalkaline cellulase by bioconversion of lignocellulosic wastes from Bacillus halodurans CAS 1 was purified to homogeneity with recovery of 12.54% and purity fold 7.96 with the molecular weight of 44 kDa. The optimum temperature, pH and NaCl for enzyme activity was determined as 60°C, 9.0 and 30% and it retained 80% of activity even at 80°C, 12 and 35% respectively. The activity was greatly inhibited by EDTA, indicating that it was a metalloenzyme and significant inhibition by PMSF revealed that serine residue was essential for catalytic activity. The purified cellulase hydrolyzed CMC, cellobiose and xylan, but not avicel, cellulose and PNPG. Furthermore, the cellulase was highly stable in the presence of detergents and organic solvents such as acetone, n-hexane and acetonitrile. Thus, the purified cellulase from B. halodurans utilizing lignocellulosic biomass could be greatly useful to develop industrial processes. Published by Elsevier Ltd.

  6. Bioconversion of Chitin to Bioactive Chitooligosaccharides: Amelioration and Coastal Pollution Reduction by Microbial Resources.

    PubMed

    Kumar, Manish; Brar, Amandeep; Vivekanand, V; Pareek, Nidhi

    2018-04-10

    Chitin-metabolizing products are of high industrial relevance in current scenario due to their wide biological applications, relatively lower cost, greater abundance, and sustainable supply. Chitooligosaccharides have remarkably wide spectrum of applications in therapeutics such as antitumor agents, immunomodulators, drug delivery, gene therapy, wound dressings, as chitinase inhibitors to prevent malaria. Hypocholesterolemic and antimicrobial activities of chitooligosaccharides make them a molecule of choice for food industry, and their functional profile depends on the physicochemical characteristics. Recently, chitin-based nanomaterials are also gaining tremendous importance in biomedical and agricultural applications. Crystallinity and insolubility of chitin imposes a major hurdle in the way of polymer utilization. Chemical production processes are known to produce chitooligosaccharides with variable degree of polymerization and properties along with ecological concerns. Biological production routes mainly involve chitinases, chitosanases, and chitin-binding proteins. Development of bio-catalytic production routes for chitin will not only enhance the production of commercially viable chitooligosaccharides with defined molecular properties but will also provide a means to combat marine pollution with value addition.

  7. Associating cooking additives with sodium hydroxide to pretreat bamboo residues for improving the enzymatic saccharification and monosaccharides production.

    PubMed

    Huang, Caoxing; He, Juan; Wang, Yan; Min, Douyong; Yong, Qiang

    2015-10-01

    Cooking additive pulping technique is used in kraft mill to increase delignification degree and pulp yield. In this work, cooking additives were firstly applied in the sodium hydroxide pretreatment for improving the bioconversion of bamboo residues to monosaccharides. Meanwhile, steam explosion and sulfuric acid pretreatments were also carried out on the sample to compare their impacts on monosaccharides production. Results indicated that associating anthraquinone with sodium hydroxide pretreatment showed the best performance in improving the original carbohydrates recovery, delignification, enzymatic saccharification, and monosaccharides production. After consecutive pretreatment and enzymatic saccharification process, 347.49 g, 307.48 g, 142.93 g, and 87.15 g of monosaccharides were released from 1000 g dry bamboo residues pretreated by sodium hydroxide associating with anthraquinone, sodium hydroxide, steam explosion and sulfuric acid, respectively. The results suggested that associating cooking additive with sodium hydroxide is an effective pretreatment for bamboo residues to enhance enzymatic saccharification for monosaccharides production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Tapping the Bioactivity Potential of Residual Stream from Its Pretreatments May Be a Green Strategy for Low-Cost Bioconversion of Rice Straw.

    PubMed

    Chen, Xingxuan; Wang, Xiahui; Xue, Yiyun; Zhang, Tian-Ao; Hu, Jiajun; Tsang, Yiu Fai; Gao, Min-Tian

    2018-04-16

    In this study, it was found that the residual stream from pretreatments of rice straw exhibited high antioxidant activity. Assays based on the Folin-Ciocalteu colorimetric method confirmed that the residual stream contained large amounts of phenolic compounds. Three antioxidant assays were employed to evaluate the bioactivity of the residual stream. Strong linear correlations existed among the release of phenolic compounds, saccharification efficiency, and antioxidant activity. The alkaline pretreatment provided a much greater release of phenolic compounds, especially phenolic acids, compared to the acid pretreatment, and consequently, it had stronger linear correlations than the acid pretreatment. Antibacterial experiments demonstrated the ability of the phenolic compounds in the residual stream to inhibit the growth of microorganisms, indicating the potential of these compounds as antimicrobial agents. To discuss the possibility of the co-production of antimicrobial agents and biofuels/biochemicals, both acid and alkaline pretreatments were optimized using response surface methodology. Under the optimal conditions, 285.7 g glucose could be produced from 1 kg rice straw with the co-production of 3.84 g FA and 6.98 g p-CA after alkaline pretreatment. These results show that the recovery of phenolic compounds from the residual stream could be a green strategy for the low-cost bioconversion of rice straw.

  9. Characterization of hydrocortisone biometabolites and 18S rRNA gene in Chlamydomonas reinhardtii cultures.

    PubMed

    Ghasemi, Younes; Rasoul-Amini, Sara; Morowvat, Mohammad Hossein; Raee, Mohammad Javad; Ghoshoon, Mohammad Bagher; Nouri, Fatemeh; Negintaji, Narges; Parvizi, Rezvan; Mosavi-Azam, Seyed Bagher

    2008-10-31

    A unicellular microalga, Chlamydomonas reinhardtii, was isolated from rice paddy-field soil and water samples and used in the biotransformation of hydrocortisone (1). This strain has not been previously tested for steroid bioconversion. Fermentation was carried out in BG-11 medium supplemented with 0.05% substrate at 25 degrees C for 14 days of incubation. The products obtained were chromatographically purified and characterized using spectroscopic methods. 11b,17 beta-Dihydroxyandrost-4-en-3-one (2), 11 beta-hydroxyandrost-4-en-3,17-dione (3), 11 beta,17 alpha,20 beta,21-tetrahydroxypregn-4-en-3-one (4) and prednisolone (5) were the main products of the bioconversion. The observed bioreaction features were the side chain degradation of the substrate to give compounds 2 and 3 and the 20-ketone reduction and 1,2-dehydrogenation affording compounds 4 and 5, respectively. A time course study showed the accumulation of product 2 from the second day of the fermentation and of compounds 3, 4 and 5 from the third day. All the metabolites reached their maximum concentration in seven days. Microalgal 18S rRNA gene was also amplified by PCR. PCR products were sequenced to confirm their authenticity as 18S rRNA gene of microalgae. The result of PCR blasted with other sequenced microalgae in NCBI showed 100% homology to the 18S small subunit rRNA of two Chlamydomonas reinhardtii spp.

  10. Improving Biomethane Production and Mass Bioconversion of Corn Stover Anaerobic Digestion by Adding NaOH Pretreatment and Trace Elements

    PubMed Central

    Liu, ChunMei; Yuan, HaiRong; Zou, DeXun; Liu, YanPing; Zhu, BaoNing; Li, XiuJin

    2015-01-01

    This research applied sodium hydroxide (NaOH) pretreatment and trace elements to improve biomethane production when using corn stover for anaerobic digestion. Full-factor experimental tests identified the best combination of trace elements with the NaOH pretreatment, indicating that the best combination was with 1.0, 0.4, and 0.4 mg·L−1·d−1 of elements Fe, Co, and Ni, respectively. The cumulative biomethane production adding NaOH pretreatment and trace elements was 11,367 mL; total solid bioconversion rate was 55.7%, which was 41.8%–62.2% higher than with NaOH-pretreatment alone and 22.2%–56.3% higher than with untreated corn stover. The best combination was obtained 5–9 days shorter than T90 and maintained good system operation stability. Only a fraction of the trace elements in the best combination was present in the resulting solution; more than 85% of the total amounts added were transferred into the solid fraction. Adding 0.897 g of Fe, 0.389 g of Co, and 0.349 g of Ni satisfied anaerobic digestion needs and enhanced biological activity at the beginning of the operation. The results showed that NaOH pretreatment and adding trace elements improve corn stover biodegradability and enhance biomethane production. PMID:26137469

  11. Fermentation Products of Solvent Tolerant Marine Bacterium Moraxella spp. MB1 and Its Biotechnological Applications in Salicylic Acid Bioconversion

    PubMed Central

    Wahidullah, Solimabi; Naik, Deepak N.; Devi, Prabha

    2013-01-01

    As part of a proactive approach to environmental protection, emerging issues with potential impact on the environment is the subject of ongoing investigation. One emerging area of environmental research concerns pharmaceuticals like salicylic acid, which is the main metabolite of various analgesics including aspirin. It is a common component of sewage effluent and also an intermediate in the degradation pathway of various aromatic compounds which are introduced in the marine environment as pollutants. In this study, biotransformation products of salicylic acid by seaweed, Bryopsis plumosa, associated marine bacterium, Moraxella spp. MB1, have been investigated. Phenol, conjugates of phenol and hydroxy cinnamic acid derivatives (coumaroyl, caffeoyl, feruloyl and trihydroxy cinnamyl) with salicylic acid (3–8) were identified as the bioconversion products by electrospray ionization mass spectrometry. These results show that the microorganism do not degrade phenolic acid but catalyses oxygen dependent transformations without ring cleavage. The degradation of salicylic acid is known to proceed either via gentisic acid pathway or catechol pathway but this is the first report of biotransformation of salicylic acid into cinnamates, without ring cleavage. Besides cinnamic acid derivatives (9–12), metabolites produced by the bacterium include antimicrobial indole (13) and β-carbolines, norharman (14), harman (15) and methyl derivative (16), which are beneficial to the host and the environment. PMID:24391802

  12. Ammonia inhibition on hydrogen enriched anaerobic digestion of manure under mesophilic and thermophilic conditions.

    PubMed

    Wang, Han; Zhang, Yifeng; Angelidaki, Irini

    2016-11-15

    Capturing of carbon dioxide by hydrogen derived from excess renewable energy (e.g., wind mills) to methane in a microbially catalyzed process offers an attractive technology for biogas production and upgrading. This bioconversion process is catalyzed by hydrogenotrophic methanogens, which are known to be sensitive to ammonia. In this study, the tolerance of the biogas process under supply of hydrogen, to ammonia toxicity was studied under mesophilic and thermophilic conditions. When the initial hydrogen partial pressure was 0.5 atm, the methane yield at high ammonia load (7 g NH 4 + -N L -1 ) was 41.0% and 22.3% lower than that at low ammonia load (1 g NH 4 + -N L -1 ) in mesophilic and thermophilic condition, respectively. Meanwhile no significant effect on the biogas composition was observed. Moreover, we found that hydrogentrophic methanogens were more tolerant to the ammonia toxicity than acetoclastic methanogens in the hydrogen enriched biogas production and upgrading processes. The highest methane production yield was achieved under 0.5 atm hydrogen partial pressure in batch reactors at all the tested ammonia levels. Furthermore, the thermophilic methanogens at 0.5 atm of hydrogen partial pressure were more tolerant to high ammonia levels (≥5 g NH 4 + -N L -1 ), compared with mesophilic methanogens. The present study offers insight in developing resistant hydrogen enriched biogas production and upgrading processes treating ammonia-rich waste streams. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Rearing Tenebrio molitor L. (Coleptera: Tenebrionidae) in the "Lunar Palace 1" during a 105-day multi-crew closed integrative BLSS experiment

    NASA Astrophysics Data System (ADS)

    Li, Leyuan; Xie, Beizhen; Dong, Chen; Hu, Dawei; Wang, Minjuan; Liu, Guanghui; Liu, Hong

    2015-11-01

    Yellow mealworm (Tenebrio molitor L.) is one of the animal candidates for space bioregenerative life support systems. In this study, T. molitor was involved in a 105-day multi-crew closed integrative BLSS experiment for a tentative rearing study. The results showed that the overall bioconversion rate (ratio of T. molitor gained to the total feed consumed) of T. molitor reared in the closed system was 8.13%, while 78.43% of the feed was excreted as frass. T. molitor reared in the closed system had a good nutritional composition. The eight essential amino acids (EAAs) in T. molitor larvae accounted for 41.30% of its total amino acids, and most EAA contents were higher than the suggested amino acid pattern recommended by the FAO/WHO. T. molitor sample obtained in this work was high in polyunsaturated fatty acids, and low in saturated fatty acids, indicating that the composition of fatty acids was beneficial to human health. In the open environment outside the experimental system, we simultaneously reared three parallel groups of larval T. molitor using the same feeding regime and temperature condition. Compared with T. molitor reared in the open environment, larvae reared in the closed system grew slower. With the course of time t, the growth rate of T. molitor in the open environment was 0.839e0.017t times that of larvae in the closed system. This paper can provide data for future design and improvement of BLSS containing a T. molitor rearing unit.

  14. Enhanced biological fixation of methane for microbial lipid production by recombinant Methylomicrobium buryatense

    DOE PAGES

    Fei, Qiang; Puri, Aaron W.; Smith, Holly; ...

    2018-05-04

    Due to the success of shale gas development in the US, the production cost of natural gas has been reduced significantly, which in turn has made methane (CH 4), the major component of natural gas, a potential alternative substrate for bioconversion processes compared with other high-price raw material sources or edible feedstocks. Therefore, exploring effective ways to use CH 4 for the production of biofuels is attractive. Biological fixation of CH 4 by methanotrophic bacteria capable of using CH 4 as their sole carbon and energy source has obtained great attention for biofuel production from this resource. Here, a fast-growingmore » and lipid-rich methanotroph, Methylomicrobium buryatense 5GB1 and its glycogen-knock-out mutant (AP18) were investigated for the production of lipids derived from intracellular membranes, which are key precursors for the production of green diesel. The effects of culture conditions on cell growth and lipid production were investigated in high cell density cultivation with continuous feeding of CH 4 and O2. The highest dry cell weight observed was 21.4 g/L and the maximum lipid productivity observed was 45.4 mg/L/h obtained in batch cultures, which corresponds to a 2-fold enhancement in cell density and 3-fold improvement in lipid production, compared with previous reported data from cultures of 5GB1. A 90% enhancement of lipid content was achieved by limiting the biosynthesis of glycogen in strain AP18. Increased CH 4/O 2 uptake and CO 2 evaluation rates were observed in AP18 cultures suggesting that more carbon substrate and energy are needed for AP18 growth while producing lipids. The lipid produced by M. buryatense was estimated to have a cetane number of 75, which is 50% higher than biofuel standards requested by US and EU. Cell growth and lipid production were significantly influenced by culture conditions for both 5GB1 and AP18. Enhanced lipid production in terms of titer, productivity, and content was achieved under high cell density culture conditions by blocking glycogen accumulation as a carbon sink in the strain AP18. Differences observed in CH 4/O 2 gas uptake and CO 2 evolution rates as well as cell growth and glycogen accumulation between 5GB1 and AP18 suggest changes in the metabolic network between these strains. This bioconversion process provides a promising opportunity to transform CH 4 into biofuel molecules and encourages further investigation to elucidate the remarkable CH 4 biofixation mechanism used by these bacteria.« less

  15. Enhanced biological fixation of methane for microbial lipid production by recombinant Methylomicrobium buryatense

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fei, Qiang; Puri, Aaron W.; Smith, Holly

    Due to the success of shale gas development in the US, the production cost of natural gas has been reduced significantly, which in turn has made methane (CH 4), the major component of natural gas, a potential alternative substrate for bioconversion processes compared with other high-price raw material sources or edible feedstocks. Therefore, exploring effective ways to use CH 4 for the production of biofuels is attractive. Biological fixation of CH 4 by methanotrophic bacteria capable of using CH 4 as their sole carbon and energy source has obtained great attention for biofuel production from this resource. Here, a fast-growingmore » and lipid-rich methanotroph, Methylomicrobium buryatense 5GB1 and its glycogen-knock-out mutant (AP18) were investigated for the production of lipids derived from intracellular membranes, which are key precursors for the production of green diesel. The effects of culture conditions on cell growth and lipid production were investigated in high cell density cultivation with continuous feeding of CH 4 and O2. The highest dry cell weight observed was 21.4 g/L and the maximum lipid productivity observed was 45.4 mg/L/h obtained in batch cultures, which corresponds to a 2-fold enhancement in cell density and 3-fold improvement in lipid production, compared with previous reported data from cultures of 5GB1. A 90% enhancement of lipid content was achieved by limiting the biosynthesis of glycogen in strain AP18. Increased CH 4/O 2 uptake and CO 2 evaluation rates were observed in AP18 cultures suggesting that more carbon substrate and energy are needed for AP18 growth while producing lipids. The lipid produced by M. buryatense was estimated to have a cetane number of 75, which is 50% higher than biofuel standards requested by US and EU. Cell growth and lipid production were significantly influenced by culture conditions for both 5GB1 and AP18. Enhanced lipid production in terms of titer, productivity, and content was achieved under high cell density culture conditions by blocking glycogen accumulation as a carbon sink in the strain AP18. Differences observed in CH 4/O 2 gas uptake and CO 2 evolution rates as well as cell growth and glycogen accumulation between 5GB1 and AP18 suggest changes in the metabolic network between these strains. This bioconversion process provides a promising opportunity to transform CH 4 into biofuel molecules and encourages further investigation to elucidate the remarkable CH 4 biofixation mechanism used by these bacteria.« less

  16. Enhanced biological fixation of methane for microbial lipid production by recombinant Methylomicrobium buryatense.

    PubMed

    Fei, Qiang; Puri, Aaron W; Smith, Holly; Dowe, Nancy; Pienkos, Philip T

    2018-01-01

    Due to the success of shale gas development in the US, the production cost of natural gas has been reduced significantly, which in turn has made methane (CH 4 ), the major component of natural gas, a potential alternative substrate for bioconversion processes compared with other high-price raw material sources or edible feedstocks. Therefore, exploring effective ways to use CH 4 for the production of biofuels is attractive. Biological fixation of CH 4 by methanotrophic bacteria capable of using CH 4 as their sole carbon and energy source has obtained great attention for biofuel production from this resource. In this study, a fast-growing and lipid-rich methanotroph , Methylomicrobium buryatense 5GB1 and its glycogen-knock-out mutant (AP18) were investigated for the production of lipids derived from intracellular membranes, which are key precursors for the production of green diesel. The effects of culture conditions on cell growth and lipid production were investigated in high cell density cultivation with continuous feeding of CH 4 and O 2 . The highest dry cell weight observed was 21.4 g/L and the maximum lipid productivity observed was 45.4 mg/L/h obtained in batch cultures, which corresponds to a 2-fold enhancement in cell density and 3-fold improvement in lipid production, compared with previous reported data from cultures of 5GB1. A 90% enhancement of lipid content was achieved by limiting the biosynthesis of glycogen in strain AP18. Increased CH 4 /O 2 uptake and CO 2 evaluation rates were observed in AP18 cultures suggesting that more carbon substrate and energy are needed for AP18 growth while producing lipids. The lipid produced by M. buryatense was estimated to have a cetane number of 75, which is 50% higher than biofuel standards requested by US and EU. Cell growth and lipid production were significantly influenced by culture conditions for both 5GB1 and AP18. Enhanced lipid production in terms of titer, productivity, and content was achieved under high cell density culture conditions by blocking glycogen accumulation as a carbon sink in the strain AP18. Differences observed in CH 4 /O 2 gas uptake and CO 2 evolution rates as well as cell growth and glycogen accumulation between 5GB1 and AP18 suggest changes in the metabolic network between these strains. This bioconversion process provides a promising opportunity to transform CH 4 into biofuel molecules and encourages further investigation to elucidate the remarkable CH 4 biofixation mechanism used by these bacteria.

  17. Bioconversion of lignocellulosic pretreatment effluent via oleaginous Rhodococcus opacus DSM 1069

    DOE PAGES

    Wells, Jr., Tyrone; Wei, Zhen; Ragauskas, Arthur J.

    2014-11-26

    Rhodococcus opacus DSM 1069 utilized pine organosolv pretreatment effluent as a sole carbon and energy source for 120 h at 1.5 w/v% solids concentration and accumulated a maximum of 26.99 ± 2.88% of its cellular dry weight in oils composed of oleic, palmitic, and stearic fatty acids. Here, these results establish the potential for lignocellulosic pretreatment effluent as a feedstock for microbial biodiesel production via oleaginous R. opacus and an interesting route for biorefinery waste stream optimization.

  18. Effects of Biomass Accessibility and Klason Lignin Contents during Consolidated Bioprocessing in Populus trichocarpa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akinosho, Hannah; Dumitrache, Alexandru; Natzke, Jace

    The bacterium Clostridium thermocellum offers a distinct and integrated approach to ethanol production through consolidated bioprocessing (CBP). The Simons’ stain technique, which assays the accessibility of lignocellulosic biomass, has been traditionally applied to fungal cellulase systems; however, its application to CBP has not been fully explored. For this reason, the structural properties of eight Populus trichocarpa with either high or low biomass densities were compared in this paper to determine bioconversion differences during separate hydrolysis and fermentation (SHF) and CBP with C. thermocellum. Simons’ staining generally identifies low density poplar as more accessible than high density poplar. Additionally, low densitymore » P. trichocarpa generally contained less Klason lignin than high density poplar. SHF and CBP treatments consistently identified BESC-7 (high density, low accessibility, low surface roughness) as a low ethanol yielding biomass and GW-9914 (low density, high accessibility, high surface roughness) as a high ethanol yielding biomass. Upon further investigation, BESC-7 also contained a high Klason lignin content (~25%), while GW-9914 had a low lignin content (~20%). Cellulose degree of polymerization (DP) measurements exhibited a weak linear correlation with accessibility (r 2 = 0.17). Finally, therefore, the ethanol yields were correlated with accessibility and lignin content extremes but not cellulose DP.« less

  19. Effects of Biomass Accessibility and Klason Lignin Contents during Consolidated Bioprocessing in Populus trichocarpa

    DOE PAGES

    Akinosho, Hannah; Dumitrache, Alexandru; Natzke, Jace; ...

    2017-04-26

    The bacterium Clostridium thermocellum offers a distinct and integrated approach to ethanol production through consolidated bioprocessing (CBP). The Simons’ stain technique, which assays the accessibility of lignocellulosic biomass, has been traditionally applied to fungal cellulase systems; however, its application to CBP has not been fully explored. For this reason, the structural properties of eight Populus trichocarpa with either high or low biomass densities were compared in this paper to determine bioconversion differences during separate hydrolysis and fermentation (SHF) and CBP with C. thermocellum. Simons’ staining generally identifies low density poplar as more accessible than high density poplar. Additionally, low densitymore » P. trichocarpa generally contained less Klason lignin than high density poplar. SHF and CBP treatments consistently identified BESC-7 (high density, low accessibility, low surface roughness) as a low ethanol yielding biomass and GW-9914 (low density, high accessibility, high surface roughness) as a high ethanol yielding biomass. Upon further investigation, BESC-7 also contained a high Klason lignin content (~25%), while GW-9914 had a low lignin content (~20%). Cellulose degree of polymerization (DP) measurements exhibited a weak linear correlation with accessibility (r 2 = 0.17). Finally, therefore, the ethanol yields were correlated with accessibility and lignin content extremes but not cellulose DP.« less

  20. One step bioconversion of waste precious metals into Serratia biofilm-immobilized catalyst for Cr(VI) reduction.

    PubMed

    Yong, P; Liu, W; Zhang, Z; Beauregard, D; Johns, M L; Macaskie, L E

    2015-11-01

    For reduction of Cr(VI) the Pd-catalyst is excellent but costly. The objectives were to prove the robustness of a Serratia biofilm as a support for biogenic Pd-nanoparticles and to fabricate effective catalyst from precious metal waste. Nanoparticles (NPs) of palladium were immobilized on polyurethane reticulated foam and polypropylene supports via adhesive biofilm of a Serratia sp. The biofilm adhesion and cohesion strength were unaffected by palladization and catalytic biofilm integrity was also shown by magnetic resonance imaging. Biofilm-Pd and mixed precious metals on biofilm (biofilm-PM) reduced 5 mM Cr(VI) to Cr(III) when immobilized in a flow-through column reactor, at respective flow rates of 9 and 6 ml/h. The lower activity of the latter was attributed to fewer, larger, metal deposits on the bacteria. Activity was lost in each case at pH 7 but was restored by washing with 5 mM citrate solution or by exposure of columns to solution at pH 2, suggesting fouling by Cr(III) hydroxide product at neutral pH. A 'one pot' conversion of precious metal waste into new catalyst for waste decontamination was shown in a continuous flow system based on the use of Serratia biofilm to manufacture and support catalytic Pd-nanoparticles.

  1. Realm of Thermoalkaline Lipases in Bioprocess Commodities

    PubMed Central

    2018-01-01

    For decades, microbial lipases are notably used as biocatalysts and efficiently catalyze various processes in many important industries. Biocatalysts are less corrosive to industrial equipment and due to their substrate specificity and regioselectivity they produced less harmful waste which promotes environmental sustainability. At present, thermostable and alkaline tolerant lipases have gained enormous interest as biocatalyst due to their stability and robustness under high temperature and alkaline environment operation. Several characteristics of the thermostable and alkaline tolerant lipases are discussed. Their molecular weight and resistance towards a range of temperature, pH, metal, and surfactants are compared. Their industrial applications in biodiesel, biodetergents, biodegreasing, and other types of bioconversions are also described. This review also discusses the advance of fermentation process for thermostable and alkaline tolerant lipases production focusing on the process development in microorganism selection and strain improvement, culture medium optimization via several optimization techniques (i.e., one-factor-at-a-time, surface response methodology, and artificial neural network), and other fermentation parameters (i.e., inoculums size, temperature, pH, agitation rate, dissolved oxygen tension (DOT), and aeration rate). Two common fermentation techniques for thermostable and alkaline tolerant lipases production which are solid-state and submerged fermentation methods are compared and discussed. Recent optimization approaches using evolutionary algorithms (i.e., Genetic Algorithm, Differential Evolution, and Particle Swarm Optimization) are also highlighted in this article. PMID:29666707

  2. Influence of the metal addition for biohydrogen production from the conversion of palm oil mill effluent (POME) by anaerobic process

    NASA Astrophysics Data System (ADS)

    Gumilar, Andri; Syafila, Mindriany; Handajani, Marisa

    2017-11-01

    Biohydrogen is one of the main alternative fuels promising for the future. Bioconversion of the wastewater with the high concentration of organic using biological processes or microorganism by anaerobic processes can produce biogas which can be used as fuel instead of fossil fuels. In this study, palm oil mill effluent (POME) with the concentration of COD is 24,500 mg/L has been used as a substrate. The aim of this study was to determine the effect of metal addition for the formation of biohydrogen. Circulating bed reactor (CBR) is used with the flushing N2 1L/min for 24 hr and continued operates for 72 hr by internal biogas. The additional variation concentration of Fe(II) ion are 0.5; 1.0 and 2.5 mg/L, and Mg(II) are 0.5 and 1.5 mg/L were added by combination. The results showed that the combination of Fe(II) 1.0 mg/L and Mg(II) 1.5 mg/L produced the highest biohydrogen production is 17.12 %v/v and the rate of biohydrogen production is 0.010-0.233 % v/v /hr. Another combination of Fe(II) and Mg(II) provide results for the biohydrogen production is 10.46-16.37 %v/v with the highest rate of biohydrogen production is 0.008-0.278 %v/v/hr.

  3. Cofermentation of Glucose, Xylose, and Cellobiose by the Beetle-Associated Yeast Spathaspora passalidarum

    PubMed Central

    Long, Tanya M.; Su, Yi-Kai; Headman, Jennifer; Higbee, Alan; Willis, Laura B.

    2012-01-01

    Fermentation of cellulosic and hemicellulosic sugars from biomass could resolve food-versus-fuel conflicts inherent in the bioconversion of grains. However, the inability to coferment glucose and xylose is a major challenge to the economical use of lignocellulose as a feedstock. Simultaneous cofermentation of glucose, xylose, and cellobiose is problematic for most microbes because glucose represses utilization of the other saccharides. Surprisingly, the ascomycetous, beetle-associated yeast Spathaspora passalidarum, which ferments xylose and cellobiose natively, can also coferment these two sugars in the presence of 30 g/liter glucose. S. passalidarum simultaneously assimilates glucose and xylose aerobically, it simultaneously coferments glucose, cellobiose, and xylose with an ethanol yield of 0.42 g/g, and it has a specific ethanol production rate on xylose more than 3 times that of the corresponding rate on glucose. Moreover, an adapted strain of S. passalidarum produced 39 g/liter ethanol with a yield of 0.37 g/g sugars from a hardwood hydrolysate. Metabolome analysis of S. passalidarum before onset and during the fermentations of glucose and xylose showed that the flux of glycolytic intermediates is significantly higher on xylose than on glucose. The high affinity of its xylose reductase activities for NADH and xylose combined with allosteric activation of glycolysis probably accounts in part for its unusual capacities. These features make S. passalidarum very attractive for studying regulatory mechanisms enabling bioconversion of lignocellulosic materials by yeasts. PMID:22636012

  4. Determination of optimal biomass pretreatment strategies for biofuel production: investigation of relationships between surface-exposed polysaccharides and their enzymatic conversion using carbohydrate-binding modules.

    PubMed

    Khatri, Vinay; Meddeb-Mouelhi, Fatma; Adjallé, Kokou; Barnabé, Simon; Beauregard, Marc

    2018-01-01

    Pretreatment of lignocellulosic biomass (LCB) is a key step for its efficient bioconversion into ethanol. Determining the best pretreatment and its parameters requires monitoring its impacts on the biomass material. Here, we used fluorescent protein-tagged carbohydrate-binding modules method (FTCM)-depletion assay to study the relationship between surface-exposed polysaccharides and enzymatic hydrolysis of LCB. Our results indicated that alkali extrusion pretreatment led to the highest hydrolysis rates for alfalfa stover, cattail stems and flax shives, despite its lower lignin removal efficiency compared to alkali pretreatment. Corn crop residues were more sensitive to alkali pretreatments, leading to higher hydrolysis rates. A clear relationship was consistently observed between total surface-exposed cellulose detected by the FTCM-depletion assay and biomass enzymatic hydrolysis. Comparison of bioconversion yield and total composition analysis (by NREL/TP-510-42618) of LCB prior to or after pretreatments did not show any close relationship. Lignin removal efficiency and total cellulose content (by NREL/TP-510-42618) led to an unreliable prediction of enzymatic polysaccharide hydrolysis. Fluorescent protein-tagged carbohydrate-binding modules method (FTCM)-depletion assay provided direct evidence that cellulose exposure is the key determinant of hydrolysis yield. The clear and robust relationships that were observed between the cellulose accessibility by FTCM probes and enzymatic hydrolysis rates change could be evolved into a powerful prediction tool that might help develop optimal biomass pretreatment strategies for biofuel production.

  5. Biohydrogen production in a continuous stirred tank bioreactor from synthesis gas by anaerobic photosynthetic bacterium: Rhodopirillum rubrum.

    PubMed

    Younesi, Habibollah; Najafpour, Ghasem; Ku Ismail, Ku Syahidah; Mohamed, Abdul Rahman; Kamaruddin, Azlina Harun

    2008-05-01

    Hydrogen may be considered a potential fuel for the future since it is carbon-free and oxidized to water as a combustion product. Bioconversion of synthesis gas (syngas) to hydrogen was demonstrated in continuous stirred tank bioreactor (CSTBR) utilizing acetate as a carbon source. An anaerobic photosynthetic bacterium, Rhodospirillum rubrum catalyzed water-gas shift reaction which was applied for the bioconversion of syngas to hydrogen. The continuous fermentation of syngas in the bioreactor was continuously operated at various gas flow rates and agitation speeds, for the period of two months. The gas flow rates were varied from 5 to 14 ml/min. The agitation speeds were increasingly altered in the range of 150-500 rpm. The pH and temperature of the bioreactor was set at 6.5 and 30 degrees C. The liquid flow rate was kept constant at 0.65 ml/min for the duration of 60 days. The inlet acetate concentration was fed at 4 g/l into the bioreactor. The hydrogen production rate and yield were 16+/-1.1 mmol g(-1)cell h(-1) and 87+/-2.4% at fixed agitation speed of 500 rpm and syngas flow rate of 14 ml/min, respectively. The mass transfer coefficient (KLa) at this condition was approximately 72.8h(-1). This new approach, using a biocatalyst was considered as an alternative method of conventional Fischer-Tropsch synthetic reactions, which were able to convert syngas into hydrogen.

  6. Bioconversion of Pinoresinol Diglucoside and Pinoresinol from Substrates in the Phenylpropanoid Pathway by Resting Cells of Phomopsis sp.XP-8

    PubMed Central

    Zhang, Yan; Shi, Junling; Liu, Laping; Gao, Zhenhong; Che, Jinxin; Shao, Dongyan; Liu, Yanlin

    2015-01-01

    Pinoresinol diglucoside (PDG) and pinoresinol (Pin) are normally produced by plant cells via the phenylpropanoid pathway. This study reveals the existence of a related pathway in Phomopsis sp. XP-8, a PDG-producing fungal strain isolated from the bark of the Tu-chung tree (Eucommiaulmoides Oliv.). After addition of 0.15 g/L glucose to Phomopsis sp. XP-8, PDG and Pin formed when phenylalanine, tyrosine, leucine, cinnamic acid, and p-coumaric acid were used as the substrates respectively. No PDG formed in the absence of glucose, but Pin was detected after addition of all these substrates except leucine. In all systems in the presence of glucose, production of PDG and/or Pin and the accumulation of phenylalanine, cinnamic acid, or p-coumaric acid correlated directly with added substrate in a time- and substrate concentration- dependent manner. After analysis of products produced after addition of each substrate, the mass flow sequence for PDG and Pin biosynthesis was defined as: glucose to phenylalanine, phenylalanine to cinnamic acid, then to p-coumaric acid, and finally to Pin or PDG. During the bioconversion, the activities of four key enzymes in the phenylpropanoid pathway were also determined and correlated with accumulation of their corresponding products. PDG production by Phomopsis sp. exhibits greater efficiency and cost effectiveness than the currently-used plant-based system and will pave the way for large scale production of PDG and/or Pin for medical applications. PMID:26331720

  7. Oligosaccharides in feces of breast- and formula-fed babies.

    PubMed

    Albrecht, Simone; Schols, Henk A; van Zoeren, Diny; van Lingen, Richard A; Groot Jebbink, Liesbeth J M; van den Heuvel, Ellen G H M; Voragen, Alphons G J; Gruppen, Harry

    2011-10-18

    So far, little is known on the fate of oligosaccharides in the colon of breast- and formula-fed babies. Using capillary electrophoresis with laser induced fluorescence detector coupled to a mass spectrometer (CE-LIF-MS(n)), we studied the fecal oligosaccharide profiles of 27 two-month-old breast-, formula- and mixed-fed preterm babies. The interpretation of the complex oligosaccharide profiles was facilitated by beforehand clustering the CE-LIF data points by agglomerative hierarchical clustering (AHC). In the feces of breast-fed babies, characteristic human milk oligosaccharide (HMO) profiles, showing genetic fingerprints known for human milk of secretors and non-secretors, were recognized. Alternatively, advanced degradation and bioconversion of HMOs, resulting in an accumulation of acidic HMOs or HMO bioconversion products was observed. Independent of the prebiotic supplementation of the formula with galactooligosaccharides (GOS) at the level used, similar oligosaccharide profiles of low peak abundance were obtained for formula-fed babies. Feeding influences the presence of diet-related oligosaccharides in baby feces and gastrointestinal adaptation plays an important role herein. Four fecal oligosaccharides, characterized as HexNAc-Hex-Hex, Hex-[Fuc]-HexNAc-Hex, HexNAc-[Fuc]-Hex-Hex and HexNAc-[Fuc]-Hex-HexNAc-Hex-Hex, highlighted an active gastrointestinal metabolization of the feeding-related oligosaccharides. Their presence was linked to the gastrointestinal mucus layer and the blood-group determinant oligosaccharides therein, which are characteristic for the host's genotype. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Enantioselective synthesis of (R)-phenylephrine by Serratia marcescens BCRC10948 cells that homologously express SM_SDR.

    PubMed

    Kuan, Yi-Chia; Xu, Yue-Bin; Wang, Wen-Ching; Yang, Ming-Te

    2018-03-01

    A short-chain dehydrogenase/reductase from Serratia marcescens BCRC10948, SM_SDR, has been cloned and expressed in Escherichia coli for the bioconversion of 1-(3-hydroxyphenyl)-2-(methylamino) ethanone (HPMAE) to (R)-phenylephrine[(R)-PE]. However, only 5.11mM (R)-PE was obtained from 10mM HPMAE after a 9h conversion in the previous report. To improve the biocatalytic efficiency, the homologous expression of the SM_SDR in S. marcescens BCRC10948 was achieved using the T5 promoter for expression. By using 2% glycerol as carbon source, we found that 8.00±0.15mM of (R)-PE with more than 99% enantiomeric excess was produced from 10mM HPMAE after 12h conversion at 30°C and pH 7.0. More importantly, by using 50mM HPMAE as the substrate, 23.78±0.84mM of (R)-PE was produced after a 12h conversion with the productivity and the conversion yield of 1.98mmol (R)-PE/lh and 47.50%, respectively. The recombinant S. marcescens cells could be recycled 6 times for the production of (R)-PE, and the bioconversion efficiency remained at 85% when compared to that at the first cycle. Our data indicated that a high conversion efficiency of HPMAE to (R)-PE could be achieved using S. marcescens BCRC10948 cells that homologously express the SM_SDR. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Biotechnological production of pharmaceuticals and biopharmaceuticals in plant cell and organ cultures.

    PubMed

    Hidalgo, Diego; Sanchez, Raul; Lalaleo, Liliana; Bonfill, Mercedes; Corchete, Purificacion; Palazon, Javier

    2018-03-09

    Plant biofactories are biotechnological platforms based on plant cell and organ cultures used for the production of pharmaceuticals and biopharmaceuticals, although to date only a few of these systems have successfully been implemented at an industrial level. Metabolic engineering is possibly the most straightforward strategy to boost pharmaceutical production in plant biofactories, but social opposition to the use of GMOs means empirical approaches are still being used. Plant secondary metabolism involves thousands of different enzymes, some of which catalyze specific reactions, giving one product from a particular substrate, whereas others can yield multiple products from the same substrate. This trait opens plant cell biofactories to new applications, in which the natural metabolic machinery of plants can be harnessed for the bioconversion of phytochemicals or even the production of new bioactive compounds. Synthetic biological pipelines involving the bioconversion of natural substrates into products with a high market value may be established by the heterologous expression of target metabolic genes in model plants. To summarize the state of the art of plant biofactories and their applications for the pipeline production of cosme-, pharma- and biopharmaceuticals. In order to demonstrate the great potential of plant biofactories for multiple applications in the biotechnological production of pharmaceuticals and biopharmaceuticals, this review broadly covers the following: plant biofactories based on cell and hairy root cultures; secondary metabolite production; biotransformation reactions; metabolic engineering tools applied in plant biofactories; and biopharmaceutical production. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Acute toxicity and genotoxicity of fermented traditional medicine oyaksungi-san.

    PubMed

    Park, Hwayong; Hwang, Youn-Hwan; Ma, Jin Yeul

    2017-06-01

    The traditional medicine oyaksungi-san (OY) has been prescribed in East Asia for hundreds of years for the treatment of stroke, paralysis, and ataxia. OY also has therapeutic effects on arthralgia, myalgia, and rheumatoid arthritis, and recent studies have shown its protective effects against apoptosis of hippocampal cells and its anti-inflammatory effects on the peripheral blood cells of patient with cerebral infarction. Many studies have explored the use of traditional medicine and herb materials in the development of safe, novel, and effective pharmaceuticals with fewer side effects. These efforts commonly adopt a bioconversion tool for fermentation with beneficial microbes. However, only pharmaceuticals with high levels of safety and low levels of toxicity can be used in healthcare system. OY water extract was fermented with Lactobacillus and assayed for acute toxicity and genotoxicity. Single dose acute toxicity, bacterial reverse mutation, chromosome aberrations, and micronucleus were observed and assayed in rats, histidine/tryptophan auxotrophic bacteria, Chinese hamster ovary fibroblast cells, and mice bone marrow cells, respectively. All the experimental animals showed no abnormal behavior, clinical signs, body weight increases, or mortality. In the bacterial cultures, no revertant colonies were observed. Morphological and numerical chromosomal aberrations were not found in all metaphases examined. Frequency of induced micronuclei was not significantly increased in all doses applied. As a whole, no acute toxicity or genotoxicity were observed in all the assays examined. Therefore, fermented OY is considered to be a safe material that can be used for development of complementary and alternative medicine using bioconversion.

  11. Valorization of CH4 emissions into high-added-value products: Assessing the production of ectoine coupled with CH4 abatement.

    PubMed

    Cantera, Sara; Lebrero, Raquel; Sadornil, Lidia; García-Encina, Pedro A; Muñoz, Raúl

    2016-11-01

    This study assessed an innovative strategy for the valorization of dilute methane emissions based on the bio-conversion of CH4 (the second most important greenhouse gas (GHG)) into ectoine by the methanotrophic ectoine-producing strain Methylomicrobium alcaliphilum 20 Z. The influence of CH4 (2-20%), Cu(2+) (0.05-50 μM) and NaCl (0-9%) concentration as well as temperature (25-35 °C) on ectoine synthesis and specific CH4 biodegradation rate was evaluated for the first time. Concentrations of 20% CH4 (at 3% NaCl, 0.05 μM Cu(2+), 25 °C) and 6% NaCl (at 4% CH4, 0.05 μM Cu(2+), 25 °C) supported the maximum intra-cellular ectoine production yield (31.0 ±1.7 and 66.9 ±4.2 mg g biomass(-1), respectively). On the other hand, extra-cellular ectoine concentrations of up to 4.7 ± 0.1 mg L(-1) were detected at high Cu(2+)concentrations (50 μM), despite this methanotroph has not been previously classified as an ectoine-excreting strain. This research demonstrated the feasibility of the bio-conversion of dilute emissions of methane into high-added value products in an attempt to develop a sustainable GHG bioeconomy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Utilization of xylitol dehydrogenase in a combined microbial/enzymatic process for production of xylitol from D-glucose.

    PubMed

    Mayer, Gerhard; Kulbe, Klaus D; Nidetzky, Bernd

    2002-01-01

    The production of xylitol from D-glucose occurs through a three-step process in which D-arabitol and D-xylulose are formed as the first and second intermediate product, respectively, and both are obtained via microbial bioconversion reactions. Catalytic hydrogenation of D-xylulose yields xylitol; however, it is contaminated with D-arabitol. The aim of this study was to increase the stereoselectivity of the D-xylulose reduction step by using enzymatic catalysis. Recombinant xylitol dehydrogenase from the yeast Galactocandida mastotermitis was employed to catalyze xylitol formation from D-xylulose in an NADH-dependent reaction, and coenzyme regeneration was achieved by means of formate dehydrogenase-catalyzed oxidation of formate into carbon dioxide. The xylitol yield from D-xylulose was close to 100%. Optimal productivity was found for initial coenzyme concentrations of between 0.5 and 0.75 mM. In the presence of 0.30 M (45 g/L) D-xylulose and 2000 U/L of both dehydrogenases, exhaustive substrate turnover was achieved typically in a 4-h reaction time. The enzymes were recovered after the reaction in yields of approx 90% by means of ultrafiltration and could be reused for up to six cycles of D-xylulose reduction. The advantages of incorporating the enzyme-catalyzed step in a process for producing xylitol from D-glucose are discussed, and strategies for downstream processing are proposed by which the observed coenzyme turnover number of approx 600 could be increased significantly.

  13. Bioconversion of plant carotenoids to vitamin A in Filipino school-aged children varies inversely with vitamin A status.

    PubMed

    Ribaya-Mercado, J D; Solon, F S; Solon, M A; Cabal-Barza, M A; Perfecto, C S; Tang, G; Solon, J A; Fjeld, C R; Russell, R M

    2000-08-01

    It is important to understand the factors affecting strategies to improve the vitamin A status of populations. We reported previously that a 3-d deuterated-retinol-dilution (DRD) procedure might be used to indicate total body stores of vitamin A. We studied the ability of 3-d DRD to detect changes in the body pool size of vitamin A and the effect of vitamin A status on the bioconversion of plant carotenoids to vitamin A. Two separate, unrelated studies were conducted in 7-13-y-old children with poor or marginal serum retinol concentrations (0.32-0.93 micromol/L) by feeding them controlled diets daily for 5 d/wk for 12 wk, after treatment with an anthelmintic drug. In school 1 (n = 27), lunch and 2 snacks that were provided at school contained 2258 retinol equivalents/d (mostly from orange fruit and vegetables) and 5.3 MJ/d from 33 g fat, 37 g protein, and 209 g carbohydrates; in school 2 (n = 25), 2 snacks provided 2.5 MJ/d from 9.4 g fat, 9.6 g protein, and 119 g carbohydrates, but no carotenes. In school 1, mean serum beta-carotene increased from 0.12 to 0.62 micromol/L (P = 0.0001) and serum retinol increased from 0.68 to 1. 06 micromol/L (P = 0.0001). In school 2, serum beta-carotene increased from 0.06 to 0.11 micromol/L (P = 0.0001) and serum retinol increased from 0.66 to 0.86 micromol/L (P = 0.0001). In school 1, but not school 2, improvement in serum retinol varied inversely with baseline retinol (r = -0.38, P = 0.048). In both schools, 3-d DRD showed reductions in the ratio of serum deuterated to nondeuterated retinol (D:H retinol) postintervention, denoting improvements in vitamin A status; the higher D:H retinol (ie, the poorer the status) at baseline, the greater the reduction in D:H retinol postintervention (school 1: r = -0.99, P = 0.0001; school 2: r = -0.89, P = 0.0001). Three-day DRD can detect changes in the body pool size of vitamin A, although a predictive equation to quantitate total body stores of vitamin A with the use of 3-d data needs to be developed. Bioconversion of plant carotenoids to vitamin A varies inversely with vitamin A status; improvement in status after dietary interventions is strongly influenced by total body stores of vitamin A and is influenced little or not at all by serum retinol.

  14. Improvement on D-xylose to Xylitol Biotransformation by Candida guilliermondii Using Cells Permeabilized with Triton X-100 and Selected Process Conditions.

    PubMed

    Cortez, Daniela Vieira; Mussatto, Solange I; Roberto, Inês Conceição

    2016-11-01

    Cells of Candida guilliermondii permeabilized with Triton X-100 were able to efficiently produce xylitol from a medium composed only by D-xylose and MgCl 2 ·6H 2 O in potassium phosphate buffer, at 35 °C and pH 6.5. Under these conditions, the results were similar to those obtained when cofactor and co-substrate or nutrients were added to the medium (about 95 % D-xylose was assimilated producing 42 g/L of xylitol, corresponding to 0.80 g/g yield and 2.65 g/L h volumetric productivity). Furthermore, the permeabilized cells kept the D-xylose assimilation in about 90 % and the xylitol production in approx. 40 g/L during three bioconversion cycles of 16 h each. These values are highly relevant when compared to others reported in the literature using enzyme technology and fermentative process, thereby demonstrating the effectiveness of the proposed method. The present study reveals that the use of permeabilized cells is an interesting alternative to obtain high xylitol productivity using low cost medium formulation. This approach may allow the future development of xylitol production from xylose present in lignocellulosic biomass, with additional potential for implementation in biorefinery strategies.

  15. Factors influencing micronutrient bioavailability in biofortified crops.

    PubMed

    Bechoff, Aurélie; Dhuique-Mayer, Claudie

    2017-02-01

    Dietary and human factors have been found to be the major factors influencing the bioavailability of micronutrients, such as provitamin A carotenoid (pVAC), iron, and zinc, in biofortified crops. Dietary factors are related to food matrix structure and composition. Processing can improve pVAC bioavailability by disrupting the food matrix but can also result in carotenoid losses. By degrading antinutrients, such as phytate, processing can also enhance mineral bioavailability. In in vivo interventions, biofortified crops have been shown to be overall efficacious in reducing micronutrient deficiency, with bioconversion factors varying between 2.3:1 and 10.4:1 for trans-β-carotene and amounts of iron and zinc absorbed varying between 0.7 and 1.1 mg/day and 1.1 and 2.1 mg/day, respectively. Micronutrient bioavailability was dependent on the crop type and the presence of fat for pVACs and on antinutrients for minerals. In addition to dietary factors, human factors, such as inflammation and disease, can affect micronutrient status. Understanding the interactions between micronutrients is also essential, for example, the synergic effect of iron and pVACs or the competitive effect of iron and zinc. Future efficacy trials should consider human status and genetic polymorphisms linked to interindividual variations. © 2016 New York Academy of Sciences.

  16. Pretreatment of different food rest materials for bioconversion into fungal lipid-rich biomass.

    PubMed

    Tzimorotas, D; Afseth, N K; Lindberg, D; Kjørlaug, O; Axelsson, L; Shapaval, V

    2018-04-13

    Food rest materials have the potential to be used as media components in various types of fermentations. Oleaginous filamentous fungi can utilize those components and generate a high-value lipid-rich biomass, which could be further used for animal and human use. One of the main limitations in this process is the pretreatment of food rest materials, needed to provide homogenization, sterilization and solubilization. In this study, two pretreatment processes-steam explosion and enzymatic hydrolysis-were evaluated for potato and animal protein-rich food rest materials. The pretreated food rest materials were used for the production of fungal lipid-rich biomass in submerged fermentation by the oleaginous fungus Mucor circinelloides. Cultivation media based on malt extract broth and glucose were used as controls of growth and lipid production, respectively. It was observed that media based on food rest materials can support growth and lipid production in M. circinelloides to a similar extent as the control media. More specifically, the use of potato hydrolysate combined with chicken auto-hydrolysate resulted in a higher fungal total biomass weight than using malt extract broth. When the same C/N ratio was used for glucose and rest materials-based media, similar lipid content was obtained or even higher using the latter media.

  17. Two-Step Production of Phenylpyruvic Acid from L-Phenylalanine by Growing and Resting Cells of Engineered Escherichia coli: Process Optimization and Kinetics Modeling

    PubMed Central

    Hou, Ying; Hossain, Gazi Sakir; Li, Jianghua; Shin, Hyun-dong; Liu, Long; Du, Guocheng; Chen, Jian

    2016-01-01

    Phenylpyruvic acid (PPA) is widely used in the pharmaceutical, food, and chemical industries. Here, a two-step bioconversion process, involving growing and resting cells, was established to produce PPA from l-phenylalanine using the engineered Escherichia coli constructed previously. First, the biotransformation conditions for growing cells were optimized (l-phenylalanine concentration 20.0 g·L−1, temperature 35°C) and a two-stage temperature control strategy (keep 20°C for 12 h and increase the temperature to 35°C until the end of biotransformation) was performed. The biotransformation conditions for resting cells were then optimized in 3-L bioreactor and the optimized conditions were as follows: agitation speed 500 rpm, aeration rate 1.5 vvm, and l-phenylalanine concentration 30 g·L−1. The total maximal production (mass conversion rate) reached 29.8 ± 2.1 g·L−1 (99.3%) and 75.1 ± 2.5 g·L−1 (93.9%) in the flask and 3-L bioreactor, respectively. Finally, a kinetic model was established, and it was revealed that the substrate and product inhibition were the main limiting factors for resting cell biotransformation. PMID:27851793

  18. Optimal production of 7,10-dihydroxy-8(E)-hexadecenoic acid from palmitoleic acid by Pseudomonas aeruginosa PR3.

    PubMed

    Bae, Jae-Han; Suh, Min-Jung; Kim, Beom-Soo; Hou, Ching T; Lee, In-Jung; Kim, In-Hwan; Kim, Hak-Ryul

    2010-09-30

    The hydroxylation of unsaturated fatty acids by bacterial strains is one type of value-adding bioconversion processes. This process generates new hydroxy fatty acids (HFA) carrying special properties such as higher viscosity and reactivity compared with normal fatty acids. Among microbial strains tested for HFA production, Pseudomonas aeruginosa PR3 is well known to utilize various unsaturated fatty acids to produce mono-, di- and tri-hydroxy fatty acids. Previously we reported that strain PR3 could produce a novel value-added hydroxy fatty acid 7,10-dihydroxy-8(E)-hexadecenoic acid (DHD) from palmitoleic acid (Bae et al. (2007) Appl. Microbiol. Biotechnol. 75, 435-440). In this study, we focused on the development of the optimal nutritional and environmental conditions for DHD production from palmitoleic acid by PR3. Optimal carbon and nitrogen sources for DHD production were fructose and yeast extract, respectively. Optimal initial medium pH and incubation temperature were pH 8.0 and 30 degrees C and magnesium ion was essentially required for DHD production. Substrate concentration and time of substrate addition were also optimized. Under optimized conditions, maximal DHD production was 1600mg/l representing 26.7% conversion yield. Copyright 2009 Elsevier B.V. All rights reserved.

  19. Opportunities to improve the conversion of food waste to lactate: Fine-tuning secondary factors.

    PubMed

    RedCorn, Raymond; Engelberth, Abigail S

    2017-11-01

    Extensive research has demonstrated the potential for bioconversion of food waste to lactate, with major emphasis on adjusting temperature, pH, and loading rate of the fermentation. Each of these factors has a significant effect on lactate production; however, additional secondary factors have received little attention. Here we investigate three additional factors where opportunities exist for process improvement: freezing of samples during storage, discontinuous pH control, and holdover of fermentation broth between fermentations. Freezing samples prior to fermentation was shown to reduce the production rate of lactate by 8%, indicating freeze-thaw should be avoided in experiments. Prior work indicated a trade-off in pH control strategies, where discontinuous pH control correlated with higher lactate accumulation while continuous pH control correlated with higher production rate. Here we demonstrate that continuous pH control can achieve both higher lactate accumulation and higher production rate. Finally, holding over fermentation broth was shown to be a simple method to improve production rate (by 18%) at high food waste loading rates (>140 g volatile solids L -1 ) but resulted in lower lactate accumulation (by 17%). The results inform continued process improvements within the waste treatment of food waste through fermentation to lactic acid.

  20. Heterologously expressed Aspergillus aculeatus β-glucosidase in Saccharomyces cerevisiae is a cost-effective alternative to commercial supplementation of β-glucosidase in industrial ethanol production using Trichoderma reesei cellulases.

    PubMed

    Treebupachatsakul, Treesukon; Nakazawa, Hikaru; Shinbo, Hideaki; Fujikawa, Hiroki; Nagaiwa, Asami; Ochiai, Nobuhiro; Kawaguchi, Takashi; Nikaido, Mitsuru; Totani, Kazuhide; Shioya, Koki; Shida, Yosuke; Morikawa, Yasushi; Ogasawara, Wataru; Okada, Hirofumi

    2016-01-01

    Trichoderma reesei is a filamentous organism that secretes enzymes capable of degrading cellulose to cellobiose. The culture supernatant of T. reesei, however, lacks sufficient activity to convert cellobiose to glucose using β-glucosidase (BGL1). In this study, we identified a BGL (Cel3B) from T. reesei (TrCel3B) and compared it with the active β-glucosidases from Aspergillus aculeatus (AaBGL1). AaBGL1 showed higher stability and conversion of sugars to ethanol compared to TrCel3B, and therefore we chose to express this recombinant protein for use in fermentation processes. We expressed the recombinant protein in the yeast Saccharomyces cerevisiae, combined it with the superb T. reesei cellulase machinery and used the combination in a simultaneous saccharification and fermentation (SSF) process, with the hope that the recombinant would supplement the BGL activity. As the sugars were processed, the yeast immediately converted them to ethanol, thereby eliminating the problem posed by end product inhibition. Recombinant AaBGL1 activity was compared with Novozyme 188, a commercially available supplement for BGL activity. Our results show that the recombinant protein is as effective as the commercial supplement and can process sugars with equal efficiency. Expression of AaBGL1 in S. cerevisiae increased ethanol production effectively. Thus, heterologous expression of AaBGL1 in S. cerevisiae is a cost-effective and efficient process for the bioconversion of ethanol from lignocellulosic biomass. Copyright © 2015. Published by Elsevier B.V.

  1. Bioregenerative Life Support Experiment for 90-days in a Closed Integrative Experimental Facility LUNAR PALACE 1

    NASA Astrophysics Data System (ADS)

    Liu, Hong

    A 90-day bioregenerative life support experiment with three-member crew was carried out in the closed integrative experimental facility, LUNAR PALACE 1 regenerating basic living necessities and disposing wastes to provide life support for crew. It was composed of higher plant module, animal module, and waste treatment module. The higher plant module included wheat, chufa, pea, carrot and green leafy vegetables, with aim to satisfy requirement of 60% plant food and 100% O2 and water for crew. The yellow mealworm was selected as animal module to provide partial animal protein for crew, and reared on plant inedible biomass. The higher plant and yellow mealworm were both cultivated and harvested in the conveyor-type manner. The partial plant inedible biomass and human feces were mixed and co- fermented in the waste treatment module for preparation of soil-like substrate by bioconversion, maintaining gas balance and increasing closure degree. Meanwhile, in the waste treatment module, the water and partial nitrogen from human urine were recovered by physical-chemical means. Circulation of O2 and water as well as food supply from crops cultivated in the LUNAR PALACE 1 were investigated and calculated, and simultaneously gas exchange, mass flow among different components and system closure degree were also analyzed, respectively. Furthermore, the system robustness with respect to internal variation was tested and evaluated by sensitivity analysis of the aggregative index consisting of key performance indicators like crop yield, gaseous equilibrium concentration, microbial community composition, biogenic elements dynamics, etc., and comprehensively evaluating the operating state, to number change of crew from 2 to 4 during the 90-day closed experiment period.

  2. Production of rosamicin derivatives in Micromonospora rosaria by introduction of D-mycinose biosynthetic gene with PhiC31-derived integration vector pSET152.

    PubMed

    Anzai, Yojiro; Iizaka, Yohei; Li, Wei; Idemoto, Naoki; Tsukada, Shu-ichi; Koike, Kazuo; Kinoshita, Kenji; Kato, Fumio

    2009-08-01

    Some of the polyketide-derived bioactive compounds contain sugars attached to the aglycone core, and these sugars often impart specific biological activity to the molecule or enhance this activity. Mycinamicin II, a 16-member macrolide antibiotic produced by Micromonospora griseorubida A11725, contains a branched lactone and two different deoxyhexose sugars, D-desosamine and D-mycinose, at the C-5 and C-21 positions, respectively. The D-mycinose biosynthesis genes, mycCI, mycCII, mycD, mycE, mycF, mydH, and mydI, present in the M. griseorubida A11725 chromosome were introduced into pSET152 under the regulation of the promoter of the apramycin-resistance gene aac(3)IV. The resulting plasmid pSETmycinose was introduced into Micromonospora rosaria IFO13697 cells, which produce the 16-membered macrolide antibiotic rosamicin containing a branched lactone and D-desosamine at the C-5 position. Although the M. rosaria TPMA0001 transconjugant exhibited low rosamicin productivity, two new compounds, IZI and IZII, were detected in the ethylacetate extract from the culture broth. IZI was identified as a mycinosyl rosamicin derivative, 23-O-mycinosyl-20-deoxo-20-dihydro-12,13-deepoxyrosamicin (MW 741), which has previously been synthesized by a bioconversion technique. This is the first report on production of mycinosyl rosamicin-derivatives by a engineered biosynthesis approach. The integration site PhiC31attB was identified on M. rosaria IFO13697 chromosome, and the site lay within an ORF coding a pirin homolog protein. The pSETmycinose could be useful for stimulating the production of "unnatural" natural mycinosyl compounds by various actinomycete strains using the bacteriophage PhiC31 att/int system.

  3. Rearing Tenebrio molitor L. (Coleptera: Tenebrionidae) in the "Lunar Palace 1" during a 105-day multi-crew closed integrative BLSS experiment.

    PubMed

    Li, Leyuan; Xie, Beizhen; Dong, Chen; Hu, Dawei; Wang, Minjuan; Liu, Guanghui; Liu, Hong

    2015-11-01

    Yellow mealworm (Tenebrio molitor L.) is one of the animal candidates for space bioregenerative life support systems. In this study, T. molitor was involved in a 105-day multi-crew closed integrative BLSS experiment for a tentative rearing study. The results showed that the overall bioconversion rate (ratio of T. molitor gained to the total feed consumed) of T. molitor reared in the closed system was 8.13%, while 78.43% of the feed was excreted as frass. T. molitor reared in the closed system had a good nutritional composition. The eight essential amino acids (EAAs) in T. molitor larvae accounted for 41.30% of its total amino acids, and most EAA contents were higher than the suggested amino acid pattern recommended by the FAO/WHO. T. molitor sample obtained in this work was high in polyunsaturated fatty acids, and low in saturated fatty acids, indicating that the composition of fatty acids was beneficial to human health. In the open environment outside the experimental system, we simultaneously reared three parallel groups of larval T. molitor using the same feeding regime and temperature condition. Compared with T. molitor reared in the open environment, larvae reared in the closed system grew slower. With the course of time t, the growth rate of T. molitor in the open environment was 0.839e(0.017t) times that of larvae in the closed system. This paper can provide data for future design and improvement of BLSS containing a T. molitor rearing unit. Copyright © 2015 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  4. Production of Basidiomata and Ligninolytic Enzymes by the Lingzhi or Reishi Medicinal Mushroom, Ganoderma lucidum (Agaricomycetes), in Licuri (Syagrus coronata) Wastes in Brazil.

    PubMed

    de Menezes, Thais Almeida; Bispo, Aline Simoes da Rocha; Koblitz, Maria Gabriela Bello; Vandenberghe, Luciana Porto de Souza; Kamida, Helio Mitoshi; Goes-Neto, Aristoteles

    2016-01-01

    Ganoderma lucidum is a medicinal mushroom with different forms of bioactivity that has been used in popular medicine for centuries. This study aimed to test the application of agricultural wastes (fruit shells, leaves, and bracts) from the endemic Brazilian palm tree Syagrus coronata (licuri) as substrates for the production of G. lucidum basidiomata and ligninolytic enzymes via solid-state fermentation. The best culture conditions were the same for all substrates (pH 6.5, carbon-to-nitrogen ratio = 40, and temperature 30°C) and were established from preliminary assays. The yield was not significantly different for bracts (33.53 g/kg) and leaves (37.48 g/kg), nor for the biological efficiency in these same substrates: bracts, 3.35%; leaves, 3.75%. The highest laccase (13.80 U/L) and manganese peroxidase (14.92 U/L) activities were achieved after 14 and 28 days of incubation, respectively, using bracts as the substrate. Licuri residues are then potential substrates to be used in the bioconversion process for mycelia, basidiomata, and ligninolytic enzyme production by G. lucidum.

  5. Self-adaption of methane-producing communities to pH disturbance at different acetate concentrations by shifting pathways and population interaction.

    PubMed

    Hao, Liping; Lü, Fan; Li, Lei; Wu, Qing; Shao, Liming; He, Pinjing

    2013-07-01

    To investigate the competition among acetate-utilizing microorganisms at different acetate levels, bioconversion processes of 50, 100, 150 and 200 mM acetate in the presence and absence of methanogenic inhibitor CH3F were monitored in thermophilic methanogenic system. The successive response of methane-producing community during the deteriorative and recovery phases caused by pH disturbance was analyzed. High acetate concentration (>50mM) inhibited the activity of acetoclastic methanogenesis (AM). The increasing pH (>7.5) enhanced this inhibition. The syntrophic acetate oxidizing (SAO) bacteria and hydrogenotrophic methanogens including Methanomicrobiales and Methanobacteirales were more tolerant to the stress from high acetate concentration and high pH. Resumption from alkali condition to normal pH stimulated the growth of acetate oxidizing syntrophs. The reaction rate of SAO-HM was lower than that of AM. These results point to the possibility to regenerate the deteriorated anaerobic digesters by addition of acclimatized inocula rich in acetate-oxidizing syntrophs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Pathways for degradation of lignin in bacteria and fungi.

    PubMed

    Bugg, Timothy D H; Ahmad, Mark; Hardiman, Elizabeth M; Rahmanpour, Rahman

    2011-11-01

    Lignin is a heterogeneous aromatic polymer found as 10-35% of lignocellulose, found in plant cell walls. The bio-conversion of plant lignocellulose to glucose is an important part of second generation biofuel production, but the resistance of lignin to breakdown is a major obstacle in this process, hence there is considerable interest in the microbial breakdown of lignin. White-rot fungi are known to break down lignin with the aid of extracellular peroxidase and laccase enzymes. There are also reports of bacteria that can degrade lignin, and recent work indicates that bacterial lignin breakdown may be more significant than previously thought. The review will discuss the enzymes for lignin breakdown in fungi and bacteria, and the catabolic pathways for breakdown of the β-aryl ether, biphenyl and other components of lignin in bacteria and fungi. The review will also discuss small molecule phenolic breakdown products from lignin that have been identified from lignin-degrading microbes, and includes a bioinformatic analysis of the occurrence of known lignin-degradation pathways in Gram-positive and Gram-negative bacteria.

  7. Production of D-tagatose, a low caloric sweetener during milk fermentation using L-arabinose isomerase.

    PubMed

    Rhimi, Moez; Chouayekh, Hichem; Gouillouard, Isabelle; Maguin, Emmanuelle; Bejar, Samir

    2011-02-01

    Lactobacillusdelbrueckii subsp. bulgaricus and Streptococcus thermophilus are used for the biotransformation of milk in yoghurt. During milk fermentation, these lactic acid bacteria (LAB) hydrolyze lactose producing a glucose moiety that is further metabolized and a galactose moiety that they are enable to metabolize. We investigated the ability of L. bulgaricus and S. thermophilus strains expressing a heterologous L-arabinose isomerase to convert residual D-galactose to D-tagatose. The Bacillus stearothermophilus US100l-arabinose isomerase (US100l-AI) was expressed in both LAB, using a new shuttle vector where the araA US100 gene is under the control of the strong and constitutive promoter of the L. bulgaricus ATCC 11842 hlbA gene. The production of L-AI by these LAB allowed the bioconversion of D-galactose to D-tagatose during fermentation in laboratory media and milk. We also established that the addition of L-AI to milk also allowed the conversion of D-galactose into D-tagatose during the fermentation process. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Bioconversion of Agricultural Waste to Ethanol by SSF Using Recombinant Cellulase from Clostridium thermocellum

    PubMed Central

    Mutreja, Ruchi; Das, Debasish; Goyal, Dinesh; Goyal, Arun

    2011-01-01

    The effect of different pretreatment methods, temperature, and enzyme concentration on ethanol production from 8 lignocellulosic agrowaste by simultaneous saccharification and fermentation (SSF) using recombinant cellulase and Saccharomyces cerevisiae were studied. Recombinant cellulase was isolated from E. coli BL21 cells transformed with CtLic26A-Cel5-CBM11 full-length gene from Clostridium thermocellum and produced in both batch and fed-batch processes. The maximum cell OD and specific activity in batch mode were 1.6 and 1.91 U/mg, respectively, whereas in the fed-batch mode, maximum cell OD and specific activity were 3.8 and 3.5 U/mg, respectively, displaying a 2-fold increase. Eight substrates, Syzygium cumini (jamun), Azadirachta indica (neem), Saracens indica (asoka), bambusa dendrocalmus (bamboo), Populas nigra (poplar), Achnatherum hymenoides (wild grass), Eucalyptus marginata (eucalyptus), and Mangifera indica (mango), were subjected to SSF. Of three pretreatments, acid, alkali, and steam explosion, acid pretreatment Syzygium cumini (Jamun) at 30°C gave maximum ethanol yield of 1.42 g/L. PMID:21811671

  9. Bioconversion of Agricultural Waste to Ethanol by SSF Using Recombinant Cellulase from Clostridium thermocellum.

    PubMed

    Mutreja, Ruchi; Das, Debasish; Goyal, Dinesh; Goyal, Arun

    2011-01-01

    The effect of different pretreatment methods, temperature, and enzyme concentration on ethanol production from 8 lignocellulosic agrowaste by simultaneous saccharification and fermentation (SSF) using recombinant cellulase and Saccharomyces cerevisiae were studied. Recombinant cellulase was isolated from E. coli BL21 cells transformed with CtLic26A-Cel5-CBM11 full-length gene from Clostridium thermocellum and produced in both batch and fed-batch processes. The maximum cell OD and specific activity in batch mode were 1.6 and 1.91 U/mg, respectively, whereas in the fed-batch mode, maximum cell OD and specific activity were 3.8 and 3.5 U/mg, respectively, displaying a 2-fold increase. Eight substrates, Syzygium cumini (jamun), Azadirachta indica (neem), Saracens indica (asoka), bambusa dendrocalmus (bamboo), Populas nigra (poplar), Achnatherum hymenoides (wild grass), Eucalyptus marginata (eucalyptus), and Mangifera indica (mango), were subjected to SSF. Of three pretreatments, acid, alkali, and steam explosion, acid pretreatment Syzygium cumini (Jamun) at 30°C gave maximum ethanol yield of 1.42 g/L.

  10. Microbial Biotransformation to Obtain New Antifungals

    PubMed Central

    Bianchini, Luiz F.; Arruda, Maria F. C.; Vieira, Sergio R.; Campelo, Patrícia M. S.; Grégio, Ana M. T.; Rosa, Edvaldo A. R.

    2015-01-01

    Antifungal drugs belong to few chemical groups and such low diversity limits the therapeutic choices. The urgent need of innovative options has pushed researchers to search new bioactive molecules. Literature regarding the last 15 years reveals that different research groups have used different approaches to achieve such goal. However, the discovery of molecules with different mechanisms of action still demands considerable time and efforts. This review was conceived to present how Pharmaceutical Biotechnology might contribute to the discovery of molecules with antifungal properties by microbial biotransformation procedures. Authors present some aspects of (1) microbial biotransformation of herbal medicines and food; (2) possibility of major and minor molecular amendments in existing molecules by biocatalysis; (3) methodological improvements in processes involving whole cells and immobilized enzymes; (4) potential of endophytic fungi to produce antimicrobials by bioconversions; and (5) in silico research driving to the improvement of molecules. All these issues belong to a new conception of transformation procedures, so-called “green chemistry,” which aims the highest possible efficiency with reduced production of waste and the smallest environmental impact. PMID:26733974

  11. Bioconversion of lignocellulosic residues by Agrocybe cylindracea and Pleurotus ostreatus mushroom fungi--assessment of their effect on the final product and spent substrate properties.

    PubMed

    Koutrotsios, Georgios; Mountzouris, Konstantinos C; Chatzipavlidis, Iordanis; Zervakis, Georgios I

    2014-10-15

    Nine agro-industrial and forestry by-products were subjected to solid-state fermentation by Agrocybe cylindracea and Pleurotus ostreatus, and the process and end-products were comparatively evaluated. Grape marc waste plus cotton gin trash was the best performing medium for both fungi, while substrate composition had a marked effect on most cultivation parameters. Biological efficiency was positively correlated with nitrogen, lignin and ash, and negatively with hemicelluloses and carbohydrate content of substrates. Spent substrates demonstrated high reductions in hemicelluloses and cellulose in contrast to lignin; fibre fractions were correlated with nitrogen, fat and ash content of initial materials, while residual mycelial biomass was affected by mushroom productivity. Mushroom proximate analysis revealed significant variations of constituents depending on the substrate. Crude protein and fat were correlated with substrates nitrogen for both species. Alternative cultivation substrates of high potential are proposed, while spent material could be exploited as animal feed due to its upgraded properties. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Applications of the Non-Conventional Yeast Yarrowia lipolytica

    NASA Astrophysics Data System (ADS)

    Thevenieau, France; Nicaud, Jean-Marc; Gaillardin, Claude

    The yeast Yarrowia lipolytica is often found associated to proteinaceous or hydrophobic substrates such as alkanes or lipids. To assimilate these hydropho-bic substrates, Y. lipolytica has developed an adaptative strategy resulting in elaborated morphological and physiological changes leading to terminal and β-oxidation of substrates as well as to lipid storage. The completion of the Y. lipolytica genome greatly improved our understanding of these mechanisms. Three main applications of this metabolism will be discussed. The first class corresponds to bioconver-sion processes for the production of secondary metabolites (citric acid), of aroma ( γ - lactone, green note, epoxy geraniol) and of chemicals (dicarboxylic acids). The second class leads to fine chemical production by enantio separation of pharmaceutical compounds using Y. lipolytica enzymes such as epoxyde hydrolase or lipase. The third one refers to production of Single Cell Oils (SCO) from agriculture feedstock. In addition to its ability to handle hydrophobic substrates, Y. lipolytica has also been recognised as a strong secretor of various proteins such as proteases, lipases, RNases and others. A comprehensive review of recent developments of the Y. lipolytica expression/secretion system will finally be presented.

  13. Production of D-tagatose and bioethanol from onion waste by an intergrating bioprocess.

    PubMed

    Kim, Ho Myeong; Song, Younho; Wi, Seung Gon; Bae, Hyeun-Jong

    2017-10-20

    The rapid increase of agricultural waste is becoming a burgeoning problem and considerable efforts are being made by numerous researchers to convert it into a high-value resource material. Onion waste is one of the biggest issues in a world of dwindling resource. In this study, the potential of onion juice residue (OJR) for producing valuable rare sugar or bioethanol was evaluated. Purified Paenibacillus polymyxaL-arabinose isomerase (PPAI) has a molecular weight of approximately 53kDa, and exhibits maximal activity at 30°C and pH 7.5 in the presence of 0.8mM Mn 2+ . PPAI can produce 0.99g D-tagatose from 10g OJR. In order to present another application for OJR, we produced 1.56g bioethanol from 10g OJR through a bioconversion and fermentation process. These results indicate that PPAI can be used for producing rare sugars in an industrial setting, and OJR can be converted to D-tagatose and bioethanol. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Continuous Ethanol Fermentation of Pretreated Lignocellulosic Biomasses, Waste Biomasses, Molasses and Syrup Using the Anaerobic, Thermophilic Bacterium Thermoanaerobacter italicus Pentocrobe 411

    PubMed Central

    Andersen, Rasmus Lund; Jensen, Karen Møller; Mikkelsen, Marie Just

    2015-01-01

    Lignocellosic ethanol production is now at a stage where commercial or semi-commercial plants are coming online and, provided cost effective production can be achieved, lignocellulosic ethanol will become an important part of the world bio economy. However, challenges are still to be overcome throughout the process and particularly for the fermentation of the complex sugar mixtures resulting from the hydrolysis of hemicellulose. Here we describe the continuous fermentation of glucose, xylose and arabinose from non-detoxified pretreated wheat straw, birch, corn cob, sugar cane bagasse, cardboard, mixed bio waste, oil palm empty fruit bunch and frond, sugar cane syrup and sugar cane molasses using the anaerobic, thermophilic bacterium Thermoanaerobacter Pentocrobe 411. All fermentations resulted in close to maximum theoretical ethanol yields of 0.47–0.49 g/g (based on glucose, xylose, and arabinose), volumetric ethanol productivities of 1.2–2.7 g/L/h and a total sugar conversion of 90–99% including glucose, xylose and arabinose. The results solidify the potential of Thermoanaerobacter strains as candidates for lignocellulose bioconversion. PMID:26295944

  15. Simultaneous biogas upgrading and centrate treatment in an outdoors pilot scale high rate algal pond.

    PubMed

    Posadas, Esther; Marín, David; Blanco, Saúl; Lebrero, Raquel; Muñoz, Raúl

    2017-05-01

    The bioconversion of biogas to biomethane coupled to centrate treatment was evaluated in an outdoors pilot scale high rate algal pond interconnected to an external CO 2 -H 2 S absorption column (AC) via settled broth recirculation. CO 2 -removal efficiencies ranged from 50 to 95% depending on the alkalinity of the cultivation broth and environmental conditions, while a complete H 2 S removal was achieved regardless of the operational conditions. A maximum CH 4 concentration of 94% with a limited O 2 and N 2 stripping was recorded in the upgraded biogas at recycling liquid/biogas ratios in the AC of 1 and 2. Process operation at a constant biomass productivity of 15gm -2 d -1 and the minimization of effluent generation supported high carbon and nutrient recoveries in the harvested biomass (C=66±8%, N=54±18%, P≈100% and S=16±3%). Finally, a low diversity in the structure of the microalgae population was promoted by the environmental and operational conditions imposed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Genome sequence and comparative analysis of a putative entomopathogenic Serratia isolated from Caenorhabditis briggsae.

    PubMed

    Abebe-Akele, Feseha; Tisa, Louis S; Cooper, Vaughn S; Hatcher, Philip J; Abebe, Eyualem; Thomas, W Kelley

    2015-07-18

    Entomopathogenic associations between nematodes in the genera Steinernema and Heterorhabdus with their cognate bacteria from the bacterial genera Xenorhabdus and Photorhabdus, respectively, are extensively studied for their potential as biological control agents against invasive insect species. These two highly coevolved associations were results of convergent evolution. Given the natural abundance of bacteria, nematodes and insects, it is surprising that only these two associations with no intermediate forms are widely studied in the entomopathogenic context. Discovering analogous systems involving novel bacterial and nematode species would shed light on the evolutionary processes involved in the transition from free living organisms to obligatory partners in entomopathogenicity. We report the complete genome sequence of a new member of the enterobacterial genus Serratia that forms a putative entomopathogenic complex with Caenorhabditis briggsae. Analysis of the 5.04 MB chromosomal genome predicts 4599 protein coding genes, seven sets of ribosomal RNA genes, 84 tRNA genes and a 64.8 KB plasmid encoding 74 genes. Comparative genomic analysis with three of the previously sequenced Serratia species, S. marcescens DB11 and S. proteamaculans 568, and Serratia sp. AS12, revealed that these four representatives of the genus share a core set of ~3100 genes and extensive structural conservation. The newly identified species shares a more recent common ancestor with S. marcescens with 99% sequence identity in rDNA sequence and orthology across 85.6% of predicted genes. Of the 39 genes/operons implicated in the virulence, symbiosis, recolonization, immune evasion and bioconversion, 21 (53.8%) were present in Serratia while 33 (84.6%) and 35 (89%) were present in Xenorhabdus and Photorhabdus EPN bacteria respectively. The majority of unique sequences in Serratia sp. SCBI (South African Caenorhabditis briggsae Isolate) are found in ~29 genomic islands of 5 to 65 genes and are enriched in putative functions that are biologically relevant to an entomopathogenic lifestyle, including non-ribosomal peptide synthetases, bacteriocins, fimbrial biogenesis, ushering proteins, toxins, secondary metabolite secretion and multiple drug resistance/efflux systems. By revealing the early stages of adaptation to this lifestyle, the Serratia sp. SCBI genome underscores the fact that in EPN formation the composite end result - killing, bioconversion, cadaver protection and recolonization- can be achieved by dissimilar mechanisms. This genome sequence will enable further study of the evolution of entomopathogenic nematode-bacteria complexes.

  17. Shiitake Medicinal Mushroom, Lentinus edodes (Higher Basidiomycetes) Productivity and Lignocellulolytic Enzyme Profiles during Wheat Straw and Tree Leaf Bioconversion.

    PubMed

    Elisashvili, Vladimir; Kachlishvili, Eva; Asatiani, Mikheil D

    2015-01-01

    Two commercial strains of Lentinus edodes have been comparatively evaluated for their productivity and lignocellulolytic enzyme profiles in mushroom cultivation using wheat straw or tree leaves as the growth substrates. Both substrates are profitable for recycling into shiitake fruit bodies. L. edodes 3715 gave the lowest yield of mushroom during tree leaves bioconversion with the biological efficiency (BE) 74.8% while the L. edodes 3721 BE achieved 83.4%. Cultivation of shiitake on wheat straw, especially in the presence of additional nitrogen source, increased the L. edodes 3721 BE to 92-95.3% owing to the high hydrolases activity and favorable conditions. Despite the quantitative variations, each strain of L. edodes had a similar pattern for secreting enzymes into the wheat straw and tree leaves. The mushrooms laccase and MnP activities were high during substrate colonization and declined rapidly during primordia appearance and fruit body development. While oxidase activity decreased, during the same period cellulases and xylanase activity raised sharply. Both cellulase and xylanase activity peaked at the mature fruit body stage. When mushrooms again shifted to the vegetative growth, oxidase activity gradually increased, whereas the hydrolases activity dropped rapidly. The MnP, CMCase, and FP activities of L. edodes 3721 during cultivation on wheat straw were higher than those during mushroom growth on tree leaves whereas the laccase activity was rather higher in fermentation of tree leaves. Enrichment of wheat straw with an additional nitrogen source rather favored to laccase, MnP, and FPA secretion during the vegetative stage of the L. edodes 3721 growth.

  18. Deletion of the Saccharomyces cerevisiae ARO8 gene, encoding an aromatic amino acid transaminase, enhances phenylethanol production from glucose.

    PubMed

    Romagnoli, Gabriele; Knijnenburg, Theo A; Liti, Gianni; Louis, Edward J; Pronk, Jack T; Daran, Jean-Marc

    2015-01-01

    Phenylethanol has a characteristic rose-like aroma that makes it a popular ingredient in foods, beverages and cosmetics. Microbial production of phenylethanol currently relies on whole-cell bioconversion of phenylalanine with yeasts that harbour an Ehrlich pathway for phenylalanine catabolism. Complete biosynthesis of phenylethanol from a cheap carbon source, such as glucose, provides an economically attractive alternative for phenylalanine bioconversion. In this study, synthetic genetic array (SGA) screening was applied to identify genes involved in regulation of phenylethanol synthesis in Saccharomyces cerevisiae. The screen focused on transcriptional regulation of ARO10, which encodes the major decarboxylase involved in conversion of phenylpyruvate to phenylethanol. A deletion in ARO8, which encodes an aromatic amino acid transaminase, was found to underlie the transcriptional upregulation of ARO10 during growth, with ammonium sulphate as the sole nitrogen source. Physiological characterization revealed that the aro8Δ mutation led to substantial changes in the absolute and relative intracellular concentrations of amino acids. Moreover, deletion of ARO8 led to de novo production of phenylethanol during growth on a glucose synthetic medium with ammonium as the sole nitrogen source. The aro8Δ mutation also stimulated phenylethanol production when combined with other, previously documented, mutations that deregulate aromatic amino acid biosynthesis in S. cerevisiae. The resulting engineered S. cerevisiae strain produced >3 mm phenylethanol from glucose during growth on a simple synthetic medium. The strong impact of a transaminase deletion on intracellular amino acid concentrations opens new possibilities for yeast-based production of amino acid-derived products. Copyright © 2014 John Wiley & Sons, Ltd.

  19. Bioconversion of l-glutamic acid to α-ketoglutaric acid by an immobilized whole-cell biocatalyst expressing l-amino acid deaminase from Proteus mirabilis.

    PubMed

    Hossain, Gazi Sakir; Li, Jianghua; Shin, Hyun-dong; Chen, Rachel R; Du, Guocheng; Liu, Long; Chen, Jian

    2014-01-01

    The goal of this work was to develop an immobilized whole-cell biocatalytic process for the environment-friendly synthesis of α-ketoglutaric acid (α-KG) from l-glutamic acid. We compared the suitability of Escherichia coli and Bacillus subtilis strains overexpressing Proteus mirabilisl-amino acid deaminase (l-AAD) as potential biocatalysts. Although both recombinant strains were biocatalytically active, the performance of B. subtilis was superior to that of E. coli. With l-glutamic acid as the substrate, α-KG production levels by membranes isolated from B. subtilis and E. coli were 55.3±1.73 and 21.7±0.39μg/mg protein/min, respectively. The maximal conversion ratio of l-glutamic acid to α-KG was 31% (w/w) under the following optimal conditions: 15g/L l-glutamic acid, 20g/L whole-cell biocatalyst, 5mM MgCl2, 40°C, pH 8.0, and 24-h incubation. Immobilization of whole cells with alginate increased the recyclability by an average of 23.33% per cycle. This work established an efficient one-step biotransformation process for the production of α-KG using immobilized whole B. subtilis overexpressing P. mirabilisl-AAD. Compared with traditional multistep chemical synthesis, the biocatalytic process described here has the advantage of reducing environmental pollution and thus has great potential for the large-scale production of α-KG. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Microbial mediated preparation, characterization and optimization of gold nanoparticles

    PubMed Central

    Barabadi, Hamed; Honary, Soheila; Ebrahimi, Pouneh; Mohammadi, Milad Ali; Alizadeh, Ahad; Naghibi, Farzaneh

    2014-01-01

    The need for eco-friendly and cost effective methods for nanoparticles synthesis is developing interest in biological approaches which are free from the use of toxic chemicals as byproducts. This study aimed to biosynthesize and optimize the size of gold nanoparticles which produced by biotechnological method using Penicillium crustosum isolated from soil. Initially, Penicillium crustosum was grown in fluid czapek dox broth on shaker at 28 °C and 200 rpm for ten days and then the supernatant was separated from the mycelia to convert AuCl4 solution into gold nanoparticles. The synthesized nanoparticles in the optimum conditions were formed with fairly well-defined dimensions and good monodispersity. The characterizations were done by using different methods (UV-Visible Spectroscopy, Fluorescence, FT-IR, AFM (Atomic Force Microscopy) and DLS (Dynamic Light Scattering). The bioconversion was optimized by Box-Behnken experimental design. The results show that the effective factors in this process were concentration of AuCl4, pH of medium and temperature of shaker incubator. The R2 value was calculated to be 0.9999 indicating the accuracy and ability of the polynomial model. It can be concluded that the use of multivariate analysis facilitated to find out the optimum conditions for the biosynthesis of gold nanoparticles induced by Penicillium crustosum in a time and cost effective process. The current approach suggested that rapid synthesis of gold nanoparticles would be suitable for developing a biological process for mass scale production of formulations. PMID:25763059

  1. Microbial mediated preparation, characterization and optimization of gold nanoparticles.

    PubMed

    Barabadi, Hamed; Honary, Soheila; Ebrahimi, Pouneh; Mohammadi, Milad Ali; Alizadeh, Ahad; Naghibi, Farzaneh

    2014-01-01

    The need for eco-friendly and cost effective methods for nanoparticles synthesis is developing interest in biological approaches which are free from the use of toxic chemicals as byproducts. This study aimed to biosynthesize and optimize the size of gold nanoparticles which produced by biotechnological method using Penicillium crustosum isolated from soil. Initially, Penicillium crustosum was grown in fluid czapek dox broth on shaker at 28 °C and 200 rpm for ten days and then the supernatant was separated from the mycelia to convert AuCl₄ solution into gold nanoparticles. The synthesized nanoparticles in the optimum conditions were formed with fairly well-defined dimensions and good monodispersity. The characterizations were done by using different methods (UV-Visible Spectroscopy, Fluorescence, FT-IR, AFM (Atomic Force Microscopy) and DLS (Dynamic Light Scattering). The bioconversion was optimized by Box-Behnken experimental design. The results show that the effective factors in this process were concentration of AuCl₄, pH of medium and temperature of shaker incubator. The R(2) value was calculated to be 0.9999 indicating the accuracy and ability of the polynomial model. It can be concluded that the use of multivariate analysis facilitated to find out the optimum conditions for the biosynthesis of gold nanoparticles induced by Penicillium crustosum in a time and cost effective process. The current approach suggested that rapid synthesis of gold nanoparticles would be suitable for developing a biological process for mass scale production of formulations.

  2. Biodegradation and bioconversion of coals by fungi: Technical report No. 6 for the period December 1, 1986-February 28, 1987. [Candida sp. , Cunninghamella sp. , Acremonium sp. , and Trametes versicolor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, B.

    We continued our tests for biosolubilization activity on lignite, subbituminous, and bituminous coals, using both surface solubilization and agar diffusion assays for selected lignite-solubilizing strains challenged with untreated and treated coals shown in earlier tests to be resistant to biosolubilization. These latter were subjected to treatments with heat or pressurized oxygen atmosphere, or to combinations of the same. We have observed biosolubilization of some weathered high-rank coals by some of the fungal isolates tested. 1 tab.

  3. Large scale solubilization of coal and bioconversion to utilizable energy. Eleventh quarterly technical progress report, April 1, 1996--June 30, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra, N.C.

    1996-10-01

    Neurospora has the capability to solubilize coal and the protein fraction accounting for this ability has been isolated. During this period the cola solubilizing activity (CSA) was fractionated and partially sequenced. The activity has been determined to be a tyrosinase and/or a phenol oxidase. The amino acid sequence of the protein was used to prepare oligonucleotides to identify the clone carrying Neurospora CSA. It is intended to clone the Neurospora gene into yeast, since yeast cannot solubilize coal, to further characterize the CSA.

  4. From rumen to industry

    PubMed Central

    2012-01-01

    The rumen is one of the most complicated and most fascinating microbial ecosystems in nature. A wide variety of microbial species, including bacteria, fungi and protozoa act together to bioconvert (ligno)cellulosic plant material into compounds, which can be taken up and metabolized by the ruminant. Thus, the rumen perfectly resembles a solution to a current industrial problem: the biorefinery, which aims at the bioconversion of lignocellulosic material into fuels and chemicals. We suggest to intensify the studies of the ruminal microbial ecosystem from an industrial microbiologists point of view in order to make use of this rich source of organisms and enzymes. PMID:22963386

  5. From rumen to industry.

    PubMed

    Sauer, Michael; Marx, Hans; Mattanovich, Diethard

    2012-09-10

    The rumen is one of the most complicated and most fascinating microbial ecosystems in nature. A wide variety of microbial species, including bacteria, fungi and protozoa act together to bioconvert (ligno)cellulosic plant material into compounds, which can be taken up and metabolized by the ruminant. Thus, the rumen perfectly resembles a solution to a current industrial problem: the biorefinery, which aims at the bioconversion of lignocellulosic material into fuels and chemicals. We suggest to intensify the studies of the ruminal microbial ecosystem from an industrial microbiologists point of view in order to make use of this rich source of organisms and enzymes.

  6. Nitrification during extended co-composting of extreme mixtures of green waste and solid fraction of cattle slurry to obtain growing media.

    PubMed

    Cáceres, Rafaela; Coromina, Narcís; Malińska, Krystyna; Martínez-Farré, F Xavier; López, Marga; Soliva, Montserrat; Marfà, Oriol

    2016-12-01

    Next generation of waste management systems should apply product-oriented bioconversion processes that produce composts or biofertilisers of desired quality that can be sold in high priced markets such as horticulture. Natural acidification linked to nitrification can be promoted during composting. If nitrification is enhanced, suitable compost in terms of pH can be obtained for use in horticultural substrates. Green waste compost (GW) represents a potential suitable product for use in growing medium mixtures. However its low N provides very limited slow-release nitrogen fertilization for suitable plant growth; and GW should be composted with a complementary N-rich raw material such as the solid fraction of cattle slurry (SFCS). Therefore, it is important to determine how very different or extreme proportions of the two materials in the mixture can limit or otherwise affect the nitrification process. The objectives of this work were two-fold: (a) To assess the changes in chemical and physicochemical parameters during the prolonged composting of extreme mixtures of green waste (GW) and separated cattle slurry (SFCS) and the feasibility of using the composts as growing media. (b) To check for nitrification during composting in two different extreme mixtures of GW and SFCS and to describe the conditions under which this process can be maintained and its consequences. The physical and physicochemical properties of both composts obtained indicated that they were appropriate for use as ingredients in horticultural substrates. The nitrification process occurred in both mixtures in the medium-late thermophilic stage of the composting process. In particular, its feasibility has been demonstrated in the mixtures with a low N content. Nitrification led to the inversion of each mixture's initial pH. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. The Effect of Ionic Liquid Pretreatment on the Bioconversion of Tomato Processing Waste to Fermentable Sugars and Biogas.

    PubMed

    Allison, Brittany J; Cádiz, Juan Canales; Karuna, Nardrapee; Jeoh, Tina; Simmons, Christopher W

    2016-08-01

    Tomato pomace is an abundant lignocellulosic waste stream from industrial tomato processing and therefore a potential feedstock for production of renewable biofuels. However, little research has been conducted to determine if pretreatment can enhance release of fermentable sugars from tomato pomace. Ionic liquids (ILs) are an emerging pretreatment technology for lignocellulosic biomass to increase enzymatic digestibility and biofuel yield while utilizing recyclable chemicals with low toxicity. In this study, pretreatment of tomato pomace with the ionic liquid 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]) was investigated. Changes in pomace enzymatic digestibility were affected by pretreatment time and temperature. Certain pretreatment conditions significantly improved reducing sugar yield and hydrolysis time compared to untreated pomace. Compositional analyses suggested that pretreatment primarily removed water-soluble compounds and enriched for lignocellulose in pomace, with only subtle changes to the composition of the lignocellulose. While tomato pomace was effectively pretreated with [C2mim][OAc] to improve enzymatic digestibility, as of yet, unknown factors in the pomace caused ionic liquid pretreatment to negatively affect anaerobic digestion of pretreated material. This result, which is unique compared to similar studies on IL pretreatment of grasses and woody biomass, highlights the need for additional research to determine how the unique chemical composition of tomato pomace and other lignocellulosic fruit residues may interact with ionic liquids to generate inhibitors for downstream fermentation to biofuels.

  8. Bioconversion of α-chitin into N-acetyl-glucosamine using chitinases produced by marine-derived Aeromonas caviae isolates.

    PubMed

    Cardozo, Flávio Augusto; Gonzalez, Juan Miguel; Feitosa, Valker Araujo; Pessoa, Adalberto; Rivera, Irma Nelly Gutierrez

    2017-10-27

    N-Acetyl-D-glucosamine (GlcNAc) is a monosaccharide with great application potential in the food, cosmetic, pharmaceutical, and biomaterial areas. GlcNAc is currently produced by chemical hydrolysis of chitin, but the current processes are environmentally unfriendly, have low yield and high cost. This study demonstrates the potential to produce GlcNAc from α-chitin using chitinases of ten marine-derived Aeromonas isolates as a sustainable alternative to the current chemical process. The isolates were characterized as Aeromonas caviae by multilocus sequence analysis (MLSA) using six housekeeping genes (gltA, groL, gyrB, metG, ppsA, and recA), not presented the virulence genes verified (alt, act, ast, ahh1, aer, aerA, hlyA, ascV and ascFG), but showed hemolytic activity on blood agar. GlcNAc was produced at 37 °C, pH 5.0, 2% (w/v) colloidal chitin and crude chitinase extracts (0.5 U mL -1 ) by all the isolates with yields from 14 to 85% at 6 h, 17-89% at 12 h and 19-93% after 24 h. The highest yield of GlcNAc was observed by A. caviae CH129 (93%). This study demonstrates one of the most efficient chitin enzymatic hydrolysis procedures and A. caviae isolates with great potential for chitinases expression and GlcNAc production.

  9. Lignin-solubilizing ability of actinomycetes isolated from termite (Termitidae) gut.

    PubMed Central

    Pasti, M B; Pometto, A L; Nuti, M P; Crawford, D L

    1990-01-01

    The lignocellulose-degrading abilities of 11 novel actinomycete strains isolated from termite gut were determined and compared with that of the well-characterized actinomycete, Streptomyces viridosporus T7A. Lignocellulose bioconversion was followed by (i) monitoring the degradation of [14C]lignin- and [14C]cellulose-labeled phloem of Abies concolor to 14CO2 and 14C-labeled water-soluble products, (ii) determining lignocellulose, lignin, and carbohydrate losses resulting from growth on a lignocellulose substrate prepared from corn stalks (Zea mays), and (iii) quantifying production of a water-soluble lignin degradation intermediate (acid-precipitable polymeric lignin). The actinomycetes were all Streptomyces strains and could be placed into three groups, including a group of five strains that appear superior to S. viridosporus T7A in lignocellulose-degrading ability, three strains of approximately equal ability, and three strains of lesser ability. Strain A2 was clearly the superior and most effective lignocellulose decomposer of those tested. Of the assays used, total lignocellulose weight loss was most useful in determining overall bioconversion ability but not in identifying the best lignin-solubilizing strains. A screening procedure based on 14CO2 evolution from [14C-lignin]lignocellulose combined with measurement of acid-precipitable polymeric lignin yield was the most effective in identifying lignin-solubilizing strains. For the termite gut strains, the pH of the medium showed no increase after 3 weeks of growth on lignocellulose. This is markedly different from the pattern observed with S. viridosporus T7A, which raises the medium pH considerably. Production of extracellular peroxidases by the 11 strains and S. viridosporus T7A was followed for 5 days in liquid cultures.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2167628

  10. Optimization of Eisenia fetida stocking density for the bioconversion of rock phosphate enriched cow dung–waste paper mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unuofin, F.O., E-mail: funmifrank2009@gmail.com; Mnkeni, P.N.S., E-mail: pmnkeni@ufh.ac.za

    2014-11-15

    Highlights: • Vermidegradation of RP-enriched waste mixtures is dependent on E. fetida stocking density. • A stocking density of 12.5 g-worms kg{sup -1} resulted in highly humified vermicomposts. • P release from RP-enriched waste vermicomposts increases with E. fetida stocking density. • RP-enriched waste vermicomposts had no inhibitory effect on seed germination. - Abstract: Vermitechnology is gaining recognition as an environmental friendly waste management strategy. Its successful implementation requires that the key operational parameters like earthworm stocking density be established for each target waste/waste mixture. One target waste mixture in South Africa is waste paper mixed with cow dung andmore » rock phosphate (RP) for P enrichment. This study sought to establish optimal Eisenia fetida stocking density for maximum P release and rapid bioconversion of RP enriched cow dung–paper waste mixtures. E. fetida stocking densities of 0, 7.5, 12.5, 17.5 and 22.5 g-worms kg{sup −1} dry weight of cow dung–waste paper mixtures were evaluated. The stocking density of 12.5 g-worms kg{sup −1} resulted in the highest earthworm growth rate and humification of the RP enriched waste mixture as reflected by a C:N ratio of <12 and a humic acid/fulvic acid ratio of >1.9 in final vermicomposts. A germination test revealed that the resultant vermicompost had no inhibitory effect on the germination of tomato, carrot, and radish. Extractable P increased with stocking density up to 22.5 g-worm kg{sup −1} feedstock suggesting that for maximum P release from RP enriched wastes a high stocking density should be considered.« less

  11. Bioconversion of glycerol to ethanol by a mutant Enterobacter aerogenes

    PubMed Central

    2012-01-01

    The main objective of this research is to develop, by adaptive evolution, mutant strains of Enterobacter aerogenes ATCC 13048 that are capable of withstanding high glycerol concentration as well as resisting ethanol-inhibition. The mutant will be used for high ethanol fermentation from glycerol feedstock. Ethanol production from pure (P-) and recovered (R-) glycerol using the stock was evaluated. A six-tube-subculture-generations method was used for developing the mutant. This involved subculturing the organism six consecutive times in tubes containing the same glycerol and ethanol concentrations at the same culture conditions. Then, the glycerol and/or ethanol concentration was increased and the six subculture generations were repeated. A strain capable of growing in 200 g/L glycerol and 30 g/L ethanol was obtained. The ability of this mutant, vis-à-vis the original strain, in utilizing glycerol in a high glycerol containing medium, with the concomitant ethanol yield, was assessed. Tryptic soy broth without dextrose (TSB) was used as the fermentation medium. Fermentation products were analyzed using HPLC. In a 20 g/L glycerol TSB, E. aerogenes ATCC 13048 converted 18.5 g/L P-glycerol and 17.8 g/L R-glycerol into 12 and 12.8 g/L ethanol, respectively. In a 50 g/L P-glycerol TSB, it utilized only 15.6 g/L glycerol; but the new strain used up 39 g/L, yielding 20 g/L ethanol after 120 h, an equivalence of 1.02 mol ethanol/mol-glycerol. This is the highest ethanol yield reported from glycerol bioconversion. The result of this P-glycerol fermentation can be duplicated using the R-glycerol from biodiesel production. PMID:22455837

  12. Approaches for improving thermostability characteristics in cellulases.

    PubMed

    Anbar, Michael; Bayer, Edward A

    2012-01-01

    Many efforts have been invested to reduce the cost of biofuel production to substitute renewable sources of energy for fossil-based fuels. At the forefront of these efforts are the initiatives to convert plant-derived cellulosic material to biofuels. Although significant improvements have been achieved recently in cellulase engineering in both efficiency and cost reduction, complete degradation of lignocellulosic material still requires very long periods of time and high enzyme loads. Thermostable cellulases offer many advantages in the bioconversion process, which include increase in specific activity, higher levels of stability, inhibition of microbial growth, increase in mass transfer rate due to lower fluid viscosity, and greater flexibility in the bioprocess. Besides rational design methods, which require deep understanding of protein structure-function relationship, two of the major methods for improvement in specific cellulase properties are directed evolution and knowledge-based library design based on multiple sequence alignments. In this chapter, we provide protocols for constructing and screening of improved thermostable cellulases. Modifications of these protocols may also be used for screening for other improved properties of cellulases such as pH tolerance, high salt, and more. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. An economically and environmentally acceptable synthesis of chiral drug intermediate L-pipecolic acid from biomass-derived lysine via artificially engineered microbes.

    PubMed

    Cheng, Jie; Huang, Yuding; Mi, Le; Chen, Wujiu; Wang, Dan; Wang, Qinhong

    2018-05-10

    Deficiency in petroleum resources and increasing environmental concerns have pushed a bio-based economy to be built, employing a highly reproducible, metal contaminant free, sustainable and green biomanufacturing method. Here, a chiral drug intermediate L-pipecolic acid has been synthesized from biomass-derived lysine. This artificial bioconversion system involves the coexpression of four functional genes, which encode L-lysine α-oxidase from Scomber japonicus, glucose dehydrogenase from Bacillus subtilis, Δ 1 -piperideine-2-carboxylase reductase from Pseudomonas putida, and lysine permease from Escherichia coli. Besides, a lysine degradation enzyme has been knocked out to strengthen the process in this microbe. The overexpression of LysP improved the L-pipecolic acid titer about 1.6-folds compared to the control. This engineered microbial factory showed the highest L-pipecolic acid production of 46.7 g/L reported to date and a higher productivity of 2.41 g/L h and a yield of 0.89 g/g. This biotechnological L-pipecolic acid production is a simple, economic, and green technology to replace the presently used chemical synthesis.

  14. Kinetic behavior of Candida guilliermondii yeast during xylitol production from Brewer's spent grain hemicellulosic hydrolysate.

    PubMed

    Mussatto, Solange I; Dragone, Giuliano; Roberto, Inês C

    2005-01-01

    Brewer's spent grain, the main byproduct of breweries, was hydrolyzed with dilute sulfuric acid to produce a hemicellulosic hydrolysate (containing xylose as the main sugar). The obtained hydrolysate was used as cultivation medium by Candidaguilliermondii yeast in the raw form (containing 20 g/L xylose) and after concentration (85 g/L xylose), and the kinetic behavior of the yeast during xylitol production was evaluated in both media. Assays in semisynthetic media were also performed to compare the yeast performance in media without toxic compounds. According to the results, the kinetic behavior of the yeast cultivated in raw hydrolysate was as effective as in semisynthetic medium containing 20 g/L xylose. However, in concentrated hydrolysate medium, the xylitol production efficiency was 30.6% and 42.6% lower than in raw hydrolysate and semisynthetic medium containing 85 g/L xylose, respectively. In other words, the xylose-to-xylitol bioconversion from hydrolysate medium was strongly affected when the initial xylose concentration was increased; however, similar behavior did not occur from semisynthetic media. The lowest efficiency of xylitol production from concentrated hydrolysate can be attributed to the high concentration of toxic compounds present in this medium, resulting from the hydrolysate concentration process.

  15. Engineering Yarrowia lipolytica for Use in Biotechnological Applications: A Review of Major Achievements and Recent Innovations.

    PubMed

    Madzak, Catherine

    2018-06-25

    Yarrowia lipolytica is an oleaginous saccharomycetous yeast with a long history of industrial use. It aroused interest several decades ago as host for heterologous protein production. Thanks to the development of numerous molecular and genetic tools, Y. lipolytica is now a recognized system for expressing heterologous genes and secreting the corresponding proteins of interest. As genomic and transcriptomic tools increased our basic knowledge on this yeast, we can now envision engineering its metabolic pathways for use as whole-cell factory in various bioconversion processes. Y. lipolytica is currently being developed as a workhorse for biotechnology, notably for single-cell oil production and upgrading of industrial wastes into valuable products. As it becomes more and more difficult to keep up with an ever-increasing literature on Y. lipolytica engineering technology, this article aims to provide basic and actualized knowledge on this research area. The most useful reviews on Y. lipolytica biology, use, and safety will be evoked, together with a resume of the engineering tools available in this yeast. This mini-review will then focus on recently developed tools and engineering strategies, with a particular emphasis on promoter tuning, metabolic pathways assembly, and genome editing technologies.

  16. Genetic engineering of grass cell wall polysaccharides for biorefining.

    PubMed

    Bhatia, Rakesh; Gallagher, Joe A; Gomez, Leonardo D; Bosch, Maurice

    2017-09-01

    Grasses represent an abundant and widespread source of lignocellulosic biomass, which has yet to fulfil its potential as a feedstock for biorefining into renewable and sustainable biofuels and commodity chemicals. The inherent recalcitrance of lignocellulosic materials to deconstruction is the most crucial limitation for the commercial viability and economic feasibility of biomass biorefining. Over the last decade, the targeted genetic engineering of grasses has become more proficient, enabling rational approaches to modify lignocellulose with the aim of making it more amenable to bioconversion. In this review, we provide an overview of transgenic strategies and targets to tailor grass cell wall polysaccharides for biorefining applications. The bioengineering efforts and opportunities summarized here rely primarily on (A) reprogramming gene regulatory networks responsible for the biosynthesis of lignocellulose, (B) remodelling the chemical structure and substitution patterns of cell wall polysaccharides and (C) expressing lignocellulose degrading and/or modifying enzymes in planta. It is anticipated that outputs from the rational engineering of grass cell wall polysaccharides by such strategies could help in realizing an economically sustainable, grass-derived lignocellulose processing industry. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  17. Starter cultures as biocontrol strategy to prevent Brettanomyces bruxellensis proliferation in wine.

    PubMed

    Berbegal, Carmen; Spano, Giuseppe; Fragasso, Mariagiovanna; Grieco, Francesco; Russo, Pasquale; Capozzi, Vittorio

    2018-01-01

    Brettanomyces bruxellensis is a common and significant wine spoilage microorganism. B. bruxellensis strains generally detain the molecular basis to produce compounds that are detrimental for the organoleptic quality of the wine, including some classes of volatile phenols that derive from the sequential bioconversion of specific hydroxycinnamic acids such as ferulate and p-coumarate. Although B. bruxellensis can be detected at any stage of the winemaking process, it is typically isolated at the end of the alcoholic fermentation (AF), before the staring of the spontaneous malolactic fermentation (MLF) or during barrel aging. For this reason, the endemic diffusion of B. bruxellensis leads to consistent economic losses in the wine industry. Considering the interest in reducing sulfur dioxide use during winemaking, in recent years, biological alternatives, such as the use of tailored selected yeast and bacterial strains inoculated to promote AF and MLF, are actively sought as biocontrol agents to avoid the "Bretta" character in wines. Here, we review the importance of dedicated characterization and selection of starter cultures for AF and MLF in wine, in order to reduce or prevent both growth of B. bruxellensis and its production of volatile phenols in the matrix.

  18. Biosynthesis of Polyunsaturated Fatty Acids in Marine Invertebrates: Recent Advances in Molecular Mechanisms

    PubMed Central

    Monroig, Óscar; Tocher, Douglas R.; Navarro, Juan C.

    2013-01-01

    Virtually all polyunsaturated fatty acids (PUFA) originate from primary producers but can be modified by bioconversions as they pass up the food chain in a process termed trophic upgrading. Therefore, although the main primary producers of PUFA in the marine environment are microalgae, higher trophic levels have metabolic pathways that can produce novel and unique PUFA. However, little is known about the pathways of PUFA biosynthesis and metabolism in the levels between primary producers and fish that are largely filled by invertebrates. It has become increasingly apparent that, in addition to trophic upgrading, de novo synthesis of PUFA is possible in some lower animals. The unequivocal identification of PUFA biosynthetic pathways in many invertebrates is complicated by the presence of other organisms within them. These organisms include bacteria and algae with PUFA biosynthesis pathways, and range from intestinal flora to symbiotic relationships that can involve PUFA translocation to host organisms. This emphasizes the importance of studying biosynthetic pathways at a molecular level, and the continual expansion of genomic resources and advances in molecular analysis is facilitating this. The present paper highlights recent research into the molecular and biochemical mechanisms of PUFA biosynthesis in marine invertebrates, particularly focusing on cephalopod molluscs. PMID:24152561

  19. Attenuation of veterinary antibiotics in full-scale vermicomposting of swine manure via the housefly larvae (Musca domestica)

    NASA Astrophysics Data System (ADS)

    Zhang, Zhijian; Shen, Jianguo; Wang, Hang; Liu, Meng; Wu, Longhua; Ping, Fan; He, Qiang; Li, Hongyi; Zheng, Changfeng; Xu, Xinhua

    2014-10-01

    Animal waste from concentrated swine farms is widely considered to be a source of environmental pollution, and the introduction of veterinary antibiotics in animal manure to ecosystems is rapidly becoming a major public health concern. A housefly larvae (Musca domestica) vermireactor has been increasingly adopted for swine manure value-added bioconversion and pollution control, but few studies have investigated its efficiency on antibiotic attenuation during manure vermicomposting. In this study we explored the capacity and related attenuation mechanisms of antibiotic degradation and its linkage with waste reduction by field sampling during a typical cycle (6 days) of full-scale larvae manure vermicomposting. Nine antibiotics were dramatically removed during the 6-day vermicomposting process, including tetracyclines, sulfonamides, and fluoroquinolones. Of these, oxytetracycline and ciprofloxacin exhibited the greater reduction rate of 23.8 and 32.9 mg m-2, respectively. Environmental temperature, pH, and total phosphorus were negatively linked to the level of residual antibiotics, while organic matter, total Kjeldahl nitrogen, microbial respiration intensity, and moisture exhibited a positive effect. Pyrosequencing data revealed that the dominant phyla related to Firmicutes, Bacteroidetes, and Proteobacteria accelerated manure biodegradation likely through enzyme catalytic reactions, which may enhance antibiotic attenuation during vermicomposting.

  20. Induction of wheat straw delignification by Trametes species

    PubMed Central

    Knežević, Aleksandar; Stajić, Mirjana; Jovanović, Vladimir M.; Kovačević, Višnja; Ćilerdžić, Jasmina; Milovanović, Ivan; Vukojević, Jelena

    2016-01-01

    Wheat straw is the major crop residue in European countries which makes it the most promising material for bioconversion into biofuels. However, cellulose and hemicellulose are protected with lignin, so delignification is an inevitable phase in lignocellulose processing. The organisms predominantly responsible for its degradation are white-rot fungi and among them Trametes species represent promising degraders due to a well-developed ligninolytic enzyme system. Although numerous studies have confirmed that low molecular weight compounds can induce the production and activity of ligninolytic enzymes it is not clear how this reflects on the extent of delignification. The aim of the study was to assess the capacity of p-anisidine and veratryl alcohol to induce the production and activity of Mn-oxidizing peroxidases and laccases, and wheat straw delignification by six Trametes species. Significant inter- and intraspecific variations in activity and features of these enzymes were found, as well as differences in the potential of lignocellulose degradation in the presence or absence of inducers. Differences in the catalytic properties of synthesized enzyme isoforms strongly affected lignin degradation. Apart from enhanced lignin degradation, the addition of p-anisidine could significantly improve the selectivity of wheat straw ligninolysis, which was especially evident for T. hirsuta strains. PMID:27216645

  1. Engineering and Evolution of Saccharomyces cerevisiae to Produce Biofuels and Chemicals.

    PubMed

    Turner, Timothy L; Kim, Heejin; Kong, In Iok; Liu, Jing-Jing; Zhang, Guo-Chang; Jin, Yong-Su

    To mitigate global climate change caused partly by the use of fossil fuels, the production of fuels and chemicals from renewable biomass has been attempted. The conversion of various sugars from renewable biomass into biofuels by engineered baker's yeast (Saccharomyces cerevisiae) is one major direction which has grown dramatically in recent years. As well as shifting away from fossil fuels, the production of commodity chemicals by engineered S. cerevisiae has also increased significantly. The traditional approaches of biochemical and metabolic engineering to develop economic bioconversion processes in laboratory and industrial settings have been accelerated by rapid advancements in the areas of yeast genomics, synthetic biology, and systems biology. Together, these innovations have resulted in rapid and efficient manipulation of S. cerevisiae to expand fermentable substrates and diversify value-added products. Here, we discuss recent and major advances in rational (relying on prior experimentally-derived knowledge) and combinatorial (relying on high-throughput screening and genomics) approaches to engineer S. cerevisiae for producing ethanol, butanol, 2,3-butanediol, fatty acid ethyl esters, isoprenoids, organic acids, rare sugars, antioxidants, and sugar alcohols from glucose, xylose, cellobiose, galactose, acetate, alginate, mannitol, arabinose, and lactose.

  2. Electrochemically enhanced microbial CO conversion to volatile fatty acids using neutral red as an electron mediator.

    PubMed

    Im, Chae Ho; Kim, Changman; Song, Young Eun; Oh, Sang-Eun; Jeon, Byong-Hun; Kim, Jung Rae

    2018-01-01

    Conversion of C1 gas feedstock, including carbon monoxide (CO), into useful platform chemicals has attracted considerable interest in industrial biotechnology. Nevertheless, the low conversion yield and/or growth rate of CO-utilizing microbes make it difficult to develop a C1 gas biorefinery process. The Wood-Ljungdahl pathway which utilize CO is a pathway suffered from insufficient electron supply, in which the conversion can be increased further when an additional electron source like carbohydrate or hydrogen is provided. In this study, electrode-based electron transference using a bioelectrochemical system (BES) was examined to compensate for the insufficient reducing equivalent and increase the production of volatile fatty acids. The BES including neutral red (BES-NR), which facilitated electron transfer between bacteria and electrode, was compared with BES without neutral red and open circuit control. The coulombic efficiency based on the current input to the system and the electrons recovered into VFAs, was significantly higher in BES-NR than the control. These results suggest that the carbon electrode provides a platform to regulate the redox balance for improving the bioconversion of CO, and amending the conventional C1 gas fermentation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Production of arabitol by yeasts: current status and future prospects.

    PubMed

    Kordowska-Wiater, M

    2015-08-01

    Arabitol belongs to the pentitol family and is used in the food industry as a sweetener and in the production of human therapeutics as an anticariogenic agent and an adipose tissue reducer. It can also be utilized as a substrate for chemical products such as arabinoic and xylonic acids, propylene, ethylene glycol, xylitol and others. It is included on the list of 12 building block C3-C6 compounds, designated for further biotechnological research. This polyol can be produced by yeasts in the processes of bioconversion or biotransformation of waste materials from agriculture, the forest industry (l-arabinose, glucose) and the biodiesel industry (glycerol). The present review discusses research on native yeasts from the genera Candida, Pichia, Debaryomyces and Zygosaccharomyces as well as genetically modified strains of Saccharomyces cerevisiae which are able to utilize biomass hydrolysates to effectively produce L- or D-arabitol. The metabolic pathways of these yeasts leading from sugars and glycerol to arabitol are presented. Although the number of reports concerning microbial production of arabitol is rather limited, the research on this topic has been growing for the last several years, with researchers looking for new micro-organisms, substrates and technologies. © 2015 The Society for Applied Microbiology.

  4. Characteristics of Corn Stover Pretreated with Liquid Hot Water and Fed-Batch Semi-Simultaneous Saccharification and Fermentation for Bioethanol Production

    PubMed Central

    Li, Xuezhi; Lu, Jie; Zhao, Jian; Qu, Yinbo

    2014-01-01

    Corn stover is a promising feedstock for bioethanol production because of its abundant availability in China. To obtain higher ethanol concentration and higher ethanol yield, liquid hot water (LHW) pretreatment and fed-batch semi-simultaneous saccharification and fermentation (S-SSF) were used to enhance the enzymatic digestibility of corn stover and improve bioconversion of cellulose to ethanol. The results show that solid residues from LHW pretreatment of corn stover can be effectively converted into ethanol at severity factors ranging from 3.95 to 4.54, and the highest amount of xylan removed was approximately 89%. The ethanol concentrations of 38.4 g/L and 39.4 g/L as well as ethanol yields of 78.6% and 79.7% at severity factors of 3.95 and 4.54, respectively, were obtained by fed-batch S-SSF in an optimum conditions (initial substrate consistency of 10%, and 6.1% solid residues added into system at the prehydrolysis time of 6 h). The changes in surface morphological structure, specific surface area, pore volume and diameter of corn stover subjected to LHW process were also analyzed for interpreting the possible improvement mechanism. PMID:24763192

  5. Enhanced Bioconversion of Cellobiose by Industrial Saccharomyces cerevisiae Used for Cellulose Utilization

    PubMed Central

    Hu, Meng-Long; Zha, Jian; He, Lin-Wei; Lv, Ya-Jin; Shen, Ming-Hua; Zhong, Cheng; Li, Bing-Zhi; Yuan, Ying-Jin

    2016-01-01

    Cellobiose accumulation and the compromised temperature for yeast fermentation are the main limiting factors of enzymatic hydrolysis process during simultaneous saccharification and fermentation (SSF). In this study, genes encoding cellobiose transporter and β-glucosidase were introduced into an industrial Saccharomyces cerevisiae strain, and evolution engineering was carried out to improve the cellobiose utilization of the engineered yeast strain. The evolved strain exhibited significantly higher cellobiose consumption rate (2.8-fold) and ethanol productivity (4.9-fold) compared with its parent strain. Besides, the evolved strain showed a high cellobiose consumption rate of 3.67 g/L/h at 34°C and 3.04 g/L/h at 38°C. Moreover, little cellobiose was accumulated during SSF of Avicel using the evolved strain at 38°C, and the ethanol yield from Avicel increased by 23% from 0.34 to 0.42 g ethanol/g cellulose. Overexpression of the genes encoding cellobiose transporter and β-glucosidase accelerated cellobiose utilization, and the improvement depended on the strain background. The results proved that fast cellobiose utilization enhanced ethanol production by reducing cellobiose accumulation during SSF at high temperature. PMID:26973619

  6. A next generation, pilot-scale continuous sterilization system for fermentation media

    PubMed Central

    Lester, M.; Brix, T.; Wong, D.; Nuechterlein, J.

    2006-01-01

    A new continuous sterilization system was designed, constructed, started up, and qualified for media sterilization for secondary metabolite cultivations, bioconversions, and enzyme production. An existing Honeywell Total Distributed Control 3000-based control system was extended using redundant High performance Process Manager controllers for 98 I/O (input/output) points. This new equipment was retrofitted into an industrial research fermentation pilot plant, designed and constructed in the early 1980s. Design strategies of this new continuous sterilizer system and the expanded control system are described and compared with the literature (including dairy and bio-waste inactivation applications) and the weaknesses of the prior installation for expected effectiveness. In addition, the reasoning behind selection of some of these improved features has been incorporated. Examples of enhancements adopted include sanitary heat exchanger (HEX) design, incorporation of a “flash” cooling HEX, on-line calculation of Fo and Ro, and use of field I/O modules located near the vessel to permit low-cost addition of new instrumentation. Sterilizer performance also was characterized over the expected range of operating conditions. Differences between design and observed temperature, pressure, and other profiles were quantified and investigated. PMID:16496186

  7. Characterizing model uncertainties in the life cycle of lignocellulose-based ethanol fuels.

    PubMed

    Spatari, Sabrina; MacLean, Heather L

    2010-11-15

    Renewable and low carbon fuel standards being developed at federal and state levels require an estimation of the life cycle carbon intensity (LCCI) of candidate fuels that can substitute for gasoline, such as second generation bioethanol. Estimating the LCCI of such fuels with a high degree of confidence requires the use of probabilistic methods to account for known sources of uncertainty. We construct life cycle models for the bioconversion of agricultural residue (corn stover) and energy crops (switchgrass) and explicitly examine uncertainty using Monte Carlo simulation. Using statistical methods to identify significant model variables from public data sets and Aspen Plus chemical process models,we estimate stochastic life cycle greenhouse gas (GHG) emissions for the two feedstocks combined with two promising fuel conversion technologies. The approach can be generalized to other biofuel systems. Our results show potentially high and uncertain GHG emissions for switchgrass-ethanol due to uncertain CO₂ flux from land use change and N₂O flux from N fertilizer. However, corn stover-ethanol,with its low-in-magnitude, tight-in-spread LCCI distribution, shows considerable promise for reducing life cycle GHG emissions relative to gasoline and corn-ethanol. Coproducts are important for reducing the LCCI of all ethanol fuels we examine.

  8. Lignin Sulfonation and SO2 Addition Enhance the Hydrolyzability of Deacetylated and Then Steam-Pretreated Poplar with Reduced Inhibitor Formation.

    PubMed

    Tang, Yong; Dou, Xiaoli; Hu, Jinguang; Jiang, Jianxin; Saddler, Jack N

    2018-01-01

    The merit of deacetylation of corn stover prior to pretreatment is decreasing the formation of inhibitors and improving enzyme hydrolysis, proved in dilute acid pretreatment. However, few studies are done on how deacetylation would affect bioconversion process containing steam explosion. In this study, the effect of deacetylation on steam explosion was conducted using poplar as substrate. About 57 to 90% of acetyl group in poplar, depending on alkaline types and concentration, was removed by dilute alkaline deacetylation in 6 h. Deacetylation eliminated over 85% of inhibitor formation during downstream steam explosion. However, deacetylation prior to steam explosion decreased the dissolution of hemicellulose, thus reducing the cellulose accessibility of pretreated poplar, finally resulting in 5-20% decrease in glucose yield and 20-35% decrease in xylose yield. The addition of 5% SO 2 during steam explosion significantly improved the hydrolysis of deacetylated and pretreated poplar without significantly increasing the concentration of inhibitors. Incorporating 45 mmol/kg sulfoacid group in lignin fraction of deacetylated and then pretreated poplar dramatically improved the xylose yield to about 100% and increased the glucose yield by 30%.

  9. Carboxy-terminal glycosyl hydrolase 18 domain of a carbohydrate active protein of Chitinophaga pinensis is a non-processive exochitinase.

    PubMed

    Ramakrishna, Bellamkonda; Vaikuntapu, PapaRao; Mallakuntla, Mohan Krishna; Bhuvanachandra, Bhoopal; Sivaramakrishna, Dokku; Uikey, Sheetal; Podile, Appa Rao

    2018-05-01

    The recombinant C-terminal domain of chitinase C of Chitinophaga pinensis (CpChiC-GH18 C ) exhibits the highest activity at pH 6.0 and 35 °C, with a K m of 76.13 (mg -1  ml), a k cat of 10.16 (s -1 ), and a k cat /K m of 0.133 (mg -1  ml s -1 ) on colloidal chitin. Analysis of degradation of (GlcNAc) 3-6 oligomers shows that CpChiC-GH18 C releases (GlcNAc) 2 as the main product, indicating an exo-type cleavage pattern. CpChiC-GH18 C hydrolyzes the chitin polymers yielding GlcNAc, (GlcNAc) 2 , and (GlcNAc) 3 as end products with no sign of processivity. Circular dichroism spectra indicate that the secondary and tertiary structures of CpChiC-GH18 C are unaltered up to 45 °C and the protein denatures without an intermediate state. The urea-induced unfolding is a two-state process and the unfolding of native CpChiC-GH18 C occurs in a single step. Among the metal ions tested, Hg 2+ completely inhibits the enzyme activity. The chemical modulators, p-hydroxymercuribenzoic acid and N-bromosuccinimide considerably decrease the enzyme activity. Sequence analysis and homology modeling suggest that CpChiC-GH18 C lacks a tryptophan residue at the aglycon site. Further, the CpChiC-GH18 C has a shallow and open groove, suggesting that CpChiC-GH18 C is non-processive exo-type chitinase with properties suitable for the bioconversion of chitin waste. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Continuous butanol fermentation and feed starch retrogradation: butanol fermentation sustainability using Clostridium beijerinckii BA101.

    PubMed

    Ezeji, T C; Qureshi, N; Blaschek, H P

    2005-01-26

    Use of starch solution as feed for butanol bioconversion processes employing Clostridium beijerinckii BA101 may have added economic advantage over the use of glucose. Acetone butanol ethanol (ABE) was produced from 30 gL(-1) starch solution using a continuous process. The bioreactor was fed at a dilution rate of 0.02 h(-1) and starch solution/feed volume (3 L) was replaced every 72 h. The continuous reactor fed with cornstarch solution (feed temperature 19 degrees C) produced approximately 6.0 gL(-1) total ABE. Increasing the feed storage temperature to 37 degrees C improved ABE production to 7.2 gL(-1) suggesting that retrogradation was occurring more rapidly at 19 degrees C. In both these cases the fermentation drifted toward acid production after approximately 260 h, consistent with the retrogradation of starch overtime. The use of soluble starch, which is less prone to retrogradation, resulted in the production of 9.9 gL(-1) ABE at 37 degrees C feed storage temperature, as compared to 7.2 gL(-1) ABE when cornstarch was used. It should be noted that gelatinized starch retrogradation takes place after sterilization and prior to use of the feed medium, and does not occur during long-term storage of the raw corn material in the months leading up to processing. The degree of hydrolysis of gelatinized starch decreased from 68.8 to 56.2% in 3 days when stored at 37 degrees C. Soluble starch which does not retrograde demonstrated no change in the degree of hydrolysis.

  11. Fungal strains as catalysts for the biotransformation of halolactones by hydrolytic dehalogenation with the dimethylcyclohexane system.

    PubMed

    Grabarczyk, Małgorzata

    2012-08-14

    Bicyclic chloro-, bromo- and iodo-γ-lactones with dimethylcyclohexane rings were used as substrates for bioconversion by several fungal strains (Fusarium, Botrytis and Beauveria). Most of the selected microorganisms transformed these lactones by hydrolytic dehalogenation into the new compound cis-2-hydroxy-4,6-dimethyl-9-oxabicyclo[4.3.0]- nonan-8-one, mainly the (-)-isomer. When iodo-γ-lactone was used as the substrate, two products were observed: a hydroxy-γ-lactone and an unsaturated lactone. The structures of all substrates and products were established on the basis of their spectral data. The mechanism of dehalogenation of three halolactones was also studied.

  12. Method for high specific bioproductivity of .alpha.,.omega.-alkanedicarboxylic acids

    DOEpatents

    Mobley, David Paul; Shank, Gary Keith

    2000-01-01

    This invention provides a low-cost method of producing .alpha.,.omega.-alkanedicarboxylic acids. Particular bioconversion conditions result in highly efficient conversion of fatty acid, fatty acid ester, or alkane substrates to diacids. Candida tropicalis AR40 or similar yeast strains are grown in a medium containing a carbon source and a nitrogen source at a temperature of 31.degree. C. to 38.degree. C., while additional carbon source is continuously added, until maximum cell growth is attained. Within 0-3 hours of this point, substrate is added to the culture to initiate conversion. An .alpha.,.omega.-alkanedicarboxylic acid made according to this method is also provided.

  13. Biotransformation of tissue-specific hormone tibolone with fungal culture Trichothecium roseum

    NASA Astrophysics Data System (ADS)

    Shah, Syed Adnan Ali; Sultan, Sadia; Zaimi bin Mohd Noor, M.

    2013-06-01

    Whole cells based biotransformation is an important tool for bioconversion of steroids. It can be used to synthesize biologically potent compounds with diverse structures. Biotransformation of tissue-specific hormone tibolone (1) with Trichothecium roseum (ATCC 13411) has being carried out for the first time. Two new and three known metabolites 2-6 were isolated from fermentation of tibolone (1) with Trichothecium roseum and their structures were characterized by 2D NMR spectroscopy and mass spectrometry. The relative stereochemistry of new metabolites 5 and 6 was deduced by 2D NOESY experiments. The effect of cultures on tibolone structural modifications and time-course studies has also been conducted.

  14. Enzymatic approaches to rare sugar production.

    PubMed

    Zhang, Wenli; Zhang, Tao; Jiang, Bo; Mu, Wanmeng

    Rare sugars have recently attracted much attention because of their potential applications in the food, nutraceutical, and pharmaceutical industries. A systematic strategy for enzymatic production of rare sugars, named Izumoring, was developed >10years ago. The strategy consists of aldose-ketose isomerization, ketose C-3 epimerization, and monosaccharide oxidation-reduction. Recent development of the Izumoring strategy is reviewed herein, especially the genetic approaches to the improvement of rare sugar-producing enzymes and the applications of target-oriented bioconversion. In addition, novel non-Izumoring enzymatic approaches are also summarized, including enzymatic condensation, phosphorylation-dephosphorylation cascade reaction, aldose epimerization, ulosonic acid decarboxylation, and biosynthesis of rare disaccharides. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Vanillin-bioconversion and bioengineering of the most popular plant flavor and its de novo biosynthesis in the vanilla orchid.

    PubMed

    Gallage, Nethaji J; Møller, Birger Lindberg

    2015-01-01

    In recent years, biotechnology-derived production of flavors and fragrances has expanded rapidly. The world's most popular flavor, vanillin, is no exception. This review outlines the current state of biotechnology-based vanillin synthesis with the use of ferulic acid, eugenol, and glucose as substrates and bacteria, fungi, and yeasts as microbial production hosts. The de novo biosynthetic pathway of vanillin in the vanilla orchid and the possible applied uses of this new knowledge in the biotechnology-derived and pod-based vanillin industries are also highlighted. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  16. A multidisciplinary research program directed toward utilization of solar energy through bioconversion of renewable resources

    NASA Astrophysics Data System (ADS)

    Finnerty, W. R.

    1980-07-01

    Cellulytic bacteria, cellobiose fermentors, sulfate-reducing bacteria and methanogenic bacteria were isolated from established anaerobic mesophilic and thermophilic cellulose methane fermentations and these isolates, plus known laboratory strains, were employed to partially reconstitute highly active cellulose fermentations. These mixed cultures are utilized as model systems to study the parameters required for maximum production of CH4, H2 and chemical feedstocks such as acetate, ethanol, propionate, etc., from cellulose. The physiology of these reconstituted cultures is investigated as regards cultural conditions, microbial types, inoculum size, interspecies H2 transfer and specific regulatory phenomena, the accumulation of cellobiose and acetate.

  17. Developing cellulolytic Yarrowia lipolytica as a platform for the production of valuable products in consolidated bioprocessing of cellulose.

    PubMed

    Guo, Zhong-Peng; Robin, Julien; Duquesne, Sophie; O'Donohue, Michael Joseph; Marty, Alain; Bordes, Florence

    2018-01-01

    Both industrial biotechnology and the use of cellulosic biomass as feedstock for the manufacture of various commercial goods are prominent features of the bioeconomy. In previous work, with the aim of developing a consolidated bioprocess for cellulose bioconversion, we conferred cellulolytic activity of Yarrowia lipolytica , one of the most widely studied "nonconventional" oleaginous yeast species. However, further engineering this strain often leads to the loss of previously introduced heterologous genes due to the presence of multiple LoxP sites when using Cre -recombinase to remove previously employed selection markers. In the present study, we first optimized the strategy of expression of multiple cellulases and rescued selection makers to obtain an auxotrophic cellulolytic Y. lipolytica strain. Then we pursued the quest, exemplifying how this cellulolytic Y. lipolytica strain can be used as a CBP platform for the production of target products. Our results reveal that overexpression of SCD1 gene, encoding stearoyl-CoA desaturase, and DGA1 , encoding acyl-CoA:diacylglycerol acyltransferase, confers the obese phenotype to the cellulolytic Y. lipolytica . When grown in batch conditions and minimal medium, the resulting strain consumed 12 g/L cellulose and accumulated 14% (dry cell weight) lipids. Further enhancement of lipid production was achieved either by the addition of glucose or by enhancing cellulose consumption using a commercial cellulase cocktail. Regarding the latter option, although the addition of external cellulases is contrary to the concept of CBP, the amount of commercial cocktail used remained 50% lower than that used in a conventional process (i.e., without internalized production of cellulases). The introduction of the LIP2 gene into cellulolytic Y. lipolytica led to the production of a strain capable of producing lipase 2 while growing on cellulose. Remarkably, when the strain was grown on glucose, the expression of six cellulases did not alter the level of lipase production. When grown in batch conditions on cellulose, the engineered strain consumed 16 g/L cellulose and produced 9.0 U/mL lipase over a 96-h period. The lipase yield was 562 U lipase/g cellulose, which represents 60% of that obtained on glucose. Finally, expression of the hydroxylase from Claviceps purpurea (CpFAH12) in cellulolytic Y. lipolytica procured a strain that can produce ricinoleic acid (RA). Using this strain in batch cultures revealed that the consumption of 11 g/L cellulose sustained the production of 2.2 g/L RA in the decane phase, 69% of what was obtained on glucose. In summary, this study has further demonstrated the potential of cellulolytic Y. lipolytica as a microbial platform for the bioconversion of cellulose into target products. Its ability to be used in consolidated process designs has been exemplified and clues revealing how cellulose consumption can be further enhanced using commercial cellulolytic cocktails are provided.

  18. Systems biology-guided biodesign of consolidated lignin conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Lu; Cheng, Yanbing; Pu, Yunqiao

    Lignin is the second most abundant biopolymer on the earth, yet its utilization for fungible products is complicated by its recalcitrant nature and remains a major challenge for sustainable lignocellulosic biorefineries. In this study, we used a systems biology approach to reveal the carbon utilization pattern and lignin degradation mechanisms in a unique lignin-utilizing Pseudomonas putida strain (A514). The mechanistic study further guided the design of three functional modules to enable a consolidated lignin bioconversion route. First, P. putida A514 mobilized a dye peroxidase-based enzymatic system for lignin depolymerization. This system could be enhanced by overexpressing a secreted multifunctional dyemore » peroxidase to promote a two-fold enhancement of cell growth on insoluble kraft lignin. Second, A514 employed a variety of peripheral and central catabolism pathways to metabolize aromatic compounds, which can be optimized by overexpressing key enzymes. Third, the β-oxidation of fatty acid was up-regulated, whereas fatty acid synthesis was down-regulated when A514 was grown on lignin and vanillic acid. Therefore, the functional module for polyhydroxyalkanoate (PHA) production was designed to rechannel β-oxidation products. As a result, PHA content reached 73% per cell dry weight (CDW). Further integrating the three functional modules enhanced the production of PHA from kraft lignin and biorefinery waste. Furthermore, this study elucidated lignin conversion mechanisms in bacteria with potential industrial implications and laid out the concept for engineering a consolidated lignin conversion route.« less

  19. Systems biology-guided biodesign of consolidated lignin conversion

    DOE PAGES

    Lin, Lu; Cheng, Yanbing; Pu, Yunqiao; ...

    2016-07-12

    Lignin is the second most abundant biopolymer on the earth, yet its utilization for fungible products is complicated by its recalcitrant nature and remains a major challenge for sustainable lignocellulosic biorefineries. In this study, we used a systems biology approach to reveal the carbon utilization pattern and lignin degradation mechanisms in a unique lignin-utilizing Pseudomonas putida strain (A514). The mechanistic study further guided the design of three functional modules to enable a consolidated lignin bioconversion route. First, P. putida A514 mobilized a dye peroxidase-based enzymatic system for lignin depolymerization. This system could be enhanced by overexpressing a secreted multifunctional dyemore » peroxidase to promote a two-fold enhancement of cell growth on insoluble kraft lignin. Second, A514 employed a variety of peripheral and central catabolism pathways to metabolize aromatic compounds, which can be optimized by overexpressing key enzymes. Third, the β-oxidation of fatty acid was up-regulated, whereas fatty acid synthesis was down-regulated when A514 was grown on lignin and vanillic acid. Therefore, the functional module for polyhydroxyalkanoate (PHA) production was designed to rechannel β-oxidation products. As a result, PHA content reached 73% per cell dry weight (CDW). Further integrating the three functional modules enhanced the production of PHA from kraft lignin and biorefinery waste. Furthermore, this study elucidated lignin conversion mechanisms in bacteria with potential industrial implications and laid out the concept for engineering a consolidated lignin conversion route.« less

  20. Anaerobic bioconversion of organic waste into biogas by hot water treatment at near-critical conditions: application in bioregenerative life support.

    PubMed

    Lissens, Geert; Verstraete, Willy; Albrecht, Tobias; Brunner, Gerd; Lasseur, Christophe

    2003-01-01

    The feasibility of nearly-complete conversion of lignocellulosic waste (70% food crops, 20% faecal matter and 10% green algae) into biogas was investigated in the context of a Life Support Project. The treatment comprised a series of processes, i.e. a mesophilic laboratory scale CSTR (continuously stirred tank reactor), an upflow biofilm reactor and a hydrothermolysis system in near-critical water. By the one-stage CSTR, a biogas yield of 75% with a specific biogas production of 0.37 l biogas g(-1) VSS (volatile suspended solids) added at a HRT (hydraulic retention time) of 20 d was obtained. Biogas yields further increased with 10-15% at HRT > 20 d, indicating the hydrolysis of lignocellulose to be the rate-limiting conversion step. The solids present in the CSTR-effluent were subsequently treated by hot water treatment (T approximately 310-350 degrees C, p approximately 240 bar), resulting in effective carbon liquefaction (50-60% without and 83% with carbon dioxide saturation) and complete hygienisation of the residue. Subsequent anaerobic digestion of the hydrolysate allowed further conversion of 48-60% on COD (chemical oxygen demand) basis. Thus, the total process yielded biogas corresponding with a COD conversion up to 90% of the original organic matter. It appears that mesophilic digestion in conjunction with hydrothermolysis at near-critical conditions offers interesting features for (nearly) complete, non-toxic and hygienic carbon and energy recovery from human waste in a bioregenerative life support context.

  1. The Impact of Enzyme Characteristics on Corn Stover Fiber Degradation and Acid Production During Ensiled Storage

    NASA Astrophysics Data System (ADS)

    Ren, Haiyu; Richard, Tom L.; Moore, Kenneth J.

    Ensilage can be used to store lignocellulosic biomass before industrial bioprocessing. This study investigated the impacts of seven commerical enzyme mixtures derived from Aspergillus niger, Trichoderma reesei, and T. longibrachiatum. Treatments included three size grades of corn stover, two enzyme levels (1.67 and 5 IU/g dry matter based on hemicellulase), and various ratios of cellulase to hemicellulase (C ∶ H). The highest C ∶ H ratio tested, 2.38, derived from T. reesei, resulted in the most effective fermentation, with lactic acid as the dominant product. Enzymatic activity during storage may complement industrial pretreatment; creating synergies that could reduce total bioconversion costs.

  2. A Review on The Bioconversion of Lignin to Microbial Lipid with Oleaginous Rhodococcus opacus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahan, Kristina M.; Le, Rosemary K.; Yuan, Joshua

    Rhodococcus opacus produces intracellular lipids from the biodegradation of lignocellulosic biomass. These lipids can be used to produce biofuels that could potentially replace petroleum-derived chemicals. Some current studies are focusing on deconstructing lignin through efficient and cost-effective pretreatment methods and improving microbial lipid titers. Furthermore, R. opacus can reach high levels of oleaginicity (>80%) when grown on glucose and other aromatic model compounds but intracellular lipid production is much lower on complex recalcitrant lignin substrates. Our review will discuss recent advances in studying R. opacus lignin degradation by exploring different pretreatment methods, increasing lignin solubility, enriching for low molecular weightmore » lignin compounds and laccase supplementation.« less

  3. Biosolubilization of coal by Candida in glucose limited cultures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitter, J.; Guillory, L.; Bose, N.K.

    1990-01-01

    Coal biodegradation is attracting the attention of many workers because of its significance for efficient bioconversion of coal into useful chemicals. The authors work is based upon the beneficiation of a fungus (candida) on subbituminous coal. Candida was grown on both solid and liquid sabouraud medium and the coal solubilizing activity was studied at varying glucose concentration and temperature. Lower glucose concentration and higher temperature enhanced coal solubilizing activity by this fungus. Preliminary work has begun on analyzing organic extractions (alumina chromatography) of the liquid produced after microbial solubilization, including elemental analysis, solubility, molecular weights and chemical structure. This preliminarymore » work suggests that the candida could metabolize naturally occurring coal as substrate.« less

  4. A Review on The Bioconversion of Lignin to Microbial Lipid with Oleaginous Rhodococcus opacus

    DOE PAGES

    Mahan, Kristina M.; Le, Rosemary K.; Yuan, Joshua; ...

    2017-06-29

    Rhodococcus opacus produces intracellular lipids from the biodegradation of lignocellulosic biomass. These lipids can be used to produce biofuels that could potentially replace petroleum-derived chemicals. Some current studies are focusing on deconstructing lignin through efficient and cost-effective pretreatment methods and improving microbial lipid titers. Furthermore, R. opacus can reach high levels of oleaginicity (>80%) when grown on glucose and other aromatic model compounds but intracellular lipid production is much lower on complex recalcitrant lignin substrates. Our review will discuss recent advances in studying R. opacus lignin degradation by exploring different pretreatment methods, increasing lignin solubility, enriching for low molecular weightmore » lignin compounds and laccase supplementation.« less

  5. Bioconversion of Xylan to triglycerides by oil-rich yeasts. [Cryptococcus albidus; Cryptococcus terricoluus; Trichosporon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fall, R.; Phelps, P.; Spindler, D.

    A series of lipid-accumulating yeasts was examined for their potential to saccharify xylan and accumulate triglyceride. Of the genera tested, including Candida, Cryptococcus, Lipomyces, Rhodosporidium, Rhodotorula, and Trichosporon, only Crytococcus and Trichosporon isolates saccharified xylan. All of the strains could assimilate xylose and accumuate triglyceride under nitrogen-limiting conditions. Strains of Cryptococcus albidus were found to be especially useful for a one-step saccharification of xylan coupled to triglyceride synthesis. Crytococcus terricolus, a strain constitutive for lipid accumulation, lacked extracellular xylanase, but did assimilate xylose and xylobiose and was able to continuously convert xylan to triglyceride if the culture medium was supplementedmore » with xylanase. 22 references.« less

  6. Solar Energy: Its Technologies and Applications

    DOE R&D Accomplishments Database

    Auh, P. C.

    1978-06-01

    Solar heat, as a potential source of clean energy, is available to all of us. Extensive R and D efforts are being made to effectively utilize this renewable energy source. A variety of different technologies for utilizing solar energy have been proven to be technically feasible. Here, some of the most promising technologies and their applications are briefly described. These are: Solar Heating and Cooling of Buildings (SHACOB), Solar Thermal Energy Conversion (STC), Wind Energy Conversion (WECS), Bioconversion to Fuels (BCF), Ocean Thermal Energy Conversion (OTEC), and Photovoltaic Electric Power Systems (PEPS). Special emphasis is placed on the discussion of the SHACOB technologies, since the technologies are being expeditiously developed for the near commercialization.

  7. Tower reactors for bioconversion of lignocellulosic material

    DOEpatents

    Nguyen, Quang A.

    1999-01-01

    An apparatus for enzymatic hydrolysis and fermentation of pretreated lignocellulosic material, in the form of a tower bioreactor, having mixers to achieve intermittent mixing of the material. Precise mixing of the material is important for effective heat and mass transfer requirements without damaging or denaturing the enzymes or fermenting microorganisms. The pretreated material, generally in the form of a slurry, is pumped through the bioreactor, either upwards or downwards, and is mixed periodically as it passes through the mixing zones where the mixers are located. For a thin slurry, alternate mixing can be achieved by a pumping loop which also serves as a heat transfer device. Additional heat transfer takes place through the reactor heat transfer jackets.

  8. Tower reactors for bioconversion of lignocellulosic material

    DOEpatents

    Nguyen, Quang A.

    1998-01-01

    An apparatus for enzymatic hydrolysis and fermentation of pretreated lignocellulosic material, in the form of a tower bioreactor, having mixers to achieve intermittent mixing of the material. Precise mixing of the material is important for effective heat and mass transfer requirements without damaging or denaturing the enzymes or fermenting microorganisms. The pretreated material, generally in the form of a slurry, is pumped through the bioreactor, either upwards of downwards, and is mixed periodically as it passes through the mixing zones where the mixers are located. For a thin slurry, alternate mixing can be achieved by a pumping loop which also serves as a heat transfer device. Additional heat transfer takes place through the reactor heat transfer jackets.

  9. Utilization of biocatalysts in cellulose waste minimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodward, J.; Evans, B.R.

    1996-09-01

    Cellulose, a polymer of glucose, is the principal component of biomass and, therefore, a major source of waste that is either buried or burned. Examples of biomass waste include agricultural crop residues, forestry products, and municipal wastes. Recycling of this waste is important for energy conservation as well as waste minimization and there is some probability that in the future biomass could become a major energy source and replace fossil fuels that are currently used for fuels and chemicals production. It has been estimated that in the United States, between 100-450 million dry tons of agricultural waste are produced annually,more » approximately 6 million dry tons of animal waste, and of the 190 million tons of municipal solid waste (MSW) generated annually, approximately two-thirds is cellulosic in nature and over one-third is paper waste. Interestingly, more than 70% of MSW is landfilled or burned, however landfill space is becoming increasingly scarce. On a smaller scale, important cellulosic products such as cellulose acetate also present waste problems; an estimated 43 thousand tons of cellulose ester waste are generated annually in the United States. Biocatalysts could be used in cellulose waste minimization and this chapter describes their characteristics and potential in bioconversion and bioremediation processes.« less

  10. Biogas and energy production from cattle waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakravarthi, J.

    1997-12-31

    Biomass is one of the longest used energy sources employed in human activity. The bioconversion of organic matter to biogas is a complex anaerobic fermentation process involving the action of microorganisms such as methane producing bacteria. In this paper, biogas and energy production from cattle waste is investigated. There are two significant reasons that motivate this study. First, treating animal waste with the technology of anaerobic digestion can reduce environmental pollution and generate a relatively cheap and easily available source of energy in dairy farms. The gas produced can be used for space and water heating of farm houses, cooking,more » lighting, grain drying and as a fuel for heating greenhouses during cold weather. It also has the potential to run other small industries. Second, it is an effective way of managing cattle waste as well as producing a quick acting, non-toxic fertilizer for agricultural use. A working model of biogas plant is studied in this paper and its economic value as an alternative energy source is examined. An alternative to direct generation of electricity, is to convert the methane from the biomass to methanol. Methanol is an excellent fuel for internal combustion engines and can easily compete with gasoline in many nations where gasoline costs over $4 per US gallon.« less

  11. Identification of furfural as a key toxin in lignocellulosic hydrolysates and evolution of a tolerant yeast strain

    PubMed Central

    Heer, Dominik; Sauer, Uwe

    2008-01-01

    Summary The production of fuel ethanol from low‐cost lignocellulosic biomass currently suffers from several limitations. One of them is the presence of inhibitors in lignocellulosic hydrolysates that are released during pre‐treatment. These compounds inhibit growth and hamper the production of ethanol, thereby affecting process economics. To delineate the effects of such complex mixtures, we conducted a chemical analysis of four different real‐world lignocellulosic hydrolysates and determined their toxicological effect on yeast. By correlating the potential inhibitor abundance to the growth‐inhibiting properties of the corresponding hydrolysates, we identified furfural as an important contributor to hydrolysate toxicity for yeast. Subsequently, we conducted a targeted evolution experiment to improve growth behaviour of the half industrial Saccharomyces cerevisiae strain TMB3400 in the hydrolysates. After about 300 generations, representative clones from these evolved populations exhibited significantly reduced lag phases in medium containing the single inhibitor furfural, but also in hydrolysate‐supplemented medium. Furthermore, these strains were able to grow at concentrations of hydrolysates that effectively killed the parental strain and exhibited significantly improved bioconversion characteristics under industrially relevant conditions. The improved resistance of our evolved strains was based on their capacity to remain viable in a toxic environment during the prolonged, furfural induced lag phase. PMID:21261870

  12. Mitigating nitrous oxide emissions from tea field soil using bioaugmentation with a Trichoderma viride biofertilizer.

    PubMed

    Xu, Shengjun; Fu, Xiaoqing; Ma, Shuanglong; Bai, Zhihui; Xiao, Runlin; Li, Yong; Zhuang, Guoqiang

    2014-01-01

    Land-use conversion from woodlands to tea fields in subtropical areas of central China leads to increased nitrous oxide (N2O) emissions, partly due to increased nitrogen fertilizer use. A field investigation of N2O using a static closed chamber-gas chromatography revealed that the average N2O fluxes in tea fields with 225 kg N ha(-1) yr(-1) fertilizer application were 9.4 ± 6.2 times higher than those of woodlands. Accordingly, it is urgent to develop practices for mitigating N2O emissions from tea fields. By liquid-state fermentation of sweet potato starch wastewater and solid-state fermentation of paddy straw with application of Trichoderma viride, we provided the tea plantation with biofertilizer containing 2.4 t C ha(-1) and 58.7 kg N ha(-1). Compared to use of synthetic N fertilizer, use of biofertilizer at 225 kg N ha(-1) yr(-1) significantly reduced N2O emissions by 33.3%-71.8% and increased the tea yield by 16.2%-62.2%. Therefore, the process of bioconversion/bioaugmentation tested in this study was found to be a cost-effective and feasible approach to reducing N2O emissions and can be considered the best management practice for tea fields.

  13. Attenuation of veterinary antibiotics in full-scale vermicomposting of swine manure via the housefly larvae (Musca domestica)

    PubMed Central

    Zhang, ZhiJian; Shen, JianGuo; Wang, Hang; Liu, Meng; Wu, LongHua; Ping, Fan; He, Qiang; Li, HongYi; Zheng, ChangFeng; Xu, XinHua

    2014-01-01

    Animal waste from concentrated swine farms is widely considered to be a source of environmental pollution, and the introduction of veterinary antibiotics in animal manure to ecosystems is rapidly becoming a major public health concern. A housefly larvae (Musca domestica) vermireactor has been increasingly adopted for swine manure value-added bioconversion and pollution control, but few studies have investigated its efficiency on antibiotic attenuation during manure vermicomposting. In this study we explored the capacity and related attenuation mechanisms of antibiotic degradation and its linkage with waste reduction by field sampling during a typical cycle (6 days) of full-scale larvae manure vermicomposting. Nine antibiotics were dramatically removed during the 6-day vermicomposting process, including tetracyclines, sulfonamides, and fluoroquinolones. Of these, oxytetracycline and ciprofloxacin exhibited the greater reduction rate of 23.8 and 32.9 mg m−2, respectively. Environmental temperature, pH, and total phosphorus were negatively linked to the level of residual antibiotics, while organic matter, total Kjeldahl nitrogen, microbial respiration intensity, and moisture exhibited a positive effect. Pyrosequencing data revealed that the dominant phyla related to Firmicutes, Bacteroidetes, and Proteobacteria accelerated manure biodegradation likely through enzyme catalytic reactions, which may enhance antibiotic attenuation during vermicomposting. PMID:25354896

  14. Valorisation of CO2-rich off-gases to biopolymers through biotechnological process.

    PubMed

    Garcia-Gonzalez, Linsey; De Wever, Heleen

    2017-11-01

    As one of the key enabling technologies, industrial biotechnology has a high potential to tackle harmful CO2 emissions and to turn CO2 into a valuable commodity. So far, experimental work mainly focused on the bioconversion of pure CO2 to chemicals and plastics and little is known about the tolerance of the bioprocesses to the presence of impurities. This work is the first to investigate the impact of real CO2-rich off-gases on autotrophic production of polyhydroxybutyrate. To this end, two-phase heterotrophic-autotrophic fermentation experiments were set up, consisting of heterothrophic cell mass growth using glucose as substrate followed by autotrophic biopolymer production using either pure synthetic CO2 or industrial off-gases sampled at two point sources. The use of real off-gases did not affect the bacterial performance. High biopolymer content (up to 73%) and productivities (up to 0.227 g/lh) were obtained. Characterisation of the polymers showed that all biopolymers had similar properties, independent of the CO2 source. Moreover, the CO2-derived biopolymers' properties were comparable to commercial ones and biopolymers reported in literature, which are all produced from organic carbon sources. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Biotransformation of catechin and extraction of active polysaccharide from green tea leaves via simultaneous treatment with tannase and pectinase.

    PubMed

    Baik, Joo Hyun; Shin, Kwang-Soon; Park, Yooheon; Yu, Kwang-Won; Suh, Hyung Joo; Choi, Hyeon-Son

    2015-08-30

    Green tea is a dietary source of bioactive compounds for human health. Enzymatic treatments induce the bioconversion of bioactive components, which can improve biological activities. In this study, we investigated the effect of simultaneous treatment with tannase and Rapidase on biotransformation of catechins and extraction of polysaccharide from green tea extract (GTE). Tannase and pectinase treatments induced the biotransformation of catechins and altered tea polysaccharide () content. The addition of GTE to the enzyme reaction resulted in a significant increase in degallated catechins, including gallic acid, a product of the tannase reaction (314.5-4076.0 µg mL(-1)) and a reduction in epigallocatechin gallate (EGCG). Biotransformation of catechins improved the radical scavenging activity of GTE. Pectinase treatment led to change of TPS composition in GTE by hydrolyzing polysaccharides. In addition, pectinase-driven hydrolysis in polysaccharides significantly increased TPS-induced Interleukin 6 (IL-6) production in macrophages. In particular, treatment of Rapidase (TPS-Ra) led to the highest IL-6 production among TPS samples, similar to treatment of highly purified pectinase (TPS-GTE), a positive control. Simultaneous processing with tannase and Rapidase can be an efficient method for the extraction of bioactive polysaccharides and biotransformation of catechins with enhanced radical scavenging activity from green tea. © 2014 Society of Chemical Industry.

  16. Direct conversion of plant biomass to ethanol by engineered Caldicellulosiruptor bescii

    PubMed Central

    Chung, Daehwan; Cha, Minseok; Guss, Adam M.; Westpheling, Janet

    2014-01-01

    Ethanol is the most widely used renewable transportation biofuel in the United States, with the production of 13.3 billion gallons in 2012 [John UM (2013) Contribution of the Ethanol Industry to the Economy of the United States]. Despite considerable effort to produce fuels from lignocellulosic biomass, chemical pretreatment and the addition of saccharolytic enzymes before microbial bioconversion remain economic barriers to industrial deployment [Lynd LR, et al. (2008) Nat Biotechnol 26(2):169–172]. We began with the thermophilic, anaerobic, cellulolytic bacterium Caldicellulosiruptor bescii, which efficiently uses unpretreated biomass, and engineered it to produce ethanol. Here we report the direct conversion of switchgrass, a nonfood, renewable feedstock, to ethanol without conventional pretreatment of the biomass. This process was accomplished by deletion of lactate dehydrogenase and heterologous expression of a Clostridium thermocellum bifunctional acetaldehyde/alcohol dehydrogenase. Whereas wild-type C. bescii lacks the ability to make ethanol, 70% of the fermentation products in the engineered strain were ethanol [12.8 mM ethanol directly from 2% (wt/vol) switchgrass, a real-world substrate] with decreased production of acetate by 38% compared with wild-type. Direct conversion of biomass to ethanol represents a new paradigm for consolidated bioprocessing, offering the potential for carbon neutral, cost-effective, sustainable fuel production. PMID:24889625

  17. Methane producing bacteria: Immunological characterization: Progress report, April 1, 1984--June 30, 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conway de Macario, E.; Macario, A.J.L.; Wolin, M.J.

    1988-01-01

    A major contribution of this research has been a significant advance of the immunology of methanogens and other archaebacteria (e.g., extreme halophiles). The foundations have been laid to begin the immunologic study of microbes which are non-methanogens themselves but are important for the fermentation process. This work helped to make clear that bacterial immunology goes beyond the study of pathogens for man, animals, or plants. Immunology can be applied successfully to the study of isolates of importance to understand evolution, phylogeny, ecology, bio-conversion systems, and to advance methanogenic biotechnology. Immunology holds considerable potential to aid in genetic and genetic engineeringmore » manipulations as well as in in situ handling of microbes relevant to methanogenesis. Thus, antibodies can help in the discovery of useful microbes, the generation of improved stains, the selection of desirable microorganisms, and in the monitoring and controlling of bioreactors. Immunogolic work in this new field should generate knowledge and devices relevant to areas such as Biological Energy Research, Ecology of Microorganisms, and Environmental (Sanitary) Engineering. In this regard, this work has contributed a comprehensive antiserum bank, a large panel of calibrated polyclonal antibody probes, and techniques for producing and utilizing these probes in the study of methanogens and related bacteria. 67 refs.« less

  18. Engineering of solvent-tolerant Pseudomonas putida S12 for bioproduction of phenol from glucose.

    PubMed

    Wierckx, Nick J P; Ballerstedt, Hendrik; de Bont, Jan A M; Wery, Jan

    2005-12-01

    Efficient bioconversion of glucose to phenol via the central metabolite tyrosine was achieved in the solvent-tolerant strain Pseudomonas putida S12. The tpl gene from Pantoea agglomerans, encoding tyrosine phenol lyase, was introduced into P. putida S12 to enable phenol production. Tyrosine availability was a bottleneck for efficient production. The production host was optimized by overexpressing the aroF-1 gene, which codes for the first enzyme in the tyrosine biosynthetic pathway, and by random mutagenesis procedures involving selection with the toxic antimetabolites m-fluoro-dl-phenylalanine and m-fluoro-l-tyrosine. High-throughput screening of analogue-resistant mutants obtained in this way yielded a P. putida S12 derivative capable of producing 1.5 mM phenol in a shake flask culture with a yield of 6.7% (mol/mol). In a fed-batch process, the productivity was limited by accumulation of 5 mM phenol in the medium. This toxicity was overcome by use of octanol as an extractant for phenol in a biphasic medium-octanol system. This approach resulted in accumulation of 58 mM phenol in the octanol phase, and there was a twofold increase in the overall production compared to a single-phase fed batch.

  19. Investigation of a submerged membrane reactor for continuous biomass hydrolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malmali, Mohammadmahdi; Stickel, Jonathan; Wickramasinghe, S. Ranil

    Enzymatic hydrolysis of cellulose is one of the most costly steps in the bioconversion of lignocellulosic biomass. Use of a submerged membrane reactor has been investigated for continuous enzymatic hydrolysis of cellulose thus allowing for greater use of the enzyme compared to a batch process. Moreover, the submerged 0.65 μm polyethersulfone microfiltration membrane avoids the need to pump a cellulose slurry through an external loop. Permeate containing glucose is withdrawn at pressures slightly below atmospheric pressure. The membrane rejects cellulose particles and cellulase enzyme bound to cellulose. Our proof-of-concept experiments have been conducted using a modified, commercially available membrane filtrationmore » cell under low fluxes around 75 L/(m2 h). The operating flux is determined by the rate of glucose production. Maximizing the rate of glucose production involves optimizing mixing, reactor holding time, and the time the feed is held in the reactor prior to commencement of membrane filtration and continuous operation. When we maximize glucose production rates it will require that we operate it at low glucose concentration in order to minimize the adverse effects of product inhibition. Consequently practical submerged membrane systems will require a combined sugar concentration step in order to concentrate the product sugar stream prior to fermentation.« less

  20. Direct conversion of plant biomass to ethanol by engineered Caldicellulosiruptor bescii.

    PubMed

    Chung, Daehwan; Cha, Minseok; Guss, Adam M; Westpheling, Janet

    2014-06-17

    Ethanol is the most widely used renewable transportation biofuel in the United States, with the production of 13.3 billion gallons in 2012 [John UM (2013) Contribution of the Ethanol Industry to the Economy of the United States]. Despite considerable effort to produce fuels from lignocellulosic biomass, chemical pretreatment and the addition of saccharolytic enzymes before microbial bioconversion remain economic barriers to industrial deployment [Lynd LR, et al. (2008) Nat Biotechnol 26(2):169-172]. We began with the thermophilic, anaerobic, cellulolytic bacterium Caldicellulosiruptor bescii, which efficiently uses unpretreated biomass, and engineered it to produce ethanol. Here we report the direct conversion of switchgrass, a nonfood, renewable feedstock, to ethanol without conventional pretreatment of the biomass. This process was accomplished by deletion of lactate dehydrogenase and heterologous expression of a Clostridium thermocellum bifunctional acetaldehyde/alcohol dehydrogenase. Whereas wild-type C. bescii lacks the ability to make ethanol, 70% of the fermentation products in the engineered strain were ethanol [12.8 mM ethanol directly from 2% (wt/vol) switchgrass, a real-world substrate] with decreased production of acetate by 38% compared with wild-type. Direct conversion of biomass to ethanol represents a new paradigm for consolidated bioprocessing, offering the potential for carbon neutral, cost-effective, sustainable fuel production.

  1. Effect of poultry litter biochar on Saccharomyces cerevisiae growth and ethanol production from steam-exploded poplar and corn stover

    NASA Astrophysics Data System (ADS)

    Diallo, Oumou

    The use of ethanol produced from lignocellulosic biomass for transportation fuel offers solutions in reducing environmental emission and the use of non-renewable fuels. However, lignocellulosic ethanol production is still hampered by economic and technical obstacles. For instance, the inhibitory effect of toxic compounds produced during biomass pretreatment was reported to inhibit the fermenting microorganisms, hence there was a decrease in ethanol yield and productivity. Thus, there is a need to improve the bioconversion of lignocellulosic biomass to ethanol in order to promote its commercialization. The research reported here investigated the use of poultry litter biochar to improve the ethanol production from steam-exploded poplar and corn stover. The effect of poultry litter biochar was first studied on Saccharomyces cerevisiae ATCC 204508/S288C growth, and second on the enzyme hydrolysis and fermentation of two steam-exploded biomasses: (poplar and corn stover). The third part of the study investigated optimal process parameters (biochar loading, biomass loading, and enzyme loading) on the reducing sugars production, and ethanol yield from steam-exploded corn stover. In this study, it has been shown that poultry litter biochar improved the S. cerevisiae growth and ethanol productivity; therefore poultry litter biochar could potentially be used to improve the ethanol production from steam-exploded lignocellulosic biomass.

  2. Contributions of a unique β-clamp to substrate recognition illuminates the molecular basis of exolysis in ferulic acid esterases.

    PubMed

    Gruninger, Robert J; Cote, Chris; McAllister, Tim A; Abbott, D Wade

    2016-04-01

    Lignocellulosic biomass is a promising renewable resource; however, deconstruction of this material is still the rate-limiting step. Major obstacles in the biocatalytic turnover of lignocellulose are ester-linked decorations that prevent access to primary structural polysaccharides. Enzymes targeting these esters represent promising biotools for increasing bioconversion efficiency. Ruminant livestock are unique in their ability to degrade lignocellulose through the action of their gut microbiome. The anaerobic fungi (phylum Neocallimastigomycota) are key members of this ecosystem that express a large repertoire of carbohydrate-active enzymes (CAZymes) with little sequence identity with characterized CAZymes [Lombard, Golaconda, Drula, Coutinho and Henrissat (2014) Nucleic Acids Res. 42: , D490-D495]. We have identified a carbohydrate esterase family 1 (CE1) ferulic acid esterase (FAE) belonging to Anaeromyces mucronatus(AmCE1/Fae1a), and determined its X-ray structure in both the presence [1.55 Å (1 Å=0.1 nm)] and absence (1.60 Å) of ferulic acid. AmCE1 adopts an α/β-hydrolase fold that is structurally conserved with bacterial FAEs, and possesses a unique loop, termed the β-clamp, that encloses the ligand. Isothermal titration calorimetry reveals that substrate binding is driven by enthalpic contributions, which overcomes a large entropic penalty. A comparative analysis of AmCE1 with related enzymes has uncovered the apparent structural basis for differential FAE activities targeting cross-linking ferulic acid conjugates compared with terminal decorations. Based on comparisons to structurally characterized FAEs, we propose that the β-clamp may define the structural basis of exolytic activities in FAEs. This provides a structure-based tool for predicting exolysis and endolysis in CE1. These insights hold promise for rationally identifying enzymes tailored for bioconversion of biomass with variations in cell wall composition. © 2016 Authors; published by Portland Press Limited.

  3. Bacterial communities and metabolic activity of faecal cultures from equol producer and non-producer menopausal women under treatment with soy isoflavones.

    PubMed

    Guadamuro, Lucía; Dohrmann, Anja B; Tebbe, Christoph C; Mayo, Baltasar; Delgado, Susana

    2017-04-17

    Isoflavones are polyphenols with estrogenic activity found mainly in soy and soy-derived products that need to be metabolised in the intestine by the gut bacteria to be fully active. There is little knowledge about isoflavone bioconversion and equol production in the human intestine. In this work, we developed an in vitro anaerobic culture model based on faecal slurries to assess the impact of isoflavone supplementation on the overall intestinal bacterial composition changes and associated metabolic transformations. In the faecal anaerobic batch cultures of this study bioconversion of isoflavones into equol was possible, suggesting the presence of viable equol-producing bacterial taxa within the faeces of menopausal women with an equol producer phenotype. The application of high-throughput DNA sequencing of 16S rRNA gene amplicons revealed the composition of the faecal cultures to be modified by the addition of isoflavones, with enrichment of some bacterial gut members associated with the metabolism of phenolics and/or equol production, such as Collinsella, Faecalibacterium and members of the Clostridium clusters IV and XIVa. In addition, the concentration of short-chain fatty acids (SCFAs) detected in the isoflavone-containing faecal cultures was higher in those inoculated with faecal slurries from equol-producing women. This study constitutes the first step in the development of a faecal culturing system with isoflavones that would further allow the selection and isolation of intestinal bacterial types able to metabolize these compounds and produce equol in vitro. Although limited by the low number of faecal cultures analysed and the inter-individual bacterial diversity, the in vitro results obtained in this work tend to indicate that soy isoflavones might provide an alternative energy source for the increase of equol-producing taxa and enhancement of SCFAs production. SCFAs and equol are both considered pivotal bacterial metabolites in the triggering of intestinal health-related beneficial effects.

  4. Microbial community structures in high rate algae ponds for bioconversion of agricultural wastes from livestock industry for feed production.

    PubMed

    Mark Ibekwe, A; Murinda, Shelton E; Murry, Marcia A; Schwartz, Gregory; Lundquist, Trygve

    2017-02-15

    Dynamics of seasonal microbial community compositions in algae cultivation ponds are complex. However, there is very limited knowledge on bacterial communities that may play significant roles with algae in the bioconversion of manure nutrients to animal feed. In this study, water samples were collected during winter, spring, summer, and fall from the dairy lagoon effluent (DLE), high rate algae ponds (HRAP) that were fed with diluted DLE, and municipal waste water treatment plant (WWTP) effluent which was included as a comparison system for the analysis of total bacteria, Cyanobacteria, and microalgae communities using MiSeq Illumina sequencing targeting the 16S V4 rDNA region. The main objective was to examine dynamics in microbial community composition in the HRAP used for the production of algal biomass. DNA was extracted from the different sample types using three commercially available DNA extraction kits; MoBio Power water extraction kit, Zymo fungi/bacterial extraction kit, and MP Biomedicals FastDNA SPIN Kit. Permutational analysis of variance (PERMANOVA) using distance matrices on each variable showed significant differences (P=0.001) in beta-diversity based on sample source. Environmental variables such as hydraulic retention time (HRT; P<0.031), total N (P<0.002), total inorganic N (P<0.002), total P (P<0.002), alkalinity (P<0.002), pH (P<0.022), total suspended solid (TSS; P<0.003), and volatile suspended solids (VSS; P<0.002) significantly affected microbial communities in DLE, HRAP, and WWTP. Of the operational taxonomic units (OTUs) identified to phyla level, the dominant classes of bacteria identified were: Cyanobacteria, Alpha-, Beta-, Gamma-, Epsilon-, and Delta-proteobacteria, Bacteroidetes, Firmicutes, and Planctomycetes. Our data suggest that microbial communities were significantly affected in HRAP by different environmental variables, and care must be taken in extraction procedures when evaluating specific groups of microbial communities for specific functions. Published by Elsevier B.V.

  5. Metabolism and Fatty Acid Profile in Fat and Lean Rainbow Trout Lines Fed with Vegetable Oil: Effect of Carbohydrates

    PubMed Central

    Kamalam, Biju Sam; Médale, Françoise; Larroquet, Laurence; Corraze, Geneviève; Panserat, Stephane

    2013-01-01

    The present study investigated the effect of dietary carbohydrates on metabolism, with special focus on fatty acid bioconversion and flesh lipid composition in two rainbow trout lines divergently selected for muscle lipid content and fed with vegetable oils. These lines were chosen based on previously demonstrated potential differences in LC-PUFA synthesis and carbohydrate utilization. Applying a factorial study design, juvenile trout from the lean (L) and the fat (F) line were fed vegetable oil based diets with or without gelatinised starch (17.1%) for 12 weeks. Blood, liver, muscle, intestine and adipose tissue were sampled after the last meal. Feed intake and growth was higher in the L line than the F line, irrespective of the diet. Moderate postprandial hyperglycemia, strong induction of hepatic glucokinase and repressed glucose-6-phosphatase transcripts confirmed the metabolic response of both lines to carbohydrate intake. Further at the transcriptional level, dietary carbohydrate in the presence of n-3 LC-PUFA deficient vegetable oils enhanced intestinal chylomicron assembly, disturbed hepatic lipid metabolism and importantly elicited a higher response of key desaturase and elongase enzymes in the liver and intestine that endorsed our hypothesis. PPARγ was identified as the factor mediating this dietary regulation of fatty acid bioconversion enzymes in the liver. However, these molecular changes were not sufficient to modify the fatty acid composition of muscle or liver. Concerning the genotype effect, there was no evidence of substantial genotypic difference in lipid metabolism, LC-PUFA synthesis and flesh fatty acid profile when fed with vegetable oils. The minor reduction in plasma glucose and triglyceride levels in the F line was linked to potentially higher glucose and lipid uptake in the muscle. Overall, these data emphasize the importance of dietary macro-nutrient interface in evolving fish nutrition strategies. PMID:24124573

  6. Metabolism and fatty acid profile in fat and lean rainbow trout lines fed with vegetable oil: effect of carbohydrates.

    PubMed

    Kamalam, Biju Sam; Médale, Françoise; Larroquet, Laurence; Corraze, Geneviève; Panserat, Stephane

    2013-01-01

    The present study investigated the effect of dietary carbohydrates on metabolism, with special focus on fatty acid bioconversion and flesh lipid composition in two rainbow trout lines divergently selected for muscle lipid content and fed with vegetable oils. These lines were chosen based on previously demonstrated potential differences in LC-PUFA synthesis and carbohydrate utilization. Applying a factorial study design, juvenile trout from the lean (L) and the fat (F) line were fed vegetable oil based diets with or without gelatinised starch (17.1%) for 12 weeks. Blood, liver, muscle, intestine and adipose tissue were sampled after the last meal. Feed intake and growth was higher in the L line than the F line, irrespective of the diet. Moderate postprandial hyperglycemia, strong induction of hepatic glucokinase and repressed glucose-6-phosphatase transcripts confirmed the metabolic response of both lines to carbohydrate intake. Further at the transcriptional level, dietary carbohydrate in the presence of n-3 LC-PUFA deficient vegetable oils enhanced intestinal chylomicron assembly, disturbed hepatic lipid metabolism and importantly elicited a higher response of key desaturase and elongase enzymes in the liver and intestine that endorsed our hypothesis. PPARγ was identified as the factor mediating this dietary regulation of fatty acid bioconversion enzymes in the liver. However, these molecular changes were not sufficient to modify the fatty acid composition of muscle or liver. Concerning the genotype effect, there was no evidence of substantial genotypic difference in lipid metabolism, LC-PUFA synthesis and flesh fatty acid profile when fed with vegetable oils. The minor reduction in plasma glucose and triglyceride levels in the F line was linked to potentially higher glucose and lipid uptake in the muscle. Overall, these data emphasize the importance of dietary macro-nutrient interface in evolving fish nutrition strategies.

  7. The Role of Highly Unsaturated Fatty Acids in Aquatic Food Webs

    NASA Astrophysics Data System (ADS)

    Perhar, G.; Arhonditsis, G. B.

    2009-05-01

    Highly unsaturated fatty acids (HUFAs) are important molecules transferred across the plant-animal interface in aquatic food webs. Defined here as carbon chains of length 18 (carbons) or more, with a double bond in the third (Omega 3) or sixth (Omega 6) bond from the methyl end, HUFAs are formed in primary producers (phytoplankton). With limited abilities to synthesize de novo, consumers and higher trophic organisms are required to obtain their HUFAs primarily from diet. Bioconversion of HUFAs from one form to another is in theory possible, as is synthesis via elongation and the transformation of a saturated to highly saturated fatty acid, but the enzymes required for these processes are absent in most species. HUFAs are hypothesized to be somatic growth limiting compounds for herbivorous zooplankton and have been shown to be critical for juvenile fish growth and wellbeing. Zooplankton tend to vary their fatty acid concentrations, collection strategies and utilization methods based on taxonomy, and various mechanisms have been suggested to account for these differences i.e., seasonal and nervous system hypotheses. Considering also the facts that copepods overwinter in an active state while daphnids overwinter as resting eggs, and that copepods tend to accumulate Docosahexaenoic acid (DHA) through collection and bioconversion, while daphnids focus on Eicosapentaenoic acid (EPA), one can link high DHA concentrations to active overwintering; but both EPA and DHA have similar melting points, putting DHA's cold weather adaptation abilities into question. Another characteristic setting copepods apart from daphnids is nervous system complexity: copepod axons are coated in thick myelin sheaths, permitting rapid neural processing, such as rapid prey attack and intelligent predator avoidance; DHA may be required for the proper functioning of copepod neurons. Recent modeling results have suggested food webs with high quality primary producers (species high in HUFAs, i.e. diatoms), at their base can attain inverted biomass distributions with efficient energy transfer between trophic levels, making HUFA pathways in aquatic food webs of special interest to fisheries and environmental managers. Built on our previous work, which implicitly considered HUFAs through a proxy (generic food quality term, which also indexes ingestibility, digestibility and toxicity), our aim is to elucidate the underlying mechanisms controlling HUFA transport through the lower aquatic food web, with an emphasis on the hypothesized somatic growth limiting potential. A biochemical submodel coupled to a plankton model has been formulated and calibrated, accounting explicitly for the omega 3 and omega 6 families of fatty acids; specifically, Alpha Linoleic acid (ALA, a precursor to EPA), EPA and DHA. Further insights into the role of HUFAs on food web dynamics and the subsequent implications on ecosystem functioning are gained through bifurcation analysis of the model. Our research aims to elucidate the existing gaps in the literature pertaining to the role and impact of HUFAs on plankton dynamics, which have traditionally been thought to be driven by stoichiometric ratios and limiting nutrients. In this study, we challenge the notion of nutrients being the primary driving factor of aquatic ecosystem patterns by introducing a modeling framework that accounts for the interplay between nutrients and HUFAs.

  8. Valorization of lignin and cellulose in acid-steam-exploded corn stover by a moderate alkaline ethanol post-treatment based on an integrated biorefinery concept.

    PubMed

    Yang, Sheng; Zhang, Yue; Yue, Wen; Wang, Wei; Wang, Yun-Yan; Yuan, Tong-Qi; Sun, Run-Cang

    2016-01-01

    Due to the unsustainable consumption of fossil resources, great efforts have been made to convert lignocellulose into bioethanol and commodity organic compounds through biological methods. The conversion of cellulose is impeded by the compactness of plant cell wall matrix and crystalline structure of the native cellulose. Therefore, appropriate pretreatment and even post-treatment are indispensable to overcome this problem. Additionally, an adequate utilization of coproduct lignin will be important for improving the economic viability of modern biorefinery industries. The effectiveness of moderate alkaline ethanol post-treatment on the bioconversion efficiency of cellulose in the acid-steam-exploded corn stover was investigated in this study. Results showed that an increase of the alcoholic sodium hydroxide (NaOH) concentration from 0.05 to 4% led to a decrease in the lignin content in the post-treated samples from 32.8 to 10.7%, while the cellulose digestibility consequently increased. The cellulose conversion of the 4% alcoholic NaOH integrally treated corn stover reached up to 99.3% after 72 h, which was significantly higher than that of the acid steam exploded corn stover without post-treatment (57.3%). In addition to the decrease in lignin content, an expansion of cellulose I lattice induced by the 4% alcoholic NaOH post-treatment played a significant role in promoting the enzymatic hydrolysis of corn stover. More importantly, the lignin fraction (AL) released during the 4% alcoholic NaOH post-treatment and the lignin-rich residue (EHR) remained after the enzymatic hydrolysis of the 4% alcoholic NaOH post-treated acid-steam-exploded corn stover were employed to synthesize lignin-phenol-formaldehyde (LPF) resins. The plywoods prepared with the resins exhibit satisfactory performances. An alkaline ethanol system with an appropriate NaOH concentration could improve the removal of lignin and modification of the crystalline structure of cellulose in acid-steam-exploded corn stover, and consequently significantly improve the conversion of cellulose through enzymatic hydrolysis for biofuel production. The lignin fractions obtained as byproducts could be applied in high performance LPF resin preparation. The proposed model for the integral valorization of corn stover in this study is worth of popularization.

  9. Enhanced synthesis of L-threo-3,4-dihydroxyphenylserine by high-density whole-cell biocatalyst of recombinant L-threonine aldolase from Streptomyces avelmitilis.

    PubMed

    Baik, Sang-Ho; Yoshioka, Hideki

    2009-03-01

    L-threo-3,4-Dihydroxyphenylserine (DOPS) is a chiral unnatural beta-hydroxy amino acid used for the treatment of Parkinson disease. We developed a continuous bioconversion system for DOPS production that uses whole-cell biocatalyst of recombinant Escherichia coli expressing L-threonine aldolase (L-TA) genes cloned from Streptomyces avelmitilis MA-4680. Maximum conversion rates were observed at 2 M glycine, 145 mM 3,4-dihydroxybenzaldehyde, 0.75% Triton-X, 5 g E. coli cells/l, pH 6.5 and 10 degrees C. In the optimized condition, overall productivity was 8 g/l, which represents 40 times the synthesis yield possible with no optimization of conditions.

  10. Biotransformation of artemisinin using cell suspension cultures of Catharanthus roseus (L.) G.Don and Lavandula officinalis L.

    PubMed

    Patel, Suman; Gaur, Rashmi; Verma, Priyanka; Bhakuni, Rajendra S; Mathur, Archana

    2010-08-01

    Artemisinin, an antimalarial compound, at 5 mg/40 ml, was transformed by cell suspension cultures of Catharanthus roseus (L.) G.Don and Lavandula officinalis L. into deoxyartemisinin with yields >78% (3.93 mg deoxyartemisinin from 5 mg artemisinin). Maximum conversion (78.6 and 78%) occurred after 6 and 7 days of adding artemisinin to 20 and 9 days old cultures of C. roseus and L. officinalis, respectively. The procedure was scaled up by and 500 mg artemisinin was transformed into 390 mg deoxyartemisinin. Addition of artemisinin at the beginning of the culture cycle resulted in >50% reduction in dry biomass production with no bioconversion. Conversion of artemisinin occurred intracellularly followed by leaching of the product into the medium.

  11. Engineering the robustness of industrial microbes through synthetic biology.

    PubMed

    Zhu, Linjiang; Zhu, Yan; Zhang, Yanping; Li, Yin

    2012-02-01

    Microbial fermentations and bioconversions play a central role in the production of pharmaceuticals, enzymes and chemicals. To meet the demands of industrial production, it is desirable that microbes maintain a maximized carbon flux towards target metabolites regardless of fluctuations in intracellular or extracellular environments. This requires cellular systems that maintain functional stability and dynamic homeostasis in a given physiological state, or manipulate transitions between different physiological states. Stable maintenance or smooth transition can be achieved through engineering of dynamic controllability, modular and hierarchical organization, or functional redundancy, three key features of biological robustness in a cellular system. This review summarizes how synthetic biology can be used to improve the robustness of industrial microbes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Tower reactors for bioconversion of lignocellulosic material

    DOEpatents

    Nguyen, Q.A.

    1998-03-31

    An apparatus is disclosed for enzymatic hydrolysis and fermentation of pretreated lignocellulosic material. The apparatus consists of a tower bioreactor which has mixers to achieve intermittent mixing of the material. Precise mixing of the material is important for effective heat and mass transfer requirements without damaging or denaturing the enzymes or fermenting microorganisms. The pretreated material, generally in the form of a slurry, is pumped through the bioreactor, either upwards or downwards, and is mixed periodically as it passes through the mixing zones where the mixers are located. For a thin slurry, alternate mixing can be achieved by a pumping loop which also serves as a heat transfer device. Additional heat transfer takes place through the reactor heat transfer jackets. 5 figs.

  13. Tower reactors for bioconversion of lignocellulosic material

    DOEpatents

    Nguyen, Q.A.

    1999-03-30

    An apparatus is described for enzymatic hydrolysis and fermentation of pretreated lignocellulosic material, in the form of a tower bioreactor, having mixers to achieve intermittent mixing of the material. Precise mixing of the material is important for effective heat and mass transfer requirements without damaging or denaturing the enzymes or fermenting microorganisms. The pretreated material, generally in the form of a slurry, is pumped through the bioreactor, either upwards or downwards, and is mixed periodically as it passes through the mixing zones where the mixers are located. For a thin slurry, alternate mixing can be achieved by a pumping loop which also serves as a heat transfer device. Additional heat transfer takes place through the reactor heat transfer jackets. 5 figs.

  14. A novel cell factory for efficient production of ethanol from dairy waste.

    PubMed

    Liu, Jianming; Dantoft, Shruti Harnal; Würtz, Anders; Jensen, Peter Ruhdal; Solem, Christian

    2016-01-01

    Sustainable and economically feasible ways to produce ethanol or other liquid fuels are becoming increasingly relevant due to the limited supply of fossil fuels and the environmental consequences associated with their consumption. Microbial production of fuel compounds has gained a lot of attention and focus has mostly been on developing bio-processes involving non-food plant biomass feedstocks. The high cost of the enzymes needed to degrade such feedstocks into its constituent sugars as well as problems due to various inhibitors generated in pretreatment are two challenges that have to be addressed if cost-effective processes are to be established. Various industries, especially within the food sector, often have waste streams rich in carbohydrates and/or other nutrients, and these could serve as alternative feedstocks for such bio-processes. The dairy industry is a good example, where large amounts of cheese whey or various processed forms thereof are generated. Because of their nutrient-rich nature, these substrates are particularly well suited as feedstocks for microbial production. We have generated a Lactococcus lactis strain which produces ethanol as its sole fermentation product from the lactose contained in residual whey permeate (RWP), by introducing lactose catabolism into a L. lactis strain CS4435 (MG1363 Δ(3) ldh, Δpta, ΔadhE, pCS4268), where the carbon flow has been directed toward ethanol instead of lactate. To achieve growth and ethanol production on RWP, we added corn steep liquor hydrolysate (CSLH) as the nitrogen source. The outcome was efficient ethanol production with a titer of 41 g/L and a yield of 70 % of the theoretical maximum using a fed-batch strategy. The combination of a low-cost medium from industrial waste streams and an efficient cell factory should make the developed process industrially interesting. A process for the production of ethanol using L. lactis and a cheap renewable feedstock was developed. The results demonstrate that it is possible to achieve sustainable bioconversion of waste products from the dairy industry (RWP) and corn milling industry (CSLH) to ethanol and the process developed shows great potential for commercial realization.

  15. Production of lactic acid from the mixture of softwood pre-hydrolysate and paper mill sludge by simultaneous saccharification and fermentation.

    PubMed

    Shi, Suan; Kang, Li; Lee, Y Y

    2015-03-01

    Paper mill sludge is a solid waste material composed of pulp residues and ash generated from pulping and paper making process. The carbohydrate portion of the sludges from Kraft/Recycle paper mill has chemical and physical characteristics similar to those of commercial wood pulp. Because of its high carbohydrate content and well-dispersed structure, the sludge can be biologically converted to value-added products without pretreatment. In bioconversion of solid feedstock such as paper mill sludge, a certain amount of water must be present to attain fluidity. In this study, hemicellulose pre-hydrolysate, in place of water, was added to the sludge to increase the concentration of the final product. Pre-hydrolysate was obtained by hot-water treatment of pine wood in which the total sugar concentration reached 4 wt.%. The mixture was processed by simultaneous saccharification and fermentation (SSF) using enzymes (cellulase and pectinase) and Lactobacillus rhamnosus (ATCC-10863). Pectinase was added to hydrolyze mannose oligomers in the pre-hydrolysate to monomers. During the SSF of the mixture, calcium carbonate in the paper sludge acted as a buffer, yielding calcium lactate as the final product. External pH control was unnecessary due to the buffer action of calcium carbonate that maintained the pH near optimum for the SSF. The lactic acid yield in the range of 80-90 % of the theoretical maximum was obtained. Use of the mixed feed of pre-hydrolysate and pulp mill sludges in the SSF raised the product concentration to 60 g of lactate/L.

  16. Transcription of lignocellulose-decomposition associated genes, enzyme activities and production of ethanol upon bioconversion of waste substrate by Phlebia radiata.

    PubMed

    Mäkinen, Mari A; Risulainen, Netta; Mattila, Hans; Lundell, Taina K

    2018-05-04

    Previously identified twelve plant cell wall degradation-associated genes of the white rot fungus Phlebia radiata were studied by RT-qPCR in semi-aerobic solid-state cultures on lignocellulose waste material, and on glucose-containing reference medium. Wood-decay-involved enzyme activities and ethanol production were followed to elucidate both the degradative and fermentative processes. On the waste lignocellulose substrate, P. radiata carbohydrate-active enzyme (CAZy) genes encoding cellulolytic and hemicellulolytic activities were significantly upregulated whereas genes involved in lignin modification displayed a more complex response. Two lignin peroxidase genes were differentially expressed on waste lignocellulose compared to glucose medium, whereas three manganese peroxidase-encoding genes were less affected. On the contrary, highly significant difference was noticed for three cellulolytic genes (cbhI_1, eg1, bgl1) with higher expression levels on the lignocellulose substrate than on glucose. This indicates expression of the wood-attacking degradative enzyme system by the fungus also on the recycled, waste core board material. During the second week of cultivation, ethanol production increased on the core board to 0.24 g/L, and extracellular activities against cellulose, xylan, and lignin were detected. Sugar release from the solid lignocellulose resulted with concomitant accumulation of ethanol as fermentation product. Our findings confirm that the fungus activates its white rot decay system also on industrially processed lignocellulose adopted as growth substrate, and under semi-aerobic cultivation conditions. Thus, P. radiata is a good candidate for lignocellulose-based renewable biotechnology to make biofuels and biocompounds from materials with less value for recycling or manufacturing.

  17. The introduction of yellow mealworm (Tenebrio Molitor L.) into BLSS as a source of animal protein for humans: experiments and modeling

    NASA Astrophysics Data System (ADS)

    Li, Leyuan; Liu, lh64. Hong; Ruo Zhao, Zhi

    2012-07-01

    In bioregenerative life support systems, using inedible plant biomass to feed animals can provide animal protein for astronauts, while at the same time treating with wastes so as to increase the degree of system closure and the efficiency of material cycling. In this study, an analysis and demonstration on the potential of yellow mealworms (Tenebrio molitor L.) as an animal candidate in the system was presented. The feasibility of feeding T. molitor with inedible parts of wheat and vegetables was studied. Moreover, a process for straw fermentation was selected. T. molitor was fed on wheat bran for the first 10 days, and then gradually, fermented straw was added. Old leaves of Chinese cabbage were used as supplementary feedstuff. The results showed that T. molitor larvae fed on this diet survived and grew normally, their fresh and dry weight achieved 56.15% and 46.76% of the larvae fed on a conventional diet, respectively. The bioconversion rate of the larvae was 16.07%, which was 88.05% of the conventional diet group. The protein and fat contents were 76.14% and 6.44% on dry weigh, respectively. Through the processes of anaerobic fermentation and mealworm consumption, the straw lost about 47.79% of the initial dry weight, and its lignocellulose had a degradation of about 45.74%. Wheat germination test indicated that the frass of T. molitor has the potential to be utilized as plant cultivation substrate after certain treatment. Stoichiometric modeling of BLSS containing T. molitor was also conducted.

  18. Bioconversion of glycerol to 1,3-propanediol in thin stillage-based media by engineered Lactobacillus panis PM1.

    PubMed

    Kang, Tae Sun; Korber, Darren R; Tanaka, Takuji

    2014-04-01

    Thin stillage (TS) is a waste residue that remains after bioethanol production, and its disposal reflects the high costs of bioethanol production. Thus, the development of cost-effective ways to process TS is a pending issue in bioethanol plants. The aim of this study was to evaluate the utilization of TS for the production of the valuable chemical, 1,3-propanediol (1,3-PDO), by Lactobacillus panis PM1. Different fermentation parameters, including temperature, pH and strains [wild-type and a recombinant strain expressing a NADPH-dependent aldehyde reductase (YqhD) gene] were tested in batch and fed-batch cultivations. The highest 1,3-PDO concentration (12.85 g/L) and yield (0.84 g/g) were achieved by batch fermentation at pH-4.5/30 °C by the YqhD recombinant strain. Furthermore, pH-controlled batch fermentation reduced the total fermentation period, resulting in the maximal 1,3-PDO concentration of 16.23 g/L and yield of 0.72 g/g in TS without an expensive nutrient or nitrogen (e.g., yeast extract, beef extract, and peptone) supplementation. The addition of two trace elements, Mg(2+) and Mn(2+), in TS increased 1,3-PDO yield (0.74 g/g) without 3-hydroxypropionaldehyde production, the only intermediate of 1,3-PDO biosynthetic pathway in L. panis PM1. Our results suggest that L. panis PM1 can offer a cost-effective process that utilizes the TS to produce a value-added chemical, 1,3-PDO.

  19. Conversion of phenolic constituents in aqueous Hamamelis virginiana leaf extracts during fermentation.

    PubMed

    Duckstein, Sarina M; Lorenz, Peter; Stintzing, Florian C

    2012-01-01

    Hamamelis virginiana, known for its high level of tannins and other phenolics is widely used for treatment of dermatological disorders. Although reports on hydroalcoholic and aqueous extracts from Hamamelis leaf and bark exist, knowledge on fermented leaf preparations and the underlying conversion processes are still scant. Aqueous Hamamelis leaf extracts were monitored during fermentation and maturation in order to obtain an insight into the bioconversion of tannins and other phenolics. Aliquots taken during the production period were investigated by HPLC-DAD-MS/MS as well as GC-MS after derivatisation into the corresponding trimethylsilyl compounds. In Hamamelis leaf extracts, the main constituents exhibited changes during the observational period of 6 months. By successive depside bond cleavage, the gallotannins were completely transformed into gallic acid after 1 month. Although not completely, kaempferol and quercetin glycosides were also converted during 6 months to yield their corresponding aglycones. Following C-ring fission, phloroglucinol was formed from the A-ring of both flavonols. The B-ring afforded 3-hydroxybenzoic acid from quercetin and 3,4-dihydroxybenzoic acid as well as 2-(4-hydroxyphenyl)-ethanol from kaempferol. Interestingly, hydroxycinnamic acids remained almost stable in the same time range. The present study broadens the knowledge on conversion processes in aqueous fermented extracts containing tannins, flavonol glycosides and hydroxycinnamic acids. In particular, the analogy between the microbial metabolism of phenolics from fermented Hamamelis extracts, fermented sourdough by heterofermentative lactic acid bacteria or conversion of phenolics by the human microbial flora is indicated. Copyright © 2012 John Wiley & Sons, Ltd.

  20. Microbial conversion of coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bean, R.M.

    1989-10-01

    The objectives of this project were to describe in detail the degradation of coals by fungi and microbes, to expand the range of applicability of the process to include new microbes and other coal types, to identify the means by which biosolubilization of coal is accomplished, and to explore means to enhance the rates and extent of coal bioconversion. The project was initiated in a response to the discovery by Dr. Martin Cohen at the University of Hartford, of a fungal strain of Coriolus versicolor that would render a solid coal substance, leonardite, into a liquid product. The project hasmore » identified the principal agent of leonardite solubilization as a powerful metal chelator, most likely a fungal-produced siderophore. Another nonlaccase enzyme has also been identified as a unique biosolubilizing agent produced by C. versicolor. Assays were developed for the quantitative determination of biological coal conversion, and for the determination of potency of biosolubilizing agent. Screening studies uncovered several microbial organisms capable of coal biodegradation, and led to the discovery that prolonged heating in air at the moderate temperature of 150{degree}C allowed the biodegradation of Illinois {number sign}6 coal to material soluble in dilute base. Chemical studies showed that leonardite biosolubilization was accompanied by relatively small change in composition, while solubilization of Illinois {number sign}6 coal involves considerable oxidation of the coal. 24 refs., 32 figs., 27 tabs.« less

  1. Compounds inhibiting the bioconversion of hydrothermally pretreated lignocellulose.

    PubMed

    Ko, Ja Kyong; Um, Youngsoon; Park, Yong-Cheol; Seo, Jin-Ho; Kim, Kyoung Heon

    2015-05-01

    Hydrothermal pretreatment using liquid hot water, steam explosion, or dilute acids enhances the enzymatic digestibility of cellulose by altering the chemical and/or physical structures of lignocellulosic biomass. However, compounds that inhibit both enzymes and microbial activity, including lignin-derived phenolics, soluble sugars, furan aldehydes, and weak acids, are also generated during pretreatment. Insoluble lignin, which predominantly remains within the pretreated solids, also acts as a significant inhibitor of cellulases during hydrolysis of cellulose. Exposed lignin, which is modified to be more recalcitrant to enzymes during pretreatment, adsorbs cellulase nonproductively and reduces the availability of active cellulase for hydrolysis of cellulose. Similarly, lignin-derived phenolics inhibit or deactivate cellulase and β-glucosidase via irreversible binding or precipitation. Meanwhile, the performance of fermenting microorganisms is negatively affected by phenolics, sugar degradation products, and weak acids. This review describes the current knowledge regarding the contributions of inhibitors present in whole pretreatment slurries to the enzymatic hydrolysis of cellulose and fermentation. Furthermore, we discuss various biological strategies to mitigate the effects of these inhibitors on enzymatic and microbial activity to improve the lignocellulose-to-biofuel process robustness. While the inhibitory effect of lignin on enzymes can be relieved through the use of lignin blockers and by genetically engineering the structure of lignin or of cellulase itself, soluble inhibitors, including phenolics, furan aldehydes, and weak acids, can be detoxified by microorganisms or laccase.

  2. Microbial Degradation of Lobster Shells to Extract Chitin Derivatives for Plant Disease Management.

    PubMed

    Ilangumaran, Gayathri; Stratton, Glenn; Ravichandran, Sridhar; Shukla, Pushp S; Potin, Philippe; Asiedu, Samuel; Prithiviraj, Balakrishnan

    2017-01-01

    Biodegradation of lobster shells by chitinolytic microorganisms are an environment safe approach to utilize lobster processing wastes for chitin derivation. In this study, we report degradation activities of two microbes, "S223" and "S224" isolated from soil samples that had the highest rate of deproteinization, demineralization and chitinolysis among ten microorganisms screened. Isolates S223 and S224 had 27.3 and 103.8 protease units mg -1 protein and 12.3 and 11.2 μg ml -1 of calcium in their samples, respectively, after 1 week of incubation with raw lobster shells. Further, S223 contained 23.8 μg ml -1 of N -Acetylglucosamine on day 3, while S224 had 27.3 μg ml -1 on day 7 of incubation with chitin. Morphological observations and 16S rDNA sequencing suggested both the isolates were Streptomyces . The culture conditions were optimized for efficient degradation of lobster shells and chitinase (∼30 kDa) was purified from crude extract by affinity chromatography. The digested lobster shell extracts induced disease resistance in Arabidopsis by induction of defense related genes ( PR1 > 500-fold, PDF1.2 > 40-fold) upon Pseudomonas syringae and Botrytis cinerea infection. The study suggests that soil microbes aid in sustainable bioconversion of lobster shells and extraction of chitin derivatives that could be applied in plant protection.

  3. Isothiocyanate concentrations and interconversion of sulforaphane to erucin in human subjects after consumption of commercial frozen broccoli compared to fresh broccoli.

    PubMed

    Saha, Shikha; Hollands, Wendy; Teucher, Birgit; Needs, Paul W; Narbad, Arjan; Ortori, Catharine A; Barrett, David A; Rossiter, John T; Mithen, Richard F; Kroon, Paul A

    2012-12-01

    Sulforaphane (a potent anticarcinogenic isothiocyanate derived from glucoraphanin) is widely considered responsible for the protective effects of broccoli consumption. Broccoli is typically purchased fresh or frozen and cooked before consumption. We compared the bioavailability and metabolism of sulforaphane from portions of lightly cooked fresh or frozen broccoli, and investigated the bioconversion of sulforaphane to erucin. Eighteen healthy volunteers consumed broccoli soups produced from fresh or frozen broccoli florets that had been lightly cooked and sulforaphane thio-conjugates quantified in plasma and urine. Sulforaphane bioavailability was about tenfold higher for the soups made from fresh compared to frozen broccoli, and the reduction was shown to be due to destruction of myrosinase activity by the commercial blanching-freezing process. Sulforaphane appeared in plasma and urine in its free form and as several thio-conjugates forms. Erucin N-acetyl-cysteine conjugate was a significant urinary metabolite, and it was shown that human gut microflora can produce sulforaphane, erucin, and their nitriles from glucoraphanin. The short period of blanching used to produce commercial frozen broccoli destroys myrosinase and substantially reduces sulforaphane bioavailability. Sulforaphane was converted to erucin and excreted in urine, and it was shown that human colonic flora were capable of this conversion. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Microbial Degradation of Lobster Shells to Extract Chitin Derivatives for Plant Disease Management

    PubMed Central

    Ilangumaran, Gayathri; Stratton, Glenn; Ravichandran, Sridhar; Shukla, Pushp S.; Potin, Philippe; Asiedu, Samuel; Prithiviraj, Balakrishnan

    2017-01-01

    Biodegradation of lobster shells by chitinolytic microorganisms are an environment safe approach to utilize lobster processing wastes for chitin derivation. In this study, we report degradation activities of two microbes, “S223” and “S224” isolated from soil samples that had the highest rate of deproteinization, demineralization and chitinolysis among ten microorganisms screened. Isolates S223 and S224 had 27.3 and 103.8 protease units mg-1 protein and 12.3 and 11.2 μg ml-1 of calcium in their samples, respectively, after 1 week of incubation with raw lobster shells. Further, S223 contained 23.8 μg ml-1 of N-Acetylglucosamine on day 3, while S224 had 27.3 μg ml-1 on day 7 of incubation with chitin. Morphological observations and 16S rDNA sequencing suggested both the isolates were Streptomyces. The culture conditions were optimized for efficient degradation of lobster shells and chitinase (∼30 kDa) was purified from crude extract by affinity chromatography. The digested lobster shell extracts induced disease resistance in Arabidopsis by induction of defense related genes (PR1 > 500-fold, PDF1.2 > 40-fold) upon Pseudomonas syringae and Botrytis cinerea infection. The study suggests that soil microbes aid in sustainable bioconversion of lobster shells and extraction of chitin derivatives that could be applied in plant protection. PMID:28529501

  5. Seasonal Variation on Microbial Community and Methane Production during Anaerobic Digestion of Cattle Manure in Brazil.

    PubMed

    Resende, Juliana Alves; Godon, Jean-Jacques; Bonnafous, Anaïs; Arcuri, Pedro Braga; Silva, Vânia Lúcia; Otenio, Marcelo Henrique; Diniz, Cláudio Galuppo

    2016-04-01

    Anaerobic digestion is an alternative method for the treatment of animal manure and wastewater. The anaerobic bioconversion of biomass requires a multi-step biological process, including microorganisms with distinct roles. The diversity and composition of microbial structure in pilot-scale anaerobic digestion operating at ambient temperature in Brazil were studied. Influence of the seasonal and temporal patterns on bacterial and archaeal communities were assessed by studying the variations in density, dynamic and diversity and structure. The average daily biogas produced in the summer and winter months was 18.7 and 16 L day(-1), respectively, and there was no difference in the average methane yield. Quantitative PCR analysis revealed that no differences in abundances and dynamics were found for bacterial communities and the total number of Archaea in different seasons. Analysis of bacterial clone libraries revealed a predominance of Firmicutes (54.5 %/summer and 46.7 %/winter) and Bacteroidetes (31.4 %/summer and 44.4 %/winter). Within the Archaea, the phylum Euryarchaeota was predominant in both digesters. Phylogenetic distribution showed changes in percentage between the phyla identified, but no alterations were recorded in the quality and amount of produced methane or community dynamics. The results may suggest that redundancy of microbial groups may have occurred, pointing to a more complex microbial community in the ecosystem related to this ambient temperature system.

  6. Mitigating Nitrous Oxide Emissions from Tea Field Soil Using Bioaugmentation with a Trichoderma viride Biofertilizer

    PubMed Central

    Xu, Shengjun; Fu, Xiaoqing; Ma, Shuanglong; Xiao, Runlin; Li, Yong; Zhuang, Guoqiang

    2014-01-01

    Land-use conversion from woodlands to tea fields in subtropical areas of central China leads to increased nitrous oxide (N2O) emissions, partly due to increased nitrogen fertilizer use. A field investigation of N2O using a static closed chamber-gas chromatography revealed that the average N2O fluxes in tea fields with 225 kg N ha−1 yr−1 fertilizer application were 9.4 ± 6.2 times higher than those of woodlands. Accordingly, it is urgent to develop practices for mitigating N2O emissions from tea fields. By liquid-state fermentation of sweet potato starch wastewater and solid-state fermentation of paddy straw with application of Trichoderma viride, we provided the tea plantation with biofertilizer containing 2.4 t C ha−1 and 58.7 kg N ha−1. Compared to use of synthetic N fertilizer, use of biofertilizer at 225 kg N ha−1 yr−1 significantly reduced N2O emissions by 33.3%–71.8% and increased the tea yield by 16.2%–62.2%. Therefore, the process of bioconversion/bioaugmentation tested in this study was found to be a cost-effective and feasible approach to reducing N2O emissions and can be considered the best management practice for tea fields. PMID:24955418

  7. A soil biotechnology system for wastewater treatment: technical, hygiene, environmental LCA and economic aspects.

    PubMed

    Kamble, Sheetal Jaisingh; Chakravarthy, Yogita; Singh, Anju; Chubilleau, Caroline; Starkl, Markus; Bawa, Itee

    2017-05-01

    Soil biotechnology (SBT) is a green engineering approach for wastewater treatment and recycling. Five SBT units located in the Mumbai region were under consideration of which holistic assessment of two SBT plants was carried out considering its technical, environmental and economic aspects and was compared with published research of other three. LCA has been done to evaluate the environmental impacts of construction and operation phase of SBT. Chemical oxygen demand (COD) and biochemical oxygen demand (BOD) removal of more than 90% can be achieved using this technology. Also, the nutrient removal proficiency (nitrate, nitrite, ammoniacal nitrogen, TKN, total nitrogen and phosphates) of this technique is good. On the other hand, SBT has low annual operation and maintenance cost, comparable to land-based systems and lower than conventional or advanced technologies. From the life cycle impact assessment, the main contributors for overall impact from the plant were identified as electricity consumption, discharges of COD, P-PO 4 3- and N-NH 4 + and disposal of sludge. The construction phase was found to have significantly more impact than the operation phase of the plant. This study suggests plant I is not relatively as efficient enough regarding sanitation. SBT provides several benefits over other conventional technologies for wastewater treatment. It is based on a bio-conversion process and is practically maintenance free. It does not produce any odorous bio-sludge and consumes the least energy.

  8. Bioconversion of methane to lactate by an obligate methanotrophic bacterium

    DOE PAGES

    Henard, Calvin A.; Smith, Holly; Dowe, Nancy; ...

    2016-02-23

    Methane is the second most abundant greenhouse gas (GHG), with nearly 60% of emissions derived from anthropogenic sources. Microbial conversion of methane to fuels and value-added chemicals offers a means to reduce GHG emissions, while also valorizing this otherwise squandered high-volume, high-energy gas. However, to date, advances in methane biocatalysis have been constrained by the low-productivity and limited genetic tractability of natural methane-consuming microbes. Here, leveraging recent identification of a novel, tractable methanotrophic bacterium, Methylomicrobium buryatense, we demonstrate microbial biocatalysis of methane to lactate, an industrial platform chemical. Heterologous overexpression of a Lactobacillus helveticus L-lactate dehydrogenase in M. buryatense resultedmore » in an initial titer of 0.06 g lactate/L from methane. Cultivation in a 5 L continuously stirred tank bioreactor enabled production of 0.8 g lactate/L, representing a 13-fold improvement compared to the initial titer. The yields (0.05 g lactate/g methane) and productivity (0.008 g lactate/L/h) indicate the need and opportunity for future strain improvement. Additionally, real-time analysis of methane utilization implicated gas-to-liquid transfer and/or microbial methane consumption as process limitations. This work opens the door to develop an array of methanotrophic bacterial strain-engineering strategies currently employed for biocatalytic sugar upgrading to “green” chemicals and fuels.« less

  9. Bioconversion of methane to lactate by an obligate methanotrophic bacterium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henard, Calvin A.; Smith, Holly; Dowe, Nancy

    Methane is the second most abundant greenhouse gas (GHG), with nearly 60% of emissions derived from anthropogenic sources. Microbial conversion of methane to fuels and value-added chemicals offers a means to reduce GHG emissions, while also valorizing this otherwise squandered high-volume, high-energy gas. However, to date, advances in methane biocatalysis have been constrained by the low-productivity and limited genetic tractability of natural methane-consuming microbes. Here, leveraging recent identification of a novel, tractable methanotrophic bacterium, Methylomicrobium buryatense, we demonstrate microbial biocatalysis of methane to lactate, an industrial platform chemical. Heterologous overexpression of a Lactobacillus helveticus L-lactate dehydrogenase in M. buryatense resultedmore » in an initial titer of 0.06 g lactate/L from methane. Cultivation in a 5 L continuously stirred tank bioreactor enabled production of 0.8 g lactate/L, representing a 13-fold improvement compared to the initial titer. The yields (0.05 g lactate/g methane) and productivity (0.008 g lactate/L/h) indicate the need and opportunity for future strain improvement. Additionally, real-time analysis of methane utilization implicated gas-to-liquid transfer and/or microbial methane consumption as process limitations. This work opens the door to develop an array of methanotrophic bacterial strain-engineering strategies currently employed for biocatalytic sugar upgrading to “green” chemicals and fuels.« less

  10. Anaerobic digestion of selected Italian agricultural and industrial residues (grape seeds and leather dust): combined methane production and digestate characterization.

    PubMed

    Caramiello, C; Lancellotti, I; Righi, F; Tatàno, F; Taurino, R; Barbieri, L

    2013-01-01

    A combined experimental evaluation of methane production (obtained by anaerobic digestion) and detailed digestate characterization (with physical-chemical, thermo-gravimetric and mineralogical approaches) was conducted on two organic substrates, which are specific to Italy (at regional and national levels). One of the substrates was grape seeds, which have an agricultural origin, whereas the other substrate was vegetable-tanned leather dust, which has an industrial origin. Under the assumed experimental conditions of the performed lab-scale test series, the grape seed substrate exhibited a resulting net methane production of 175.0 NmL g volatile solids (VS)(-1); hence, it can be considered as a potential energy source via anaerobic digestion. Conversely, the net methane production obtained from the anaerobic digestion of the vegetable-tanned leather dust substrate was limited to 16.1 NmL gVS(-1). A detailed characterization of the obtained digestates showed that there were both nitrogen-containing compounds and complex organic compounds present in the digestate that was obtained from the mixture of leather dust and inoculum. As a general perspective of this experimental study, the application of diversified characterization analyzes could facilitate (1) a better understanding of the main properties of the obtained digestates to evaluate their potential valorization, and (2) a combination of the digestate characteristics with the corresponding methane productions to comprehensively evaluate the bioconversion process.

  11. Whole genome and global gene expression analyses of the model mushroom Flammulina velutipes reveal a high capacity for lignocellulose degradation.

    PubMed

    Park, Young-Jin; Baek, Jeong Hun; Lee, Seonwook; Kim, Changhoon; Rhee, Hwanseok; Kim, Hyungtae; Seo, Jeong-Sun; Park, Hae-Ran; Yoon, Dae-Eun; Nam, Jae-Young; Kim, Hong-Il; Kim, Jong-Guk; Yoon, Hyeokjun; Kang, Hee-Wan; Cho, Jae-Yong; Song, Eun-Sung; Sung, Gi-Ho; Yoo, Young-Bok; Lee, Chang-Soo; Lee, Byoung-Moo; Kong, Won-Sik

    2014-01-01

    Flammulina velutipes is a fungus with health and medicinal benefits that has been used for consumption and cultivation in East Asia. F. velutipes is also known to degrade lignocellulose and produce ethanol. The overlapping interests of mushroom production and wood bioconversion make F. velutipes an attractive new model for fungal wood related studies. Here, we present the complete sequence of the F. velutipes genome. This is the first sequenced genome for a commercially produced edible mushroom that also degrades wood. The 35.6-Mb genome contained 12,218 predicted protein-encoding genes and 287 tRNA genes assembled into 11 scaffolds corresponding with the 11 chromosomes of strain KACC42780. The 88.4-kb mitochondrial genome contained 35 genes. Well-developed wood degrading machinery with strong potential for lignin degradation (69 auxiliary activities, formerly FOLymes) and carbohydrate degradation (392 CAZymes), along with 58 alcohol dehydrogenase genes were highly expressed in the mycelium, demonstrating the potential application of this organism to bioethanol production. Thus, the newly uncovered wood degrading capacity and sequential nature of this process in F. velutipes, offer interesting possibilities for more detailed studies on either lignin or (hemi-) cellulose degradation in complex wood substrates. The mutual interest in wood degradation by the mushroom industry and (ligno-)cellulose biomass related industries further increase the significance of F. velutipes as a new model.

  12. Bioconversion of methane to lactate by an obligate methanotrophic bacterium

    PubMed Central

    Henard, Calvin A.; Smith, Holly; Dowe, Nancy; Kalyuzhnaya, Marina G.; Pienkos, Philip T.; Guarnieri, Michael T.

    2016-01-01

    Methane is the second most abundant greenhouse gas (GHG), with nearly 60% of emissions derived from anthropogenic sources. Microbial conversion of methane to fuels and value-added chemicals offers a means to reduce GHG emissions, while also valorizing this otherwise squandered high-volume, high-energy gas. However, to date, advances in methane biocatalysis have been constrained by the low-productivity and limited genetic tractability of natural methane-consuming microbes. Here, leveraging recent identification of a novel, tractable methanotrophic bacterium, Methylomicrobium buryatense, we demonstrate microbial biocatalysis of methane to lactate, an industrial platform chemical. Heterologous overexpression of a Lactobacillus helveticus L-lactate dehydrogenase in M. buryatense resulted in an initial titer of 0.06 g lactate/L from methane. Cultivation in a 5 L continuously stirred tank bioreactor enabled production of 0.8 g lactate/L, representing a 13-fold improvement compared to the initial titer. The yields (0.05 g lactate/g methane) and productivity (0.008 g lactate/L/h) indicate the need and opportunity for future strain improvement. Additionally, real-time analysis of methane utilization implicated gas-to-liquid transfer and/or microbial methane consumption as process limitations. This work opens the door to develop an array of methanotrophic bacterial strain-engineering strategies currently employed for biocatalytic sugar upgrading to “green” chemicals and fuels. PMID:26902345

  13. Enhancement of fermentative hydrogen production from Spirogyra sp. by increased carbohydrate accumulation and selection of the biomass pretreatment under a biorefinery model.

    PubMed

    Pinto, Tiago; Gouveia, Luísa; Ortigueira, Joana; Saratale, Ganesh D; Moura, Patrícia

    2018-03-23

    In this work, hydrogen (H 2 ) was produced through the fermentation of Spirogyra sp. biomass by Clostridium butyricum DSM 10702. Macronutrient stress was applied to increase the carbohydrate content in Spirogyra, and a 36% (w/w) accumulation of carbohydrates was reached by nitrogen depletion. The use of wet microalga as fermentable substrate was compared with physically and chemically treated biomass for increased carbohydrate solubilisation. The combination of drying, bead beating and mild acid hydrolysis produced a saccharification yield of 90.3% (w/w). The H 2 production from Spirogyra hydrolysate was 3.9 L H 2  L -1 , equivalent to 146.3 mL H 2  g -1 microalga dry weight. The presence of protein (23.2 ± 0.3% w/w) and valuable pigments, such as astaxanthin (38.8% of the total pigment content), makes this microalga suitable to be used simultaneously in both food and feed applications. In a Spirogyra based biorefinery, the potential energy production and food-grade protein and pigments revenue per cubic meter of microalga culture per year was estimated on 7.4 MJ, US $412 and US $15, respectively, thereby contributing to the cost efficiency and sustainability of the whole bioconversion process. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. Optimization, purification and characterization of novel thermostable, haloalkaline, solvent stable protease from Bacillus halodurans CAS6 using marine shellfish wastes: a potential additive for detergent and antioxidant synthesis.

    PubMed

    Annamalai, Neelamegam; Rajeswari, Mayavan Veeramuthu; Thavasi, Rengathavasi; Vijayalakshmi, Shanmugam; Balasubramanian, Thangavel

    2013-07-01

    A protease producing marine bacterium, Bacillus halodurans CAS6 isolated from marine sediments, was found to produce higher enzyme by utilizing shrimp shell powder. Optimum culture conditions for protease production were 50 °C, pH 9.0, 30 % NaCl and 1 % shrimp shell powder (SSP) and the protease purified with a specific activity of 509.84 U/mg. The enzyme retained 100 % of its original activity even at 70 °C, pH 10.0 and 30 % NaCl for 1 h. The purified protease exhibited higher stability when treated with ionic, non-ionic (72-94 %) and commercial detergents (76-88 %), and organic solvents (88-126 %). Significant blood stain removal activity was found with the enzyme in washing experiments. The culture supernatant supplemented with 1 % SSP showed 93.67 ± 2.52 % scavenging activity and FT-IR analysis of the reaction mixture confirmed the presence of antioxidants such as cyclohexane and cyclic depsipeptide with aliphatic amino groups. These remarkable qualities found with this enzyme produced by Bacillus halodurans CAS6 could make this as an ideal candidate to develop the industrial process for bioconversion of marine wastes and antioxidant synthesis.

  15. Pretreatment of Corn Stover by Low Moisture Anhydrous Ammonia (LMAA) in a Pilot-Scale Reactor and Bioconversion to Fuel Ethanol and Industrial Chemicals.

    PubMed

    Nghiem, Nhuan P; Senske, Gerard E; Kim, Tae Hyun

    2016-04-01

    Corn stover (CS) adjusted to 50, 66, and 70 % moisture was pretreated by the low moisture anhydrous ammonia (LMAA) process in a pilot-scale ammoniation reactor. After ammoniation, the 70 % moisture CS was treated at 90 and 100 °C whereas the others were treated at 90 °C only. The 70 % moisture pretreated CS then was subjected to a storage study under non-sterile conditions for 3 months. It was found that storage time did not have significant effects on the compositions of the pretreated materials and their hydrolysis by commercial enzymes. The 70 % moisture CS treated at 90 °C was used for preparation of a mix sugar hydrolysate (MSH) using combination of cellulase and xylanase. The MSH was used to prepare a corn mash at 9.5 wt% solid then subjected to ethanol fermentation by Escherichia coli KO11. The 66 % moisture CS treated at 90 °C was hydrolyzed with xylanase to make a xylose-rich hydrolysate (XRH), which was subsequently used for butyric acid fermentation by Clostridium tyrobutyricum. The resultant cellulose-enriched residue was hydrolyzed with cellulase to make a glucose-rich hydrolysate (GRH), which was subsequently used for succinic acid fermentation by E. coli AFP184.

  16. Whole Genome and Global Gene Expression Analyses of the Model Mushroom Flammulina velutipes Reveal a High Capacity for Lignocellulose Degradation

    PubMed Central

    Park, Young-Jin; Baek, Jeong Hun; Lee, Seonwook; Kim, Changhoon; Rhee, Hwanseok; Kim, Hyungtae; Seo, Jeong-Sun; Park, Hae-Ran; Yoon, Dae-Eun; Nam, Jae-Young; Kim, Hong-Il; Kim, Jong-Guk; Yoon, Hyeokjun; Kang, Hee-Wan; Cho, Jae-Yong; Song, Eun-Sung; Sung, Gi-Ho; Yoo, Young-Bok; Lee, Chang-Soo; Lee, Byoung-Moo; Kong, Won-Sik

    2014-01-01

    Flammulina velutipes is a fungus with health and medicinal benefits that has been used for consumption and cultivation in East Asia. F. velutipes is also known to degrade lignocellulose and produce ethanol. The overlapping interests of mushroom production and wood bioconversion make F. velutipes an attractive new model for fungal wood related studies. Here, we present the complete sequence of the F. velutipes genome. This is the first sequenced genome for a commercially produced edible mushroom that also degrades wood. The 35.6-Mb genome contained 12,218 predicted protein-encoding genes and 287 tRNA genes assembled into 11 scaffolds corresponding with the 11 chromosomes of strain KACC42780. The 88.4-kb mitochondrial genome contained 35 genes. Well-developed wood degrading machinery with strong potential for lignin degradation (69 auxiliary activities, formerly FOLymes) and carbohydrate degradation (392 CAZymes), along with 58 alcohol dehydrogenase genes were highly expressed in the mycelium, demonstrating the potential application of this organism to bioethanol production. Thus, the newly uncovered wood degrading capacity and sequential nature of this process in F. velutipes, offer interesting possibilities for more detailed studies on either lignin or (hemi-) cellulose degradation in complex wood substrates. The mutual interest in wood degradation by the mushroom industry and (ligno-)cellulose biomass related industries further increase the significance of F. velutipes as a new model. PMID:24714189

  17. Metabolic networks to generate pyruvate, PEP and ATP from glycerol in Pseudomonas fluorescens.

    PubMed

    Alhasawi, Azhar; Thomas, Sean C; Appanna, Vasu D

    2016-04-01

    Glycerol is a major by-product of the biodiesel industry. In this study we report on the metabolic networks involved in its transformation into pyruvate, phosphoenolpyruvate (PEP) and ATP. When the nutritionally-versatile Pseudomonas fluorescens was exposed to hydrogen peroxide (H2O2) in a mineral medium with glycerol as the sole carbon source, the microbe reconfigured its metabolism to generate adenosine triphosphate (ATP) primarily via substrate-level phosphorylation (SLP). This alternative ATP-producing stratagem resulted in the synthesis of copious amounts of PEP and pyruvate. The production of these metabolites was mediated via the enhanced activities of such enzymes as pyruvate carboxylase (PC) and phosphoenolpyruvate carboxylase (PEPC). The high energy PEP was subsequently converted into ATP with the aid of pyruvate phosphate dikinase (PPDK), phosphoenolpyruvate synthase (PEPS) and pyruvate kinase (PK) with the concomitant formation of pyruvate. The participation of the phospho-transfer enzymes like adenylate kinase (AK) and acetate kinase (ACK) ensured the efficiency of this O2-independent energy-generating machinery. The increased activity of glycerol dehydrogenase (GDH) in the stressed bacteria provided the necessary precursors to fuel this process. This H2O2-induced anaerobic life-style fortuitously evokes metabolic networks to an effective pathway that can be harnessed into the synthesis of ATP, PEP and pyruvate. The bioconversion of glycerol to pyruvate will offer interesting economic benefit. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Molecular Characterization and Potential Synthetic Applications of GH1 β-Glucosidase from Higher Termite Microcerotermes annandalei.

    PubMed

    Arthornthurasuk, Siriphan; Jenkhetkan, Wantha; Suwan, Eukote; Chokchaichamnankit, Daranee; Srisomsap, Chantragan; Wattana-Amorn, Pakorn; Svasti, Jisnuson; Kongsaeree, Prachumporn T

    2018-05-19

    A novel β-glucosidase from higher termite Microcerotermes annandalei (MaBG) was obtained via a screening method targeting β-glucosidases with increased activities in the presence of glucose. The purified natural MaBG showed a subunit molecular weight of 55 kDa and existed in a native form as a dimer without any glycosylation. Gene-specific primers designed from its partial amino acid sequences were used to amplify the corresponding 1,419-bp coding sequence of MaBG which encodes a 472-amino acid glycoside hydrolase family 1 (GH1) β-glucosidase. When expressed in Komagataella pastoris, the recombinant MaBG appeared as a ~ 55-kDa protein without glycosylation modifications. Kinetic parameters as well as the lack of secretion signal suggested that MaBG is an intracellular enzyme and not involved in cellulolysis. The hydrolytic activities of MaBG were enhanced in the presence of up to 3.5-4.5 M glucose, partly due to its strong transglucosylation activity, which suggests its applicability in biosynthetic processes. The potential synthetic activities of the recombinant MaBG were demonstrated in the synthesis of para-nitrophenyl-β-D-gentiobioside via transglucosylation and octyl glucoside via reverse hydrolysis. The information obtained from this study has broadened our insight into the functional characteristics of this variant of termite GH1 β-glucosidase and its applications in bioconversion and biotechnology.

  19. One-pot bioconversion of algae biomass into terpenes for advanced biofuels and bioproducts

    DOE PAGES

    Davis, Ryan Wesley; Wu, Weihua

    2016-01-01

    In this study, rising demand for transportation fuels, diminishing reserved of fossil oil, and the concerns with fossil fuel derived environmental pollution as well as the green-house gas emission derived climate change have resulted in the compelling need for alternative, sustainable new energy sources(1). Algae-based biofuels have been considered one of the promising alternatives to fossil fuels as they can overcome some of these issues (2-4). The current state-of-art of algal biofuel technologies have primarily focused on biodiesel production through prompting high algal lipid yields under the nutrient stress conditions. There are less interests of using algae-based carbohydrate and proteinsmore » as carbon sources for the fermentative production of liquid fuel compounds or other high-value bioproducts(5-7).« less

  20. Modeling of anaerobic degradation of solid slaughterhouse waste: inhibition effects of long-chain fatty acids or ammonia.

    PubMed

    Lokshina, L Y; Vavilin, V A; Salminen, E; Rintala, J

    2003-01-01

    The anaerobic bioconversion of solid poultry slaughterhouse wastes was kinetically investigated. The modified version of simulation model was applied for description of experimental data in mesophilic laboratory digester and assays. Additionally, stages of formation and consumption of long chain fatty acids (LCFA) were included in the model. Batch data on volatile solids, ammonium, acetate, butyrate, propionate, LCFA concentrations, pH level, cumulative volume, and methane partial pressure were used for model calibration. As a reference, the model was used to describe digestion of solid sorted household waste. Simulation results showed that an inhibition of polymer hydrolysis by volatile fatty acids and acetogenesis by NH3 or LCFA could be responsible for the complex system dynamics during degradation of lipid- and protein-rich wastes.

Top