Sample records for integrated cargo database

  1. Utilizing ORACLE tools within Unix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferguson, R.

    1995-07-01

    Large databases, by their very nature, often serve as repositories of data which may be needed by other systems. The transmission of this data to other systems has in the past involved several layers of human intervention. The Integrated Cargo Data Base (ICDB) developed by Martin Marietta Energy Systems for the Military Traffic Management Command as part of the Worldwide Port System provides data integration and worldwide tracking of cargo that passes through common-user ocean cargo ports. One of the key functions of ICDB is data distribution of a variety of data files to a number of other systems. Developmentmore » of automated data distribution procedures had to deal with the following constraints: (1) variable generation time for data files, (2) use of only current data for data files, (3) use of a minimum number of select statements, (4) creation of unique data files for multiple recipients, (5) automatic transmission of data files to recipients, and (6) avoidance of extensive and long-term data storage.« less

  2. Internal Cargo Integration

    NASA Technical Reports Server (NTRS)

    Hart, Angela

    2006-01-01

    A description of internal cargo integration is presented. The topics include: 1) Typical Cargo for Launch/Disposal; 2) Cargo Delivery Requirements; 3) Cargo Return Requirements; and 4) Vehicle On-Orbit Stay Time.

  3. 46 CFR 154.1860 - Integral tanks: Cargo colder than −10 °C (14 °F).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Integral tanks: Cargo colder than â10 °C (14 °F). 154....1860 Integral tanks: Cargo colder than −10 °C (14 °F). The master shall ensure that an integral tank does not carry a cargo colder than −10 °C (14 °F) unless that carriage is specially approved by the...

  4. 46 CFR 154.1860 - Integral tanks: Cargo colder than −10 °C (14 °F).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Integral tanks: Cargo colder than â10 °C (14 °F). 154....1860 Integral tanks: Cargo colder than −10 °C (14 °F). The master shall ensure that an integral tank does not carry a cargo colder than −10 °C (14 °F) unless that carriage is specially approved by the...

  5. 46 CFR 154.1860 - Integral tanks: Cargo colder than −10 °C (14 °F).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Integral tanks: Cargo colder than â10 °C (14 °F). 154....1860 Integral tanks: Cargo colder than −10 °C (14 °F). The master shall ensure that an integral tank does not carry a cargo colder than −10 °C (14 °F) unless that carriage is specially approved by the...

  6. 46 CFR 154.1860 - Integral tanks: Cargo colder than −10 °C (14 °F).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Integral tanks: Cargo colder than â10 °C (14 °F). 154....1860 Integral tanks: Cargo colder than −10 °C (14 °F). The master shall ensure that an integral tank does not carry a cargo colder than −10 °C (14 °F) unless that carriage is specially approved by the...

  7. 46 CFR 154.1860 - Integral tanks: Cargo colder than −10 °C (14 °F).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Integral tanks: Cargo colder than â10 °C (14 °F). 154....1860 Integral tanks: Cargo colder than −10 °C (14 °F). The master shall ensure that an integral tank does not carry a cargo colder than −10 °C (14 °F) unless that carriage is specially approved by the...

  8. 78 FR 79289 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-30

    ... leakage into the main deck cargo wire integration unit (WIU). The water flowed from the main deck floor... deck cargo wire integration unit (WIU). The water flowed from the main deck floor panels, through...

  9. Characterizing Complexity of Containerized Cargo X-ray Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Guangxing; Martz, Harry; Glenn, Steven

    X-ray imaging can be used to inspect cargos imported into the United States. In order to better understand the performance of X-ray inspection systems, the X-ray characteristics (density, complexity) of cargo need to be quantified. In this project, an image complexity measure called integrated power spectral density (IPSD) was studied using both DNDO engineered cargos and stream-of-commerce (SOC) cargos. A joint distribution of cargo density and complexity was obtained. A support vector machine was used to classify the SOC cargos into four categories to estimate the relative fractions.

  10. The promise of air cargo-system aspects and vehicle design

    NASA Technical Reports Server (NTRS)

    Whitehead, A. H., Jr.

    1977-01-01

    A review of the current operation of the air cargo system is presented and the prospects for the future are discussed. Attention is given to air cargo demand forecasts, the economics of air cargo transport, the development of an integrated air cargo system, and the evolution of airfreighter design. Particular emphasis is placed on the span-distributed load concept, examining the Boeing, Douglas, and Lockheed spanloaders.

  11. The promise of air cargo: System aspects and vehicle design

    NASA Technical Reports Server (NTRS)

    Whitehead, A. H., Jr.

    1976-01-01

    The current operation of the air cargo system is reviewed. An assessment of the future of air cargo is provided by: (1) analyzing statistics and trends, (2) by noting system problems and inefficiencies, (3) by analyzing characteristics of 'air eligible' commodities, and (4) by showing the promise of new technology for future cargo aircraft with significant improvements in costs and efficiency. The following topics are discussed: (1) air cargo demand forecasts; (2) economics of air cargo transport; (3) the integrated air cargo system; (4) evolution of airfreighter design; and (5) the span distributed load concept.

  12. 49 CFR 178.337-3 - Structural integrity.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... calculated design stress at any point in the cargo tank may not exceed the maximum allowable stress value... maximum design stress at any point in the cargo tank must be calculated separately for the loading... with Section VIII of the ASME Code. The cargo tank design must include calculation of stresses...

  13. KSC-07pd3242

    NASA Image and Video Library

    2007-11-06

    KENNEDY SPACE CENTER, FLA. -- The payload canister containing the Columbus Laboratory module and integrated cargo carrier-lite is lifted up toward the payload changeout room on Launch Pad 39A at NASA's Kennedy Space Center. Once in place, the canister will be opened and the cargo transferred inside the payload changeout room. The payload will be installed in space shuttle Atlantis' payload bay.The canister contains the Columbus Lab module and integrated cargo carrier-lite payloads for space shuttle Atlantis on mission STS-122. Atlantis is targeted to launch on Dec. 6. Photo credit: NASA/Dimitri Gerondidakis

  14. 46 CFR 151.15-1 - Tank types.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Tank types. 151.15-1 Section 151.15-1 Shipping COAST... LIQUID HAZARDOUS MATERIAL CARGOES Tanks § 151.15-1 Tank types. This section lists the definitions of the various tank types required for cargo containment by Table 151.05. (a) Integral. A cargo containment...

  15. 46 CFR 151.15-1 - Tank types.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Tank types. 151.15-1 Section 151.15-1 Shipping COAST... LIQUID HAZARDOUS MATERIAL CARGOES Tanks § 151.15-1 Tank types. This section lists the definitions of the various tank types required for cargo containment by Table 151.05. (a) Integral. A cargo containment...

  16. 49 CFR 178.345-6 - Supports and anchoring.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Specifications for Containers for Motor Vehicle Transportation § 178.345-6 Supports and anchoring. (a) A cargo tank with a frame not integral to the cargo tank must have the tank secured by restraining devices to..., or turning of the cargo tank motor vehicle. The design calculations of the support elements must...

  17. 49 CFR 178.345-6 - Supports and anchoring.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Specifications for Containers for Motor Vehicle Transportation § 178.345-6 Supports and anchoring. (a) A cargo tank with a frame not integral to the cargo tank must have the tank secured by restraining devices to..., or turning of the cargo tank motor vehicle. The design calculations of the support elements must...

  18. 49 CFR 178.345-6 - Supports and anchoring.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Specifications for Containers for Motor Vehicle Transportation § 178.345-6 Supports and anchoring. (a) A cargo tank with a frame not integral to the cargo tank must have the tank secured by restraining devices to..., or turning of the cargo tank motor vehicle. The design calculations of the support elements must...

  19. 49 CFR 178.345-6 - Supports and anchoring.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Specifications for Containers for Motor Vehicle Transportation § 178.345-6 Supports and anchoring. (a) A cargo tank with a frame not integral to the cargo tank must have the tank secured by restraining devices to..., or turning of the cargo tank motor vehicle. The design calculations of the support elements must...

  20. Integration of Synaptic Vesicle Cargo Retrieval with Endocytosis at Central Nerve Terminals

    PubMed Central

    Cousin, Michael A.

    2017-01-01

    Central nerve terminals contain a limited number of synaptic vesicles (SVs) which mediate the essential process of neurotransmitter release during their activity-dependent fusion. The rapid and accurate formation of new SVs with the appropriate cargo is essential to maintain neurotransmission in mammalian brain. Generating SVs containing the correct SV cargo with the appropriate stoichiometry is a significant challenge, especially when multiple modes of endocytosis exist in central nerve terminals, which occur at different locations within the nerve terminals. These endocytosis modes include ultrafast endocytosis, clathrin-mediated endocytosis (CME) and activity-dependent bulk endocytosis (ADBE) which are triggered by specific patterns of neuronal activity. This review article will assess the evidence for the role of classical adaptor protein complexes in SV retrieval, discuss the role of monomeric adaptors and how interactions between specific SV cargoes can facilitate retrieval. In addition it will consider the evidence for preassembled plasma membrane cargo complexes and their role in facilitating these endocytosis modes. Finally it will present a unifying model for cargo retrieval at the presynapse, which integrates endocytosis modes in time and space. PMID:28824381

  1. An Airbus arrives at KSC with third MPLM

    NASA Technical Reports Server (NTRS)

    2001-01-01

    An Airbus '''Beluga''' air cargo plane, The Super Transporter, lands at KSC's Shuttle Landing Facility. Its cargo, from the factory of Alenia Aerospazio in Turin, Italy, is the Italian Space Agency's Multi-Purpose Logistics Module Donatello, the third of three for the International Space Station. The module will be transported to the Space Station Processing Facility for processing. Among the activities for the payload test team are integrated electrical tests with other Station elements in the SSPF, leak tests, electrical and software compatibility tests with the Space Shuttle (using the Cargo Integrated Test equipment) and an Interface Verification Test once the module is installed in the Space Shuttle's payload bay at the launch pad. The most significant mechanical task to be performed on Donatello in the SSPF is the installation and outfitting of the racks for carrying the various experiments and cargo.

  2. An Airbus arrives at KSC with third MPLM

    NASA Technical Reports Server (NTRS)

    2001-01-01

    An Airbus '''Beluga''' air cargo plane, The Super Transporter, arrives at KSC's Shuttle Landing Facility from the factory of Alenia Aerospazio in Turin, Italy. Its cargo is the Italian Space Agency's Multi-Purpose Logistics Module Donatello, the third of three for the International Space Station. The module will be transported to the Space Station Processing Facility for processing. Among the activities for the payload test team are integrated electrical tests with other Station elements in the SSPF, leak tests, electrical and software compatibility tests with the Space Shuttle (using the Cargo Integrated Test equipment) and an Interface Verification Test once the module is installed in the Space Shuttle's payload bay at the launch pad. The most significant mechanical task to be performed on Donatello in the SSPF is the installation and outfitting of the racks for carrying the various experiments and cargo.

  3. A Novel Multilayered RFID Tagged Cargo Integrity Assurance Scheme

    PubMed Central

    Yang, Ming Hour; Luo, Jia Ning; Lu, Shao Yong

    2015-01-01

    To minimize cargo theft during transport, mobile radio frequency identification (RFID) grouping proof methods are generally employed to ensure the integrity of entire cargo loads. However, conventional grouping proofs cannot simultaneously generate grouping proofs for a specific group of RFID tags. The most serious problem of these methods is that nonexistent tags are included in the grouping proofs because of the considerable amount of time it takes to scan a high number of tags. Thus, applying grouping proof methods in the current logistics industry is difficult. To solve this problem, this paper proposes a method for generating multilayered offline grouping proofs. The proposed method provides tag anonymity; moreover, resolving disputes between recipients and transporters over the integrity of cargo deliveries can be expedited by generating grouping proofs and automatically authenticating the consistency between the receipt proof and pick proof. The proposed method can also protect against replay attacks, multi-session attacks, and concurrency attacks. Finally, experimental results verify that, compared with other methods for generating grouping proofs, the proposed method can efficiently generate offline grouping proofs involving several parties in a supply chain using mobile RFID. PMID:26512673

  4. Air cargo in the Mid-America Freight Coalition region.

    DOT National Transportation Integrated Search

    2012-08-01

    This report contains a contextual review of air cargo transportation in the 10-state Mid-America Freight Coalition (MAFC) region including the industrys recent history, security implications, and integration within the greater MAFC economy. The re...

  5. An Airbus arrives at KSC with third MPLM

    NASA Technical Reports Server (NTRS)

    2001-01-01

    An Airbus '''Beluga''' air cargo plane, The Super Transporter, taxis onto the parking apron at KSC's Shuttle Landing Facility. Its cargo, from the factory of Alenia Aerospazio in Turin, Italy, is the Italian Space Agency's Multi-Purpose Logistics Module Donatello, the third of three for the International Space Station. The module will be transported to the Space Station Processing Facility for processing. Among the activities for the payload test team are integrated electrical tests with other Station elements in the SSPF, leak tests, electrical and software compatibility tests with the Space Shuttle (using the Cargo Integrated Test equipment) and an Interface Verification Test once the module is installed in the Space Shuttle's payload bay at the launch pad. The most significant mechanical task to be performed on Donatello in the SSPF is the installation and outfitting of the racks for carrying the various experiments and cargo.

  6. KSC01pp0234

    NASA Image and Video Library

    2001-02-01

    An Airbus “Beluga” air cargo plane, The Super Transporter, taxis onto the parking apron at KSC’s Shuttle Landing Facility. Its cargo, from the factory of Alenia Aerospazio in Turin, Italy, is the Italian Space Agency’s Multi-Purpose Logistics Module Donatello, the third of three for the International Space Station. The module will be transported to the Space Station Processing Facility for processing. Among the activities for the payload test team are integrated electrical tests with other Station elements in the SSPF, leak tests, electrical and software compatibility tests with the Space Shuttle (using the Cargo Integrated Test equipment) and an Interface Verification Test once the module is installed in the Space Shuttle’s payload bay at the launch pad. The most significant mechanical task to be performed on Donatello in the SSPF is the installation and outfitting of the racks for carrying the various experiments and cargo

  7. Air cargo: An Integrated Systems View. 1978 Summer Faculty Fellowship Program in Engineering Systems Design

    NASA Technical Reports Server (NTRS)

    Keaton, A. (Editor); Eastman, R. (Editor); Hargrove, A. (Editor); Rabiega, W. (Editor); Olsen, R. (Editor); Soberick, M. (Editor)

    1978-01-01

    The national air cargo system is analyzed and how it should be in 1990 is prescribed in order to operate successfully through 2015; that is through one equipment cycle. Elements of the system which are largely under control of the airlines and the aircraft manufacturers are discussed. The discussion deals with aircraft, networks, facilities, and procedures. The regulations which govern the movement of air freight are considered. The larger public policy interests which must be served by the kind of system proposed, the air cargo integrated system (ACIS), are addressed. The possible social, economical, political, and environment impacts of the system are considered. Recommendations are also given.

  8. 14 CFR 291.60 - Public disclosure of data.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... PROCEEDINGS) ECONOMIC REGULATIONS CARGO OPERATIONS IN INTERSTATE AIR TRANSPORTATION Public Disclosure of Data... following the Department's determination that the database is complete, but no earlier than six months after...

  9. 14 CFR 291.60 - Public disclosure of data.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... PROCEEDINGS) ECONOMIC REGULATIONS CARGO OPERATIONS IN INTERSTATE AIR TRANSPORTATION Public Disclosure of Data... following the Department's determination that the database is complete, but no earlier than six months after...

  10. 14 CFR 291.60 - Public disclosure of data.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... PROCEEDINGS) ECONOMIC REGULATIONS CARGO OPERATIONS IN INTERSTATE AIR TRANSPORTATION Public Disclosure of Data... following the Department's determination that the database is complete, but no earlier than six months after...

  11. 14 CFR 291.60 - Public disclosure of data.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... PROCEEDINGS) ECONOMIC REGULATIONS CARGO OPERATIONS IN INTERSTATE AIR TRANSPORTATION Public Disclosure of Data... following the Department's determination that the database is complete, but no earlier than six months after...

  12. Ubiquitin-dependent sorting of integral membrane proteins for degradation in lysosomes

    PubMed Central

    Piper, Robert C.

    2007-01-01

    Summary The pathways that deliver newly synthesized proteins that reside in lysosomes are well understood by comparison with our knowledge of how integral membrane proteins are sorted and delivered to the lysosome for degradation. Many membrane proteins are sorted to lysosomes following ubiquitination, which provides a sorting signal that can operate for sorting at the TGN (trans-Golgi network), at the plasma membrane or at the endosome for delivery into lumenal vesicles. Candidate multicomponent machines that can potentially move ubiquitinated integral membrane cargo proteins have been identified, but much work is still required to ascertain which of these candidates directly recognizes ubiquitinated cargo and what they do with cargo after recognition. In the case of the machinery required for sorting into the lumenal vesicles of endosomes, other functions have also been determined including a link between sorting and movement of endosomes along microtubules. PMID:17689064

  13. Acting Administrator Lightfoot Visits Sierra Nevada Corporation

    NASA Image and Video Library

    2017-04-06

    Acting NASA Deputy Administrator Lesa Roe, left, and acting NASA Administrator Robert Lightfoot, right, listen as Alec Devereaux, a systems engineer with Sierra Nevada Corporation, right, discusses the Flight Control Integration Lab (FCIL), Thursday, April 6, 2017 during a visit to Sierra Nevada Corporation in Louisville, Colo. Sierra Nevada Corporation, with their Dream Chaser Cargo System, was one of three companies to be awarded Commercial Resupply Services (CRS-2) contracts designed to obtain cargo delivery services to the space station, disposal of unneeded cargo, and the return of research samples and other cargo from the station back to NASA. Photo Credit: (NASA/Joel Kowsky)

  14. MPLM Donatello is offloaded at the SLF

    NASA Technical Reports Server (NTRS)

    2001-01-01

    At the Shuttle Landing Facility, cranes help offload the Italian Space Agency's Multi-Purpose Logistics Module Donatello from the Airbus '''Beluga''' air cargo plane. The third of three for the International Space Station, the module will be moved on a transporter to the Space Station Processing Facility for processing. Among the activities for the payload test team are integrated electrical tests with other Station elements in the SSPF, leak tests, electrical and software compatibility tests with the Space Shuttle (using the Cargo Integrated Test equipment) and an Interface Verification Test once the module is installed in the Space Shuttle's payload bay at the launch pad. The most significant mechanical task to be performed on Donatello in the SSPF is the installation and outfitting of the racks for carrying the various experiments and cargo.

  15. 49 CFR 178.337-3 - Structural integrity.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... stress at any point in the cargo tank may not exceed the maximum allowable stress value prescribed in... ASME Code or the ASTM standard to which the material is manufactured. (3) The maximum design stress at... ASME Code. The cargo tank design must include calculation of stresses generated by design pressure, the...

  16. 49 CFR 178.337-13 - Supporting and anchoring.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... accessible for inspection and maintenance. (b) On a cargo tank motor vehicle designed and constructed so that... PACKAGINGS Specifications for Containers for Motor Vehicle Transportation § 178.337-13 Supporting and anchoring. (a) A cargo tank that is not permanently attached to or integral with a vehicle chassis must be...

  17. Simulation analysis of operation respond in a field setting

    DOT National Transportation Integrated Search

    1997-01-01

    The Operation Respond system aims to facilitate rapid access to transportation carrier databases containing information on hazardous material cargo. As a consequence, first responders, such as police and fire department personnel, are expected to res...

  18. Acting Administrator Lightfoot Visits Sierra Nevada Corporation

    NASA Image and Video Library

    2017-04-06

    Associate administrator of NASA's Office of International and Interagency Relations Al Condes, left, acting NASA Deputy Administrator Lesa Roe, second from left, and acting NASA Administrator Robert Lightfoot, center, listen as Jude Vrazel, a senior systems engineer at Sierra Nevada Corporation, right, discusses the Vehicle Avionics Integration Lab (VAIL), Thursday, April 6, 2017 during a visit to Sierra Nevada Corporation in Louisville, Colo. Sierra Nevada Corporation, with their Dream Chaser Cargo System, was one of three companies to be awarded Commercial Resupply Services (CRS-2) contracts designed to obtain cargo delivery services to the space station, disposal of unneeded cargo, and the return of research samples and other cargo from the station back to NASA. Photo Credit: (NASA/Joel Kowsky)

  19. Integrated nanotechnology platform for tumor-targeted multimodal imaging and therapeutic cargo release

    PubMed Central

    Hosoya, Hitomi; Dobroff, Andrey S.; Driessen, Wouter H. P.; Cristini, Vittorio; Brinker, Lina M.; Staquicini, Fernanda I.; Cardó-Vila, Marina; D’Angelo, Sara; Ferrara, Fortunato; Proneth, Bettina; Lin, Yu-Shen; Dunphy, Darren R.; Dogra, Prashant; Melancon, Marites P.; Stafford, R. Jason; Miyazono, Kohei; Gelovani, Juri G.; Kataoka, Kazunori; Brinker, C. Jeffrey; Sidman, Richard L.; Arap, Wadih; Pasqualini, Renata

    2016-01-01

    A major challenge of targeted molecular imaging and drug delivery in cancer is establishing a functional combination of ligand-directed cargo with a triggered release system. Here we develop a hydrogel-based nanotechnology platform that integrates tumor targeting, photon-to-heat conversion, and triggered drug delivery within a single nanostructure to enable multimodal imaging and controlled release of therapeutic cargo. In proof-of-concept experiments, we show a broad range of ligand peptide-based applications with phage particles, heat-sensitive liposomes, or mesoporous silica nanoparticles that self-assemble into a hydrogel for tumor-targeted drug delivery. Because nanoparticles pack densely within the nanocarrier, their surface plasmon resonance shifts to near-infrared, thereby enabling a laser-mediated photothermal mechanism of cargo release. We demonstrate both noninvasive imaging and targeted drug delivery in preclinical mouse models of breast and prostate cancer. Finally, we applied mathematical modeling to predict and confirm tumor targeting and drug delivery. These results are meaningful steps toward the design and initial translation of an enabling nanotechnology platform with potential for broad clinical applications. PMID:26839407

  20. MPLM Donatello is offloaded at the SLF

    NASA Technical Reports Server (NTRS)

    2001-01-01

    At the KSC Shuttle Landing Facility, an Airbus '''Beluga''' air cargo plane opens to reveal its cargo, the Italian Space Agency's Multi- Purpose Logistics Module Donatello, from the factory of Alenia Aerospazio in Turin, Italy. The third of three for the International Space Station, the module will be transported to the Space Station Processing Facility for processing. Among the activities for the payload test team are integrated electrical tests with other Station elements in the SSPF, leak tests, electrical and software compatibility tests with the Space Shuttle (using the Cargo Integrated Test equipment) and an Interface Verification Test once the module is installed in the Space Shuttle's payload bay at the launch pad. The most significant mechanical task to be performed on Donatello in the SSPF is the installation and outfitting of the racks for carrying the various experiments and cargo.

  1. Integrated nanotechnology platform for tumor-targeted multimodal imaging and therapeutic cargo release.

    PubMed

    Hosoya, Hitomi; Dobroff, Andrey S; Driessen, Wouter H P; Cristini, Vittorio; Brinker, Lina M; Staquicini, Fernanda I; Cardó-Vila, Marina; D'Angelo, Sara; Ferrara, Fortunato; Proneth, Bettina; Lin, Yu-Shen; Dunphy, Darren R; Dogra, Prashant; Melancon, Marites P; Stafford, R Jason; Miyazono, Kohei; Gelovani, Juri G; Kataoka, Kazunori; Brinker, C Jeffrey; Sidman, Richard L; Arap, Wadih; Pasqualini, Renata

    2016-02-16

    A major challenge of targeted molecular imaging and drug delivery in cancer is establishing a functional combination of ligand-directed cargo with a triggered release system. Here we develop a hydrogel-based nanotechnology platform that integrates tumor targeting, photon-to-heat conversion, and triggered drug delivery within a single nanostructure to enable multimodal imaging and controlled release of therapeutic cargo. In proof-of-concept experiments, we show a broad range of ligand peptide-based applications with phage particles, heat-sensitive liposomes, or mesoporous silica nanoparticles that self-assemble into a hydrogel for tumor-targeted drug delivery. Because nanoparticles pack densely within the nanocarrier, their surface plasmon resonance shifts to near-infrared, thereby enabling a laser-mediated photothermal mechanism of cargo release. We demonstrate both noninvasive imaging and targeted drug delivery in preclinical mouse models of breast and prostate cancer. Finally, we applied mathematical modeling to predict and confirm tumor targeting and drug delivery. These results are meaningful steps toward the design and initial translation of an enabling nanotechnology platform with potential for broad clinical applications.

  2. Integrated nanotechnology platform for tumor-targeted multimodal imaging and therapeutic cargo release

    DOE PAGES

    Hosoya, Hitomi; Dobroff, Andrey S.; Driessen, Wouter H. P.; ...

    2016-02-02

    A major challenge of targeted molecular imaging and drug delivery in cancer is establishing a functional combination of ligand-directed cargo with a triggered release system. Here we develop a hydrogel-based nanotechnology platform that integrates tumor targeting, photon-to-heat conversion, and triggered drug delivery within a single nanostructure to enable multimodal imaging and controlled release of therapeutic cargo. In proof-of-concept experiments, we show a broad range of ligand peptide-based applications with phage particles, heat-sensitive liposomes, or mesoporous silica nanoparticles that self-assemble into a hydrogel for tumor-targeted drug delivery. Because nanoparticles pack densely within the nanocarrier, their surface plasmon resonance shifts to near-infrared,more » thereby enabling a laser-mediated photothermal mechanism of cargo release. We demonstrate both noninvasive imaging and targeted drug delivery in preclinical mouse models of breast and prostate cancer. Finally, we applied mathematical modeling to predict and confirm tumor targeting and drug delivery. We conclude that these results are meaningful steps toward the design and initial translation of an enabling nanotechnology platform with potential for broad clinical applications.« less

  3. Integrated nanotechnology platform for tumor-targeted multimodal imaging and therapeutic cargo release

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hosoya, Hitomi; Dobroff, Andrey S.; Driessen, Wouter H. P.

    A major challenge of targeted molecular imaging and drug delivery in cancer is establishing a functional combination of ligand-directed cargo with a triggered release system. Here we develop a hydrogel-based nanotechnology platform that integrates tumor targeting, photon-to-heat conversion, and triggered drug delivery within a single nanostructure to enable multimodal imaging and controlled release of therapeutic cargo. In proof-of-concept experiments, we show a broad range of ligand peptide-based applications with phage particles, heat-sensitive liposomes, or mesoporous silica nanoparticles that self-assemble into a hydrogel for tumor-targeted drug delivery. Because nanoparticles pack densely within the nanocarrier, their surface plasmon resonance shifts to near-infrared,more » thereby enabling a laser-mediated photothermal mechanism of cargo release. We demonstrate both noninvasive imaging and targeted drug delivery in preclinical mouse models of breast and prostate cancer. Finally, we applied mathematical modeling to predict and confirm tumor targeting and drug delivery. We conclude that these results are meaningful steps toward the design and initial translation of an enabling nanotechnology platform with potential for broad clinical applications.« less

  4. Early Program Development

    NASA Image and Video Library

    1969-01-01

    This 1969 artist's concept illustrates the use of three major elements of NASA's Integrated program, as proposed by President Nixon's Space Task Group. In Phases I and II, a Space Tug with a manipulator-equipped crew module removes a cargo module from an early Space Shuttle Orbiter and docks with it. In Phases III and IV, the Space Tug with attached cargo module flys toward a Nuclear Shuttle. As a result of the Space Task Group's recommendations for more commonality and integration in the American space program, Marshall Space Flight Center engineers studied many of the spacecraft depicted here.

  5. KSC-00pp0367

    NASA Image and Video Library

    2000-03-21

    KENNEDY SPACE CENTER, FLA. -- At Launch Pad 39A, the payload canister with the SPACEHAB Double Module and Integrated Cargo Carrier (ICC) inside is lifted up the Rotating Service Structure toward the Payload Changeout Room, an environmentally controlled facility supporting cargo delivery to the pad and vertical installation in the orbiter cargo bay. The primary payloads on mission STS-101, the module and ICC contain internal logistics and resupply cargo for restoring full redundancy to the International Space Station power system in preparation for the arrival of the next pressurized module, the Russian-built Zvezda. The payloads will be transferred to Space Shuttle Atlantis after Atlantis rolls out to the pad. Launch of Atlantis on mission STS-101 is scheduled no earlier than April 17, 2000

  6. KSC00pp0367

    NASA Image and Video Library

    2000-03-21

    KENNEDY SPACE CENTER, FLA. -- At Launch Pad 39A, the payload canister with the SPACEHAB Double Module and Integrated Cargo Carrier (ICC) inside is lifted up the Rotating Service Structure toward the Payload Changeout Room, an environmentally controlled facility supporting cargo delivery to the pad and vertical installation in the orbiter cargo bay. The primary payloads on mission STS-101, the module and ICC contain internal logistics and resupply cargo for restoring full redundancy to the International Space Station power system in preparation for the arrival of the next pressurized module, the Russian-built Zvezda. The payloads will be transferred to Space Shuttle Atlantis after Atlantis rolls out to the pad. Launch of Atlantis on mission STS-101 is scheduled no earlier than April 17, 2000

  7. MPLM Donatello is offloaded at the SLF

    NASA Technical Reports Server (NTRS)

    2001-01-01

    At the Shuttle Landing Facility, workers in cherry pickers (right) help guide offloading of the Italian Space Agency's Multi-Purpose Logistics Module Donatello from the Airbus '''Beluga''' air cargo plane that brought it from the factory of Alenia Aerospazio in Turin, Italy. The third of three for the International Space Station, the module will be transported to the Space Station Processing Facility for processing. Among the activities for the payload test team are integrated electrical tests with other Station elements in the SSPF, leak tests, electrical and software compatibility tests with the Space Shuttle (using the Cargo Integrated Test equipment) and an Interface Verification Test once the module is installed in the Space Shuttle's payload bay at the launch pad. The most significant mechanical task to be performed on Donatello in the SSPF is the installation and outfitting of the racks for carrying the various experiments and cargo.

  8. The Automated Logistics Element Planning System (ALEPS)

    NASA Technical Reports Server (NTRS)

    Schwaab, Douglas G.

    1992-01-01

    ALEPS, which is being developed to provide the SSF program with a computer system to automate logistics resupply/return cargo load planning and verification, is presented. ALEPS will make it possible to simultaneously optimize both the resupply flight load plan and the return flight reload plan for any of the logistics carriers. In the verification mode ALEPS will support the carrier's flight readiness reviews and control proper execution of the approved plans. It will also support the SSF inventory management system by providing electronic block updates to the inventory database on the cargo arriving at or departing the station aboard a logistics carrier. A prototype drawer packing algorithm is described which is capable of generating solutions for 3D packing of cargo items into a logistics carrier storage accommodation. It is concluded that ALEPS will provide the capability to generate and modify optimized loading plans for the logistics elements fleet.

  9. KSC-07pd3243

    NASA Image and Video Library

    2007-11-06

    KENNEDY SPACE CENTER, FLA. -- With umbilical lines still attached, the payload canister containing the Columbus Laboratory module and integrated cargo carrier-lite is lifted up toward the payload changeout room on Launch Pad 39A at NASA's Kennedy Space Center. Once in place, the canister will be opened and the module transferred inside the payload changeout room. The payload will be installed in space shuttle Atlantis' payload bay. The canister contains the Columbus Lab module and integrated cargo carrier-lite payloads for space shuttle Atlantis on mission STS-122. Atlantis is targeted to launch on Dec. 6. Photo credit: NASA/Dimitri Gerondidakis

  10. Nuclear modules for space electric propulsion

    NASA Technical Reports Server (NTRS)

    Difilippo, F. C.

    1998-01-01

    Analysis of interplanetary cargo and piloted missions requires calculations of the performances and masses of subsystems to be integrated in a final design. In a preliminary and scoping stage the designer needs to evaluate options iteratively by using fast computer simulations. The Oak Ridge National Laboratory (ORNL) has been involved in the development of models and calculational procedures for the analysis (neutronic and thermal hydraulic) of power sources for nuclear electric propulsion. The nuclear modules will be integrated into the whole simulation of the nuclear electric propulsion system. The vehicles use either a Brayton direct-conversion cycle, using the heated helium from a NERVA-type reactor, or a potassium Rankine cycle, with the working fluid heated on the secondary side of a heat exchanger and lithium on the primary side coming from a fast reactor. Given a set of input conditions, the codes calculate composition. dimensions, volumes, and masses of the core, reflector, control system, pressure vessel, neutron and gamma shields, as well as the thermal hydraulic conditions of the coolant, clad and fuel. Input conditions are power, core life, pressure and temperature of the coolant at the inlet of the core, either the temperature of the coolant at the outlet of the core or the coolant mass flow and the fluences and integrated doses at the cargo area. Using state-of-the-art neutron cross sections and transport codes, a database was created for the neutronic performance of both reactor designs. The free parameters of the models are the moderator/fuel mass ratio for the NERVA reactor and the enrichment and the pitch of the lattice for the fast reactor. Reactivity and energy balance equations are simultaneously solved to find the reactor design. Thermalhydraulic conditions are calculated by solving the one-dimensional versions of the equations of conservation of mass, energy, and momentum with compressible flow.

  11. KSC00pp0370

    NASA Image and Video Library

    2000-03-21

    KENNEDY SPACE CENTER, FLA. -- The doors of the payload canister open in the Payload Changeout Room (PCR) at Launch Pad 39A to reveal the SPACEHAB Double Module (bottom) and Integrated Cargo Carrier (ICC). Part of the Rotating Service Structure, the PCR is an environmentally controlled facility supporting cargo delivery to the pad and vertical installation in the orbiter cargo bay. The primary payloads on mission STS-101, the module and ICC contain internal logistics and resupply cargo for restoring full redundancy to the International Space Station power system in preparation for the arrival of the next pressurized module, the Russian-built Zvezda. The payloads will be transferred to Space Shuttle Atlantis after Atlantis rolls out to the pad. Launch of Atlantis on mission STS-101 is scheduled no earlier than April 17, 2000

  12. KSC00pp0371

    NASA Image and Video Library

    2000-03-21

    KENNEDY SPACE CENTER, FLA. -- The SPACEHAB Double Module (bottom) and Integrated Cargo Carrier (above) are ready to be moved from the payload canister into the Payload Changeout Room (PCR) at Launch Pad 39A. Part of the Rotating Service Structure, the PCR is an environmentally controlled facility supporting cargo delivery to the pad and vertical installation in the orbiter cargo bay. The primary payloads on mission STS-101, the module and ICC contain internal logistics and resupply cargo for restoring full redundancy to the International Space Station power system in preparation for the arrival of the next pressurized module, the Russian-built Zvezda. The payloads will be transferred to Space Shuttle Atlantis after Atlantis rolls out to the pad. Launch of Atlantis on mission STS-101 is scheduled no earlier than April 17, 2000

  13. KSC-00pp0371

    NASA Image and Video Library

    2000-03-21

    KENNEDY SPACE CENTER, FLA. -- The SPACEHAB Double Module (bottom) and Integrated Cargo Carrier (above) are ready to be moved from the payload canister into the Payload Changeout Room (PCR) at Launch Pad 39A. Part of the Rotating Service Structure, the PCR is an environmentally controlled facility supporting cargo delivery to the pad and vertical installation in the orbiter cargo bay. The primary payloads on mission STS-101, the module and ICC contain internal logistics and resupply cargo for restoring full redundancy to the International Space Station power system in preparation for the arrival of the next pressurized module, the Russian-built Zvezda. The payloads will be transferred to Space Shuttle Atlantis after Atlantis rolls out to the pad. Launch of Atlantis on mission STS-101 is scheduled no earlier than April 17, 2000

  14. KSC00pp0372

    NASA Image and Video Library

    2000-03-21

    KENNEDY SPACE CENTER, FLA. -- A closeup shows the Integrated Cargo Carrier (top) and SPACEHAB Double Module (below) ready to be moved into the Payload Changeout Room (PCR) at Launch Pad 39A. Part of the Rotating Service Structure, the PCR is an environmentally controlled facility supporting cargo delivery to the pad and vertical installation in the orbiter cargo bay. The primary payloads on mission STS-101, the module and ICC contain internal logistics and resupply cargo for restoring full redundancy to the International Space Station power system in preparation for the arrival of the next pressurized module, the Russian-built Zvezda. The payloads will be transferred to Space Shuttle Atlantis after Atlantis rolls out to the pad. Launch of Atlantis on mission STS-101 is scheduled no earlier than April 17, 2000

  15. KSC-00pp0370

    NASA Image and Video Library

    2000-03-21

    KENNEDY SPACE CENTER, FLA. -- The doors of the payload canister open in the Payload Changeout Room (PCR) at Launch Pad 39A to reveal the SPACEHAB Double Module (bottom) and Integrated Cargo Carrier (ICC). Part of the Rotating Service Structure, the PCR is an environmentally controlled facility supporting cargo delivery to the pad and vertical installation in the orbiter cargo bay. The primary payloads on mission STS-101, the module and ICC contain internal logistics and resupply cargo for restoring full redundancy to the International Space Station power system in preparation for the arrival of the next pressurized module, the Russian-built Zvezda. The payloads will be transferred to Space Shuttle Atlantis after Atlantis rolls out to the pad. Launch of Atlantis on mission STS-101 is scheduled no earlier than April 17, 2000

  16. KSC-00pp0372

    NASA Image and Video Library

    2000-03-21

    KENNEDY SPACE CENTER, FLA. -- A closeup shows the Integrated Cargo Carrier (top) and SPACEHAB Double Module (below) ready to be moved into the Payload Changeout Room (PCR) at Launch Pad 39A. Part of the Rotating Service Structure, the PCR is an environmentally controlled facility supporting cargo delivery to the pad and vertical installation in the orbiter cargo bay. The primary payloads on mission STS-101, the module and ICC contain internal logistics and resupply cargo for restoring full redundancy to the International Space Station power system in preparation for the arrival of the next pressurized module, the Russian-built Zvezda. The payloads will be transferred to Space Shuttle Atlantis after Atlantis rolls out to the pad. Launch of Atlantis on mission STS-101 is scheduled no earlier than April 17, 2000

  17. Cargo Commercial Orbital Transportation Services Environmental Control and Life Support Integration

    NASA Technical Reports Server (NTRS)

    Duchesne, Stephanie; Thacker, Karen; Williams, Dave

    2012-01-01

    The International Space Station s (ISS) largest crew and cargo resupply vehicle, the Space Shuttle, retired in 2011. To help augment ISS resupply and return capability, NASA announced a project to promote the development of Commercial Orbital Transportation Services (COTS) for the ISS in January of 2006. By December of 2008, NASA entered into space act agreements with SpaceX and Orbital Sciences Corporation for COTS development and ISS Commercial Resupply Services (CRS). The intent of CRS is to fly multiple resupply missions each year to ISS with SpaceX s Dragon vehicle providing resupply and return capabilities and Orbital Science Corporation s Cygnus vehicle providing resupply capability to ISS. The ISS program launched an integration effort to ensure that these new commercial vehicles met the requirements of the ISS vehicle and ISS program needs. The Environmental Control and Life Support System (ECLSS) requirements cover basic cargo vehicle needs including maintaining atmosphere, providing atmosphere circulation, and fire detection and suppression. The ISS-COTS integration effort brought unique challenges combining NASA s established processes and design knowledge with the commercial companies new initiatives and limited experience with human space flight. This paper will discuss the ISS ECLS COTS integration effort including challenges, successes, and lessons learned.

  18. Commercial Orbital Transportation Cargo Services Environmental Control and Life Support Integration

    NASA Technical Reports Server (NTRS)

    Duchesne, Stephanie; Williams, Dave; Orozco, Nicole; Philistine, Cynthia

    2010-01-01

    The International Space Station s (ISS) largest crew and cargo resupply vehicle, the Space Shuttle, will retire in 2011. To help augment ISS resupply and return capability, NASA announced a project to promote the development of Commercial Orbital Transportation Services (COTS) for the ISS in January of 2006. By December of 2008, NASA entered into space act agreements with SpaceX and Orbital Sciences Corporation for COTS development and ISS Commercial Resupply Services (CRS). The intent of CRS is to fly multiple resupply missions each year to ISS with SpaceX s Dragon vehicle providing resupply and return capabilities and Orbital Science Corporation s Cygnus vehicle providing resupply capability to ISS. The ISS program launched an integration effort to ensure that these new commercial vehicles met the requirements of the ISS vehicle and ISS program needs. The Environmental Control and Life Support System (ECLSS) requirements cover basic cargo vehicle needs including maintaining atmosphere, providing atmosphere circulation, and fire detection and suppression. The ISS-COTS integration effort brought unique challenges combining NASA s established processes and design knowledge with the commercial companies new initiatives and limited experience with human space flight. This paper will discuss the ISS ECLS COTS integration effort including challenges, successes, and lessons learned.

  19. Data-based Considerations in Portal Radiation Monitoring of Cargo Vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weier, Dennis R.; O'Brien, Robert F.; Ely, James H.

    2004-07-01

    Radiation portal monitoring of cargo vehicles often includes a configuration of four-panel monitors that record gamma and neutron counts from vehicles transporting cargo. As vehicles pass the portal monitors, they generate a count profile over time that can be compared to the average panel background counts obtained just prior to the time the vehicle entered the area of the monitors. Pacific Northwest National Laboratory has accumulated considerable data regarding such background radiation and vehicle profiles from portal installations, as well as in experimental settings using known sources and cargos. Several considerations have a bearing on how alarm thresholds are setmore » in order to maintain sensitivity to radioactive sources while also controlling to a manageable level the rate of false or nuisance alarms. False alarms are statistical anomalies while nuisance alarms occur due to the presence of naturally occurring radioactive material (NORM) in cargo, for example, kitty litter. Considerations to be discussed include: • Background radiation suppression due to the shadow shielding from the vehicle. • The impact of the relative placement of the four panels on alarm decision criteria. • Use of plastic scintillators to separate gamma counts into energy windows. • The utility of using ratio criteria for the energy window counts rather than simply using total window counts. • Detection likelihood for these various decision criteria based on computer simulated injections of sources into vehicle profiles.« less

  20. KSC00pp0369

    NASA Image and Video Library

    2000-03-21

    KENNEDY SPACE CENTER, FLA. -- At Launch Pad 39A, the payload canister with the SPACEHAB Double Module and the Integrated Cargo Carrier (ICC) inside is lifted off the payload transporter toward the Payload Changeout Room (PCR) on the Rotating Service Structure (RSS). The PCR is an environmentally controlled facility supporting cargo delivery to the pad and vertical installation in the orbiter cargo bay. At right of the RSS is the Fixed Service Structure. The primary payloads on mission STS-101, the module and ICC contain internal logistics and resupply cargo for restoring full redundancy to the International Space Station power system in preparation for the arrival of the next pressurized module, the Russian-built Zvezda. The payloads will be transferred to Space Shuttle Atlantis after Atlantis rolls out to the pad. Launch of Atlantis on mission STS-101 is scheduled no earlier than April 17, 2000

  1. KSC-00pp0368

    NASA Image and Video Library

    2000-03-21

    KENNEDY SPACE CENTER, FLA. -- At Launch Pad 39A, the payload canister with the SPACEHAB Double Module and Integrated Cargo Carrier (ICC) inside is lifted up the Rotating Service Structure (RSS) toward the Payload Changeout Room, an environmentally controlled facility supporting cargo delivery to the pad and vertical installation in the orbiter cargo bay. At right of the RSS is the Fixed Service Structure, topped by the 80-foot-tall fiberglass lightning mast. The primary payload on mission STS-101, the module and ICC contain internal logistics and resupply cargo for restoring full redundancy to the International Space Station power system in preparation for the arrival of the next pressurized module, the Russian-built Zvezda. The payloads will be transferred to Space Shuttle Atlantis after Atlantis rolls out to the pad. Launch of Atlantis on mission STS-101 is scheduled no earlier than April 17, 2000

  2. KSC00pp0368

    NASA Image and Video Library

    2000-03-21

    KENNEDY SPACE CENTER, FLA. -- At Launch Pad 39A, the payload canister with the SPACEHAB Double Module and Integrated Cargo Carrier (ICC) inside is lifted up the Rotating Service Structure (RSS) toward the Payload Changeout Room, an environmentally controlled facility supporting cargo delivery to the pad and vertical installation in the orbiter cargo bay. At right of the RSS is the Fixed Service Structure, topped by the 80-foot-tall fiberglass lightning mast. The primary payload on mission STS-101, the module and ICC contain internal logistics and resupply cargo for restoring full redundancy to the International Space Station power system in preparation for the arrival of the next pressurized module, the Russian-built Zvezda. The payloads will be transferred to Space Shuttle Atlantis after Atlantis rolls out to the pad. Launch of Atlantis on mission STS-101 is scheduled no earlier than April 17, 2000

  3. KSC-00pp0369

    NASA Image and Video Library

    2000-03-21

    KENNEDY SPACE CENTER, FLA. -- At Launch Pad 39A, the payload canister with the SPACEHAB Double Module and the Integrated Cargo Carrier (ICC) inside is lifted off the payload transporter toward the Payload Changeout Room (PCR) on the Rotating Service Structure (RSS). The PCR is an environmentally controlled facility supporting cargo delivery to the pad and vertical installation in the orbiter cargo bay. At right of the RSS is the Fixed Service Structure. The primary payloads on mission STS-101, the module and ICC contain internal logistics and resupply cargo for restoring full redundancy to the International Space Station power system in preparation for the arrival of the next pressurized module, the Russian-built Zvezda. The payloads will be transferred to Space Shuttle Atlantis after Atlantis rolls out to the pad. Launch of Atlantis on mission STS-101 is scheduled no earlier than April 17, 2000

  4. Managing Requirements-Documents to Data

    NASA Technical Reports Server (NTRS)

    Orr, Kevin; Hudson, Abe

    2017-01-01

    Managing Requirements on long term projects like International Space Station (ISS) can go thru many phases, from initial product development to almost over 20 years of operations and sustainment. Over that time many authorized changes have been made to the requirement set, that apply to any new systems that would visit the ISS today, like commercial cargo/crew vehicles or payloads. Explore the benefits of managing requirements in a database while satisfying traditional documents needs for contracts and stakeholder/user consumption that are not tied into the database.

  5. Solar power satellite system definition study. Volume 3: Operations and systems synthesis, phase 2

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The results of the operations analyses are reported. Some of these analyses examined operations aspects of space vehicle in-space maintenance. Many of the analyses explored in great depth operations concerned the LEO Base cargo handling operations. Personnel transportation operations and cargo packaging were also analyzed. These operations analyses were performed to define the operational requirements for all of the SPS system elements so that equipment and facilities could be synthesized, and to make estimates of the manpower requirements. An overall, integrated, end-to-end description of the SPS operations is presented. The detailed operations analyses, upon which this integrated description was based, are included.

  6. KSC-01pp0249

    NASA Image and Video Library

    2001-02-03

    An overhead crane lowers the Multi-Purpose Logistics Module Donatello onto a workstand. In the SSPF, Donatello will undergo processing by the payload test team, including integrated electrical tests with other Station elements in the SSPF, leak tests, electrical and software compatibility tests with the Space Shuttle (using the Cargo Integrated Test equipment) and an Interface Verification Test once the module is installed in the Space Shuttle’s payload bay at the launch pad. The most significant mechanical task to be performed on Donatello in the SSPF is the installation and outfitting of the racks for carrying the various experiments and cargo. Donatello will be launched on mission STS-130, currently planned for September 2004

  7. Risk Mitigation Approach to Commercial Resupply to the International Space Station

    NASA Technical Reports Server (NTRS)

    Koons, Diane S.; Schreiber, Craig

    2010-01-01

    In August 2006, NASA awarded Space Act Agreements (SAAs) for Commercial Orbital Transportation Services (COTS) under the Commercial Crew and Cargo Project Office at Johnson Space Center. One of the goals of the SAAs is to facilitate U.S. private industry demonstration of cargo transportation capabilities, ultimately achieving reliable, cost effective access to low-Earth orbit (LEO). Each COTS provider is required to complete International Space Stations (ISS) Integration activities, which includes meeting the physical and functional interfaces and interface requirements between the ISS and COTS vehicles. These requirements focus on the areas of risk to the ISS during rendezvous and proximity operations, as well as the integration operations while the COTS vehicle is berthed to the ISS. On December 23, 2008, NASA awarded Commercial Resupply Service (CRS) contracts to provide resupply services to the ISS, following the Shuttle retirement. In addition to performing any ISS Integration activities, NASA will be performing independent assessments of the launch vehicle and orbital vehicle to evaluate the readiness of the contractor to deliver NASA cargo safely to the ISS. This paper will address the activities NASA Centers, both JSC and KSC, in the oversight and insight function over commercial visiting vehicles to the ISS.

  8. DNA hairpins promote temperature controlled cargo encapsulation in a truncated octahedral nanocage structure family

    NASA Astrophysics Data System (ADS)

    Franch, Oskar; Iacovelli, Federico; Falconi, Mattia; Juul, Sissel; Ottaviani, Alessio; Benvenuti, Claudia; Biocca, Silvia; Ho, Yi-Ping; Knudsen, Birgitta R.; Desideri, Alessandro

    2016-07-01

    In the present study we investigate the mechanism behind temperature controlled cargo uptake using a truncated octahedral DNA cage scaffold functionalized with one, two, three or four hairpin forming DNA strands inserted in one corner of the structure. This investigation was inspired by our previous demonstration of temperature controlled reversible encapsulation of the cargo enzyme, horseradish peroxidase, in the cage with four hairpin forming strands. However, in this previous study the mechanism of cargo uptake was not directly addressed (Juul, et al., Temperature-Controlled Encapsulation and Release of an Active Enzyme in the Cavity of a Self-Assembled DNA Nanocage, ACS Nano, 2013, 7, 9724-9734). In the present study we use a combination of molecular dynamics simulations and in vitro analyses to unravel the mechanism of cargo uptake in hairpin containing DNA cages. We find that two hairpin forming strands are necessary and sufficient to facilitate efficient cargo uptake, which argues against a full opening-closing of one corner of the structure being responsible for encapsulation. Molecular dynamics simulations were carried out to evaluate the atomistic motions responsible for encapsulation and showed that the two hairpin forming strands facilitated extension of at least one of the face surfaces of the cage scaffold, allowing entrance of the cargo protein into the cavity of the structure. Hence, the presented data demonstrate that cargo uptake does not involve a full opening of the structure. Rather, the uptake mechanism represents a feature of increased flexibility integrated in this nanocage structure upon the addition of at least two hairpin-forming strands.In the present study we investigate the mechanism behind temperature controlled cargo uptake using a truncated octahedral DNA cage scaffold functionalized with one, two, three or four hairpin forming DNA strands inserted in one corner of the structure. This investigation was inspired by our previous demonstration of temperature controlled reversible encapsulation of the cargo enzyme, horseradish peroxidase, in the cage with four hairpin forming strands. However, in this previous study the mechanism of cargo uptake was not directly addressed (Juul, et al., Temperature-Controlled Encapsulation and Release of an Active Enzyme in the Cavity of a Self-Assembled DNA Nanocage, ACS Nano, 2013, 7, 9724-9734). In the present study we use a combination of molecular dynamics simulations and in vitro analyses to unravel the mechanism of cargo uptake in hairpin containing DNA cages. We find that two hairpin forming strands are necessary and sufficient to facilitate efficient cargo uptake, which argues against a full opening-closing of one corner of the structure being responsible for encapsulation. Molecular dynamics simulations were carried out to evaluate the atomistic motions responsible for encapsulation and showed that the two hairpin forming strands facilitated extension of at least one of the face surfaces of the cage scaffold, allowing entrance of the cargo protein into the cavity of the structure. Hence, the presented data demonstrate that cargo uptake does not involve a full opening of the structure. Rather, the uptake mechanism represents a feature of increased flexibility integrated in this nanocage structure upon the addition of at least two hairpin-forming strands. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01806h

  9. Integrated regulation of motor-driven organelle transport by scaffolding proteins.

    PubMed

    Fu, Meng-meng; Holzbaur, Erika L F

    2014-10-01

    Intracellular trafficking pathways, including endocytosis, autophagy, and secretion, rely on directed organelle transport driven by the opposing microtubule motor proteins kinesin and dynein. Precise spatial and temporal targeting of vesicles and organelles requires the integrated regulation of these opposing motors, which are often bound simultaneously to the same cargo. Recent progress demonstrates that organelle-associated scaffolding proteins, including Milton/TRAKs (trafficking kinesin-binding protein), JIP1, JIP3 (JNK-interacting proteins), huntingtin, and Hook1, interact with molecular motors to coordinate activity and sustain unidirectional transport. Scaffolding proteins also bind to upstream regulatory proteins, including kinases and GTPases, to modulate transport in the cell. This integration of regulatory control with motor activity allows for cargo-specific changes in the transport or targeting of organelles in response to cues from the complex cellular environment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. MPLM Donatello is offloaded at the SLF

    NASA Technical Reports Server (NTRS)

    2001-01-01

    At the KSC Shuttle Landing Facility, the Italian Space Agency's Multi- Purpose Logistics Module Donatello begins rolling out of the Airbus '''Beluga''' air cargo plane that brought it from the factory of Alenia Aerospazio in Turin, Italy. The third of three for the International Space Station, the module will be transported to the Space Station Processing Facility for processing. Among the activities for the payload test team are integrated electrical tests with other Station elements in the SSPF, leak tests, electrical and software compatibility tests with the Space Shuttle (using the Cargo Integrated Test equipment) and an Interface Verification Test once the module is installed in the Space Shuttle's payload bay at the launch pad. The most significant mechanical task to be performed on Donatello in the SSPF is the installation and outfitting of the racks for carrying the various experiments and cargo.

  11. MPLM Donatello is offloaded at the SLF

    NASA Technical Reports Server (NTRS)

    2001-01-01

    At the KSC Shuttle Landing Facility, the Italian Space Agency's Multi- Purpose Logistics Module Donatello rolls out of the Airbus '''Beluga''' air cargo plane that brought it from the factory of Alenia Aerospazio in Turin, Italy. The third of three for the International Space Station, the module will be transported to the Space Station Processing Facility for processing. Among the activities for the payload test team are integrated electrical tests with other Station elements in the SSPF, leak tests, electrical and software compatibility tests with the Space Shuttle (using the Cargo Integrated Test equipment) and an Interface Verification Test once the module is installed in the Space Shuttle's payload bay at the launch pad. The most significant mechanical task to be performed on Donatello in the SSPF is the installation and outfitting of the racks for carrying the various experiments and cargo.

  12. Contamination control and cleanliness level integrity for the Space Shuttle Orbiter PLB, payloads and facilities at KSC

    NASA Technical Reports Server (NTRS)

    Bartelson, D.

    1984-01-01

    The PLB, its cargo, and payload canister must satisfy the cleanliness requirements of visual clean (VC) level 1, 2, 3, or special as stated in NASA document SN-C-0005A. The specific level of cleanliness is chosen by the payload bay customer for their mission. During orbiter turnaround processing at KSC, the payload bay is exposed to the environments of the Orbiter Processing Facility (OPF) and the Payload Changeout Room (PCR). In supportive response to the orbiter payload bay/facility interface, it is necessary that the facility environment be controlled and monitored to protect the cleanliness/environmental integrity of the payload bay and its cargo. Techniques used to meet environmental requirements during orbiter processing are introduced.

  13. KSC-01pp0244

    NASA Image and Video Library

    2001-02-03

    The lid is off the shipping container with the Multi-Purpose Logistics Module Donatello inside. It sits on a transporter inside the Space Station Processing Facility. In the SSPF, Donatello will undergo processing by the payload test team, including integrated electrical tests with other Station elements in the SSPF, leak tests, electrical and software compatibility tests with the Space Shuttle (using the Cargo Integrated Test equipment) and an Interface Verification Test once the module is installed in the Space Shuttle’s payload bay at the launch pad. The most significant mechanical task to be performed on Donatello in the SSPF is the installation and outfitting of the racks for carrying the various experiments and cargo. Donatello will be launched on mission STS-130, currently planned for September 2004

  14. KSC-01pp0245

    NASA Image and Video Library

    2001-02-03

    Workers in the Space Station Processing Facility attach an overhead crane to the Multi-Purpose Logistics Module Donatello to lift it out of the shipping container. In the SSPF, Donatello will undergo processing by the payload test team, including integrated electrical tests with other Station elements in the SSPF, leak tests, electrical and software compatibility tests with the Space Shuttle (using the Cargo Integrated Test equipment) and an Interface Verification Test once the module is installed in the Space Shuttle’s payload bay at the launch pad. The most significant mechanical task to be performed on Donatello in the SSPF is the installation and outfitting of the racks for carrying the various experiments and cargo. Donatello will be launched on mission STS-130, currently planned for September 2004

  15. KSC-01pp0246

    NASA Image and Video Library

    2001-02-03

    In the Space Station Processing Facility, workers help guide the overhead crane as it lifts the Multi-Purpose Logistics Module Donatello out of the shipping container. In the SSPF, Donatello will undergo processing by the payload test team, including integrated electrical tests with other Station elements in the SSPF, leak tests, electrical and software compatibility tests with the Space Shuttle (using the Cargo Integrated Test equipment) and an Interface Verification Test once the module is installed in the Space Shuttle’s payload bay at the launch pad. The most significant mechanical task to be performed on Donatello in the SSPF is the installation and outfitting of the racks for carrying the various experiments and cargo. Donatello will be launched on mission STS-130, currently planned for September 2004

  16. KSC-01pp0247

    NASA Image and Video Library

    2001-02-03

    In the Space Station Processing Facility, workers help guide the Multi-Purpose Logistics Module Donatello as it moves the length of the SSPF toward a workstand. In the SSPF, Donatello will undergo processing by the payload test team, including integrated electrical tests with other Station elements in the SSPF, leak tests, electrical and software compatibility tests with the Space Shuttle (using the Cargo Integrated Test equipment) and an Interface Verification Test once the module is installed in the Space Shuttle’s payload bay at the launch pad. The most significant mechanical task to be performed on Donatello in the SSPF is the installation and outfitting of the racks for carrying the various experiments and cargo. Donatello will be launched on mission STS-130, currently planned for September 2004

  17. KSC-01pp0248

    NASA Image and Video Library

    2001-02-03

    In the Space Station Processing Facility, workers wait for the Multi-Purpose Logistics Module Donatello, suspended by an overhead crane, to move onto a workstand. In the SSPF, Donatello will undergo processing by the payload test team, including integrated electrical tests with other Station elements in the SSPF, leak tests, electrical and software compatibility tests with the Space Shuttle (using the Cargo Integrated Test equipment) and an Interface Verification Test once the module is installed in the Space Shuttle’s payload bay at the launch pad. The most significant mechanical task to be performed on Donatello in the SSPF is the installation and outfitting of the racks for carrying the various experiments and cargo. Donatello will be launched on mission STS-130, currently planned for September 2004

  18. Identification of rice cornichon as a possible cargo receptor for the Golgi-localized sodium transporter OsHKT1;3

    PubMed Central

    Rosas-Santiago, Paul; Lagunas-Gómez, Daniel; Barkla, Bronwyn J.; Vera-Estrella, Rosario; Lalonde, Sylvie; Jones, Alexander; Frommer, Wolf B.; Zimmermannova, Olga; Sychrová, Hana; Pantoja, Omar

    2015-01-01

    Membrane proteins are synthesized and folded in the endoplasmic reticulum (ER), and continue their path to their site of residence along the secretory pathway. The COPII system has been identified as a key player for selecting and directing the fate of membrane and secretory cargo proteins. Selection of cargo proteins within the COPII vesicles is achieved by cargo receptors. The cornichon cargo receptor belongs to a conserved protein family found in eukaryotes that has been demonstrated to participate in the selection of integral membrane proteins as cargo for their correct targeting. Here it is demonstrated at the cellular level that rice cornichon OsCNIH1 interacts with OsHKT1;3 and, in yeast cells, enables the expression of the sodium transporter to the Golgi apparatus. Physical and functional HKT–cornichon interactions are confirmed by the mating-based split ubiquitin system, bimolecular fluorescence complementation, and Xenopus oocyte and yeast expression systems. The interaction between the two proteins occurs in the ER of plant cells and their co-expression in oocytes leads to the sequestration of the transporter in the ER. In the yeast cornichon mutant erv14, OsHKT1;3 is mistargeted, preventing the toxic effects of sodium transport in the cell observed in wild-type cells or in the erv14 mutant that co-expressed OsHKT1;3 with either OsCNIH1 or Erv14p. Identification and characterization of rice cornichon as a possible cargo receptor opens up the opportunity to improve our knowledge on membrane protein targeting in plant cells. PMID:25750424

  19. Integrated payload and mission planning, phase 3. Volume 2: Logic/Methodology for preliminary grouping of spacelab and mixed cargo payloads

    NASA Technical Reports Server (NTRS)

    Rodgers, T. E.; Johnson, J. F.

    1977-01-01

    The logic and methodology for a preliminary grouping of Spacelab and mixed-cargo payloads is proposed in a form that can be readily coded into a computer program by NASA. The logic developed for this preliminary cargo grouping analysis is summarized. Principal input data include the NASA Payload Model, payload descriptive data, Orbiter and Spacelab capabilities, and NASA guidelines and constraints. The first step in the process is a launch interval selection in which the time interval for payload grouping is identified. Logic flow steps are then taken to group payloads and define flight configurations based on criteria that includes dedication, volume, area, orbital parameters, pointing, g-level, mass, center of gravity, energy, power, and crew time.

  20. The Ares Projects: Building America's Future in Space

    NASA Technical Reports Server (NTRS)

    Cook, Stephen A.

    2009-01-01

    NASA's Constellation Program is depending on the Ares Projects to deliver the crew and cargo launch capabilities needed to send human explorers to the Moon and beyond. In 2009, the Ares Projects plan to conduct the first test flight of Ares I, Ares I-X; the first firing of a five-segment development solid rocket motor for the Ares I first stage; building the first integrated Ares I upper stage; continue component testing for the J-2X upper stage engine; and perform more-detailed design studies for the Ares V cargo launch vehicle. Ares I and V will provide the core space launch capabilities needed to continue providing crew and cargo access to the International Space Station (ISS), and to build upon the U.S. history of human spaceflight to the Moon and beyond.

  1. Improving the security of international ISO container traffic by centralizing the archival of inspection results

    NASA Astrophysics Data System (ADS)

    Chalmers, Alex

    2004-09-01

    To increase the security and throughput of ISO traffic through international terminals more technology must be applied to the problem. A transnational central archive of inspection records is discussed that can be accessed by national agencies as ISO containers approach their borders. The intent is to improve the throughput and security of the cargo inspection process. A review of currently available digital media archiving technologies is presented and their possible application to the tracking of international ISO container shipments. Specific image formats employed by current x-ray inspection systems are discussed. Sample x-ray data from systems in use today are shown that could be entered into such a system. Data from other inspection technologies are shown to be easily integrated, as well as the creation of database records suitable for interfacing with other computer systems. Overall system performance requirements are discussed in terms of security, response time and capacity. Suggestions for pilot projects based on existing border inspection processes are made also.

  2. Automated Airdrop Information Retrieval System-Human Fact ors Database (AAIRS-HFD) (Users Manual)

    DTIC Science & Technology

    1994-09-01

    creeps, or chokes) Pressure Change Disorders Loss of Sensorimotor Abilities Loss of Cognitive/Perceptual Abilities Treatment drug therapy ...physical therapy cognitive therapy biofeedback therapy 73 9. Psychological Factors Situational Awareness altitude awareness Visual/Spatial...on/off valve prebreather Floatation Devices life preserver Scuba Gear Ankle Braces Knee Braces/Pads 82 7. Cargo/Resupply Parachute Assembly

  3. MPLM Donatello is offloaded at the SLF

    NASA Technical Reports Server (NTRS)

    2001-01-01

    At the Shuttle Landing Facility, workers in cherry pickers (left and right) help direct the offloading of the Italian Space Agency's Multi- Purpose Logistics Module Donatello from the Airbus '''Beluga''' air cargo plane that brought it from the factory of Alenia Aerospazio in Turin, Italy. The third of three for the International Space Station, the module will be transported to the Space Station Processing Facility for processing. Among the activities for the payload test team are integrated electrical tests with other Station elements in the SSPF, leak tests, electrical and software compatibility tests with the Space Shuttle (using the Cargo Integrated Test equipment) and an Interface Verification Test once the module is installed in the Space Shuttle's payload bay at the launch pad. The most significant mechanical task to be performed on Donatello in the SSPF is the installation and outfitting of the racks for carrying the various experiments and cargo.

  4. MPLM Donatello is offloaded at the SLF

    NASA Technical Reports Server (NTRS)

    2001-01-01

    At the Shuttle Landing Facility, cranes are poised to help offload the Italian Space Agency's Multi- Purpose Logistics Module Donatello from the Airbus '''Beluga''' air cargo plane that brought it from the factory of Alenia Aerospazio in Turin, Italy. The third of three for the International Space Station, the module will be transported to the Space Station Processing Facility for processing. Among the activities for the payload test team are integrated electrical tests with other Station elements in the SSPF, leak tests, electrical and software compatibility tests with the Space Shuttle (using the Cargo Integrated Test equipment) and an Interface Verification Test once the module is installed in the Space Shuttle's payload bay at the launch pad. The most significant mechanical task to be performed on Donatello in the SSPF is the installation and outfitting of the racks for carrying the various experiments and cargo.

  5. A Comprehensive Survey of China’s Dynamic Shipbuilding Industry: Commercial Development and Strategic Implications (China Maritime Study, Number 1)

    DTIC Science & Technology

    2008-08-01

    A ’ S D Y N A M I C S H I P B U I L D I N G I N D U S T R Y 51 Acronyms and Definitions A AKR commercial cargo ship AO...growth could lead to a bifurcated global ship market, wherein China dominates low-complexity ship construction and South Korea dominates the high ...Efficiently integrating numerous mechanical, electrical, cargo , and habitability systems within the confined space of a ship has always been a

  6. Sequence and structural analyses of nuclear export signals in the NESdb database

    PubMed Central

    Xu, Darui; Farmer, Alicia; Collett, Garen; Grishin, Nick V.; Chook, Yuh Min

    2012-01-01

    We compiled >200 nuclear export signal (NES)–containing CRM1 cargoes in a database named NESdb. We analyzed the sequences and three-dimensional structures of natural, experimentally identified NESs and of false-positive NESs that were generated from the database in order to identify properties that might distinguish the two groups of sequences. Analyses of amino acid frequencies, sequence logos, and agreement with existing NES consensus sequences revealed strong preferences for the Φ1-X3-Φ2-X2-Φ3-X-Φ4 pattern and for negatively charged amino acids in the nonhydrophobic positions of experimentally identified NESs but not of false positives. Strong preferences against certain hydrophobic amino acids in the hydrophobic positions were also revealed. These findings led to a new and more precise NES consensus. More important, three-dimensional structures are now available for 68 NESs within 56 different cargo proteins. Analyses of these structures showed that experimentally identified NESs are more likely than the false positives to adopt α-helical conformations that transition to loops at their C-termini and more likely to be surface accessible within their protein domains or be present in disordered or unobserved parts of the structures. Such distinguishing features for real NESs might be useful in future NES prediction efforts. Finally, we also tested CRM1-binding of 40 NESs that were found in the 56 structures. We found that 16 of the NES peptides did not bind CRM1, hence illustrating how NESs are easily misidentified. PMID:22833565

  7. Stratospheric emissions effects database development

    NASA Technical Reports Server (NTRS)

    Baughcum, Steven L.; Henderson, Stephen C.; Hertel, Peter S.; Maggiora, Debra R.; Oncina, Carlos A.

    1994-01-01

    This report describes the development of a stratospheric emissions effects database (SEED) of aircraft fuel burn and emissions from projected Year 2015 subsonic aircraft fleets and from projected fleets of high-speed civil transports (HSCT's). This report also describes the development of a similar database of emissions from Year 1990 scheduled commercial passenger airline and air cargo traffic. The objective of this work was to initiate, develop, and maintain an engineering database for use by atmospheric scientists conducting the Atmospheric Effects of Stratospheric Aircraft (AESA) modeling studies. Fuel burn and emissions of nitrogen oxides (NO(x) as NO2), carbon monoxide, and hydrocarbons (as CH4) have been calculated on a 1-degree latitude x 1-degree longitude x 1-kilometer altitude grid and delivered to NASA as electronic files. This report describes the assumptions and methodology for the calculations and summarizes the results of these calculations.

  8. Identification of rice cornichon as a possible cargo receptor for the Golgi-localized sodium transporter OsHKT1;3.

    PubMed

    Rosas-Santiago, Paul; Lagunas-Gómez, Daniel; Barkla, Bronwyn J; Vera-Estrella, Rosario; Lalonde, Sylvie; Jones, Alexander; Frommer, Wolf B; Zimmermannova, Olga; Sychrová, Hana; Pantoja, Omar

    2015-05-01

    Membrane proteins are synthesized and folded in the endoplasmic reticulum (ER), and continue their path to their site of residence along the secretory pathway. The COPII system has been identified as a key player for selecting and directing the fate of membrane and secretory cargo proteins. Selection of cargo proteins within the COPII vesicles is achieved by cargo receptors. The cornichon cargo receptor belongs to a conserved protein family found in eukaryotes that has been demonstrated to participate in the selection of integral membrane proteins as cargo for their correct targeting. Here it is demonstrated at the cellular level that rice cornichon OsCNIH1 interacts with OsHKT1;3 and, in yeast cells, enables the expression of the sodium transporter to the Golgi apparatus. Physical and functional HKT-cornichon interactions are confirmed by the mating-based split ubiquitin system, bimolecular fluorescence complementation, and Xenopus oocyte and yeast expression systems. The interaction between the two proteins occurs in the ER of plant cells and their co-expression in oocytes leads to the sequestration of the transporter in the ER. In the yeast cornichon mutant erv14, OsHKT1;3 is mistargeted, preventing the toxic effects of sodium transport in the cell observed in wild-type cells or in the erv14 mutant that co-expressed OsHKT1;3 with either OsCNIH1 or Erv14p. Identification and characterization of rice cornichon as a possible cargo receptor opens up the opportunity to improve our knowledge on membrane protein targeting in plant cells. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  9. sts132-s-006

    NASA Image and Video Library

    2010-05-14

    STS132-S-006 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis.

  10. sts132-s-009

    NASA Image and Video Library

    2010-05-14

    STS132-S-009 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis.

  11. sts132-s-008

    NASA Image and Video Library

    2010-05-14

    STS132-S-008 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis.

  12. sts132-s-007

    NASA Image and Video Library

    2010-05-14

    STS132-S-007 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis.

  13. National Security Science and Technology Initiative: Air Cargo Screening, Final Report for CRADA Number NFE-07-01081

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bingham, Philip; Bush, John; Bowerman, Biays

    The non-intrusive inspection (NII) of consolidated air cargo carried on commercial passenger aircraft continues to be a technically challenging, high-priority requirement of the Department of Homeland Security’s Science and Technology Directorate (DHS S&T), the Transportation Security Agency and the Federal Aviation Administration. The goal of deploying a screening system that can reliably and cost-effectively detect explosive threats in consolidated cargo without adversely affecting the flow of commerce will require significant technical advances that will take years to develop. To address this critical National Security need, the Battelle Memorial Institute (Battelle), under a Cooperative Research and Development Agreement (CRADA) with fourmore » of its associated US Department of Energy (DOE) National Laboratories (Oak Ridge, Pacific Northwest, Idaho, and Brookhaven), conducted a research and development initiative focused on identifying, evaluating, and integrating technologies for screening consolidated air cargo for the presence of explosive threats. Battelle invested $8.5M of internal research and development funds during fiscal years 2007 through 2009.« less

  14. Magnetically triggered release of molecular cargo from iron oxide nanoparticle loaded microcapsules

    NASA Astrophysics Data System (ADS)

    Carregal-Romero, Susana; Guardia, Pablo; Yu, Xiang; Hartmann, Raimo; Pellegrino, Teresa; Parak, Wolfgang J.

    2014-12-01

    Photothermal release of cargo molecules has been extensively studied for bioapplications. For instance, microcapsules decorated with plasmonic nanoparticles have been widely used in in vitro assays. However, some concerns about their suitability for some in vivo applications cannot be easily overcome, in particular the limited penetration depth of light (even infrared). Magnetic nanoparticles are alternative heat-mediators for local heating, which can be triggered by applying an alternating magnetic field (AMF). AMFs are much less absorbed by tissue than light and thus can penetrate deeper overcoming the above mentioned limitations. Here we present iron oxide nanocube-modified microcapsules as a platform for magnetically triggered molecular release. Layer-by-layer assembled polyelectrolyte microcapsules with 4.6 μm diameter, which had 18 nm diameter iron oxide nanocubes integrated in their walls, were synthesized. The microcapsules were further loaded with an organic fluorescent polymer (Cascade Blue-labelled dextran), which was used as a model of molecular cargo. Through an AMF the magnetic nanoparticles were able to heat their surroundings and destroy the microcapsule walls, leading to a final release of the embedded cargo to the surrounding solution. The cargo release was monitored in solution by measuring the increase in both absorbance and fluorescence signal after the exposure to an AMF. Our results demonstrate that magnetothermal release of the encapsulated material is possible using magnetic nanoparticles with a high heating performance.Photothermal release of cargo molecules has been extensively studied for bioapplications. For instance, microcapsules decorated with plasmonic nanoparticles have been widely used in in vitro assays. However, some concerns about their suitability for some in vivo applications cannot be easily overcome, in particular the limited penetration depth of light (even infrared). Magnetic nanoparticles are alternative heat-mediators for local heating, which can be triggered by applying an alternating magnetic field (AMF). AMFs are much less absorbed by tissue than light and thus can penetrate deeper overcoming the above mentioned limitations. Here we present iron oxide nanocube-modified microcapsules as a platform for magnetically triggered molecular release. Layer-by-layer assembled polyelectrolyte microcapsules with 4.6 μm diameter, which had 18 nm diameter iron oxide nanocubes integrated in their walls, were synthesized. The microcapsules were further loaded with an organic fluorescent polymer (Cascade Blue-labelled dextran), which was used as a model of molecular cargo. Through an AMF the magnetic nanoparticles were able to heat their surroundings and destroy the microcapsule walls, leading to a final release of the embedded cargo to the surrounding solution. The cargo release was monitored in solution by measuring the increase in both absorbance and fluorescence signal after the exposure to an AMF. Our results demonstrate that magnetothermal release of the encapsulated material is possible using magnetic nanoparticles with a high heating performance. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr04055d

  15. Advanced transportation system study: Manned launch vehicle concepts for two way transportation system payloads to LEO

    NASA Technical Reports Server (NTRS)

    Duffy, James B.

    1993-01-01

    The purpose of the Advanced Transportation System Study (ATSS) task area 1 study effort is to examine manned launch vehicle booster concepts and two-way cargo transfer and return vehicle concepts to determine which of the many proposed concepts best meets NASA's needs for two-way transportation to low earth orbit. The study identified specific configurations of the normally unmanned, expendable launch vehicles (such as the National Launch System family) necessary to fly manned payloads. These launch vehicle configurations were then analyzed to determine the integrated booster/spacecraft performance, operations, reliability, and cost characteristics for the payload delivery and return mission. Design impacts to the expendable launch vehicles which would be required to perform the manned payload delivery mission were also identified. These impacts included the implications of applying NASA's man-rating requirements, as well as any mission or payload unique impacts. The booster concepts evaluated included the National Launch System (NLS) family of expendable vehicles and several variations of the NLS reference configurations to deliver larger manned payload concepts (such as the crew logistics vehicle (CLV) proposed by NASA JSC). Advanced, clean sheet concepts such as an F-1A engine derived liquid rocket booster (LRB), the single stage to orbit rocket, and a NASP-derived aerospace plane were also included in the study effort. Existing expendable launch vehicles such as the Titan 4, Ariane 5, Energia, and Proton were also examined. Although several manned payload concepts were considered in the analyses, the reference manned payload was the NASA Langley Research Center's HL-20 version of the personnel launch system (PLS). A scaled up version of the PLS for combined crew/cargo delivery capability, the HL-42 configuration, was also included in the analyses of cargo transfer and return vehicle (CTRV) booster concepts. In addition to strictly manned payloads, two-way cargo transportation systems (CTRV's) were also examined. The study provided detailed design and analysis of the performance, reliability, and operations of these concepts. The study analyzed these concepts as unique systems and also analyzed several combined CTRV/booster configurations as integrated launch systems (such as for launch abort analyses). Included in the set of CTRV concepts analyzed were the medium CTRV, the integral CTRV (in both a pressurized and unpressurized configuration), the winged CTRV, and an attached cargo carrier for the PLS system known as the PLS caboose.

  16. Fluids and Combustion Facility: Combustion Integrated Rack Modal Model Correlation

    NASA Technical Reports Server (NTRS)

    McNelis, Mark E.; Suarez, Vicente J.; Sullivan, Timothy L.; Otten, Kim D.; Akers, James C.

    2005-01-01

    The Fluids and Combustion Facility (FCF) is a modular, multi-user, two-rack facility dedicated to combustion and fluids science in the US Laboratory Destiny on the International Space Station. FCF is a permanent facility that is capable of accommodating up to ten combustion and fluid science investigations per year. FCF research in combustion and fluid science supports NASA's Exploration of Space Initiative for on-orbit fire suppression, fire safety, and space system fluids management. The Combustion Integrated Rack (CIR) is one of two racks in the FCF. The CIR major structural elements include the International Standard Payload Rack (ISPR), Experiment Assembly (optics bench and combustion chamber), Air Thermal Control Unit (ATCU), Rack Door, and Lower Structure Assembly (Input/Output Processor and Electrical Power Control Unit). The load path through the rack structure is outlined. The CIR modal survey was conducted to validate the load path predicted by the CIR finite element model (FEM). The modal survey is done by experimentally measuring the CIR frequencies and mode shapes. The CIR model was test correlated by updating the model to represent the test mode shapes. The correlated CIR model delivery is required by NASA JSC at Launch-10.5 months. The test correlated CIR flight FEM is analytically integrated into the Shuttle for a coupled loads analysis of the launch configuration. The analysis frequency range of interest is 0-50 Hz. A coupled loads analysis is the analytical integration of the Shuttle with its cargo element, the Mini Payload Logistics Module (MPLM), in the Shuttle cargo bay. For each Shuttle launch configuration, a verification coupled loads analysis is performed to determine the loads in the cargo bay as part of the structural certification process.

  17. 46 CFR 295.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... between two or more ports and/or points in the United States. (l) Eligible Vessel, means a vessel that... sources with a minimum speed of 12 knots. (2) Dry Cargo—All dry cargo ships, including integrated tug...

  18. View of ASTRO-2 payload in cargo bay of STS-67 Endeavour

    NASA Image and Video Library

    1995-03-17

    STS067-713-072 (2-18 March 1995) --- This 70mm cargo bay scene, backdropped against a desert area of Namibia, typifies the view that daily greeted the Astro-2 crew members during their almost 17-days aboard the Space Shuttle Endeavour. Positioned on the Spacelab pallet amidst other hardware, the Astro-2 payload is in its operational mode. Visible here are the Instrument Pointing System (IPS), Hopkins Ultraviolet Telescope (HUT), Star Tracker (ST), Ultraviolet Imaging Telescope (UIT), Wisconsin Ultraviolet Photo-Polarimeter Experiment (WUPPE), and Integrated Radiator System (IRS). At this angle, the Optical Sensor Package (OPS) is not seen. The Igloo, which supports the package of experiments, is in center foreground. Two Get-Away Special (GAS) canisters are in lower left foreground. The Extended Duration Orbiter (EDO) pallet, located aft of the cargo bay, is obscured by the Astro-2 payload. The Endeavour was 190 nautical miles above Earth.

  19. Molecular Structure, Function, and Dynamics of Clathrin-Mediated Membrane Traffic

    PubMed Central

    Kirchhausen, Tom; Owen, David; Harrison, Stephen C.

    2014-01-01

    Clathrin is a molecular scaffold for vesicular uptake of cargo at the plasma membrane, where its assembly into cage-like lattices underlies the clathrin-coated pits of classical endocytosis. This review describes the structures of clathrin, major cargo adaptors, and other proteins that participate in forming a clathrin-coated pit, loading its contents, pinching off the membrane as a lattice-enclosed vesicle, and recycling the components. It integrates as much of the structural information as possible at the time of writing into a sketch of the principal steps in coated-pit and coated-vesicle formation. PMID:24789820

  20. International Space Station Alpha (ISSA) Integrated Traffic Model

    NASA Technical Reports Server (NTRS)

    Gates, R. E.

    1995-01-01

    The paper discusses the development process of the International Space Station Alpha (ISSA) Integrated Traffic Model which is a subsystem analyses tool utilized in the ISSA design analysis cycles. Fast-track prototyping of the detailed relationships between daily crew and station consumables, propellant needs, maintenance requirements and crew rotation via spread sheets provide adequate benchmarks to assess cargo vehicle design and performance characteristics.

  1. An Integrated Hybrid Transportation Architecture for Human Mars Expeditions

    NASA Technical Reports Server (NTRS)

    Merrill, Raymond G.; Chai, Patrick R.; Qu, Min

    2015-01-01

    NASA's Human Spaceflight Architecture Team is developing a reusable hybrid transportation architecture that uses both chemical and electric propulsion systems on the same vehicle to send crew and cargo to Mars destinations such as Phobos, Deimos, the surface of Mars, and other orbits around Mars. By applying chemical and electrical propulsion where each is most effective, the hybrid architecture enables a series of Mars trajectories that are more fuel-efficient than an all chemical architecture without significant increases in flight times. This paper presents an integrated Hybrid in-space transportation architecture for piloted missions and delivery of cargo. A concept for a Mars campaign including orbital and Mars surface missions is described in detail including a system concept of operations and conceptual design. Specific constraints, margin, and pinch points are identified for the architecture and opportunities for critical path commercial and international collaboration are discussed.

  2. Building and Leading the Next Generation of Exploration Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Cook, Stephen A.; Vanhooser, Teresa

    2010-01-01

    NASA s Constellation Program is depending on the Ares Projects to deliver the crew and cargo launch capabilities needed to send human explorers to the Moon and beyond. Ares I and V will provide the core space launch capabilities needed to continue providing crew and cargo access to the International Space Station (ISS), and to build upon the U.S. history of human spaceflight to the Moon and beyond. Since 2005, Ares has made substantial progress on designing, developing, and testing the Ares I crew launch vehicle and has continued its in-depth studies of the Ares V cargo launch vehicle. In 2009, the Ares Projects plan to: conduct the first flight test of Ares I, test-fire the Ares I first stage solid rocket motor; build the first integrated Ares I upper stage; continue testing hardware for the J-2X upper stage engine, and continue refining the design of the Ares V cargo launch vehicle. These efforts come with serious challenges for the project leadership team as it continues to foster a culture of ownership and accountability, operate with limited funding, and works to maintain effective internal and external communications under intense external scrutiny.

  3. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-074 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis.

  4. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-080 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis.

  5. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-076 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis.

  6. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-072 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis.

  7. Integration Of Launch Vehicle Simulation/Analysis Tools And Lunar Cargo Lander Design. Part 2/2

    NASA Technical Reports Server (NTRS)

    DeJean, George Brian; Shiue, Yeu-Sheng Paul; King, Jeffrey

    2005-01-01

    Part 2, which will be discussed in this report, will discuss the development of a Lunar Cargo Lander (unmanned launch vehicle) that will transport usable payload from Trans- Lunar Injection to the moon. The Delta IV-Heavy was originally used to transport the Lunar Cargo Lander to TLI, but other launch vehicles have been studied. In order to uncover how much payload is possible to land on the moon, research was needed in order to design the sub-systems of the spacecraft. The report will discuss and compare the use of a hypergolic and cryogenic system for its main propulsion system. The guidance, navigation, control, telecommunications, thermal, propulsion, structure, mechanisms, landing gear, command, data handling, and electrical power sub-systems were designed by scaling off other flown orbiters and moon landers. Once all data was collected, an excel spreadsheet was created to accurately calculate the usable payload that will land on the moon along with detailed mass and volume estimating relations. As designed, The Lunar Cargo Lander can plant 5,400 lbm of usable payload on the moon using a hypergolic system and 7,400 lbm of usable payload on the moon using a cryogenic system.

  8. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-075 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis.

  9. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-077 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis.

  10. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-081 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis.

  11. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-073 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis.

  12. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-078 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis.

  13. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-079 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis.

  14. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-071 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abercrombie, Robert K; Buckner Jr, Dooley; Newton, David D

    The Oak Ridge National Laboratory (ORNL) Weigh-In-Motion (WIM) system provides a portable and/or semi-portable means of accurately weighing vehicles and its cargo as each vehicle crosses the scales (while in motion), and determining (1) axle weights and (2) axle spacing for vehicles (for determination of Bridge Formula compliance), (3) total vehicle/cargo weight and (4) longitudinal center of gravity (for safety considerations). The WIM system can also weigh the above statically. Because of the automated nature of the WIM system, it eliminates the introduction of human errors caused by manual computations and data entry, adverse weather conditions, and stress. Individual vehiclesmore » can be weighed continuously at low speeds (approximately 3-10 mph) and at intervals of less than one minute. The ORNL WIM system operates and is integrated into the Bethel Jacobs Company Transportation Management and Information System (TMIS, a Radio-Frequency Identification [RFID] enabled information system). The integrated process is as follows: Truck Identification Number and Tare Weight are programmed into a RFID Tag. Handheld RFID devices interact with the RFID Tag, and Electronic Shipping Document is written to the RFID Tag. The RFID tag read by an RFID tower identifies the vehicle and its associated cargo, the specific manifest of radioactive debris for the uniquely identified vehicle. The weight of the cargo (in this case waste debris) is calculated from total vehicle weight information supplied from WIM to TMIS and is further processed into the Information System and kept for historical and archival purposes. The assembled data is the further process in downstream information systems where waste coordination activities at the Y-12 Environmental Management Waste Management Facility (EMWMF) are written to RFID Tag. All cycle time information is monitored by Transportation Operations and Security personnel.« less

  16. Development of the North American cargo securement standard

    DOT National Transportation Integrated Search

    2012-08-01

    This report presents the test plan for conducting the Benefit-Cost Analysis (BCA) for the United States Department of Transportation (U.S. DOT) evaluation of the Dallas U.S. 75 Integrated Corridor Management (ICM) Initiative Demonstration. The ICM pr...

  17. International Space Station Alpha (ISSA) Integrated Traffic Model

    NASA Technical Reports Server (NTRS)

    Gates, Robert E.

    1994-01-01

    The paper discusses the development process of the International Space Station Alpha (ISSA) Integrated Traffic Model which is a subsystem analyses tool utilized in the ISSA design analysis cycles. Fast-track prototyping of the detailed relationships between daily crew and station consumables, propellant needs, maintenance requirements, and crew rotation via spread sheets provides adequate bench marks to assess cargo vehicle design and performance characteristics.

  18. Affordable Heavy Lift Capability: 2000-2004

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This custom bibliography from the NASA Scientific and Technical Information Program lists a sampling of records found in the NASA Aeronautics and Space Database. The scope of this topic includes technologies to allow robust, affordable access of cargo, particularly to low-Earth orbit. This area of focus is one of the enabling technologies as defined by NASA s Report of the President s Commission on Implementation of United States Space Exploration Policy, published in June 2004.

  19. Shuttle payload interface verification equipment study. Volume 2: Technical document, part 1

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The technical analysis is reported that was performed during the shuttle payload interface verification equipment study. It describes: (1) the background and intent of the study; (2) study approach and philosophy covering all facets of shuttle payload/cargo integration; (3)shuttle payload integration requirements; (4) preliminary design of the horizontal IVE; (5) vertical IVE concept; and (6) IVE program development plans, schedule and cost. Also included is a payload integration analysis task to identify potential uses in addition to payload interface verification.

  20. 75 FR 17743 - Ocean Transportation Intermediary License Applicants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-07

    ..., Managing Member. Integres Global Logistics, Inc., 10995 Gold Center Drive, Suite 120, Rancho Cordova, CA..., DC 20573. Non-Vessel-Operating Common Carrier--Ocean Transportation Intermediary: HPK Logistics (USA... (Qualifying Individual) Jian Sun, President. Cargo Logistics International, LLC, 8761 Dorchester Road, Suite...

  1. 14 CFR Sec. 19-4 - Service classes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... a composite of first class, coach, and mixed passenger/cargo service. The following classifications... integral part of services performed pursuant to published flight schedules. The following classifications... Classifications Sec. 19-4 Service classes. The statistical classifications are designed to reflect the operating...

  2. 14 CFR Sec. 19-4 - Service classes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... a composite of first class, coach, and mixed passenger/cargo service. The following classifications... integral part of services performed pursuant to published flight schedules. The following classifications... Classifications Sec. 19-4 Service classes. The statistical classifications are designed to reflect the operating...

  3. KSC-99pp0349

    NASA Image and Video Library

    1999-03-25

    At Astrotech in Titusville, Fla., technicians with DaimlerChrysler Aerospace and RSC Energia of Korolev, Russia, maneuver a Russian cargo crane, the Strela, which is to be mounted to the exterior of the Russian station segment on the International Space Station (ISS). The Strehla has been the focus for two Shuttle crews, STS-96 who are at KSC for a Crew Equipment Interface Test, and STS-101, for payload familiarization. For the first time, STS-96 will include an Integrated Cargo Carrier (ICC) that will carry the Russian cargo crane; the SPACEHAB Oceaneering Space System Box (SHOSS), which is a logistics items carrier; and a U.S.-built crane (ORU Transfer Device, or OTD) that will be stowed on the station for use during future ISS assembly missions. The ICC can carry up to 6,000 lb of unpressurized payload. It was built for SPACEHAB by DaimlerChrysler Aerospace and RSC Energia. STS-96 is targeted for launch on May 24 from Launch Pad 39B. STS-101 is scheduled to launch in early December 1999

  4. Retriever, a multiprotein complex for retromer-independent endosomal cargo recycling

    PubMed Central

    McNally, Kerrie E.; Faulkner, Rebecca; Steinberg, Florian; Gallon, Matthew; Ghai, Rajesh; Pim, David; Langton, Paul; Pearson, Neil; Danson, Chris M.; Nägele, Heike; Morris, Lindsey M; Singla, Arnika; Overlee, Brittany L; Heesom, Kate J.; Sessions, Richard; Banks, Lawrence; Collins, Brett M; Berger, Imre; Billadeau, Daniel D.; Burstein, Ezra; Cullen, Peter J.

    2018-01-01

    Following endocytosis and entry into the endosomal network, integral membrane proteins undergo sorting for lysosomal degradation or are alternatively retrieved and recycled back to the cell surface. Here we describe the discovery of an ancient and conserved multi-protein complex which orchestrates cargo retrieval and recycling and importantly, is biochemically and functionally distinct to the established retromer pathway. Composed of a heterotrimer of DSCR3, C16orf62 and VPS29, and bearing striking similarity with retromer, we have called this complex ‘retriever’. We establish that retriever associates with the cargo adaptor sorting nexin 17 (SNX17) and couples to the CCC and WASH complexes to prevent lysosomal degradation and promote cell surface recycling of α5β1-integrin. Through quantitative proteomic analysis we identify over 120 cell surface proteins, including numerous integrins, signalling receptors and solute transporters, which require SNX17-retriever to maintain their surface levels. Our identification of retriever establishes a major new endosomal retrieval and recycling pathway. PMID:28892079

  5. Finite element analysis of container ship's cargo hold using ANSYS and POSEIDON software

    NASA Astrophysics Data System (ADS)

    Tanny, Tania Tamiz; Akter, Naznin; Amin, Osman Md.

    2017-12-01

    Nowadays ship structural analysis has become an integral part of the preliminary ship design providing further support for the development and detail design of ship structures. Structural analyses of container ship's cargo holds are carried out for the balancing of their safety and capacity, as those ships are exposed to the high risk of structural damage during voyage. Two different design methodologies have been considered for the structural analysis of a container ship's cargo hold. One is rule-based methodology and the other is a more conventional software based analyses. The rule based analysis is done by DNV-GL's software POSEIDON and the conventional package based analysis is done by ANSYS structural module. Both methods have been applied to analyze some of the mechanical properties of the model such as total deformation, stress-strain distribution, Von Mises stress, Fatigue etc., following different design bases and approaches, to indicate some guidance's for further improvements in ship structural design.

  6. A preliminary demonstration of "virtual warehousing" and cross-docking technique with active RFID combined with asset tracking equipment.

    DOT National Transportation Integrated Search

    2010-11-01

    The University of Denvers Intermodal Transportation Institute and System Planning : Corporations GlobalTrak system have successfully demonstrated the integration of GPS : tracking and active RFID monitoring of simulated cargo of pallet and cart...

  7. 33 CFR 155.4030 - Required salvage and marine firefighting services to list in response plans.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... listed in the table in § 155.4030(b) will apply to these services. (c) Integration into the response... offload the vessel's largest cargo tank in 24 hours of continuous operation. This is required for both...

  8. Wolf and Cassidy works with the ICC during EVA-3

    NASA Image and Video Library

    2009-07-22

    S127-E-007978 (22 July 2009) Astronauts Christopher Cassidy (left) and Dave Wolf work with the Integrated Cargo Carrier-VLD, as they remove and replace batteries on the P6 truss during STS-127's third session of extravehicular activity.

  9. sts132-s-005

    NASA Image and Video Library

    2010-05-14

    STS132-S-005 (14 May 2010) --- Witnessed by news media representatives and STS-132 Tweet-up participants on hand by the countdown clock at the Press Site, Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis.

  10. sts132-s-011

    NASA Image and Video Library

    2010-05-14

    STS132-S-011 (14 May 2010) --- Witnessed by news media representatives and STS-132 Tweet-up participants on hand by the countdown clock at the Press Site, Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis.

  11. STS-132 Space Shuttle Atlantis Launch

    NASA Image and Video Library

    2010-05-14

    STS132-S-015 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo Credit: NASA/Jack Pfaller

  12. STS-132 Space Shuttle Atlantis Launch

    NASA Image and Video Library

    2010-05-14

    STS132-S-016 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo Credit: NASA/Jack Pfaller

  13. sts132-s-010

    NASA Image and Video Library

    2010-05-14

    STS132-S-010 (14 May 2010) --- Witnessed by news media representatives and STS-132 Tweet-up participants on hand by the countdown clock at the Press Site, Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis.

  14. STS-132 Space Shuttle Atlantis Launch

    NASA Image and Video Library

    2010-05-14

    STS132-S-017 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo Credit: NASA/Jack Pfaller

  15. Retrovirus Integration Database (RID): a public database for retroviral insertion sites into host genomes.

    PubMed

    Shao, Wei; Shan, Jigui; Kearney, Mary F; Wu, Xiaolin; Maldarelli, Frank; Mellors, John W; Luke, Brian; Coffin, John M; Hughes, Stephen H

    2016-07-04

    The NCI Retrovirus Integration Database is a MySql-based relational database created for storing and retrieving comprehensive information about retroviral integration sites, primarily, but not exclusively, HIV-1. The database is accessible to the public for submission or extraction of data originating from experiments aimed at collecting information related to retroviral integration sites including: the site of integration into the host genome, the virus family and subtype, the origin of the sample, gene exons/introns associated with integration, and proviral orientation. Information about the references from which the data were collected is also stored in the database. Tools are built into the website that can be used to map the integration sites to UCSC genome browser, to plot the integration site patterns on a chromosome, and to display provirus LTRs in their inserted genome sequence. The website is robust, user friendly, and allows users to query the database and analyze the data dynamically. https://rid.ncifcrf.gov ; or http://home.ncifcrf.gov/hivdrp/resources.htm .

  16. A synthesis of the "state-of-the-practice for advancing planning and operations integration opportunities within transportation agencies" : [summary].

    DOT National Transportation Integrated Search

    2014-12-01

    Federal law requires that metropolitan transportation plans include operations and : management strategies to improve the performance of existing roads, relieve congestion, : and maximize the safety and mobility of people and cargo. Transportation op...

  17. 40 CFR 264.1086 - Standards: Containers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... integral part of the container structural design (e.g., a “portable tank” or bulk cargo container equipped... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Standards: Containers. 264.1086... Air Emission Standards for Tanks, Surface Impoundments, and Containers § 264.1086 Standards...

  18. 40 CFR 264.1086 - Standards: Containers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... integral part of the container structural design (e.g., a “portable tank” or bulk cargo container equipped... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Standards: Containers. 264.1086... Air Emission Standards for Tanks, Surface Impoundments, and Containers § 264.1086 Standards...

  19. 40 CFR 264.1086 - Standards: Containers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... integral part of the container structural design (e.g., a “portable tank” or bulk cargo container equipped... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Standards: Containers. 264.1086... Air Emission Standards for Tanks, Surface Impoundments, and Containers § 264.1086 Standards...

  20. 40 CFR 264.1086 - Standards: Containers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... integral part of the container structural design (e.g., a “portable tank” or bulk cargo container equipped... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Standards: Containers. 264.1086... Air Emission Standards for Tanks, Surface Impoundments, and Containers § 264.1086 Standards...

  1. Neurotransmitter-Triggered Transfer of Exosomes Mediates Oligodendrocyte–Neuron Communication

    PubMed Central

    Kuo, Wen Ping; Amphornrat, Jesa; Thilemann, Sebastian; Saab, Aiman S.; Kirchhoff, Frank; Möbius, Wiebke; Goebbels, Sandra; Nave, Klaus-Armin; Schneider, Anja; Simons, Mikael; Klugmann, Matthias; Trotter, Jacqueline; Krämer-Albers, Eva-Maria

    2013-01-01

    Reciprocal interactions between neurons and oligodendrocytes are not only crucial for myelination, but also for long-term survival of axons. Degeneration of axons occurs in several human myelin diseases, however the molecular mechanisms of axon-glia communication maintaining axon integrity are poorly understood. Here, we describe the signal-mediated transfer of exosomes from oligodendrocytes to neurons. These endosome-derived vesicles are secreted by oligodendrocytes and carry specific protein and RNA cargo. We show that activity-dependent release of the neurotransmitter glutamate triggers oligodendroglial exosome secretion mediated by Ca2+ entry through oligodendroglial NMDA and AMPA receptors. In turn, neurons internalize the released exosomes by endocytosis. Injection of oligodendroglia-derived exosomes into the mouse brain results in functional retrieval of exosome cargo in neurons. Supply of cultured neurons with oligodendroglial exosomes improves neuronal viability under conditions of cell stress. These findings indicate that oligodendroglial exosomes participate in a novel mode of bidirectional neuron-glia communication contributing to neuronal integrity. PMID:23874151

  2. Neurotransmitter-triggered transfer of exosomes mediates oligodendrocyte-neuron communication.

    PubMed

    Frühbeis, Carsten; Fröhlich, Dominik; Kuo, Wen Ping; Amphornrat, Jesa; Thilemann, Sebastian; Saab, Aiman S; Kirchhoff, Frank; Möbius, Wiebke; Goebbels, Sandra; Nave, Klaus-Armin; Schneider, Anja; Simons, Mikael; Klugmann, Matthias; Trotter, Jacqueline; Krämer-Albers, Eva-Maria

    2013-07-01

    Reciprocal interactions between neurons and oligodendrocytes are not only crucial for myelination, but also for long-term survival of axons. Degeneration of axons occurs in several human myelin diseases, however the molecular mechanisms of axon-glia communication maintaining axon integrity are poorly understood. Here, we describe the signal-mediated transfer of exosomes from oligodendrocytes to neurons. These endosome-derived vesicles are secreted by oligodendrocytes and carry specific protein and RNA cargo. We show that activity-dependent release of the neurotransmitter glutamate triggers oligodendroglial exosome secretion mediated by Ca²⁺ entry through oligodendroglial NMDA and AMPA receptors. In turn, neurons internalize the released exosomes by endocytosis. Injection of oligodendroglia-derived exosomes into the mouse brain results in functional retrieval of exosome cargo in neurons. Supply of cultured neurons with oligodendroglial exosomes improves neuronal viability under conditions of cell stress. These findings indicate that oligodendroglial exosomes participate in a novel mode of bidirectional neuron-glia communication contributing to neuronal integrity.

  3. Ontology based heterogeneous materials database integration and semantic query

    NASA Astrophysics Data System (ADS)

    Zhao, Shuai; Qian, Quan

    2017-10-01

    Materials digital data, high throughput experiments and high throughput computations are regarded as three key pillars of materials genome initiatives. With the fast growth of materials data, the integration and sharing of data is very urgent, that has gradually become a hot topic of materials informatics. Due to the lack of semantic description, it is difficult to integrate data deeply in semantic level when adopting the conventional heterogeneous database integration approaches such as federal database or data warehouse. In this paper, a semantic integration method is proposed to create the semantic ontology by extracting the database schema semi-automatically. Other heterogeneous databases are integrated to the ontology by means of relational algebra and the rooted graph. Based on integrated ontology, semantic query can be done using SPARQL. During the experiments, two world famous First Principle Computational databases, OQMD and Materials Project are used as the integration targets, which show the availability and effectiveness of our method.

  4. Tubby family proteins are adapters for ciliary trafficking of integral membrane proteins

    PubMed Central

    Shimada, Issei S.; Loriot, Evan

    2017-01-01

    The primary cilium is a paradigmatic organelle for studying compartmentalized signaling; however, unlike soluble protein trafficking, processes targeting integral membrane proteins to cilia are poorly understood. In this study, we determine that the tubby family protein TULP3 functions as a general adapter for ciliary trafficking of structurally diverse integral membrane cargo, including multiple reported and novel rhodopsin family G protein–coupled receptors (GPCRs) and the polycystic kidney disease–causing polycystin 1/2 complex. The founding tubby family member TUB also localizes to cilia similar to TULP3 and determines trafficking of a subset of these GPCRs to neuronal cilia. Using minimal ciliary localization sequences from GPCRs and fibrocystin (also implicated in polycystic kidney disease), we demonstrate these motifs to be sufficient and TULP3 dependent for ciliary trafficking. We propose a three-step model for TULP3/TUB-mediated ciliary trafficking, including the capture of diverse membrane cargo by the tubby domain in a phosphoinositide 4,5-bisphosphate (PI(4,5)P2)-dependent manner, ciliary delivery by intraflagellar transport complex A binding to the TULP3/TUB N terminus, and subsequent release into PI(4,5)P2-deficient ciliary membrane. PMID:28154160

  5. Functional integration of automated system databases by means of artificial intelligence

    NASA Astrophysics Data System (ADS)

    Dubovoi, Volodymyr M.; Nikitenko, Olena D.; Kalimoldayev, Maksat; Kotyra, Andrzej; Gromaszek, Konrad; Iskakova, Aigul

    2017-08-01

    The paper presents approaches for functional integration of automated system databases by means of artificial intelligence. The peculiarities of turning to account the database in the systems with the usage of a fuzzy implementation of functions were analyzed. Requirements for the normalization of such databases were defined. The question of data equivalence in conditions of uncertainty and collisions in the presence of the databases functional integration is considered and the model to reveal their possible occurrence is devised. The paper also presents evaluation method of standardization of integrated database normalization.

  6. X-Ray Scan Detection for Cargo Integrity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valencia, Juan D.; Miller, Steven D.

    ABSTRACT The increase of terrorism and its global impact has made the determination of the contents of cargo containers a necessity. Existing technology allows non-intrusive inspections to determine the contents of a container rapidly and accurately. However, some cargo shipments are exempt from such inspections. Hence, there is a need for a technology that enables rapid and accurate means of detecting whether such containers were non-intrusively inspected. Non-intrusive inspections are most commonly performed utilizing high powered X-ray equipment. The challenge is creating a device that can detect short duration X-ray scans while maintaining a portable, battery powered, low cost, andmore » easy to use platform. The Pacific Northwest National Laboratory (PNNL) has developed a methodology and prototype device focused on this challenge. The prototype, developed by PNNL, is a battery powered electronic device that continuously measures its X-ray and Gamma exposure, calculates the dose equivalent rate, and makes a determination of whether the device has been exposed to the amount of radiation experienced during an X-ray inspection. Once an inspection is detected, the device will record a timestamp of the event and relay the information to authorized personnel via a visual alert, USB connection, and/or wireless communication. The results of this research demonstrate that PNNL’s prototype device can be effective at determining whether a container was scanned by X-ray equipment typically used for cargo container inspections. This paper focuses on laboratory measurements and test results acquired with the PNNL prototype device using several X-ray radiation levels. Keywords: Radiation, Scan, X-ray, Gamma, Detection, Cargo, Container, Wireless, RF« less

  7. A whole-system approach to x-ray spectroscopy in cargo inspection systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langeveld, Willem G. J.; Gozani, Tsahi; Ryge, Peter

    The bremsstrahlung x-ray spectrum used in high-energy, high-intensity x-ray cargo inspection systems is attenuated and modified by the materials in the cargo in a Z-dependent way. Therefore, spectroscopy of the detected x rays yields information about the Z of the x-rayed cargo material. It has previously been shown that such ZSpectroscopy (Z-SPEC) is possible under certain circumstances. A statistical approach, Z-SCAN (Z-determination by Statistical Count-rate ANalysis), has also been shown to be effective, and it can be used either by itself or in conjunction with Z-SPEC when the x-ray count rate is too high for individual x-ray spectroscopy. Both techniquesmore » require fast x-ray detectors and fast digitization electronics. It is desirable (and possible) to combine all techniques, including x-ray imaging of the cargo, in a single detector array, to reduce costs, weight, and overall complexity. In this paper, we take a whole-system approach to x-ray spectroscopy in x-ray cargo inspection systems, and show how the various parts interact with one another. Faster detectors and read-out electronics are beneficial for both techniques. A higher duty-factor x-ray source allows lower instantaneous count rates at the same overall x-ray intensity, improving the range of applicability of Z-SPEC in particular. Using an intensity-modulated advanced x-ray source (IMAXS) allows reducing the x-ray count rate for cargoes with higher transmission, and a stacked-detector approach may help material discrimination for the lowest attenuations. Image processing and segmentation allow derivation of results for entire objects, and subtraction of backgrounds. We discuss R and D performed under a number of different programs, showing progress made in each of the interacting subsystems. We discuss results of studies into faster scintillation detectors, including ZnO, BaF{sub 2} and PbWO{sub 4}, as well as suitable photo-detectors, read-out and digitization electronics. We discuss high-duty-factor linear-accelerator x-ray sources and their associated requirements, and how such sources improve spectroscopic techniques. We further discuss how image processing techniques help in correcting for backgrounds and overlapping materials. In sum, we present an integrated picture of how to optimize a cargo inspection system for x-ray spectroscopy.« less

  8. The Advanced Re-Entry Vehicle (ARV) A Development Step From ATV Toward Manned Transportation Systems

    NASA Astrophysics Data System (ADS)

    Bottacini, Massimiliano; Berthe, Philippe; Vo, Xavier; Pietsch, Klaus

    2011-05-01

    The Advanced Re-entry Vehicle (ARV) programme has been undertaken by Europe with the objective to contribute to the preparation of a future European crew transportation system, while providing a valuable logistic support to the ISS through an operational cargo return system. This development would allow: - the early acquisition of critical technologies; - the design, development and testing of elements suitable for the follow up human rated transportation system. These vehicles should also serve future LEO infrastructures and exploration missions. With the aim to satisfy the above objectives a team composed by major European industries and led by EADS Astrium Space Transportation is currently conducting the phase A of the programme under contract with the European Space Agency (ESA). Two vehicle versions are being investigated: a Cargo version, transporting cargo only to/from the ISS, and a Crew version, which will allow the transfer of both crew and cargo to/from the ISS. The ARV Cargo version, in its present configuration, is composed of three modules. The Versatile Service Module (VSM) provides to the system the propulsion/GNC for orbital manoeuvres and attitude control and the orbital power generation. Its propulsion system and GNC shall be robust enough to allow its use for different launch stacks and different LEO missions in the future. The Un-pressurised Cargo Module (UCM) provides the accommodation for about 3000 kg of unpressurised cargo and is to be sufficiently flexible to ensure the transportation of: - orbital infrastructure components (ORU’s); - scientific / technological experiments; - propellant for re-fuelling, re-boost (and de-orbiting) of the ISS. The Re-entry Module (RM) provides a pressurized volume to accommodate active/passive cargo (2000 kg upload/1500 kg download). It is conceived as an expendable conical capsule with spherical heat-shield, interfacing with the new docking standard of the ISS, i.e. it carries the IBDM docking system, on a dedicated adapter. Its thermo-mechanical design, GNC, descent & landing systems take into account its future evolution for crew transportation. The ARV Crew version is also composed of three main modules: - an Integrated Resource Module (IRM) providing the main propulsion and power functions during the on-orbit phases of the mission; - a Re-entry Module (RM) providing the re-entry function and a pressurized environment for four crew members and about 250 kg of passive / active cargo; - a Crew Escape System (CES) providing the function of emergency separation of the RM from the launcher (in case of failure of this latter). The paper presents an overview of the ARV Cargo and Crew versions requirements derived from the above objectives, their mission scenarios, system architectures and performances. The commonality aspects between the ARV Cargo version and future transportation systems (including also the ARV Crew version and logistic carriers) are also highlighted.

  9. The Advanced Re-Entry Vehicle (ARV) a Development Step from ATV Toward Manned Transportation Systems

    NASA Astrophysics Data System (ADS)

    Bottacini, M.; Berthe, P.; Vo, X.; Pietsch, K.

    2011-08-01

    The Advanced Re-entry Vehicle (ARV) programme has been undertaken by Europe with the objective to contribute to the preparation of a future European crew transportation system, while providing a valuable logistic support to the ISS through an operational cargo return system. This development would allow: - the early acquisition of critical technologies; - the design, development and testing of elements suitable for the follow up human rated transportation system. These vehicles should also serve future LEO infrastructures and exploration missions. With the aim to satisfy the above objectives a team composed by major European industries and led by EADS Astrium Space Transportation is currently conducting the phase A of the programme under contract with the European Space Agency (ESA). Two vehicle versions are being investigated: a Cargo version, transporting cargo only to/from the ISS, and a Crew version, which will allow the transfer of both crew and cargo to/from the ISS. The ARV Cargo version, in its present configuration, is composed of three modules. The Versatile Service Module (VSM) provides to the system the propulsion/GNC for orbital manoeuvres and attitude control and the orbital power generation. Its propulsion system and GNC shall be robust enough to allow its use for different launch stacks and different LEO missions in the future. The Un-pressurised Cargo Module (UCM) provides the accommodation for about 3000 kg of un-pressurised cargo and is to be sufficiently flexible to ensure the transportation of: - orbital infrastructure components (ORU's); - scientific / technological experiments; - propellant for re-fuelling, re-boost (and deorbiting) of the ISS. The Re-entry Module (RM) provides a pressurized volume to accommodate active/passive cargo (2000 kg upload/1500 kg download). It is conceived as an expendable conical capsule with spherical heat- hield, interfacing with the new docking standard of the ISS, i.e. it carries the IBDM docking system, on a dedicated adapter. Its thermo-mechanical design, GNC, descent & landing systems take into account its future evolution for crew transportation. The ARV Crew version is also composed of three main modules: - an Integrated Resource Module (IRM) providing the main propulsion and power functions during the on-orbit phases of the mission; - a Re-entry Module (RM) providing the re-entry function and a pressurized environment for four crew members and about 250 kg of passive / active cargo; - a Crew Escape System (CES) providing the function of emergency separation of the RM from the launcher (in case of failure of this latter). The paper presents an overview of the ARV Cargo and Crew versions requirements derived from the above objectives, their mission scenarios, system architectures and performances. The commonality aspects between the ARV Cargo version and future transportation systems (including also the ARV Crew version and logistic carriers) are also highlighted.

  10. 40 CFR 265.1087 - Standards: Containers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... integral part of the container structural design (e.g., a “portable tank” or bulk cargo container equipped... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Standards: Containers. 265.1087... DISPOSAL FACILITIES Air Emission Standards for Tanks, Surface Impoundments, and Containers § 265.1087...

  11. 40 CFR 265.1087 - Standards: Containers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... integral part of the container structural design (e.g., a “portable tank” or bulk cargo container equipped... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Standards: Containers. 265.1087... DISPOSAL FACILITIES Air Emission Standards for Tanks, Surface Impoundments, and Containers § 265.1087...

  12. 40 CFR 265.1087 - Standards: Containers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... integral part of the container structural design (e.g., a “portable tank” or bulk cargo container equipped... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Standards: Containers. 265.1087... DISPOSAL FACILITIES Air Emission Standards for Tanks, Surface Impoundments, and Containers § 265.1087...

  13. 40 CFR 265.1087 - Standards: Containers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... integral part of the container structural design (e.g., a “portable tank” or bulk cargo container equipped... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Standards: Containers. 265.1087... DISPOSAL FACILITIES Air Emission Standards for Tanks, Surface Impoundments, and Containers § 265.1087...

  14. A Survey of Data-Base Information Systems Relevant to Navy Requirements Planning

    DTIC Science & Technology

    1983-02-01

    SHIPS \\ AK (FEM) T-AK (FEM) AKD/T-AKO _" ’ AKL/T-AKL AKM MULTIPURPOSE CAR 0 SHI’’S AKR VEHICLE CARGO SHIPS . -■, AK3 ANL AO OILER AC • NEW...the most demanding condition of operation for which a ship must be manned. ( a ) At sea in wartime. (b) Capable of performing all offensive... ship , and aircraft) researchers and others could quickly obtain basic information. 3. The Navy currently maintains a number of related

  15. Radio Frequency Identification for Space Habitat Inventory and Stowage Allocation Management

    NASA Technical Reports Server (NTRS)

    Wagner, Carole Y.

    2015-01-01

    To date, the most extensive space-based inventory management operation has been the International Space Station (ISS). Approximately 20,000 items are tracked with the Inventory Management System (IMS) software application that requires both flight and ground crews to update the database daily. This audit process is manually intensive and laborious, requiring the crew to open cargo transfer bags (CTBs), then Ziplock bags therein, to retrieve individual items. This inventory process contributes greatly to the time allocated for general crew tasks.

  16. Achieving integrated convoys: cargo unmanned ground vehicle development and experimentation

    NASA Astrophysics Data System (ADS)

    Zych, Noah; Silver, David; Stager, David; Green, Colin; Pilarski, Thomas; Fischer, Jacob

    2013-05-01

    The Cargo UGV project was initiated in 2010 with the aim of developing and experimenting with advanced autonomous vehicles capable of being integrated unobtrusively into manned logistics convoys. The intent was to validate two hypotheses in complex, operationally representative environments: first, that unmanned tactical wheeled vehicles provide a force protection advantage by creating standoff distance to warfighters during ambushes or improvised explosive device attacks; and second, that these UGVs serve as force multipliers by enabling a single operator to control multiple unmanned assets. To assess whether current state-of-the-art autonomous vehicle technology was sufficiently capable to permit resupply missions to be executed with decreased risk and reduced manpower, and to assess the effect of UGVs on customary convoy tactics, the Marine Corps Warfighting Laboratory and the Joint Ground Robotics Enterprise sponsored Oshkosh Defense and the National Robotics Engineering Center to equip two standard Marine Corps cargo trucks for autonomous operation. This paper details the system architecture, hardware implementation, and software modules developed to meet the vehicle control, perception, and planner requirements compelled by this application. Additionally, the design of a custom human machine interface and an accompanying training program are described, as is the creation of a realistic convoy simulation environment for rapid system development. Finally, results are conveyed from a warfighter experiment in which the effectiveness of the training program for novice operators was assessed, and the impact of the UGVs on convoy operations was observed in a variety of scenarios via direct comparison to a fully manned convoy.

  17. Design of Integrated Database on Mobile Information System: A Study of Yogyakarta Smart City App

    NASA Astrophysics Data System (ADS)

    Nurnawati, E. K.; Ermawati, E.

    2018-02-01

    An integration database is a database which acts as the data store for multiple applications and thus integrates data across these applications (in contrast to an Application Database). An integration database needs a schema that takes all its client applications into account. The benefit of the schema that sharing data among applications does not require an extra layer of integration services on the applications. Any changes to data made in a single application are made available to all applications at the time of database commit - thus keeping the applications’ data use better synchronized. This study aims to design and build an integrated database that can be used by various applications in a mobile device based system platforms with the based on smart city system. The built-in database can be used by various applications, whether used together or separately. The design and development of the database are emphasized on the flexibility, security, and completeness of attributes that can be used together by various applications to be built. The method used in this study is to choice of the appropriate database logical structure (patterns of data) and to build the relational-database models (Design Databases). Test the resulting design with some prototype apps and analyze system performance with test data. The integrated database can be utilized both of the admin and the user in an integral and comprehensive platform. This system can help admin, manager, and operator in managing the application easily and efficiently. This Android-based app is built based on a dynamic clientserver where data is extracted from an external database MySQL. So if there is a change of data in the database, then the data on Android applications will also change. This Android app assists users in searching of Yogyakarta (as smart city) related information, especially in culture, government, hotels, and transportation.

  18. 78 FR 12037 - Announcement of the American Petroleum Institute's Standards Activities

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-21

    ... Execution, 1st Edition Standard 2CCU, Offshore Cargo Container Design, Manufacturing and Inspection, 1st... Integrity Management of Fixed Offshore Structures, 1st Edition Recommended Practice 2SM, Design, Manufacture... Offshore Production Platforms, 8th Edition Specification 14F, Design and Installation of Electrical Systems...

  19. Integrated Testing Approaches for the NASA Ares I Crew Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Taylor, James L.; Cockrell, Charles E.; Tuma, Margaret L.; Askins, Bruce R.; Bland, Jeff D.; Davis, Stephan R.; Patterson, Alan F.; Taylor, Terry L.; Robinson, Kimberly L.

    2008-01-01

    The Ares I crew launch vehicle is being developed by the U.S. National Aeronautics and Space Administration (NASA) to provide crew and cargo access to the International Space Station (ISS) and, together with the Ares V cargo launch vehicle, serves as a critical component of NASA's future human exploration of the Moon. During the preliminary design phase, NASA defined and began implementing plans for integrated ground and flight testing necessary to achieve the first human launch of Ares I. The individual Ares I flight hardware elements - including the first stage five segment booster (FSB), upper stage, and J-2X upper stage engine - will undergo extensive development, qualification, and certification testing prior to flight. Key integrated system tests include the upper stage Main Propulsion Test Article (MPTA), acceptance tests of the integrated upper stage and upper stage engine assembly, a full-scale integrated vehicle ground vibration test (IVGVT), aerodynamic testing to characterize vehicle performance, and integrated testing of the avionics and software components. The Ares I-X development flight test will provide flight data to validate engineering models for aerodynamic performance, stage separation, structural dynamic performance, and control system functionality. The Ares I-Y flight test will validate ascent performance of the first stage, stage separation functionality, validate the ability of the upper stage to manage cryogenic propellants to achieve upper stage engine start conditions, and a high-altitude demonstration of the launch abort system (LAS) following stage separation. The Orion 1 flight test will be conducted as a full, un-crewed, operational flight test through the entire ascent flight profile prior to the first crewed launch.

  20. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-035 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo credit: NASA/Tony Gray and Tom Farrar

  1. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-051 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo credit: NASA/Sandra Joseph and Kevin O'Connell

  2. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-053 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo credit: NASA/Sandra Joseph and Kevin O'Connell

  3. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-061 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo credit: NASA/Sandra Joseph and Kevin O'Connell

  4. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-036 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo Credit: NASA/Tony Gray and Tom Farrar

  5. Visitors during STS-132 Space Shuttle Atlantis Launch

    NASA Image and Video Library

    2010-05-14

    STS132-S-013 (14 May 2010) --- As visitors watch, the space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo Credit: NASA/Ben Cooper

  6. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-060 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo credit: NASA/Sandra Joseph and Kevin O'Connell

  7. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-039 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo credit: NASA/Sandra Joseph and Kevin O'Connell

  8. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-040 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo credit: NASA/Rusty Backer and Michael Gayle

  9. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-056 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo Credit: NASA/Tony Gray and Tom Farrar

  10. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-044 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo credit: NASA/Sandra Joseph and Kevin O'Connell

  11. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-063 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo credit: NASA/Tony Gray and Tom Farrar

  12. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-062 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo credit: NASA/Sandra Joseph and Kevin O'Connell

  13. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-050 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo credit: NASA/Sandra Joseph and Kevin O'Connell

  14. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-064 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo credit: NASA/Tony Gray and Tom Farrar

  15. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-058 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo credit: NASA/Tony Gray and Tom Farrar

  16. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-052 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo credit: NASA/Sandra Joseph and Kevin O'Connell

  17. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-038 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo credit: NASA/Sandra Joseph and Kevin O'Connell

  18. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-042 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo credit: NASA/Rusty Backer and Michael Gayle

  19. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-055 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo Credit: NASA/Tony Gray and Tom Farrar

  20. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-065 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo credit: NASA/Tony Gray and Tom Farrar

  1. Visitors during STS-132 Space Shuttle Atlantis Launch

    NASA Image and Video Library

    2010-05-14

    STS132-S-014 (14 May 2010) --- With visitors looking on, the space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo Credit: NASA/Ben Cooper

  2. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-037 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo Credit: NASA/Tony Gray and Tom Farrar

  3. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-057 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo credit: NASA/Tony Gray and Tom Farrar

  4. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-059 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo credit: NASA/Sandra Joseph and Kevin O'Connell

  5. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-033 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo credit: NASA/Sandra Joseph and Kevin O'Connell..

  6. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-066 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo Credit: NASA/Tony Gray and Tom Farrar

  7. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-054 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo Credit: NASA/Rusty Backer and Michael Gayle

  8. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-067 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo Credit: NASA/Tony Gray and Tom Farrar

  9. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-047 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo credit: NASA/Sandra Joseph and Kevin O'Connell

  10. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-030 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo credit: NASA/Sandra Joseph and Kevin O'Connell

  11. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-048 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo credit: NASA/Sandra Joseph and Kevin O'Connell

  12. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-045 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo credit: NASA/Tony Gray and Tom Farrar

  13. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-041 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo credit: NASA/Rusty Backer and Michael Gayle

  14. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-049 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo credit: NASA/Rusty Backer and Michael Gayle

  15. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-043 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo credit: NASA/Sandra Joseph and Kevin O'Connell

  16. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-068 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo credit: NASA/Rusty Backer and Michael Gayle

  17. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-034 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo credit: NASA/Tony Gray and Tom Farrar

  18. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-069 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo credit: NASA/Rusty Backer and Michael Gayle

  19. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-046 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo credit: NASA/Tony Gray and Tom Farrar

  20. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-031 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo credit: NASA/Sandra Joseph and Kevin O'Connell

  1. 46 CFR 154.315 - Cargo pump and cargo compressor rooms.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Cargo pump and cargo compressor rooms. 154.315 Section... CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Ship Arrangements § 154.315 Cargo pump and cargo compressor rooms. (a) Cargo pump rooms and cargo...

  2. Distribution Grid Integration Unit Cost Database | Solar Research | NREL

    Science.gov Websites

    Unit Cost Database Distribution Grid Integration Unit Cost Database NREL's Distribution Grid Integration Unit Cost Database contains unit cost information for different components that may be used to associated with PV. It includes information from the California utility unit cost guides on traditional

  3. KSC-99pp0346

    NASA Image and Video Library

    1999-03-25

    At Astrotech in Titusville, Fla., members of two Shuttle crews take a close look at a component of a Russian cargo crane, the Strela, to be mounted to the exterior of the Russian station segment on the International Space Station (ISS). From left, they are STS-101 Mission Specialist Edward Tsang Lu, plus STS-96 Mission Specialist Julie Payette and Pilot Rick Douglas Husband. Payette represents the Canadian Space Agency. Both missions include the SPACEHAB Double Module, carrying internal and resupply cargo for Station outfitting. For the first time, STS-96 will include an Integrated Cargo Carrier (ICC) that will carry the Strela; the SPACEHAB Oceaneering Space System Box (SHOSS), which is a logistics items carrier; and a U.S.-built crane (ORU Transfer Device, or OTD) that will be stowed on the station for use during future ISS assembly missions. The ICC can carry up to 6,000 lb of unpressurized payload. It was built for SPACEHAB by DaimlerChrysler and RSC Energia of Korolev, Russia. STS-96 is targeted for launch on May 24 from Launch Pad 39B. STS-101 is scheduled to launch in early December 1999

  4. Two Shuttle crews check equipment at SPACEHAB to be used on ISS Flights

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At Astrotech in Titusville, Fla., technicians with DaimlerChrysler Aerospace and RSC Energia of Korolev, Russia, maneuver a Russian cargo crane, the Strela, which is to be mounted to the exterior of the Russian station segment on the International Space Station (ISS). The Strehla has been the focus for two Shuttle crews, STS-96 who are at KSC for a Crew Equipment Interface Test, and STS-101, for payload familiarization. For the first time, STS-96 will include an Integrated Cargo Carrier (ICC) that will carry the Russian cargo crane; the SPACEHAB Oceaneering Space System Box (SHOSS), which is a logistics items carrier; and a U.S.-built crane (ORU Transfer Device, or OTD) that will be stowed on the station for use during future ISS assembly missions. The ICC can carry up to 6,000 lb of unpressurized payload. It was built for SPACEHAB by DaimlerChrysler Aerospace and RSC Energia. STS-96 is targeted for launch on May 24 from Launch Pad 39B. STS-101 is scheduled to launch in early December 1999.

  5. STS-102 (Expedition II) crew members at SPACEHAB

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At SPACEHAB, in Titusville, Fla., STS-102 Mission Specialist Yuri Usachev, who is with the Russian Space Agency (RSA), looks at part of the cargo on the Integrated Cargo Carrier. STS-102 is a resupply mission to the International Space Station, transporting the Leonardo Multi-Purpose Logistics Module (MPLM) with equipment to assist in outfitting the U.S. Lab, which will already be in place. It is also transporting Usachev, and Mission Specialists James Voss and Susan Helms as the second resident crew (designated Expedition crew 2) to the station. The mission will also return to Earth the first expedition crew on ISS: William Shepherd, Sergei Krikalev (RSA) and Yuri Gidzenko (RSA). STS-102 is scheduled to launch no earlier than Oct. 19, 2000.

  6. KSC-06pd0924

    NASA Image and Video Library

    2006-05-23

    KENNEDY SPACE CENTER, FLA. -- From inside the payload changeout room on the rotating service structure on Launch Pad 39B, the multi-purpose logistics module Leonardo is being moved into Space Shuttle Discovery's payload bay. The payload ground-handling mechanism (PGHM) is used to transfer the module into the payload bay. Leonardo is a reusable logistics carrier. It is the primary delivery system used to resupply and return station cargo requiring a pressurized environment. Leonardo is part of the payload on mission STS-121. Other payloads include the integrated cargo carrier with the mobile transporter reel assembly and a spare pump module, and the lightweight multi-purpose experiment support structure carrier. Discovery is scheduled to launch in a window extending from July 1 through July 19. Photo credit: NASA/Jack Pfaller

  7. KSC-06pd0927

    NASA Image and Video Library

    2006-05-23

    KENNEDY SPACE CENTER, FLA. -- From inside the payload changeout room on the rotating service structure on Launch Pad 39B, the multi-purpose logistics module Leonardo is lowered into Space Shuttle Discovery's payload bay. The payload ground-handling mechanism (PGHM) is used to transfer the module into the payload bay. Leonardo is a reusable logistics carrier. It is the primary delivery system used to resupply and return station cargo requiring a pressurized environment. Leonardo is part of the payload on mission STS-121. Other payloads include the integrated cargo carrier with the mobile transporter reel assembly and a spare pump module, and the lightweight multi-purpose experiment support structure carrier. Discovery is scheduled to launch in a window extending from July 1 through July 19. Photo credit: NASA/Jack Pfaller

  8. Status of the prototype Pulsed Photonuclear Assessment (PPA) inspection system

    NASA Astrophysics Data System (ADS)

    Jones, James L.; Blackburn, Brandon W.; Norman, Daren R.; Watson, Scott M.; Haskell, Kevin J.; Johnson, James T.; Hunt, Alan W.; Harmon, Frank; Moss, Calvin

    2007-08-01

    The Idaho National Laboratory, in collaboration with Idaho State University's Idaho Accelerator Center and the Los Alamos National Laboratory, continues to develop the Pulsed Photonuclear Assessment (PPA) technique for shielded nuclear material detection in large volume configurations, such as cargo containers. In recent years, the Department of Homeland Security has supported the development of a prototype PPA cargo inspection system. This PPA system integrates novel neutron and gamma-ray detectors for nuclear material detection along with a complementary and unique gray scale, density mapping component for significant shield material detection. This paper will present the developmental status of the prototype system, its detection performance using several INL Calibration Pallets, and planned enhancements to further increase its nuclear material detection capability.

  9. Integrating heterogeneous databases in clustered medic care environments using object-oriented technology

    NASA Astrophysics Data System (ADS)

    Thakore, Arun K.; Sauer, Frank

    1994-05-01

    The organization of modern medical care environments into disease-related clusters, such as a cancer center, a diabetes clinic, etc., has the side-effect of introducing multiple heterogeneous databases, often containing similar information, within the same organization. This heterogeneity fosters incompatibility and prevents the effective sharing of data amongst applications at different sites. Although integration of heterogeneous databases is now feasible, in the medical arena this is often an ad hoc process, not founded on proven database technology or formal methods. In this paper we illustrate the use of a high-level object- oriented semantic association method to model information found in different databases into an integrated conceptual global model that integrates the databases. We provide examples from the medical domain to illustrate an integration approach resulting in a consistent global view, without attacking the autonomy of the underlying databases.

  10. 46 CFR 154.534 - Cargo pumps and cargo compressors.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Cargo pumps and cargo compressors. 154.534 Section 154... SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo and Process Piping Systems § 154.534 Cargo pumps and cargo compressors. Cargo pumps and...

  11. Project Orion, Environmental Control and Life Support System Integrated Studies

    NASA Technical Reports Server (NTRS)

    Russell, James F.; Lewis, John F.

    2008-01-01

    Orion is the next vehicle for human space travel. Humans will be sustained in space by the Orion subystem, environmental control and life support (ECLS). The ECLS concept at the subsystem level is outlined by function and technology. In the past two years, the interface definition with other subsystems has increased through different integrated studies. The paper presents the key requirements and discusses three recent studies (e.g., unpressurized cargo) along with the respective impacts on the ECLS design moving forward.

  12. 46 CFR 42.15-55 - Cargo ports and other similar openings.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... be fitted with doors so designed as to ensure watertightness and structural integrity commensurate... shall be subject to tightness tests at the initial survey and at such subsequent surveys or more... the design and proper working of the vessel. (b) Unless permitted by the Commandant the lower edge of...

  13. 46 CFR 42.15-55 - Cargo ports and other similar openings.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... be fitted with doors so designed as to ensure watertightness and structural integrity commensurate... shall be subject to tightness tests at the initial survey and at such subsequent surveys or more... the design and proper working of the vessel. (b) Unless permitted by the Commandant the lower edge of...

  14. 46 CFR 42.15-55 - Cargo ports and other similar openings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... be fitted with doors so designed as to ensure watertightness and structural integrity commensurate... shall be subject to tightness tests at the initial survey and at such subsequent surveys or more... the design and proper working of the vessel. (b) Unless permitted by the Commandant the lower edge of...

  15. 46 CFR 42.15-55 - Cargo ports and other similar openings.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... be fitted with doors so designed as to ensure watertightness and structural integrity commensurate... shall be subject to tightness tests at the initial survey and at such subsequent surveys or more... the design and proper working of the vessel. (b) Unless permitted by the Commandant the lower edge of...

  16. 46 CFR 42.15-55 - Cargo ports and other similar openings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... be fitted with doors so designed as to ensure watertightness and structural integrity commensurate... shall be subject to tightness tests at the initial survey and at such subsequent surveys or more... the design and proper working of the vessel. (b) Unless permitted by the Commandant the lower edge of...

  17. 49 CFR 178.345-3 - Structural integrity.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... requirements and acceptance criteria. (1) The maximum calculated design stress at any point in the cargo tank wall may not exceed the maximum allowable stress value prescribed in Section VIII of the ASME Code (IBR... Code or the ASTM standard to which the material is manufactured. (3) The maximum design stress at any...

  18. Commercial Firm Training Practices versus Aerial Port Hazardous Cargo Frustration

    DTIC Science & Technology

    2007-03-01

    locations HAZMAT, even though highly regulated, is an integral piece to the success to the war fighters. These items can be as simple as cleaning ... supplies to as vital as a bullet. Every function within the military relies on HAZMAT to complete its mission. As long as conflicts are being waged the

  19. 78 FR 21571 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-11

    ...-400, -400D, and -400F series airplanes. This proposed AD was prompted by a report of water leakage into the main deck cargo wire integration unit (WIU). The water flowed from the drip shield through... water penetration into the MEC, which could result in the loss of flight critical systems. DATES: We...

  20. 29 CFR 1919.2 - Definition of terms.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... horizontal plane by guys (vangs). The term includes shear legs. (2) Crane means a mechanical device, intended... integral part of the machine. A crane may be a fixed or mobile machine. (3) Bulk cargo spout means a spout... ton of 2,000 pounds when applied to shore-based material handling devices or to shore-type cranes...

  1. 77 FR 10691 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-23

    ... the adoption of the final rules. #0; #0; #0; #0;#0;Federal Register / Vol. 77, No. 36 / Thursday... Administration 14 CFR Part 39 [Docket No. FAA-2012-0152; Directorate Identifier 2011-NM-059-AD] RIN 2120-AA64... result in the loss of structural integrity of the forward and aft cargo door. DATES: We must receive...

  2. 49 CFR 177.837 - Class 3 materials.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... through an open filling hole, one end of a bond wire shall be connected to the stationary system piping or integrally connected steel framing, and the other end to the shell of the cargo tank to provide a continuous... after the last filling hole has been closed. Additional bond wires are not needed around All-Metal...

  3. 49 CFR 177.837 - Class 3 materials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... through an open filling hole, one end of a bond wire shall be connected to the stationary system piping or integrally connected steel framing, and the other end to the shell of the cargo tank to provide a continuous... after the last filling hole has been closed. Additional bond wires are not needed around All-Metal...

  4. 46 CFR 154.419 - Design vapor pressure.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Design vapor pressure. 154.419 Section 154.419 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Integral Tanks § 154.419 Design vapor pressure. The...

  5. 46 CFR 154.419 - Design vapor pressure.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Design vapor pressure. 154.419 Section 154.419 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Integral Tanks § 154.419 Design vapor pressure. The...

  6. 46 CFR 154.419 - Design vapor pressure.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Design vapor pressure. 154.419 Section 154.419 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Integral Tanks § 154.419 Design vapor pressure. The...

  7. 49 CFR 178.345-3 - Structural integrity.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... acceptance criteria. (1) The maximum calculated design stress at any point in the cargo tank wall may not exceed the maximum allowable stress value prescribed in Section VIII of the ASME Code (IBR, see § 171.7... Code or the ASTM standard to which the material is manufactured. (3) The maximum design stress at any...

  8. 40 CFR 63.922 - Standards-Container Level 1 controls.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... on a roll-off box) or may be an integral part of the container structural design (e.g., a bulk cargo... 40 Protection of Environment 11 2013-07-01 2013-07-01 false Standards-Container Level 1 controls... (CONTINUED) National Emission Standards for Containers § 63.922 Standards—Container Level 1 controls. (a...

  9. 40 CFR 63.922 - Standards-Container Level 1 controls.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... on a roll-off box) or may be an integral part of the container structural design (e.g., a bulk cargo... 40 Protection of Environment 11 2014-07-01 2014-07-01 false Standards-Container Level 1 controls... (CONTINUED) National Emission Standards for Containers § 63.922 Standards—Container Level 1 controls. (a...

  10. 40 CFR 63.922 - Standards-Container Level 1 controls.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... on a roll-off box) or may be an integral part of the container structural design (e.g., a bulk cargo... 40 Protection of Environment 11 2012-07-01 2012-07-01 false Standards-Container Level 1 controls... (CONTINUED) National Emission Standards for Containers § 63.922 Standards—Container Level 1 controls. (a...

  11. 40 CFR 63.922 - Standards-Container Level 1 controls.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... on a roll-off box) or may be an integral part of the container structural design (e.g., a bulk cargo... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Standards-Container Level 1 controls... (CONTINUED) National Emission Standards for Containers § 63.922 Standards—Container Level 1 controls. (a...

  12. 40 CFR 63.922 - Standards-Container Level 1 controls.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... on a roll-off box) or may be an integral part of the container structural design (e.g., a bulk cargo... 40 Protection of Environment 10 2011-07-01 2011-07-01 false Standards-Container Level 1 controls... (CONTINUED) National Emission Standards for Containers § 63.922 Standards—Container Level 1 controls. (a...

  13. Possible markets for dirigibles

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The use of mini, small, medium, and heavy dirigibles for the transportation of passengers and cargo, for aerial handling of materials, for the support of scientific platforms, and for use in agriculture and forest management is evaluated. The operational efficiency of one or more dirigibles in view of possible integration into the general transport system is described.

  14. [A web-based integrated clinical database for laryngeal cancer].

    PubMed

    E, Qimin; Liu, Jialin; Li, Yong; Liang, Chuanyu

    2014-08-01

    To establish an integrated database for laryngeal cancer, and to provide an information platform for laryngeal cancer in clinical and fundamental researches. This database also meet the needs of clinical and scientific use. Under the guidance of clinical expert, we have constructed a web-based integrated clinical database for laryngeal carcinoma on the basis of clinical data standards, Apache+PHP+MySQL technology, laryngeal cancer specialist characteristics and tumor genetic information. A Web-based integrated clinical database for laryngeal carcinoma had been developed. This database had a user-friendly interface and the data could be entered and queried conveniently. In addition, this system utilized the clinical data standards and exchanged information with existing electronic medical records system to avoid the Information Silo. Furthermore, the forms of database was integrated with laryngeal cancer specialist characteristics and tumor genetic information. The Web-based integrated clinical database for laryngeal carcinoma has comprehensive specialist information, strong expandability, high feasibility of technique and conforms to the clinical characteristics of laryngeal cancer specialties. Using the clinical data standards and structured handling clinical data, the database can be able to meet the needs of scientific research better and facilitate information exchange, and the information collected and input about the tumor sufferers are very informative. In addition, the user can utilize the Internet to realize the convenient, swift visit and manipulation on the database.

  15. Real-time and integrated measurement of potential human exposure to particle-bound polycyclic aromatic hydrocarbons (PAHs) from aircraft exhaust.

    PubMed Central

    Childers, J W; Witherspoon, C L; Smith, L B; Pleil, J D

    2000-01-01

    We used real-time monitors and low-volume air samplers to measure the potential human exposure to airborne polycyclic aromatic hydrocarbon (PAH) concentrations during various flight-related and ground-support activities of C-130H aircraft at an Air National Guard base. We used three types of photoelectric aerosol sensors (PASs) to measure real-time concentrations of particle-bound PAHs in a break room, downwind from a C-130H aircraft during a four-engine run-up test, in a maintenance hangar, in a C-130H aircraft cargo bay during cargo-drop training, downwind from aerospace ground equipment (AGE), and in a C-130H aircraft cargo bay during engine running on/off (ERO) loading and backup exercises. Two low-volume air samplers were collocated with the real-time monitors for all monitoring events except those in the break room and during in-flight activities. Total PAH concentrations in the integrated-air samples followed a general trend: downwind from two AGE units > ERO-loading exercise > four-engine run-up test > maintenance hangar during taxi and takeoff > background measurements in maintenance hangar. Each PAH profile was dominated by naphthalene, the alkyl-substituted naphthalenes, and other PAHs expected to be in the vapor phase. We also found particle-bound PAHs, such as fluoranthene, pyrene, and benzo[a]pyrene in some of the sample extracts. During flight-related exercises, total PAH concentrations in the integrated-air samples were 10-25 times higher than those commonly found in ambient air. Real-time monitor mean responses generally followed the integrated-air sample trends. These monitors provided a semiquantitative temporal profile of ambient PAH concentrations and showed that PAH concentrations can fluctuate rapidly from a baseline level < 20 to > 4,000 ng/m(3) during flight-related activities. Small handheld models of the PAS monitors exhibited potential for assessing incidental personal exposure to particle-bound PAHs in engine exhaust and for serving as a real-time dosimeter to indicate when respiratory protection is advisable. PMID:11017890

  16. 46 CFR 111.106-13 - Cargo handling devices or cargo pump rooms handling flammable or combustible cargoes.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... pierced by fixed lights, drive shafts, and pump-engine control rods, provided that the shafts and rods are... 46 Shipping 4 2014-10-01 2014-10-01 false Cargo handling devices or cargo pump rooms handling... OSVs § 111.106-13 Cargo handling devices or cargo pump rooms handling flammable or combustible cargoes...

  17. Structure, diversity, and mobility of the Salmonella pathogenicity island 7 family of integrative and conjugative elements within Enterobacteriaceae.

    PubMed

    Seth-Smith, Helena M B; Fookes, Maria C; Okoro, Chinyere K; Baker, Stephen; Harris, Simon R; Scott, Paul; Pickard, Derek; Quail, Michael A; Churcher, Carol; Sanders, Mandy; Harmse, Johan; Dougan, Gordon; Parkhill, Julian; Thomson, Nicholas R

    2012-03-01

    Integrative and conjugative elements (ICEs) are self-mobile genetic elements found in the genomes of some bacteria. These elements may confer a fitness advantage upon their host bacteria through the cargo genes that they carry. Salmonella pathogenicity island 7 (SPI-7), found within some pathogenic strains of Salmonella enterica, possesses features indicative of an ICE and carries genes implicated in virulence. We aimed to identify and fully analyze ICEs related to SPI-7 within the genus Salmonella and other Enterobacteriaceae. We report the sequence of two novel SPI-7-like elements, found within strains of Salmonella bongori, which share 97% nucleotide identity over conserved regions with SPI-7 and with each other. Although SPI-7 within Salmonella enterica serovar Typhi appears to be fixed within the chromosome, we present evidence that these novel elements are capable of excision and self-mobility. Phylogenetic analyses show that these Salmonella mobile elements share an ancestor which existed approximately 3.6 to 15.8 million years ago. Additionally, we identified more distantly related ICEs, with distinct cargo regions, within other strains of Salmonella as well as within Citrobacter, Erwinia, Escherichia, Photorhabdus, and Yersinia species. In total, we report on a collection of 17 SPI-7 related ICEs within enterobacterial species, of which six are novel. Using comparative and mutational studies, we have defined a core of 27 genes essential for conjugation. We present a growing family of SPI-7-related ICEs whose mobility, abundance, and cargo variability indicate that these elements may have had a large impact on the evolution of the Enterobacteriaceae.

  18. Requirements Definition for ORNL Trusted Corridors Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, Randy M; Hill, David E; Smith, Cyrus M

    2008-02-01

    The ORNL Trusted Corridors Project has several other names: SensorNet Transportation Pilot; Identification and Monitoring of Radiation (in commerce) Shipments (IMR(ic)S); and Southeastern Transportation Corridor Pilot (SETCP). The project involves acquisition and analysis of transportation data at two mobile and three fixed inspection stations in five states (Kentucky, Mississippi, South Carolina, Tennessee, and Washington DC). Collaborators include the State Police organizations that are responsible for highway safety, law enforcement, and incident response. The three states with fixed weigh-station deployments (KY, SC, TN) are interested in coordination of this effort for highway safety, law enforcement, and sorting/targeting/interdiction of potentially non-compliant vehicles/persons/cargo.more » The Domestic Nuclear Detection Office (DNDO) in the U.S. Department of Homeland Security (DHS) is interested in these deployments, as a Pilot test (SETCP) to identify Improvised Nuclear Devices (INDs) in highway transport. However, the level of DNDO integration among these state deployments is presently uncertain. Moreover, DHS issues are considered secondary by the states, which perceive this work as an opportunity to leverage these (new) dual-use technologies for state needs. In addition, present experience shows that radiation detectors alone cannot detect DHS-identified IND threats. Continued SETCP success depends on the level of integration of current state/local police operations with the new DHS task of detecting IND threats, in addition to emergency preparedness and homeland security. This document describes the enabling components for continued SETCP development and success, including: sensors and their use at existing deployments (Section 1); personnel training (Section 2); concept of operations (Section 3); knowledge discovery from the copious data (Section 4); smart data collection, integration and database development, advanced algorithms for multiple sensors, and network communications (Section 5); and harmonization of local, state, and Federal procedures and protocols (Section 6).« less

  19. FAST - FREEDOM ASSEMBLY SEQUENCING TOOL PROTOTYPE

    NASA Technical Reports Server (NTRS)

    Borden, C. S.

    1994-01-01

    FAST is a project management tool designed to optimize the assembly sequence of Space Station Freedom. An appropriate assembly sequence coordinates engineering, design, utilization, transportation availability, and operations requirements. Since complex designs tend to change frequently, FAST assesses the system level effects of detailed changes and produces output metrics that identify preferred assembly sequences. FAST incorporates Space Shuttle integration, Space Station hardware, on-orbit operations, and programmatic drivers as either precedence relations or numerical data. Hardware sequencing information can either be input directly and evaluated via the "specified" mode of operation or evaluated from the input precedence relations in the "flexible" mode. In the specified mode, FAST takes as its input a list of the cargo elements assigned to each flight. The program determines positions for the cargo elements that maximize the center of gravity (c.g.) margin. These positions are restricted by the geometry of the cargo elements and the location of attachment fittings both in the orbiter and on the cargo elements. FAST calculates every permutation of cargo element location according to its height, trunnion fitting locations, and required intercargo element spacing. Each cargo element is tested in both its normal and reversed orientation (rotated 180 degrees). The best solution is that which maximizes the c.g. margin for each flight. In the flexible mode, FAST begins with the first flight and determines all feasible combinations of cargo elements according to mass, volume, EVA, and precedence relation constraints. The program generates an assembly sequence that meets mass, volume, position, EVA, and precedence constraints while minimizing the total number of Shuttle flights required. Issues associated with ground operations, spacecraft performance, logistics requirements and user requirements will be addressed in future versions of the model. FAST is written in C-Language and has been implemented on DEC VAX series computers running VMS. The program is distributed in executable form. The source code is also provided, but it cannot be compiled without the Tree Manipulation Based Routines (TMBR) package from the Jet Propulsion Laboratory, which is not currently available from COSMIC. The main memory requirement is based on the data used to drive the FAST program. All applications should easily run on an installation with 10Mb of main memory. FAST was developed in 1990 and is a copyrighted work with all copyright vested in NASA. DEC, VAX and VMS are trademarks of Digital Equipment Corporation.

  20. KSC-06pd0926

    NASA Image and Video Library

    2006-05-23

    KENNEDY SPACE CENTER, FLA. -- From inside the payload changeout room on the rotating service structure on Launch Pad 39B, workers maneuver the multi-purpose logistics module Leonardo into Space Shuttle Discovery's payload bay (at left). The payload ground-handling mechanism (PGHM) is used to transfer the module into the payload bay. Leonardo is a reusable logistics carrier. It is the primary delivery system used to resupply and return station cargo requiring a pressurized environment. Leonardo is part of the payload on mission STS-121. Other payloads include the integrated cargo carrier with the mobile transporter reel assembly and a spare pump module, and the lightweight multi-purpose experiment support structure carrier. Discovery is scheduled to launch in a window extending from July 1 through July 19. Photo credit: NASA/Jack Pfaller

  1. KSC-06pd0925

    NASA Image and Video Library

    2006-05-23

    KENNEDY SPACE CENTER, FLA. -- From inside the payload changeout room on the rotating service structure on Launch Pad 39B, the multi-purpose logistics module Leonardo is being moved into Space Shuttle Discovery's payload bay (at left). The payload ground-handling mechanism (PGHM) is used to transfer the module into the payload bay. Leonardo is a reusable logistics carrier. It is the primary delivery system used to resupply and return station cargo requiring a pressurized environment. Leonardo is part of the payload on mission STS-121. Other payloads include the integrated cargo carrier with the mobile transporter reel assembly and a spare pump module, and the lightweight multi-purpose experiment support structure carrier. Discovery is scheduled to launch in a window extending from July 1 through July 19. Photo credit: NASA/Jack Pfaller

  2. Non-Covalent Microgel Particles Containing Functional Payloads: Coacervation of PEG-Based Triblocks via Microfluidics.

    PubMed

    Wang, Cynthia X; Utech, Stefanie; Gopez, Jeffrey D; Mabesoone, Mathijs F J; Hawker, Craig J; Klinger, Daniel

    2016-07-06

    Well-defined microgel particles were prepared by combining coacervate-driven cross-linking of ionic triblock copolymers with the ability to control particle size and encapsulate functional cargos inherent in microfluidic devices. In this approach, the efficient assembly of PEO-based triblock copolymers with oppositely charged end-blocks allows for bioinspired cross-linking under mild conditions in dispersed aqueous droplets. This strategy enables the integration of charged cargos into the coacervate domains (e.g., the loading of anionic model compounds through electrostatic association with cationic end-blocks). Distinct release profiles can be realized by systematically varying the chemical nature of the payload and the microgel dimensions. This mild and noncovalent assembly method represents a promising new approach to tunable microgels as scaffolds for colloidal biomaterials in therapeutics and regenerative medicine.

  3. Manned maneuvering unit: User's guide

    NASA Technical Reports Server (NTRS)

    Lenda, J. A.

    1978-01-01

    The space shuttle will provide an opportunity to extend and enhance the crew's inherent capabilities in orbit by allowing them to operate effectively outside of their spacecraft by means of extravehicular activity. For this role, the shuttle crew will have a new, easier to don and operate space suit with integral life support system, and a self-contained propulsive backpack. The backpack, called the manned maneuvering unit, will allow the crew to operate beyond the confines of the Shuttle cargo bay and fly to any part of their own spacecraft or to nearby free-flying payloads or structure. This independent mobility will be used to support a wide variety of activities including free-space transfer of cargo and personnel, inspection and monitoring of orbital operations, and construction and assembly of large structures in orbit.

  4. Structural and biochemical characterization of SrcA, a multi-cargo type III secretion chaperone in Salmonella required for pathogenic association with a host.

    PubMed

    Cooper, Colin A; Zhang, Kun; Andres, Sara N; Fang, Yuan; Kaniuk, Natalia A; Hannemann, Mandy; Brumell, John H; Foster, Leonard J; Junop, Murray S; Coombes, Brian K

    2010-02-05

    Many Gram-negative bacteria colonize and exploit host niches using a protein apparatus called a type III secretion system (T3SS) that translocates bacterial effector proteins into host cells where their functions are essential for pathogenesis. A suite of T3SS-associated chaperone proteins bind cargo in the bacterial cytosol, establishing protein interaction networks needed for effector translocation into host cells. In Salmonella enterica serovar Typhimurium, a T3SS encoded in a large genomic island (SPI-2) is required for intracellular infection, but the chaperone complement required for effector translocation by this system is not known. Using a reverse genetics approach, we identified a multi-cargo secretion chaperone that is functionally integrated with the SPI-2-encoded T3SS and required for systemic infection in mice. Crystallographic analysis of SrcA at a resolution of 2.5 A revealed a dimer similar to the CesT chaperone from enteropathogenic E. coli but lacking a 17-amino acid extension at the carboxyl terminus. Further biochemical and quantitative proteomics data revealed three protein interactions with SrcA, including two effector cargos (SseL and PipB2) and the type III-associated ATPase, SsaN, that increases the efficiency of effector translocation. Using competitive infections in mice we show that SrcA increases bacterial fitness during host infection, highlighting the in vivo importance of effector chaperones for the SPI-2 T3SS.

  5. X-ray scan detection for cargo integrity

    NASA Astrophysics Data System (ADS)

    Valencia, Juan; Miller, Steve

    2011-04-01

    The increase of terrorism and its global impact has made the determination of the contents of cargo containers a necessity. Existing technology allows non-intrusive inspections to determine the contents of a container rapidly and accurately. However, some cargo shipments are exempt from such inspections. Hence, there is a need for a technology that enables rapid and accurate means of detecting whether such containers were non-intrusively inspected. Non-intrusive inspections are most commonly performed utilizing high powered X-ray equipment. The challenge is creating a device that can detect short duration X-ray scans while maintaining a portable, battery powered, low cost, and easy to use platform. The Pacific Northwest National Laboratory (PNNL) has developed a methodology and prototype device focused on this challenge. The prototype, developed by PNNL, is a battery powered electronic device that continuously measures its X-ray and Gamma exposure, calculates the dose equivalent rate, and makes a determination of whether the device has been exposed to the amount of radiation experienced during an X-ray inspection. Once an inspection is detected, the device will record a timestamp of the event and relay the information to authorized personnel via a visual alert, USB connection, and/or wireless communication. The results of this research demonstrate that PNNL's prototype device can be effective at determining whether a container was scanned by X-ray equipment typically used for cargo container inspections. This paper focuses on laboratory measurements and test results acquired with the PNNL prototype device using several X-ray radiation levels.

  6. 46 CFR 280.2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    .... For purposes of this part only: (a) Commercial cargo means cargo other than military cargo and civilian preference cargo. (b) Military cargo means that cargo required to be carried on a U.S.-flag vessel... by law to be carried on a U.S.-flag vessel, including, but not limited to, cargo required to be...

  7. 46 CFR 150.130 - Loading a cargo on vessels carrying cargoes with which it is incompatible.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Loading a cargo on vessels carrying cargoes with which it is incompatible. 150.130 Section 150.130 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES COMPATIBILITY OF CARGOES § 150.130 Loading a cargo on vessels...

  8. 46 CFR 150.130 - Loading a cargo on vessels carrying cargoes with which it is incompatible.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Loading a cargo on vessels carrying cargoes with which it is incompatible. 150.130 Section 150.130 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES COMPATIBILITY OF CARGOES § 150.130 Loading a cargo on vessels...

  9. 46 CFR 150.130 - Loading a cargo on vessels carrying cargoes with which it is incompatible.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Loading a cargo on vessels carrying cargoes with which it is incompatible. 150.130 Section 150.130 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES COMPATIBILITY OF CARGOES § 150.130 Loading a cargo on vessels...

  10. 46 CFR 150.130 - Loading a cargo on vessels carrying cargoes with which it is incompatible.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Loading a cargo on vessels carrying cargoes with which it is incompatible. 150.130 Section 150.130 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES COMPATIBILITY OF CARGOES § 150.130 Loading a cargo on vessels...

  11. 46 CFR 97.12-1 - Bulk ores and similar cargoes.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Bulk ores and similar cargoes. 97.12-1 Section 97.12-1... OPERATIONS Cargo Stowage § 97.12-1 Bulk ores and similar cargoes. (a) The owners or operators of general cargo vessels which carry bulk cargoes such as ore, ore concentrates, and similar cargoes shall furnish...

  12. 49 CFR 1544.228 - Access to cargo and cargo screening: Security threat assessments for cargo personnel in the...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... cargo enters an airport Security Identification Display Area or is transferred to another TSA-regulated... program accepts the cargo until the cargo— (A) Enters an airport Security Identification Display Area; (B... 49 Transportation 9 2012-10-01 2012-10-01 false Access to cargo and cargo screening: Security...

  13. 49 CFR 1544.228 - Access to cargo and cargo screening: Security threat assessments for cargo personnel in the...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... cargo enters an airport Security Identification Display Area or is transferred to another TSA-regulated... program accepts the cargo until the cargo— (A) Enters an airport Security Identification Display Area; (B... 49 Transportation 9 2014-10-01 2014-10-01 false Access to cargo and cargo screening: Security...

  14. 49 CFR 1544.228 - Access to cargo and cargo screening: Security threat assessments for cargo personnel in the...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... cargo enters an airport Security Identification Display Area or is transferred to another TSA-regulated... program accepts the cargo until the cargo— (A) Enters an airport Security Identification Display Area; (B... 49 Transportation 9 2013-10-01 2013-10-01 false Access to cargo and cargo screening: Security...

  15. 49 CFR 1544.228 - Access to cargo and cargo screening: Security threat assessments for cargo personnel in the...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... cargo enters an airport Security Identification Display Area or is transferred to another TSA-regulated... program accepts the cargo until the cargo— (A) Enters an airport Security Identification Display Area; (B... 49 Transportation 9 2011-10-01 2011-10-01 false Access to cargo and cargo screening: Security...

  16. Ted Stevens Anchorage International Airport

    Science.gov Websites

    than 50 years, Ted Stevens Anchorage International Airport has played an integral role in the growth of System Forecasts Robust Tourism Growth for the Summer Season Press Release 4-24-18 offside link Sun Cargo Growth 2017 Press Release 2-12-18 offsite link ANC 15-33 Project Website offsite link May 2018

  17. The Great Orange Hope: Ukraine, NATO, and the Dilemma of European Integration After the Orange Revolution

    DTIC Science & Technology

    2005-12-01

    122 Philip Shishkin. “Weighty Business: A Cold-War Plane lifts Ukrainian in Cargo Market; Antonov’s Rulsans Transport Armor, oil Rigs, Giraffes ...Antonov’s Rulsans Transport Armor, oil Rigs, Giraffes ; Playing Soccer in the Hold; A Legal Snag Grounds Flights.” The Wall Street Journal. New York

  18. A systematic approach to pair secretory cargo receptors with their cargo suggests a mechanism for cargo selection by Erv14.

    PubMed

    Herzig, Yonatan; Sharpe, Hayley J; Elbaz, Yael; Munro, Sean; Schuldiner, Maya

    2012-01-01

    The endoplasmic reticulum (ER) is the site of synthesis of secreted and membrane proteins. To exit the ER, proteins are packaged into COPII vesicles through direct interaction with the COPII coat or aided by specific cargo receptors. Despite the fundamental role of such cargo receptors in protein traffic, only a few have been identified; their cargo spectrum is unknown and the signals they recognize remain poorly understood. We present here an approach we term "PAIRS" (pairing analysis of cargo receptors), which combines systematic genetic manipulations of yeast with automated microscopy screening, to map the spectrum of cargo for a known receptor or to uncover a novel receptor for a particular cargo. Using PAIRS we followed the fate of ∼150 cargos on the background of mutations in nine putative cargo receptors and identified novel cargo for most of these receptors. Deletion of the Erv14 cargo receptor affected the widest range of cargo. Erv14 substrates have a wide array of functions and structures; however, they are all membrane-spanning proteins of the late secretory pathway or plasma membrane. Proteins residing in these organelles have longer transmembrane domains (TMDs). Detailed examination of one cargo supported the hypothesis that Erv14 dependency reflects the length rather than the sequence of the TMD. The PAIRS approach allowed us to uncover new cargo for known cargo receptors and to obtain an unbiased look at specificity in cargo selection. Obtaining the spectrum of cargo for a cargo receptor allows a novel perspective on its mode of action. The rules that appear to guide Erv14 substrate recognition suggest that sorting of membrane proteins at multiple points in the secretory pathway could depend on the physical properties of TMDs. Such a mechanism would allow diverse proteins to utilize a few receptors without the constraints of evolving location-specific sorting motifs.

  19. KSC-99pp0344

    NASA Image and Video Library

    1999-03-25

    At Astrotech in Titusville, Fla., members of two Shuttle crews get a close look at components of a Russian cargo crane, the Strela, to be mounted to the exterior of the Russian station segment on the International Space Station (ISS). At left are STS-96 Mission Specialist Daniel T. Barry and Pilot Rick Douglas Husband. At center, STS-96 Mission Specialist Tamara E. Jernigan gives her attention to a technician with DaimlerChrysler while STS-101 Mission Specialist Edward Tsang Lu looks on. Both missions include the SPACEHAB Double Module, carrying internal and resupply cargo for Station outfitting. For the first time, STS-96 will include an Integrated Cargo Carrier (ICC) that will carry the Strela; the SPACEHAB Oceaneering Space System Box (SHOSS), which is a logistics items carrier; and a U.S.-built crane (ORU Transfer Device, or OTD) that will be stowed on the station for use during future ISS assembly missions. The ICC can carry up to 6,000 lb of unpressurized payload. It was built for SPACEHAB by DaimlerChrysler and RSC Energia of Korolev, Russia. STS-96 is targeted for launch on May 24 from Launch Pad 39B. STS-101 is scheduled to launch in early December 1999

  20. KSC-99pp0341

    NASA Image and Video Library

    1999-03-25

    Two Shuttle crews take part in familiarization activities at Astrotech in Titusville, Fla. From left are STS-96 Mission Specialists Daniel T. Barry and Tamara E. Jernigan, and Pilot Rick Douglas Husband; plus STS-101 Mission Specialists Edward Tsang Lu and Jeffrey N. Williams. They are looking at components of a Russian cargo crane, the Strela, to be mounted to the exterior of the Russian station segment on the International Space Station (ISS). Both missions include the SPACEHAB Double Module, carrying internal and resupply cargo for Station outfitting. For the first time, STS-96 will include an Integrated Cargo Carrier (ICC) that will carry the Strela; the SPACEHAB Oceaneering Space System Box (SHOSS), which is a logistics items carrier; and a U.S.-built crane (ORU Transfer Device, or OTD) that will be stowed on the station for use during future ISS assembly missions. The ICC can carry up to 6,000 lb of unpressurized payload. It was built for SPACEHAB by DaimlerChrysler Aerospace of Bremen and RSC Energia of Korolev, Russia. STS-96 is targeted for launch on May 24 from Launch Pad 39B. STS-101 is scheduled to launch in early December 1999

  1. KSC-99pp0345

    NASA Image and Video Library

    1999-03-25

    At Astrotech in Titusville, Fla., members of two Shuttle crews take a close look at components of a Russian cargo crane, the Strela, to be mounted to the exterior of the Russian station segment on the International Space Station (ISS). From left are STS-96 Mission Specialists Daniel T. Barry and Tamara E. Jernigan, Pilot Rick Douglas Husband, and Mission Specialist Julie Payette; next to them is STS-101 Mission Specialist Yuri Ivanovich Malenchenko, with the Russian Space Agency. Both missions include the SPACEHAB Double Module, carrying internal and resupply cargo for Station outfitting. For the first time, STS-96 will include an Integrated Cargo Carrier (ICC) that will carry the Strela; the SPACEHAB Oceaneering Space System Box (SHOSS), which is a logistics items carrier; and a U.S.-built crane (ORU Transfer Device, or OTD) that will be stowed on the station for use during future ISS assembly missions. The ICC can carry up to 6,000 lb of unpressurized payload. It was built for SPACEHAB by DaimlerChrysler and RSC Energia of Korolev, Russia. STS-96 is targeted for launch on May 24 from Launch Pad 39B. STS-101 is scheduled to launch in early December 1999

  2. KSC-99pp0348

    NASA Image and Video Library

    1999-03-25

    At Astrotech in Titusville, Fla., STS-96 Mission Specialists Tamara E. Jernigan and Daniel T. Barry take turns working with a Russian cargo crane, the Strela, which is to be mounted to the exterior of the Russian station segment on the International Space Station (ISS). Technicians around the table observe. The STS-96 crew is taking part in a Crew Equipment Interface Test. Other members participating are Commander Kent V. Rominger, Pilot Rick Douglas Husband, and Mission Specialists Julie Payette, with the Canadian Space Agency, and Valery Ivanovich Tokarev, with the Russian Space Agency. For the first time, STS-96 will include an Integrated Cargo Carrier (ICC) that will carry the Russian cargo crane; the SPACEHAB Oceaneering Space System Box (SHOSS), which is a logistics items carrier; and a U.S.-built crane (ORU Transfer Device, or OTD) that will be stowed on the station for use during future ISS assembly missions. The ICC can carry up to 6,000 lb of unpressurized payload. It was built for SPACEHAB by DaimlerChrysler Aerospace and RSC Energia of Korolev, Russia. STS-96 is targeted for launch on May 24 from Launch Pad 39B. STS-101 is scheduled to launch in early December 1999

  3. Integrated application of active controls (IAAC) technology to an advanced subsonic transport project. Conventional baseline configuration study

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Characteristics of the U.S. domestic fleet were evaluated to determine the mission characteristics that would have the most impact on U. S. transport fuel use in the future. This resulted in selection of a 197-passenger (plus cargo), about 3710-km (2000 nmi) mission. The existing data base was reviewed and additional analysis was conducted as necessary to complete the technical descriptions. The resulting baseline configuration utilizes a double-lobe, but nearly circular, body with seven-abreast seating. External characteristics feature an 8.71 aspect ratio, 31.5-degree sweep wing, a T-tail empennage, and a dual CF6-6D2, wing-mounted engine arrangement. It provides for 22 LD-2 or 11 LD-3 containers plus bulk cargo in the lower lobe. Passenger/cargo loading, servicing provisions, taxi/takeoff speeds, and field length characteristics are all compatible with accepted airline operations and regulatory provisions. The baseline configuration construction uses conventional aluminum structure except for advanced aluminum alloys and a limited amount of graphite epoxy secondary structure. Modern systems are used, including advanced guidance, navigation, and controls which emphasize application of digital electronics and advanced displays.

  4. Biconic cargo return vehicle with an advanced recovery system. Volume 1: Conceptual design

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The conceptual design of the biconic Cargo Return Vehicle (CRV) is presented. The CRV will be able to meet all of the Space Station Freedom (SSF's) resupply needs. Worth note is the absence of a backup recovery chute in case of Advanced Recovery System (ARS) failure. The high reliability of ram-air parachutes does not warrant the penalty weight that such a system would create on successful missions. The CRV will launch vertically integrated with an Liquid Rocket Booster (LRB) vehicle and meets all NASA restrictions on fuel type for all phases of the mission. Because of the downscaled Orbital Maneuvering Vehicle (OMV) program, the CRV has been designed to be able to transfer cargo by docking directly to the Space Station Freedom as well as with OMV assistance. The CRV will cover enough crossrange to reach its primary landing site, Edwards Airforce Base, and all secondary landing sites with the exception of one orbit. Transportation back to KSC will be via the Boeing Super Guppy. Due to difficulties with man-rating the CRV, it will not be used in a CERV role. A brief summary of the CRV's specifications is given.

  5. A kinesin-1 binding motif in vaccinia virus that is widespread throughout the human genome

    PubMed Central

    Dodding, Mark P; Mitter, Richard; Humphries, Ashley C; Way, Michael

    2011-01-01

    Transport of cargoes by kinesin-1 is essential for many cellular processes. Nevertheless, the number of proteins known to recruit kinesin-1 via its cargo binding light chain (KLC) is still quite small. We also know relatively little about the molecular features that define kinesin-1 binding. We now show that a bipartite tryptophan-based kinesin-1 binding motif, originally identified in Calsyntenin is present in A36, a vaccinia integral membrane protein. This bipartite motif in A36 is required for kinesin-1-dependent transport of the virus to the cell periphery. Bioinformatic analysis reveals that related bipartite tryptophan-based motifs are present in over 450 human proteins. Using vaccinia as a surrogate cargo, we show that regions of proteins containing this motif can function to recruit KLC and promote virus transport in the absence of A36. These proteins interact with the kinesin light chain outside the context of infection and have distinct preferences for KLC1 and KLC2. Our observations demonstrate that KLC binding can be conferred by a common set of features that are found in a wide range of proteins associated with diverse cellular functions and human diseases. PMID:21915095

  6. Two Shuttle crews check equipment at SPACEHAB to be used on ISS Flights

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At Astrotech in Titusville, Fla., members of two Shuttle crews take a close look at a component of a Russian cargo crane, the Strela, to be mounted to the exterior of the Russian station segment on the International Space Station (ISS). From left, they are STS-101 Mission Specialist Edward Tsang Lu, plus STS-96 Mission Specialist Julie Payette and Pilot Rick Douglas Husband. Payette represents the Canadian Space Agency. Both missions include the SPACEHAB Double Module, carrying internal and resupply cargo for Station outfitting. For the first time, STS-96 will include an Integrated Cargo Carrier (ICC) that will carry the Strela; the SPACEHAB Oceaneering Space System Box (SHOSS), which is a logistics items carrier; and a U.S.-built crane (ORU Transfer Device, or OTD) that will be stowed on the station for use during future ISS assembly missions. The ICC can carry up to 6,000 lb of unpressurized payload. It was built for SPACEHAB by DaimlerChrysler and RSC Energia of Korolev, Russia. STS-96 is targeted for launch on May 24 from Launch Pad 39B. STS-101 is scheduled to launch in early December 1999.

  7. Two Shuttle crews check equipment at SPACEHAB to be used on ISS Flights

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Two Shuttle crews take part in familiarization activities at Astrotech in Titusville, Fla. From left are STS-96 Mission Specialists Daniel T. Barry and Tamara E. Jernigan, and Pilot Rick Douglas Husband; plus STS-101 Mission Specialists Edward Tsang Lu and Jeffrey N. Williams. They are looking at components of a Russian cargo crane, the Strela, to be mounted to the exterior of the Russian station segment on the International Space Station (ISS). Both missions include the SPACEHAB Double Module, carrying internal and resupply cargo for Station outfitting. For the first time, STS-96 will include an Integrated Cargo Carrier (ICC) that will carry the Strela; the SPACEHAB Oceaneering Space System Box (SHOSS), which is a logistics items carrier; and a U.S.-built crane (ORU Transfer Device, or OTD) that will be stowed on the station for use during future ISS assembly missions. The ICC can carry up to 6,000 lb of unpressurized payload. It was built for SPACEHAB by DaimlerChrysler Aerospace of Bremen and RSC Energia of Korolev, Russia. STS-96 is targeted for launch on May 24 from Launch Pad 39B. STS-101 is scheduled to launch in early December 1999.

  8. Two Shuttle crews check equipment at SPACEHAB to be used on ISS Flights

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At Astrotech in Titusville, Fla., members of two Shuttle crews take a close look at components of a Russian cargo crane, the Strela, to be mounted to the exterior of the Russian station segment on the International Space Station (ISS). From left are STS-96 Mission Specialists Daniel T. Barry and Tamara E. Jernigan, Pilot Rick Douglas Husband, and Mission Specialist Julie Payette; next to them is STS-101 Mission Specialist Yuri Ivanovich Malenchenko, with the Russian Space Agency. Both missions include the SPACEHAB Double Module, carrying internal and resupply cargo for Station outfitting. For the first time, STS-96 will include an Integrated Cargo Carrier (ICC) that will carry the Strela; the SPACEHAB Oceaneering Space System Box (SHOSS), which is a logistics items carrier; and a U.S.-built crane (ORU Transfer Device, or OTD) that will be stowed on the station for use during future ISS assembly missions. The ICC can carry up to 6,000 lb of unpressurized payload. It was built for SPACEHAB by DaimlerChrysler and RSC Energia of Korolev, Russia. STS-96 is targeted for launch on May 24 from Launch Pad 39B. STS-101 is scheduled to launch in early December 1999.

  9. Integrated Primary Care Information Database (IPCI)

    Cancer.gov

    The Integrated Primary Care Information Database is a longitudinal observational database that was created specifically for pharmacoepidemiological and pharmacoeconomic studies, inlcuding data from computer-based patient records supplied voluntarily by general practitioners.

  10. Cargo-shell and cargo-cargo couplings govern the mechanics of artificially loaded virus-derived cages

    NASA Astrophysics Data System (ADS)

    Llauró, Aida; Luque, Daniel; Edwards, Ethan; Trus, Benes L.; Avera, John; Reguera, David; Douglas, Trevor; Pablo, Pedro J. De; Castón, José R.

    2016-04-01

    Nucleic acids are the natural cargo of viruses and key determinants that affect viral shell stability. In some cases the genome structurally reinforces the shell, whereas in others genome packaging causes internal pressure that can induce destabilization. Although it is possible to pack heterologous cargoes inside virus-derived shells, little is known about the physical determinants of these artificial nanocontainers' stability. Atomic force and three-dimensional cryo-electron microscopy provided mechanical and structural information about the physical mechanisms of viral cage stabilization beyond the mere presence/absence of cargos. We analyzed the effects of cargo-shell and cargo-cargo interactions on shell stability after encapsulating two types of proteinaceous payloads. While bound cargo to the inner capsid surface mechanically reinforced the capsid in a structural manner, unbound cargo diffusing freely within the shell cavity pressurized the cages up to ~30 atm due to steric effects. Strong cargo-cargo coupling reduces the resilience of these nanocompartments in ~20% when bound to the shell. Understanding the stability of artificially loaded nanocages will help to design more robust and durable molecular nanocontainers.Nucleic acids are the natural cargo of viruses and key determinants that affect viral shell stability. In some cases the genome structurally reinforces the shell, whereas in others genome packaging causes internal pressure that can induce destabilization. Although it is possible to pack heterologous cargoes inside virus-derived shells, little is known about the physical determinants of these artificial nanocontainers' stability. Atomic force and three-dimensional cryo-electron microscopy provided mechanical and structural information about the physical mechanisms of viral cage stabilization beyond the mere presence/absence of cargos. We analyzed the effects of cargo-shell and cargo-cargo interactions on shell stability after encapsulating two types of proteinaceous payloads. While bound cargo to the inner capsid surface mechanically reinforced the capsid in a structural manner, unbound cargo diffusing freely within the shell cavity pressurized the cages up to ~30 atm due to steric effects. Strong cargo-cargo coupling reduces the resilience of these nanocompartments in ~20% when bound to the shell. Understanding the stability of artificially loaded nanocages will help to design more robust and durable molecular nanocontainers. Electronic supplementary information (ESI) available: 6 figures, 3 tables and theory. See DOI: 10.1039/c6nr01007e

  11. Mass spectrometry-based protein identification by integrating de novo sequencing with database searching.

    PubMed

    Wang, Penghao; Wilson, Susan R

    2013-01-01

    Mass spectrometry-based protein identification is a very challenging task. The main identification approaches include de novo sequencing and database searching. Both approaches have shortcomings, so an integrative approach has been developed. The integrative approach firstly infers partial peptide sequences, known as tags, directly from tandem spectra through de novo sequencing, and then puts these sequences into a database search to see if a close peptide match can be found. However the current implementation of this integrative approach has several limitations. Firstly, simplistic de novo sequencing is applied and only very short sequence tags are used. Secondly, most integrative methods apply an algorithm similar to BLAST to search for exact sequence matches and do not accommodate sequence errors well. Thirdly, by applying these methods the integrated de novo sequencing makes a limited contribution to the scoring model which is still largely based on database searching. We have developed a new integrative protein identification method which can integrate de novo sequencing more efficiently into database searching. Evaluated on large real datasets, our method outperforms popular identification methods.

  12. Using Web Ontology Language to Integrate Heterogeneous Databases in the Neurosciences

    PubMed Central

    Lam, Hugo Y.K.; Marenco, Luis; Shepherd, Gordon M.; Miller, Perry L.; Cheung, Kei-Hoi

    2006-01-01

    Integrative neuroscience involves the integration and analysis of diverse types of neuroscience data involving many different experimental techniques. This data will increasingly be distributed across many heterogeneous databases that are web-accessible. Currently, these databases do not expose their schemas (database structures) and their contents to web applications/agents in a standardized, machine-friendly way. This limits database interoperation. To address this problem, we describe a pilot project that illustrates how neuroscience databases can be expressed using the Web Ontology Language, which is a semantically-rich ontological language, as a common data representation language to facilitate complex cross-database queries. In this pilot project, an existing tool called “D2RQ” was used to translate two neuroscience databases (NeuronDB and CoCoDat) into OWL, and the resulting OWL ontologies were then merged. An OWL-based reasoner (Racer) was then used to provide a sophisticated query language (nRQL) to perform integrated queries across the two databases based on the merged ontology. This pilot project is one step toward exploring the use of semantic web technologies in the neurosciences. PMID:17238384

  13. Specification and Enforcement of Semantic Integrity Constraints in Microsoft Access

    ERIC Educational Resources Information Center

    Dadashzadeh, Mohammad

    2007-01-01

    Semantic integrity constraints are business-specific rules that limit the permissible values in a database. For example, a university rule dictating that an "incomplete" grade cannot be changed to an A constrains the possible states of the database. To maintain database integrity, business rules should be identified in the course of database…

  14. 46 CFR 151.13-1 - General.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... HAZARDOUS MATERIAL CARGOES Cargo Segregation § 151.13-1 General. This subpart prescribes the requirements for cargo segregation for cargo tanks. These requirements are based on considerations of cargo...

  15. 46 CFR 151.13-1 - General.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... HAZARDOUS MATERIAL CARGOES Cargo Segregation § 151.13-1 General. This subpart prescribes the requirements for cargo segregation for cargo tanks. These requirements are based on considerations of cargo...

  16. KSC-02pd1913

    NASA Image and Video Library

    2002-12-11

    KENNEDY SPACE CENTER, FLA. -- KSC technicians supervise the offloading of the Integrated Equipment Assembly (IEA), one of two major components of the Starboard 6 (S6) truss segment for the International Space Station (ISS), onto a cargo transporter following its arrival at the Shuttle Landing Facility. The IEA will be joined to its companion piece, the Long Spacer, before launch early in 2004. The S6 truss segment will be the 11th and final piece of the Station's Integrated Truss Structure and will support the fourth and final set of solar arrays, batteries, and electronics.

  17. KSC-02pd1914

    NASA Image and Video Library

    2002-12-11

    KENNEDY SPACE CENTER, FLA. -- KSC technicians supervise the transfer of the Integrated Equipment Assembly (IEA), one of two major components of the Starboard 6 (S6) truss segment for the International Space Station (ISS), onto a cargo transporter following its arrival at the Shuttle Landing Facility. The IEA will be joined to its companion piece, the Long Spacer, before launch early in 2004. The S6 truss segment will be the 11th and final piece of the Station's Integrated Truss Structure and will support the fourth and final set of solar arrays, batteries, and electronics.

  18. 46 CFR 150.120 - Definition of incompatible cargoes.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Definition of incompatible cargoes. 150.120 Section 150.120 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES COMPATIBILITY OF CARGOES § 150.120 Definition of incompatible cargoes. Except as described in § 150.150, a cargo...

  19. 46 CFR 150.120 - Definition of incompatible cargoes.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Definition of incompatible cargoes. 150.120 Section 150.120 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES COMPATIBILITY OF CARGOES § 150.120 Definition of incompatible cargoes. Except as described in § 150.150, a cargo...

  20. 46 CFR 150.120 - Definition of incompatible cargoes.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Definition of incompatible cargoes. 150.120 Section 150.120 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES COMPATIBILITY OF CARGOES § 150.120 Definition of incompatible cargoes. Except as described in § 150.150, a cargo...

  1. 46 CFR 150.120 - Definition of incompatible cargoes.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Definition of incompatible cargoes. 150.120 Section 150.120 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES COMPATIBILITY OF CARGOES § 150.120 Definition of incompatible cargoes. Except as described in § 150.150, a cargo...

  2. 46 CFR 150.120 - Definition of incompatible cargoes.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Definition of incompatible cargoes. 150.120 Section 150.120 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES COMPATIBILITY OF CARGOES § 150.120 Definition of incompatible cargoes. Except as described in § 150.150, a cargo...

  3. 46 CFR 151.13-5 - Cargo segregation-tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Cargo Segregation § 151.13-5 Cargo segregation—tanks. (a... through design. (2) Segregation of cargo space from machinery spaces and other spaces which have or could... Grade E Liquid (if compatible with cargo) is satisfactory. (b) [Reserved] (c) If a cofferdam is required...

  4. 46 CFR 151.13-5 - Cargo segregation-tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Cargo Segregation § 151.13-5 Cargo segregation—tanks. (a... through design. (2) Segregation of cargo space from machinery spaces and other spaces which have or could... Grade E Liquid (if compatible with cargo) is satisfactory. (b) [Reserved] (c) If a cofferdam is required...

  5. 49 CFR 392.9 - Inspection of cargo, cargo securement devices and systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) FEDERAL MOTOR CARRIER SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR CARRIER SAFETY REGULATIONS DRIVING OF COMMERCIAL MOTOR VEHICLES General § 392.9 Inspection of cargo, cargo securement devices... drives that commercial motor vehicle; (2) Inspect the cargo and the devices used to secure the cargo...

  6. 33 CFR 105.265 - Security measures for handling cargo.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., containers, or other cargo transport units entering the facility match the delivery note or equivalent cargo..., containers or other cargo transport units, and cargo storage areas within the facility for evidence of... cargo. 105.265 Section 105.265 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND...

  7. 33 CFR 105.265 - Security measures for handling cargo.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., containers, or other cargo transport units entering the facility match the delivery note or equivalent cargo..., containers or other cargo transport units, and cargo storage areas within the facility for evidence of... cargo. 105.265 Section 105.265 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND...

  8. 33 CFR 105.265 - Security measures for handling cargo.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., containers, or other cargo transport units entering the facility match the delivery note or equivalent cargo..., containers or other cargo transport units, and cargo storage areas within the facility for evidence of... cargo. 105.265 Section 105.265 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND...

  9. 33 CFR 105.265 - Security measures for handling cargo.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., containers, or other cargo transport units entering the facility match the delivery note or equivalent cargo..., containers or other cargo transport units, and cargo storage areas within the facility for evidence of... cargo. 105.265 Section 105.265 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND...

  10. 33 CFR 105.265 - Security measures for handling cargo.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., containers, or other cargo transport units entering the facility match the delivery note or equivalent cargo..., containers or other cargo transport units, and cargo storage areas within the facility for evidence of... cargo. 105.265 Section 105.265 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND...

  11. 46 CFR 154.235 - Cargo tank location.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Cargo tank location. 154.235 Section 154.235 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS... Survival Capability and Cargo Tank Location § 154.235 Cargo tank location. (a) For type IG hulls, cargo...

  12. 46 CFR 154.476 - Cargo transfer devices and means.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... of cargo transfer, such as another pump or gas pressurization. (b) If cargo is transferred by gas... SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Support System § 154.476 Cargo transfer devices and means. (a) If a cargo pump in a cargo tank is...

  13. 49 CFR 1544.228 - Access to cargo and cargo screening: Security threat assessments for cargo personnel in the...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... threat assessments for cargo personnel in the United States. 1544.228 Section 1544.228 Transportation... COMMERCIAL OPERATORS Operations § 1544.228 Access to cargo and cargo screening: Security threat assessments... paragraph (b) of this section— (1) Each individual must successfully complete a security threat assessment...

  14. 46 CFR 154.1200 - Mechanical ventilation system: General.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) Each cargo compressor room, pump room, gas-dangerous cargo control station, and space that contains... motors for cargo handling equipment. (2) Each gas-safe cargo control station in the cargo area. (3) Each...

  15. 46 CFR 154.1200 - Mechanical ventilation system: General.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) Each cargo compressor room, pump room, gas-dangerous cargo control station, and space that contains... motors for cargo handling equipment. (2) Each gas-safe cargo control station in the cargo area. (3) Each...

  16. 46 CFR 154.1200 - Mechanical ventilation system: General.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) Each cargo compressor room, pump room, gas-dangerous cargo control station, and space that contains... motors for cargo handling equipment. (2) Each gas-safe cargo control station in the cargo area. (3) Each...

  17. Combining Radiography and Passive Measurements for Radiological Threat Detection in Cargo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Erin A.; White, Timothy A.; Jarman, Kenneth D.

    Abstract Radiography is widely understood to provide information complimentary to passive detection: while not directly sensitive to radiological materials, radiography can reveal highly shielded regions which may mask a passive radiological signal. We present a method for combining radiographic and passive data which uses the radiograph to provide an estimate of scatter and attenuation for possible sources. This approach allows quantitative use of radiographic images without relying on image interpretation, and results in a probabilistic description of likely source locations and strengths. We present first results for this method for a simple modeled test case of a cargo container drivingmore » through a PVT portal. With this inversion approach, we address criteria for an integrated passive and radiographic screening system and how detection of SNM threats might be improved in such a system.« less

  18. [Integrated DNA barcoding database for identifying Chinese animal medicine].

    PubMed

    Shi, Lin-Chun; Yao, Hui; Xie, Li-Fang; Zhu, Ying-Jie; Song, Jing-Yuan; Zhang, Hui; Chen, Shi-Lin

    2014-06-01

    In order to construct an integrated DNA barcoding database for identifying Chinese animal medicine, the authors and their cooperators have completed a lot of researches for identifying Chinese animal medicines using DNA barcoding technology. Sequences from GenBank have been analyzed simultaneously. Three different methods, BLAST, barcoding gap and Tree building, have been used to confirm the reliabilities of barcode records in the database. The integrated DNA barcoding database for identifying Chinese animal medicine has been constructed using three different parts: specimen, sequence and literature information. This database contained about 800 animal medicines and the adulterants and closely related species. Unknown specimens can be identified by pasting their sequence record into the window on the ID page of species identification system for traditional Chinese medicine (www. tcmbarcode. cn). The integrated DNA barcoding database for identifying Chinese animal medicine is significantly important for animal species identification, rare and endangered species conservation and sustainable utilization of animal resources.

  19. 46 CFR 129.520 - Hazardous areas.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... liquid with a flashpoint of below 140 °F (60 °C), or carries hazardous cargoes on deck or in integral...-storage spaces, or within 3 meters (10 feet) of a source of vapor on a weather deck unless the equipment... liquid unless the equipment is explosion-proof or intrinsically safe under § 111.105-9 or § 111.105-11 of...

  20. 46 CFR 129.520 - Hazardous areas.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... liquid with a flashpoint of below 140 °F (60 °C), or carries hazardous cargoes on deck or in integral...-storage spaces, or within 3 meters (10 feet) of a source of vapor on a weather deck unless the equipment... liquid unless the equipment is explosion-proof or intrinsically safe under § 111.105-9 or § 111.105-11 of...

  1. 46 CFR 129.520 - Hazardous areas.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... liquid with a flashpoint of below 140 °F (60 °C), or carries hazardous cargoes on deck or in integral...-storage spaces, or within 3 meters (10 feet) of a source of vapor on a weather deck unless the equipment... liquid unless the equipment is explosion-proof or intrinsically safe under § 111.105-9 or § 111.105-11 of...

  2. Real-time self-networking radiation detector apparatus

    DOEpatents

    Kaplan, Edward [Stony Brook, NY; Lemley, James [Miller Place, NY; Tsang, Thomas Y [Holbrook, NY; Milian, Laurence W [East Patchogue, NY

    2007-06-12

    The present invention is for a radiation detector apparatus for detecting radiation sources present in cargo shipments. The invention includes the features of integrating a bubble detector sensitive to neutrons and a GPS system into a miniaturized package that can wirelessly signal the presence of radioactive material in shipping containers. The bubble density would be read out if such indicated a harmful source.

  3. KSC-07pd3237

    NASA Image and Video Library

    2007-11-06

    KENNEDY SPACE CENTER, FLA. -- At NASA's Kennedy Space Center, the payload canister atop its transporter rolls toward Launch Pad 39A. The canister contains the Columbus Lab module and integrated cargo carrier-lite payloads for space shuttle Atlantis on mission STS-122. They will be transferred into the payload changeout room on the pad. Atlantis is targeted to launch on Dec. 6. Photo credit: NASA/Dimitri Gerondidakis

  4. 46 CFR 151.20-15 - Cargo hose if carried on the barge.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Cargo Transfer § 151.20-15 Cargo hose if carried on the barge. (a) Liquid and vapor line hose used for cargo transfer shall be of suitable material... subjected and shall be acceptable to the Commandant. (b) Hose subject to tank pressure, or the discharge...

  5. 46 CFR 151.20-15 - Cargo hose if carried on the barge.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Cargo Transfer § 151.20-15 Cargo hose if carried on the barge. (a) Liquid and vapor line hose used for cargo transfer shall be of suitable material... subjected and shall be acceptable to the Commandant. (b) Hose subject to tank pressure, or the discharge...

  6. 46 CFR 151.20-15 - Cargo hose if carried on the barge.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Cargo Transfer § 151.20-15 Cargo hose if carried on the barge. (a) Liquid and vapor line hose used for cargo transfer shall be of suitable material... subjected and shall be acceptable to the Commandant. (b) Hose subject to tank pressure, or the discharge...

  7. 46 CFR 151.20-15 - Cargo hose if carried on the barge.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Cargo Transfer § 151.20-15 Cargo hose if carried on the barge. (a) Liquid and vapor line hose used for cargo transfer shall be of suitable material... subjected and shall be acceptable to the Commandant. (b) Hose subject to tank pressure, or the discharge...

  8. 46 CFR 151.05-2 - Compliance with requirements for tank barges carrying benzene and benzene containing cargoes, or...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... benzene and benzene containing cargoes, or butyl acrylate cargoes. 151.05-2 Section 151.05-2 Shipping... Compliance with requirements for tank barges carrying benzene and benzene containing cargoes, or butyl acrylate cargoes. A tank barge certificated to carry benzene and benzene containing cargoes or butyl...

  9. 46 CFR 151.05-2 - Compliance with requirements for tank barges carrying benzene and benzene containing cargoes, or...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... benzene and benzene containing cargoes, or butyl acrylate cargoes. 151.05-2 Section 151.05-2 Shipping... Compliance with requirements for tank barges carrying benzene and benzene containing cargoes, or butyl acrylate cargoes. A tank barge certificated to carry benzene and benzene containing cargoes or butyl...

  10. 46 CFR 151.05-2 - Compliance with requirements for tank barges carrying benzene and benzene containing cargoes, or...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... benzene and benzene containing cargoes, or butyl acrylate cargoes. 151.05-2 Section 151.05-2 Shipping... Compliance with requirements for tank barges carrying benzene and benzene containing cargoes, or butyl acrylate cargoes. A tank barge certificated to carry benzene and benzene containing cargoes or butyl...

  11. 46 CFR 151.05-2 - Compliance with requirements for tank barges carrying benzene and benzene containing cargoes, or...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... benzene and benzene containing cargoes, or butyl acrylate cargoes. 151.05-2 Section 151.05-2 Shipping... Compliance with requirements for tank barges carrying benzene and benzene containing cargoes, or butyl acrylate cargoes. A tank barge certificated to carry benzene and benzene containing cargoes or butyl...

  12. 46 CFR 151.05-2 - Compliance with requirements for tank barges carrying benzene and benzene containing cargoes, or...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... benzene and benzene containing cargoes, or butyl acrylate cargoes. 151.05-2 Section 151.05-2 Shipping... Compliance with requirements for tank barges carrying benzene and benzene containing cargoes, or butyl acrylate cargoes. A tank barge certificated to carry benzene and benzene containing cargoes or butyl...

  13. 46 CFR 153.908 - Cargo viscosity and melting point information; measuring cargo temperature during discharge...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Cargo viscosity and melting point information; measuring... Cargo viscosity and melting point information; measuring cargo temperature during discharge: Categories... lading, a written statement of the following: (1) For Category A or B NLS, the cargo's viscosity at 20 °C...

  14. 46 CFR 153.908 - Cargo viscosity and melting point information; measuring cargo temperature during discharge...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Cargo viscosity and melting point information; measuring... Cargo viscosity and melting point information; measuring cargo temperature during discharge: Categories... lading, a written statement of the following: (1) For Category A or B NLS, the cargo's viscosity at 20 °C...

  15. 46 CFR 153.908 - Cargo viscosity and melting point information; measuring cargo temperature during discharge...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Cargo viscosity and melting point information; measuring... Cargo viscosity and melting point information; measuring cargo temperature during discharge: Categories... lading, a written statement of the following: (1) For Category A or B NLS, the cargo's viscosity at 20 °C...

  16. 14 CFR 121.583 - Carriage of persons without compliance with the passenger-carrying requirements of this part.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... confidential cargo; (v) The preservation of fragile or perishable cargo; (vi) Experiments on, or testing of, cargo containers or cargo handling devices; (vii) The operation of special equipment for loading or unloading cargo; and (viii) The loading or unloading of outsize cargo. (5) A person described in paragraph...

  17. 14 CFR 121.583 - Carriage of persons without compliance with the passenger-carrying requirements of this part.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... confidential cargo; (v) The preservation of fragile or perishable cargo; (vi) Experiments on, or testing of, cargo containers or cargo handling devices; (vii) The operation of special equipment for loading or unloading cargo; and (viii) The loading or unloading of outsize cargo. (5) A person described in paragraph...

  18. PathCase-SB architecture and database design

    PubMed Central

    2011-01-01

    Background Integration of metabolic pathways resources and regulatory metabolic network models, and deploying new tools on the integrated platform can help perform more effective and more efficient systems biology research on understanding the regulation in metabolic networks. Therefore, the tasks of (a) integrating under a single database environment regulatory metabolic networks and existing models, and (b) building tools to help with modeling and analysis are desirable and intellectually challenging computational tasks. Description PathCase Systems Biology (PathCase-SB) is built and released. The PathCase-SB database provides data and API for multiple user interfaces and software tools. The current PathCase-SB system provides a database-enabled framework and web-based computational tools towards facilitating the development of kinetic models for biological systems. PathCase-SB aims to integrate data of selected biological data sources on the web (currently, BioModels database and KEGG), and to provide more powerful and/or new capabilities via the new web-based integrative framework. This paper describes architecture and database design issues encountered in PathCase-SB's design and implementation, and presents the current design of PathCase-SB's architecture and database. Conclusions PathCase-SB architecture and database provide a highly extensible and scalable environment with easy and fast (real-time) access to the data in the database. PathCase-SB itself is already being used by researchers across the world. PMID:22070889

  19. E-MSD: an integrated data resource for bioinformatics.

    PubMed

    Velankar, S; McNeil, P; Mittard-Runte, V; Suarez, A; Barrell, D; Apweiler, R; Henrick, K

    2005-01-01

    The Macromolecular Structure Database (MSD) group (http://www.ebi.ac.uk/msd/) continues to enhance the quality and consistency of macromolecular structure data in the worldwide Protein Data Bank (wwPDB) and to work towards the integration of various bioinformatics data resources. One of the major obstacles to the improved integration of structural databases such as MSD and sequence databases like UniProt is the absence of up to date and well-maintained mapping between corresponding entries. We have worked closely with the UniProt group at the EBI to clean up the taxonomy and sequence cross-reference information in the MSD and UniProt databases. This information is vital for the reliable integration of the sequence family databases such as Pfam and Interpro with the structure-oriented databases of SCOP and CATH. This information has been made available to the eFamily group (http://www.efamily.org.uk/) and now forms the basis of the regular interchange of information between the member databases (MSD, UniProt, Pfam, Interpro, SCOP and CATH). This exchange of annotation information has enriched the structural information in the MSD database with annotation from wider sequence-oriented resources. This work was carried out under the 'Structure Integration with Function, Taxonomy and Sequences (SIFTS)' initiative (http://www.ebi.ac.uk/msd-srv/docs/sifts) in the MSD group.

  20. Photonuclear-based Detection of Nuclear Smuggling in Cargo Containers

    NASA Astrophysics Data System (ADS)

    Jones, J. L.; Haskell, K. J.; Hoggan, J. M.; Norman, D. R.; Yoon, W. Y.

    2003-08-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) and the Los Alamos National Laboratory (LANL) have performed experiments in La Honda, California and at the Idaho Accelerator Center in Pocatello, Idaho to assess and develop a photonuclear-based detection system for shielded nuclear materials in cargo containers. The detection system, measuring photonuclear-related neutron emissions, is planned for integration with the ARACOR Eagle Cargo Container Inspection System (Sunnyvale, CA). The Eagle Inspection system uses a nominal 6-MeV electron accelerator and operates with safe radiation exposure limits to both container stowaways and to its operators. The INEEL has fabricated custom-built, helium-3-based, neutron detectors for this inspection application and is performing an experimental application assessment. Because the Eagle Inspection system could not be moved to LANL where special nuclear material was available, the response of the Eagle had to be determined indirectly so as to support the development and testing of the detection system. Experiments in California have successfully matched the delayed neutron emission performance of the ARACOR Eagle with that of the transportable INEEL electron accelerator (i.e., the Varitron) and are reported here. A demonstration test is planned at LANL using the Varitron and shielded special nuclear materials within a cargo container. Detector results are providing very useful information regarding the challenges of delayed neutron counting near the photofission threshold energy of 5.5 - 6.0 MeV, are identifying the possible utilization of prompt neutron emissions to allow enhanced signal-to-noise measurements, and are showing the overall benefits of using higher electron beam energies.

  1. 46 CFR 232.5 - Income Statement Accounts.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... as terminal operations, cargo equipment, fleet operations, cargo pooling agreements, container... revenue from pooling agreements, terminal services provided to others, and cargo handling services performed for others; cargo equipment rentals, and repairs to cargo equipment belonging to others; agency...

  2. 46 CFR 232.5 - Income Statement Accounts.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... as terminal operations, cargo equipment, fleet operations, cargo pooling agreements, container... revenue from pooling agreements, terminal services provided to others, and cargo handling services performed for others; cargo equipment rentals, and repairs to cargo equipment belonging to others; agency...

  3. 46 CFR 232.5 - Income Statement Accounts.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... as terminal operations, cargo equipment, fleet operations, cargo pooling agreements, container... revenue from pooling agreements, terminal services provided to others, and cargo handling services performed for others; cargo equipment rentals, and repairs to cargo equipment belonging to others; agency...

  4. 46 CFR 232.5 - Income Statement Accounts.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... as terminal operations, cargo equipment, fleet operations, cargo pooling agreements, container... revenue from pooling agreements, terminal services provided to others, and cargo handling services performed for others; cargo equipment rentals, and repairs to cargo equipment belonging to others; agency...

  5. 46 CFR 150.140 - Cargoes not listed in Table I or II.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Cargoes not listed in Table I or II. 150.140 Section 150.140 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES COMPATIBILITY OF CARGOES § 150.140 Cargoes not listed in Table I or II. A cargo of hazardous material not listed...

  6. 46 CFR 150.140 - Cargoes not listed in Table I or II.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Cargoes not listed in Table I or II. 150.140 Section 150.140 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES COMPATIBILITY OF CARGOES § 150.140 Cargoes not listed in Table I or II. A cargo of hazardous material not listed...

  7. 46 CFR 150.140 - Cargoes not listed in Table I or II.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Cargoes not listed in Table I or II. 150.140 Section 150.140 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES COMPATIBILITY OF CARGOES § 150.140 Cargoes not listed in Table I or II. A cargo of hazardous material not listed...

  8. 46 CFR 150.140 - Cargoes not listed in Table I or II.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Cargoes not listed in Table I or II. 150.140 Section 150.140 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES COMPATIBILITY OF CARGOES § 150.140 Cargoes not listed in Table I or II. A cargo of hazardous material not listed...

  9. 46 CFR 150.140 - Cargoes not listed in Table I or II.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Cargoes not listed in Table I or II. 150.140 Section 150.140 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES COMPATIBILITY OF CARGOES § 150.140 Cargoes not listed in Table I or II. A cargo of hazardous material not listed...

  10. Aviation System Analysis Capability Air Carrier Investment Model-Cargo

    NASA Technical Reports Server (NTRS)

    Johnson, Jesse; Santmire, Tara

    1999-01-01

    The purpose of the Aviation System Analysis Capability (ASAC) Air Cargo Investment Model-Cargo (ACIMC), is to examine the economic effects of technology investment on the air cargo market, particularly the market for new cargo aircraft. To do so, we have built an econometrically based model designed to operate like the ACIM. Two main drivers account for virtually all of the demand: the growth rate of the Gross Domestic Product (GDP) and changes in the fare yield (which is a proxy of the price charged or fare). These differences arise from a combination of the nature of air cargo demand and the peculiarities of the air cargo market. The net effect of these two factors are that sales of new cargo aircraft are much less sensitive to either increases in GDP or changes in the costs of labor, capital, fuel, materials, and energy associated with the production of new cargo aircraft than the sales of new passenger aircraft. This in conjunction with the relatively small size of the cargo aircraft market means technology improvements to the cargo aircraft will do relatively very little to spur increased sales of new cargo aircraft.

  11. SIDD: A Semantically Integrated Database towards a Global View of Human Disease

    PubMed Central

    Cheng, Liang; Wang, Guohua; Li, Jie; Zhang, Tianjiao; Xu, Peigang; Wang, Yadong

    2013-01-01

    Background A number of databases have been developed to collect disease-related molecular, phenotypic and environmental features (DR-MPEs), such as genes, non-coding RNAs, genetic variations, drugs, phenotypes and environmental factors. However, each of current databases focused on only one or two DR-MPEs. There is an urgent demand to develop an integrated database, which can establish semantic associations among disease-related databases and link them to provide a global view of human disease at the biological level. This database, once developed, will facilitate researchers to query various DR-MPEs through disease, and investigate disease mechanisms from different types of data. Methodology To establish an integrated disease-associated database, disease vocabularies used in different databases are mapped to Disease Ontology (DO) through semantic match. 4,284 and 4,186 disease terms from Medical Subject Headings (MeSH) and Online Mendelian Inheritance in Man (OMIM) respectively are mapped to DO. Then, the relationships between DR-MPEs and diseases are extracted and merged from different source databases for reducing the data redundancy. Conclusions A semantically integrated disease-associated database (SIDD) is developed, which integrates 18 disease-associated databases, for researchers to browse multiple types of DR-MPEs in a view. A web interface allows easy navigation for querying information through browsing a disease ontology tree or searching a disease term. Furthermore, a network visualization tool using Cytoscape Web plugin has been implemented in SIDD. It enhances the SIDD usage when viewing the relationships between diseases and DR-MPEs. The current version of SIDD (Jul 2013) documents 4,465,131 entries relating to 139,365 DR-MPEs, and to 3,824 human diseases. The database can be freely accessed from: http://mlg.hit.edu.cn/SIDD. PMID:24146757

  12. Maritime industry : cargo preference laws--estimated costs and effects

    DOT National Transportation Integrated Search

    1994-11-30

    Cargo preference laws require that certain government-owned or government-financed cargo shipped internationally (between a U.S. port and a foreign port) be carried on U.S.-flag vessels. Cargo subject to these laws is known as preference cargo. This ...

  13. Emission & Generation Resource Integrated Database (eGRID)

    EPA Pesticide Factsheets

    The Emissions & Generation Resource Integrated Database (eGRID) is an integrated source of data on environmental characteristics of electric power generation. Twelve federal databases are represented by eGRID, which provides air emission and resource mix information for thousands of power plants and generating companies. eGRID allows direct comparison of the environmental attributes of electricity from different plants, companies, States, or regions of the power grid.

  14. Reconstituting the motility of isolated intracellular cargoes.

    PubMed

    Hendricks, Adam G; Goldman, Yale E; Holzbaur, Erika L F

    2014-01-01

    Kinesin, dynein, and myosin transport intracellular cargoes including organelles, membrane-bound vesicles, and mRNA along the cytoskeleton. These motor proteins work collectively in teams to transport cargoes over long distances and navigate around obstacles in the cell. In addition, several types of motors often interact on the same cargo to allow bidirectional transport and switching between the actin and microtubule networks. To examine transport of native cargoes in a simplified in vitro system, techniques have been developed to isolate endogenous cargoes and reconstitute their motility. Isolated cargoes can be tracked and manipulated with high precision using total internal reflection fluorescence microscopy and optical trapping. Through use of native cargoes, we can examine vesicular transport in a minimal system while retaining endogenous motor stoichiometry and the biochemical and mechanical characteristics of both motor and cargo. © 2014 Elsevier Inc. All rights reserved.

  15. Heterogeneous database integration in biomedicine.

    PubMed

    Sujansky, W

    2001-08-01

    The rapid expansion of biomedical knowledge, reduction in computing costs, and spread of internet access have created an ocean of electronic data. The decentralized nature of our scientific community and healthcare system, however, has resulted in a patchwork of diverse, or heterogeneous, database implementations, making access to and aggregation of data across databases very difficult. The database heterogeneity problem applies equally to clinical data describing individual patients and biological data characterizing our genome. Specifically, databases are highly heterogeneous with respect to the data models they employ, the data schemas they specify, the query languages they support, and the terminologies they recognize. Heterogeneous database systems attempt to unify disparate databases by providing uniform conceptual schemas that resolve representational heterogeneities, and by providing querying capabilities that aggregate and integrate distributed data. Research in this area has applied a variety of database and knowledge-based techniques, including semantic data modeling, ontology definition, query translation, query optimization, and terminology mapping. Existing systems have addressed heterogeneous database integration in the realms of molecular biology, hospital information systems, and application portability.

  16. A dedicated database system for handling multi-level data in systems biology.

    PubMed

    Pornputtapong, Natapol; Wanichthanarak, Kwanjeera; Nilsson, Avlant; Nookaew, Intawat; Nielsen, Jens

    2014-01-01

    Advances in high-throughput technologies have enabled extensive generation of multi-level omics data. These data are crucial for systems biology research, though they are complex, heterogeneous, highly dynamic, incomplete and distributed among public databases. This leads to difficulties in data accessibility and often results in errors when data are merged and integrated from varied resources. Therefore, integration and management of systems biological data remain very challenging. To overcome this, we designed and developed a dedicated database system that can serve and solve the vital issues in data management and hereby facilitate data integration, modeling and analysis in systems biology within a sole database. In addition, a yeast data repository was implemented as an integrated database environment which is operated by the database system. Two applications were implemented to demonstrate extensibility and utilization of the system. Both illustrate how the user can access the database via the web query function and implemented scripts. These scripts are specific for two sample cases: 1) Detecting the pheromone pathway in protein interaction networks; and 2) Finding metabolic reactions regulated by Snf1 kinase. In this study we present the design of database system which offers an extensible environment to efficiently capture the majority of biological entities and relations encountered in systems biology. Critical functions and control processes were designed and implemented to ensure consistent, efficient, secure and reliable transactions. The two sample cases on the yeast integrated data clearly demonstrate the value of a sole database environment for systems biology research.

  17. IMGMD: A platform for the integration and standardisation of In silico Microbial Genome-scale Metabolic Models.

    PubMed

    Ye, Chao; Xu, Nan; Dong, Chuan; Ye, Yuannong; Zou, Xuan; Chen, Xiulai; Guo, Fengbiao; Liu, Liming

    2017-04-07

    Genome-scale metabolic models (GSMMs) constitute a platform that combines genome sequences and detailed biochemical information to quantify microbial physiology at the system level. To improve the unity, integrity, correctness, and format of data in published GSMMs, a consensus IMGMD database was built in the LAMP (Linux + Apache + MySQL + PHP) system by integrating and standardizing 328 GSMMs constructed for 139 microorganisms. The IMGMD database can help microbial researchers download manually curated GSMMs, rapidly reconstruct standard GSMMs, design pathways, and identify metabolic targets for strategies on strain improvement. Moreover, the IMGMD database facilitates the integration of wet-lab and in silico data to gain an additional insight into microbial physiology. The IMGMD database is freely available, without any registration requirements, at http://imgmd.jiangnan.edu.cn/database.

  18. 33 CFR 126.17 - Permits required for handling designated dangerous cargo.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... designated dangerous cargo. 126.17 Section 126.17 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) WATERFRONT FACILITIES HANDLING OF DANGEROUS CARGO AT WATERFRONT FACILITIES § 126.17 Permits required for handling designated dangerous cargo. Designated dangerous cargo may be...

  19. 46 CFR 148.72 - Dangerous cargo manifest; exceptions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Dangerous cargo manifest; exceptions. 148.72 Section 148.72 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DANGEROUS CARGOES CARRIAGE OF... Dangerous cargo manifest; exceptions. (a) No dangerous cargo manifest is required for— (1) Shipments by...

  20. 33 CFR 126.17 - Permits required for handling designated dangerous cargo.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... designated dangerous cargo. 126.17 Section 126.17 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) WATERFRONT FACILITIES HANDLING OF DANGEROUS CARGO AT WATERFRONT FACILITIES § 126.17 Permits required for handling designated dangerous cargo. Designated dangerous cargo may be...

  1. 46 CFR 148.72 - Dangerous cargo manifest; exceptions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Dangerous cargo manifest; exceptions. 148.72 Section 148.72 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DANGEROUS CARGOES CARRIAGE OF... Dangerous cargo manifest; exceptions. (a) No dangerous cargo manifest is required for— (1) Shipments by...

  2. 46 CFR 148.72 - Dangerous cargo manifest; exceptions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Dangerous cargo manifest; exceptions. 148.72 Section 148.72 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DANGEROUS CARGOES CARRIAGE OF... Dangerous cargo manifest; exceptions. (a) No dangerous cargo manifest is required for— (1) Shipments by...

  3. 33 CFR 126.17 - Permits required for handling designated dangerous cargo.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... designated dangerous cargo. 126.17 Section 126.17 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) WATERFRONT FACILITIES HANDLING OF DANGEROUS CARGO AT WATERFRONT FACILITIES § 126.17 Permits required for handling designated dangerous cargo. Designated dangerous cargo may be...

  4. 33 CFR 126.17 - Permits required for handling designated dangerous cargo.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... designated dangerous cargo. 126.17 Section 126.17 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) WATERFRONT FACILITIES HANDLING OF DANGEROUS CARGO AT WATERFRONT FACILITIES § 126.17 Permits required for handling designated dangerous cargo. Designated dangerous cargo may be...

  5. 46 CFR 148.72 - Dangerous cargo manifest; exceptions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Dangerous cargo manifest; exceptions. 148.72 Section 148.72 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DANGEROUS CARGOES CARRIAGE OF... Dangerous cargo manifest; exceptions. (a) No dangerous cargo manifest is required for— (1) Shipments by...

  6. 33 CFR 126.17 - Permits required for handling designated dangerous cargo.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... designated dangerous cargo. 126.17 Section 126.17 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) WATERFRONT FACILITIES HANDLING OF DANGEROUS CARGO AT WATERFRONT FACILITIES § 126.17 Permits required for handling designated dangerous cargo. Designated dangerous cargo may be...

  7. 46 CFR 153.235 - Exceptions to cargo piping location restrictions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Exceptions to cargo piping location restrictions. 153... DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Containment Systems § 153.235 Exceptions to cargo piping location restrictions...

  8. 46 CFR 153.235 - Exceptions to cargo piping location restrictions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Exceptions to cargo piping location restrictions. 153... DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Containment Systems § 153.235 Exceptions to cargo piping location restrictions...

  9. E-MSD: an integrated data resource for bioinformatics

    PubMed Central

    Velankar, S.; McNeil, P.; Mittard-Runte, V.; Suarez, A.; Barrell, D.; Apweiler, R.; Henrick, K.

    2005-01-01

    The Macromolecular Structure Database (MSD) group (http://www.ebi.ac.uk/msd/) continues to enhance the quality and consistency of macromolecular structure data in the worldwide Protein Data Bank (wwPDB) and to work towards the integration of various bioinformatics data resources. One of the major obstacles to the improved integration of structural databases such as MSD and sequence databases like UniProt is the absence of up to date and well-maintained mapping between corresponding entries. We have worked closely with the UniProt group at the EBI to clean up the taxonomy and sequence cross-reference information in the MSD and UniProt databases. This information is vital for the reliable integration of the sequence family databases such as Pfam and Interpro with the structure-oriented databases of SCOP and CATH. This information has been made available to the eFamily group (http://www.efamily.org.uk/) and now forms the basis of the regular interchange of information between the member databases (MSD, UniProt, Pfam, Interpro, SCOP and CATH). This exchange of annotation information has enriched the structural information in the MSD database with annotation from wider sequence-oriented resources. This work was carried out under the ‘Structure Integration with Function, Taxonomy and Sequences (SIFTS)’ initiative (http://www.ebi.ac.uk/msd-srv/docs/sifts) in the MSD group. PMID:15608192

  10. KSC-99pp0342

    NASA Image and Video Library

    1999-03-25

    Two Shuttle crews take part in familiarization activities at Astrotech in Titusville, Fla. From left are STS-101 Mission Specialist Jeffrey N. Williams and Yuri Ivanovich Malenchenko, with the Russian Space Agency; STS-96 Mission Specialist Tamara E. Jernigan; STS-101 Mission Specialist Edward Tsang Lu (leaning over); a technician with RSC Energia of Korolev, Russia; Manfred Nordhoff, with DaimlerChrysler Aerospace; STS-96 Mission Specialist Daniel T. Barry; and another technician with RSC Energia. They are looking at components of the Russian cargo crane, Strela, to be mounted to the exterior of the Russian station segment on the International Space Station (ISS). Both missions include the SPACEHAB Double Module, carrying internal and resupply cargo for Station outfitting. For the first time, STS-96 will include an Integrated Cargo Carrier (ICC) that will carry the Strela; the SPACEHAB Oceaneering Space System Box (SHOSS), which is a logistics items carrier; and a U.S.-built crane (ORU Transfer Device, or OTD) that will be stowed on the station for use during future ISS assembly missions. The ICC can carry up to 6,000 lb of unpressurized payload. It was built for SPACEHAB by DaimlerChrysler Aerospace of Bremen and RSC Energia of Korolev, Russia. STS-96 is targeted for launch on May 24 from Launch Pad 39B. STS-101 is scheduled to launch in early December 1999

  11. KSC-99pp0343

    NASA Image and Video Library

    1999-03-25

    At Astrotech in Titusville, Fla., members of two Shuttle crews look at components of a Russian cargo crane, the Strela, to be mounted to the exterior of the Russian station segment on the International Space Station (ISS). From left are STS-96 Mission Specialist Julie Payette and Daniel T. Barry, Commander Kent V. Rominger and Mission Specialist Tamara E. Jernigan; three technicians from DaimlerChrysler Aerospace; (in the background, facing right) STS-101 Commander James Donald Halsell Jr.; STS-101 Mission Specialists Yuri Ivanovich Malenchenko, with the Russian Space Agency, and Edward Tsang Lu; and two more technicians from DaimlerChrysler. Both missions include the SPACEHAB Double Module, carrying internal and resupply cargo for Station outfitting. For the first time, STS-96 will include an Integrated Cargo Carrier (ICC) that will carry the Strela; the SPACEHAB Oceaneering Space System Box (SHOSS), which is a logistics items carrier; and a U.S.-built crane (ORU Transfer Device, or OTD) that will be stowed on the station for use during future ISS assembly missions. The ICC can carry up to 6,000 lb of unpressurized payload. It was built for SPACEHAB by DaimlerChrysler and RSC Energia of Korolev, Russia. STS-96 is targeted for launch on May 24 from Launch Pad 39B. STS-101 is scheduled to launch in early December 1999

  12. Endosomal sorting complexes required for ESCRTing cells toward death during neurogenesis, neurodevelopment and neurodegeneration.

    PubMed

    Kaul, Zenia; Chakrabarti, Oishee

    2018-03-25

    The endosomal sorting complexes required for transport (ESCRT) proteins help in the recognition, sorting and degradation of ubiquitinated cargoes from the cell surface, long-lived proteins or aggregates, and aged organelles present in the cytosol. These proteins take part in the endo-lysosomal system of degradation. The ESCRT proteins also play an integral role in cytokinesis, viral budding and mRNA transport. Many neurodegenerative diseases are caused by toxic accumulation of cargo in the cell, which causes stress and ultimately leads to neuronal death. This accumulation of cargo occurs because of defects in the endo-lysosomal degradative pathway-loss of function of ESCRTs has been implicated in this mechanism. ESCRTs also take part in many survival processes, lack of which can culminate in neuronal cell death. While the role played by the ESCRT proteins in maintaining healthy neurons is known, their role in neurodegenerative diseases is still poorly understood. In this review, we highlight the importance of ESCRTs in maintaining healthy neurons and then suggest how perturbations in many of the survival mechanisms governed by these proteins could eventually lead to cell death; quite often these correlations are not so obviously laid out. Extensive neuronal death eventually culminates in neurodegeneration. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Two Shuttle crews check equipment at SPACEHAB to be used on ISS Flights

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At Astrotech in Titusville, Fla., members of two Shuttle crews get a close look at components of a Russian cargo crane, the Strela, to be mounted to the exterior of the Russian station segment on the International Space Station (ISS). At left are STS-96 Mission Specialist Daniel T. Barry and Pilot Rick Douglas Husband. At center, STS-96 Mission Specialist Tamara E. Jernigan gives her attention to a technician with DaimlerChrysler while STS-101 Mission Specialist Edward Tsang Lu looks on. Both missions include the SPACEHAB Double Module, carrying internal and resupply cargo for Station outfitting. For the first time, STS-96 will include an Integrated Cargo Carrier (ICC) that will carry the Strela; the SPACEHAB Oceaneering Space System Box (SHOSS), which is a logistics items carrier; and a U.S.-built crane (ORU Transfer Device, or OTD) that will be stowed on the station for use during future ISS assembly missions. The ICC can carry up to 6,000 lb of unpressurized payload. It was built for SPACEHAB by DaimlerChrysler and RSC Energia of Korolev, Russia. STS-96 is targeted for launch on May 24 from Launch Pad 39B. STS-101 is scheduled to launch in early December 1999.

  14. Two Shuttle crews check equipment at SPACEHAB to be used on ISS Flights

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At Astrotech in Titusville, Fla., STS-96 Mission Specialists Tamara E. Jernigan and Daniel T. Barry take turns working with a Russian cargo crane, the Strela, which is to be mounted to the exterior of the Russian station segment on the International Space Station (ISS). Technicians around the table observe. The STS-96 crew is taking part in a Crew Equipment Interface Test. Other members participating are Commander Kent V. Rominger, Pilot Rick Douglas Husband, and Mission Specialists Julie Payette, with the Canadian Space Agency, and Valery Ivanovich Tokarev, with the Russian Space Agency. For the first time, STS-96 will include an Integrated Cargo Carrier (ICC) that will carry the Russian cargo crane; the SPACEHAB Oceaneering Space System Box (SHOSS), which is a logistics items carrier; and a U.S.-built crane (ORU Transfer Device, or OTD) that will be stowed on the station for use during future ISS assembly missions. The ICC can carry up to 6,000 lb of unpressurized payload. It was built for SPACEHAB by DaimlerChrysler Aerospace and RSC Energia of Korolev, Russia. STS-96 is targeted for launch on May 24 from Launch Pad 39B. STS-101 is scheduled to launch in early December 1999.

  15. 46 CFR 151.01-15 - Dangerous cargoes not specifically named.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Dangerous cargoes not specifically named. 151.01-15 Section 151.01-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES General § 151.01-15 Dangerous cargoes not...

  16. 46 CFR 151.01-15 - Dangerous cargoes not specifically named.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Dangerous cargoes not specifically named. 151.01-15 Section 151.01-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES General § 151.01-15 Dangerous cargoes not...

  17. 46 CFR 151.01-15 - Dangerous cargoes not specifically named.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Dangerous cargoes not specifically named. 151.01-15 Section 151.01-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES General § 151.01-15 Dangerous cargoes not...

  18. 46 CFR 151.01-15 - Dangerous cargoes not specifically named.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Dangerous cargoes not specifically named. 151.01-15 Section 151.01-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES General § 151.01-15 Dangerous cargoes not...

  19. 46 CFR 151.01-15 - Dangerous cargoes not specifically named.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Dangerous cargoes not specifically named. 151.01-15 Section 151.01-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES General § 151.01-15 Dangerous cargoes not...

  20. 46 CFR 105.20-3 - Cargo tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Cargo tanks. 105.20-3 Section 105.20-3 Shipping COAST... VESSELS DISPENSING PETROLEUM PRODUCTS Specific Requirements-Cargo Tanks § 105.20-3 Cargo tanks. (a) Construction and Materials. (1) The cargo tanks must be constructed of iron, steel, copper, nickel alloy...

  1. 46 CFR 105.20-3 - Cargo tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Cargo tanks. 105.20-3 Section 105.20-3 Shipping COAST... VESSELS DISPENSING PETROLEUM PRODUCTS Specific Requirements-Cargo Tanks § 105.20-3 Cargo tanks. (a) Construction and Materials. (1) The cargo tanks must be constructed of iron, steel, copper, nickel alloy...

  2. 46 CFR 105.20-3 - Cargo tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Cargo tanks. 105.20-3 Section 105.20-3 Shipping COAST... VESSELS DISPENSING PETROLEUM PRODUCTS Specific Requirements-Cargo Tanks § 105.20-3 Cargo tanks. (a) Construction and Materials. (1) The cargo tanks must be constructed of iron, steel, copper, nickel alloy...

  3. 46 CFR 105.20-3 - Cargo tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Cargo tanks. 105.20-3 Section 105.20-3 Shipping COAST... VESSELS DISPENSING PETROLEUM PRODUCTS Specific Requirements-Cargo Tanks § 105.20-3 Cargo tanks. (a) Construction and Materials. (1) The cargo tanks must be constructed of iron, steel, copper, nickel alloy...

  4. 46 CFR 153.285 - Valving for cargo pump manifolds.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Valving for cargo pump manifolds. 153.285 Section 153... SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Piping Systems and Cargo Handling Equipment § 153.285 Valving for cargo pump manifolds. (a) When cargo...

  5. 46 CFR 153.438 - Cargo pressure or temperature alarms required.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Cargo pressure or temperature alarms required. 153.438... CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Temperature Control Systems § 153.438 Cargo pressure or temperature alarms required. (a...

  6. 46 CFR 153.438 - Cargo pressure or temperature alarms required.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Cargo pressure or temperature alarms required. 153.438... CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Temperature Control Systems § 153.438 Cargo pressure or temperature alarms required. (a...

  7. 46 CFR 153.438 - Cargo pressure or temperature alarms required.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Cargo pressure or temperature alarms required. 153.438... CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Temperature Control Systems § 153.438 Cargo pressure or temperature alarms required. (a...

  8. 46 CFR 153.438 - Cargo pressure or temperature alarms required.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Cargo pressure or temperature alarms required. 153.438... CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Temperature Control Systems § 153.438 Cargo pressure or temperature alarms required. (a...

  9. 46 CFR 153.438 - Cargo pressure or temperature alarms required.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Cargo pressure or temperature alarms required. 153.438... CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Temperature Control Systems § 153.438 Cargo pressure or temperature alarms required. (a...

  10. 29 CFR 1918.87 - Ship's cargo elevators.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 7 2011-07-01 2011-07-01 false Ship's cargo elevators. 1918.87 Section 1918.87 Labor... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR LONGSHORING Handling Cargo § 1918.87 Ship's cargo elevators. (a) Safe working load. The safe working loads of ship's cargo elevators shall be determined and followed...

  11. 46 CFR 153.977 - Supervision of cargo transfer.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Supervision of cargo transfer. 153.977 Section 153.977 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS... Procedures § 153.977 Supervision of cargo transfer. The person in charge of cargo transfer shall: (a...

  12. 46 CFR 153.977 - Supervision of cargo transfer.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Supervision of cargo transfer. 153.977 Section 153.977 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS... Procedures § 153.977 Supervision of cargo transfer. The person in charge of cargo transfer shall: (a...

  13. 46 CFR 153.977 - Supervision of cargo transfer.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Supervision of cargo transfer. 153.977 Section 153.977 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS... Procedures § 153.977 Supervision of cargo transfer. The person in charge of cargo transfer shall: (a...

  14. 46 CFR 153.977 - Supervision of cargo transfer.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Supervision of cargo transfer. 153.977 Section 153.977 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS... Procedures § 153.977 Supervision of cargo transfer. The person in charge of cargo transfer shall: (a...

  15. 46 CFR 153.977 - Supervision of cargo transfer.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Supervision of cargo transfer. 153.977 Section 153.977 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS... Procedures § 153.977 Supervision of cargo transfer. The person in charge of cargo transfer shall: (a...

  16. 29 CFR 1918.87 - Ship's cargo elevators.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 7 2014-07-01 2014-07-01 false Ship's cargo elevators. 1918.87 Section 1918.87 Labor... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR LONGSHORING Handling Cargo § 1918.87 Ship's cargo elevators. (a) Safe working load. The safe working loads of ship's cargo elevators shall be determined and followed...

  17. 29 CFR 1918.87 - Ship's cargo elevators.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 7 2012-07-01 2012-07-01 false Ship's cargo elevators. 1918.87 Section 1918.87 Labor... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR LONGSHORING Handling Cargo § 1918.87 Ship's cargo elevators. (a) Safe working load. The safe working loads of ship's cargo elevators shall be determined and followed...

  18. 29 CFR 1918.87 - Ship's cargo elevators.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 7 2013-07-01 2013-07-01 false Ship's cargo elevators. 1918.87 Section 1918.87 Labor... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR LONGSHORING Handling Cargo § 1918.87 Ship's cargo elevators. (a) Safe working load. The safe working loads of ship's cargo elevators shall be determined and followed...

  19. 46 CFR 154.235 - Cargo tank location.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Cargo tank location. 154.235 Section 154.235 Shipping... FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Ship Survival Capability and Cargo Tank Location § 154.235 Cargo tank location. (a) For type IG hulls, cargo...

  20. 46 CFR 154.235 - Cargo tank location.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Cargo tank location. 154.235 Section 154.235 Shipping... FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Ship Survival Capability and Cargo Tank Location § 154.235 Cargo tank location. (a) For type IG hulls, cargo...

  1. 46 CFR 154.235 - Cargo tank location.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Cargo tank location. 154.235 Section 154.235 Shipping... FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Ship Survival Capability and Cargo Tank Location § 154.235 Cargo tank location. (a) For type IG hulls, cargo...

  2. 46 CFR 151.13-5 - Cargo segregation-tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Cargo Segregation § 151.13-5 Cargo segregation—tanks. (a... design. (2) Segregation of cargo space from machinery spaces and other spaces which have or could have a... separating medium. ii=Double bulkhead, required. Cofferdam, empty tank, pumproom, tank with Grade E Liquid...

  3. 46 CFR 151.13-5 - Cargo segregation-tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Cargo Segregation § 151.13-5 Cargo segregation—tanks. (a... design. (2) Segregation of cargo space from machinery spaces and other spaces which have or could have a... separating medium. ii=Double bulkhead, required. Cofferdam, empty tank, pumproom, tank with Grade E Liquid...

  4. 46 CFR 151.13-5 - Cargo segregation-tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Cargo Segregation § 151.13-5 Cargo segregation—tanks. (a... design. (2) Segregation of cargo space from machinery spaces and other spaces which have or could have a... separating medium. ii=Double bulkhead, required. Cofferdam, empty tank, pumproom, tank with Grade E Liquid...

  5. 46 CFR 154.701 - Cargo pressure and temperature control: General.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Cargo pressure and temperature control: General. 154.701... CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.701 Cargo pressure and temperature control: General...

  6. 46 CFR 154.701 - Cargo pressure and temperature control: General.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Cargo pressure and temperature control: General. 154.701... CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.701 Cargo pressure and temperature control: General...

  7. 46 CFR 154.701 - Cargo pressure and temperature control: General.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Cargo pressure and temperature control: General. 154.701... CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.701 Cargo pressure and temperature control: General...

  8. 46 CFR 154.701 - Cargo pressure and temperature control: General.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Cargo pressure and temperature control: General. 154.701... CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.701 Cargo pressure and temperature control: General...

  9. 46 CFR 154.701 - Cargo pressure and temperature control: General.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Cargo pressure and temperature control: General. 154.701... CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.701 Cargo pressure and temperature control: General...

  10. 46 CFR 308.545 - Facultative cargo policy, Form MA-316.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 308.545 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Cargo Insurance Iii-Facultative War Risk Cargo Insurance § 308.545 Facultative cargo policy, Form MA-316. The standard form of War Risk Facultative Cargo Policy, Form MA-316, may be obtained...

  11. 46 CFR 308.545 - Facultative cargo policy, Form MA-316.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 308.545 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Cargo Insurance Iii-Facultative War Risk Cargo Insurance § 308.545 Facultative cargo policy, Form MA-316. The standard form of War Risk Facultative Cargo Policy, Form MA-316, may be obtained...

  12. 46 CFR 308.511 - Cancellation of Open Cargo Policy.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 8 2014-10-01 2014-10-01 false Cancellation of Open Cargo Policy. 308.511 Section 308.511 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Cargo Insurance Open Policy War Risk Cargo Insurance § 308.511 Cancellation of Open Cargo...

  13. 46 CFR 308.545 - Facultative cargo policy, Form MA-316.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 308.545 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Cargo Insurance Iii-Facultative War Risk Cargo Insurance § 308.545 Facultative cargo policy, Form MA-316. The standard form of War Risk Facultative Cargo Policy, Form MA-316, may be obtained...

  14. 46 CFR 308.545 - Facultative cargo policy, Form MA-316.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 308.545 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Cargo Insurance Iii-Facultative War Risk Cargo Insurance § 308.545 Facultative cargo policy, Form MA-316. The standard form of War Risk Facultative Cargo Policy, Form MA-316, may be obtained...

  15. 46 CFR 308.545 - Facultative cargo policy, Form MA-316.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 308.545 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Cargo Insurance Facultative War Risk Cargo Insurance § 308.545 Facultative cargo policy, Form MA-316. The standard form of War Risk Facultative Cargo Policy, Form MA-316, may be obtained from...

  16. 46 CFR 153.907 - Cargo information.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... exposed to the cargo. (7) A list of fire fighting procedures and extinguishing agents effective with cargo fires. (8) Shipper's name. (9) Loading point. (10) Approximate quantity of cargo. (11) Tank in which the... of these two tables. (2) The name of the cargo prescribed in the letter authorizing carriage of the...

  17. 46 CFR 153.907 - Cargo information.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... exposed to the cargo. (7) A list of fire fighting procedures and extinguishing agents effective with cargo fires. (8) Shipper's name. (9) Loading point. (10) Approximate quantity of cargo. (11) Tank in which the... of these two tables. (2) The name of the cargo prescribed in the letter authorizing carriage of the...

  18. 46 CFR 153.907 - Cargo information.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... exposed to the cargo. (7) A list of fire fighting procedures and extinguishing agents effective with cargo fires. (8) Shipper's name. (9) Loading point. (10) Approximate quantity of cargo. (11) Tank in which the... of these two tables. (2) The name of the cargo prescribed in the letter authorizing carriage of the...

  19. EPIC

    NASA Image and Video Library

    2011-12-29

    ISS030-E-017789 (29 Dec. 2011) --- Working in chorus with the International Space Station team in Houston?s Mission Control Center, this astronaut and his Expedition 30 crewmates on the station install a set of Enhanced Processor and Integrated Communications (EPIC) computer cards in one of seven primary computers onboard. The upgrade will allow more experiments to operate simultaneously, and prepare for the arrival of commercial cargo ships later this year.

  20. EPIC Computer Cards

    NASA Image and Video Library

    2011-12-29

    ISS030-E-017776 (29 Dec. 2011) --- Working in chorus with the International Space Station team in Houston?s Mission Control Center, this astronaut and his Expedition 30 crewmates on the station install a set of Enhanced Processor and Integrated Communications (EPIC) computer cards in one of seven primary computers onboard. The upgrade will allow more experiments to operate simultaneously, and prepare for the arrival of commercial cargo ships later this year.

  1. When Islamists Turn Violent

    DTIC Science & Technology

    2007-06-01

    ed. Peter G. Gowing and Robert D. McAmis, (Manila: Solidaridad , 1974), 3. 22 of the present-day Philippines. The Muslims peacefully converted...Manila: Solidaridad , 1974), 186. 44 Yegar, Between Integration and Secession, 186. 45 Stanley Karnow, In Our Image: America’s Empire in the...The Muslim Filipinos, edited by Peter G. Gowing and Robert D. McAmis, 1-12. Manila: Solidaridad , 1974. McCargo, Duncan and Ukrist Pathmanand. The

  2. 46 CFR 154.1831 - Persons in charge of transferring liquid cargo in bulk or preparing cargo tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... in bulk or a cool-down, warm-up, gas-free, or air-out of each cargo tank; (2) Each transfer of liquid cargo in bulk, and each cool-down, warm-up, gas-free, or air-out of a cargo tank, is supervised by a... in bulk or a cool-down, warm-up, gas-free, or air-out of a cargo tank possesses the qualifications...

  3. 46 CFR 154.1831 - Persons in charge of transferring liquid cargo in bulk or preparing cargo tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... in bulk or a cool-down, warm-up, gas-free, or air-out of each cargo tank; (2) Each transfer of liquid cargo in bulk, and each cool-down, warm-up, gas-free, or air-out of a cargo tank, is supervised by a... in bulk or a cool-down, warm-up, gas-free, or air-out of a cargo tank possesses the qualifications...

  4. 46 CFR 154.1831 - Persons in charge of transferring liquid cargo in bulk or preparing cargo tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... in bulk or a cool-down, warm-up, gas-free, or air-out of each cargo tank; (2) Each transfer of liquid cargo in bulk, and each cool-down, warm-up, gas-free, or air-out of a cargo tank, is supervised by a... in bulk or a cool-down, warm-up, gas-free, or air-out of a cargo tank possesses the qualifications...

  5. 46 CFR 154.1831 - Persons in charge of transferring liquid cargo in bulk or preparing cargo tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... in bulk or a cool-down, warm-up, gas-free, or air-out of each cargo tank; (2) Each transfer of liquid cargo in bulk, and each cool-down, warm-up, gas-free, or air-out of a cargo tank, is supervised by a... in bulk or a cool-down, warm-up, gas-free, or air-out of a cargo tank possesses the qualifications...

  6. Characterizing X-ray Attenuation of Containerized Cargo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birrer, N.; Divin, C.; Glenn, S.

    X-ray inspection systems can be used to detect radiological and nuclear threats in imported cargo. In order to better understand performance of these systems, the attenuation characteristics of imported cargo need to be determined. This project focused on developing image processing algorithms for segmenting cargo and using x-ray attenuation to quantify equivalent steel thickness to determine cargo density. These algorithms were applied to over 450 cargo radiographs. The results are summarized in this report.

  7. Extensive cargo identification reveals distinct biological roles of the 12 importin pathways.

    PubMed

    Kimura, Makoto; Morinaka, Yuriko; Imai, Kenichiro; Kose, Shingo; Horton, Paul; Imamoto, Naoko

    2017-01-24

    Vast numbers of proteins are transported into and out of the nuclei by approximately 20 species of importin-β family nucleocytoplasmic transport receptors. However, the significance of the multiple parallel transport pathways that the receptors constitute is poorly understood because only limited numbers of cargo proteins have been reported. Here, we identified cargo proteins specific to the 12 species of human import receptors with a high-throughput method that employs stable isotope labeling with amino acids in cell culture, an in vitro reconstituted transport system, and quantitative mass spectrometry. The identified cargoes illuminated the manner of cargo allocation to the receptors. The redundancies of the receptors vary widely depending on the cargo protein. Cargoes of the same receptor are functionally related to one another, and the predominant protein groups in the cargo cohorts differ among the receptors. Thus, the receptors are linked to distinct biological processes by the nature of their cargoes.

  8. KSC-99pc0165

    NASA Image and Video Library

    1999-02-06

    Cradled in the cargo hold of a tractor-trailer rig called the Space Cargo Transportation System, the Chandra X-ray Observatory reaches the Vertical Processing Facility (VPF). Chandra arrived at the Shuttle Landing Facility on Thursday, Feb. 4, aboard an Air Force C-5 Galaxy aircraft. In the VPF, the telescope will undergo final installation of associated electronic components; it will also be tested, fueled and mated with the Inertial Upper Stage booster. A set of integrated tests will follow. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93 . Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe

  9. KSC-99pc0166

    NASA Image and Video Library

    1999-02-06

    Cradled in the cargo hold of a tractor-trailer rig called the Space Cargo Transportation System, the Chandra X-ray Observatory waits to be moved inside the Vertical Processing Facility (VPF). Chandra arrived at the Shuttle Landing Facility on Thursday, Feb. 4, aboard an Air Force C-5 Galaxy aircraft. In the VPF, the telescope will undergo final installation of associated electronic components; it will also be tested, fueled and mated with the Inertial Upper Stage booster. A set of integrated tests will follow. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93 . Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe

  10. STS-102 (Expedition II) crew members at SPACEHAB

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Workers at SPACEHAB, in Titusville, Fla., help members of the STS-102 crew become familiar with the Integrated Cargo Carrier and elements of its cargo for their mission. Starting second from left are Mission Specialists James Voss and Susan Helms and, fourth from left, cosmonaut Yuri Usachev, who is with the Russian Space Agency (RSA). STS-102 is a resupply mission to the International Space Station, transporting the Leonardo Multi- Purpose Logistics Module (MPLM) with equipment to assist in outfitting the U.S. Lab, which will already be in place. It is also transporting Voss, Helms and Usachev as the second resident crew (designated Expedition crew 2) to the station. The mission will also return to Earth the first expedition crew on ISS: William Shepherd, Sergei Krikalev (RSA) and Yuri Gidzenko (RSA). STS-102 is scheduled to launch no earlier than Oct. 19, 2000.

  11. KSC-2009-6857

    NASA Image and Video Library

    2009-12-17

    CAPE CANAVERAL, Fla. - At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, workers prepare to roll the transportation case protecting the Russian-built Mini Research Module1, or MRM1, from the cargo bay of a Volga-Dnepr Antonov AN-124-100, a Ukranian/Russian aircraft. The second in a series of new pressurized components for Russia, the module, named Rassvet, will be permanently attached to the International Space Station's Zarya module on space shuttle Atlantis' STS-132 mission. An Integrated Cargo Carrier will join the MRM in Atlantis' payload bay. Three spacewalks are planned to store spare components outside the station, including six spare batteries, a boom assembly for the Ku-band antenna and spares for the Canadian Dextre robotic arm extension. A radiator, airlock, and European robotic arm for the Russian Multi-purpose Laboratory Module also will be delivered to the station. Launch is targeted for May 14, 2010. Photo credit: NASA/Jack Pfaller

  12. KSC-2009-6858

    NASA Image and Video Library

    2009-12-17

    CAPE CANAVERAL, Fla. - At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, workers roll the transportation case protecting the Russian-built Mini Research Module1, or MRM1, from the cargo bay of a Volga-Dnepr Antonov AN-124-100, a Ukranian/Russian aircraft. The second in a series of new pressurized components for Russia, the module, named Rassvet, will be permanently attached to the International Space Station's Zarya module on space shuttle Atlantis' STS-132 mission. An Integrated Cargo Carrier will join the MRM in Atlantis' payload bay. Three spacewalks are planned to store spare components outside the station, including six spare batteries, a boom assembly for the Ku-band antenna and spares for the Canadian Dextre robotic arm extension. A radiator, airlock, and European robotic arm for the Russian Multi-purpose Laboratory Module also will be delivered to the station. Launch is targeted for May 14, 2010. Photo credit: NASA/Jack Pfaller

  13. Cryogenic Fluid Management Facility

    NASA Technical Reports Server (NTRS)

    Eberhardt, R. N.; Bailey, W. J.; Symons, E. P.; Kroeger, E. W.

    1984-01-01

    The Cryogenic Fluid Management Facility (CFMF) is a reusable test bed which is designed to be carried into space in the Shuttle cargo bay to investigate systems and technologies required to efficiently and effectively manage cryogens in space. The facility hardware is configured to provide low-g verification of fluid and thermal models of cryogenic storage, transfer concepts and processes. Significant design data and criteria for future subcritical cryogenic storage and transfer systems will be obtained. Future applications include space-based and ground-based orbit transfer vehicles (OTV), space station life support, attitude control, power and fuel depot supply, resupply tankers, external tank (ET) propellant scavenging, space-based weapon systems and space-based orbit maneuvering vehicles (OMV). This paper describes the facility and discusses the cryogenic fluid management technology to be investigated. A brief discussion of the integration issues involved in loading and transporting liquid hydrogen within the Shuttle cargo bay is also included.

  14. The cyclin-dependent kinase PITSLRE/CDK11 is required for successful autophagy.

    PubMed

    Wilkinson, Simon; Croft, Daniel R; O'Prey, Jim; Meedendorp, Arenda; O'Prey, Margaret; Dufès, Christine; Ryan, Kevin M

    2011-11-01

    (Macro)autophagy is a membrane-trafficking process that serves to sequester cellular constituents in organelles termed autophagosomes, which target their degradation in the lysosome. Autophagy operates at basal levels in all cells where it serves as a homeostatic mechanism to maintain cellular integrity. The levels and cargoes of autophagy can, however, change in response to a variety of stimuli, and perturbations in autophagy are known to be involved in the aetiology of various human diseases. Autophagy must therefore be tightly controlled. We report here that the Drosophila cyclin-dependent kinase PITSLRE is a modulator of autophagy. Loss of the human PITSLRE orthologue, CDK11, initially appears to induce autophagy, but at later time points CDK11 is critically required for autophagic flux and cargo digestion. Since PITSLRE/CDK11 regulates autophagy in both Drosophila and human cells, this kinase represents a novel phylogenetically conserved component of the autophagy machinery.

  15. Photonic sensor applications in transportation security

    NASA Astrophysics Data System (ADS)

    Krohn, David A.

    2007-09-01

    There is a broad range of security sensing applications in transportation that can be facilitated by using fiber optic sensors and photonic sensor integrated wireless systems. Many of these vital assets are under constant threat of being attacked. It is important to realize that the threats are not just from terrorism but an aging and often neglected infrastructure. To specifically address transportation security, photonic sensors fall into two categories: fixed point monitoring and mobile tracking. In fixed point monitoring, the sensors monitor bridge and tunnel structural health and environment problems such as toxic gases in a tunnel. Mobile tracking sensors are being designed to track cargo such as shipboard cargo containers and trucks. Mobile tracking sensor systems have multifunctional sensor requirements including intrusion (tampering), biochemical, radiation and explosives detection. This paper will review the state of the art of photonic sensor technologies and their ability to meet the challenges of transportation security.

  16. Developing Primary Propulsion for the Ares I Crew Launch Vehicle and Ares V Cargo Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Priskos, Alex S.; Williams, Thomas L.; Ezell, Timothy G.; Burt, Rick

    2007-01-01

    In accordance with the U.S. Vision for Space Exploration, NASA has been tasked to send human beings to the moon, Mars, and beyond. The first stage of NASA's new Ares I crew launch vehicle (Figure 1), which will loft the Orion crew exploration vehicle into low-Earth orbit early next decade, will consist of a Space Shuttle-derived five-segment Reusable Solid Rocket Booster (RSRB); a pair of similar RSRBs also will be used on the Ares V cargo launch vehicle's core stage propulsion system. This paper will discuss the basis for choosing this particular propulsion system; describe the activities the Exploration Launch Projects (ELP) Office is engaged in at present to develop the first stage; and offer a preview of future development activities related to the first Ares l integrated test flight, which is planned for 2009.

  17. Fourth-generation Mars vehicle concepts

    NASA Astrophysics Data System (ADS)

    Sherwood, Brent

    1994-09-01

    Conceptual designs for fourth-generation crew-carrying Mars transfer and excursion vehicles, fully integrated to state-of-the-art standards, are presented. The resulting vehicle concepts are sized for six crew members, and can support all opposition and conjunction opportunities in or after 2014. The modular, reusable transfer ship is launched to Earth orbit on six 185-ton-class boosters and assembled there robotically. Its dual nuclear-thermal rocket engines use liquid hydrogen propollant. The payload consists of a microgravity habitation system and an expendable lift-to-drag = 1.6 lander capable of aeromaneuvering to sites within +/- 20 deg of the equator. This lander can deliver either an expendable, storable-bipropellant crew-carrying ascent vehicle, or 40 tons of cargo, and it is capable of limited surface mobility to support base buildup. Multiple cargo landers sent ahead on robotic transfer vehicles deliver the supplies and equipment required for long-duration surface missions.

  18. Application of Probabilistic Risk Assessment (PRA) During Conceptual Design for the NASA Orbital Space Plane (OSP)

    NASA Technical Reports Server (NTRS)

    Rogers, James H.; Safie, Fayssal M.; Stott, James E.; Lo, Yunnhon

    2004-01-01

    In order to meet the space transportation needs for a new century, America's National Aeronautics and Space Administration (NASA) has implemented an Integrated Space Transportation Plan to produce safe, economical, and reliable access to space. One near term objective of this initiative is the design and development of a next-generation vehicle and launch system that will transport crew and cargo to and from the International Space Station (ISS), the Orbital Space Plane (OSP). The OSP system is composed of a manned launch vehicle by an existing Evolved Expendable Launch Vehicle (EELV). The OSP will provide emergency crew rescue from the ISS by 2008, and provide crew and limited cargo transfer to and from the ISS by 2012. A key requirement is for the OSP to be safer and more reliable than the Soyuz and Space Shuttle, which currently provide these capabilities.

  19. Peroxidase-mediated Biodegradation of Carbon Nanotubes in vitro and in vivo

    PubMed Central

    Kotchey, Gregg P.; Zhao, Yong; Kagan, Valerian E.; Star, Alexander

    2013-01-01

    As a result of their unique electronic, optical, and mechanical properties, carbon nanotubes (CNTs) have been implemented in therapeutic and imaging applications. In an idealized situation, CNTs would be disposed of after they transport their theranostic payloads. Biodegradation represents an attractive pathway for the eliminating of CNT carriers post-delivery and may be integral in catalyzing the release of the cargo from the delivery vehicle. Accordingly, recent research efforts have focused on peroxidase-driven biodegradation of CNTs. In this review, we not only summarize recent efforts to biodegrade CNTs in the test tube, in vitro, and in vivo, but also attempt to explore the fundamental parameters underlying degradation. Encouraged by the in vivo results obtained to date, we envision a future, where carbon-based nano-containers, which are specifically designed to target organs/cells, deliver their cargo, and biodegrade via peroxidase-driven mechanism, will represent an attractive therapeutic delivery option in nanomedicine. PMID:23856412

  20. Integration of an Evidence Base into a Probabilistic Risk Assessment Model. The Integrated Medical Model Database: An Organized Evidence Base for Assessing In-Flight Crew Health Risk and System Design

    NASA Technical Reports Server (NTRS)

    Saile, Lynn; Lopez, Vilma; Bickham, Grandin; FreiredeCarvalho, Mary; Kerstman, Eric; Byrne, Vicky; Butler, Douglas; Myers, Jerry; Walton, Marlei

    2011-01-01

    This slide presentation reviews the Integrated Medical Model (IMM) database, which is an organized evidence base for assessing in-flight crew health risk. The database is a relational database accessible to many people. The database quantifies the model inputs by a ranking based on the highest value of the data as Level of Evidence (LOE) and the quality of evidence (QOE) score that provides an assessment of the evidence base for each medical condition. The IMM evidence base has already been able to provide invaluable information for designers, and for other uses.

  1. 33 CFR 6.12-3 - Approval of facility for dangerous cargo.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... dangerous cargo. 6.12-3 Section 6.12-3 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND... Control of Explosives or Other Dangerous Cargo § 6.12-3 Approval of facility for dangerous cargo. The... discharging, explosives, inflammable or combustible liquids in bulk, or other dangerous articles or cargo...

  2. 33 CFR 401.80 - Reporting dangerous cargo.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Reporting dangerous cargo. 401.80... dangerous cargo. (a) The master of any explosive vessel or hazardous cargo vessel shall report to a Seaway station, as set out in Schedule III, the nature, quantity, and IMO classification of the dangerous cargo...

  3. 33 CFR 401.80 - Reporting dangerous cargo.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Reporting dangerous cargo. 401.80... dangerous cargo. (a) The master of any explosive vessel or hazardous cargo vessel shall report to a Seaway station, as set out in Schedule III, the nature, quantity, and IMO classification of the dangerous cargo...

  4. 33 CFR 6.12-3 - Approval of facility for dangerous cargo.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... dangerous cargo. 6.12-3 Section 6.12-3 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND... Control of Explosives or Other Dangerous Cargo § 6.12-3 Approval of facility for dangerous cargo. The... discharging, explosives, inflammable or combustible liquids in bulk, or other dangerous articles or cargo...

  5. 33 CFR 401.80 - Reporting dangerous cargo.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Reporting dangerous cargo. 401.80... dangerous cargo. (a) The master of any explosive vessel or hazardous cargo vessel shall report to a Seaway station, as set out in Schedule III, the nature, quantity, and IMO classification of the dangerous cargo...

  6. 33 CFR 401.80 - Reporting dangerous cargo.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Reporting dangerous cargo. 401.80... dangerous cargo. (a) The master of any explosive vessel or hazardous cargo vessel shall report to a Seaway station, as set out in Schedule III, the nature, quantity, and IMO classification of the dangerous cargo...

  7. 33 CFR 6.12-3 - Approval of facility for dangerous cargo.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... dangerous cargo. 6.12-3 Section 6.12-3 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND... Control of Explosives or Other Dangerous Cargo § 6.12-3 Approval of facility for dangerous cargo. The... discharging, explosives, inflammable or combustible liquids in bulk, or other dangerous articles or cargo...

  8. 33 CFR 6.12-3 - Approval of facility for dangerous cargo.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... dangerous cargo. 6.12-3 Section 6.12-3 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND... Control of Explosives or Other Dangerous Cargo § 6.12-3 Approval of facility for dangerous cargo. The... discharging, explosives, inflammable or combustible liquids in bulk, or other dangerous articles or cargo...

  9. 33 CFR 6.12-3 - Approval of facility for dangerous cargo.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... dangerous cargo. 6.12-3 Section 6.12-3 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND... Control of Explosives or Other Dangerous Cargo § 6.12-3 Approval of facility for dangerous cargo. The... discharging, explosives, inflammable or combustible liquids in bulk, or other dangerous articles or cargo...

  10. 33 CFR 401.80 - Reporting dangerous cargo.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Reporting dangerous cargo. 401.80... dangerous cargo. (a) The master of any explosive vessel or hazardous cargo vessel shall report to a Seaway station, as set out in Schedule III, the nature, quantity, and IMO classification of the dangerous cargo...

  11. 46 CFR 153.251 - Independent cargo tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Independent cargo tanks. 153.251 Section 153.251... CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Tanks § 153.251 Independent cargo tanks. All independent cargo tank must meet § 38.05-10 (a)(1), (b), (d), and...

  12. 46 CFR 153.251 - Independent cargo tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Independent cargo tanks. 153.251 Section 153.251... CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Tanks § 153.251 Independent cargo tanks. All independent cargo tank must meet § 38.05-10 (a)(1), (b), (d), and...

  13. 46 CFR 153.436 - Heat transfer fluids: compatibility with cargo.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Heat transfer fluids: compatibility with cargo. 153.436... Equipment Cargo Temperature Control Systems § 153.436 Heat transfer fluids: compatibility with cargo. A heat transfer fluid separated from the cargo by only one wall (for example, the heat transfer fluid in a coil...

  14. 46 CFR 153.436 - Heat transfer fluids: compatibility with cargo.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Heat transfer fluids: compatibility with cargo. 153.436... Equipment Cargo Temperature Control Systems § 153.436 Heat transfer fluids: compatibility with cargo. A heat transfer fluid separated from the cargo by only one wall (for example, the heat transfer fluid in a coil...

  15. 46 CFR 153.436 - Heat transfer fluids: compatibility with cargo.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Heat transfer fluids: compatibility with cargo. 153.436... Equipment Cargo Temperature Control Systems § 153.436 Heat transfer fluids: compatibility with cargo. A heat transfer fluid separated from the cargo by only one wall (for example, the heat transfer fluid in a coil...

  16. 46 CFR 154.901 - Atmospheric control within cargo tanks and cargo piping systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Atmospheric control within cargo tanks and cargo piping systems. 154.901 Section 154.901 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN..., Construction and Equipment Atmospheric Control in Cargo Containment Systems § 154.901 Atmospheric control...

  17. 46 CFR 154.901 - Atmospheric control within cargo tanks and cargo piping systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Atmospheric control within cargo tanks and cargo piping systems. 154.901 Section 154.901 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN..., Construction and Equipment Atmospheric Control in Cargo Containment Systems § 154.901 Atmospheric control...

  18. 46 CFR 154.901 - Atmospheric control within cargo tanks and cargo piping systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Atmospheric control within cargo tanks and cargo piping systems. 154.901 Section 154.901 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN..., Construction and Equipment Atmospheric Control in Cargo Containment Systems § 154.901 Atmospheric control...

  19. 46 CFR 154.901 - Atmospheric control within cargo tanks and cargo piping systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Atmospheric control within cargo tanks and cargo piping systems. 154.901 Section 154.901 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN..., Construction and Equipment Atmospheric Control in Cargo Containment Systems § 154.901 Atmospheric control...

  20. 46 CFR 154.901 - Atmospheric control within cargo tanks and cargo piping systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Atmospheric control within cargo tanks and cargo piping systems. 154.901 Section 154.901 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN..., Construction and Equipment Atmospheric Control in Cargo Containment Systems § 154.901 Atmospheric control...

  1. 46 CFR 153.333 - Cargo pump discharge pressure gauge.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Cargo pump discharge pressure gauge. 153.333 Section 153... SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Pumprooms § 153.333 Cargo pump discharge pressure gauge. Each cargo pump within a pump-room must...

  2. 46 CFR 153.336 - Special cargo pump or pumproom requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Special cargo pump or pumproom requirements. 153.336... CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Pumprooms § 153.336 Special cargo pump or pumproom requirements. (a) When Table 1 refers to...

  3. 46 CFR 154.412 - Cargo tank corrosion allowance.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Cargo tank corrosion allowance. 154.412 Section 154.412... Containment Systems § 154.412 Cargo tank corrosion allowance. A cargo tank must be designed with a corrosion...) carries a cargo that corrodes the tank material. Note: Corrosion allowance for independent tank type C is...

  4. 46 CFR 154.412 - Cargo tank corrosion allowance.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Cargo tank corrosion allowance. 154.412 Section 154.412... Containment Systems § 154.412 Cargo tank corrosion allowance. A cargo tank must be designed with a corrosion...) carries a cargo that corrodes the tank material. Note: Corrosion allowance for independent tank type C is...

  5. 46 CFR 153.333 - Cargo pump discharge pressure gauge.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Cargo pump discharge pressure gauge. 153.333 Section 153... SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Pumprooms § 153.333 Cargo pump discharge pressure gauge. Each cargo pump within a pump-room must...

  6. 46 CFR 153.333 - Cargo pump discharge pressure gauge.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Cargo pump discharge pressure gauge. 153.333 Section 153... SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Pumprooms § 153.333 Cargo pump discharge pressure gauge. Each cargo pump within a pump-room must...

  7. 46 CFR 153.333 - Cargo pump discharge pressure gauge.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Cargo pump discharge pressure gauge. 153.333 Section 153... SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Pumprooms § 153.333 Cargo pump discharge pressure gauge. Each cargo pump within a pump-room must...

  8. 46 CFR 153.333 - Cargo pump discharge pressure gauge.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Cargo pump discharge pressure gauge. 153.333 Section 153... SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Pumprooms § 153.333 Cargo pump discharge pressure gauge. Each cargo pump within a pump-room must...

  9. 49 CFR 176.720 - Requirements for carriage of INF cargo in international transportation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Requirements for carriage of INF cargo in... Requirements for carriage of INF cargo in international transportation. In addition to all other applicable requirements of this subchapter, a vessel carrying INF cargo (see § 176.2, under INF cargo definition) in...

  10. 49 CFR 176.720 - Requirements for carriage of INF cargo in international transportation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Requirements for carriage of INF cargo in... Requirements for carriage of INF cargo in international transportation. In addition to all other applicable requirements of this subchapter, a vessel carrying INF cargo (see § 176.2, under INF cargo definition) in...

  11. 49 CFR 176.720 - Requirements for carriage of INF cargo in international transportation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Requirements for carriage of INF cargo in... Requirements for carriage of INF cargo in international transportation. In addition to all other applicable requirements of this subchapter, a vessel carrying INF cargo (see § 176.2, under INF cargo definition) in...

  12. 49 CFR 176.720 - Requirements for carriage of INF cargo in international transportation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Requirements for carriage of INF cargo in... Requirements for carriage of INF cargo in international transportation. In addition to all other applicable requirements of this subchapter, a vessel carrying INF cargo (see § 176.2, under INF cargo definition) in...

  13. 49 CFR 176.720 - Requirements for carriage of INF cargo in international transportation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Requirements for carriage of INF cargo in... Requirements for carriage of INF cargo in international transportation. In addition to all other applicable requirements of this subchapter, a vessel carrying INF cargo (see § 176.2, under INF cargo definition) in...

  14. 46 CFR 154.1828 - Spaces containing cargo vapor: Entry.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Spaces containing cargo vapor: Entry. 154.1828 Section... Spaces containing cargo vapor: Entry. (a) No person may enter a cargo handling space without the... allowing anyone to enter a cargo handling space, the master shall ensure that: (1) The space is free of...

  15. 46 CFR 154.1828 - Spaces containing cargo vapor: Entry.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Spaces containing cargo vapor: Entry. 154.1828 Section... Spaces containing cargo vapor: Entry. (a) No person may enter a cargo handling space without the... allowing anyone to enter a cargo handling space, the master shall ensure that: (1) The space is free of...

  16. 46 CFR 154.1828 - Spaces containing cargo vapor: Entry.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Spaces containing cargo vapor: Entry. 154.1828 Section... Spaces containing cargo vapor: Entry. (a) No person may enter a cargo handling space without the... allowing anyone to enter a cargo handling space, the master shall ensure that: (1) The space is free of...

  17. 19 CFR 122.117 - Requirements for transit air cargo transport.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Requirements for transit air cargo transport. 122... Requirements for transit air cargo transport. (a) Transportation—(1) Port to port. Transit air cargo may be... cargo, a receipt shall be given. The receipt shall be made by the airline responsible for transport or...

  18. 19 CFR 122.117 - Requirements for transit air cargo transport.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 1 2011-04-01 2011-04-01 false Requirements for transit air cargo transport. 122... Requirements for transit air cargo transport. (a) Transportation—(1) Port to port. Transit air cargo may be... cargo, a receipt shall be given. The receipt shall be made by the airline responsible for transport or...

  19. 46 CFR 153.934 - Entry into spaces containing cargo vapor.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Entry into spaces containing cargo vapor. 153.934... CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations General Vessel Safety § 153.934 Entry into spaces containing cargo vapor. (a) No person may enter a cargo...

  20. 46 CFR 153.934 - Entry into spaces containing cargo vapor.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Entry into spaces containing cargo vapor. 153.934... CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations General Vessel Safety § 153.934 Entry into spaces containing cargo vapor. (a) No person may enter a cargo...

  1. 46 CFR 153.934 - Entry into spaces containing cargo vapor.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Entry into spaces containing cargo vapor. 153.934... CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations General Vessel Safety § 153.934 Entry into spaces containing cargo vapor. (a) No person may enter a cargo...

  2. 46 CFR 153.934 - Entry into spaces containing cargo vapor.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Entry into spaces containing cargo vapor. 153.934... CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations General Vessel Safety § 153.934 Entry into spaces containing cargo vapor. (a) No person may enter a cargo...

  3. 46 CFR 153.934 - Entry into spaces containing cargo vapor.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Entry into spaces containing cargo vapor. 153.934... CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations General Vessel Safety § 153.934 Entry into spaces containing cargo vapor. (a) No person may enter a cargo...

  4. 46 CFR 153.436 - Heat transfer fluids: compatibility with cargo.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Heat transfer fluids: compatibility with cargo. 153.436... Equipment Cargo Temperature Control Systems § 153.436 Heat transfer fluids: compatibility with cargo. A heat transfer fluid separated from the cargo by only one wall (for example, the heat transfer fluid in a coil...

  5. 46 CFR 153.436 - Heat transfer fluids: compatibility with cargo.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Heat transfer fluids: compatibility with cargo. 153.436... Equipment Cargo Temperature Control Systems § 153.436 Heat transfer fluids: compatibility with cargo. A heat transfer fluid separated from the cargo by only one wall (for example, the heat transfer fluid in a coil...

  6. 46 CFR 308.521 - Application for Open Cargo Policy, Form MA-301.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Section 308.521 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Cargo Insurance Ii-Open Policy War Risk Cargo Insurance § 308.521 Application for Open Cargo Policy, Form MA-301. The standard form of application for a War Risk Open Cargo Policy...

  7. 46 CFR 308.517 - Open Cargo Policy, Form MA-300.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Cargo Insurance Open Policy War Risk Cargo Insurance § 308.517 Open Cargo Policy, Form MA-300. The standard form of War Risk Open Cargo, Form MA-300, may be obtained from MARAD's underwriting agent or MARAD. ...

  8. 46 CFR 308.521 - Application for Open Cargo Policy, Form MA-301.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Section 308.521 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Cargo Insurance Ii-Open Policy War Risk Cargo Insurance § 308.521 Application for Open Cargo Policy, Form MA-301. The standard form of application for a War Risk Open Cargo Policy...

  9. 46 CFR 308.517 - Open Cargo Policy, Form MA-300.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Cargo Insurance Ii-Open Policy War Risk Cargo Insurance § 308.517 Open Cargo Policy, Form MA-300. The standard form of War Risk Open Cargo, Form MA-300, may be obtained from the American War Risk...

  10. 46 CFR 308.521 - Application for Open Cargo Policy, Form MA-301.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Section 308.521 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Cargo Insurance Ii-Open Policy War Risk Cargo Insurance § 308.521 Application for Open Cargo Policy, Form MA-301. The standard form of application for a War Risk Open Cargo Policy...

  11. 46 CFR 308.517 - Open Cargo Policy, Form MA-300.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Cargo Insurance Ii-Open Policy War Risk Cargo Insurance § 308.517 Open Cargo Policy, Form MA-300. The standard form of War Risk Open Cargo, Form MA-300, may be obtained from the American War Risk...

  12. 46 CFR 308.508 - Issuance of an Open Cargo Policy.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 8 2014-10-01 2014-10-01 false Issuance of an Open Cargo Policy. 308.508 Section 308.508 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Cargo Insurance Open Policy War Risk Cargo Insurance § 308.508 Issuance of an Open Cargo...

  13. 46 CFR 308.517 - Open Cargo Policy, Form MA-300.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Cargo Insurance Ii-Open Policy War Risk Cargo Insurance § 308.517 Open Cargo Policy, Form MA-300. The standard form of War Risk Open Cargo, Form MA-300, may be obtained from the American War Risk...

  14. 46 CFR 308.517 - Open Cargo Policy, Form MA-300.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Cargo Insurance Ii-Open Policy War Risk Cargo Insurance § 308.517 Open Cargo Policy, Form MA-300. The standard form of War Risk Open Cargo, Form MA-300, may be obtained from the American War Risk...

  15. 46 CFR 308.521 - Application for Open Cargo Policy, Form MA-301.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Section 308.521 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Cargo Insurance Open Policy War Risk Cargo Insurance § 308.521 Application for Open Cargo Policy, Form MA-301. The standard form of application for a War Risk Open Cargo Policy may...

  16. 46 CFR 308.521 - Application for Open Cargo Policy, Form MA-301.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Section 308.521 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Cargo Insurance Ii-Open Policy War Risk Cargo Insurance § 308.521 Application for Open Cargo Policy, Form MA-301. The standard form of application for a War Risk Open Cargo Policy...

  17. Scatter in Cargo Radiography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erin A. Miller; Joseph A. Caggiano; Robert C. Runkle

    As a complement to passive detection systems, radiographic inspection of cargo is an increasingly important tool for homeland security because it has the potential to detect highly attenuating objects associated with special nuclear material or surrounding shielding, in addition to screening for items such as drugs or contraband. Radiographic detection of such threat objects relies on high image contrast between regions of different density and atomic number (Z). Threat detection is affected by scatter of the interrogating beamin the cargo, the radiographic system itself, and the surrounding environment, which degrades image contrast. Here, we estimate the extent to which scattermore » plays a role in radiographic imaging of cargo containers. Stochastic transport simulations were performed to determine the details of the radiography equipment and surrounding environment, which are important in reproducing measured data and to investigate scatter magnitudes for typical cargo. We find that scatter plays a stronger role in cargo radiography than in typicalmedical imaging scenarios, even for low-density cargo, with scatter-toprimary ratios ranging from 0.14 for very low density cargo, to between 0.20 and 0.40 for typical cargo, and higher yet for dense cargo.« less

  18. Selectivity Mechanism of the Nuclear Pore Complex Characterized by Single Cargo Tracking

    PubMed Central

    Lowe, Alan R.; Siegel, Jake J.; Kalab, Petr; Siu, Merek; Weis, Karsten; Liphardt, Jan T.

    2010-01-01

    The Nuclear Pore Complex (NPC) mediates all exchange between the cytoplasm and the nucleus. Small molecules can passively diffuse through the NPC, while larger cargos require transport receptors to translocate1. How the NPC facilitates the translocation of transport receptor/cargo complexes remains unclear. Here, we track single protein-functionalized Quantum Dot (QD) cargos as they translocate the NPC. Import proceeds by successive sub-steps comprising cargo capture, filtering and translocation, and release into the nucleus. The majority of QDs are rejected at one of these steps and return to the cytoplasm including very large cargos that abort at a size-selective barrier. Cargo movement in the central channel is subdiffusive and cargos that can bind more transport receptors diffuse more freely. Without Ran, cargos still explore the entire NPC, but have a markedly reduced probability of exit into the nucleus, suggesting that NPC entry and exit steps are not equivalent and that the pore is functionally asymmetric to importing cargos. The overall selectivity of the NPC appears to arise from the cumulative action of multiple reversible sub-steps and a final irreversible exit step. PMID:20811366

  19. BioWarehouse: a bioinformatics database warehouse toolkit

    PubMed Central

    Lee, Thomas J; Pouliot, Yannick; Wagner, Valerie; Gupta, Priyanka; Stringer-Calvert, David WJ; Tenenbaum, Jessica D; Karp, Peter D

    2006-01-01

    Background This article addresses the problem of interoperation of heterogeneous bioinformatics databases. Results We introduce BioWarehouse, an open source toolkit for constructing bioinformatics database warehouses using the MySQL and Oracle relational database managers. BioWarehouse integrates its component databases into a common representational framework within a single database management system, thus enabling multi-database queries using the Structured Query Language (SQL) but also facilitating a variety of database integration tasks such as comparative analysis and data mining. BioWarehouse currently supports the integration of a pathway-centric set of databases including ENZYME, KEGG, and BioCyc, and in addition the UniProt, GenBank, NCBI Taxonomy, and CMR databases, and the Gene Ontology. Loader tools, written in the C and JAVA languages, parse and load these databases into a relational database schema. The loaders also apply a degree of semantic normalization to their respective source data, decreasing semantic heterogeneity. The schema supports the following bioinformatics datatypes: chemical compounds, biochemical reactions, metabolic pathways, proteins, genes, nucleic acid sequences, features on protein and nucleic-acid sequences, organisms, organism taxonomies, and controlled vocabularies. As an application example, we applied BioWarehouse to determine the fraction of biochemically characterized enzyme activities for which no sequences exist in the public sequence databases. The answer is that no sequence exists for 36% of enzyme activities for which EC numbers have been assigned. These gaps in sequence data significantly limit the accuracy of genome annotation and metabolic pathway prediction, and are a barrier for metabolic engineering. Complex queries of this type provide examples of the value of the data warehousing approach to bioinformatics research. Conclusion BioWarehouse embodies significant progress on the database integration problem for bioinformatics. PMID:16556315

  20. BioWarehouse: a bioinformatics database warehouse toolkit.

    PubMed

    Lee, Thomas J; Pouliot, Yannick; Wagner, Valerie; Gupta, Priyanka; Stringer-Calvert, David W J; Tenenbaum, Jessica D; Karp, Peter D

    2006-03-23

    This article addresses the problem of interoperation of heterogeneous bioinformatics databases. We introduce BioWarehouse, an open source toolkit for constructing bioinformatics database warehouses using the MySQL and Oracle relational database managers. BioWarehouse integrates its component databases into a common representational framework within a single database management system, thus enabling multi-database queries using the Structured Query Language (SQL) but also facilitating a variety of database integration tasks such as comparative analysis and data mining. BioWarehouse currently supports the integration of a pathway-centric set of databases including ENZYME, KEGG, and BioCyc, and in addition the UniProt, GenBank, NCBI Taxonomy, and CMR databases, and the Gene Ontology. Loader tools, written in the C and JAVA languages, parse and load these databases into a relational database schema. The loaders also apply a degree of semantic normalization to their respective source data, decreasing semantic heterogeneity. The schema supports the following bioinformatics datatypes: chemical compounds, biochemical reactions, metabolic pathways, proteins, genes, nucleic acid sequences, features on protein and nucleic-acid sequences, organisms, organism taxonomies, and controlled vocabularies. As an application example, we applied BioWarehouse to determine the fraction of biochemically characterized enzyme activities for which no sequences exist in the public sequence databases. The answer is that no sequence exists for 36% of enzyme activities for which EC numbers have been assigned. These gaps in sequence data significantly limit the accuracy of genome annotation and metabolic pathway prediction, and are a barrier for metabolic engineering. Complex queries of this type provide examples of the value of the data warehousing approach to bioinformatics research. BioWarehouse embodies significant progress on the database integration problem for bioinformatics.

  1. Towards G2G: Systems of Technology Database Systems

    NASA Technical Reports Server (NTRS)

    Maluf, David A.; Bell, David

    2005-01-01

    We present an approach and methodology for developing Government-to-Government (G2G) Systems of Technology Database Systems. G2G will deliver technologies for distributed and remote integration of technology data for internal use in analysis and planning as well as for external communications. G2G enables NASA managers, engineers, operational teams and information systems to "compose" technology roadmaps and plans by selecting, combining, extending, specializing and modifying components of technology database systems. G2G will interoperate information and knowledge that is distributed across organizational entities involved that is ideal for NASA future Exploration Enterprise. Key contributions of the G2G system will include the creation of an integrated approach to sustain effective management of technology investments that supports the ability of various technology database systems to be independently managed. The integration technology will comply with emerging open standards. Applications can thus be customized for local needs while enabling an integrated management of technology approach that serves the global needs of NASA. The G2G capabilities will use NASA s breakthrough in database "composition" and integration technology, will use and advance emerging open standards, and will use commercial information technologies to enable effective System of Technology Database systems.

  2. Building a multi-scaled geospatial temporal ecology database from disparate data sources: fostering open science and data reuse.

    PubMed

    Soranno, Patricia A; Bissell, Edward G; Cheruvelil, Kendra S; Christel, Samuel T; Collins, Sarah M; Fergus, C Emi; Filstrup, Christopher T; Lapierre, Jean-Francois; Lottig, Noah R; Oliver, Samantha K; Scott, Caren E; Smith, Nicole J; Stopyak, Scott; Yuan, Shuai; Bremigan, Mary Tate; Downing, John A; Gries, Corinna; Henry, Emily N; Skaff, Nick K; Stanley, Emily H; Stow, Craig A; Tan, Pang-Ning; Wagner, Tyler; Webster, Katherine E

    2015-01-01

    Although there are considerable site-based data for individual or groups of ecosystems, these datasets are widely scattered, have different data formats and conventions, and often have limited accessibility. At the broader scale, national datasets exist for a large number of geospatial features of land, water, and air that are needed to fully understand variation among these ecosystems. However, such datasets originate from different sources and have different spatial and temporal resolutions. By taking an open-science perspective and by combining site-based ecosystem datasets and national geospatial datasets, science gains the ability to ask important research questions related to grand environmental challenges that operate at broad scales. Documentation of such complicated database integration efforts, through peer-reviewed papers, is recommended to foster reproducibility and future use of the integrated database. Here, we describe the major steps, challenges, and considerations in building an integrated database of lake ecosystems, called LAGOS (LAke multi-scaled GeOSpatial and temporal database), that was developed at the sub-continental study extent of 17 US states (1,800,000 km(2)). LAGOS includes two modules: LAGOSGEO, with geospatial data on every lake with surface area larger than 4 ha in the study extent (~50,000 lakes), including climate, atmospheric deposition, land use/cover, hydrology, geology, and topography measured across a range of spatial and temporal extents; and LAGOSLIMNO, with lake water quality data compiled from ~100 individual datasets for a subset of lakes in the study extent (~10,000 lakes). Procedures for the integration of datasets included: creating a flexible database design; authoring and integrating metadata; documenting data provenance; quantifying spatial measures of geographic data; quality-controlling integrated and derived data; and extensively documenting the database. Our procedures make a large, complex, and integrated database reproducible and extensible, allowing users to ask new research questions with the existing database or through the addition of new data. The largest challenge of this task was the heterogeneity of the data, formats, and metadata. Many steps of data integration need manual input from experts in diverse fields, requiring close collaboration.

  3. Building a multi-scaled geospatial temporal ecology database from disparate data sources: Fostering open science through data reuse

    USGS Publications Warehouse

    Soranno, Patricia A.; Bissell, E.G.; Cheruvelil, Kendra S.; Christel, Samuel T.; Collins, Sarah M.; Fergus, C. Emi; Filstrup, Christopher T.; Lapierre, Jean-Francois; Lotting, Noah R.; Oliver, Samantha K.; Scott, Caren E.; Smith, Nicole J.; Stopyak, Scott; Yuan, Shuai; Bremigan, Mary Tate; Downing, John A.; Gries, Corinna; Henry, Emily N.; Skaff, Nick K.; Stanley, Emily H.; Stow, Craig A.; Tan, Pang-Ning; Wagner, Tyler; Webster, Katherine E.

    2015-01-01

    Although there are considerable site-based data for individual or groups of ecosystems, these datasets are widely scattered, have different data formats and conventions, and often have limited accessibility. At the broader scale, national datasets exist for a large number of geospatial features of land, water, and air that are needed to fully understand variation among these ecosystems. However, such datasets originate from different sources and have different spatial and temporal resolutions. By taking an open-science perspective and by combining site-based ecosystem datasets and national geospatial datasets, science gains the ability to ask important research questions related to grand environmental challenges that operate at broad scales. Documentation of such complicated database integration efforts, through peer-reviewed papers, is recommended to foster reproducibility and future use of the integrated database. Here, we describe the major steps, challenges, and considerations in building an integrated database of lake ecosystems, called LAGOS (LAke multi-scaled GeOSpatial and temporal database), that was developed at the sub-continental study extent of 17 US states (1,800,000 km2). LAGOS includes two modules: LAGOSGEO, with geospatial data on every lake with surface area larger than 4 ha in the study extent (~50,000 lakes), including climate, atmospheric deposition, land use/cover, hydrology, geology, and topography measured across a range of spatial and temporal extents; and LAGOSLIMNO, with lake water quality data compiled from ~100 individual datasets for a subset of lakes in the study extent (~10,000 lakes). Procedures for the integration of datasets included: creating a flexible database design; authoring and integrating metadata; documenting data provenance; quantifying spatial measures of geographic data; quality-controlling integrated and derived data; and extensively documenting the database. Our procedures make a large, complex, and integrated database reproducible and extensible, allowing users to ask new research questions with the existing database or through the addition of new data. The largest challenge of this task was the heterogeneity of the data, formats, and metadata. Many steps of data integration need manual input from experts in diverse fields, requiring close collaboration.

  4. An outlook for cargo aircraft of the future. [assessment of the future of air cargo by analyzing statistics and trends

    NASA Technical Reports Server (NTRS)

    Nicks, O. W.; Whitehead, A. H., Jr.; Alford, W. J., Jr.

    1975-01-01

    An assessment is provided of the future of air cargo by analyzing air cargo statistics and trends, by noting air cargo system problems and inefficiencies, by analyzing characteristics of air-eligible commodities, and by showing the promise of new technology for future cargo aircraft with significant improvements in costs and efficiency. NASA's proposed program is reviewed which would sponsor the research needed to provide for development of advanced designs by 1985.

  5. PGSB/MIPS PlantsDB Database Framework for the Integration and Analysis of Plant Genome Data.

    PubMed

    Spannagl, Manuel; Nussbaumer, Thomas; Bader, Kai; Gundlach, Heidrun; Mayer, Klaus F X

    2017-01-01

    Plant Genome and Systems Biology (PGSB), formerly Munich Institute for Protein Sequences (MIPS) PlantsDB, is a database framework for the integration and analysis of plant genome data, developed and maintained for more than a decade now. Major components of that framework are genome databases and analysis resources focusing on individual (reference) genomes providing flexible and intuitive access to data. Another main focus is the integration of genomes from both model and crop plants to form a scaffold for comparative genomics, assisted by specialized tools such as the CrowsNest viewer to explore conserved gene order (synteny). Data exchange and integrated search functionality with/over many plant genome databases is provided within the transPLANT project.

  6. Length of encapsidated cargo impacts stability and structure of in vitro assembled alphavirus core-like particles

    NASA Astrophysics Data System (ADS)

    Rayaprolu, Vamseedhar; Moore, Alan; Che-Yen Wang, Joseph; Goh, Boon Chong; Perilla, Juan R.; Zlotnick, Adam; Mukhopadhyay, Suchetana

    2017-12-01

    In vitro assembly of alphavirus nucleocapsid cores, called core-like particles (CLPs), requires a polyanionic cargo. There are no sequence or structure requirements to encapsidate single-stranded nucleic acid cargo. In this work, we wanted to determine how the length of the cargo impacts the stability and structure of the assembled CLPs. We hypothesized that cargo neutralizes the basic region of the alphavirus capsid protein and if the cargo is long enough, it will also act to scaffold the CP monomers together. Experimentally we found that CLPs encapsidating short 27mer oligonucleotides were less stable than CLPs encapsidating 48mer or 90mer oligonucleotides under different chemical and thermal conditions. Furthermore, cryo-EM studies showed there were structural differences between CLPs assembled with 27mer and 48mer cargo. To mimic the role of the cargo in CLP assembly we made a mutant (4D) where we substituted a cluster of four Lys residues in the CP with four Asp residues. We found that these few amino acid substitutions were enough to initiate CLP assembly in the absence of cargo. The cargo-free 4D CLPs show higher resistance to ionic strength and increased temperature compared to wild-type cargo containing CLPs suggesting their CLP assembly mechanism might also be different.

  7. A Distributed Set of Interactions Controls μ2 Functionality in the Role of AP-2 as a Sorting Adaptor in Synaptic Vesicle Endocytosis*♦

    PubMed Central

    Kim, Sung Hyun; Ryan, Timothy A.

    2009-01-01

    The mechanisms of how, following exocytosis, the approximately nine types of synaptic vesicle (SV) transmembrane proteins are accurately resorted to form SVs are poorly understood. The time course of SV endocytosis is very sensitive to perturbations in clathrin and dynamin, supporting the model that SV endocytosis occurs through a clathrin-mediated pathway. We recently demonstrated that removal of the clathrin adaptor protein AP-2, the key protein thought to coordinate cargo selection into clathrin-coated pits, results in a significant impairment in endocytosis kinetics. Endocytosis, however, still proceeds in the absence of AP-2, bringing into question the role of AP-2 in cargo sorting in this process. Using quantitative endocytosis assays at nerve terminals, we examined how endocytosis depends on the integrity of μ2 function. Our experiments indicate that no single perturbation in μ2 prevents restoration of endocytic function when mutated μ2 replaces native μ2, whereas introduction of multiple distributed mutations significantly impairs endocytosis. We also examined whether the presence of AP-2 is important for the functionality of the previously identified endocytic motif in an SV cargo protein, the dileucine motif in vGlut-1. These data show that while mutations in the dileucine motif slow the retrieval of vGlut-1, they only do so in the presence of AP-2. These data thus indicate that AP-2 plays a role in cargo selection but that no single aspect of μ2 function is critical, implying that a more distributed network of interactions supports AP-2 function in SV endocytosis. PMID:19762466

  8. Consistent Query Answering of Conjunctive Queries under Primary Key Constraints

    ERIC Educational Resources Information Center

    Pema, Enela

    2014-01-01

    An inconsistent database is a database that violates one or more of its integrity constraints. In reality, violations of integrity constraints arise frequently under several different circumstances. Inconsistent databases have long posed the challenge to develop suitable tools for meaningful query answering. A principled approach for querying…

  9. Enhancing Knowledge Integration: An Information System Capstone Project

    ERIC Educational Resources Information Center

    Steiger, David M.

    2009-01-01

    This database project focuses on learning through knowledge integration; i.e., sharing and applying specialized (database) knowledge within a group, and combining it with other business knowledge to create new knowledge. Specifically, the Tiny Tots, Inc. project described below requires students to design, build, and instantiate a database system…

  10. 46 CFR 150.160 - Carrying a cargo as an exception to the compatibility chart.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Carrying a cargo as an exception to the compatibility chart. 150.160 Section 150.160 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES COMPATIBILITY OF CARGOES § 150.160 Carrying a cargo as an exception to the...

  11. 46 CFR 150.160 - Carrying a cargo as an exception to the compatibility chart.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Carrying a cargo as an exception to the compatibility chart. 150.160 Section 150.160 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES COMPATIBILITY OF CARGOES § 150.160 Carrying a cargo as an exception to the...

  12. 46 CFR 150.160 - Carrying a cargo as an exception to the compatibility chart.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Carrying a cargo as an exception to the compatibility chart. 150.160 Section 150.160 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES COMPATIBILITY OF CARGOES § 150.160 Carrying a cargo as an exception to the...

  13. 46 CFR 150.160 - Carrying a cargo as an exception to the compatibility chart.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Carrying a cargo as an exception to the compatibility chart. 150.160 Section 150.160 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES COMPATIBILITY OF CARGOES § 150.160 Carrying a cargo as an exception to the...

  14. 46 CFR 150.160 - Carrying a cargo as an exception to the compatibility chart.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Carrying a cargo as an exception to the compatibility chart. 150.160 Section 150.160 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES COMPATIBILITY OF CARGOES § 150.160 Carrying a cargo as an exception to the...

  15. 46 CFR 154.500 - Cargo and process piping standards.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Equipment Cargo and Process Piping Systems § 154.500 Cargo and process piping standards. The cargo liquid and vapor piping and process piping systems must meet the requirements in §§ 154.503 through 154.562... 46 Shipping 5 2010-10-01 2010-10-01 false Cargo and process piping standards. 154.500 Section 154...

  16. Cargo/Logistics Airlift System Study (CLASS), Executive Summary

    NASA Technical Reports Server (NTRS)

    Norman, J. M.; Henderson, R. D.; Macey, F. C.; Tuttle, R. P.

    1978-01-01

    The current air cargo system is analyzed along with advanced air cargo systems studies. A forecast of advanced air cargo system demand is presented with cost estimates. It is concluded that there is a need for a dedicated advance air cargo system, and with application of advanced technology, reductions of 45% in air freight rates may be achieved.

  17. 46 CFR 153.297 - Emergency actuators at the point of cargo control.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Emergency actuators at the point of cargo control. 153... and Equipment Piping Systems and Cargo Handling Equipment § 153.297 Emergency actuators at the point of cargo control. (a) The point from which cargo transfer is controlled must have the same actuators...

  18. 46 CFR 153.935a - Storage of cargo samples.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Storage of cargo samples. 153.935a Section 153.935a Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS... § 153.935a Storage of cargo samples. (a) The master shall make sure that any cargo samples are stored in...

  19. 46 CFR 36.10-1 - Cargo pump relief valves-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Cargo pump relief valves-TB/ALL. 36.10-1 Section 36.10-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS ELEVATED TEMPERATURE CARGOES Piping, Valves, Fittings, and Accessory Equipment § 36.10-1 Cargo pump relief valves—TB/ALL. (a) Cargo pump...

  20. 14 CFR 121.583 - Carriage of persons without compliance with the passenger-carrying requirements of this part.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... is governed by regulations in 49 CFR part 175; (iv) The security of valuable or confidential cargo; (v) The preservation of fragile or perishable cargo; (vi) Experiments on, or testing of, cargo containers or cargo handling devices; (vii) The operation of special equipment for loading or unloading cargo...

Top