NASA Astrophysics Data System (ADS)
Lin, Y.; Chen, X.
2016-12-01
Land cover classification systems used in remote sensing image data have been developed to meet the needs for depicting land covers in scientific investigations and policy decisions. However, accuracy assessments of a spate of data sets demonstrate that compared with the real physiognomy, each of the thematic map of specific land cover classification system contains some unavoidable flaws and unintended deviation. This work proposes a web-based land cover classification system, an integrated prototype, based on an ontology model of various classification systems, each of which is assigned the same weight in the final determination of land cover type. Ontology, a formal explication of specific concepts and relations, is employed in this prototype to build up the connections among different systems to resolve the naming conflicts. The process is initialized by measuring semantic similarity between terminologies in the systems and the search key to produce certain set of satisfied classifications, and carries on through searching the predefined relations in concepts of all classification systems to generate classification maps with user-specified land cover type highlighted, based on probability calculated by votes from data sets with different classification system adopted. The present system is verified and validated by comparing the classification results with those most common systems. Due to full consideration and meaningful expression of each classification system using ontology and the convenience that the web brings with itself, this system, as a preliminary model, proposes a flexible and extensible architecture for classification system integration and data fusion, thereby providing a strong foundation for the future work.
Jamieson, Randall K; Holmes, Signy; Mewhort, D J K
2010-11-01
Dissociation of classification and recognition in amnesia is widely taken to imply 2 functional systems: an implicit procedural-learning system that is spared in amnesia and an explicit episodic-learning system that is compromised. We argue that both tasks reflect the global similarity of probes to memory. In classification, subjects sort unstudied grammatical exemplars from lures, whereas in recognition, they sort studied grammatical exemplars from lures. Hence, global similarity is necessarily greater in recognition than in classification. Moreover, a grammatical exemplar's similarity to studied exemplars is a nonlinear function of the integrity of the data in memory. Assuming that data integrity is better for control subjects than for subjects with amnesia, the nonlinear relation combined with the advantage for recognition over classification predicts the dissociation of recognition and classification. To illustrate the dissociation of recognition and classification in healthy undergraduates, we manipulated study time to vary the integrity of the data in memory and brought the dissociation under experimental control. We argue that the dissociation reflects a general cost in memory rather than a selective impairment of separate procedural and episodic systems. (c) 2010 APA, all rights reserved
A Case Study in Integrating Multiple E-commerce Standards via Semantic Web Technology
NASA Astrophysics Data System (ADS)
Yu, Yang; Hillman, Donald; Setio, Basuki; Heflin, Jeff
Internet business-to-business transactions present great challenges in merging information from different sources. In this paper we describe a project to integrate four representative commercial classification systems with the Federal Cataloging System (FCS). The FCS is used by the US Defense Logistics Agency to name, describe and classify all items under inventory control by the DoD. Our approach uses the ECCMA Open Technical Dictionary (eOTD) as a common vocabulary to accommodate all different classifications. We create a semantic bridging ontology between each classification and the eOTD to describe their logical relationships in OWL DL. The essential idea is that since each classification has formal definitions in a common vocabulary, we can use subsumption to automatically integrate them, thus mitigating the need for pairwise mappings. Furthermore our system provides an interactive interface to let users choose and browse the results and more importantly it can translate catalogs that commit to these classifications using compiled mapping results.
[Landscape classification: research progress and development trend].
Liang, Fa-Chao; Liu, Li-Ming
2011-06-01
Landscape classification is the basis of the researches on landscape structure, process, and function, and also, the prerequisite for landscape evaluation, planning, protection, and management, directly affecting the precision and practicability of landscape research. This paper reviewed the research progress on the landscape classification system, theory, and methodology, and summarized the key problems and deficiencies of current researches. Some major landscape classification systems, e. g. , LANMAP and MUFIC, were introduced and discussed. It was suggested that a qualitative and quantitative comprehensive classification based on the ideology of functional structure shape and on the integral consideration of landscape classification utility, landscape function, landscape structure, physiogeographical factors, and human disturbance intensity should be the major research directions in the future. The integration of mapping, 3S technology, quantitative mathematics modeling, computer artificial intelligence, and professional knowledge to enhance the precision of landscape classification would be the key issues and the development trend in the researches of landscape classification.
Dura-Bernal, Salvador; Garreau, Guillaume; Georgiou, Julius; Andreou, Andreas G; Denham, Susan L; Wennekers, Thomas
2013-10-01
The ability to recognize the behavior of individuals is of great interest in the general field of safety (e.g. building security, crowd control, transport analysis, independent living for the elderly). Here we report a new real-time acoustic system for human action and behavior recognition that integrates passive audio and active micro-Doppler sonar signatures over multiple time scales. The system architecture is based on a six-layer convolutional neural network, trained and evaluated using a dataset of 10 subjects performing seven different behaviors. Probabilistic combination of system output through time for each modality separately yields 94% (passive audio) and 91% (micro-Doppler sonar) correct behavior classification; probabilistic multimodal integration increases classification performance to 98%. This study supports the efficacy of micro-Doppler sonar systems in characterizing human actions, which can then be efficiently classified using ConvNets. It also demonstrates that the integration of multiple sources of acoustic information can significantly improve the system's performance.
NASA Astrophysics Data System (ADS)
Dondeyne, Stefaan; Juilleret, Jérôme; Vancampenhout, Karen; Deckers, Jozef; Hissler, Christophe
2017-04-01
Classification of soils in both World Reference Base for soil resources (WRB) and Soil Taxonomy hinges on the identification of diagnostic horizons and characteristics. However as these features often occur within the first 100 cm, these classification systems convey little information on subsoil characteristics. An integrated knowledge of the soil, soil-to-substratum and deeper substratum continuum is required when dealing with environmental issues such as vegetation ecology, water quality or the Critical Zone in general. Therefore, we recently proposed a classification system of the subsolum complementing current soil classification systems. By reflecting on the structure of the subsoil classification system which is inspired by WRB, we aim at fostering a discussion on some potential future developments of WRB. For classifying the subsolum we define Regolite, Saprolite, Saprock and Bedrock as four Subsolum Reference Groups each corresponding to different weathering stages of the subsoil. Principal qualifiers can be used to categorize intergrades of these Subsoil Reference Groups while morphologic and lithologic characteristics can be presented with supplementary qualifiers. We argue that adopting a low hierarchical structure - akin to WRB and in contrast to a strong hierarchical structure as in Soil Taxonomy - offers the advantage of having an open classification system avoiding the need for a priori knowledge of all possible combinations which may be encountered in the field. Just as in WRB we also propose to use principal and supplementary qualifiers as a second level of classification. However, in contrast to WRB we propose to reserve the principal qualifiers for intergrades and to regroup the supplementary qualifiers into thematic categories (morphologic or lithologic). Structuring the qualifiers in this manner should facilitate the integration and handling of both soil and subsoil classification units into soil information systems and calls for paying attention to these structural issues in future developments of WRB.
Robert E. Keane; Jason M. Herynk; Chris Toney; Shawn P. Urbanski; Duncan C. Lutes; Roger D. Ottmar
2015-01-01
Fuel classifications are integral tools in fire management and planning because they are used as inputs to fire behavior and effects simulation models. Fuel Loading Models (FLMs) and Fuel Characteristic Classification System (FCCSs) fuelbeds are the most popular classifications used throughout wildland fire science and management, but they have yet to be thoroughly...
2009-11-01
Equation Chapter 1 Section 1 A MAPPING FROM THE HUMAN FACTORS ANALYSIS AND CLASSIFICATION SYSTEM (DOD...OMB control number. 1. REPORT DATE NOV 2009 2. REPORT TYPE 3. DATES COVERED 4. TITLE AND SUBTITLE A Mapping from the Human Factors Analysis ...7 The Human Factors Analysis and Classification System .................................................. 7 Mapping of DoD
77 FR 32111 - Privacy Act System of Records
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-31
... or fraud, or harm to the security or integrity of this system or other systems or programs (whether... to comment. FCC/MB-2 System Name: Broadcast Station Public Inspection Files. Security Classification: The FCC's Security Operations Center (SOC) has not assigned a security classification to this system...
Enterotoxin Vaccine Delivery System With Bioadherence. Phase 1.
1995-12-05
Microencapsulation 33 Bioadhesive Biodegradable 16. PRICE CODE Perorally Controlled Delivery 17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY...this magnitude requires a delivery system configured with a bioadhesive polymer that integrates the surface of the microcapsules and the mucosa. SBIR...integrates the surface of the microcapsules and the mucosa. SBIR Phase I Program efforts focused on the development of the most feasible method(s) for
Access management classification and spacing standards
DOT National Transportation Integrated Search
1996-08-23
The specific objectives of this background paper are:(1)Provide an overview of : the relationship between the functional integrity of the highway system and the : access management classification system, (2)Review and evaluate the current : Oregon De...
A classification of large amplitude oscillations of a spring-pendulum system
NASA Technical Reports Server (NTRS)
Broucke, R.
1977-01-01
We present a detailed classification of large amplitude oscillations of a non-integrable autonomous system with two degrees of freedom: the spring pendulum system. The classification is made with the method of invariant curves. The results show the importance of three types of motion: periodic, quasi-periodic and semi-ergodic. The numerical results are given for nine different values of the energy constant.
ERIC Educational Resources Information Center
Matarazzo, Bridget B.; Clemans, Tracy A.; Silverman, Morton M.; Brenner, Lisa A.
2013-01-01
The lack of a standardized nomenclature for suicide-related thoughts and behaviors prompted the Centers for Disease Control and Prevention, with the Veterans Integrated Service Network 19 Mental Illness Research Education and Clinical Center, to create the Self-Directed Violence Classification System (SDVCS). SDVCS has been adopted by the…
Rowe, A. K.; Hirnschall, G.; Lambrechts, T.; Bryce, J.
1999-01-01
Differences in the terms used to classify diseases in the Integrated Management of Childhood Illness (IMCI) guidelines and for health information system (HIS) disease surveillance could easily create confusion among health care workers. If the equivalent terms in the two classifications are not clear to health workers who are following the guidelines, they may have problems in performing the dual activities of case management and disease surveillance. These difficulties could adversely affect an individual's performance as well as the overall effectiveness of the IMCI strategy or HIS surveillance, or both. We interviewed key informants to determine the effect of these differences between the IMCI and HIS classifications on the countries that were implementing the IMCI guidelines. Four general approaches for addressing the problem were identified: translating the IMCI classifications into HIS classifications; changing the HIS list to include the IMCI classifications; using both the IMCI and HIS classification systems at the time of consultations; and doing nothing. No single approach can satisfy the needs of all countries. However, if the short-term or medium-term goal of IMCI planners is to find a solution that will reduce the problem for health workers and is also easy to implement, the approach most likely to succeed is translation of IMCI classifications into HIS classifications. Where feasible, a modification of the health information system to include the IMCI classifications may also be considered. PMID:10680246
Veselka, Walter; Rentch, James S; Grafton, William N; Kordek, Walter S; Anderson, James T
2010-11-01
Bioassessment methods for wetlands, and other bodies of water, have been developed worldwide to measure and quantify changes in "biological integrity." These assessments are based on a classification system, meant to ensure appropriate comparisons between wetland types. Using a local site-specific disturbance gradient, we built vegetation indices of biological integrity (Veg-IBIs) based on two commonly used wetland classification systems in the USA: One based on vegetative structure and the other based on a wetland's position in a landscape and sources of water. The resulting class-specific Veg-IBIs were comprised of 1-5 metrics that varied in their sensitivity to the disturbance gradient (R2=0.14-0.65). Moreover, the sensitivity to the disturbance gradient increased as metrics from each of the two classification schemes were combined (added). Using this information to monitor natural and created wetlands will help natural resource managers track changes in biological integrity of wetlands in response to anthropogenic disturbance and allows the use of vegetative communities to set ecological performance standards for mitigation banks.
Yoshida, Masahito; Collin, Phillipe; Josseaume, Thierry; Lädermann, Alexandre; Goto, Hideyuki; Sugimoto, Katumasa; Otsuka, Takanobu
2018-01-01
Magnetic resonance (MR) imaging is common in structural and qualitative assessment of the rotator cuff post-operatively. Rotator cuff integrity has been thought to be associated with clinical outcome. The purpose of this study was to evaluate the inter-observer reliability of cuff integrity (Sugaya's classification) and assess the correlation between Sugaya's classification and the clinical outcome. It was hypothesized that Sugaya's classification would show good reliability and good correlation with the clinical outcome. Post-operative MR images were taken two years post-operatively, following arthroscopic rotator cuff repair. For assessment of inter-rater reliability, all radiographic evaluations for the supraspinatus muscle were done by two orthopaedic surgeons and one radiologist. Rotator cuff integrity was classified into five categories, according to Sugaya's classification. Fatty infiltration was graded into four categories, based on the Fuchs' classification grading system. Muscle hypotrophy was graded as four grades, according to the scale proposed by Warner. The clinical outcome was assessed according to the constant scoring system pre-operatively and 2 years post-operatively. Of the sixty-two consecutive patients with full-thickness rotator cuff tears, fifty-two patients were reviewed in this study. These subjects included twenty-three men and twenty-nine women, with an average age of fifty-seven years. In terms of the inter-rater reliability between orthopaedic surgeons, Sugaya's classification showed the highest agreement [ICC (2.1) = 0.82] for rotator cuff integrity. The grade of fatty infiltration and muscle atrophy demonstrated good agreement, respectively (0.722 and 0.758). With regard to the inter-rater reliability between orthopaedic surgeon and radiologist, Sugaya's classification showed good reliability [ICC (2.1) = 0.70]. On the other hand, fatty infiltration and muscle hypotrophy classifications demonstrated fair and moderate agreement [ICC (2.1) = 0.39 and 0.49]. Although no significant correlation was found between overall post-operative constant score and Sugaya's classification, Sugaya's classification indicated significant correlation with the muscle strength score. Sugaya's classification showed repeatability and good agreement between the orthopaedist and radiologist, who are involved in the patient care for the rotator cuff tear. Common classification of rotator cuff integrity with good reliability will give appropriate information for clinicians to improve the patient care of the rotator cuff tear. This classification also would be helpful to predict the strength of arm abduction in the scapular plane. IV.
Classification of hyperbolic singularities of rank zero of integrable Hamiltonian systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oshemkov, Andrey A
2010-10-06
A complete invariant is constructed that is a solution of the problem of semilocal classification of saddle singularities of integrable Hamiltonian systems. Namely, a certain combinatorial object (an f{sub n}-graph) is associated with every nondegenerate saddle singularity of rank zero; as a result, the problem of semilocal classification of saddle singularities of rank zero is reduced to the problem of enumeration of the f{sub n}-graphs. This enables us to describe a simple algorithm for obtaining the lists of saddle singularities of rank zero for a given number of degrees of freedom and a given complexity. Bibliography: 24 titles.
Aldape, Kenneth; Nejad, Romina; Louis, David N; Zadeh, Gelareh
2017-03-01
Molecular markers provide important biological and clinical information related to the classification of brain tumors, and the integration of relevant molecular parameters into brain tumor classification systems has been a widely discussed topic in neuro-oncology over the past decade. With recent advances in the development of clinically relevant molecular signatures and the 2016 World Health Organization (WHO) update, the views of the neuro-oncology community on such changes would be informative for implementing this process. A survey with 8 questions regarding molecular markers in tumor classification was sent to an email list of Society for Neuro-Oncology members and attendees of prior meetings (n=5065). There were 403 respondents. Analysis was performed using whole group response, based on self-reported subspecialty. The survey results show overall strong support for incorporating molecular knowledge into the classification and clinical management of brain tumors. Across all 7 subspecialty groups, ≥70% of respondents agreed to this integration. Interestingly, some variability is seen among subspecialties, notably with lowest support from neuropathologists, which may reflect their roles in implementing such diagnostic technologies. Based on a survey provided to the neuro-oncology community, we report strong support for the integration of molecular markers into the WHO classification of brain tumors, as well as for using an integrated "layered" diagnostic format. While membership from each specialty showed support, there was variation by specialty in enthusiasm regarding proposed changes. The initial results of this survey influenced the deliberations underlying the 2016 WHO classification of tumors of the central nervous system. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Neuro-Oncology.
Fuel Characteristic Classification System version 3.0: technical documentation
Susan J. Prichard; David V. Sandberg; Roger D. Ottmar; Ellen Eberhardt; Anne Andreu; Paige Eagle; Kjell Swedin
2013-01-01
The Fuel Characteristic Classification System (FCCS) is a software module that records wildland fuel characteristics and calculates potential fire behavior and hazard potentials based on input environmental variables. The FCCS 3.0 is housed within the Integrated Fuels Treatment Decision Support System (Joint Fire Science Program 2012). It can also be run from command...
Integrated Remote Sensing Modalities for Classification at a Legacy Test Site
NASA Astrophysics Data System (ADS)
Lee, D. J.; Anderson, D.; Craven, J.
2016-12-01
Detecting, locating, and characterizing suspected underground nuclear test sites is of interest to the worldwide nonproliferation monitoring community. Remote sensing provides both cultural and surface geological information over a large search area in a non-intrusive manner. We have characterized a legacy nuclear test site at the Nevada National Security Site (NNSS) using an aerial system based on RGB imagery, light detection and ranging, and hyperspectral imaging. We integrate these different remote sensing modalities to perform pattern recognition and classification tasks on the test site. These tasks include detecting cultural artifacts and exotic materials. We evaluate if the integration of different remote sensing modalities improves classification performance.
Auto-SEIA: simultaneous optimization of image processing and machine learning algorithms
NASA Astrophysics Data System (ADS)
Negro Maggio, Valentina; Iocchi, Luca
2015-02-01
Object classification from images is an important task for machine vision and it is a crucial ingredient for many computer vision applications, ranging from security and surveillance to marketing. Image based object classification techniques properly integrate image processing and machine learning (i.e., classification) procedures. In this paper we present a system for automatic simultaneous optimization of algorithms and parameters for object classification from images. More specifically, the proposed system is able to process a dataset of labelled images and to return a best configuration of image processing and classification algorithms and of their parameters with respect to the accuracy of classification. Experiments with real public datasets are used to demonstrate the effectiveness of the developed system.
Topological classification of the Goryachev integrable case in rigid body dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nikolaenko, S S
2016-01-31
A topological analysis of the Goryachev integrable case in rigid body dynamics is made on the basis of the Fomenko-Zieschang theory. The invariants (marked molecules) which are obtained give a complete description, from the standpoint of Liouville classification, of the systems of Goryachev type on various level sets of the energy. It turns out that on appropriate energy levels the Goryachev case is Liouville equivalent to many classical integrable systems and, in particular, the Joukowski, Clebsch, Sokolov and Kovalevskaya-Yehia cases in rigid body dynamics, as well as to some integrable billiards in plane domains bounded by confocal quadrics -- in othermore » words, the foliations given by the closures of generic solutions of these systems have the same structure. Bibliography: 15 titles.« less
Zhang, Chi; Zhang, Ge; Chen, Ke-ji; Lu, Ai-ping
2016-04-01
The development of an effective classification method for human health conditions is essential for precise diagnosis and delivery of tailored therapy to individuals. Contemporary classification of disease systems has properties that limit its information content and usability. Chinese medicine pattern classification has been incorporated with disease classification, and this integrated classification method became more precise because of the increased understanding of the molecular mechanisms. However, we are still facing the complexity of diseases and patterns in the classification of health conditions. With continuing advances in omics methodologies and instrumentation, we are proposing a new classification approach: molecular module classification, which is applying molecular modules to classifying human health status. The initiative would be precisely defining the health status, providing accurate diagnoses, optimizing the therapeutics and improving new drug discovery strategy. Therefore, there would be no current disease diagnosis, no disease pattern classification, and in the future, a new medicine based on this classification, molecular module medicine, could redefine health statuses and reshape the clinical practice.
An important challenge for an integrative approach to developmental systems toxicology is associating putative molecular initiating events (MIEs), cell signaling pathways, cell function and modeled fetal exposure kinetics. We have developed a chemical classification model based o...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fokicheva, V V
2015-10-31
A new class of integrable billiard systems, called generalized billiards, is discovered. These are billiards in domains formed by gluing classical billiard domains along pieces of their boundaries. (A classical billiard domain is a part of the plane bounded by arcs of confocal quadrics.) On the basis of the Fomenko-Zieschang theory of invariants of integrable systems, a full topological classification of generalized billiards is obtained, up to Liouville equivalence. Bibliography: 18 titles.
Crescent Evaluation : appendix D : crescent computer system components evaluation report
DOT National Transportation Integrated Search
1994-02-01
In 1990, Lockheed Integrated Systems Company (LISC) was awarded a contract, under the Crescent Demonstration Project, to demonstrate the integration of Weigh In Motion (WIM), Automatic Vehicle Classification (AVC) and Automatic Vehicle Identification...
Pläschke, Rachel N; Cieslik, Edna C; Müller, Veronika I; Hoffstaedter, Felix; Plachti, Anna; Varikuti, Deepthi P; Goosses, Mareike; Latz, Anne; Caspers, Svenja; Jockwitz, Christiane; Moebus, Susanne; Gruber, Oliver; Eickhoff, Claudia R; Reetz, Kathrin; Heller, Julia; Südmeyer, Martin; Mathys, Christian; Caspers, Julian; Grefkes, Christian; Kalenscher, Tobias; Langner, Robert; Eickhoff, Simon B
2017-12-01
Previous whole-brain functional connectivity studies achieved successful classifications of patients and healthy controls but only offered limited specificity as to affected brain systems. Here, we examined whether the connectivity patterns of functional systems affected in schizophrenia (SCZ), Parkinson's disease (PD), or normal aging equally translate into high classification accuracies for these conditions. We compared classification performance between pre-defined networks for each group and, for any given network, between groups. Separate support vector machine classifications of 86 SCZ patients, 80 PD patients, and 95 older adults relative to their matched healthy/young controls, respectively, were performed on functional connectivity in 12 task-based, meta-analytically defined networks using 25 replications of a nested 10-fold cross-validation scheme. Classification performance of the various networks clearly differed between conditions, as those networks that best classified one disease were usually non-informative for the other. For SCZ, but not PD, emotion-processing, empathy, and cognitive action control networks distinguished patients most accurately from controls. For PD, but not SCZ, networks subserving autobiographical or semantic memory, motor execution, and theory-of-mind cognition yielded the best classifications. In contrast, young-old classification was excellent based on all networks and outperformed both clinical classifications. Our pattern-classification approach captured associations between clinical and developmental conditions and functional network integrity with a higher level of specificity than did previous whole-brain analyses. Taken together, our results support resting-state connectivity as a marker of functional dysregulation in specific networks known to be affected by SCZ and PD, while suggesting that aging affects network integrity in a more global way. Hum Brain Mapp 38:5845-5858, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
ERIC Educational Resources Information Center
Plante, Jarrad D.; Cox, Thomas D.
2016-01-01
Service-learning has a longstanding history in higher education in and includes three main tenets: academic learning, meaningful community service, and civic learning. The Carnegie Foundation for the Advancement of Teaching created an elective classification system called the Carnegie Community Engagement Classification for higher education…
Berlth, Felix; Bollschweiler, Elfriede; Drebber, Uta; Hoelscher, Arnulf H; Moenig, Stefan
2014-01-01
Several pathohistological classification systems exist for the diagnosis of gastric cancer. Many studies have investigated the correlation between the pathohistological characteristics in gastric cancer and patient characteristics, disease specific criteria and overall outcome. It is still controversial as to which classification system imparts the most reliable information, and therefore, the choice of system may vary in clinical routine. In addition to the most common classification systems, such as the Laurén and the World Health Organization (WHO) classifications, other authors have tried to characterize and classify gastric cancer based on the microscopic morphology and in reference to the clinical outcome of the patients. In more than 50 years of systematic classification of the pathohistological characteristics of gastric cancer, there is no sole classification system that is consistently used worldwide in diagnostics and research. However, several national guidelines for the treatment of gastric cancer refer to the Laurén or the WHO classifications regarding therapeutic decision-making, which underlines the importance of a reliable classification system for gastric cancer. The latest results from gastric cancer studies indicate that it might be useful to integrate DNA- and RNA-based features of gastric cancer into the classification systems to establish prognostic relevance. This article reviews the diagnostic relevance and the prognostic value of different pathohistological classification systems in gastric cancer. PMID:24914328
NASA Technical Reports Server (NTRS)
Gomez, Fernando
1989-01-01
It is shown how certain kinds of domain independent expert systems based on classification problem-solving methods can be constructed directly from natural language descriptions by a human expert. The expert knowledge is not translated into production rules. Rather, it is mapped into conceptual structures which are integrated into long-term memory (LTM). The resulting system is one in which problem-solving, retrieval and memory organization are integrated processes. In other words, the same algorithm and knowledge representation structures are shared by these processes. As a result of this, the system can answer questions, solve problems or reorganize LTM.
Integrated Optic Signal Processors for Wideband Radar Systems.
1980-05-01
md Identify by block number) Modules The general objecti1e-6ithis research oxogram-is to explore the potential of integrated acoustooptic’tec lol...and D activities. The major objectives of this research are to (Continued on ex Pae’ D ’’OR 1473k EDITION OF I NOV S5 IS OUSOLtTE 71 . ~- " SET~Y...CLASSIFICATION OF THIS PAGE (When bae Entered) SECURITY CLASSIFICATION OF THIS PAGE(When Data ihtered) carry out research on integrated acoustooptic
CIMOSA process classification for business process mapping in non-manufacturing firms: A case study
NASA Astrophysics Data System (ADS)
Latiffianti, Effi; Siswanto, Nurhadi; Wiratno, Stefanus Eko; Saputra, Yudha Andrian
2017-11-01
A business process mapping is one important means to enable an enterprise to effectively manage the value chain. One of widely used approaches to classify business process for mapping purpose is Computer Integrated Manufacturing System Open Architecture (CIMOSA). CIMOSA was initially designed for Computer Integrated Manufacturing (CIM) system based enterprises. This paper aims to analyze the use of CIMOSA process classification for business process mapping in the firms that do not fall within the area of CIM. Three firms of different business area that have used CIMOSA process classification were observed: an airline firm, a marketing and trading firm for oil and gas products, and an industrial estate management firm. The result of the research has shown that CIMOSA can be used in non-manufacturing firms with some adjustment. The adjustment includes addition, reduction, or modification of some processes suggested by CIMOSA process classification as evidenced by the case studies.
Review of Medical Image Classification using the Adaptive Neuro-Fuzzy Inference System
Hosseini, Monireh Sheikh; Zekri, Maryam
2012-01-01
Image classification is an issue that utilizes image processing, pattern recognition and classification methods. Automatic medical image classification is a progressive area in image classification, and it is expected to be more developed in the future. Because of this fact, automatic diagnosis can assist pathologists by providing second opinions and reducing their workload. This paper reviews the application of the adaptive neuro-fuzzy inference system (ANFIS) as a classifier in medical image classification during the past 16 years. ANFIS is a fuzzy inference system (FIS) implemented in the framework of an adaptive fuzzy neural network. It combines the explicit knowledge representation of an FIS with the learning power of artificial neural networks. The objective of ANFIS is to integrate the best features of fuzzy systems and neural networks. A brief comparison with other classifiers, main advantages and drawbacks of this classifier are investigated. PMID:23493054
Searching bioremediation patents through Cooperative Patent Classification (CPC).
Prasad, Rajendra
2016-03-01
Patent classification systems have traditionally evolved independently at each patent jurisdiction to classify patents handled by their examiners to be able to search previous patents while dealing with new patent applications. As patent databases maintained by them went online for free access to public as also for global search of prior art by examiners, the need arose for a common platform and uniform structure of patent databases. The diversity of different classification, however, posed problems of integrating and searching relevant patents across patent jurisdictions. To address this problem of comparability of data from different sources and searching patents, WIPO in the recent past developed what is known as International Patent Classification (IPC) system which most countries readily adopted to code their patents with IPC codes along with their own codes. The Cooperative Patent Classification (CPC) is the latest patent classification system based on IPC/European Classification (ECLA) system, developed by the European Patent Office (EPO) and the United States Patent and Trademark Office (USPTO) which is likely to become a global standard. This paper discusses this new classification system with reference to patents on bioremediation.
Integrated resource inventory for southcentral Alaska (INTRISCA)
NASA Technical Reports Server (NTRS)
Burns, T.; Carson-Henry, C.; Morrissey, L. A.
1981-01-01
The Integrated Resource Inventory for Southcentral Alaska (INTRISCA) Project comprised an integrated set of activities related to the land use planning and resource management requirements of the participating agencies within the southcentral region of Alaska. One subproject involved generating a region-wide land cover inventory of use to all participating agencies. Toward this end, participants first obtained a broad overview of the entire region and identified reasonable expectations of a LANDSAT-based land cover inventory through evaluation of an earlier classification generated during the Alaska Water Level B Study. Classification of more recent LANDSAT data was then undertaken by INTRISCA participants. The latter classification produced a land cover data set that was more specifically related to individual agency needs, concurrently providing a comprehensive training experience for Alaska agency personnel. Other subprojects employed multi-level analysis techniques ranging from refinement of the region-wide classification and photointerpretation, to digital edge enhancement and integration of land cover data into a geographic information system (GIS).
Harrop, James S; Vaccaro, Alexander R; Hurlbert, R John; Wilsey, Jared T; Baron, Eli M; Shaffrey, Christopher I; Fisher, Charles G; Dvorak, Marcel F; Oner, F C; Wood, Kirkham B; Anand, Neel; Anderson, D Greg; Lim, Moe R; Lee, Joon Y; Bono, Christopher M; Arnold, Paul M; Rampersaud, Y Raja; Fehlings, Michael G
2006-02-01
A new classification and treatment algorithm for thoracolumbar injuries was recently introduced by Vaccaro and colleagues in 2005. A thoracolumbar injury severity scale (TLISS) was proposed for grading and guiding treatment for these injuries. The scale is based on the following: 1) the mechanism of injury; 2) the integrity of the posterior ligamentous complex (PLC); and 3) the patient's neurological status. The reliability and validity of assessing injury mechanism and the integrity of the PLC was assessed. Forty-eight spine surgeons, consisting of neurosurgeons and orthopedic surgeons, reviewed 56 clinical thoracolumbar injury case histories. Each was classified and scored to determine treatment recommendations according to a novel classification system. After 3 months the case histories were reordered and the physicians repeated the exercise. Validity of this classification was good among reviewers; the vast majority (> 90%) agreed with the system's treatment recommendations. Surgeons were unclear as to a cogent description of PLC disruption and fracture mechanism. The TLISS demonstrated acceptable reliability in terms of intra- and interobserver agreement on the algorithm's treatment recommendations. Replacing injury mechanism with a description of injury morphology and better definition of PLC injury will improve inter- and intraobserver reliability of this injury classification system.
Goossen, W T; Epping, P J; Abraham, I L
1996-03-01
The development of nursing information systems (NIS) is often hampered by the fact that nursing lacks a unified nursing terminology and classification system. Currently there exist various initiatives in this area. We address the question as to how current initiatives in the development of nursing terminology and classification systems can contribute towards the development of NIS. First, the rationale behind the formalization of nursing knowledge is discussed. Next, using a framework for nursing information processing, the most important developments in the field of nursing on formalization, terminology and classification are critically reviewed. The initiatives discussed include nursing terminology projects in several countries, and the International Classification of Nursing Practice. Suggestions for further developments in the area are discussed. Finally, implications for NIS are presented, as well as the relationships of these components to other sections of an integrated computerized patient record.
2013-09-01
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington...of MASTER OF SCIENCE IN HUMAN SYSTEMS INTEGRATION from the NAVAL POSTGRADUATE SCHOOL September 2013 Author: Jason Bilbro...22 Figure 9. Training slide example with speaker notes ......................................... 31
Techniques for capturing expert knowledge - An expert systems/hypertext approach
NASA Technical Reports Server (NTRS)
Lafferty, Larry; Taylor, Greg; Schumann, Robin; Evans, Randy; Koller, Albert M., Jr.
1990-01-01
The knowledge-acquisition strategy developed for the Explosive Hazards Classification (EHC) Expert System is described in which expert systems and hypertext are combined, and broad applications are proposed. The EHC expert system is based on rapid prototyping in which primary knowledge acquisition from experts is not emphasized; the explosive hazards technical bulletin, technical guidance, and minimal interviewing are used to develop the knowledge-based system. Hypertext is used to capture the technical information with respect to four issues including procedural, materials, test, and classification issues. The hypertext display allows the integration of multiple knowlege representations such as clarifications or opinions, and thereby allows the performance of a broad range of tasks on a single machine. Among other recommendations, it is suggested that the integration of hypertext and expert systems makes the resulting synergistic system highly efficient.
Classification of almost toric singularities of Lagrangian foliations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Izosimov, Anton M
2011-07-31
The topological classification is given of almost toric singularities of integrable Hamiltonian systems with a large number of degrees of freedom, that is, of nondegenerate singularities without hyperbolic components. A descriptive geometric model is constructed, which makes it possible to perform effective calculations. Bibliography: 10 titles.
Integrability of the one dimensional Schrödinger equation
NASA Astrophysics Data System (ADS)
Combot, Thierry
2018-02-01
We present a definition of integrability for the one-dimensional Schrödinger equation, which encompasses all known integrable systems, i.e., systems for which the spectrum can be explicitly computed. For this, we introduce the class of rigid functions, built as Liouvillian functions, but containing all solutions of rigid differential operators in the sense of Katz, and a notion of natural of boundary conditions. We then make a complete classification of rational integrable potentials. Many new integrable cases are found, some of them physically interesting.
A Scalable, Collaborative, Interactive Light-field Display System
2014-06-01
displays, 3D display, holographic video, integral photography, plenoptic , computed photography 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF...light-field, holographic displays, 3D display, holographic video, integral photography, plenoptic , computed photography 1 Distribution A: Approved
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryabov, Pavel E; Kharlamov, Mikhail P
2012-02-28
The problem of motion of the Kovalevskaya top in a double force field is investigated (the integrable case of A.G. Reyman and M.A. Semenov-Tian-Shansky without a gyrostatic momentum). It is a completely integrable Hamiltonian system with three degrees of freedom not reducible to a family of systems with two degrees of freedom. The critical set of the integral map is studied. The critical subsystems and bifurcation diagrams are described. The classification of all nondegenerate critical points is given. The set of these points consists of equilibria (nondegenerate singularities of rank 0), of singular periodic motions (nondegenerate singularities of rank 1),more » and also of critical two-frequency motions (nondegenerate singularities of rank 2). Bibliography: 32 titles.« less
Data fusion for target tracking and classification with wireless sensor network
NASA Astrophysics Data System (ADS)
Pannetier, Benjamin; Doumerc, Robin; Moras, Julien; Dezert, Jean; Canevet, Loic
2016-10-01
In this paper, we address the problem of multiple ground target tracking and classification with information obtained from a unattended wireless sensor network. A multiple target tracking (MTT) algorithm, taking into account road and vegetation information, is proposed based on a centralized architecture. One of the key issue is how to adapt classical MTT approach to satisfy embedded processing. Based on track statistics, the classification algorithm uses estimated location, velocity and acceleration to help to classify targets. The algorithms enables tracking human and vehicles driving both on and off road. We integrate road or trail width and vegetation cover, as constraints in target motion models to improve performance of tracking under constraint with classification fusion. Our algorithm also presents different dynamic models, to palliate the maneuvers of targets. The tracking and classification algorithms are integrated into an operational platform (the fusion node). In order to handle realistic ground target tracking scenarios, we use an autonomous smart computer deposited in the surveillance area. After the calibration step of the heterogeneous sensor network, our system is able to handle real data from a wireless ground sensor network. The performance of system is evaluated in a real exercise for intelligence operation ("hunter hunt" scenario).
Classification systems for natural resource management
Kleckner, Richard L.
1981-01-01
Resource managers employ various types of resource classification systems in their management activities such as inventory, mapping, and data analysis. Classification is the ordering or arranging of objects into groups or sets on the basis of their relationships, and as such, provide the resource managers with a structure for organizing their needed information. In addition of conforming to certain logical principles, resource classifications should be flexible, widely applicable to a variety of environmental conditions, and useable with minimal training. The process of classification may be approached from the bottom up (aggregation) or the top down (subdivision) or a combination of both, depending on the purpose of the classification. Most resource classification systems in use today focus on a single resource and are used for a single, limited purpose. However, resource managers now must employ the concept of multiple use in their management activities. What they need is an integrated, ecologically based approach to resource classification which would fulfill multiple-use mandates. In an effort to achieve resource-data compatibility and data sharing among Federal agencies, and interagency agreement has been signed by five Federal agencies to coordinate and cooperate in the area of resource classification and inventory.
NASA Astrophysics Data System (ADS)
Delong, Michael D.; Brusven, Merlyn A.
1991-07-01
Management of riparian habitats has been recognized for its importance in reducing instream effects of agricultural nonpoint source pollution. By serving as a buffer, well structured riparian habitats can reduce nonpoint source impacts by filtering surface runoff from field to stream. A system has been developed where key characteristics of riparian habitat, vegetation type, height, width, riparian and shoreline bank slope, and land use are classified as discrete categorical units. This classification system recognizes seven riparian vegetation types, which are determined by dominant plant type. Riparian and shoreline bank slope, in addition to riparian width and height, each consist of five categories. Classification by discrete units allows for ready digitizing of information for production of spatial maps using a geographic information system (GIS). The classification system was tested for field efficiency on Tom Beall Creek watershed, an agriculturally impacted third-order stream in the Clearwater River drainage, Nez Perce County, Idaho, USA. The classification system was simple to use during field applications and provided a good inventory of riparian habitat. After successful field tests, spatial maps were produced for each component using the Professional Map Analysis Package (pMAP), a GIS program. With pMAP, a map describing general riparian habitat condition was produced by combining the maps of components of riparian habitat, and the condition map was integrated with a map of soil erosion potential in order to determine areas along the stream that are susceptible to nonpoint source pollution inputs. Integration of spatial maps of riparian classification and watershed characteristics has great potential as a tool for aiding in making management decisions for mitigating off-site impacts of agricultural nonpoint source pollution.
The functional therapeutic chemical classification system.
Croset, Samuel; Overington, John P; Rebholz-Schuhmann, Dietrich
2014-03-15
Drug repositioning is the discovery of new indications for compounds that have already been approved and used in a clinical setting. Recently, some computational approaches have been suggested to unveil new opportunities in a systematic fashion, by taking into consideration gene expression signatures or chemical features for instance. We present here a novel method based on knowledge integration using semantic technologies, to capture the functional role of approved chemical compounds. In order to computationally generate repositioning hypotheses, we used the Web Ontology Language to formally define the semantics of over 20 000 terms with axioms to correctly denote various modes of action (MoA). Based on an integration of public data, we have automatically assigned over a thousand of approved drugs into these MoA categories. The resulting new resource is called the Functional Therapeutic Chemical Classification System and was further evaluated against the content of the traditional Anatomical Therapeutic Chemical Classification System. We illustrate how the new classification can be used to generate drug repurposing hypotheses, using Alzheimers disease as a use-case. https://www.ebi.ac.uk/chembl/ftc; https://github.com/loopasam/ftc. croset@ebi.ac.uk Supplementary data are available at Bioinformatics online.
Integrating human and machine intelligence in galaxy morphology classification tasks
NASA Astrophysics Data System (ADS)
Beck, Melanie R.; Scarlata, Claudia; Fortson, Lucy F.; Lintott, Chris J.; Simmons, B. D.; Galloway, Melanie A.; Willett, Kyle W.; Dickinson, Hugh; Masters, Karen L.; Marshall, Philip J.; Wright, Darryl
2018-06-01
Quantifying galaxy morphology is a challenging yet scientifically rewarding task. As the scale of data continues to increase with upcoming surveys, traditional classification methods will struggle to handle the load. We present a solution through an integration of visual and automated classifications, preserving the best features of both human and machine. We demonstrate the effectiveness of such a system through a re-analysis of visual galaxy morphology classifications collected during the Galaxy Zoo 2 (GZ2) project. We reprocess the top-level question of the GZ2 decision tree with a Bayesian classification aggregation algorithm dubbed SWAP, originally developed for the Space Warps gravitational lens project. Through a simple binary classification scheme, we increase the classification rate nearly 5-fold classifying 226 124 galaxies in 92 d of GZ2 project time while reproducing labels derived from GZ2 classification data with 95.7 per cent accuracy. We next combine this with a Random Forest machine learning algorithm that learns on a suite of non-parametric morphology indicators widely used for automated morphologies. We develop a decision engine that delegates tasks between human and machine and demonstrate that the combined system provides at least a factor of 8 increase in the classification rate, classifying 210 803 galaxies in just 32 d of GZ2 project time with 93.1 per cent accuracy. As the Random Forest algorithm requires a minimal amount of computational cost, this result has important implications for galaxy morphology identification tasks in the era of Euclid and other large-scale surveys.
NASA Technical Reports Server (NTRS)
Estes, J. E.; Tinney, L. R. (Principal Investigator); Streich, T.
1981-01-01
The use of digital LANDSAT techniques for monitoring agricultural land use conversions was studied. Two study areas were investigated: one in Ventura County and the other in Fresno County (California). Ventura test site investigations included the use of three dates of LANDSAT data to improve classification performance beyond that previously obtained using single data techniques. The 9% improvement is considered highly significant. Also developed and demonstrated using Ventura County data is an automated cluster labeling procedure, considered a useful example of vertical data integration. Fresno County results for a single data LANDSAT classification paralleled those found in Ventura, demonstrating that the urban/rural fringe zone of most interest is a difficult environment to classify using LANDSAT data. A general raster to vector conversion program was developed to allow LANDSAT classification products to be transferred to an operational county level geographic information system in Fresno.
Vascular Anomalies (Part I): Classification and Diagnostics of Vascular Anomalies.
Sadick, Maliha; Müller-Wille, René; Wildgruber, Moritz; Wohlgemuth, Walter A
2018-06-06
Vascular anomalies are a diagnostic and therapeutic challenge. They require dedicated interdisciplinary management. Optimal patient care relies on integral medical evaluation and a classification system established by experts in the field, to provide a better understanding of these complex vascular entities. A dedicated classification system according to the International Society for the Study of Vascular Anomalies (ISSVA) and the German Interdisciplinary Society of Vascular Anomalies (DiGGefA) is presented. The vast spectrum of diagnostic modalities, ranging from ultrasound with color Doppler, conventional X-ray, CT with 4 D imaging and MRI as well as catheter angiography for appropriate assessment is discussed. Congenital vascular anomalies are comprised of vascular tumors, based on endothelial cell proliferation and vascular malformations with underlying mesenchymal and angiogenetic disorder. Vascular tumors tend to regress with patient's age, vascular malformations increase in size and are subdivided into capillary, venous, lymphatic, arterio-venous and combined malformations, depending on their dominant vasculature. According to their appearance, venous malformations are the most common representative of vascular anomalies (70 %), followed by lymphatic malformations (12 %), arterio-venous malformations (8 %), combined malformation syndromes (6 %) and capillary malformations (4 %). The aim is to provide an overview of the current classification system and diagnostic characterization of vascular anomalies in order to facilitate interdisciplinary management of vascular anomalies. · Vascular anomalies are comprised of vascular tumors and vascular malformations, both considered to be rare diseases.. · Appropriate treatment depends on correct classification and diagnosis of vascular anomalies, which is based on established national and international classification systems, recommendations and guidelines.. · In the classification, diagnosis and treatment of congenital vascular anomalies, radiology plays an integral part in patient management.. · Sadick M, Müller-Wille R, Wildgruber M et al. Vascular Anomalies (Part I): Classification and Diagnostics of Vascular Anomalies. Fortschr Röntgenstr 2018; DOI: 10.1055/a-0620-8925. © Georg Thieme Verlag KG Stuttgart · New York.
Lie-Hamilton systems on the plane: Properties, classification and applications
NASA Astrophysics Data System (ADS)
Ballesteros, A.; Blasco, A.; Herranz, F. J.; de Lucas, J.; Sardón, C.
2015-04-01
We study Lie-Hamilton systems on the plane, i.e. systems of first-order differential equations describing the integral curves of a t-dependent vector field taking values in a finite-dimensional real Lie algebra of planar Hamiltonian vector fields with respect to a Poisson structure. We start with the local classification of finite-dimensional real Lie algebras of vector fields on the plane obtained in González-López, Kamran, and Olver (1992) [23] and we interpret their results as a local classification of Lie systems. By determining which of these real Lie algebras consist of Hamiltonian vector fields relative to a Poisson structure, we provide the complete local classification of Lie-Hamilton systems on the plane. We present and study through our results new Lie-Hamilton systems of interest which are used to investigate relevant non-autonomous differential equations, e.g. we get explicit local diffeomorphisms between such systems. We also analyse biomathematical models, the Milne-Pinney equations, second-order Kummer-Schwarz equations, complex Riccati equations and Buchdahl equations.
ERIC Educational Resources Information Center
Daniels, Brian; Volpe, Robert J.; Fabiano, Gregory A.; Briesch, Amy M.
2017-01-01
This study examines the classification accuracy and teacher acceptability of a problem-focused screener for academic and disruptive behavior problems, which is directly linked to evidence-based intervention. Participants included 39 classroom teachers from 2 public school districts in the Northeastern United States. Teacher ratings were obtained…
Integrative analysis of environmental sequences using MEGAN4.
Huson, Daniel H; Mitra, Suparna; Ruscheweyh, Hans-Joachim; Weber, Nico; Schuster, Stephan C
2011-09-01
A major challenge in the analysis of environmental sequences is data integration. The question is how to analyze different types of data in a unified approach, addressing both the taxonomic and functional aspects. To facilitate such analyses, we have substantially extended MEGAN, a widely used taxonomic analysis program. The new program, MEGAN4, provides an integrated approach to the taxonomic and functional analysis of metagenomic, metatranscriptomic, metaproteomic, and rRNA data. While taxonomic analysis is performed based on the NCBI taxonomy, functional analysis is performed using the SEED classification of subsystems and functional roles or the KEGG classification of pathways and enzymes. A number of examples illustrate how such analyses can be performed, and show that one can also import and compare classification results obtained using others' tools. MEGAN4 is freely available for academic purposes, and installers for all three major operating systems can be downloaded from www-ab.informatik.uni-tuebingen.de/software/megan.
A classification system for characterization of physical and non-physical work factors.
Genaidy, A; Karwowski, W; Succop, P; Kwon, Y G; Alhemoud, A; Goyal, D
2000-01-01
A comprehensive evaluation of work-related performance factors is a prerequisite to developing integrated and long-term solutions to workplace performance improvement. This paper describes a work-factor classification system that categorizes the entire domain of workplace factors impacting performance. A questionnaire-based instrument was developed to implement this classification system in industry. Fifty jobs were evaluated in 4 different service and manufacturing companies using the proposed questionnaire-based instrument. The reliability coefficients obtained from the analyzed jobs were considered good (0.589 to 0.862). In general, the physical work factors resulted in higher reliability coefficients (0.847 to 0.862) than non-physical work factors (0.589 to 0.768).
NASA Astrophysics Data System (ADS)
Manteiga, M.; Carricajo, I.; Rodríguez, A.; Dafonte, C.; Arcay, B.
2009-02-01
Astrophysics is evolving toward a more rational use of costly observational data by intelligently exploiting the large terrestrial and spatial astronomical databases. In this paper, we present a study showing the suitability of an expert system to perform the classification of stellar spectra in the Morgan and Keenan (MK) system. Using the formalism of artificial intelligence for the development of such a system, we propose a rules' base that contains classification criteria and confidence grades, all integrated in an inference engine that emulates human reasoning by means of a hierarchical decision rules tree that also considers the uncertainty factors associated with rules. Our main objective is to illustrate the formulation and development of such a system for an astrophysical classification problem. An extensive spectral database of MK standard spectra has been collected and used as a reference to determine the spectral indexes that are suitable for classification in the MK system. It is shown that by considering 30 spectral indexes and associating them with uncertainty factors, we can find an accurate diagnose in MK types of a particular spectrum. The system was evaluated against the NOAO-INDO-US spectral catalog.
The ICI classification for calcaneal injuries: a validation study.
Frima, Herman; Eshuis, Rienk; Mulder, Paul; Leenen, Luke
2012-06-01
The integral classification of injuries (ICI), by Zwipp et al. has been developed as a classification system for injuries of the bones, joints, cartilage and ligaments of the foot. It follows the principles of the comprehensive classification of fractures by Müller et al. The ICI was developed for 'everyday use' and scientific purposes. Our aim was to perform a validation study for this classification system applied to the calcaneal injuries. A panel of five experienced trauma and orthopaedic surgeons evaluated the ICI score in 20 calcaneal injuries. After 2 months, a second classification was performed in a different order. Inter- and intra-observer variability were evaluated by kappa statistics. Panel members were not able to evaluate capsule and ligamental injuries based on X-ray and computed tomography (CT) films. Two injuries were excluded for logistical reasons. The inter-observer agreement based on 18 injuries of bone and joints was slight; kappa 0.14 (90% confidence interval (CI): 0.05-0.22). The intra-observer agreement was fair; kappa 0.31 (90% CI: 0.22-0.41). Overall, the panel rated the system as very complicated and not practical. The ICI is a complicated classification system with slight to fair inter- and intra-observer variabilities. It might not be a practical classification system for calcaneal injuries in 'everyday use' or scientific purposes. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Keefer, Matthew L.; Peery, Christopher A.; Wright, Nancy; Daigle, William R.; Caudill, Christopher C.; Clabough, Tami S.; Griffith, David W.; Zacharias, Mark A.
2008-06-01
A common first step in conservation planning and resource management is to identify and classify habitat types, and this has led to a proliferation of habitat classification systems. Ideally, classifications should be scientifically and conceptually rigorous, with broad applicability across spatial and temporal scales. Successful systems will also be flexible and adaptable, with a framework and supporting lexicon accessible to users from a variety of disciplines and locations. A new, continental-scale classification system for coastal and marine habitats—the Coastal and Marine Ecological Classification Standard (CMECS)—is currently being developed for North America by NatureServe and the National Oceanic and Atmospheric Administration (NOAA). CMECS is a nested, hierarchical framework that applies a uniform set of rules and terminology across multiple habitat scales using a combination of oceanographic (e.g. salinity, temperature), physiographic (e.g. depth, substratum), and biological (e.g. community type) criteria. Estuaries are arguably the most difficult marine environments to classify due to large spatio-temporal variability resulting in rapidly shifting benthic and water column conditions. We simultaneously collected data at eleven subtidal sites in the Columbia River Estuary (CRE) in fall 2004 to evaluate whether the estuarine component of CMECS could adequately classify habitats across several scales for representative sites within the estuary spanning a range of conditions. Using outputs from an acoustic Doppler current profiler (ADCP), CTD (conductivity, temperature, depth) sensor, and PONAR (benthic dredge) we concluded that the CMECS hierarchy provided a spatially explicit framework in which to integrate multiple parameters to define macro-habitats at the 100 m 2 to >1000 m 2 scales, or across several tiers of the CMECS system. The classification's strengths lie in its nested, hierarchical structure and in the development of a standardized, yet flexible classification lexicon. The application of the CMECS to other estuaries in North America should therefore identify similar habitat types at similar scales as we identified in the CRE. We also suggest that the CMECS could be improved by refining classification thresholds to better reflect ecological processes, by direct integration of temporal variability, and by more explicitly linking physical and biological processes with habitat patterns.
A statistical approach to root system classification
Bodner, Gernot; Leitner, Daniel; Nakhforoosh, Alireza; Sobotik, Monika; Moder, Karl; Kaul, Hans-Peter
2013-01-01
Plant root systems have a key role in ecology and agronomy. In spite of fast increase in root studies, still there is no classification that allows distinguishing among distinctive characteristics within the diversity of rooting strategies. Our hypothesis is that a multivariate approach for “plant functional type” identification in ecology can be applied to the classification of root systems. The classification method presented is based on a data-defined statistical procedure without a priori decision on the classifiers. The study demonstrates that principal component based rooting types provide efficient and meaningful multi-trait classifiers. The classification method is exemplified with simulated root architectures and morphological field data. Simulated root architectures showed that morphological attributes with spatial distribution parameters capture most distinctive features within root system diversity. While developmental type (tap vs. shoot-borne systems) is a strong, but coarse classifier, topological traits provide the most detailed differentiation among distinctive groups. Adequacy of commonly available morphologic traits for classification is supported by field data. Rooting types emerging from measured data, mainly distinguished by diameter/weight and density dominated types. Similarity of root systems within distinctive groups was the joint result of phylogenetic relation and environmental as well as human selection pressure. We concluded that the data-define classification is appropriate for integration of knowledge obtained with different root measurement methods and at various scales. Currently root morphology is the most promising basis for classification due to widely used common measurement protocols. To capture details of root diversity efforts in architectural measurement techniques are essential. PMID:23914200
A statistical approach to root system classification.
Bodner, Gernot; Leitner, Daniel; Nakhforoosh, Alireza; Sobotik, Monika; Moder, Karl; Kaul, Hans-Peter
2013-01-01
Plant root systems have a key role in ecology and agronomy. In spite of fast increase in root studies, still there is no classification that allows distinguishing among distinctive characteristics within the diversity of rooting strategies. Our hypothesis is that a multivariate approach for "plant functional type" identification in ecology can be applied to the classification of root systems. The classification method presented is based on a data-defined statistical procedure without a priori decision on the classifiers. The study demonstrates that principal component based rooting types provide efficient and meaningful multi-trait classifiers. The classification method is exemplified with simulated root architectures and morphological field data. Simulated root architectures showed that morphological attributes with spatial distribution parameters capture most distinctive features within root system diversity. While developmental type (tap vs. shoot-borne systems) is a strong, but coarse classifier, topological traits provide the most detailed differentiation among distinctive groups. Adequacy of commonly available morphologic traits for classification is supported by field data. Rooting types emerging from measured data, mainly distinguished by diameter/weight and density dominated types. Similarity of root systems within distinctive groups was the joint result of phylogenetic relation and environmental as well as human selection pressure. We concluded that the data-define classification is appropriate for integration of knowledge obtained with different root measurement methods and at various scales. Currently root morphology is the most promising basis for classification due to widely used common measurement protocols. To capture details of root diversity efforts in architectural measurement techniques are essential.
Operational alternatives for LANDSAT in California
NASA Technical Reports Server (NTRS)
Wilson, P.; Gialdini, M. J.
1981-01-01
Data integration is defined and examined as the means of promoting data sharing among the various governmental and private geobased information systems in California. Elements of vertical integration considered included technical factors (such as resolution and classification) and institutional factors (such as organizational control, and legal and political barriers). Attempts are made to fit the theoretical elements of vertical integration into a meaningful structure for looking at the problem from a statewide focus. Both manual (mapped) and machine readable data systems are included. Special attention is given to LANDSAT imagery because of its strong potential for integrated use and its primary in the California Integrated Remote Sensing System program.
Xiang, Kun; Li, Yinglei; Ford, William; Land, Walker; Schaffer, J David; Congdon, Robert; Zhang, Jing; Sadik, Omowunmi
2016-02-21
We hereby report the design and implementation of an Autonomous Microbial Cell Culture and Classification (AMC(3)) system for rapid detection of food pathogens. Traditional food testing methods require multistep procedures and long incubation period, and are thus prone to human error. AMC(3) introduces a "one click approach" to the detection and classification of pathogenic bacteria. Once the cultured materials are prepared, all operations are automatic. AMC(3) is an integrated sensor array platform in a microbial fuel cell system composed of a multi-potentiostat, an automated data collection system (Python program, Yocto Maxi-coupler electromechanical relay module) and a powerful classification program. The classification scheme consists of Probabilistic Neural Network (PNN), Support Vector Machines (SVM) and General Regression Neural Network (GRNN) oracle-based system. Differential Pulse Voltammetry (DPV) is performed on standard samples or unknown samples. Then, using preset feature extractions and quality control, accepted data are analyzed by the intelligent classification system. In a typical use, thirty-two extracted features were analyzed to correctly classify the following pathogens: Escherichia coli ATCC#25922, Escherichia coli ATCC#11775, and Staphylococcus epidermidis ATCC#12228. 85.4% accuracy range was recorded for unknown samples, and within a shorter time period than the industry standard of 24 hours.
Integration of the Execution Support System for the Computer-Aided Prototyping System (CAPS)
1990-09-01
SUPPORT SYSTEM FOR THE COMPUTER -AIDED PROTOTYPING SYSTEM (CAPS) by Frank V. Palazzo September 1990 Thesis Advisor: Luq± Approved for public release...ZATON REPOR ,,.VBE (, 6a NAME OF PERPORMING ORGAN ZAT7ON 6b OFF:CE SYVBOL 7a NAME OF MONITORINC O0-CA’Za- ON Computer Science Department (if applicable...Include Security Classification) Integration of the Execution Support System for the Computer -Aided Prototyping System (C S) 12 PERSONAL AUTHOR(S) Frank V
Stygoregions – a promising approach to a bioregional classification of groundwater systems
Stein, Heide; Griebler, Christian; Berkhoff, Sven; Matzke, Dirk; Fuchs, Andreas; Hahn, Hans Jürgen
2012-01-01
Linked to diverse biological processes, groundwater ecosystems deliver essential services to mankind, the most important of which is the provision of drinking water. In contrast to surface waters, ecological aspects of groundwater systems are ignored by the current European Union and national legislation. Groundwater management and protection measures refer exclusively to its good physicochemical and quantitative status. Current initiatives in developing ecologically sound integrative assessment schemes by taking groundwater fauna into account depend on the initial classification of subsurface bioregions. In a large scale survey, the regional and biogeographical distribution patterns of groundwater dwelling invertebrates were examined for many parts of Germany. Following an exploratory approach, our results underline that the distribution patterns of invertebrates in groundwater are not in accordance with any existing bioregional classification system established for surface habitats. In consequence, we propose to develope a new classification scheme for groundwater ecosystems based on stygoregions. PMID:22993698
Evolution and classification of the CRISPR-Cas systems
S. Makarova, Kira; H. Haft, Daniel; Barrangou, Rodolphe; J. J. Brouns, Stan; Charpentier, Emmanuelle; Horvath, Philippe; Moineau, Sylvain; J. M. Mojica, Francisco; I. Wolf, Yuri; Yakunin, Alexander F.; van der Oost, John; V. Koonin, Eugene
2012-01-01
The CRISPR–Cas (clustered regularly interspaced short palindromic repeats–CRISPR-associated proteins) modules are adaptive immunity systems that are present in many archaea and bacteria. These defence systems are encoded by operons that have an extraordinarily diverse architecture and a high rate of evolution for both the cas genes and the unique spacer content. Here, we provide an updated analysis of the evolutionary relationships between CRISPR–Cas systems and Cas proteins. Three major types of CRISPR–Cas system are delineated, with a further division into several subtypes and a few chimeric variants. Given the complexity of the genomic architectures and the extremely dynamic evolution of the CRISPR–Cas systems, a unified classification of these systems should be based on multiple criteria. Accordingly, we propose a `polythetic' classification that integrates the phylogenies of the most common cas genes, the sequence and organization of the CRISPR repeats and the architecture of the CRISPR–cas loci. PMID:21552286
78 FR 66709 - Privacy Act of 1974; Systems of Records
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-06
...: Online Forms. SECURITY CLASSIFICATION: None. SYSTEM LOCATION: Federal Housing Finance Agency, 400 Seventh... or fraud, or harm to the security or integrity of this system or other systems or programs (whether... ``Photographic, Video, Voice, and Similar Files.'' The proposed new system, ``Online Forms'' (FHFA-22), will...
[The physiological classification of human thermal states under high environmental temperatures].
Bobrov, A F; Kuznets, E I
1995-01-01
The paper deals with the physiological classification of human thermal states in a hot environment. A review of the basic systems of classifications of thermal states is given, their main drawbacks are discussed. On the basis of human functional state research in a broad range of environmental temperatures the system of evaluation and classification of human thermal states is proposed. New integral one-dimensional multi-parametric criteria for evaluation are used. For the development of these criteria methods of factor, cluster and canonical correlation analyses are applied. Stochastic nomograms capable of identification of human thermal state for different intensity of influence are given. In this case evaluation of intensity is estimated according to one-dimensional criteria taking into account environmental temperature, physical load and time of man's staying in overheating conditions.
Mashin, V A; Mashina, M N
2004-12-01
In the paper, outcomes of the researches devoted to factor analysis of heart rate variability parameters and definition of the most informative parameters for diagnostics of functional states and an evaluation of level of stability to mental loads, are presented. The factor structure of parameters, which unclude integral level of heart rate variability (1), balance between activity of vagus and brain cortical-limbic systems (2), integrated level of cardiovascular system functioning (3), is substantiated. Factor analysis outcomes have been used for construction of functional state classification, for their differential diagnostics, and for development and check of algorithm for evaluation of the stability level in mental loads.
Grimm, Lisa R; Maddox, W Todd
2013-11-01
Research has identified multiple category-learning systems with each being "tuned" for learning categories with different task demands and each governed by different neurobiological systems. Rule-based (RB) classification involves testing verbalizable rules for category membership while information-integration (II) classification requires the implicit learning of stimulus-response mappings. In the first study to directly test rule priming with RB and II category learning, we investigated the influence of the availability of information presented at the beginning of the task. Participants viewed lines that varied in length, orientation, and position on the screen, and were primed to focus on stimulus dimensions that were relevant or irrelevant to the correct classification rule. In Experiment 1, we used an RB category structure, and in Experiment 2, we used an II category structure. Accuracy and model-based analyses suggested that a focus on relevant dimensions improves RB task performance later in learning while a focus on an irrelevant dimension improves II task performance early in learning. © 2013.
NASA Astrophysics Data System (ADS)
Rahman, Husna Abdul; Harun, Sulaiman Wadi; Arof, Hamzah; Irawati, Ninik; Musirin, Ismail; Ibrahim, Fatimah; Ahmad, Harith
2014-05-01
An enhanced dental cavity diameter measurement mechanism using an intensity-modulated fiber optic displacement sensor (FODS) scanning and imaging system, fuzzy logic as well as a single-layer perceptron (SLP) neural network, is presented. The SLP network was employed for the classification of the reflected signals, which were obtained from the surfaces of teeth samples and captured using FODS. Two features were used for the classification of the reflected signals with one of them being the output of a fuzzy logic. The test results showed that the combined fuzzy logic and SLP network methodology contributed to a 100% classification accuracy of the network. The high-classification accuracy significantly demonstrates the suitability of the proposed features and classification using SLP networks for classifying the reflected signals from teeth surfaces, enabling the sensor to accurately measure small diameters of tooth cavity of up to 0.6 mm. The method remains simple enough to allow its easy integration in existing dental restoration support systems.
Rahman, Husna Abdul; Harun, Sulaiman Wadi; Arof, Hamzah; Irawati, Ninik; Musirin, Ismail; Ibrahim, Fatimah; Ahmad, Harith
2014-05-01
An enhanced dental cavity diameter measurement mechanism using an intensity-modulated fiber optic displacement sensor (FODS) scanning and imaging system, fuzzy logic as well as a single-layer perceptron (SLP) neural network, is presented. The SLP network was employed for the classification of the reflected signals, which were obtained from the surfaces of teeth samples and captured using FODS. Two features were used for the classification of the reflected signals with one of them being the output of a fuzzy logic. The test results showed that the combined fuzzy logic and SLP network methodology contributed to a 100% classification accuracy of the network. The high-classification accuracy significantly demonstrates the suitability of the proposed features and classification using SLP networks for classifying the reflected signals from teeth surfaces, enabling the sensor to accurately measure small diameters of tooth cavity of up to 0.6 mm. The method remains simple enough to allow its easy integration in existing dental restoration support systems.
Multispectral scanner system parameter study and analysis software system description, volume 2
NASA Technical Reports Server (NTRS)
Landgrebe, D. A. (Principal Investigator); Mobasseri, B. G.; Wiersma, D. J.; Wiswell, E. R.; Mcgillem, C. D.; Anuta, P. E.
1978-01-01
The author has identified the following significant results. The integration of the available methods provided the analyst with the unified scanner analysis package (USAP), the flexibility and versatility of which was superior to many previous integrated techniques. The USAP consisted of three main subsystems; (1) a spatial path, (2) a spectral path, and (3) a set of analytic classification accuracy estimators which evaluated the system performance. The spatial path consisted of satellite and/or aircraft data, data correlation analyzer, scanner IFOV, and random noise model. The output of the spatial path was fed into the analytic classification and accuracy predictor. The spectral path consisted of laboratory and/or field spectral data, EXOSYS data retrieval, optimum spectral function calculation, data transformation, and statistics calculation. The output of the spectral path was fended into the stratified posterior performance estimator.
MR-Compatible Integrated Eye Tracking System
2016-03-10
SECURITY CLASSIFICATION OF: This instrumentation grant was used to purchase state-of-the-art, high-resolution video eye tracker that can be used to...P.O. Box 12211 Research Triangle Park, NC 27709-2211 video eye tracking, eye movments, visual search; camouflage-breaking REPORT DOCUMENTATION PAGE...Report: MR-Compatible Integrated Eye Tracking System Report Title This instrumentation grant was used to purchase state-of-the-art, high-resolution video
Clonal Selection Based Artificial Immune System for Generalized Pattern Recognition
NASA Technical Reports Server (NTRS)
Huntsberger, Terry
2011-01-01
The last two decades has seen a rapid increase in the application of AIS (Artificial Immune Systems) modeled after the human immune system to a wide range of areas including network intrusion detection, job shop scheduling, classification, pattern recognition, and robot control. JPL (Jet Propulsion Laboratory) has developed an integrated pattern recognition/classification system called AISLE (Artificial Immune System for Learning and Exploration) based on biologically inspired models of B-cell dynamics in the immune system. When used for unsupervised or supervised classification, the method scales linearly with the number of dimensions, has performance that is relatively independent of the total size of the dataset, and has been shown to perform as well as traditional clustering methods. When used for pattern recognition, the method efficiently isolates the appropriate matches in the data set. The paper presents the underlying structure of AISLE and the results from a number of experimental studies.
Improving Recall Using Database Management Systems: A Learning Strategy.
ERIC Educational Resources Information Center
Jonassen, David H.
1986-01-01
Describes the use of microcomputer database management systems to facilitate the instructional uses of learning strategies relating to information processing skills, especially recall. Two learning strategies, cross-classification matrixing and node acquisition and integration, are highlighted. (Author/LRW)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vernon, Christopher R.; Arntzen, Evan V.; Richmond, Marshall C.
Assessing the environmental benefits of proposed flow modification to large rivers provides invaluable insight into future hydropower project operations and relicensing activities. Providing a means to quantitatively define flow-ecology relationships is integral in establishing flow regimes that are mutually beneficial to power production and ecological needs. To compliment this effort an opportunity to create versatile tools that can be applied to broad geographic areas has been presented. In particular, integration with efforts standardized within the ecological limits of hydrologic alteration (ELOHA) is highly advantageous (Poff et al. 2010). This paper presents a geographic information system (GIS) framework for large rivermore » classification that houses a base geomorphic classification that is both flexible and accurate, allowing for full integration with other hydrologic models focused on addressing ELOHA efforts. A case study is also provided that integrates publically available National Hydrography Dataset Plus Version 2 (NHDPlusV2) data, Modular Aquatic Simulation System two-dimensional (MASS2) hydraulic data, and field collected data into the framework to produce a suite of flow-ecology related outputs. The case study objective was to establish areas of optimal juvenile salmonid rearing habitat under varying flow regimes throughout an impounded portion of the lower Snake River, USA (Figure 1) as an indicator to determine sites where the potential exists to create additional shallow water habitat. Additionally, an alternative hydrologic classification useable throughout the contiguous United States which can be coupled with the geomorphic aspect of this framework is also presented. This framework provides the user with the ability to integrate hydrologic and ecologic data into the base geomorphic aspect of this framework within a geographic information system (GIS) to output spatiotemporally variable flow-ecology relationship scenarios.« less
Use of collateral information to improve LANDSAT classification accuracies
NASA Technical Reports Server (NTRS)
Strahler, A. H. (Principal Investigator)
1981-01-01
Methods to improve LANDSAT classification accuracies were investigated including: (1) the use of prior probabilities in maximum likelihood classification as a methodology to integrate discrete collateral data with continuously measured image density variables; (2) the use of the logit classifier as an alternative to multivariate normal classification that permits mixing both continuous and categorical variables in a single model and fits empirical distributions of observations more closely than the multivariate normal density function; and (3) the use of collateral data in a geographic information system as exercised to model a desired output information layer as a function of input layers of raster format collateral and image data base layers.
Hierarchical Gene Selection and Genetic Fuzzy System for Cancer Microarray Data Classification
Nguyen, Thanh; Khosravi, Abbas; Creighton, Douglas; Nahavandi, Saeid
2015-01-01
This paper introduces a novel approach to gene selection based on a substantial modification of analytic hierarchy process (AHP). The modified AHP systematically integrates outcomes of individual filter methods to select the most informative genes for microarray classification. Five individual ranking methods including t-test, entropy, receiver operating characteristic (ROC) curve, Wilcoxon and signal to noise ratio are employed to rank genes. These ranked genes are then considered as inputs for the modified AHP. Additionally, a method that uses fuzzy standard additive model (FSAM) for cancer classification based on genes selected by AHP is also proposed in this paper. Traditional FSAM learning is a hybrid process comprising unsupervised structure learning and supervised parameter tuning. Genetic algorithm (GA) is incorporated in-between unsupervised and supervised training to optimize the number of fuzzy rules. The integration of GA enables FSAM to deal with the high-dimensional-low-sample nature of microarray data and thus enhance the efficiency of the classification. Experiments are carried out on numerous microarray datasets. Results demonstrate the performance dominance of the AHP-based gene selection against the single ranking methods. Furthermore, the combination of AHP-FSAM shows a great accuracy in microarray data classification compared to various competing classifiers. The proposed approach therefore is useful for medical practitioners and clinicians as a decision support system that can be implemented in the real medical practice. PMID:25823003
Hierarchical gene selection and genetic fuzzy system for cancer microarray data classification.
Nguyen, Thanh; Khosravi, Abbas; Creighton, Douglas; Nahavandi, Saeid
2015-01-01
This paper introduces a novel approach to gene selection based on a substantial modification of analytic hierarchy process (AHP). The modified AHP systematically integrates outcomes of individual filter methods to select the most informative genes for microarray classification. Five individual ranking methods including t-test, entropy, receiver operating characteristic (ROC) curve, Wilcoxon and signal to noise ratio are employed to rank genes. These ranked genes are then considered as inputs for the modified AHP. Additionally, a method that uses fuzzy standard additive model (FSAM) for cancer classification based on genes selected by AHP is also proposed in this paper. Traditional FSAM learning is a hybrid process comprising unsupervised structure learning and supervised parameter tuning. Genetic algorithm (GA) is incorporated in-between unsupervised and supervised training to optimize the number of fuzzy rules. The integration of GA enables FSAM to deal with the high-dimensional-low-sample nature of microarray data and thus enhance the efficiency of the classification. Experiments are carried out on numerous microarray datasets. Results demonstrate the performance dominance of the AHP-based gene selection against the single ranking methods. Furthermore, the combination of AHP-FSAM shows a great accuracy in microarray data classification compared to various competing classifiers. The proposed approach therefore is useful for medical practitioners and clinicians as a decision support system that can be implemented in the real medical practice.
A coastal and marine digital library at USGS
Lightsom, Fran
2003-01-01
The Marine Realms Information Bank (MRIB) is a distributed geolibrary [NRC, 1999] from the U.S. Geological Survey (USGS) and the Woods Hole Oceanographic Institution (WHOI), whose purpose is to classify, integrate, and facilitate access to Earth systems science information about ocean, lake, and coastal environments. Core MRIB services are: (1) the search and display of information holdings by place and subject, and (2) linking of information assets that exist in remote physical locations. The design of the MRIB features a classification system to integrate information from remotely maintained sources. This centralized catalogue organizes information using 12 criteria: locations, geologic time, physiographic features, biota, disciplines, research methods, hot topics, project names, agency names, authors, content type, and file type. For many of these fields, MRIB has developed classification hierarchies.
Yin, Chang Shik; Ko, Seong-Gyu
2014-01-01
Objectives. Korean medicine, an integrated allopathic and traditional medicine, has developed unique characteristics and has been active in contributing to evidence-based medicine. Recent developments in Korean medicine have not been as well disseminated as traditional Chinese medicine. This introduction to recent developments in Korean medicine will draw attention to, and facilitate, the advancement of evidence-based complementary alternative medicine (CAM). Methods and Results. The history of and recent developments in Korean medicine as evidence-based medicine are explored through discussions on the development of a national standard classification of diseases and study reports, ranging from basic research to newly developed clinical therapies. A national standard classification of diseases has been developed and revised serially into an integrated classification of Western allopathic and traditional holistic medicine disease entities. Standard disease classifications offer a starting point for the reliable gathering of evidence and provide a representative example of the unique status of evidence-based Korean medicine as an integration of Western allopathic medicine and traditional holistic medicine. Conclusions. Recent developments in evidence-based Korean medicine show a unique development in evidence-based medicine, adopting both Western allopathic and holistic traditional medicine. It is expected that Korean medicine will continue to be an important contributor to evidence-based medicine, encompassing conventional and complementary approaches.
A Novel Fiber Optic Based Surveillance System for Prevention of Pipeline Integrity Threats.
Tejedor, Javier; Macias-Guarasa, Javier; Martins, Hugo F; Piote, Daniel; Pastor-Graells, Juan; Martin-Lopez, Sonia; Corredera, Pedro; Gonzalez-Herraez, Miguel
2017-02-12
This paper presents a novel surveillance system aimed at the detection and classification of threats in the vicinity of a long gas pipeline. The sensing system is based on phase-sensitive optical time domain reflectometry ( ϕ -OTDR) technology for signal acquisition and pattern recognition strategies for threat identification. The proposal incorporates contextual information at the feature level and applies a system combination strategy for pattern classification. The contextual information at the feature level is based on the tandem approach (using feature representations produced by discriminatively-trained multi-layer perceptrons) by employing feature vectors that spread different temporal contexts. The system combination strategy is based on a posterior combination of likelihoods computed from different pattern classification processes. The system operates in two different modes: (1) machine + activity identification, which recognizes the activity being carried out by a certain machine, and (2) threat detection, aimed at detecting threats no matter what the real activity being conducted is. In comparison with a previous system based on the same rigorous experimental setup, the results show that the system combination from the contextual feature information improves the results for each individual class in both operational modes, as well as the overall classification accuracy, with statistically-significant improvements.
Dynamics, integrability and topology for some classes of Kolmogorov Hamiltonian systems in R+4
NASA Astrophysics Data System (ADS)
Llibre, Jaume; Xiao, Dongmei
2017-02-01
In this paper we first give the sufficient and necessary conditions in order that two classes of polynomial Kolmogorov systems in R+4 are Hamiltonian systems. Then we study the integrability of these Hamiltonian systems in the Liouville sense. Finally, we investigate the global dynamics of the completely integrable Lotka-Volterra Hamiltonian systems in R+4. As an application of the invariant subsets of these systems, we obtain topological classifications of the 3-submanifolds in R+4 defined by the hypersurfaces axy + bzw + cx2 y + dxy2 + ez2 w + fzw2 = h, where a , b , c , d , e , f , w and h are real constants.
Rule groupings in expert systems using nearest neighbour decision rules, and convex hulls
NASA Technical Reports Server (NTRS)
Anastasiadis, Stergios
1991-01-01
Expert System shells are lacking in many areas of software engineering. Large rule based systems are not semantically comprehensible, difficult to debug, and impossible to modify or validate. Partitioning a set of rules found in CLIPS (C Language Integrated Production System) into groups of rules which reflect the underlying semantic subdomains of the problem, will address adequately the concerns stated above. Techniques are introduced to structure a CLIPS rule base into groups of rules that inherently have common semantic information. The concepts involved are imported from the field of A.I., Pattern Recognition, and Statistical Inference. Techniques focus on the areas of feature selection, classification, and a criteria of how 'good' the classification technique is, based on Bayesian Decision Theory. A variety of distance metrics are discussed for measuring the 'closeness' of CLIPS rules and various Nearest Neighbor classification algorithms are described based on the above metric.
An XML-based system for the flexible classification and retrieval of clinical practice guidelines.
Ganslandt, T.; Mueller, M. L.; Krieglstein, C. F.; Senninger, N.; Prokosch, H. U.
2002-01-01
Beneficial effects of clinical practice guidelines (CPGs) have not yet reached expectations due to limited routine adoption. Electronic distribution and reminder systems have the potential to overcome implementation barriers. Existing electronic CPG repositories like the National Guideline Clearinghouse (NGC) provide individual access but lack standardized computer-readable interfaces necessary for automated guideline retrieval. The aim of this paper was to facilitate automated context-based selection and presentation of CPGs. Using attributes from the NGC classification scheme, an XML-based metadata repository was successfully implemented, providing document storage, classification and retrieval functionality. Semi-automated extraction of attributes was implemented for the import of XML guideline documents using XPath. A hospital information system interface was exemplarily implemented for diagnosis-based guideline invocation. Limitations of the implemented system are discussed and possible future work is outlined. Integration of standardized computer-readable search interfaces into existing CPG repositories is proposed. PMID:12463831
Azadmanjir, Zahra; Safdari, Reza; Ghazisaeedi, Marjan; Mokhtaran, Mehrshad; Kameli, Mohammad Esmail
2017-06-01
Accurate coded data in the healthcare are critical. Computer-Assisted Coding (CAC) is an effective tool to improve clinical coding in particular when a new classification will be developed and implemented. But determine the appropriate method for development need to consider the specifications of existing CAC systems, requirements for each type, our infrastructure and also, the classification scheme. The aim of the study was the development of a decision model for determining accurate code of each medical intervention in Iranian Classification of Health Interventions (IRCHI) that can be implemented as a suitable CAC system. first, a sample of existing CAC systems was reviewed. Then feasibility of each one of CAC types was examined with regard to their prerequisites for their implementation. The next step, proper model was proposed according to the structure of the classification scheme and was implemented as an interactive system. There is a significant relationship between the level of assistance of a CAC system and integration of it with electronic medical documents. Implementation of fully automated CAC systems is impossible due to immature development of electronic medical record and problems in using language for medical documenting. So, a model was proposed to develop semi-automated CAC system based on hierarchical relationships between entities in the classification scheme and also the logic of decision making to specify the characters of code step by step through a web-based interactive user interface for CAC. It was composed of three phases to select Target, Action and Means respectively for an intervention. The proposed model was suitable the current status of clinical documentation and coding in Iran and also, the structure of new classification scheme. Our results show it was practical. However, the model needs to be evaluated in the next stage of the research.
Kianmehr, Keivan; Alhajj, Reda
2008-09-01
In this study, we aim at building a classification framework, namely the CARSVM model, which integrates association rule mining and support vector machine (SVM). The goal is to benefit from advantages of both, the discriminative knowledge represented by class association rules and the classification power of the SVM algorithm, to construct an efficient and accurate classifier model that improves the interpretability problem of SVM as a traditional machine learning technique and overcomes the efficiency issues of associative classification algorithms. In our proposed framework: instead of using the original training set, a set of rule-based feature vectors, which are generated based on the discriminative ability of class association rules over the training samples, are presented to the learning component of the SVM algorithm. We show that rule-based feature vectors present a high-qualified source of discrimination knowledge that can impact substantially the prediction power of SVM and associative classification techniques. They provide users with more conveniences in terms of understandability and interpretability as well. We have used four datasets from UCI ML repository to evaluate the performance of the developed system in comparison with five well-known existing classification methods. Because of the importance and popularity of gene expression analysis as real world application of the classification model, we present an extension of CARSVM combined with feature selection to be applied to gene expression data. Then, we describe how this combination will provide biologists with an efficient and understandable classifier model. The reported test results and their biological interpretation demonstrate the applicability, efficiency and effectiveness of the proposed model. From the results, it can be concluded that a considerable increase in classification accuracy can be obtained when the rule-based feature vectors are integrated in the learning process of the SVM algorithm. In the context of applicability, according to the results obtained from gene expression analysis, we can conclude that the CARSVM system can be utilized in a variety of real world applications with some adjustments.
Salvador-Carulla, Luis; Bertelli, Marco; Martinez-Leal, Rafael
2018-03-01
To increase the expert knowledge-base on intellectual developmental disorders (IDDs) by investigating the typology trajectories of consensus formation in the classification systems up to the 11th edition of the International Classification of Diseases (ICD-11). This expert review combines an analysis of key recent literature and the revision of the consensus formation and contestation in the expert committees contributing to the classification systems since the 1950s. Historically two main approaches have contributed to the development of this knowledge-base: a neurodevelopmental-clinical approach and a psychoeducational-social approach. These approaches show a complex interaction throughout the history of IDD and have had a diverse influence on its classification. Although in theory Diagnostic and Statistical Manual (DSM)-5 and ICD adhere to the neurodevelopmental-clinical model, the new definition in the ICD-11 follows a restrictive normality approach to intellectual quotient and to the measurement of adaptive behaviour. On the contrary DSM-5 is closer to the recommendations made by the WHO 'Working Group on Mental Retardation' for ICD-11 for an integrative approach. A cyclical pattern of consensus formation has been identified in IDD. The revision of the three major classification systems in the last decade has increased the terminological and conceptual variability and the overall scientific contestation on IDD.
A fuzzy hill-climbing algorithm for the development of a compact associative classifier
NASA Astrophysics Data System (ADS)
Mitra, Soumyaroop; Lam, Sarah S.
2012-02-01
Classification, a data mining technique, has widespread applications including medical diagnosis, targeted marketing, and others. Knowledge discovery from databases in the form of association rules is one of the important data mining tasks. An integrated approach, classification based on association rules, has drawn the attention of the data mining community over the last decade. While attention has been mainly focused on increasing classifier accuracies, not much efforts have been devoted towards building interpretable and less complex models. This paper discusses the development of a compact associative classification model using a hill-climbing approach and fuzzy sets. The proposed methodology builds the rule-base by selecting rules which contribute towards increasing training accuracy, thus balancing classification accuracy with the number of classification association rules. The results indicated that the proposed associative classification model can achieve competitive accuracies on benchmark datasets with continuous attributes and lend better interpretability, when compared with other rule-based systems.
NASA Astrophysics Data System (ADS)
Zhu, Jun; Chen, Lijun; Ma, Lantao; Li, Dejian; Jiang, Wei; Pan, Lihong; Shen, Huiting; Jia, Hongmin; Hsiang, Chingyun; Cheng, Guojie; Ling, Li; Chen, Shijie; Wang, Jun; Liao, Wenkui; Zhang, Gary
2014-04-01
Defect review is a time consuming job. Human error makes result inconsistent. The defects located on don't care area would not hurt the yield and no need to review them such as defects on dark area. However, critical area defects can impact yield dramatically and need more attention to review them such as defects on clear area. With decrease in integrated circuit dimensions, mask defects are always thousands detected during inspection even more. Traditional manual or simple classification approaches are unable to meet efficient and accuracy requirement. This paper focuses on automatic defect management and classification solution using image output of Lasertec inspection equipment and Anchor pattern centric image process technology. The number of mask defect found during an inspection is always in the range of thousands or even more. This system can handle large number defects with quick and accurate defect classification result. Our experiment includes Die to Die and Single Die modes. The classification accuracy can reach 87.4% and 93.3%. No critical or printable defects are missing in our test cases. The missing classification defects are 0.25% and 0.24% in Die to Die mode and Single Die mode. This kind of missing rate is encouraging and acceptable to apply on production line. The result can be output and reloaded back to inspection machine to have further review. This step helps users to validate some unsure defects with clear and magnification images when captured images can't provide enough information to make judgment. This system effectively reduces expensive inline defect review time. As a fully inline automated defect management solution, the system could be compatible with current inspection approach and integrated with optical simulation even scoring function and guide wafer level defect inspection.
Forkel, Philipp; Reuter, Sven; Sprenker, Frederike; Achtnich, Andrea; Herbst, Elmar; Imhoff, Andreas; Petersen, Wolf
2015-01-01
Posterior lateral meniscus root tears (PLMRTs) affect the intra-articular pressure distribution in the lateral compartment of the knee. The biomechanical consequences of these injuries are significantly influenced by the integrity of the meniscofemoral ligaments (MFLs). A newly introduced arthroscopic classification system for PLMRTs that takes MFL integrity into account has not yet been clinically applied but may be useful in selecting the optimal method of PLMRT repair. Prospective ACL reconstruction data were collected. Concomitant injuries of the lateral meniscus posterior horn were classified according to their shape and MFL status. The classifications were: type 1, avulsion of the root; type 2, radial tear of the lateral meniscus posterior horn close to the root with an intact MFL; and type 3, complete detachment of the posterior meniscus horn. Between January 2011 and May 2012, 228 consecutive ACL reconstructions were included. Lateral and medial meniscus tears were identified in 38.2% (n = 87) and 44.7% (n = 102), respectively. Of the 87 lateral meniscus tears, 32 cases had PLMRTs; the overall prevalence of PLMRTs was 14% (n = 32). Two medial meniscus root tears were detected. All PLMRTs were classified according to the classification system described above, and the fixation procedure was adapted to the type of meniscus tear. The PLMRT tear is a common injury among patients undergoing ACL repair and can be arthroscopically classified into three different types. Medial meniscus root tears are rare in association with ACL tears. The PLMRT classification presented here may help to estimate the injury's impact on the lateral compartment and to identify the optimal treatment. These tears should not be overlooked, and the treatment strategy should be chosen with respect to the type of root tear. IV.
Three-dimensional passive sensing photon counting for object classification
NASA Astrophysics Data System (ADS)
Yeom, Seokwon; Javidi, Bahram; Watson, Edward
2007-04-01
In this keynote address, we address three-dimensional (3D) distortion-tolerant object recognition using photon-counting integral imaging (II). A photon-counting linear discriminant analysis (LDA) is discussed for classification of photon-limited images. We develop a compact distortion-tolerant recognition system based on the multiple-perspective imaging of II. Experimental and simulation results have shown that a low level of photons is sufficient to classify out-of-plane rotated objects.
NASA Astrophysics Data System (ADS)
Meyer, J.; White, S.
2005-05-01
Classification of lava morphology on a regional scale contributes to the understanding of the distribution and extent of lava flows at a mid-ocean ridge. Seafloor classification is essential to understand the regional undersea environment at midocean ridges. In this study, the development of a classification scheme is found to identify and extract textural patterns of different lava morphologies along the East Pacific Rise using DSL-120 side-scan and ARGO camera imagery. Application of an accurate image classification technique to side-scan sonar allows us to expand upon the locally available visual ground reference data to make the first comprehensive regional maps of small-scale lava morphology present at a mid-ocean ridge. The submarine lava morphologies focused upon in this study; sheet flows, lobate flows, and pillow flows; have unique textures. Several algorithms were applied to the sonar backscatter intensity images to produce multiple textural image layers useful in distinguishing the different lava morphologies. The intensity and spatially enhanced images were then combined and applied to a hybrid classification technique. The hybrid classification involves two integrated classifiers, a rule-based expert system classifier and a machine learning classifier. The complementary capabilities of the two integrated classifiers provided a higher accuracy of regional seafloor classification compared to using either classifier alone. Once trained, the hybrid classifier can then be applied to classify neighboring images with relative ease. This classification technique has been used to map the lava morphology distribution and infer spatial variability of lava effusion rates along two segments of the East Pacific Rise, 17 deg S and 9 deg N. Future use of this technique may also be useful for attaining temporal information. Repeated documentation of morphology classification in this dynamic environment can be compared to detect regional seafloor change.
RMP*eSubmit facilitates secure online Risk Management Plan updates/resubmissions, required at least every 5 years. Reporting requirements have not changed since 2004, but the 2012 version of North American Industry Classification System has been integrated
An online sleep apnea detection method based on recurrence quantification analysis.
Nguyen, Hoa Dinh; Wilkins, Brek A; Cheng, Qi; Benjamin, Bruce Allen
2014-07-01
This paper introduces an online sleep apnea detection method based on heart rate complexity as measured by recurrence quantification analysis (RQA) statistics of heart rate variability (HRV) data. RQA statistics can capture nonlinear dynamics of a complex cardiorespiratory system during obstructive sleep apnea. In order to obtain a more robust measurement of the nonstationarity of the cardiorespiratory system, we use different fixed amount of neighbor thresholdings for recurrence plot calculation. We integrate a feature selection algorithm based on conditional mutual information to select the most informative RQA features for classification, and hence, to speed up the real-time classification process without degrading the performance of the system. Two types of binary classifiers, i.e., support vector machine and neural network, are used to differentiate apnea from normal sleep. A soft decision fusion rule is developed to combine the results of these classifiers in order to improve the classification performance of the whole system. Experimental results show that our proposed method achieves better classification results compared with the previous recurrence analysis-based approach. We also show that our method is flexible and a strong candidate for a real efficient sleep apnea detection system.
Portable Multispectral Colorimeter for Metallic Ion Detection and Classification
Jaimes, Ruth F. V. V.; Borysow, Walter; Gomes, Osmar F.; Salcedo, Walter J.
2017-01-01
This work deals with a portable device system applied to detect and classify different metallic ions as proposed and developed, aiming its application for hydrological monitoring systems such as rivers, lakes and groundwater. Considering the system features, a portable colorimetric system was developed by using a multispectral optoelectronic sensor. All the technology of quantification and classification of metallic ions using optoelectronic multispectral sensors was fully integrated in the embedded hardware FPGA ( Field Programmable Gate Array) technology and software based on virtual instrumentation (NI LabView®). The system draws on an indicative colorimeter by using the chromogen reagent of 1-(2-pyridylazo)-2-naphthol (PAN). The results obtained with the signal processing and pattern analysis using the method of the linear discriminant analysis, allows excellent results during detection and classification of Pb(II), Cd(II), Zn(II), Cu(II), Fe(III) and Ni(II) ions, with almost the same level of performance as for those obtained from the Ultravioled and visible (UV-VIS) spectrophotometers of high spectral resolution. PMID:28788082
Portable Multispectral Colorimeter for Metallic Ion Detection and Classification.
Braga, Mauro S; Jaimes, Ruth F V V; Borysow, Walter; Gomes, Osmar F; Salcedo, Walter J
2017-07-28
This work deals with a portable device system applied to detect and classify different metallic ions as proposed and developed, aiming its application for hydrological monitoring systems such as rivers, lakes and groundwater. Considering the system features, a portable colorimetric system was developed by using a multispectral optoelectronic sensor. All the technology of quantification and classification of metallic ions using optoelectronic multispectral sensors was fully integrated in the embedded hardware FPGA ( Field Programmable Gate Array) technology and software based on virtual instrumentation (NI LabView ® ). The system draws on an indicative colorimeter by using the chromogen reagent of 1-(2-pyridylazo)-2-naphthol (PAN). The results obtained with the signal processing and pattern analysis using the method of the linear discriminant analysis, allows excellent results during detection and classification of Pb(II), Cd(II), Zn(II), Cu(II), Fe(III) and Ni(II) ions, with almost the same level of performance as for those obtained from the Ultravioled and visible (UV-VIS) spectrophotometers of high spectral resolution.
A tutorial on the use of ROC analysis for computer-aided diagnostic systems.
Scheipers, Ulrich; Perrey, Christian; Siebers, Stefan; Hansen, Christian; Ermert, Helmut
2005-07-01
The application of the receiver operating characteristic (ROC) curve for computer-aided diagnostic systems is reviewed. A statistical framework is presented and different methods of evaluating the classification performance of computer-aided diagnostic systems, and, in particular, systems for ultrasonic tissue characterization, are derived. Most classifiers that are used today are dependent on a separation threshold, which can be chosen freely in many cases. The separation threshold separates the range of output values of the classification system into different target groups, thus conducting the actual classification process. In the first part of this paper, threshold specific performance measures, e.g., sensitivity and specificity, are presented. In the second part, a threshold-independent performance measure, the area under the ROC curve, is reviewed. Only the use of separation threshold-independent performance measures provides classification results that are overall representative for computer-aided diagnostic systems. The following text was motivated by the lack of a complete and definite discussion of the underlying subject in available textbooks, references and publications. Most manuscripts published so far address the theme of performance evaluation using ROC analysis in a manner too general to be practical for everyday use in the development of computer-aided diagnostic systems. Nowadays, the user of computer-aided diagnostic systems typically handles huge amounts of numerical data, not always distributed normally. Many assumptions made in more or less theoretical works on ROC analysis are no longer valid for real-life data. The paper aims at closing the gap between theoretical works and real-life data. The review provides the interested scientist with information needed to conduct ROC analysis and to integrate algorithms performing ROC analysis into classification systems while understanding the basic principles of classification.
NASA Astrophysics Data System (ADS)
Bangs, Corey F.; Kruse, Fred A.; Olsen, Chris R.
2013-05-01
Hyperspectral data were assessed to determine the effect of integrating spectral data and extracted texture feature data on classification accuracy. Four separate spectral ranges (hundreds of spectral bands total) were used from the Visible and Near Infrared (VNIR) and Shortwave Infrared (SWIR) portions of the electromagnetic spectrum. Haralick texture features (contrast, entropy, and correlation) were extracted from the average gray-level image for each of the four spectral ranges studied. A maximum likelihood classifier was trained using a set of ground truth regions of interest (ROIs) and applied separately to the spectral data, texture data, and a fused dataset containing both. Classification accuracy was measured by comparison of results to a separate verification set of test ROIs. Analysis indicates that the spectral range (source of the gray-level image) used to extract the texture feature data has a significant effect on the classification accuracy. This result applies to texture-only classifications as well as the classification of integrated spectral data and texture feature data sets. Overall classification improvement for the integrated data sets was near 1%. Individual improvement for integrated spectral and texture classification of the "Urban" class showed approximately 9% accuracy increase over spectral-only classification. Texture-only classification accuracy was highest for the "Dirt Path" class at approximately 92% for the spectral range from 947 to 1343nm. This research demonstrates the effectiveness of texture feature data for more accurate analysis of hyperspectral data and the importance of selecting the correct spectral range to be used for the gray-level image source to extract these features.
Knowledge Modeling in Prior Art Search
NASA Astrophysics Data System (ADS)
Graf, Erik; Frommholz, Ingo; Lalmas, Mounia; van Rijsbergen, Keith
This study explores the benefits of integrating knowledge representations in prior art patent retrieval. Key to the introduced approach is the utilization of human judgment available in the form of classifications assigned to patent documents. The paper first outlines in detail how a methodology for the extraction of knowledge from such an hierarchical classification system can be established. Further potential ways of integrating this knowledge with existing Information Retrieval paradigms in a scalable and flexible manner are investigated. Finally based on these integration strategies the effectiveness in terms of recall and precision is evaluated in the context of a prior art search task for European patents. As a result of this evaluation it can be established that in general the proposed knowledge expansion techniques are particularly beneficial to recall and, with respect to optimizing field retrieval settings, further result in significant precision gains.
A Model of Psychopathology Based on an Integration of MMPI Actuarial Systems.
ERIC Educational Resources Information Center
Skinner, Harvey A.; Jackson, Douglas N.
1978-01-01
Evaluated relationships among Minnesota Multiphasic Personality Inventory (MMPI) code types from the Gilberstadt and Duker and the Marks, Seeman, and Haller systems. Superordinate types were identified: neurotic, psychotic and sociopathic. Data from the MMPI do not support the practice of highly differentiated classification within the three…
Model-based object classification using unification grammars and abstract representations
NASA Astrophysics Data System (ADS)
Liburdy, Kathleen A.; Schalkoff, Robert J.
1993-04-01
The design and implementation of a high level computer vision system which performs object classification is described. General object labelling and functional analysis require models of classes which display a wide range of geometric variations. A large representational gap exists between abstract criteria such as `graspable' and current geometric image descriptions. The vision system developed and described in this work addresses this problem and implements solutions based on a fusion of semantics, unification, and formal language theory. Object models are represented using unification grammars, which provide a framework for the integration of structure and semantics. A methodology for the derivation of symbolic image descriptions capable of interacting with the grammar-based models is described and implemented. A unification-based parser developed for this system achieves object classification by determining if the symbolic image description can be unified with the abstract criteria of an object model. Future research directions are indicated.
Gait recognition based on integral outline
NASA Astrophysics Data System (ADS)
Ming, Guan; Fang, Lv
2017-02-01
Biometric identification technology replaces traditional security technology, which has become a trend, and gait recognition also has become a hot spot of research because its feature is difficult to imitate and theft. This paper presents a gait recognition system based on integral outline of human body. The system has three important aspects: the preprocessing of gait image, feature extraction and classification. Finally, using a method of polling to evaluate the performance of the system, and summarizing the problems existing in the gait recognition and the direction of development in the future.
Low-Power Analog Processing for Sensing Applications: Low-Frequency Harmonic Signal Classification
White, Daniel J.; William, Peter E.; Hoffman, Michael W.; Balkir, Sina
2013-01-01
A low-power analog sensor front-end is described that reduces the energy required to extract environmental sensing spectral features without using Fast Fouriér Transform (FFT) or wavelet transforms. An Analog Harmonic Transform (AHT) allows selection of only the features needed by the back-end, in contrast to the FFT, where all coefficients must be calculated simultaneously. We also show that the FFT coefficients can be easily calculated from the AHT results by a simple back-substitution. The scheme is tailored for low-power, parallel analog implementation in an integrated circuit (IC). Two different applications are tested with an ideal front-end model and compared to existing studies with the same data sets. Results from the military vehicle classification and identification of machine-bearing fault applications shows that the front-end suits a wide range of harmonic signal sources. Analog-related errors are modeled to evaluate the feasibility of and to set design parameters for an IC implementation to maintain good system-level performance. Design of a preliminary transistor-level integrator circuit in a 0.13 μm complementary metal-oxide-silicon (CMOS) integrated circuit process showed the ability to use online self-calibration to reduce fabrication errors to a sufficiently low level. Estimated power dissipation is about three orders of magnitude less than similar vehicle classification systems that use commercially available FFT spectral extraction. PMID:23892765
Bréant, C; Borst, F; Campi, D; Griesser, V; Momjian, S
1999-01-01
The use of a controlled vocabulary set in a hospital-wide clinical information system is of crucial importance for many departmental database systems to communicate and exchange information. In the absence of an internationally recognized clinical controlled vocabulary set, a new extension of the International statistical Classification of Diseases (ICD) is proposed. It expands the scope of the standard ICD beyond diagnosis and procedures to clinical terminology. In addition, the common Clinical Findings Dictionary (CFD) further records the definition of clinical entities. The construction of the vocabulary set and the CFD is incremental and manual. Tools have been implemented to facilitate the tasks of defining/maintaining/publishing dictionary versions. The design of database applications in the integrated clinical information system is driven by the CFD which is part of the Medical Questionnaire Designer tool. Several integrated clinical database applications in the field of diabetes and neuro-surgery have been developed at the HUG.
Bréant, C.; Borst, F.; Campi, D.; Griesser, V.; Momjian, S.
1999-01-01
The use of a controlled vocabulary set in a hospital-wide clinical information system is of crucial importance for many departmental database systems to communicate and exchange information. In the absence of an internationally recognized clinical controlled vocabulary set, a new extension of the International statistical Classification of Diseases (ICD) is proposed. It expands the scope of the standard ICD beyond diagnosis and procedures to clinical terminology. In addition, the common Clinical Findings Dictionary (CFD) further records the definition of clinical entities. The construction of the vocabulary set and the CFD is incremental and manual. Tools have been implemented to facilitate the tasks of defining/maintaining/publishing dictionary versions. The design of database applications in the integrated clinical information system is driven by the CFD which is part of the Medical Questionnaire Designer tool. Several integrated clinical database applications in the field of diabetes and neuro-surgery have been developed at the HUG. Images Figure 1 PMID:10566451
Classifying terrestrial surface water systems using integrated residence time
NASA Astrophysics Data System (ADS)
Jones, Allan; Hodges, Ben; McClelland, James; Hardison, Amber; Moffett, Kevan
2017-04-01
Linkages between ecology and hydrology in terrestrial surface water often invoke a discussion of lentic (reservoir) vs. lotic (riverine) system behaviors. However, the literature shows a wide range of thresholds separating lentic/lotic regimes and little agreement on a quantitative, repeatable classification metric that can be broadly and reliably applied across a range of systems hosting various flow regimes and suspended/benthic taxa. We propose an integrated Residence Time (iTR) metric as part of a new Freshwater Continuum Classification (FCC) to address this issue. The iTR is computed as the transit time of a water parcel across a system given observed temporal variations in discharge and volume, which creates a temporally-varying metric applicable across a defined system length. This approach avoids problems associated with instantaneous residence times or average residence times that can lead to misleading characterizations in seasonally- or episodically-dynamic systems. The iTR can be directly related to critical flow thresholds and timescales of ecology (e.g., zooplankton growth). The FCC approach considers lentic and lotic to be opposing end-members of a classification continuum and also defines intermediate regimes that blur the line between the two ends of the spectrum due to more complex hydrological system dynamics. We also discover the potential for "oscillic" behavior, where a system switches between lentic and lotic classifications either episodically or regularly (e.g., seasonally). Oscillic behavior is difficult to diagnose with prior lentic/lotic classification schemes, but can be readily identified using iTR. The FCC approach was used to analyze 15 tidally-influenced river segments along the Texas (USA) coast of the Gulf of Mexico. The results agreed with lentic/lotic designations using prior approaches, but also identified more nuanced intermediate and oscillic regimes. Within this set of systems, the oscillic nature of some of the river reaches was due to flash floods that temporarily turned the primarily lentic stream reaches into lotic systems (not dominantly due to tidal influences). Because the FCC approach is based on system volume and flow characteristics, it is broadly applicable across an entire river reach, pond, or reservoir volume, and so may provide a useful and quantitative common reference point for hydrological and ecological studies going forward. [This work was supported in part by the United States National Science Foundation under grant number 1417433.
Low-power wireless ECG acquisition and classification system for body sensor networks.
Lee, Shuenn-Yuh; Hong, Jia-Hua; Hsieh, Cheng-Han; Liang, Ming-Chun; Chang Chien, Shih-Yu; Lin, Kuang-Hao
2015-01-01
A low-power biosignal acquisition and classification system for body sensor networks is proposed. The proposed system consists of three main parts: 1) a high-pass sigma delta modulator-based biosignal processor (BSP) for signal acquisition and digitization, 2) a low-power, super-regenerative on-off keying transceiver for short-range wireless transmission, and 3) a digital signal processor (DSP) for electrocardiogram (ECG) classification. The BSP and transmitter circuits, which are the body-end circuits, can be operated for over 80 days using two 605 mAH zinc-air batteries as the power supply; the power consumption is 586.5 μW. As for the radio frequency receiver and DSP, which are the receiving-end circuits that can be integrated in smartphones or personal computers, power consumption is less than 1 mW. With a wavelet transform-based digital signal processing circuit and a diagnosis control by cardiologists, the accuracy of beat detection and ECG classification are close to 99.44% and 97.25%, respectively. All chips are fabricated in TSMC 0.18-μm standard CMOS process.
HAMAP in 2013, new developments in the protein family classification and annotation system
Pedruzzi, Ivo; Rivoire, Catherine; Auchincloss, Andrea H.; Coudert, Elisabeth; Keller, Guillaume; de Castro, Edouard; Baratin, Delphine; Cuche, Béatrice A.; Bougueleret, Lydie; Poux, Sylvain; Redaschi, Nicole; Xenarios, Ioannis; Bridge, Alan
2013-01-01
HAMAP (High-quality Automated and Manual Annotation of Proteins—available at http://hamap.expasy.org/) is a system for the classification and annotation of protein sequences. It consists of a collection of manually curated family profiles for protein classification, and associated annotation rules that specify annotations that apply to family members. HAMAP was originally developed to support the manual curation of UniProtKB/Swiss-Prot records describing microbial proteins. Here we describe new developments in HAMAP, including the extension of HAMAP to eukaryotic proteins, the use of HAMAP in the automated annotation of UniProtKB/TrEMBL, providing high-quality annotation for millions of protein sequences, and the future integration of HAMAP into a unified system for UniProtKB annotation, UniRule. HAMAP is continuously updated by expert curators with new family profiles and annotation rules as new protein families are characterized. The collection of HAMAP family classification profiles and annotation rules can be browsed and viewed on the HAMAP website, which also provides an interface to scan user sequences against HAMAP profiles. PMID:23193261
Liu, Zhongyang; Guo, Feifei; Gu, Jiangyong; Wang, Yong; Li, Yang; Wang, Dan; Lu, Liang; Li, Dong; He, Fuchu
2015-06-01
Anatomical Therapeutic Chemical (ATC) classification system, widely applied in almost all drug utilization studies, is currently the most widely recognized classification system for drugs. Currently, new drug entries are added into the system only on users' requests, which leads to seriously incomplete drug coverage of the system, and bioinformatics prediction is helpful during this process. Here we propose a novel prediction model of drug-ATC code associations, using logistic regression to integrate multiple heterogeneous data sources including chemical structures, target proteins, gene expression, side-effects and chemical-chemical associations. The model obtains good performance for the prediction not only on ATC codes of unclassified drugs but also on new ATC codes of classified drugs assessed by cross-validation and independent test sets, and its efficacy exceeds previous methods. Further to facilitate the use, the model is developed into a user-friendly web service SPACE ( S: imilarity-based P: redictor of A: TC C: od E: ), which for each submitted compound, will give candidate ATC codes (ranked according to the decreasing probability_score predicted by the model) together with corresponding supporting evidence. This work not only contributes to knowing drugs' therapeutic, pharmacological and chemical properties, but also provides clues for drug repositioning and side-effect discovery. In addition, the construction of the prediction model also provides a general framework for similarity-based data integration which is suitable for other drug-related studies such as target, side-effect prediction etc. The web service SPACE is available at http://www.bprc.ac.cn/space. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Development of an Integrated Biospecimen Database among the Regional Biobanks in Korea.
Park, Hyun Sang; Cho, Hune; Kim, Hwa Sun
2016-04-01
This study developed an integrated database for 15 regional biobanks that provides large quantities of high-quality bio-data to researchers to be used for the prevention of disease, for the development of personalized medicines, and in genetics studies. We collected raw data, managed independently by 15 regional biobanks, for database modeling and analyzed and defined the metadata of the items. We also built a three-step (high, middle, and low) classification system for classifying the item concepts based on the metadata. To generate clear meanings of the items, clinical items were defined using the Systematized Nomenclature of Medicine Clinical Terms, and specimen items were defined using the Logical Observation Identifiers Names and Codes. To optimize database performance, we set up a multi-column index based on the classification system and the international standard code. As a result of subdividing 7,197,252 raw data items collected, we refined the metadata into 1,796 clinical items and 1,792 specimen items. The classification system consists of 15 high, 163 middle, and 3,588 low class items. International standard codes were linked to 69.9% of the clinical items and 71.7% of the specimen items. The database consists of 18 tables based on a table from MySQL Server 5.6. As a result of the performance evaluation, the multi-column index shortened query time by as much as nine times. The database developed was based on an international standard terminology system, providing an infrastructure that can integrate the 7,197,252 raw data items managed by the 15 regional biobanks. In particular, it resolved the inevitable interoperability issues in the exchange of information among the biobanks, and provided a solution to the synonym problem, which arises when the same concept is expressed in a variety of ways.
On the classification of weakly integral modular categories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruillard, Paul; Galindo, César; Ng, Siu-Hung
In this paper we classify all modular categories of dimension 4m, where m is an odd square-free integer, and all rank 6 and rank 7 weakly integral modular categories. This completes the classification of weakly integral modular categories through rank 7. In particular, our results imply that all integral modular categories of rank at most 7 are pointed (that is, every simple object has dimension 1). All the non-integral (but weakly integral) modular categories of ranks 6 and 7 have dimension 4m, with m an odd square free integer, so their classification is an application of our main result. Themore » classification of rank 7 integral modular categories is facilitated by an analysis of the two group actions on modular categories: the Galois group of the field generated by the entries of the S-matrix and the group of invertible isomorphism classes of objects. We derive some valuable arithmetic consequences from these actions.« less
An integrated method for cancer classification and rule extraction from microarray data
Huang, Liang-Tsung
2009-01-01
Different microarray techniques recently have been successfully used to investigate useful information for cancer diagnosis at the gene expression level due to their ability to measure thousands of gene expression levels in a massively parallel way. One important issue is to improve classification performance of microarray data. However, it would be ideal that influential genes and even interpretable rules can be explored at the same time to offer biological insight. Introducing the concepts of system design in software engineering, this paper has presented an integrated and effective method (named X-AI) for accurate cancer classification and the acquisition of knowledge from DNA microarray data. This method included a feature selector to systematically extract the relative important genes so as to reduce the dimension and retain as much as possible of the class discriminatory information. Next, diagonal quadratic discriminant analysis (DQDA) was combined to classify tumors, and generalized rule induction (GRI) was integrated to establish association rules which can give an understanding of the relationships between cancer classes and related genes. Two non-redundant datasets of acute leukemia were used to validate the proposed X-AI, showing significantly high accuracy for discriminating different classes. On the other hand, I have presented the abilities of X-AI to extract relevant genes, as well as to develop interpretable rules. Further, a web server has been established for cancer classification and it is freely available at . PMID:19272192
Annotation and Classification of CRISPR-Cas Systems
Makarova, Kira S.; Koonin, Eugene V.
2018-01-01
The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas (CRISPR-associated proteins) is a prokaryotic adaptive immune system that is represented in most archaea and many bacteria. Among the currently known prokaryotic defense systems, the CRISPR-Cas genomic loci show unprecedented complexity and diversity. Classification of CRISPR-Cas variants that would capture their evolutionary relationships to the maximum possible extent is essential for comparative genomic and functional characterization of this theoretically and practically important system of adaptive immunity. To this end, a multipronged approach has been developed that combines phylogenetic analysis of the conserved Cas proteins with comparison of gene repertoires and arrangements in CRISPR-Cas loci. This approach led to the current classification of CRISPR-Cas systems into three distinct types and ten subtypes for each of which signature genes have been identified. Comparative genomic analysis of the CRISPR-Cas systems in new archaeal and bacterial genomes performed over the 3 years elapsed since the development of this classification makes it clear that new types and subtypes of CRISPR-Cas need to be introduced. Moreover, this classification system captures only part of the complexity of CRISPR-Cas organization and evolution, due to the intrinsic modularity and evolutionary mobility of these immunity systems, resulting in numerous recombinant variants. Moreover, most of the cas genes evolve rapidly, complicating the family assignment for many Cas proteins and the use of family profiles for the recognition of CRISPR-Cas subtype signatures. Further progress in the comparative analysis of CRISPR-Cas systems requires integration of the most sensitive sequence comparison tools, protein structure comparison, and refined approaches for comparison of gene neighborhoods. PMID:25981466
Annotation and Classification of CRISPR-Cas Systems.
Makarova, Kira S; Koonin, Eugene V
2015-01-01
The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas (CRISPR-associated proteins) is a prokaryotic adaptive immune system that is represented in most archaea and many bacteria. Among the currently known prokaryotic defense systems, the CRISPR-Cas genomic loci show unprecedented complexity and diversity. Classification of CRISPR-Cas variants that would capture their evolutionary relationships to the maximum possible extent is essential for comparative genomic and functional characterization of this theoretically and practically important system of adaptive immunity. To this end, a multipronged approach has been developed that combines phylogenetic analysis of the conserved Cas proteins with comparison of gene repertoires and arrangements in CRISPR-Cas loci. This approach led to the current classification of CRISPR-Cas systems into three distinct types and ten subtypes for each of which signature genes have been identified. Comparative genomic analysis of the CRISPR-Cas systems in new archaeal and bacterial genomes performed over the 3 years elapsed since the development of this classification makes it clear that new types and subtypes of CRISPR-Cas need to be introduced. Moreover, this classification system captures only part of the complexity of CRISPR-Cas organization and evolution, due to the intrinsic modularity and evolutionary mobility of these immunity systems, resulting in numerous recombinant variants. Moreover, most of the cas genes evolve rapidly, complicating the family assignment for many Cas proteins and the use of family profiles for the recognition of CRISPR-Cas subtype signatures. Further progress in the comparative analysis of CRISPR-Cas systems requires integration of the most sensitive sequence comparison tools, protein structure comparison, and refined approaches for comparison of gene neighborhoods.
Pettersson-Yeo, William; Benetti, Stefania; Marquand, Andre F.; Joules, Richard; Catani, Marco; Williams, Steve C. R.; Allen, Paul; McGuire, Philip; Mechelli, Andrea
2014-01-01
In the pursuit of clinical utility, neuroimaging researchers of psychiatric and neurological illness are increasingly using analyses, such as support vector machine, that allow inference at the single-subject level. Recent studies employing single-modality data, however, suggest that classification accuracies must be improved for such utility to be realized. One possible solution is to integrate different data types to provide a single combined output classification; either by generating a single decision function based on an integrated kernel matrix, or, by creating an ensemble of multiple single modality classifiers and integrating their predictions. Here, we describe four integrative approaches: (1) an un-weighted sum of kernels, (2) multi-kernel learning, (3) prediction averaging, and (4) majority voting, and compare their ability to enhance classification accuracy relative to the best single-modality classification accuracy. We achieve this by integrating structural, functional, and diffusion tensor magnetic resonance imaging data, in order to compare ultra-high risk (n = 19), first episode psychosis (n = 19) and healthy control subjects (n = 23). Our results show that (i) whilst integration can enhance classification accuracy by up to 13%, the frequency of such instances may be limited, (ii) where classification can be enhanced, simple methods may yield greater increases relative to more computationally complex alternatives, and, (iii) the potential for classification enhancement is highly influenced by the specific diagnostic comparison under consideration. In conclusion, our findings suggest that for moderately sized clinical neuroimaging datasets, combining different imaging modalities in a data-driven manner is no “magic bullet” for increasing classification accuracy. However, it remains possible that this conclusion is dependent on the use of neuroimaging modalities that had little, or no, complementary information to offer one another, and that the integration of more diverse types of data would have produced greater classification enhancement. We suggest that future studies ideally examine a greater variety of data types (e.g., genetic, cognitive, and neuroimaging) in order to identify the data types and combinations optimally suited to the classification of early stage psychosis. PMID:25076868
Pettersson-Yeo, William; Benetti, Stefania; Marquand, Andre F; Joules, Richard; Catani, Marco; Williams, Steve C R; Allen, Paul; McGuire, Philip; Mechelli, Andrea
2014-01-01
In the pursuit of clinical utility, neuroimaging researchers of psychiatric and neurological illness are increasingly using analyses, such as support vector machine, that allow inference at the single-subject level. Recent studies employing single-modality data, however, suggest that classification accuracies must be improved for such utility to be realized. One possible solution is to integrate different data types to provide a single combined output classification; either by generating a single decision function based on an integrated kernel matrix, or, by creating an ensemble of multiple single modality classifiers and integrating their predictions. Here, we describe four integrative approaches: (1) an un-weighted sum of kernels, (2) multi-kernel learning, (3) prediction averaging, and (4) majority voting, and compare their ability to enhance classification accuracy relative to the best single-modality classification accuracy. We achieve this by integrating structural, functional, and diffusion tensor magnetic resonance imaging data, in order to compare ultra-high risk (n = 19), first episode psychosis (n = 19) and healthy control subjects (n = 23). Our results show that (i) whilst integration can enhance classification accuracy by up to 13%, the frequency of such instances may be limited, (ii) where classification can be enhanced, simple methods may yield greater increases relative to more computationally complex alternatives, and, (iii) the potential for classification enhancement is highly influenced by the specific diagnostic comparison under consideration. In conclusion, our findings suggest that for moderately sized clinical neuroimaging datasets, combining different imaging modalities in a data-driven manner is no "magic bullet" for increasing classification accuracy. However, it remains possible that this conclusion is dependent on the use of neuroimaging modalities that had little, or no, complementary information to offer one another, and that the integration of more diverse types of data would have produced greater classification enhancement. We suggest that future studies ideally examine a greater variety of data types (e.g., genetic, cognitive, and neuroimaging) in order to identify the data types and combinations optimally suited to the classification of early stage psychosis.
Schwaibold, M; Schöchlin, J; Bolz, A
2002-01-01
For classification tasks in biosignal processing, several strategies and algorithms can be used. Knowledge-based systems allow prior knowledge about the decision process to be integrated, both by the developer and by self-learning capabilities. For the classification stages in a sleep stage detection framework, three inference strategies were compared regarding their specific strengths: a classical signal processing approach, artificial neural networks and neuro-fuzzy systems. Methodological aspects were assessed to attain optimum performance and maximum transparency for the user. Due to their effective and robust learning behavior, artificial neural networks could be recommended for pattern recognition, while neuro-fuzzy systems performed best for the processing of contextual information.
Li, Yanfei; Tian, Yun
2018-01-01
The development of network technology and the popularization of image capturing devices have led to a rapid increase in the number of digital images available, and it is becoming increasingly difficult to identify a desired image from among the massive number of possible images. Images usually contain rich semantic information, and people usually understand images at a high semantic level. Therefore, achieving the ability to use advanced technology to identify the emotional semantics contained in images to enable emotional semantic image classification remains an urgent issue in various industries. To this end, this study proposes an improved OCC emotion model that integrates personality and mood factors for emotional modelling to describe the emotional semantic information contained in an image. The proposed classification system integrates the k-Nearest Neighbour (KNN) algorithm with the Support Vector Machine (SVM) algorithm. The MapReduce parallel programming model was used to adapt the KNN-SVM algorithm for parallel implementation in the Hadoop cluster environment, thereby achieving emotional semantic understanding for the classification of a massive collection of images. For training and testing, 70,000 scene images were randomly selected from the SUN Database. The experimental results indicate that users with different personalities show overall consistency in their emotional understanding of the same image. For a training sample size of 50,000, the classification accuracies for different emotional categories targeted at users with different personalities were approximately 95%, and the training time was only 1/5 of that required for the corresponding algorithm with a single-node architecture. Furthermore, the speedup of the system also showed a linearly increasing tendency. Thus, the experiments achieved a good classification effect and can lay a foundation for classification in terms of additional types of emotional image semantics, thereby demonstrating the practical significance of the proposed model. PMID:29320579
Cao, Jianfang; Li, Yanfei; Tian, Yun
2018-01-01
The development of network technology and the popularization of image capturing devices have led to a rapid increase in the number of digital images available, and it is becoming increasingly difficult to identify a desired image from among the massive number of possible images. Images usually contain rich semantic information, and people usually understand images at a high semantic level. Therefore, achieving the ability to use advanced technology to identify the emotional semantics contained in images to enable emotional semantic image classification remains an urgent issue in various industries. To this end, this study proposes an improved OCC emotion model that integrates personality and mood factors for emotional modelling to describe the emotional semantic information contained in an image. The proposed classification system integrates the k-Nearest Neighbour (KNN) algorithm with the Support Vector Machine (SVM) algorithm. The MapReduce parallel programming model was used to adapt the KNN-SVM algorithm for parallel implementation in the Hadoop cluster environment, thereby achieving emotional semantic understanding for the classification of a massive collection of images. For training and testing, 70,000 scene images were randomly selected from the SUN Database. The experimental results indicate that users with different personalities show overall consistency in their emotional understanding of the same image. For a training sample size of 50,000, the classification accuracies for different emotional categories targeted at users with different personalities were approximately 95%, and the training time was only 1/5 of that required for the corresponding algorithm with a single-node architecture. Furthermore, the speedup of the system also showed a linearly increasing tendency. Thus, the experiments achieved a good classification effect and can lay a foundation for classification in terms of additional types of emotional image semantics, thereby demonstrating the practical significance of the proposed model.
Boyd, Theonia K.; Wright, Colleen A.; Odendaal, Hein J.; Elliott, Amy J.; Sens, Mary Ann; Folkerth, Rebecca D.; Roberts, Drucilla J.; Kinney, Hannah C.
2017-01-01
OBJECTIVE Describe the classification system for the assignment of the cause of death for stillbirth in the Safe Passage Study, an international, multi-institutional, prospective analysis conducted by the NIAAA/NICHD funded PASS Network (The Prenatal Alcohol in SIDS and Stillbirth (PASS) Research Network). The study mission is to determine the role of prenatal alcohol and/or cigarette smoke exposure in adverse pregnancy outcomes, including stillbirth, in a high-risk cohort of 12,000 maternal/fetal dyads. METHODS The PASS Network classification system is based upon 5 ‘sites of origin’ for cause of stillbirth (Fetal, Placental, Maternal, External/Environmental, or Undetermined), further subdivided into mechanism subcategories (e.g., Placental Perfusion Failure). Both site of origin and mechanism stratification are employed to assign an ultimate cause of death. Each PASS stillbirth (n=19) in the feasibility study was assigned a cause of death, and status of sporadic versus recurrent. Adjudication involved review of the maternal and obstetrical records, and fetal autopsy and placental findings, with complete consensus in each case. Two published classification systems, i.e., INCODE and ReCoDe, were used for comparison. RESULTS Causes of stillbirth classified were: fetal (n=5, 26%), placental (n=10, 53%), external (n=1, 5%), and undetermined (n=3, 16%). Nine cases (47%) had placental causes of death due to maternal disorders that carry recurrence risks. There was complete agreement for the cause of death across the three classification systems in 26% of cases, and a combination of partial or complete agreement in 68% of cases. Complete vs. partial agreements were predicated upon the classification schemes used for comparison. CONCLUSIONS The proposed PASS system is a user-friendly classification system that provides comparable information to previously published systems. Advantages include its simplicity, mechanistic formulations, tight clinicopathologic integration, provision for an undetermined category, and its wide applicability for use by perinatal mortality review boards with access to information routinely collected during clinicopathologic evaluations. PMID:27116324
D'Andrea, G; Capalbo, G; Volpe, M; Marchetti, M; Vicentini, F; Capelli, G; Cambieri, A; Cicchetti, A; Ricciardi, G; Catananti, C
2006-01-01
Our main purpose was to evaluate the organizational appropriateness of admissions made in a university hospital, by comparing two iso-gravity classification systems, APR-DRG and Disease Staging, with the Italian version of AEP (PRUO). Our analysis focused on admissions made in 2001, related to specific Diagnosis Related Groups (DRGs), which, according an Italian Law, would be considered at high risk of inappropriateness, if treated as ordinary admissions. The results obtained by using the 2 classification systems did not show statistically significant differences with respect to the total number of admissions. On the other hand, some DRGs showed statistically significant differences due to different algorithms of attribution of the severity levels used by the two systems. For almost all of the DRGs studied, the AEP-based analysis of a sample of medical records showed an higher number of inappropriate admissions in comparison with the number expected by iso-gravity classification methods. The difference is possibly due to the percentage limits of tolerability fixed by the Law for each DRG. Therefore, the authors suggest an integrated use of the two methods to evaluate organizational appropriateness of hospital admissions.
A Land System representation for global assessments and land-use modeling.
van Asselen, Sanneke; Verburg, Peter H
2012-10-01
Current global scale land-change models used for integrated assessments and climate modeling are based on classifications of land cover. However, land-use management intensity and livestock keeping are also important aspects of land use, and are an integrated part of land systems. This article aims to classify, map, and to characterize Land Systems (LS) at a global scale and analyze the spatial determinants of these systems. Besides proposing such a classification, the article tests if global assessments can be based on globally uniform allocation rules. Land cover, livestock, and agricultural intensity data are used to map LS using a hierarchical classification method. Logistic regressions are used to analyze variation in spatial determinants of LS. The analysis of the spatial determinants of LS indicates strong associations between LS and a range of socioeconomic and biophysical indicators of human-environment interactions. The set of identified spatial determinants of a LS differs among regions and scales, especially for (mosaic) cropland systems, grassland systems with livestock, and settlements. (Semi-)Natural LS have more similar spatial determinants across regions and scales. Using LS in global models is expected to result in a more accurate representation of land use capturing important aspects of land systems and land architecture: the variation in land cover and the link between land-use intensity and landscape composition. Because the set of most important spatial determinants of LS varies among regions and scales, land-change models that include the human drivers of land change are best parameterized at sub-global level, where similar biophysical, socioeconomic and cultural conditions prevail in the specific regions. © 2012 Blackwell Publishing Ltd.
White Paper: Movement System Diagnoses in Neurologic Physical Therapy.
Hedman, Lois D; Quinn, Lori; Gill-Body, Kathleen; Brown, David A; Quiben, Myla; Riley, Nora; Scheets, Patricia L
2018-04-01
The APTA recently established a vision for physical therapists to transform society by optimizing movement to promote health and wellness, mitigate impairments, and prevent disability. An important element of this vision entails the integration of the movement system into the profession, and necessitates the development of movement system diagnoses by physical therapists. At this point in time, the profession as a whole has not agreed upon diagnostic classifications or guidelines to assist in developing movement system diagnoses that will consistently capture an individual's movement problems. We propose that, going forward, diagnostic classifications of movement system problems need to be developed, tested, and validated. The Academy of Neurologic Physical Therapy's Movement System Task Force was convened to address these issues with respect to management of movement system problems in patients with neurologic conditions. The purpose of this article is to report on the work and recommendations of the Task Force. The Task Force identified 4 essential elements necessary to develop and implement movement system diagnoses for patients with primarily neurologic involvement from existing movement system classifications. The Task Force considered the potential impact of using movement system diagnoses on clinical practice, education and, research. Recommendations were developed and provided recommendations for potential next steps to broaden this discussion and foster the development of movement system diagnostic classifications. The Task Force proposes that diagnostic classifications of movement system problems need to be developed, tested, and validated with the long-range goal to reach consensus on and adoption of a movement system diagnostic framework for clients with neurologic injury or disease states.Video Abstract available for more insights from the authors (see Video, Supplemental Digital Content 1, available at: http://links.lww.com/JNPT/A198).
The Landscape of long non-coding RNA classification
St Laurent, Georges; Wahlestedt, Claes; Kapranov, Philipp
2015-01-01
Advances in the depth and quality of transcriptome sequencing have revealed many new classes of long non-coding RNAs (lncRNAs). lncRNA classification has mushroomed to accommodate these new findings, even though the real dimensions and complexity of the non-coding transcriptome remain unknown. Although evidence of functionality of specific lncRNAs continues to accumulate, conflicting, confusing, and overlapping terminology has fostered ambiguity and lack of clarity in the field in general. The lack of fundamental conceptual un-ambiguous classification framework results in a number of challenges in the annotation and interpretation of non-coding transcriptome data. It also might undermine integration of the new genomic methods and datasets in an effort to unravel function of lncRNA. Here, we review existing lncRNA classifications, nomenclature, and terminology. Then we describe the conceptual guidelines that have emerged for their classification and functional annotation based on expanding and more comprehensive use of large systems biology-based datasets. PMID:25869999
Classification-Based Spatial Error Concealment for Visual Communications
NASA Astrophysics Data System (ADS)
Chen, Meng; Zheng, Yefeng; Wu, Min
2006-12-01
In an error-prone transmission environment, error concealment is an effective technique to reconstruct the damaged visual content. Due to large variations of image characteristics, different concealment approaches are necessary to accommodate the different nature of the lost image content. In this paper, we address this issue and propose using classification to integrate the state-of-the-art error concealment techniques. The proposed approach takes advantage of multiple concealment algorithms and adaptively selects the suitable algorithm for each damaged image area. With growing awareness that the design of sender and receiver systems should be jointly considered for efficient and reliable multimedia communications, we proposed a set of classification-based block concealment schemes, including receiver-side classification, sender-side attachment, and sender-side embedding. Our experimental results provide extensive performance comparisons and demonstrate that the proposed classification-based error concealment approaches outperform the conventional approaches.
A computer-based information system for epilepsy and electroencephalography.
Finnerup, N B; Fuglsang-Frederiksen, A; Røssel, P; Jennum, P
1999-08-01
This paper describes a standardised computer-based information system for electroencephalography (EEG) focusing on epilepsy. The system was developed using a prototyping approach. It is based on international recommendations for EEG examination, interpretation and terminology, international guidelines for epidemiological studies on epilepsy and classification of epileptic seizures and syndromes and international classification of diseases. It is divided into: (1) clinical information and epilepsy relevant data; and (2) EEG data, which is hierarchically structured including description and interpretation of EEG. Data is coded but is supplemented with unrestricted text. The resulting patient database can be integrated with other clinical databases and with the patient record system and may facilitate clinical and epidemiological research and development of standards and guidelines for EEG description and interpretation. The system is currently used for teleconsultation between Gentofte and Lisbon.
Integration of heterogeneous features for remote sensing scene classification
NASA Astrophysics Data System (ADS)
Wang, Xin; Xiong, Xingnan; Ning, Chen; Shi, Aiye; Lv, Guofang
2018-01-01
Scene classification is one of the most important issues in remote sensing (RS) image processing. We find that features from different channels (shape, spectral, texture, etc.), levels (low-level and middle-level), or perspectives (local and global) could provide various properties for RS images, and then propose a heterogeneous feature framework to extract and integrate heterogeneous features with different types for RS scene classification. The proposed method is composed of three modules (1) heterogeneous features extraction, where three heterogeneous feature types, called DS-SURF-LLC, mean-Std-LLC, and MS-CLBP, are calculated, (2) heterogeneous features fusion, where the multiple kernel learning (MKL) is utilized to integrate the heterogeneous features, and (3) an MKL support vector machine classifier for RS scene classification. The proposed method is extensively evaluated on three challenging benchmark datasets (a 6-class dataset, a 12-class dataset, and a 21-class dataset), and the experimental results show that the proposed method leads to good classification performance. It produces good informative features to describe the RS image scenes. Moreover, the integration of heterogeneous features outperforms some state-of-the-art features on RS scene classification tasks.
Azadmanjir, Zahra; Safdari, Reza; Ghazisaeedi, Marjan; Mokhtaran, Mehrshad; Kameli, Mohammad Esmail
2017-01-01
Introduction: Accurate coded data in the healthcare are critical. Computer-Assisted Coding (CAC) is an effective tool to improve clinical coding in particular when a new classification will be developed and implemented. But determine the appropriate method for development need to consider the specifications of existing CAC systems, requirements for each type, our infrastructure and also, the classification scheme. Aim: The aim of the study was the development of a decision model for determining accurate code of each medical intervention in Iranian Classification of Health Interventions (IRCHI) that can be implemented as a suitable CAC system. Methods: first, a sample of existing CAC systems was reviewed. Then feasibility of each one of CAC types was examined with regard to their prerequisites for their implementation. The next step, proper model was proposed according to the structure of the classification scheme and was implemented as an interactive system. Results: There is a significant relationship between the level of assistance of a CAC system and integration of it with electronic medical documents. Implementation of fully automated CAC systems is impossible due to immature development of electronic medical record and problems in using language for medical documenting. So, a model was proposed to develop semi-automated CAC system based on hierarchical relationships between entities in the classification scheme and also the logic of decision making to specify the characters of code step by step through a web-based interactive user interface for CAC. It was composed of three phases to select Target, Action and Means respectively for an intervention. Conclusion: The proposed model was suitable the current status of clinical documentation and coding in Iran and also, the structure of new classification scheme. Our results show it was practical. However, the model needs to be evaluated in the next stage of the research. PMID:28883671
Imaging evaluation of traumatic thoracolumbar spine injuries: Radiological review
Gamanagatti, Shivanand; Rathinam, Deepak; Rangarajan, Krithika; Kumar, Atin; Farooque, Kamran; Sharma, Vijay
2015-01-01
Spine fractures account for a large portion of musculoskeletal injuries worldwide. A classification of spine fractures is necessary in order to develop a common language for treatment indications and outcomes. Several classification systems have been developed based on injury anatomy or mechanisms of action, but they have demonstrated poor reliability, have yielded little prognostic information, and have not been widely used. For this reason, the Arbeitsgemeinschaftfür Osteosynthesefragen (AO) committee has classified thorocolumbar spine injuries based on the pathomorphological criteria into3 types (A: Compression; B: Distraction; C: Axial torque and rotational deformity). Each of these types is further divided into 3 groups and 3 subgroups reflecting progressive scale of morphological damage and the degree of instability. Because of its highly detailed sub classifications, the AO system has shown limited interobserver variability. It is similar to its predecessors in that it does not incorporate the patient’s neurologic status.The need for a reliable, reproducible, clinically relevant, prognostic classification system with an optimal balance of ease of use and detail of injury description contributed to the development of a new classification system, the thoracolumbar injury classification and severity score (TLICS). The TLICS defines injury based on three clinical characteristics: injury morphology, integrity of the posterior ligamentous complex, and neurologic status of the patient. The severity score offers prognostic information and is helpful in decision making about surgical vs nonsurgical management. PMID:26435776
Chai, Rifai; Naik, Ganesh R; Ling, Sai Ho; Nguyen, Hung T
2017-01-07
One of the key challenges of the biomedical cyber-physical system is to combine cognitive neuroscience with the integration of physical systems to assist people with disabilities. Electroencephalography (EEG) has been explored as a non-invasive method of providing assistive technology by using brain electrical signals. This paper presents a unique prototype of a hybrid brain computer interface (BCI) which senses a combination classification of mental task, steady state visual evoked potential (SSVEP) and eyes closed detection using only two EEG channels. In addition, a microcontroller based head-mounted battery-operated wireless EEG sensor combined with a separate embedded system is used to enhance portability, convenience and cost effectiveness. This experiment has been conducted with five healthy participants and five patients with tetraplegia. Generally, the results show comparable classification accuracies between healthy subjects and tetraplegia patients. For the offline artificial neural network classification for the target group of patients with tetraplegia, the hybrid BCI system combines three mental tasks, three SSVEP frequencies and eyes closed, with average classification accuracy at 74% and average information transfer rate (ITR) of the system of 27 bits/min. For the real-time testing of the intentional signal on patients with tetraplegia, the average success rate of detection is 70% and the speed of detection varies from 2 to 4 s.
NASA Astrophysics Data System (ADS)
Gautam, Nitin
The main objectives of this thesis are to develop a robust statistical method for the classification of ocean precipitation based on physical properties to which the SSM/I is sensitive and to examine how these properties vary globally and seasonally. A two step approach is adopted for the classification of oceanic precipitation classes from multispectral SSM/I data: (1)we subjectively define precipitation classes using a priori information about the precipitating system and its possible distinct signature on SSM/I data such as scattering by ice particles aloft in the precipitating cloud, emission by liquid rain water below freezing level, the difference of polarization at 19 GHz-an indirect measure of optical depth, etc.; (2)we then develop an objective classification scheme which is found to reproduce the subjective classification with high accuracy. This hybrid strategy allows us to use the characteristics of the data to define and encode classes and helps retain the physical interpretation of classes. The classification methods based on k-nearest neighbor and neural network are developed to objectively classify six precipitation classes. It is found that the classification method based neural network yields high accuracy for all precipitation classes. An inversion method based on minimum variance approach was used to retrieve gross microphysical properties of these precipitation classes such as column integrated liquid water path, column integrated ice water path, and column integrated min water path. This classification method is then applied to 2 years (1991-92) of SSM/I data to examine and document the seasonal and global distribution of precipitation frequency corresponding to each of these objectively defined six classes. The characteristics of the distribution are found to be consistent with assumptions used in defining these six precipitation classes and also with well known climatological patterns of precipitation regions. The seasonal and global distribution of these six classes is also compared with the earlier results obtained from Comprehensive Ocean Atmosphere Data Sets (COADS). It is found that the gross pattern of the distributions obtained from SSM/I and COADS data match remarkably well with each other.
NASA Technical Reports Server (NTRS)
Ragusa, James M.; Orwig, Gary; Gilliam, Michael; Blacklock, David; Shaykhian, Ali
1994-01-01
Status is given of an applications investigation on the potential for using an expert system shell for classification and retrieval of high resolution, digital, color space shuttle closeout photography. This NASA funded activity has focused on the use of integrated information technologies to intelligently classify and retrieve still imagery from a large, electronically stored collection. A space shuttle processing problem is identified, a working prototype system is described, and commercial applications are identified. A conclusion reached is that the developed system has distinct advantages over the present manual system and cost efficiencies will result as the system is implemented. Further, commercial potential exists for this integrated technology.
Best Merge Region Growing with Integrated Probabilistic Classification for Hyperspectral Imagery
NASA Technical Reports Server (NTRS)
Tarabalka, Yuliya; Tilton, James C.
2011-01-01
A new method for spectral-spatial classification of hyperspectral images is proposed. The method is based on the integration of probabilistic classification within the hierarchical best merge region growing algorithm. For this purpose, preliminary probabilistic support vector machines classification is performed. Then, hierarchical step-wise optimization algorithm is applied, by iteratively merging regions with the smallest Dissimilarity Criterion (DC). The main novelty of this method consists in defining a DC between regions as a function of region statistical and geometrical features along with classification probabilities. Experimental results are presented on a 200-band AVIRIS image of the Northwestern Indiana s vegetation area and compared with those obtained by recently proposed spectral-spatial classification techniques. The proposed method improves classification accuracies when compared to other classification approaches.
Evaluation and integration of disparate classification systems for clefts of the lip
Wang, Kathie H.; Heike, Carrie L.; Clarkson, Melissa D.; Mejino, Jose L. V.; Brinkley, James F.; Tse, Raymond W.; Birgfeld, Craig B.; Fitzsimons, David A.; Cox, Timothy C.
2014-01-01
Orofacial clefting is a common birth defect with wide phenotypic variability. Many systems have been developed to classify cleft patterns to facilitate diagnosis, management, surgical treatment, and research. In this review, we examine the rationale for different existing classification schemes and determine their inter-relationships, as well as strengths and deficiencies for subclassification of clefts of the lip. The various systems differ in how they describe and define attributes of cleft lip (CL) phenotypes. Application and analysis of the CL classifications reveal discrepancies that may result in errors when comparing studies that use different systems. These inconsistencies in terminology, variable levels of subclassification, and ambiguity in some descriptions may confound analyses and impede further research aimed at understanding the genetics and etiology of clefts, development of effective treatment options for patients, as well as cross-institutional comparisons of outcome measures. Identification and reconciliation of discrepancies among existing systems is the first step toward creating a common standard to allow for a more explicit interpretation that will ultimately lead to a better understanding of the causes and manifestations of phenotypic variations in clefting. PMID:24860508
Multi-source remotely sensed data fusion for improving land cover classification
NASA Astrophysics Data System (ADS)
Chen, Bin; Huang, Bo; Xu, Bing
2017-02-01
Although many advances have been made in past decades, land cover classification of fine-resolution remotely sensed (RS) data integrating multiple temporal, angular, and spectral features remains limited, and the contribution of different RS features to land cover classification accuracy remains uncertain. We proposed to improve land cover classification accuracy by integrating multi-source RS features through data fusion. We further investigated the effect of different RS features on classification performance. The results of fusing Landsat-8 Operational Land Imager (OLI) data with Moderate Resolution Imaging Spectroradiometer (MODIS), China Environment 1A series (HJ-1A), and Advanced Spaceborne Thermal Emission and Reflection (ASTER) digital elevation model (DEM) data, showed that the fused data integrating temporal, spectral, angular, and topographic features achieved better land cover classification accuracy than the original RS data. Compared with the topographic feature, the temporal and angular features extracted from the fused data played more important roles in classification performance, especially those temporal features containing abundant vegetation growth information, which markedly increased the overall classification accuracy. In addition, the multispectral and hyperspectral fusion successfully discriminated detailed forest types. Our study provides a straightforward strategy for hierarchical land cover classification by making full use of available RS data. All of these methods and findings could be useful for land cover classification at both regional and global scales.
Barczi, Jean-François; Rey, Hervé; Griffon, Sébastien; Jourdan, Christophe
2018-04-18
Many studies exist in the literature dealing with mathematical representations of root systems, categorized, for example, as pure structure description, partial derivative equations or functional-structural plant models. However, in these studies, root architecture modelling has seldom been carried out at the organ level with the inclusion of environmental influences that can be integrated into a whole plant characterization. We have conducted a multidisciplinary study on root systems including field observations, architectural analysis, and formal and mathematical modelling. This integrative and coherent approach leads to a generic model (DigR) and its software simulator. Architecture analysis applied to root systems helps at root type classification and architectural unit design for each species. Roots belonging to a particular type share dynamic and morphological characteristics which consist of topological and geometric features. The DigR simulator is integrated into the Xplo environment, with a user interface to input parameter values and make output ready for dynamic 3-D visualization, statistical analysis and saving to standard formats. DigR is simulated in a quasi-parallel computing algorithm and may be used either as a standalone tool or integrated into other simulation platforms. The software is open-source and free to download at http://amapstudio.cirad.fr/soft/xplo/download. DigR is based on three key points: (1) a root-system architectural analysis, (2) root type classification and modelling and (3) a restricted set of 23 root type parameters with flexible values indexed in terms of root position. Genericity and botanical accuracy of the model is demonstrated for growth, branching, mortality and reiteration processes, and for different root architectures. Plugin examples demonstrate the model's versatility at simulating plastic responses to environmental constraints. Outputs of the model include diverse root system structures such as tap-root, fasciculate, tuberous, nodulated and clustered root systems. DigR is based on plant architecture analysis which leads to specific root type classification and organization that are directly linked to field measurements. The open source simulator of the model has been included within a friendly user environment. DigR accuracy and versatility are demonstrated for growth simulations of complex root systems for both annual and perennial plants.
Self-Contained Automated Vehicle Washing System
2014-09-26
SECURITY CLASSIFICATION OF: The Self Contained Automated Vehicle Washing System is a prototype that offers a reduction in the quantity of water ...supplied to the front lines by recycling wash water used in the cleaning of vehicles as well as capturing debris and other contaminates. The system also...of the warfighter to contaminates in the washing process. The System offers plug and play option for reclamation of the wash water and integration of
The Integrative Studies of Genetic and Environmental Factors in Systemic Sclerosis
2008-05-01
15. SUBJECT TERMS Scleroderma (SSc), fibroblasts, fibrosis, silica, environmental particles, susceptibility. 16. SECURITY CLASSIFICATION OF...factors in a viable system - human fibroblasts. Fibroblasts with a scleroderma (SSc) susceptible genetic background may be more vulnerable to...for understanding environmental contributions to fibrosing diseases such as scleroderma (SSc). Third, in the studies of specific biological
PI2GIS: processing image to geographical information systems, a learning tool for QGIS
NASA Astrophysics Data System (ADS)
Correia, R.; Teodoro, A.; Duarte, L.
2017-10-01
To perform an accurate interpretation of remote sensing images, it is necessary to extract information using different image processing techniques. Nowadays, it became usual to use image processing plugins to add new capabilities/functionalities integrated in Geographical Information System (GIS) software. The aim of this work was to develop an open source application to automatically process and classify remote sensing images from a set of satellite input data. The application was integrated in a GIS software (QGIS), automating several image processing steps. The use of QGIS for this purpose is justified since it is easy and quick to develop new plugins, using Python language. This plugin is inspired in the Semi-Automatic Classification Plugin (SCP) developed by Luca Congedo. SCP allows the supervised classification of remote sensing images, the calculation of vegetation indices such as NDVI (Normalized Difference Vegetation Index) and EVI (Enhanced Vegetation Index) and other image processing operations. When analysing SCP, it was realized that a set of operations, that are very useful in teaching classes of remote sensing and image processing tasks, were lacking, such as the visualization of histograms, the application of filters, different image corrections, unsupervised classification and several environmental indices computation. The new set of operations included in the PI2GIS plugin can be divided into three groups: pre-processing, processing, and classification procedures. The application was tested consider an image from Landsat 8 OLI from a North area of Portugal.
Thompson, Bryony A.; Greenblatt, Marc S.; Vallee, Maxime P.; Herkert, Johanna C.; Tessereau, Chloe; Young, Erin L.; Adzhubey, Ivan A.; Li, Biao; Bell, Russell; Feng, Bingjian; Mooney, Sean D.; Radivojac, Predrag; Sunyaev, Shamil R.; Frebourg, Thierry; Hofstra, Robert M.W.; Sijmons, Rolf H.; Boucher, Ken; Thomas, Alun; Goldgar, David E.; Spurdle, Amanda B.; Tavtigian, Sean V.
2015-01-01
Classification of rare missense substitutions observed during genetic testing for patient management is a considerable problem in clinical genetics. The Bayesian integrated evaluation of unclassified variants is a solution originally developed for BRCA1/2. Here, we take a step toward an analogous system for the mismatch repair (MMR) genes (MLH1, MSH2, MSH6, and PMS2) that confer colon cancer susceptibility in Lynch syndrome by calibrating in silico tools to estimate prior probabilities of pathogenicity for MMR gene missense substitutions. A qualitative five-class classification system was developed and applied to 143 MMR missense variants. This identified 74 missense substitutions suitable for calibration. These substitutions were scored using six different in silico tools (Align-Grantham Variation Grantham Deviation, multivariate analysis of protein polymorphisms [MAPP], Mut-Pred, PolyPhen-2.1, Sorting Intolerant From Tolerant, and Xvar), using curated MMR multiple sequence alignments where possible. The output from each tool was calibrated by regression against the classifications of the 74 missense substitutions; these calibrated outputs are interpretable as prior probabilities of pathogenicity. MAPP was the most accurate tool and MAPP + PolyPhen-2.1 provided the best-combined model (R2 = 0.62 and area under receiver operating characteristic = 0.93). The MAPP + PolyPhen-2.1 output is sufficiently predictive to feed as a continuous variable into the quantitative Bayesian integrated evaluation for clinical classification of MMR gene missense substitutions. PMID:22949387
Kumar, G. Ajay; Patil, Ashok Kumar; Patil, Rekha; Park, Seong Sill; Chai, Young Ho
2017-01-01
Mapping the environment of a vehicle and localizing a vehicle within that unknown environment are complex issues. Although many approaches based on various types of sensory inputs and computational concepts have been successfully utilized for ground robot localization, there is difficulty in localizing an unmanned aerial vehicle (UAV) due to variation in altitude and motion dynamics. This paper proposes a robust and efficient indoor mapping and localization solution for a UAV integrated with low-cost Light Detection and Ranging (LiDAR) and Inertial Measurement Unit (IMU) sensors. Considering the advantage of the typical geometric structure of indoor environments, the planar position of UAVs can be efficiently calculated from a point-to-point scan matching algorithm using measurements from a horizontally scanning primary LiDAR. The altitude of the UAV with respect to the floor can be estimated accurately using a vertically scanning secondary LiDAR scanner, which is mounted orthogonally to the primary LiDAR. Furthermore, a Kalman filter is used to derive the 3D position by fusing primary and secondary LiDAR data. Additionally, this work presents a novel method for its application in the real-time classification of a pipeline in an indoor map by integrating the proposed navigation approach. Classification of the pipeline is based on the pipe radius estimation considering the region of interest (ROI) and the typical angle. The ROI is selected by finding the nearest neighbors of the selected seed point in the pipeline point cloud, and the typical angle is estimated with the directional histogram. Experimental results are provided to determine the feasibility of the proposed navigation system and its integration with real-time application in industrial plant engineering. PMID:28574474
An Integrating Framework for Interdisciplinary Military Analyses
2017-04-01
Effectiveness, System Performance, Task Prosecution, War Gaming 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES...and space for every play of the game . Called plays can be compared to collective tasks with each player responsible for executing one or more
PSG-EXPERT. An expert system for the diagnosis of sleep disorders.
Fred, A; Filipe, J; Partinen, M; Paiva, T
2000-01-01
This paper describes PSG-EXPERT, an expert system in the domain of sleep disorders exploring polysomnographic data. The developed software tool is addressed from two points of view: (1)--as an integrated environment for the development of diagnosis-oriented expert systems; (2)--as an auxiliary diagnosis tool in the particular domain of sleep disorders. Developed over a Windows platform, this software tool extends one of the most popular shells--CLIPS (C Language Integrated Production System) with the following features: backward chaining engine; graph-based explanation facilities; knowledge editor including a fuzzy fact editor and a rules editor, with facts-rules integrity checking; belief revision mechanism; built-in case generator and validation module. It therefore provides graphical support for knowledge acquisition, edition, explanation and validation. From an application domain point of view, PSG-Expert is an auxiliary diagnosis system for sleep disorders based on polysomnographic data, that aims at assisting the medical expert in his diagnosis task by providing automatic analysis of polysomnographic data, summarising the results of this analysis in terms of a report of major findings and possible diagnosis consistent with the polysomnographic data. Sleep disorders classification follows the International Classification of Sleep Disorders. Major features of the system include: browsing on patients data records; structured navigation on Sleep Disorders descriptions according to ASDA definitions; internet links to related pages; diagnosis consistent with polysomnographic data; graphical user-interface including graph-based explanatory facilities; uncertainty modelling and belief revision; production of reports; connection to remote databases.
Challenges of rehabilitation case mix measurement in Ontario hospitals.
Sutherland, Jason Murray; Walker, Jan
2008-03-01
Case mix classification systems have been adopted in many countries as a method to manage and finance healthcare in acute care settings; the most popular systems are based on diagnosis related groups. The most successful of those case mix systems differentiate patient types by reflecting both the intensity of resources consumed and patient acuity. Case mix systems for use with non-acute hospital activity have not been as wide-spread; other than in the United States, little attention has been directed towards case mix classification for rehabilitation activity. In a province with over 13 million inhabitants with 2496 rehabilitation beds, inpatient rehabilitation is an important component of hospital care in Ontario, Canada, and consists of the spectrum of intensive rehabilitation activities intended to restore function. Although case mix adjusted activity has been the currency in Ontario's Integrated Population Based Allocation hospital funding formula, rehabilitation activity has not been subjected to case mix measurement. A project to examine case mix classification for adult inpatient rehabilitation activity was initiated by the Ontario Ministry of Health and Long-Term Care whose outcome was a case mix system and associated cost weights that would result in rehabilitation activity being incorporated into the hospital funding formula. The process described in this study provides Ontario's provincial government with a case mix classification system for adult inpatient rehabilitation activity although there remain areas for improvement.
Classification and authentication of unknown water samples using machine learning algorithms.
Kundu, Palash K; Panchariya, P C; Kundu, Madhusree
2011-07-01
This paper proposes the development of water sample classification and authentication, in real life which is based on machine learning algorithms. The proposed techniques used experimental measurements from a pulse voltametry method which is based on an electronic tongue (E-tongue) instrumentation system with silver and platinum electrodes. E-tongue include arrays of solid state ion sensors, transducers even of different types, data collectors and data analysis tools, all oriented to the classification of liquid samples and authentication of unknown liquid samples. The time series signal and the corresponding raw data represent the measurement from a multi-sensor system. The E-tongue system, implemented in a laboratory environment for 6 numbers of different ISI (Bureau of Indian standard) certified water samples (Aquafina, Bisleri, Kingfisher, Oasis, Dolphin, and McDowell) was the data source for developing two types of machine learning algorithms like classification and regression. A water data set consisting of 6 numbers of sample classes containing 4402 numbers of features were considered. A PCA (principal component analysis) based classification and authentication tool was developed in this study as the machine learning component of the E-tongue system. A proposed partial least squares (PLS) based classifier, which was dedicated as well; to authenticate a specific category of water sample evolved out as an integral part of the E-tongue instrumentation system. The developed PCA and PLS based E-tongue system emancipated an overall encouraging authentication percentage accuracy with their excellent performances for the aforesaid categories of water samples. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.
Deep Learning in Label-free Cell Classification
Chen, Claire Lifan; Mahjoubfar, Ata; Tai, Li-Chia; Blaby, Ian K.; Huang, Allen; Niazi, Kayvan Reza; Jalali, Bahram
2016-01-01
Label-free cell analysis is essential to personalized genomics, cancer diagnostics, and drug development as it avoids adverse effects of staining reagents on cellular viability and cell signaling. However, currently available label-free cell assays mostly rely only on a single feature and lack sufficient differentiation. Also, the sample size analyzed by these assays is limited due to their low throughput. Here, we integrate feature extraction and deep learning with high-throughput quantitative imaging enabled by photonic time stretch, achieving record high accuracy in label-free cell classification. Our system captures quantitative optical phase and intensity images and extracts multiple biophysical features of individual cells. These biophysical measurements form a hyperdimensional feature space in which supervised learning is performed for cell classification. We compare various learning algorithms including artificial neural network, support vector machine, logistic regression, and a novel deep learning pipeline, which adopts global optimization of receiver operating characteristics. As a validation of the enhanced sensitivity and specificity of our system, we show classification of white blood T-cells against colon cancer cells, as well as lipid accumulating algal strains for biofuel production. This system opens up a new path to data-driven phenotypic diagnosis and better understanding of the heterogeneous gene expressions in cells. PMID:26975219
A Higher Level Classification of All Living Organisms
Ruggiero, Michael A.; Gordon, Dennis P.; Orrell, Thomas M.; Bailly, Nicolas; Bourgoin, Thierry; Brusca, Richard C.; Cavalier-Smith, Thomas; Guiry, Michael D.; Kirk, Paul M.
2015-01-01
We present a consensus classification of life to embrace the more than 1.6 million species already provided by more than 3,000 taxonomists’ expert opinions in a unified and coherent, hierarchically ranked system known as the Catalogue of Life (CoL). The intent of this collaborative effort is to provide a hierarchical classification serving not only the needs of the CoL’s database providers but also the diverse public-domain user community, most of whom are familiar with the Linnaean conceptual system of ordering taxon relationships. This classification is neither phylogenetic nor evolutionary but instead represents a consensus view that accommodates taxonomic choices and practical compromises among diverse expert opinions, public usages, and conflicting evidence about the boundaries between taxa and the ranks of major taxa, including kingdoms. Certain key issues, some not fully resolved, are addressed in particular. Beyond its immediate use as a management tool for the CoL and ITIS (Integrated Taxonomic Information System), it is immediately valuable as a reference for taxonomic and biodiversity research, as a tool for societal communication, and as a classificatory “backbone” for biodiversity databases, museum collections, libraries, and textbooks. Such a modern comprehensive hierarchy has not previously existed at this level of specificity. PMID:25923521
Deep Learning in Label-free Cell Classification
NASA Astrophysics Data System (ADS)
Chen, Claire Lifan; Mahjoubfar, Ata; Tai, Li-Chia; Blaby, Ian K.; Huang, Allen; Niazi, Kayvan Reza; Jalali, Bahram
2016-03-01
Label-free cell analysis is essential to personalized genomics, cancer diagnostics, and drug development as it avoids adverse effects of staining reagents on cellular viability and cell signaling. However, currently available label-free cell assays mostly rely only on a single feature and lack sufficient differentiation. Also, the sample size analyzed by these assays is limited due to their low throughput. Here, we integrate feature extraction and deep learning with high-throughput quantitative imaging enabled by photonic time stretch, achieving record high accuracy in label-free cell classification. Our system captures quantitative optical phase and intensity images and extracts multiple biophysical features of individual cells. These biophysical measurements form a hyperdimensional feature space in which supervised learning is performed for cell classification. We compare various learning algorithms including artificial neural network, support vector machine, logistic regression, and a novel deep learning pipeline, which adopts global optimization of receiver operating characteristics. As a validation of the enhanced sensitivity and specificity of our system, we show classification of white blood T-cells against colon cancer cells, as well as lipid accumulating algal strains for biofuel production. This system opens up a new path to data-driven phenotypic diagnosis and better understanding of the heterogeneous gene expressions in cells.
Translation and integration of CCC nursing diagnoses into ICNP.
Matney, Susan A; DaDamio, Rebecca; Couderc, Carmela; Dlugos, Mary; Evans, Jonathan; Gianonne, Gay; Haskell, Robert; Hardiker, Nicholas; Coenen, Amy; Saba, Virginia K
2008-01-01
The purpose of this study was to translate and integrate nursing diagnosis concepts from the Clinical Care Classification (CCC) System Version 2.0 to DiagnosticPhenomenon or nursing diagnostic statements in the International Classification for Nursing Practice (ICNP) Version 1.0. Source concepts for CCC were mapped by the project team, where possible, to pre-coordinated ICNP terms. The manual decomposition of source concepts according to the ICNP 7-Axis Model served to validate the mappings. A total of 62% of the CCC Nursing Diagnoses were a pre-coordinated match to an ICNP concept, 35% were a post-coordinated match and only 3% had no match. During the mapping process, missing CCC concepts were submitted to the ICNP Programme, with a recommendation for inclusion in future releases.
NASA Astrophysics Data System (ADS)
Land, Walker H., Jr.; Lewis, Michael; Sadik, Omowunmi; Wong, Lut; Wanekaya, Adam; Gonzalez, Richard J.; Balan, Arun
2004-04-01
This paper extends the classification approaches described in reference [1] in the following way: (1.) developing and evaluating a new method for evolving organophosphate nerve agent Support Vector Machine (SVM) classifiers using Evolutionary Programming, (2.) conducting research experiments using a larger database of organophosphate nerve agents, and (3.) upgrading the architecture to an object-based grid system for evaluating the classification of EP derived SVMs. Due to the increased threats of chemical and biological weapons of mass destruction (WMD) by international terrorist organizations, a significant effort is underway to develop tools that can be used to detect and effectively combat biochemical warfare. This paper reports the integration of multi-array sensors with Support Vector Machines (SVMs) for the detection of organophosphates nerve agents using a grid computing system called Legion. Grid computing is the use of large collections of heterogeneous, distributed resources (including machines, databases, devices, and users) to support large-scale computations and wide-area data access. Finally, preliminary results using EP derived support vector machines designed to operate on distributed systems have provided accurate classification results. In addition, distributed training time architectures are 50 times faster when compared to standard iterative training time methods.
Invariant algebraic surfaces for a virus dynamics
NASA Astrophysics Data System (ADS)
Valls, Claudia
2015-08-01
In this paper, we provide a complete classification of the invariant algebraic surfaces and of the rational first integrals for a well-known virus system. In the proofs, we use the weight-homogeneous polynomials and the method of characteristic curves for solving linear partial differential equations.
Design of Clinical Support Systems Using Integrated Genetic Algorithm and Support Vector Machine
NASA Astrophysics Data System (ADS)
Chen, Yung-Fu; Huang, Yung-Fa; Jiang, Xiaoyi; Hsu, Yuan-Nian; Lin, Hsuan-Hung
Clinical decision support system (CDSS) provides knowledge and specific information for clinicians to enhance diagnostic efficiency and improving healthcare quality. An appropriate CDSS can highly elevate patient safety, improve healthcare quality, and increase cost-effectiveness. Support vector machine (SVM) is believed to be superior to traditional statistical and neural network classifiers. However, it is critical to determine suitable combination of SVM parameters regarding classification performance. Genetic algorithm (GA) can find optimal solution within an acceptable time, and is faster than greedy algorithm with exhaustive searching strategy. By taking the advantage of GA in quickly selecting the salient features and adjusting SVM parameters, a method using integrated GA and SVM (IGS), which is different from the traditional method with GA used for feature selection and SVM for classification, was used to design CDSSs for prediction of successful ventilation weaning, diagnosis of patients with severe obstructive sleep apnea, and discrimination of different cell types form Pap smear. The results show that IGS is better than methods using SVM alone or linear discriminator.
Jiang, Yizhang; Wu, Dongrui; Deng, Zhaohong; Qian, Pengjiang; Wang, Jun; Wang, Guanjin; Chung, Fu-Lai; Choi, Kup-Sze; Wang, Shitong
2017-12-01
Recognition of epileptic seizures from offline EEG signals is very important in clinical diagnosis of epilepsy. Compared with manual labeling of EEG signals by doctors, machine learning approaches can be faster and more consistent. However, the classification accuracy is usually not satisfactory for two main reasons: the distributions of the data used for training and testing may be different, and the amount of training data may not be enough. In addition, most machine learning approaches generate black-box models that are difficult to interpret. In this paper, we integrate transductive transfer learning, semi-supervised learning and TSK fuzzy system to tackle these three problems. More specifically, we use transfer learning to reduce the discrepancy in data distribution between the training and testing data, employ semi-supervised learning to use the unlabeled testing data to remedy the shortage of training data, and adopt TSK fuzzy system to increase model interpretability. Two learning algorithms are proposed to train the system. Our experimental results show that the proposed approaches can achieve better performance than many state-of-the-art seizure classification algorithms.
Colorectal Cancer Classification and Cell Heterogeneity: A Systems Oncology Approach
Blanco-Calvo, Moisés; Concha, Ángel; Figueroa, Angélica; Garrido, Federico; Valladares-Ayerbes, Manuel
2015-01-01
Colorectal cancer is a heterogeneous disease that manifests through diverse clinical scenarios. During many years, our knowledge about the variability of colorectal tumors was limited to the histopathological analysis from which generic classifications associated with different clinical expectations are derived. However, currently we are beginning to understand that under the intense pathological and clinical variability of these tumors there underlies strong genetic and biological heterogeneity. Thus, with the increasing available information of inter-tumor and intra-tumor heterogeneity, the classical pathological approach is being displaced in favor of novel molecular classifications. In the present article, we summarize the most relevant proposals of molecular classifications obtained from the analysis of colorectal tumors using powerful high throughput techniques and devices. We also discuss the role that cancer systems biology may play in the integration and interpretation of the high amount of data generated and the challenges to be addressed in the future development of precision oncology. In addition, we review the current state of implementation of these novel tools in the pathological laboratory and in clinical practice. PMID:26084042
Understanding and Managing Causality of Change in Socio-Technical Systems II
2011-01-25
SUBJECT TERMS Cognition , Human Effectiveness, Information Science 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT Same as Report (SAR) 18...at large taking into account the cognitive interaction between humans and technology. 8 Hussein Abbass Professor Abbass leads the...Network Centric Operations Future Air Traffic Management Systems Cognitive Engineering including Human-Computer Integration In all of the
Liu, Ping; Hu, Yi-yang; Ni, Li-qiang
2006-05-01
To create a comparative referential system for syndrome classification study by viewing from the thinking characteristics of TCM on syndrome differentiation dependent therapy (SDDT), through analyzing the thinking process of SDDT, and the basic features of disease, syndrome and prescription, combining the basic principles of modern evidence-based medicine and feasibility of establishing integrative disease-syndrome animal model. The practice of creating a comparative referential system based on clinical efficacy of prescription was discussed around syndrome pathogenesis and its relationship with disease and prescription, which was one of the important scientific problems in TCM syndrome study. The authors hold that, it may be one of the available approaches for the present study on integration of disease with syndrome by way of insisting on the thinking pathway of stressing the characteristics of TCM and intermerging with modern scientific design; on taking the efficacy of prescription as the comparative reference system to accumulate and improve unceasingly according to the TCM method of syndrome diagnosis inferred from effect of prescription with reverse thought (i.e., to differentiate syndrome from the effect of prescription), and thus build up the syndrome diagnostic standard on the solid clinical and scientific base.
An integrated healthcare system for personalized chronic disease care in home-hospital environments.
Jeong, Sangjin; Youn, Chan-Hyun; Shim, Eun Bo; Kim, Moonjung; Cho, Young Min; Peng, Limei
2012-07-01
Facing the increasing demands and challenges in the area of chronic disease care, various studies on the healthcare system which can, whenever and wherever, extract and process patient data have been conducted. Chronic diseases are the long-term diseases and require the processes of the real-time monitoring, multidimensional quantitative analysis, and the classification of patients' diagnostic information. A healthcare system for chronic diseases is characterized as an at-hospital and at-home service according to a targeted environment. Both services basically aim to provide patients with accurate diagnoses of disease by monitoring a variety of physical states with a number of monitoring methods, but there are differences between home and hospital environments, and the different characteristics should be considered in order to provide more accurate diagnoses for patients, especially, patients having chronic diseases. In this paper, we propose a patient status classification method for effectively identifying and classifying chronic diseases and show the validity of the proposed method. Furthermore, we present a new healthcare system architecture that integrates the at-home and at-hospital environment and discuss the applicability of the architecture using practical target services.
Data Clustering and Evolving Fuzzy Decision Tree for Data Base Classification Problems
NASA Astrophysics Data System (ADS)
Chang, Pei-Chann; Fan, Chin-Yuan; Wang, Yen-Wen
Data base classification suffers from two well known difficulties, i.e., the high dimensionality and non-stationary variations within the large historic data. This paper presents a hybrid classification model by integrating a case based reasoning technique, a Fuzzy Decision Tree (FDT), and Genetic Algorithms (GA) to construct a decision-making system for data classification in various data base applications. The model is major based on the idea that the historic data base can be transformed into a smaller case-base together with a group of fuzzy decision rules. As a result, the model can be more accurately respond to the current data under classifying from the inductions by these smaller cases based fuzzy decision trees. Hit rate is applied as a performance measure and the effectiveness of our proposed model is demonstrated by experimentally compared with other approaches on different data base classification applications. The average hit rate of our proposed model is the highest among others.
Atmosphere-based image classification through luminance and hue
NASA Astrophysics Data System (ADS)
Xu, Feng; Zhang, Yujin
2005-07-01
In this paper a novel image classification system is proposed. Atmosphere serves an important role in generating the scene"s topic or in conveying the message behind the scene"s story, which belongs to abstract attribute level in semantic levels. At first, five atmosphere semantic categories are defined according to rules of photo and film grammar, followed by global luminance and hue features. Then the hierarchical SVM classifiers are applied. In each classification stage, corresponding features are extracted and the trained linear SVM is implemented, resulting in two classes. After three stages of classification, five atmosphere categories are obtained. At last, the text annotation of the atmosphere semantics and the corresponding features by Extensible Markup Language (XML) in MPEG-7 is defined, which can be integrated into more multimedia applications (such as searching, indexing and accessing of multimedia content). The experiment is performed on Corel images and film frames. The classification results prove the effectiveness of the definition of atmosphere semantic classes and the corresponding features.
A modular case-mix classification system for medical rehabilitation illustrated.
Stineman, M G; Granger, C V
1997-01-01
The authors present a modular set of patient classification systems designed for medical rehabilitation that predict resource use and outcomes for clinically similar groups of individuals. The systems, based on the Functional Independence Measure, are referred to as Function-Related Groups (FIM-FRGs). Using data from 23,637 lower extremity fracture patients from 458 inpatient medical rehabilitation facilities, 1995 benchmarks are provided and illustrated for length of stay, functional outcome, and discharge to home and skilled nursing facilities (SNFs). The FIM-FRG modules may be used in parallel to study interactions between resource use and quality and could ultimately yield an integrated strategy for payment and outcomes measurement. This could position the rehabilitation community to take a pioneering role in the application of outcomes-based clinical indicators.
Vishnyakova, Dina; Pasche, Emilie; Ruch, Patrick
2012-01-01
We report on the original integration of an automatic text categorization pipeline, so-called ToxiCat (Toxicogenomic Categorizer), that we developed to perform biomedical documents classification and prioritization in order to speed up the curation of the Comparative Toxicogenomics Database (CTD). The task can be basically described as a binary classification task, where a scoring function is used to rank a selected set of articles. Then components of a question-answering system are used to extract CTD-specific annotations from the ranked list of articles. The ranking function is generated using a Support Vector Machine, which combines three main modules: an information retrieval engine for MEDLINE (EAGLi), a gene normalization service (NormaGene) developed for a previous BioCreative campaign and finally, a set of answering components and entity recognizer for diseases and chemicals. The main components of the pipeline are publicly available both as web application and web services. The specific integration performed for the BioCreative competition is available via a web user interface at http://pingu.unige.ch:8080/Toxicat.
D Land Cover Classification Based on Multispectral LIDAR Point Clouds
NASA Astrophysics Data System (ADS)
Zou, Xiaoliang; Zhao, Guihua; Li, Jonathan; Yang, Yuanxi; Fang, Yong
2016-06-01
Multispectral Lidar System can emit simultaneous laser pulses at the different wavelengths. The reflected multispectral energy is captured through a receiver of the sensor, and the return signal together with the position and orientation information of sensor is recorded. These recorded data are solved with GNSS/IMU data for further post-processing, forming high density multispectral 3D point clouds. As the first commercial multispectral airborne Lidar sensor, Optech Titan system is capable of collecting point clouds data from all three channels at 532nm visible (Green), at 1064 nm near infrared (NIR) and at 1550nm intermediate infrared (IR). It has become a new source of data for 3D land cover classification. The paper presents an Object Based Image Analysis (OBIA) approach to only use multispectral Lidar point clouds datasets for 3D land cover classification. The approach consists of three steps. Firstly, multispectral intensity images are segmented into image objects on the basis of multi-resolution segmentation integrating different scale parameters. Secondly, intensity objects are classified into nine categories by using the customized features of classification indexes and a combination the multispectral reflectance with the vertical distribution of object features. Finally, accuracy assessment is conducted via comparing random reference samples points from google imagery tiles with the classification results. The classification results show higher overall accuracy for most of the land cover types. Over 90% of overall accuracy is achieved via using multispectral Lidar point clouds for 3D land cover classification.
Real-time classification and sensor fusion with a spiking deep belief network.
O'Connor, Peter; Neil, Daniel; Liu, Shih-Chii; Delbruck, Tobi; Pfeiffer, Michael
2013-01-01
Deep Belief Networks (DBNs) have recently shown impressive performance on a broad range of classification problems. Their generative properties allow better understanding of the performance, and provide a simpler solution for sensor fusion tasks. However, because of their inherent need for feedback and parallel update of large numbers of units, DBNs are expensive to implement on serial computers. This paper proposes a method based on the Siegert approximation for Integrate-and-Fire neurons to map an offline-trained DBN onto an efficient event-driven spiking neural network suitable for hardware implementation. The method is demonstrated in simulation and by a real-time implementation of a 3-layer network with 2694 neurons used for visual classification of MNIST handwritten digits with input from a 128 × 128 Dynamic Vision Sensor (DVS) silicon retina, and sensory-fusion using additional input from a 64-channel AER-EAR silicon cochlea. The system is implemented through the open-source software in the jAER project and runs in real-time on a laptop computer. It is demonstrated that the system can recognize digits in the presence of distractions, noise, scaling, translation and rotation, and that the degradation of recognition performance by using an event-based approach is less than 1%. Recognition is achieved in an average of 5.8 ms after the onset of the presentation of a digit. By cue integration from both silicon retina and cochlea outputs we show that the system can be biased to select the correct digit from otherwise ambiguous input.
SkICAT: A cataloging and analysis tool for wide field imaging surveys
NASA Technical Reports Server (NTRS)
Weir, N.; Fayyad, U. M.; Djorgovski, S. G.; Roden, J.
1992-01-01
We describe an integrated system, SkICAT (Sky Image Cataloging and Analysis Tool), for the automated reduction and analysis of the Palomar Observatory-ST ScI Digitized Sky Survey. The Survey will consist of the complete digitization of the photographic Second Palomar Observatory Sky Survey (POSS-II) in three bands, comprising nearly three Terabytes of pixel data. SkICAT applies a combination of existing packages, including FOCAS for basic image detection and measurement and SAS for database management, as well as custom software, to the task of managing this wealth of data. One of the most novel aspects of the system is its method of object classification. Using state-of-theart machine learning classification techniques (GID3* and O-BTree), we have developed a powerful method for automatically distinguishing point sources from non-point sources and artifacts, achieving comparably accurate discrimination a full magnitude fainter than in previous Schmidt plate surveys. The learning algorithms produce decision trees for classification by examining instances of objects classified by eye on both plate and higher quality CCD data. The same techniques will be applied to perform higher-level object classification (e.g., of galaxy morphology) in the near future. Another key feature of the system is the facility to integrate the catalogs from multiple plates (and portions thereof) to construct a single catalog of uniform calibration and quality down to the faintest limits of the survey. SkICAT also provides a variety of data analysis and exploration tools for the scientific utilization of the resulting catalogs. We include initial results of applying this system to measure the counts and distribution of galaxies in two bands down to Bj is approximately 21 mag over an approximate 70 square degree multi-plate field from POSS-II. SkICAT is constructed in a modular and general fashion and should be readily adaptable to other large-scale imaging surveys.
Slaughter, Susan E; Zimmermann, Gabrielle L; Nuspl, Megan; Hanson, Heather M; Albrecht, Lauren; Esmail, Rosmin; Sauro, Khara; Newton, Amanda S; Donald, Maoliosa; Dyson, Michele P; Thomson, Denise; Hartling, Lisa
2017-12-06
As implementation science advances, the number of interventions to promote the translation of evidence into healthcare, health systems, or health policy is growing. Accordingly, classification schemes for these knowledge translation (KT) interventions have emerged. A recent scoping review identified 51 classification schemes of KT interventions to integrate evidence into healthcare practice; however, the review did not evaluate the quality of the classification schemes or provide detailed information to assist researchers in selecting a scheme for their context and purpose. This study aimed to further examine and assess the quality of these classification schemes of KT interventions, and provide information to aid researchers when selecting a classification scheme. We abstracted the following information from each of the original 51 classification scheme articles: authors' objectives; purpose of the scheme and field of application; socioecologic level (individual, organizational, community, system); adaptability (broad versus specific); target group (patients, providers, policy-makers), intent (policy, education, practice), and purpose (dissemination versus implementation). Two reviewers independently evaluated the methodological quality of the development of each classification scheme using an adapted version of the AGREE II tool. Based on these assessments, two independent reviewers reached consensus about whether to recommend each scheme for researcher use, or not. Of the 51 original classification schemes, we excluded seven that were not specific classification schemes, not accessible or duplicates. Of the remaining 44 classification schemes, nine were not recommended. Of the 35 recommended classification schemes, ten focused on behaviour change and six focused on population health. Many schemes (n = 29) addressed practice considerations. Fewer schemes addressed educational or policy objectives. Twenty-five classification schemes had broad applicability, six were specific, and four had elements of both. Twenty-three schemes targeted health providers, nine targeted both patients and providers and one targeted policy-makers. Most classification schemes were intended for implementation rather than dissemination. Thirty-five classification schemes of KT interventions were developed and reported with sufficient rigour to be recommended for use by researchers interested in KT in healthcare. Our additional categorization and quality analysis will aid in selecting suitable classification schemes for research initiatives in the field of implementation science.
Ramsey, Elijah W.; Nelson, Gene A.; Sapkota, Sijan
1998-01-01
A progressive classification of a marsh and forest system using Landsat Thematic Mapper (TM), color infrared (CIR) photograph, and ERS-1 synthetic aperture radar (SAR) data improved classification accuracy when compared to classification using solely TM reflective band data. The classification resulted in a detailed identification of differences within a nearly monotypic black needlerush marsh. Accuracy percentages of these classes were surprisingly high given the complexities of classification. The detailed classification resulted in a more accurate portrayal of the marsh transgressive sequence than was obtainable with TM data alone. Individual sensor contribution to the improved classification was compared to that using only the six reflective TM bands. Individually, the green reflective CIR and SAR data identified broad categories of water, marsh, and forest. In combination with TM, SAR and the green CIR band each improved overall accuracy by about 3% and 15% respectively. The SAR data improved the TM classification accuracy mostly in the marsh classes. The green CIR data also improved the marsh classification accuracy and accuracies in some water classes. The final combination of all sensor data improved almost all class accuracies from 2% to 70% with an overall improvement of about 20% over TM data alone. Not only was the identification of vegetation types improved, but the spatial detail of the classification approached 10 m in some areas.
1983-01-01
INTEGRATED SYSTEMS ANALYSTS INC VIRGINIA NAVY RDTE/ELECTRONICS AND COMMUNICATION EQUIP 964 INTERACTIVE SYSTEMS INC MICHIGAN USAF ROTE/ELECTRONICS AND...HARD GOODS INTERACTIVE SYSTEMS INC COLORADO ARMY RDTE/MISCELLANEOUS HARD GOODS LITTON SYSTEMS INC NEW JERSEY NAVY RDTE/MISCELLANEOUS HARD GOODS I...DEFENSE 88 INTELLIGENT SY STATE TOTAL 114 INTERACTIVE TE CO CALIFORNIA ARMY RDTE/OTHER DEFENSE 201 INTERNATIONAL I NAVY ROTE/OTHER DEFENSE 778 USAF RDTE
14 CFR Sec. 19-4 - Service classes.
Code of Federal Regulations, 2010 CFR
2010-01-01
... a composite of first class, coach, and mixed passenger/cargo service. The following classifications... integral part of services performed pursuant to published flight schedules. The following classifications... Classifications Sec. 19-4 Service classes. The statistical classifications are designed to reflect the operating...
14 CFR Sec. 19-4 - Service classes.
Code of Federal Regulations, 2011 CFR
2011-01-01
... a composite of first class, coach, and mixed passenger/cargo service. The following classifications... integral part of services performed pursuant to published flight schedules. The following classifications... Classifications Sec. 19-4 Service classes. The statistical classifications are designed to reflect the operating...
Accurate exposure classification tools are required to link exposure with health effects in epidemiological studies. Long-term, time-integrated exposure measures would be desirable to address the problem of developing appropriate residential childhood exposure classifications. ...
Functional Constructivism: In Search of Formal Descriptors.
Trofimova, Irina
2017-10-01
The Functional Constructivism (FC) paradigm is an alternative to behaviorism and considers behavior as being generated every time anew, based on an individual's capacities, environmental resources and demands. Walter Freeman's work provided us with evidence supporting the FC principles. In this paper we make parallels between gradual construction processes leading to the formation of individual behavior and habits, and evolutionary processes leading to the establishment of biological systems. Referencing evolutionary theory, several formal descriptors of such processes are proposed. These FC descriptors refer to the most universal aspects for constructing consistent structures: expansion of degrees of freedom, integration processes based on internal and external compatibility between systems and maintenance processes, all given in four different classes of systems: (a) Zone of Proximate Development (poorly defined) systems; (b) peer systems with emerging reproduction of multiple siblings; (c) systems with internalized integration of behavioral elements ('cruise controls'); and (d) systems capable of handling low-probability, not yet present events. The recursive dynamics within this set of descriptors acting on (traditional) downward, upward and horizontal directions of evolution, is conceptualized as diagonal evolution, or di-evolution. Two examples applying these FC descriptors to taxonomy are given: classification of the functionality of neuro-transmitters and temperament traits; classification of mental disorders. The paper is an early step towards finding a formal language describing universal tendencies in highly diverse, complex and multi-level transient systems known in ecology and biology as 'contingency cycles.'
18 CFR 3a.22 - Declassification and downgrading.
Code of Federal Regulations, 2011 CFR
2011-04-01
... preserve the effectiveness and integrity of the classification system. The Chairman, Vice Chairman, and... second full calendar year following the year in which it was originated, downgraded to Confidential at... Confidential at the end of the second full calendar year following the year in which it was originated, and...
Ontology-based knowledge representation for resolution of semantic heterogeneity in GIS
NASA Astrophysics Data System (ADS)
Liu, Ying; Xiao, Han; Wang, Limin; Han, Jialing
2017-07-01
Lack of semantic interoperability in geographical information systems has been identified as the main obstacle for data sharing and database integration. The new method should be found to overcome the problems of semantic heterogeneity. Ontologies are considered to be one approach to support geographic information sharing. This paper presents an ontology-driven integration approach to help in detecting and possibly resolving semantic conflicts. Its originality is that each data source participating in the integration process contains an ontology that defines the meaning of its own data. This approach ensures the automation of the integration through regulation of semantic integration algorithm. Finally, land classification in field GIS is described as the example.
TNM: evolution and relation to other prognostic factors.
Sobin, Leslie H
2003-01-01
The TNM Classification describes the anatomic extent of cancer. TNM's ability to separately classify the individual tumor (T), node (N), and metastasis (M) elements and then group them into stages differs from other cancer staging classifications (e.g., Dukes), which are only concerned with summarized groups. The objectives of the TNM Classification are to aid the clinician in the planning of treatment, give some indication of prognosis, assist in the evaluation of the results of treatment, and facilitate the exchange of information. During the past 50 years, the TNM system has evolved under the influence of advances in diagnosis and treatment. Radiographic imaging (e.g., endoscopic ultrasound for the depth of invasion of esophageal and rectal tumors) has improved the accuracy of the clinical T, N, and M classifications. Advances in treatment have necessitated more detail in some T4 categories. Developments in multimodality therapy have increased the importance of the "y" symbol and the R (residual tumor) classification. New surgical techniques have resulted in the elaboration of the sentinel node (sn) symbol. The use of immunohistochemistry has resulted in the classification of isolated tumor cells and their distinction from micrometastasis. The most important challenge facing users of the TNM Classification is how it should interface with the large number of non-anatomic prognostic factors that are currently in use or under study. As non-anatomic prognostic factors become widely used, the TNM system provides an inviting foundation upon which to build a prognostic classification; however, this carries a risk that the system will be overwhelmed by a variety of prognostic data. An anatomic extent-of-disease classification is needed to aid practitioners in selecting the initial therapeutic approach, stratifying patients for therapeutic studies, evaluating non-anatomic prognostic factors at specific anatomic stages, comparing the weight of non-anatomic factors with extent of disease, and communicating the extent of disease data in a uniform manner. Methods are needed to express the overall prognosis without losing the vital anatomic content of TNM. These methods should be able to integrate multiple prognostic factors, including TNM, while permitting the TNM system to remain intact and distinct. This article discusses examples of such approaches.
Web-based newborn screening system for metabolic diseases: machine learning versus clinicians.
Chen, Wei-Hsin; Hsieh, Sheau-Ling; Hsu, Kai-Ping; Chen, Han-Ping; Su, Xing-Yu; Tseng, Yi-Ju; Chien, Yin-Hsiu; Hwu, Wuh-Liang; Lai, Feipei
2013-05-23
A hospital information system (HIS) that integrates screening data and interpretation of the data is routinely requested by hospitals and parents. However, the accuracy of disease classification may be low because of the disease characteristics and the analytes used for classification. The objective of this study is to describe a system that enhanced the neonatal screening system of the Newborn Screening Center at the National Taiwan University Hospital. The system was designed and deployed according to a service-oriented architecture (SOA) framework under the Web services .NET environment. The system consists of sample collection, testing, diagnosis, evaluation, treatment, and follow-up services among collaborating hospitals. To improve the accuracy of newborn screening, machine learning and optimal feature selection mechanisms were investigated for screening newborns for inborn errors of metabolism. The framework of the Newborn Screening Hospital Information System (NSHIS) used the embedded Health Level Seven (HL7) standards for data exchanges among heterogeneous platforms integrated by Web services in the C# language. In this study, machine learning classification was used to predict phenylketonuria (PKU), hypermethioninemia, and 3-methylcrotonyl-CoA-carboxylase (3-MCC) deficiency. The classification methods used 347,312 newborn dried blood samples collected at the Center between 2006 and 2011. Of these, 220 newborns had values over the diagnostic cutoffs (positive cases) and 1557 had values that were over the screening cutoffs but did not meet the diagnostic cutoffs (suspected cases). The original 35 analytes and the manifested features were ranked based on F score, then combinations of the top 20 ranked features were selected as input features to support vector machine (SVM) classifiers to obtain optimal feature sets. These feature sets were tested using 5-fold cross-validation and optimal models were generated. The datasets collected in year 2011 were used as predicting cases. The feature selection strategies were implemented and the optimal markers for PKU, hypermethioninemia, and 3-MCC deficiency were obtained. The results of the machine learning approach were compared with the cutoff scheme. The number of the false positive cases were reduced from 21 to 2 for PKU, from 30 to 10 for hypermethioninemia, and 209 to 46 for 3-MCC deficiency. This SOA Web service-based newborn screening system can accelerate screening procedures effectively and efficiently. An SVM learning methodology for PKU, hypermethioninemia, and 3-MCC deficiency metabolic diseases classification, including optimal feature selection strategies, is presented. By adopting the results of this study, the number of suspected cases could be reduced dramatically.
Web-Based Newborn Screening System for Metabolic Diseases: Machine Learning Versus Clinicians
Chen, Wei-Hsin; Hsu, Kai-Ping; Chen, Han-Ping; Su, Xing-Yu; Tseng, Yi-Ju; Chien, Yin-Hsiu; Hwu, Wuh-Liang; Lai, Feipei
2013-01-01
Background A hospital information system (HIS) that integrates screening data and interpretation of the data is routinely requested by hospitals and parents. However, the accuracy of disease classification may be low because of the disease characteristics and the analytes used for classification. Objective The objective of this study is to describe a system that enhanced the neonatal screening system of the Newborn Screening Center at the National Taiwan University Hospital. The system was designed and deployed according to a service-oriented architecture (SOA) framework under the Web services .NET environment. The system consists of sample collection, testing, diagnosis, evaluation, treatment, and follow-up services among collaborating hospitals. To improve the accuracy of newborn screening, machine learning and optimal feature selection mechanisms were investigated for screening newborns for inborn errors of metabolism. Methods The framework of the Newborn Screening Hospital Information System (NSHIS) used the embedded Health Level Seven (HL7) standards for data exchanges among heterogeneous platforms integrated by Web services in the C# language. In this study, machine learning classification was used to predict phenylketonuria (PKU), hypermethioninemia, and 3-methylcrotonyl-CoA-carboxylase (3-MCC) deficiency. The classification methods used 347,312 newborn dried blood samples collected at the Center between 2006 and 2011. Of these, 220 newborns had values over the diagnostic cutoffs (positive cases) and 1557 had values that were over the screening cutoffs but did not meet the diagnostic cutoffs (suspected cases). The original 35 analytes and the manifested features were ranked based on F score, then combinations of the top 20 ranked features were selected as input features to support vector machine (SVM) classifiers to obtain optimal feature sets. These feature sets were tested using 5-fold cross-validation and optimal models were generated. The datasets collected in year 2011 were used as predicting cases. Results The feature selection strategies were implemented and the optimal markers for PKU, hypermethioninemia, and 3-MCC deficiency were obtained. The results of the machine learning approach were compared with the cutoff scheme. The number of the false positive cases were reduced from 21 to 2 for PKU, from 30 to 10 for hypermethioninemia, and 209 to 46 for 3-MCC deficiency. Conclusions This SOA Web service–based newborn screening system can accelerate screening procedures effectively and efficiently. An SVM learning methodology for PKU, hypermethioninemia, and 3-MCC deficiency metabolic diseases classification, including optimal feature selection strategies, is presented. By adopting the results of this study, the number of suspected cases could be reduced dramatically. PMID:23702487
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Yongjun; Lim, Jonghyuck; Kim, Namkug
2013-05-15
Purpose: To investigate the effect of using different computed tomography (CT) scanners on the accuracy of high-resolution CT (HRCT) images in classifying regional disease patterns in patients with diffuse lung disease, support vector machine (SVM) and Bayesian classifiers were applied to multicenter data. Methods: Two experienced radiologists marked sets of 600 rectangular 20 Multiplication-Sign 20 pixel regions of interest (ROIs) on HRCT images obtained from two scanners (GE and Siemens), including 100 ROIs for each of local patterns of lungs-normal lung and five of regional pulmonary disease patterns (ground-glass opacity, reticular opacity, honeycombing, emphysema, and consolidation). Each ROI was assessedmore » using 22 quantitative features belonging to one of the following descriptors: histogram, gradient, run-length, gray level co-occurrence matrix, low-attenuation area cluster, and top-hat transform. For automatic classification, a Bayesian classifier and a SVM classifier were compared under three different conditions. First, classification accuracies were estimated using data from each scanner. Next, data from the GE and Siemens scanners were used for training and testing, respectively, and vice versa. Finally, all ROI data were integrated regardless of the scanner type and were then trained and tested together. All experiments were performed based on forward feature selection and fivefold cross-validation with 20 repetitions. Results: For each scanner, better classification accuracies were achieved with the SVM classifier than the Bayesian classifier (92% and 82%, respectively, for the GE scanner; and 92% and 86%, respectively, for the Siemens scanner). The classification accuracies were 82%/72% for training with GE data and testing with Siemens data, and 79%/72% for the reverse. The use of training and test data obtained from the HRCT images of different scanners lowered the classification accuracy compared to the use of HRCT images from the same scanner. For integrated ROI data obtained from both scanners, the classification accuracies with the SVM and Bayesian classifiers were 92% and 77%, respectively. The selected features resulting from the classification process differed by scanner, with more features included for the classification of the integrated HRCT data than for the classification of the HRCT data from each scanner. For the integrated data, consisting of HRCT images of both scanners, the classification accuracy based on the SVM was statistically similar to the accuracy of the data obtained from each scanner. However, the classification accuracy of the integrated data using the Bayesian classifier was significantly lower than the classification accuracy of the ROI data of each scanner. Conclusions: The use of an integrated dataset along with a SVM classifier rather than a Bayesian classifier has benefits in terms of the classification accuracy of HRCT images acquired with more than one scanner. This finding is of relevance in studies involving large number of images, as is the case in a multicenter trial with different scanners.« less
Accurate exposure classification tools are required to link exposure with health effects in epidemiological studies. Although long-term integrated exposure measurements are a critical component of exposure assessment, the ability to include these measurements into epidemiologic...
Deep Learning in Label-free Cell Classification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Claire Lifan; Mahjoubfar, Ata; Tai, Li-Chia
Label-free cell analysis is essential to personalized genomics, cancer diagnostics, and drug development as it avoids adverse effects of staining reagents on cellular viability and cell signaling. However, currently available label-free cell assays mostly rely only on a single feature and lack sufficient differentiation. Also, the sample size analyzed by these assays is limited due to their low throughput. Here, we integrate feature extraction and deep learning with high-throughput quantitative imaging enabled by photonic time stretch, achieving record high accuracy in label-free cell classification. Our system captures quantitative optical phase and intensity images and extracts multiple biophysical features of individualmore » cells. These biophysical measurements form a hyperdimensional feature space in which supervised learning is performed for cell classification. We compare various learning algorithms including artificial neural network, support vector machine, logistic regression, and a novel deep learning pipeline, which adopts global optimization of receiver operating characteristics. As a validation of the enhanced sensitivity and specificity of our system, we show classification of white blood T-cells against colon cancer cells, as well as lipid accumulating algal strains for biofuel production. In conclusion, this system opens up a new path to data-driven phenotypic diagnosis and better understanding of the heterogeneous gene expressions in cells.« less
Deep Learning in Label-free Cell Classification
Chen, Claire Lifan; Mahjoubfar, Ata; Tai, Li-Chia; ...
2016-03-15
Label-free cell analysis is essential to personalized genomics, cancer diagnostics, and drug development as it avoids adverse effects of staining reagents on cellular viability and cell signaling. However, currently available label-free cell assays mostly rely only on a single feature and lack sufficient differentiation. Also, the sample size analyzed by these assays is limited due to their low throughput. Here, we integrate feature extraction and deep learning with high-throughput quantitative imaging enabled by photonic time stretch, achieving record high accuracy in label-free cell classification. Our system captures quantitative optical phase and intensity images and extracts multiple biophysical features of individualmore » cells. These biophysical measurements form a hyperdimensional feature space in which supervised learning is performed for cell classification. We compare various learning algorithms including artificial neural network, support vector machine, logistic regression, and a novel deep learning pipeline, which adopts global optimization of receiver operating characteristics. As a validation of the enhanced sensitivity and specificity of our system, we show classification of white blood T-cells against colon cancer cells, as well as lipid accumulating algal strains for biofuel production. In conclusion, this system opens up a new path to data-driven phenotypic diagnosis and better understanding of the heterogeneous gene expressions in cells.« less
A neurally inspired musical instrument classification system based upon the sound onset.
Newton, Michael J; Smith, Leslie S
2012-06-01
Physiological evidence suggests that sound onset detection in the auditory system may be performed by specialized neurons as early as the cochlear nucleus. Psychoacoustic evidence shows that the sound onset can be important for the recognition of musical sounds. Here the sound onset is used in isolation to form tone descriptors for a musical instrument classification task. The task involves 2085 isolated musical tones from the McGill dataset across five instrument categories. A neurally inspired tone descriptor is created using a model of the auditory system's response to sound onset. A gammatone filterbank and spiking onset detectors, built from dynamic synapses and leaky integrate-and-fire neurons, create parallel spike trains that emphasize the sound onset. These are coded as a descriptor called the onset fingerprint. Classification uses a time-domain neural network, the echo state network. Reference strategies, based upon mel-frequency cepstral coefficients, evaluated either over the whole tone or only during the sound onset, provide context to the method. Classification success rates for the neurally-inspired method are around 75%. The cepstral methods perform between 73% and 76%. Further testing with tones from the Iowa MIS collection shows that the neurally inspired method is considerably more robust when tested with data from an unrelated dataset.
NASA Astrophysics Data System (ADS)
Dondurur, Mehmet
The primary objective of this study was to determine the degree to which modern SAR systems can be used to obtain information about the Earth's vegetative resources. Information obtainable from microwave synthetic aperture radar (SAR) data was compared with that obtainable from LANDSAT-TM and SPOT data. Three hypotheses were tested: (a) Classification of land cover/use from SAR data can be accomplished on a pixel-by-pixel basis with the same overall accuracy as from LANDSAT-TM and SPOT data. (b) Classification accuracy for individual land cover/use classes will differ between sensors. (c) Combining information derived from optical and SAR data into an integrated monitoring system will improve overall and individual land cover/use class accuracies. The study was conducted with three data sets for the Sleeping Bear Dunes test site in the northwestern part of Michigan's lower peninsula, including an October 1982 LANDSAT-TM scene, a June 1989 SPOT scene and C-, L- and P-Band radar data from the Jet Propulsion Laboratory AIRSAR. Reference data were derived from the Michigan Resource Information System (MIRIS) and available color infrared aerial photos. Classification and rectification of data sets were done using ERDAS Image Processing Programs. Classification algorithms included Maximum Likelihood, Mahalanobis Distance, Minimum Spectral Distance, ISODATA, Parallelepiped, and Sequential Cluster Analysis. Classified images were rectified as necessary so that all were at the same scale and oriented north-up. Results were analyzed with contingency tables and percent correctly classified (PCC) and Cohen's Kappa (CK) as accuracy indices using CSLANT and ImagePro programs developed for this study. Accuracy analyses were based upon a 1.4 by 6.5 km area with its long axis east-west. Reference data for this subscene total 55,770 15 by 15 m pixels with sixteen cover types, including seven level III forest classes, three level III urban classes, two level II range classes, two water classes, one wetland class and one agriculture class. An initial analysis was made without correcting the 1978 MIRIS reference data to the different dates of the TM, SPOT and SAR data sets. In this analysis, highest overall classification accuracy (PCC) was 87% with the TM data set, with both SPOT and C-Band SAR at 85%, a difference statistically significant at the 0.05 level. When the reference data were corrected for land cover change between 1978 and 1991, classification accuracy with the C-Band SAR data increased to 87%. Classification accuracy differed from sensor to sensor for individual land cover classes, Combining sensors into hypothetical multi-sensor systems resulted in higher accuracies than for any single sensor. Combining LANDSAT -TM and C-Band SAR yielded an overall classification accuracy (PCC) of 92%. The results of this study indicate that C-Band SAR data provide an acceptable substitute for LANDSAT-TM or SPOT data when land cover information is desired of areas where cloud cover obscures the terrain. Even better results can be obtained by integrating TM and C-Band SAR data into a multi-sensor system.
Knowledge-based approaches to the maintenance of a large controlled medical terminology.
Cimino, J J; Clayton, P D; Hripcsak, G; Johnson, S B
1994-01-01
OBJECTIVE: Develop a knowledge-based representation for a controlled terminology of clinical information to facilitate creation, maintenance, and use of the terminology. DESIGN: The Medical Entities Dictionary (MED) is a semantic network, based on the Unified Medical Language System (UMLS), with a directed acyclic graph to represent multiple hierarchies. Terms from four hospital systems (laboratory, electrocardiography, medical records coding, and pharmacy) were added as nodes in the network. Additional knowledge about terms, added as semantic links, was used to assist in integration, harmonization, and automated classification of disparate terminologies. RESULTS: The MED contains 32,767 terms and is in active clinical use. Automated classification was successfully applied to terms for laboratory specimens, laboratory tests, and medications. One benefit of the approach has been the automated inclusion of medications into multiple pharmacologic and allergenic classes that were not present in the pharmacy system. Another benefit has been the reduction of maintenance efforts by 90%. CONCLUSION: The MED is a hybrid of terminology and knowledge. It provides domain coverage, synonymy, consistency of views, explicit relationships, and multiple classification while preventing redundancy, ambiguity (homonymy) and misclassification. PMID:7719786
Steinhardt, James J; Gartenhaus, Ronald B
2012-09-01
Currently, two major classification systems segregate diffuse large B-cell lymphoma (DLBCL) into subtypes based on gene expression profiles and provide great insights about the oncogenic mechanisms that may be crucial for lymphomagenesis as well as prognostic information regarding response to current therapies. However, these current classification systems primarily look at expression and not dependency and are thus limited to inductive or probabilistic reasoning when evaluating alternative therapeutic options. The development of a deductive classification system that identifies subtypes in which all patients with a given phenotype require the same oncogenic drivers, and would therefore have a similar response to a rational therapy targeting the essential drivers, would significantly advance the treatment of DLBCL. This review highlights the putative drivers identified as well as the work done to identify potentially dependent populations. These studies integrated genomic analysis and functional screens to provide a rationale for targeted therapies within defined populations. Personalizing treatments by identifying patients with oncogenic dependencies via genotyping and specifically targeting the responsible drivers may constitute a novel approach for the treatment of DLBCL. ©2012 AACR.
Automatic analysis and classification of surface electromyography.
Abou-Chadi, F E; Nashar, A; Saad, M
2001-01-01
In this paper, parametric modeling of surface electromyography (EMG) algorithms that facilitates automatic SEMG feature extraction and artificial neural networks (ANN) are combined for providing an integrated system for the automatic analysis and diagnosis of myopathic disorders. Three paradigms of ANN were investigated: the multilayer backpropagation algorithm, the self-organizing feature map algorithm and a probabilistic neural network model. The performance of the three classifiers was compared with that of the old Fisher linear discriminant (FLD) classifiers. The results have shown that the three ANN models give higher performance. The percentage of correct classification reaches 90%. Poorer diagnostic performance was obtained from the FLD classifier. The system presented here indicates that surface EMG, when properly processed, can be used to provide the physician with a diagnostic assist device.
NASA Technical Reports Server (NTRS)
Mobasseri, B. G.; Mcgillem, C. D.; Anuta, P. E. (Principal Investigator)
1978-01-01
The author has identified the following significant results. The probability of correct classification of various populations in data was defined as the primary performance index. The multispectral data being of multiclass nature as well, required a Bayes error estimation procedure that was dependent on a set of class statistics alone. The classification error was expressed in terms of an N dimensional integral, where N was the dimensionality of the feature space. The multispectral scanner spatial model was represented by a linear shift, invariant multiple, port system where the N spectral bands comprised the input processes. The scanner characteristic function, the relationship governing the transformation of the input spatial, and hence, spectral correlation matrices through the systems, was developed.
Using fuzzy logic to integrate neural networks and knowledge-based systems
NASA Technical Reports Server (NTRS)
Yen, John
1991-01-01
Outlined here is a novel hybrid architecture that uses fuzzy logic to integrate neural networks and knowledge-based systems. The author's approach offers important synergistic benefits to neural nets, approximate reasoning, and symbolic processing. Fuzzy inference rules extend symbolic systems with approximate reasoning capabilities, which are used for integrating and interpreting the outputs of neural networks. The symbolic system captures meta-level information about neural networks and defines its interaction with neural networks through a set of control tasks. Fuzzy action rules provide a robust mechanism for recognizing the situations in which neural networks require certain control actions. The neural nets, on the other hand, offer flexible classification and adaptive learning capabilities, which are crucial for dynamic and noisy environments. By combining neural nets and symbolic systems at their system levels through the use of fuzzy logic, the author's approach alleviates current difficulties in reconciling differences between low-level data processing mechanisms of neural nets and artificial intelligence systems.
[Classification of enuresis/encopresis according to DSM-5].
von Gontard, Alexander
2014-03-01
Elimination disorders are common in childhood and adolescence. Enuresis is traditionally defined as wetting from the age of 5 years and encopresis as soiling from 4 years onwards - after all organic causes have been excluded. In the past decades, many subtypes of elimination disorders have been identified with different symptoms, etiologies, and specific treatment options. Unfortunately, the DSM-5 criteria did not integrate these new approaches. In contrast, classification systems of the International Children's Incontinence Society (ICCS) for enuresis and urinary incontinence as well as the ROME-III criteria for fecal incontinence offer new and relevant suggestions for both clinical and research purposes.
Real-time ultrasonic weld evaluation system
NASA Astrophysics Data System (ADS)
Katragadda, Gopichand; Nair, Satish; Liu, Harry; Brown, Lawrence M.
1996-11-01
Ultrasonic testing techniques are currently used as an alternative to radiography for detecting, classifying,and sizing weld defects, and for evaluating weld quality. Typically, ultrasonic weld inspections are performed manually, which require significant operator expertise and time. Thus, in recent years, the emphasis is to develop automated methods to aid or replace operators in critical weld inspections where inspection time, reliability, and operator safety are major issues. During this period, significant advances wee made in the areas of weld defect classification and sizing. Very few of these methods, however have found their way into the market, largely due to the lack of an integrated approach enabling real-time implementation. Also, not much research effort was directed in improving weld acceptance criteria. This paper presents an integrated system utilizing state-of-the-art techniques for a complete automation of the weld inspection procedure. The modules discussed include transducer tracking, classification, sizing, and weld acceptance criteria. Transducer tracking was studied by experimentally evaluating sonic and optical position tracking techniques. Details for this evaluation are presented. Classification is obtained using a multi-layer perceptron. Results from different feature extraction schemes, including a new method based on a combination of time and frequency-domain signal representations are given. Algorithms developed to automate defect registration and sizing are discussed. A fuzzy-logic acceptance criteria for weld acceptance is presented describing how this scheme provides improved robustness compared to the traditional flow-diagram standards.
Classification of billiard motions in domains bounded by confocal parabolas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fokicheva, V V
2014-08-01
We consider the billiard dynamical system in a domain bounded by confocal parabolas. We describe such domains in which the billiard problem can be correctly stated. In each such domain we prove the integrability for the system, analyse the arising Liouville foliation, and calculate the invariant of Liouville equivalence--the so-called marked molecule. It turns out that billiard systems in certain parabolic domains have the same closures of solutions (integral trajectories) as the systems of Goryachev-Chaplygin-Sretenskii and Joukowski at suitable energy levels. We also describe the billiard motion in noncompact domains bounded by confocal parabolas, namely, we describe the topology of themore » Liouville foliation in terms of rough molecules. Bibliography: 16 titles.« less
NASA Astrophysics Data System (ADS)
Malekmohammadi, Bahram; Ramezani Mehrian, Majid; Jafari, Hamid Reza
2012-11-01
One of the most important water-resources management strategies for arid lands is managed aquifer recharge (MAR). In establishing a MAR scheme, site selection is the prime prerequisite that can be assisted by geographic information system (GIS) tools. One of the most important uncertainties in the site-selection process using GIS is finite ranges or intervals resulting from data classification. In order to reduce these uncertainties, a novel method has been developed involving the integration of multi-criteria decision making (MCDM), GIS, and a fuzzy inference system (FIS). The Shemil-Ashkara plain in the Hormozgan Province of Iran was selected as the case study; slope, geology, groundwater depth, potential for runoff, land use, and groundwater electrical conductivity have been considered as site-selection factors. By defining fuzzy membership functions for the input layers and the output layer, and by constructing fuzzy rules, a FIS has been developed. Comparison of the results produced by the proposed method and the traditional simple additive weighted (SAW) method shows that the proposed method yields more precise results. In conclusion, fuzzy-set theory can be an effective method to overcome associated uncertainties in classification of geographic information data.
Linking and integrating computers for maternity care.
Lumb, M; Fawdry, R
1990-12-01
Functionally separate computer systems have been developed for many different areas relevant to maternity care, e.g. maternity data collection, pathology and imaging reports, staff rostering, personnel, accounting, audit, primary care etc. Using land lines, modems and network gateways, many such quite distinct computer programs or databases can be made accessible from a single terminal. If computer systems are to attain their full potential for the improvement of the maternity care, there will be a need not only for terminal emulation but also for more complex integration. Major obstacles must be overcome before such integration is widely achieved. Technical and conceptual progress towards overcoming these problems is discussed, with particular reference to the OSI (open systems interconnection) initiative, to the Read clinical classification and to the MUMMIES CBS (Common Basic Specification) Maternity Care Project. The issue of confidentiality is also briefly explored.
Hierarchical Modelling Of Mobile, Seeing Robots
NASA Astrophysics Data System (ADS)
Luh, Cheng-Jye; Zeigler, Bernard P.
1990-03-01
This paper describes the implementation of a hierarchical robot simulation which supports the design of robots with vision and mobility. A seeing robot applies a classification expert system for visual identification of laboratory objects. The visual data acquisition algorithm used by the robot vision system has been developed to exploit multiple viewing distances and perspectives. Several different simulations have been run testing the visual logic in a laboratory environment. Much work remains to integrate the vision system with the rest of the robot system.
Hierarchical modelling of mobile, seeing robots
NASA Technical Reports Server (NTRS)
Luh, Cheng-Jye; Zeigler, Bernard P.
1990-01-01
This paper describes the implementation of a hierarchical robot simulation which supports the design of robots with vision and mobility. A seeing robot applies a classification expert system for visual identification of laboratory objects. The visual data acquisition algorithm used by the robot vision system has been developed to exploit multiple viewing distances and perspectives. Several different simulations have been run testing the visual logic in a laboratory environment. Much work remains to integrate the vision system with the rest of the robot system.
Autonomous Sonar Classification Using Expert Systems
1992-06-01
34Multisensor Integration and Fusion in Intelligent System," ZEEE Tmnsactions on Systems, Man and Cybernetics, vol. 19 no. 5, September/Octciber...34 University of California Santa Barbara Department of Computer Science Technical Report TRCS89-06, February 1989. ZEEE , vol. 71 no. 7, July 1983, pp. 872...AutonomousUnderwater Vehicles" , Proceedingsof the ZEEE Oceanic Engineering Society Conference A W 92, Washington DC, June 1992. Corkill, Daniel, "BlackboardSystems," AIErpert, vol. 6 no. 9, September 1991, pp. 40-47. 559
Real-time Neuroimaging and Cognitive Monitoring Using Wearable Dry EEG
Mullen, Tim R.; Kothe, Christian A.E.; Chi, Mike; Ojeda, Alejandro; Kerth, Trevor; Makeig, Scott; Jung, Tzyy-Ping; Cauwenberghs, Gert
2015-01-01
Goal We present and evaluate a wearable high-density dry electrode EEG system and an open-source software framework for online neuroimaging and state classification. Methods The system integrates a 64-channel dry EEG form-factor with wireless data streaming for online analysis. A real-time software framework is applied, including adaptive artifact rejection, cortical source localization, multivariate effective connectivity inference, data visualization, and cognitive state classification from connectivity features using a constrained logistic regression approach (ProxConn). We evaluate the system identification methods on simulated 64-channel EEG data. Then we evaluate system performance, using ProxConn and a benchmark ERP method, in classifying response errors in 9 subjects using the dry EEG system. Results Simulations yielded high accuracy (AUC=0.97±0.021) for real-time cortical connectivity estimation. Response error classification using cortical effective connectivity (sdDTF) was significantly above chance with similar performance (AUC) for cLORETA (0.74±0.09) and LCMV (0.72±0.08) source localization. Cortical ERP-based classification was equivalent to ProxConn for cLORETA (0.74±0.16) but significantly better for LCMV (0.82±0.12). Conclusion We demonstrated the feasibility for real-time cortical connectivity analysis and cognitive state classification from high-density wearable dry EEG. Significance This paper is the first validated application of these methods to 64-channel dry EEG. The work addresses a need for robust real-time measurement and interpretation of complex brain activity in the dynamic environment of the wearable setting. Such advances can have broad impact in research, medicine, and brain-computer interfaces. The pipelines are made freely available in the open-source SIFT and BCILAB toolboxes. PMID:26415149
Military personnel recognition system using texture, colour, and SURF features
NASA Astrophysics Data System (ADS)
Irhebhude, Martins E.; Edirisinghe, Eran A.
2014-06-01
This paper presents an automatic, machine vision based, military personnel identification and classification system. Classification is done using a Support Vector Machine (SVM) on sets of Army, Air Force and Navy camouflage uniform personnel datasets. In the proposed system, the arm of service of personnel is recognised by the camouflage of a persons uniform, type of cap and the type of badge/logo. The detailed analysis done include; camouflage cap and plain cap differentiation using gray level co-occurrence matrix (GLCM) texture feature; classification on Army, Air Force and Navy camouflaged uniforms using GLCM texture and colour histogram bin features; plain cap badge classification into Army, Air Force and Navy using Speed Up Robust Feature (SURF). The proposed method recognised camouflage personnel arm of service on sets of data retrieved from google images and selected military websites. Correlation-based Feature Selection (CFS) was used to improve recognition and reduce dimensionality, thereby speeding the classification process. With this method success rates recorded during the analysis include 93.8% for camouflage appearance category, 100%, 90% and 100% rates of plain cap and camouflage cap categories for Army, Air Force and Navy categories, respectively. Accurate recognition was recorded using SURF for the plain cap badge category. Substantial analysis has been carried out and results prove that the proposed method can correctly classify military personnel into various arms of service. We show that the proposed method can be integrated into a face recognition system, which will recognise personnel in addition to determining the arm of service which the personnel belong. Such a system can be used to enhance the security of a military base or facility.
Diamond, James; Anderson, Neil H; Bartels, Peter H; Montironi, Rodolfo; Hamilton, Peter W
2004-09-01
Quantitative examination of prostate histology offers clues in the diagnostic classification of lesions and in the prediction of response to treatment and prognosis. To facilitate the collection of quantitative data, the development of machine vision systems is necessary. This study explored the use of imaging for identifying tissue abnormalities in prostate histology. Medium-power histological scenes were recorded from whole-mount radical prostatectomy sections at x 40 objective magnification and assessed by a pathologist as exhibiting stroma, normal tissue (nonneoplastic epithelial component), or prostatic carcinoma (PCa). A machine vision system was developed that divided the scenes into subregions of 100 x 100 pixels and subjected each to image-processing techniques. Analysis of morphological characteristics allowed the identification of normal tissue. Analysis of image texture demonstrated that Haralick feature 4 was the most suitable for discriminating stroma from PCa. Using these morphological and texture measurements, it was possible to define a classification scheme for each subregion. The machine vision system is designed to integrate these classification rules and generate digital maps of tissue composition from the classification of subregions; 79.3% of subregions were correctly classified. Established classification rates have demonstrated the validity of the methodology on small scenes; a logical extension was to apply the methodology to whole slide images via scanning technology. The machine vision system is capable of classifying these images. The machine vision system developed in this project facilitates the exploration of morphological and texture characteristics in quantifying tissue composition. It also illustrates the potential of quantitative methods to provide highly discriminatory information in the automated identification of prostatic lesions using computer vision.
Medical and surgical management of esophageal and gastric motor dysfunction.
Awad, R A
2012-09-01
he occurrence of esophageal and gastric motor dysfunctions happens, when the software of the esophagus and the stomach is injured. This is really a program previously established in the enteric nervous system as a constituent of the newly called neurogastroenterology. The enteric nervous system is composed of small aggregations of nerve cells, enteric ganglia, the neural connections between these ganglia, and nerve fibers that supply effectors tissues, including the muscle of the gut wall. The wide range of enteric neuropathies that includes esophageal achalasia and gastroparesis highlights the importance of the enteric nervous system. A classification of functional gastrointestinal disorders based on symptoms has received attention. However, a classification based solely in symptoms and consensus may lack an integral approach of disease. As an alternative to the Rome classification, an international working team in Bangkok presented a classification of motility disorders as a physiology-based diagnosis. Besides, the Chicago Classification of esophageal motility was developed to facilitate the interpretation of clinical high-resolution esophageal pressure topography studies. This review covers exclusively the medical and surgical management of the esophageal and gastric motor dysfunction using evidence from well-designed studies. Motor control of the esophagus and the stomach, motor esophageal and gastric alterations, treatment failure, side effects of PPIs, overlap of gastrointestinal symptoms, predictors of treatment, burden of GERD medical management, data related to conservative treatment vs. antireflux surgery, and postsurgical esophagus and gastric motor dysfunction are also taken into account.
A Real-Time Cardiac Arrhythmia Classification System with Wearable Sensor Networks
Hu, Sheng; Wei, Hongxing; Chen, Youdong; Tan, Jindong
2012-01-01
Long term continuous monitoring of electrocardiogram (ECG) in a free living environment provides valuable information for prevention on the heart attack and other high risk diseases. This paper presents the design of a real-time wearable ECG monitoring system with associated cardiac arrhythmia classification algorithms. One of the striking advantages is that ECG analog front-end and on-node digital processing are designed to remove most of the noise and bias. In addition, the wearable sensor node is able to monitor the patient's ECG and motion signal in an unobstructive way. To realize the real-time medical analysis, the ECG is digitalized and transmitted to a smart phone via Bluetooth. On the smart phone, the ECG waveform is visualized and a novel layered hidden Markov model is seamlessly integrated to classify multiple cardiac arrhythmias in real time. Experimental results demonstrate that the clean and reliable ECG waveform can be captured in multiple stressed conditions and the real-time classification on cardiac arrhythmia is competent to other workbenches. PMID:23112746
Jacob, Joshua; Desai, Ankit; Trompeter, Alex
2017-01-01
Currently, approximately half of all hip fractures are extracapsular, with an incidence as high as 50 in 100,000 in some countries. The common classification systems fail to explain the logistics of fracture classification and whether they all behave in the same manner. The Muller AO classification system is a useful platform to delineate stable and unstable fractures. The Dynamic hip screw (DHS) however, has remained the 'gold standard' implant of choice for application in all extracapsular fractures. The DHS relies on the integrity and strength of the lateral femoral wall as well as the postero-medial fragment. An analysis of several studies indicates significant improvements in design and techniques to ensure a better outcome with intramedullary nails. This article reviews the historical trends that helped to evolve the DHS implant as well as discussing if the surgeon should remain content with this implant. We suggest that the gold standard surgical management of extracapsular fractures can, and should, evolve.
The role of identity in the DSM-5 classification of personality disorders
2013-01-01
In the revised Diagnostic and Statistical Manual DSM-5 the definition of personality disorder diagnoses has not been changed from that in the DSM-IV-TR. However, an alternative model for diagnosing personality disorders where the construct “identity” has been integrated as a central diagnostic criterion for personality disorders has been placed in section III of the manual. The alternative model’s hybrid nature leads to the simultaneous use of diagnoses and the newly developed “Level of Personality Functioning-Scale” (a dimensional tool to define the severity of the disorder). Pathological personality traits are assessed in five broad domains which are divided into 25 trait facets. With this dimensional approach, the new classification system gives, both clinicians and researchers, the opportunity to describe the patient in much more detail than previously possible. The relevance of identity problems in assessing and understanding personality pathology is illustrated using the new classification system applied in two case examples of adolescents with a severe personality disorder. PMID:23902698
The role of identity in the DSM-5 classification of personality disorders.
Schmeck, Klaus; Schlüter-Müller, Susanne; Foelsch, Pamela A; Doering, Stephan
2013-07-31
In the revised Diagnostic and Statistical Manual DSM-5 the definition of personality disorder diagnoses has not been changed from that in the DSM-IV-TR. However, an alternative model for diagnosing personality disorders where the construct "identity" has been integrated as a central diagnostic criterion for personality disorders has been placed in section III of the manual. The alternative model's hybrid nature leads to the simultaneous use of diagnoses and the newly developed "Level of Personality Functioning-Scale" (a dimensional tool to define the severity of the disorder). Pathological personality traits are assessed in five broad domains which are divided into 25 trait facets. With this dimensional approach, the new classification system gives, both clinicians and researchers, the opportunity to describe the patient in much more detail than previously possible. The relevance of identity problems in assessing and understanding personality pathology is illustrated using the new classification system applied in two case examples of adolescents with a severe personality disorder.
NASA Astrophysics Data System (ADS)
McClanahan, James Patrick
Eddy Current Testing (ECT) is a Non-Destructive Examination (NDE) technique that is widely used in power generating plants (both nuclear and fossil) to test the integrity of heat exchanger (HX) and steam generator (SG) tubing. Specifically for this research, laboratory-generated, flawed tubing data were examined. The purpose of this dissertation is to develop and implement an automated method for the classification and an advanced characterization of defects in HX and SG tubing. These two improvements enhanced the robustness of characterization as compared to traditional bobbin-coil ECT data analysis methods. A more robust classification and characterization of the tube flaw in-situ (while the SG is on-line but not when the plant is operating), should provide valuable information to the power industry. The following are the conclusions reached from this research. A feature extraction program acquiring relevant information from both the mixed, absolute and differential data was successfully implemented. The CWT was utilized to extract more information from the mixed, complex differential data. Image Processing techniques used to extract the information contained in the generated CWT, classified the data with a high success rate. The data were accurately classified, utilizing the compressed feature vector and using a Bayes classification system. An estimation of the upper bound for the probability of error, using the Bhattacharyya distance, was successfully applied to the Bayesian classification. The classified data were separated according to flaw-type (classification) to enhance characterization. The characterization routine used dedicated, flaw-type specific ANNs that made the characterization of the tube flaw more robust. The inclusion of outliers may help complete the feature space so that classification accuracy is increased. Given that the eddy current test signals appear very similar, there may not be sufficient information to make an extremely accurate (>95%) classification or an advanced characterization using this system. It is necessary to have a larger database fore more accurate system learning.
Integrating disease management and wound care critical pathways in home care.
Barr, J E
1999-10-01
This article discusses the need for an integration of the concepts of disease management and critical pathways as a foundation of a healthcare delivery system. The steps in the process for development, implementation, and evaluation of a wound care critical pathway are reviewed and variance classifications are defined. Co-pathways and algorithms are presented as methodologies for dealing with variances. A template of a wound care critical pathway that has been developed for use in the home care setting is included.
Integrating multisource land use and land cover data
Wright, Bruce E.; Tait, Mike; Lins, K.F.; Crawford, J.S.; Benjamin, S.P.; Brown, Jesslyn F.
1995-01-01
As part of the U.S. Geological Survey's (USGS) land use and land cover (LULC) program, the USGS in cooperation with the Environmental Systems Research Institute (ESRI) is collecting and integrating LULC data for a standard USGS 1:100,000-scale product. The LULC data collection techniques include interpreting spectrally clustered Landsat Thematic Mapper (TM) images; interpreting 1-meter resolution digital panchromatic orthophoto images; and, for comparison, aggregating locally available large-scale digital data of urban areas. The area selected is the Vancouver, WA-OR quadrangle, which has a mix of urban, rural agriculture, and forest land. Anticipated products include an integrated LULC prototype data set in a standard classification scheme referenced to the USGS digital line graph (DLG) data of the area and prototype software to develop digital LULC data sets.This project will evaluate a draft standard LULC classification system developed by the USGS for use with various source material and collection techniques. Federal, State, and local governments, and private sector groups will have an opportunity to evaluate the resulting prototype software and data sets and to provide recommendations. It is anticipated that this joint research endeavor will increase future collaboration among interested organizations, public and private, for LULC data collection using common standards and tools.
Simon, A.; Doyle, M.; Kondolf, M.; Shields, F.D.; Rhoads, B.; Grant, G.; Fitzpatrick, F.; Juracek, K.; McPhillips, M.; MacBroom, J.
2005-01-01
Over the past 10 years the Rosgen classification system and its associated methods of "natural channel design" have become synonymous (to many without prior knowledge of the field) with the term "stream restoration" and the science of fluvial geomorphology. Since the mid 1990s, this classification approach has become widely, and perhaps dominantly adopted by governmental agencies, particularly those funding restoration projects. For example, in a request for proposals for the restoration of Trout Creek in Montana, the Natural Resources Conservation Service required "experience in the use and application of a stream classification system and its implementation." Similarly, classification systems have been used in evaluation guides for riparian areas and U.S. Forest Service management plans. Most notably, many highly trained geomorphologists and hydraulic engineers are often held suspect, or even thought incorrect, if their approach does not include reference to or application of a classification system. This, combined with the para-professional training provided by some involved in "natural channel design" empower individuals and groups with limited backgrounds in stream and watershed sciences to engineer wholesale re-patterning of stream reaches using 50-year old technology that was never intended for engineering design. At Level I, the Rosgen classification system consists of eight or nine major stream types, based on hydraulic-geometry relations and four other measures of channel shape to distinguish the dimensions of alluvial stream channels as a function of the bankfull stage. Six classes of the particle size of the boundary sediments are used to further sub-divide each of the major stream types, resulting in 48 or 54 stream types. Aside from the difficulty in identifying bankfull stage, particularly in incising channels, and the issue of sampling from two distinct populations (beds and banks) to classify the boundary sediments, the classification provides a consistent and reproducible means for practitioners to describe channel morphology although difficulties have been encountered in lower-gradient stream systems. Use of the scheme to communicate between users or as a conceptual model, however, has not justified its use for engineering design or for predicting river behavior; its use for designing mitigation projects, therefore, seems beyond its technical scope. Copyright ASCE 2005.
NASA Technical Reports Server (NTRS)
Lure, Y. M. Fleming; Grody, Norman C.; Chiou, Y. S. Peter; Yeh, H. Y. Michael
1993-01-01
A data fusion system with artificial neural networks (ANN) is used for fast and accurate classification of five earth surface conditions and surface changes, based on seven SSMI multichannel microwave satellite measurements. The measurements include brightness temperatures at 19, 22, 37, and 85 GHz at both H and V polarizations (only V at 22 GHz). The seven channel measurements are processed through a convolution computation such that all measurements are located at same grid. Five surface classes including non-scattering surface, precipitation over land, over ocean, snow, and desert are identified from ground-truth observations. The system processes sensory data in three consecutive phases: (1) pre-processing to extract feature vectors and enhance separability among detected classes; (2) preliminary classification of Earth surface patterns using two separate and parallely acting classifiers: back-propagation neural network and binary decision tree classifiers; and (3) data fusion of results from preliminary classifiers to obtain the optimal performance in overall classification. Both the binary decision tree classifier and the fusion processing centers are implemented by neural network architectures. The fusion system configuration is a hierarchical neural network architecture, in which each functional neural net will handle different processing phases in a pipelined fashion. There is a total of around 13,500 samples for this analysis, of which 4 percent are used as the training set and 96 percent as the testing set. After training, this classification system is able to bring up the detection accuracy to 94 percent compared with 88 percent for back-propagation artificial neural networks and 80 percent for binary decision tree classifiers. The neural network data fusion classification is currently under progress to be integrated in an image processing system at NOAA and to be implemented in a prototype of a massively parallel and dynamically reconfigurable Modular Neural Ring (MNR).
Track classification within wireless sensor network
NASA Astrophysics Data System (ADS)
Doumerc, Robin; Pannetier, Benjamin; Moras, Julien; Dezert, Jean; Canevet, Loic
2017-05-01
In this paper, we present our study on track classification by taking into account environmental information and target estimated states. The tracker uses several motion model adapted to different target dynamics (pedestrian, ground vehicle and SUAV, i.e. small unmanned aerial vehicle) and works in centralized architecture. The main idea is to explore both: classification given by heterogeneous sensors and classification obtained with our fusion module. The fusion module, presented in his paper, provides a class on each track according to track location, velocity and associated uncertainty. To model the likelihood on each class, a fuzzy approach is used considering constraints on target capability to move in the environment. Then the evidential reasoning approach based on Dempster-Shafer Theory (DST) is used to perform a time integration of this classifier output. The fusion rules are tested and compared on real data obtained with our wireless sensor network.In order to handle realistic ground target tracking scenarios, we use an autonomous smart computer deposited in the surveillance area. After the calibration step of the heterogeneous sensor network, our system is able to handle real data from a wireless ground sensor network. The performance of this system is evaluated in a real exercise for intelligence operation ("hunter hunt" scenario).
USDA-ARS?s Scientific Manuscript database
Using five centimeter resolution images acquired with an unmanned aircraft system (UAS), we developed and evaluated an image processing workflow that included the integration of resolution-appropriate field sampling, feature selection, object-based image analysis, and processing approaches for UAS i...
Ensemble Classifier Strategy Based on Transient Feature Fusion in Electronic Nose
NASA Astrophysics Data System (ADS)
Bagheri, Mohammad Ali; Montazer, Gholam Ali
2011-09-01
In this paper, we test the performance of several ensembles of classifiers and each base learner has been trained on different types of extracted features. Experimental results show the potential benefits introduced by the usage of simple ensemble classification systems for the integration of different types of transient features.
2014-04-01
WRF ) model is a numerical weather prediction system designed for operational forecasting and atmospheric research. This report examined WRF model... WRF , weather research and forecasting, atmospheric effects 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18. NUMBER OF...and Forecasting ( WRF ) model. The authors would also like to thank Ms. Sherry Larson, STS Systems Integration, LLC, ARL Technical Publishing Branch
A Programmable and Configurable Mixed-Mode FPAA SoC
2016-03-17
A Programmable and Configurable Mixed-Mode FPAA SoC Sahil Shah, Sihwan Kim, Farhan Adil, Jennifer Hasler, Suma George, Michelle Collins, Richard...Abstract: The authors present a Floating-Gate based, System-On-Chip large-scale Field- Programmable Analog Array IC that integrates divergent concepts...Floating-Gate, SoC, Command Word Classification This paper presents a Floating-Gate (FG) based, System- On-Chip (SoC) large-scale Field- Programmable
CrossTalk: The Journal of Defense Software Engineering. Volume 23, Number 2, March/April 2010
2010-04-01
SDLC phase. 4. Developing secure software depends on understanding the operational con- text in which it will be used. This con- text includes... its development . BSI leverages the Common Weakness Enumeration (CWE) and the Common Attack Pattern Enumeration and Classification (CAPEC) efforts. To...system integrators providing sys- tems (both IT and warfighting) to the Concept Refinement Technology Development System Development and
Lightness computation by the human visual system
NASA Astrophysics Data System (ADS)
Rudd, Michael E.
2017-05-01
A model of achromatic color computation by the human visual system is presented, which is shown to account in an exact quantitative way for a large body of appearance matching data collected with simple visual displays. The model equations are closely related to those of the original Retinex model of Land and McCann. However, the present model differs in important ways from Land and McCann's theory in that it invokes additional biological and perceptual mechanisms, including contrast gain control, different inherent neural gains for incremental, and decremental luminance steps, and two types of top-down influence on the perceptual weights applied to local luminance steps in the display: edge classification and spatial integration attentional windowing. Arguments are presented to support the claim that these various visual processes must be instantiated by a particular underlying neural architecture. By pointing to correspondences between the architecture of the model and findings from visual neurophysiology, this paper suggests that edge classification involves a top-down gating of neural edge responses in early visual cortex (cortical areas V1 and/or V2) while spatial integration windowing occurs in cortical area V4 or beyond.
Tracking an Exodus: Lost Children of the Dwarf Planet Haumea
NASA Astrophysics Data System (ADS)
Maggard, Steven; Ragozzine, Darin
2017-10-01
The orbital properties of Kuiper Belt Objects (KBOs) refine our understanding of the formation of the solar system. One object of particular interest is the dwarf planet Haumea which experienced a collision in the early stages of our solar system that ejected shards form its surface and spread them over a localized part of the Kuiper Belt. Detailed orbital integrations are required to determine the dynamical distances between family members, in the form of "Delta v" as measured from conserved proper orbital elements (Ragozzine & Brown 2007). In the past 10 years, the number of known KBOs has tripled; here, we perform dynamical integrations to triple the number of candidate Haumea family members. The resulting improved understanding of Haumea's family will bring us closer to understanding its formation. In order to place more secure estimates on the dynamical classification of Haumea family members (and KBOs generally), we use OpenOrb to perform rigorous Bayesian uncertainty propagation from observational uncertainty into orbital elements and then into dynamical classifications. We will discuss our methodology, the new Haumea family members, and some implications for the Haumea family.
The system of technical diagnostics of the industrial safety information network
NASA Astrophysics Data System (ADS)
Repp, P. V.
2017-01-01
This research is devoted to problems of safety of the industrial information network. Basic sub-networks, ensuring reliable operation of the elements of the industrial Automatic Process Control System, were identified. The core tasks of technical diagnostics of industrial information safety were presented. The structure of the technical diagnostics system of the information safety was proposed. It includes two parts: a generator of cyber-attacks and the virtual model of the enterprise information network. The virtual model was obtained by scanning a real enterprise network. A new classification of cyber-attacks was proposed. This classification enables one to design an efficient generator of cyber-attacks sets for testing the virtual modes of the industrial information network. The numerical method of the Monte Carlo (with LPτ - sequences of Sobol), and Markov chain was considered as the design method for the cyber-attacks generation algorithm. The proposed system also includes a diagnostic analyzer, performing expert functions. As an integrative quantitative indicator of the network reliability the stability factor (Kstab) was selected. This factor is determined by the weight of sets of cyber-attacks, identifying the vulnerability of the network. The weight depends on the frequency and complexity of cyber-attacks, the degree of damage, complexity of remediation. The proposed Kstab is an effective integral quantitative measure of the information network reliability.
Dynamical Classifications of the Kuiper Belt
NASA Astrophysics Data System (ADS)
Maggard, Steven; Ragozzine, Darin
2018-04-01
The Minor Planet Center (MPC) contains a plethora of observational data on thousands of Kuiper Belt Objects (KBOs). Understanding their orbital properties refines our understanding of the formation of the solar system. My analysis pipeline, BUNSHIN, uses Bayesian methods to take the MPC observations and generate 30 statistically weighted orbital clones for each KBO that are propagated backwards along their orbits until the beginning of the solar system. These orbital integrations are saved as REBOUND SimulationArchive files (Rein & Tamayo 2017) which we will make publicly available, allowing many others to perform statistically-robust dynamical classification or complex dynamical investigations of outer solar system small bodies.This database has been used to expand the known collisional family members of the dwarf planet Haumea. Detailed orbital integrations are required to determine the dynamical distances between family members, in the form of "Delta v" as measured from conserved proper orbital elements (Ragozzine & Brown 2007). Our preliminary results have already ~tripled the number of known Haumea family members, allowing us to show that the Haumea family can be identified purely through dynamical clustering.We will discuss the methods associated with BUNSHIN and the database it generates, the refinement of the updated Haumea family, a brief search for other possible clusterings in the outer solar system, and the potential of our research to aid other dynamicists.
de Dumast, Priscille; Mirabel, Clément; Cevidanes, Lucia; Ruellas, Antonio; Yatabe, Marilia; Ioshida, Marcos; Ribera, Nina Tubau; Michoud, Loic; Gomes, Liliane; Huang, Chao; Zhu, Hongtu; Muniz, Luciana; Shoukri, Brandon; Paniagua, Beatriz; Styner, Martin; Pieper, Steve; Budin, Francois; Vimort, Jean-Baptiste; Pascal, Laura; Prieto, Juan Carlos
2018-07-01
The purpose of this study is to describe the methodological innovations of a web-based system for storage, integration and computation of biomedical data, using a training imaging dataset to remotely compute a deep neural network classifier of temporomandibular joint osteoarthritis (TMJOA). This study imaging dataset consisted of three-dimensional (3D) surface meshes of mandibular condyles constructed from cone beam computed tomography (CBCT) scans. The training dataset consisted of 259 condyles, 105 from control subjects and 154 from patients with diagnosis of TMJ OA. For the image analysis classification, 34 right and left condyles from 17 patients (39.9 ± 11.7 years), who experienced signs and symptoms of the disease for less than 5 years, were included as the testing dataset. For the integrative statistical model of clinical, biological and imaging markers, the sample consisted of the same 17 test OA subjects and 17 age and sex matched control subjects (39.4 ± 15.4 years), who did not show any sign or symptom of OA. For these 34 subjects, a standardized clinical questionnaire, blood and saliva samples were also collected. The technological methodologies in this study include a deep neural network classifier of 3D condylar morphology (ShapeVariationAnalyzer, SVA), and a flexible web-based system for data storage, computation and integration (DSCI) of high dimensional imaging, clinical, and biological data. The DSCI system trained and tested the neural network, indicating 5 stages of structural degenerative changes in condylar morphology in the TMJ with 91% close agreement between the clinician consensus and the SVA classifier. The DSCI remotely ran with a novel application of a statistical analysis, the Multivariate Functional Shape Data Analysis, that computed high dimensional correlations between shape 3D coordinates, clinical pain levels and levels of biological markers, and then graphically displayed the computation results. The findings of this study demonstrate a comprehensive phenotypic characterization of TMJ health and disease at clinical, imaging and biological levels, using novel flexible and versatile open-source tools for a web-based system that provides advanced shape statistical analysis and a neural network based classification of temporomandibular joint osteoarthritis. Published by Elsevier Ltd.
A neural network ActiveX based integrated image processing environment.
Ciuca, I; Jitaru, E; Alaicescu, M; Moisil, I
2000-01-01
The paper outlines an integrated image processing environment that uses neural networks ActiveX technology for object recognition and classification. The image processing environment which is Windows based, encapsulates a Multiple-Document Interface (MDI) and is menu driven. Object (shape) parameter extraction is focused on features that are invariant in terms of translation, rotation and scale transformations. The neural network models that can be incorporated as ActiveX components into the environment allow both clustering and classification of objects from the analysed image. Mapping neural networks perform an input sensitivity analysis on the extracted feature measurements and thus facilitate the removal of irrelevant features and improvements in the degree of generalisation. The program has been used to evaluate the dimensions of the hydrocephalus in a study for calculating the Evans index and the angle of the frontal horns of the ventricular system modifications.
Li, Xiaolu; Liang, Yu; Xu, Lijun
2014-09-01
To provide a credible model for light detection and ranging (LiDAR) target classification, the focus of this study is on the relationship between intensity data of LiDAR and the bidirectional reflectance distribution function (BRDF). An integration method based on the built-in-lab coaxial laser detection system was advanced. A kind of intermediary BRDF model advanced by Schlick was introduced into the integration method, considering diffuse and specular backscattering characteristics of the surface. A group of measurement campaigns were carried out to investigate the influence of the incident angle and detection range on the measured intensity data. Two extracted parameters r and S(λ) are influenced by different surface features, which illustrate the surface features of the distribution and magnitude of reflected energy, respectively. The combination of two parameters can be used to describe the surface characteristics for target classification in a more plausible way.
A New Occurrence Model for National Assessment of Undiscovered Volcanogenic Massive Sulfide Deposits
Shanks, W.C. Pat; Dusel-Bacon, Cynthia; Koski, Randolph; Morgan, Lisa A.; Mosier, Dan; Piatak, Nadine M.; Ridley, Ian; Seal, Robert R.; Schulz, Klaus J.; Slack, John F.; Thurston, Roland
2009-01-01
Volcanogenic massive sulfide (VMS) deposits are very significant current and historical resources of Cu-Pb-Zn-Au-Ag, are active exploration targets in several areas of the United States and potentially have significant environmental effects. This new USGS VMS deposit model provides a comprehensive review of deposit occurrence and ore genesis, and fully integrates recent advances in the understanding of active seafloor VMS-forming environments, and integrates consideration of geoenvironmental consequences of mining VMS deposits. Because VMS deposits exhibit a broad range of geological and geochemical characteristics, a suitable classification system is required to incorporate these variations into the mineral deposit model. We classify VMS deposits based on compositional variations in volcanic and sedimentary host rocks. The advantage of the classification method is that it provides a closer linkage between tectonic setting and lithostratigraphic assemblages, and an increased predictive capability during field-based studies.
Using machine learning techniques to automate sky survey catalog generation
NASA Technical Reports Server (NTRS)
Fayyad, Usama M.; Roden, J. C.; Doyle, R. J.; Weir, Nicholas; Djorgovski, S. G.
1993-01-01
We describe the application of machine classification techniques to the development of an automated tool for the reduction of a large scientific data set. The 2nd Palomar Observatory Sky Survey provides comprehensive photographic coverage of the northern celestial hemisphere. The photographic plates are being digitized into images containing on the order of 10(exp 7) galaxies and 10(exp 8) stars. Since the size of this data set precludes manual analysis and classification of objects, our approach is to develop a software system which integrates independently developed techniques for image processing and data classification. Image processing routines are applied to identify and measure features of sky objects. Selected features are used to determine the classification of each object. GID3* and O-BTree, two inductive learning techniques, are used to automatically learn classification decision trees from examples. We describe the techniques used, the details of our specific application, and the initial encouraging results which indicate that our approach is well-suited to the problem. The benefits of the approach are increased data reduction throughput, consistency of classification, and the automated derivation of classification rules that will form an objective, examinable basis for classifying sky objects. Furthermore, astronomers will be freed from the tedium of an intensely visual task to pursue more challenging analysis and interpretation problems given automatically cataloged data.
Jiang, Min; Chen, Yukun; Liu, Mei; Rosenbloom, S Trent; Mani, Subramani; Denny, Joshua C; Xu, Hua
2011-01-01
The authors' goal was to develop and evaluate machine-learning-based approaches to extracting clinical entities-including medical problems, tests, and treatments, as well as their asserted status-from hospital discharge summaries written using natural language. This project was part of the 2010 Center of Informatics for Integrating Biology and the Bedside/Veterans Affairs (VA) natural-language-processing challenge. The authors implemented a machine-learning-based named entity recognition system for clinical text and systematically evaluated the contributions of different types of features and ML algorithms, using a training corpus of 349 annotated notes. Based on the results from training data, the authors developed a novel hybrid clinical entity extraction system, which integrated heuristic rule-based modules with the ML-base named entity recognition module. The authors applied the hybrid system to the concept extraction and assertion classification tasks in the challenge and evaluated its performance using a test data set with 477 annotated notes. Standard measures including precision, recall, and F-measure were calculated using the evaluation script provided by the Center of Informatics for Integrating Biology and the Bedside/VA challenge organizers. The overall performance for all three types of clinical entities and all six types of assertions across 477 annotated notes were considered as the primary metric in the challenge. Systematic evaluation on the training set showed that Conditional Random Fields outperformed Support Vector Machines, and semantic information from existing natural-language-processing systems largely improved performance, although contributions from different types of features varied. The authors' hybrid entity extraction system achieved a maximum overall F-score of 0.8391 for concept extraction (ranked second) and 0.9313 for assertion classification (ranked fourth, but not statistically different than the first three systems) on the test data set in the challenge.
Real-time classification and sensor fusion with a spiking deep belief network
O'Connor, Peter; Neil, Daniel; Liu, Shih-Chii; Delbruck, Tobi; Pfeiffer, Michael
2013-01-01
Deep Belief Networks (DBNs) have recently shown impressive performance on a broad range of classification problems. Their generative properties allow better understanding of the performance, and provide a simpler solution for sensor fusion tasks. However, because of their inherent need for feedback and parallel update of large numbers of units, DBNs are expensive to implement on serial computers. This paper proposes a method based on the Siegert approximation for Integrate-and-Fire neurons to map an offline-trained DBN onto an efficient event-driven spiking neural network suitable for hardware implementation. The method is demonstrated in simulation and by a real-time implementation of a 3-layer network with 2694 neurons used for visual classification of MNIST handwritten digits with input from a 128 × 128 Dynamic Vision Sensor (DVS) silicon retina, and sensory-fusion using additional input from a 64-channel AER-EAR silicon cochlea. The system is implemented through the open-source software in the jAER project and runs in real-time on a laptop computer. It is demonstrated that the system can recognize digits in the presence of distractions, noise, scaling, translation and rotation, and that the degradation of recognition performance by using an event-based approach is less than 1%. Recognition is achieved in an average of 5.8 ms after the onset of the presentation of a digit. By cue integration from both silicon retina and cochlea outputs we show that the system can be biased to select the correct digit from otherwise ambiguous input. PMID:24115919
NASA Astrophysics Data System (ADS)
Snavely, Rachel A.
Focusing on the semi-arid and highly disturbed landscape of San Clemente Island, California, this research tests the effectiveness of incorporating a hierarchal object-based image analysis (OBIA) approach with high-spatial resolution imagery and light detection and range (LiDAR) derived canopy height surfaces for mapping vegetation communities. The study is part of a large-scale research effort conducted by researchers at San Diego State University's (SDSU) Center for Earth Systems Analysis Research (CESAR) and Soil Ecology and Restoration Group (SERG), to develop an updated vegetation community map which will support both conservation and management decisions on Naval Auxiliary Landing Field (NALF) San Clemente Island. Trimble's eCognition Developer software was used to develop and generate vegetation community maps for two study sites, with and without vegetation height data as input. Overall and class-specific accuracies were calculated and compared across the two classifications. The highest overall accuracy (approximately 80%) was observed with the classification integrating airborne visible and near infrared imagery having very high spatial resolution with a LiDAR derived canopy height model. Accuracies for individual vegetation classes differed between both classification methods, but were highest when incorporating the LiDAR digital surface data. The addition of a canopy height model, however, yielded little difference in classification accuracies for areas of very dense shrub cover. Overall, the results show the utility of the OBIA approach for mapping vegetation with high spatial resolution imagery, and emphasizes the advantage of both multi-scale analysis and digital surface data for accuracy characterizing highly disturbed landscapes. The integrated imagery and digital canopy height model approach presented both advantages and limitations, which have to be considered prior to its operational use in mapping vegetation communities.
Classification of Liss IV Imagery Using Decision Tree Methods
NASA Astrophysics Data System (ADS)
Verma, Amit Kumar; Garg, P. K.; Prasad, K. S. Hari; Dadhwal, V. K.
2016-06-01
Image classification is a compulsory step in any remote sensing research. Classification uses the spectral information represented by the digital numbers in one or more spectral bands and attempts to classify each individual pixel based on this spectral information. Crop classification is the main concern of remote sensing applications for developing sustainable agriculture system. Vegetation indices computed from satellite images gives a good indication of the presence of vegetation. It is an indicator that describes the greenness, density and health of vegetation. Texture is also an important characteristics which is used to identifying objects or region of interest is an image. This paper illustrate the use of decision tree method to classify the land in to crop land and non-crop land and to classify different crops. In this paper we evaluate the possibility of crop classification using an integrated approach methods based on texture property with different vegetation indices for single date LISS IV sensor 5.8 meter high spatial resolution data. Eleven vegetation indices (NDVI, DVI, GEMI, GNDVI, MSAVI2, NDWI, NG, NR, NNIR, OSAVI and VI green) has been generated using green, red and NIR band and then image is classified using decision tree method. The other approach is used integration of texture feature (mean, variance, kurtosis and skewness) with these vegetation indices. A comparison has been done between these two methods. The results indicate that inclusion of textural feature with vegetation indices can be effectively implemented to produce classifiedmaps with 8.33% higher accuracy for Indian satellite IRS-P6, LISS IV sensor images.
Forecasting Daily Volume and Acuity of Patients in the Emergency Department.
Calegari, Rafael; Fogliatto, Flavio S; Lucini, Filipe R; Neyeloff, Jeruza; Kuchenbecker, Ricardo S; Schaan, Beatriz D
2016-01-01
This study aimed at analyzing the performance of four forecasting models in predicting the demand for medical care in terms of daily visits in an emergency department (ED) that handles high complexity cases, testing the influence of climatic and calendrical factors on demand behavior. We tested different mathematical models to forecast ED daily visits at Hospital de Clínicas de Porto Alegre (HCPA), which is a tertiary care teaching hospital located in Southern Brazil. Model accuracy was evaluated using mean absolute percentage error (MAPE), considering forecasting horizons of 1, 7, 14, 21, and 30 days. The demand time series was stratified according to patient classification using the Manchester Triage System's (MTS) criteria. Models tested were the simple seasonal exponential smoothing (SS), seasonal multiplicative Holt-Winters (SMHW), seasonal autoregressive integrated moving average (SARIMA), and multivariate autoregressive integrated moving average (MSARIMA). Performance of models varied according to patient classification, such that SS was the best choice when all types of patients were jointly considered, and SARIMA was the most accurate for modeling demands of very urgent (VU) and urgent (U) patients. The MSARIMA models taking into account climatic factors did not improve the performance of the SARIMA models, independent of patient classification.
Forecasting Daily Volume and Acuity of Patients in the Emergency Department
Fogliatto, Flavio S.; Neyeloff, Jeruza; Kuchenbecker, Ricardo S.; Schaan, Beatriz D.
2016-01-01
This study aimed at analyzing the performance of four forecasting models in predicting the demand for medical care in terms of daily visits in an emergency department (ED) that handles high complexity cases, testing the influence of climatic and calendrical factors on demand behavior. We tested different mathematical models to forecast ED daily visits at Hospital de Clínicas de Porto Alegre (HCPA), which is a tertiary care teaching hospital located in Southern Brazil. Model accuracy was evaluated using mean absolute percentage error (MAPE), considering forecasting horizons of 1, 7, 14, 21, and 30 days. The demand time series was stratified according to patient classification using the Manchester Triage System's (MTS) criteria. Models tested were the simple seasonal exponential smoothing (SS), seasonal multiplicative Holt-Winters (SMHW), seasonal autoregressive integrated moving average (SARIMA), and multivariate autoregressive integrated moving average (MSARIMA). Performance of models varied according to patient classification, such that SS was the best choice when all types of patients were jointly considered, and SARIMA was the most accurate for modeling demands of very urgent (VU) and urgent (U) patients. The MSARIMA models taking into account climatic factors did not improve the performance of the SARIMA models, independent of patient classification. PMID:27725842
Perceptual integration without conscious access
van Leeuwen, Jonathan; Olivers, Christian N. L.
2017-01-01
The visual system has the remarkable ability to integrate fragmentary visual input into a perceptually organized collection of surfaces and objects, a process we refer to as perceptual integration. Despite a long tradition of perception research, it is not known whether access to consciousness is required to complete perceptual integration. To investigate this question, we manipulated access to consciousness using the attentional blink. We show that, behaviorally, the attentional blink impairs conscious decisions about the presence of integrated surface structure from fragmented input. However, despite conscious access being impaired, the ability to decode the presence of integrated percepts remains intact, as shown through multivariate classification analyses of electroencephalogram (EEG) data. In contrast, when disrupting perception through masking, decisions about integrated percepts and decoding of integrated percepts are impaired in tandem, while leaving feedforward representations intact. Together, these data show that access consciousness and perceptual integration can be dissociated. PMID:28325878
Neural system for heartbeats recognition using genetically integrated ensemble of classifiers.
Osowski, Stanislaw; Siwek, Krzysztof; Siroic, Robert
2011-03-01
This paper presents the application of genetic algorithm for the integration of neural classifiers combined in the ensemble for the accurate recognition of heartbeat types on the basis of ECG registration. The idea presented in this paper is that using many classifiers arranged in the form of ensemble leads to the increased accuracy of the recognition. In such ensemble the important problem is the integration of all classifiers into one effective classification system. This paper proposes the use of genetic algorithm. It was shown that application of the genetic algorithm is very efficient and allows to reduce significantly the total error of heartbeat recognition. This was confirmed by the numerical experiments performed on the MIT BIH Arrhythmia Database. Copyright © 2011 Elsevier Ltd. All rights reserved.
Enhancements to the Engine Data Interpretation System (EDIS)
NASA Technical Reports Server (NTRS)
Hofmann, Martin O.
1993-01-01
The Engine Data Interpretation System (EDIS) expert system project assists the data review personnel at NASA/MSFC in performing post-test data analysis and engine diagnosis of the Space Shuttle Main Engine (SSME). EDIS uses knowledge of the engine, its components, and simple thermodynamic principles instead of, and in addition to, heuristic rules gathered from the engine experts. EDIS reasons in cooperation with human experts, following roughly the pattern of logic exhibited by human experts. EDIS concentrates on steady-state static faults, such as small leaks, and component degradations, such as pump efficiencies. The objective of this contract was to complete the set of engine component models, integrate heuristic rules into EDIS, integrate the Power Balance Model into EDIS, and investigate modification of the qualitative reasoning mechanisms to allow 'fuzzy' value classification. The results of this contract is an operational version of EDIS. EDIS will become a module of the Post-Test Diagnostic System (PTDS) and will, in this context, provide system-level diagnostic capabilities which integrate component-specific findings provided by other modules.
SFINX-a drug-drug interaction database designed for clinical decision support systems.
Böttiger, Ylva; Laine, Kari; Andersson, Marine L; Korhonen, Tuomas; Molin, Björn; Ovesjö, Marie-Louise; Tirkkonen, Tuire; Rane, Anders; Gustafsson, Lars L; Eiermann, Birgit
2009-06-01
The aim was to develop a drug-drug interaction database (SFINX) to be integrated into decision support systems or to be used in website solutions for clinical evaluation of interactions. Key elements such as substance properties and names, drug formulations, text structures and references were defined before development of the database. Standard operating procedures for literature searches, text writing rules and a classification system for clinical relevance and documentation level were determined. ATC codes, CAS numbers and country-specific codes for substances were identified and quality assured to ensure safe integration of SFINX into other data systems. Much effort was put into giving short and practical advice regarding clinically relevant drug-drug interactions. SFINX includes over 8,000 interaction pairs and is integrated into Swedish and Finnish computerised decision support systems. Over 31,000 physicians and pharmacists are receiving interaction alerts through SFINX. User feedback is collected for continuous improvement of the content. SFINX is a potentially valuable tool delivering instant information on drug interactions during prescribing and dispensing.
Enhancements to the Engine Data Interpretation System (EDIS)
NASA Technical Reports Server (NTRS)
Hofmann, Martin O.
1993-01-01
The Engine Data Interpretation System (EDIS) expert system project assists the data review personnel at NASA/MSFC in performing post-test data analysis and engine diagnosis of the Space Shuttle Main Engine (SSME). EDIS uses knowledge of the engine, its components, and simple thermodynamic principles instead of, and in addition to, heuristic rules gathered from the engine experts. EDIS reasons in cooperation with human experts, following roughly the pattern of logic exhibited by human experts. EDIS concentrates on steady-state static faults, such as small leaks, and component degradations, such as pump efficiencies. The objective of this contract was to complete the set of engine component models, integrate heuristic rules into EDIS, integrate the Power Balance Model into EDIS, and investigate modification of the qualitative reasoning mechanisms to allow 'fuzzy' value classification. The result of this contract is an operational version of EDIS. EDIS will become a module of the Post-Test Diagnostic System (PTDS) and will, in this context, provide system-level diagnostic capabilities which integrate component-specific findings provided by other modules.
Alecu, C S; Jitaru, E; Moisil, I
2000-01-01
This paper presents some tools designed and implemented for learning-related purposes; these tools can be downloaded or run on the TeleNurse web site. Among other facilities, TeleNurse web site is hosting now the version 1.2 of SysTerN (terminology system for nursing) which can be downloaded on request and also the "Evaluation of Translation" form which has been designed in order to improve the Romanian translation of the ICNP (the International Classification of Nursing Practice). SysTerN has been developed using the framework of the TeleNurse ID--ENTITY Telematics for Health EU project. This version is using the beta version of ICNP containing Phenomena and Actions classification. This classification is intended to facilitate documentation of nursing practice, by providing a terminology or vocabulary for use in the description of the nursing process. The TeleNurse site is bilingual, Romanian-English, in order to enlarge the discussion forum with members from other CEE (or Non-CEE) countries.
[Personality disorders--different outlooks and attempts at their integration].
Grabski, Bartosz; Gierowski, Józef Krzysztof
2012-01-01
The paper presents different approaches to personality disorders. The authors critically discuss the contemporary categorical psychiatrie (medical) classification and also present psychological approaches with the special attention put to personality trait theories and stemming from them the Five Factor Model (FFM). Due to the coming time of the publication of a new revision of the American classification DSM- 5 the detailed description of the proposals for the new system has been presented. The authors included the most updated version which has just recently been published on the DSM-5 APA web site on 11h June 2011. The proposed changes go forward to the voices of critique of present solutions, and create a hybrid system which will incorporate some elements of the dimensional approach to personality disorders.
Bui, Kelly M; Raugi, Gregory J; Nguyen, Viet Q; Reiber, Gayle E
2009-01-01
Problems with skin integrity can disrupt daily prosthesis use and lead to decreased mobility and function in individuals with lower-limb loss. This study reviewed the literature to examine how skin problems are defined and diagnosed and to identify the prevalence and types of skin problems in individuals with lower-limb loss. We searched the literature for terms related to amputation and skin problems. We identified 777 articles. Of the articles, 90 met criteria for review of research methodology. Four clinical studies met our selection criteria. The prevalence rate of skin problems was 15% to 41%. The most commonly reported skin problems were wounds, abscesses, and blisters. Given the lack of standardized definitions of skin problems on residual limbs, we conclude this article with a system for classification.
JOURNAL SCOPE GUIDELINES: Paper classification scheme
NASA Astrophysics Data System (ADS)
2005-06-01
This scheme is used to clarify the journal's scope and enable authors and readers to more easily locate the appropriate section for their work. For each of the sections listed in the scope statement we suggest some more detailed subject areas which help define that subject area. These lists are by no means exhaustive and are intended only as a guide to the type of papers we envisage appearing in each section. We acknowledge that no classification scheme can be perfect and that there are some papers which might be placed in more than one section. We are happy to provide further advice on paper classification to authors upon request (please email jphysa@iop.org). 1. Statistical physics numerical and computational methods statistical mechanics, phase transitions and critical phenomena quantum condensed matter theory Bose-Einstein condensation strongly correlated electron systems exactly solvable models in statistical mechanics lattice models, random walks and combinatorics field-theoretical models in statistical mechanics disordered systems, spin glasses and neural networks nonequilibrium systems network theory 2. Chaotic and complex systems nonlinear dynamics and classical chaos fractals and multifractals quantum chaos classical and quantum transport cellular automata granular systems and self-organization pattern formation biophysical models 3. Mathematical physics combinatorics algebraic structures and number theory matrix theory classical and quantum groups, symmetry and representation theory Lie algebras, special functions and orthogonal polynomials ordinary and partial differential equations difference and functional equations integrable systems soliton theory functional analysis and operator theory inverse problems geometry, differential geometry and topology numerical approximation and analysis geometric integration computational methods 4. Quantum mechanics and quantum information theory coherent states eigenvalue problems supersymmetric quantum mechanics scattering theory relativistic quantum mechanics semiclassical approximations foundations of quantum mechanics and measurement theory entanglement and quantum nonlocality geometric phases and quantum tomography quantum tunnelling decoherence and open systems quantum cryptography, communication and computation theoretical quantum optics 5. Classical and quantum field theory quantum field theory gauge and conformal field theory quantum electrodynamics and quantum chromodynamics Casimir effect integrable field theory random matrix theory applications in field theory string theory and its developments classical field theory and electromagnetism metamaterials 6. Fluid and plasma theory turbulence fundamental plasma physics kinetic theory magnetohydrodynamics and multifluid descriptions strongly coupled plasmas one-component plasmas non-neutral plasmas astrophysical and dusty plasmas
Automated system function allocation and display format: Task information processing requirements
NASA Technical Reports Server (NTRS)
Czerwinski, Mary P.
1993-01-01
An important consideration when designing the interface to an intelligent system concerns function allocation between the system and the user. The display of information could be held constant, or 'fixed', leaving the user with the task of searching through all of the available information, integrating it, and classifying the data into a known system state. On the other hand, the system, based on its own intelligent diagnosis, could display only relevant information in order to reduce the user's search set. The user would still be left the task of perceiving and integrating the data and classifying it into the appropriate system state. Finally, the system could display the patterns of data. In this scenario, the task of integrating the data is carried out by the system, and the user's information processing load is reduced, leaving only the tasks of perception and classification of the patterns of data. Humans are especially adept at this form of display processing. Although others have examined the relative effectiveness of alphanumeric and graphical display formats, it is interesting to reexamine this issue together with the function allocation problem. Currently, Johnson Space Center is the test site for an intelligent Thermal Control System (TCS), TEXSYS, being tested for use with Space Station Freedom. Expert TCS engineers, as well as novices, were asked to classify several displays of TEXSYS data into various system states (including nominal and anomalous states). Three different display formats were used: fixed, subset, and graphical. The hypothesis tested was that the graphical displays would provide for fewer errors and faster classification times by both experts and novices, regardless of the kind of system state represented within the display. The subset displays were hypothesized to be the second most effective display format/function allocation condition, based on the fact that the search set is reduced in these displays. Both the subset and the graphic display conditions were hypothesized to be processed more efficiently than the fixed display conditions.
ERIC Educational Resources Information Center
Valaski, Joselaine; Reinehr, Sheila; Malucelli, Andreia
2017-01-01
Purpose: The purpose of this research was to evaluate whether ontology integrated in an organizational learning environment may support the automatic learning material classification in a specific knowledge area. Design/methodology/approach: An ontology for recommending learning material was integrated in the organizational learning environment…
NASA Astrophysics Data System (ADS)
Gevaert, C. M.; Persello, C.; Sliuzas, R.; Vosselman, G.
2016-06-01
Unmanned Aerial Vehicles (UAVs) are capable of providing very high resolution and up-to-date information to support informal settlement upgrading projects. In order to provide accurate basemaps, urban scene understanding through the identification and classification of buildings and terrain is imperative. However, common characteristics of informal settlements such as small, irregular buildings with heterogeneous roof material and large presence of clutter challenge state-of-the-art algorithms. Especially the dense buildings and steeply sloped terrain cause difficulties in identifying elevated objects. This work investigates how 2D radiometric and textural features, 2.5D topographic features, and 3D geometric features obtained from UAV imagery can be integrated to obtain a high classification accuracy in challenging classification problems for the analysis of informal settlements. It compares the utility of pixel-based and segment-based features obtained from an orthomosaic and DSM with point-based and segment-based features extracted from the point cloud to classify an unplanned settlement in Kigali, Rwanda. Findings show that the integration of 2D and 3D features leads to higher classification accuracies.
NASA Astrophysics Data System (ADS)
Fachrurrozi, Muhammad; Saparudin; Erwin
2017-04-01
Real-time Monitoring and early detection system which measures the quality standard of waste in Musi River, Palembang, Indonesia is a system for determining air and water pollution level. This system was designed in order to create an integrated monitoring system and provide real time information that can be read. It is designed to measure acidity and water turbidity polluted by industrial waste, as well as to show and provide conditional data integrated in one system. This system consists of inputting and processing the data, and giving output based on processed data. Turbidity, substances, and pH sensor is used as a detector that produce analog electrical direct current voltage (DC). Early detection system works by determining the value of the ammonia threshold, acidity, and turbidity level of water in Musi River. The results is then presented based on the level group pollution by the Support Vector Machine classification method.
NASA Technical Reports Server (NTRS)
Fayyad, Usama M. (Editor); Uthurusamy, Ramasamy (Editor)
1993-01-01
The present volume on applications of artificial intelligence with regard to knowledge-based systems in aerospace and industry discusses machine learning and clustering, expert systems and optimization techniques, monitoring and diagnosis, and automated design and expert systems. Attention is given to the integration of AI reasoning systems and hardware description languages, care-based reasoning, knowledge, retrieval, and training systems, and scheduling and planning. Topics addressed include the preprocessing of remotely sensed data for efficient analysis and classification, autonomous agents as air combat simulation adversaries, intelligent data presentation for real-time spacecraft monitoring, and an integrated reasoner for diagnosis in satellite control. Also discussed are a knowledge-based system for the design of heat exchangers, reuse of design information for model-based diagnosis, automatic compilation of expert systems, and a case-based approach to handling aircraft malfunctions.
Personnel and Training Subsystem Integration in an Armor System
1981-01-12
designated Uy other authorized documents. Unclasifi ed SECURITY CLASSIFICATION OF THIS PAGE (1Wh,or DVte Entered) RUNREAD INSTRUCTIONSREPORT...initial fielding. 9 Increased contractor responoibility for system design implies that Requests for Proposals be given wider and more careful review...5 4-3 XM1 Design Characteristics in Order of Priorlty (Advanced Development) 4-7 4-4 Comparative Data: Chrysler XM1, GMC XM1, M60A1 4-12 4-5 Critical
2009-04-01
terms of IFR operations or passenger enplanements. The configuration of each Class B airspace area is individually tailored and consists of a surface...are serviced by a radar approach control, and that have a certain number of IFR operations or passenger enplanements. Although the configuration of...ft MSL Figure 3 depicts DoD UASs operating in their respective NAS classifications: Global Hawk Predator B Transponder See & Avoid DME IFR
Integrated Strike Avionics Study. Volume 1
1980-10-01
MMW Systems Targeting Studies Perf. Meas. o C02 Laser Radar Ses. St. Army Obstacle Detect Prog. Concept Demo Mobile System 20 ’ - I...Fabrication and Test o FLIR Field of View & Classification Study (FLIR FACS) Definition m Development & Test 4. Aplicability of Current Programs to...FY80 81 8283 84 85 o LANTIRN 1 n Imaoinn Sensor Autoprocessor • o Forward Looking Active Class a 4. Aplicability of Current Program Required The need
A Three-Dimensional Receiver Operator Characteristic Surface Diagnostic Metric
NASA Technical Reports Server (NTRS)
Simon, Donald L.
2011-01-01
Receiver Operator Characteristic (ROC) curves are commonly applied as metrics for quantifying the performance of binary fault detection systems. An ROC curve provides a visual representation of a detection system s True Positive Rate versus False Positive Rate sensitivity as the detection threshold is varied. The area under the curve provides a measure of fault detection performance independent of the applied detection threshold. While the standard ROC curve is well suited for quantifying binary fault detection performance, it is not suitable for quantifying the classification performance of multi-fault classification problems. Furthermore, it does not provide a measure of diagnostic latency. To address these shortcomings, a novel three-dimensional receiver operator characteristic (3D ROC) surface metric has been developed. This is done by generating and applying two separate curves: the standard ROC curve reflecting fault detection performance, and a second curve reflecting fault classification performance. A third dimension, diagnostic latency, is added giving rise to 3D ROC surfaces. Applying numerical integration techniques, the volumes under and between the surfaces are calculated to produce metrics of the diagnostic system s detection and classification performance. This paper will describe the 3D ROC surface metric in detail, and present an example of its application for quantifying the performance of aircraft engine gas path diagnostic methods. Metric limitations and potential enhancements are also discussed
Discovering disease-disease associations by fusing systems-level molecular data
Žitnik, Marinka; Janjić, Vuk; Larminie, Chris; Zupan, Blaž; Pržulj, Nataša
2013-01-01
The advent of genome-scale genetic and genomic studies allows new insight into disease classification. Recently, a shift was made from linking diseases simply based on their shared genes towards systems-level integration of molecular data. Here, we aim to find relationships between diseases based on evidence from fusing all available molecular interaction and ontology data. We propose a multi-level hierarchy of disease classes that significantly overlaps with existing disease classification. In it, we find 14 disease-disease associations currently not present in Disease Ontology and provide evidence for their relationships through comorbidity data and literature curation. Interestingly, even though the number of known human genetic interactions is currently very small, we find they are the most important predictor of a link between diseases. Finally, we show that omission of any one of the included data sources reduces prediction quality, further highlighting the importance in the paradigm shift towards systems-level data fusion. PMID:24232732
Discovering disease-disease associations by fusing systems-level molecular data.
Žitnik, Marinka; Janjić, Vuk; Larminie, Chris; Zupan, Blaž; Pržulj, Nataša
2013-11-15
The advent of genome-scale genetic and genomic studies allows new insight into disease classification. Recently, a shift was made from linking diseases simply based on their shared genes towards systems-level integration of molecular data. Here, we aim to find relationships between diseases based on evidence from fusing all available molecular interaction and ontology data. We propose a multi-level hierarchy of disease classes that significantly overlaps with existing disease classification. In it, we find 14 disease-disease associations currently not present in Disease Ontology and provide evidence for their relationships through comorbidity data and literature curation. Interestingly, even though the number of known human genetic interactions is currently very small, we find they are the most important predictor of a link between diseases. Finally, we show that omission of any one of the included data sources reduces prediction quality, further highlighting the importance in the paradigm shift towards systems-level data fusion.
A Characteristics-Based Approach to Radioactive Waste Classification in Advanced Nuclear Fuel Cycles
NASA Astrophysics Data System (ADS)
Djokic, Denia
The radioactive waste classification system currently used in the United States primarily relies on a source-based framework. This has lead to numerous issues, such as wastes that are not categorized by their intrinsic risk, or wastes that do not fall under a category within the framework and therefore are without a legal imperative for responsible management. Furthermore, in the possible case that advanced fuel cycles were to be deployed in the United States, the shortcomings of the source-based classification system would be exacerbated: advanced fuel cycles implement processes such as the separation of used nuclear fuel, which introduce new waste streams of varying characteristics. To be able to manage and dispose of these potential new wastes properly, development of a classification system that would assign appropriate level of management to each type of waste based on its physical properties is imperative. This dissertation explores how characteristics from wastes generated from potential future nuclear fuel cycles could be coupled with a characteristics-based classification framework. A static mass flow model developed under the Department of Energy's Fuel Cycle Research & Development program, called the Fuel-cycle Integration and Tradeoffs (FIT) model, was used to calculate the composition of waste streams resulting from different nuclear fuel cycle choices: two modified open fuel cycle cases (recycle in MOX reactor) and two different continuous-recycle fast reactor recycle cases (oxide and metal fuel fast reactors). This analysis focuses on the impact of waste heat load on waste classification practices, although future work could involve coupling waste heat load with metrics of radiotoxicity and longevity. The value of separation of heat-generating fission products and actinides in different fuel cycles and how it could inform long- and short-term disposal management is discussed. It is shown that the benefits of reducing the short-term fission-product heat load of waste destined for geologic disposal are neglected under the current source-based radioactive waste classification system, and that it is useful to classify waste streams based on how favorable the impact of interim storage is on increasing repository capacity. The need for a more diverse set of waste classes is discussed, and it is shown that the characteristics-based IAEA classification guidelines could accommodate wastes created from advanced fuel cycles more comprehensively than the U.S. classification framework.
ERIC Educational Resources Information Center
Micco, Mary; Popp, Rich
Techniques for building a world-wide information infrastructure by reverse engineering existing databases to link them in a hierarchical system of subject clusters to create an integrated database are explored. The controlled vocabulary of the Library of Congress Subject Headings is used to ensure consistency and group similar items. Each database…
SCAT Classification of 4 Optical Transients
NASA Astrophysics Data System (ADS)
Tucker, Michael A.; Rowan, Dominick M.; Shappee, Benjamin J.; Dong, Subo; Bose, Subhash; Stanek, K. Z.
2018-06-01
The Spectral Classification of Astronomical Transients (SCAT) survey (ATel #11444) presents the classification of 4 optical transients. We report optical spectroscopy (330-970nm) taken with the University of Hawaii 88-inch (UH88) telescope using the SuperNova Integral Field Spectrograph (SNIFS).
SCAT Classifications of 5 Supernovae with the UH88/SNIFS
NASA Astrophysics Data System (ADS)
Tucker, Michael A.; Huber, Mark; Shappee, Benjamin J.; Dong, Subo; Bose, S.; Chen, Ping
2018-03-01
We present the first classifications from the newly formed Spectral Classification of Astronomical Transients (SCAT) survey. SCAT is a transient identification survey utilizing the SuperNova Integral Field Spectrograph (SNIFS) on the University of Hawaii (UH) 88-inch telescope.
An Extreme Learning Machine-Based Neuromorphic Tactile Sensing System for Texture Recognition.
Rasouli, Mahdi; Chen, Yi; Basu, Arindam; Kukreja, Sunil L; Thakor, Nitish V
2018-04-01
Despite significant advances in computational algorithms and development of tactile sensors, artificial tactile sensing is strikingly less efficient and capable than the human tactile perception. Inspired by efficiency of biological systems, we aim to develop a neuromorphic system for tactile pattern recognition. We particularly target texture recognition as it is one of the most necessary and challenging tasks for artificial sensory systems. Our system consists of a piezoresistive fabric material as the sensor to emulate skin, an interface that produces spike patterns to mimic neural signals from mechanoreceptors, and an extreme learning machine (ELM) chip to analyze spiking activity. Benefiting from intrinsic advantages of biologically inspired event-driven systems and massively parallel and energy-efficient processing capabilities of the ELM chip, the proposed architecture offers a fast and energy-efficient alternative for processing tactile information. Moreover, it provides the opportunity for the development of low-cost tactile modules for large-area applications by integration of sensors and processing circuits. We demonstrate the recognition capability of our system in a texture discrimination task, where it achieves a classification accuracy of 92% for categorization of ten graded textures. Our results confirm that there exists a tradeoff between response time and classification accuracy (and information transfer rate). A faster decision can be achieved at early time steps or by using a shorter time window. This, however, results in deterioration of the classification accuracy and information transfer rate. We further observe that there exists a tradeoff between the classification accuracy and the input spike rate (and thus energy consumption). Our work substantiates the importance of development of efficient sparse codes for encoding sensory data to improve the energy efficiency. These results have a significance for a wide range of wearable, robotic, prosthetic, and industrial applications.
Service Management Database for DSN Equipment
NASA Technical Reports Server (NTRS)
Zendejas, Silvino; Bui, Tung; Bui, Bach; Malhotra, Shantanu; Chen, Fannie; Wolgast, Paul; Allen, Christopher; Luong, Ivy; Chang, George; Sadaqathulla, Syed
2009-01-01
This data- and event-driven persistent storage system leverages the use of commercial software provided by Oracle for portability, ease of maintenance, scalability, and ease of integration with embedded, client-server, and multi-tiered applications. In this role, the Service Management Database (SMDB) is a key component of the overall end-to-end process involved in the scheduling, preparation, and configuration of the Deep Space Network (DSN) equipment needed to perform the various telecommunication services the DSN provides to its customers worldwide. SMDB makes efficient use of triggers, stored procedures, queuing functions, e-mail capabilities, data management, and Java integration features provided by the Oracle relational database management system. SMDB uses a third normal form schema design that allows for simple data maintenance procedures and thin layers of integration with client applications. The software provides an integrated event logging system with ability to publish events to a JMS messaging system for synchronous and asynchronous delivery to subscribed applications. It provides a structured classification of events and application-level messages stored in database tables that are accessible by monitoring applications for real-time monitoring or for troubleshooting and analysis over historical archives.
NASA Astrophysics Data System (ADS)
Kuo, Chung-Feng Jeffrey; Lai, Chun-Yu; Kao, Chih-Hsiang; Chiu, Chin-Hsun
2018-05-01
In order to improve the current manual inspection and classification process for polarizing film on production lines, this study proposes a high precision automated inspection and classification system for polarizing film, which is used for recognition and classification of four common defects: dent, foreign material, bright spot, and scratch. First, the median filter is used to remove the impulse noise in the defect image of polarizing film. The random noise in the background is smoothed by the improved anisotropic diffusion, while the edge detail of the defect region is sharpened. Next, the defect image is transformed by Fourier transform to the frequency domain, combined with a Butterworth high pass filter to sharpen the edge detail of the defect region, and brought back by inverse Fourier transform to the spatial domain to complete the image enhancement process. For image segmentation, the edge of the defect region is found by Canny edge detector, and then the complete defect region is obtained by two-stage morphology processing. For defect classification, the feature values, including maximum gray level, eccentricity, the contrast, and homogeneity of gray level co-occurrence matrix (GLCM) extracted from the images, are used as the input of the radial basis function neural network (RBFNN) and back-propagation neural network (BPNN) classifier, 96 defect images are then used as training samples, and 84 defect images are used as testing samples to validate the classification effect. The result shows that the classification accuracy by using RBFNN is 98.9%. Thus, our proposed system can be used by manufacturing companies for a higher yield rate and lower cost. The processing time of one single image is 2.57 seconds, thus meeting the practical application requirement of an industrial production line.
Integrated feature extraction and selection for neuroimage classification
NASA Astrophysics Data System (ADS)
Fan, Yong; Shen, Dinggang
2009-02-01
Feature extraction and selection are of great importance in neuroimage classification for identifying informative features and reducing feature dimensionality, which are generally implemented as two separate steps. This paper presents an integrated feature extraction and selection algorithm with two iterative steps: constrained subspace learning based feature extraction and support vector machine (SVM) based feature selection. The subspace learning based feature extraction focuses on the brain regions with higher possibility of being affected by the disease under study, while the possibility of brain regions being affected by disease is estimated by the SVM based feature selection, in conjunction with SVM classification. This algorithm can not only take into account the inter-correlation among different brain regions, but also overcome the limitation of traditional subspace learning based feature extraction methods. To achieve robust performance and optimal selection of parameters involved in feature extraction, selection, and classification, a bootstrapping strategy is used to generate multiple versions of training and testing sets for parameter optimization, according to the classification performance measured by the area under the ROC (receiver operating characteristic) curve. The integrated feature extraction and selection method is applied to a structural MR image based Alzheimer's disease (AD) study with 98 non-demented and 100 demented subjects. Cross-validation results indicate that the proposed algorithm can improve performance of the traditional subspace learning based classification.
Integrating Vegetation Classification, Mapping, and Strategic Inventory for Forest Management
C. K. Brewer; R. Bush; D. Berglund; J. A. Barber; S. R. Brown
2006-01-01
Many of the analyses needed to address multiple resource issues are focused on vegetation pattern and process relationships and most rely on the data models produced from vegetation classification, mapping, and/or inventory. The Northern Region Vegetation Mapping Project (R1-VMP) data models are based on these three integrally related, yet separate processes. This...
Hagmann, Cornelia Franziska; Robertson, Nicola Jayne; Azzopardi, Denis
2006-12-01
This is a case report and a descriptive study demonstrating that artifacts are common during long-term recording of amplitude-integrated electroencephalograms and may lead to erroneous classification of the amplitude-integrated electroencephalogram trace. Artifacts occurred in 12% of 200 hours of recording time sampled from a representative sample of 20 infants with neonatal encephalopathy. Artifacts derived from electrical or movement interference occurred with similar frequency; both types of artifacts influenced the voltage and width of the amplitude-integrated electroencephalogram band. This is important knowledge especially if amplitude-integrated electroencephalogram is used as a selection tool for neuroprotection intervention studies.
NASA Technical Reports Server (NTRS)
Silva-Martinez, Jackelynne; Ellenberger, Richard; Dory, Jonathan
2017-01-01
This project aims to identify poor human factors design decisions that led to error-prone systems, or did not facilitate the flight crew making the right choices; and to verify that NASA is effectively preventing similar incidents from occurring again. This analysis was performed by reviewing significant incidents and close calls in human spaceflight identified by the NASA Johnson Space Center Safety and Mission Assurance Flight Safety Office. The review of incidents shows whether the identified human errors were due to the operational phase (flight crew and ground control) or if they initiated at the design phase (includes manufacturing and test). This classification was performed with the aid of the NASA Human Systems Integration domains. This in-depth analysis resulted in a tool that helps with the human factors classification of significant incidents and close calls in human spaceflight, which can be used to identify human errors at the operational level, and how they were or should be minimized. Current governing documents on human systems integration for both government and commercial crew were reviewed to see if current requirements, processes, training, and standard operating procedures protect the crew and ground control against these issues occurring in the future. Based on the findings, recommendations to target those areas are provided.
Turksoy, Kamuran; Paulino, Thiago Marques Luz; Zaharieva, Dessi P; Yavelberg, Loren; Jamnik, Veronica; Riddell, Michael C; Cinar, Ali
2015-10-06
Physical activity has a wide range of effects on glucose concentrations in type 1 diabetes (T1D) depending on the type (ie, aerobic, anaerobic, mixed) and duration of activity performed. This variability in glucose responses to physical activity makes the development of artificial pancreas (AP) systems challenging. Automatic detection of exercise type and intensity, and its classification as aerobic or anaerobic would provide valuable information to AP control algorithms. This can be achieved by using a multivariable AP approach where biometric variables are measured and reported to the AP at high frequency. We developed a classification system that identifies, in real time, the exercise intensity and its reliance on aerobic or anaerobic metabolism and tested this approach using clinical data collected from 5 persons with T1D and 3 individuals without T1D in a controlled laboratory setting using a variety of common types of physical activity. The classifier had an average sensitivity of 98.7% for physiological data collected over a range of exercise modalities and intensities in these subjects. The classifier will be added as a new module to the integrated multivariable adaptive AP system to enable the detection of aerobic and anaerobic exercise for enhancing the accuracy of insulin infusion strategies during and after exercise. © 2015 Diabetes Technology Society.
Zhang, Jianhua; Yin, Zhong; Wang, Rubin
2017-01-01
This paper developed a cognitive task-load (CTL) classification algorithm and allocation strategy to sustain the optimal operator CTL levels over time in safety-critical human-machine integrated systems. An adaptive human-machine system is designed based on a non-linear dynamic CTL classifier, which maps a set of electroencephalogram (EEG) and electrocardiogram (ECG) related features to a few CTL classes. The least-squares support vector machine (LSSVM) is used as dynamic pattern classifier. A series of electrophysiological and performance data acquisition experiments were performed on seven volunteer participants under a simulated process control task environment. The participant-specific dynamic LSSVM model is constructed to classify the instantaneous CTL into five classes at each time instant. The initial feature set, comprising 56 EEG and ECG related features, is reduced to a set of 12 salient features (including 11 EEG-related features) by using the locality preserving projection (LPP) technique. An overall correct classification rate of about 80% is achieved for the 5-class CTL classification problem. Then the predicted CTL is used to adaptively allocate the number of process control tasks between operator and computer-based controller. Simulation results showed that the overall performance of the human-machine system can be improved by using the adaptive automation strategy proposed.
A large class of solvable multistate Landau–Zener models and quantum integrability
NASA Astrophysics Data System (ADS)
Chernyak, Vladimir Y.; Sinitsyn, Nikolai A.; Sun, Chen
2018-06-01
The concept of quantum integrability has been introduced recently for quantum systems with explicitly time-dependent Hamiltonians (Sinitsyn et al 2018 Phys. Rev. Lett. 120 190402). Within the multistate Landau–Zener (MLZ) theory, however, there has been a successful alternative approach to identify and solve complex time-dependent models (Sinitsyn and Chernyak 2017 J. Phys. A: Math. Theor. 50 255203). Here we compare both methods by applying them to a new class of exactly solvable MLZ models. This class contains systems with an arbitrary number of interacting states and shows quick growth with N number of exact adiabatic energy crossing points, which appear at different moments of time. At each N, transition probabilities in these systems can be found analytically and exactly but complexity and variety of solutions in this class also grow with N quickly. We illustrate how common features of solvable MLZ systems appear from quantum integrability and develop an approach to further classification of solvable MLZ problems.
The integrated disease network.
Sun, Kai; Buchan, Natalie; Larminie, Chris; Pržulj, Nataša
2014-11-01
The growing body of transcriptomic, proteomic, metabolomic and genomic data generated from disease states provides a great opportunity to improve our current understanding of the molecular mechanisms driving diseases and shared between diseases. The use of both clinical and molecular phenotypes will lead to better disease understanding and classification. In this study, we set out to gain novel insights into diseases and their relationships by utilising knowledge gained from system-level molecular data. We integrated different types of biological data including genome-wide association studies data, disease-chemical associations, biological pathways and Gene Ontology annotations into an Integrated Disease Network (IDN), a heterogeneous network where nodes are bio-entities and edges between nodes represent their associations. We also introduced a novel disease similarity measure to infer disease-disease associations from the IDN. Our predicted associations were systemically evaluated against the Medical Subject Heading classification and a statistical measure of disease co-occurrence in PubMed. The strong correlation between our predictions and co-occurrence associations indicated the ability of our approach to recover known disease associations. Furthermore, we presented a case study of Crohn's disease. We demonstrated that our approach not only identified well-established connections between Crohn's disease and other diseases, but also revealed new, interesting connections consistent with emerging literature. Our approach also enabled ready access to the knowledge supporting these new connections, making this a powerful approach for exploring connections between diseases.
Development and Application of integrated monitoring platform for the Doppler Weather SA-BAND Radar
NASA Astrophysics Data System (ADS)
Zhang, Q.; Sun, J.; Zhao, C. C.; Chen, H. Y.
2017-10-01
The doppler weather SA-band radar is an important part of modern meteorological observation methods, monitoring the running status of radar and the data transmission is important.This paper introduced the composition of radar system and classification of radar data,analysed the characteristics and laws of the radar when is normal or abnormal. Using Macromedia Dreamweaver and PHP, developed the integrated monitoring platform for the doppler weather SA-band radar which could monitor the real-time radar system running status and important performance indicators such as radar power,status parameters and others on Web page,and when the status is abnormal it will trigger the audio alarm.
Early warning, warning or alarm systems for natural hazards? A generic classification.
NASA Astrophysics Data System (ADS)
Sättele, Martina; Bründl, Michael; Straub, Daniel
2013-04-01
Early warning, warning and alarm systems have gained popularity in recent years as cost-efficient measures for dangerous natural hazard processes such as floods, storms, rock and snow avalanches, debris flows, rock and ice falls, landslides, flash floods, glacier lake outburst floods, forest fires and even earthquakes. These systems can generate information before an event causes loss of property and life. In this way, they mainly mitigate the overall risk by reducing the presence probability of endangered objects. These systems are typically prototypes tailored to specific project needs. Despite their importance there is no recognised system classification. This contribution classifies warning and alarm systems into three classes: i) threshold systems, ii) expert systems and iii) model-based expert systems. The result is a generic classification, which takes the characteristics of the natural hazard process itself and the related monitoring possibilities into account. The choice of the monitoring parameters directly determines the system's lead time. The classification of 52 active systems moreover revealed typical system characteristics for each system class. i) Threshold systems monitor dynamic process parameters of ongoing events (e.g. water level of a debris flow) and incorporate minor lead times. They have a local geographical coverage and a predefined threshold determines if an alarm is automatically activated to warn endangered objects, authorities and system operators. ii) Expert systems monitor direct changes in the variable disposition (e.g crack opening before a rock avalanche) or trigger events (e.g. heavy rain) at a local scale before the main event starts and thus offer extended lead times. The final alarm decision incorporates human, model and organisational related factors. iii) Model-based expert systems monitor indirect changes in the variable disposition (e.g. snow temperature, height or solar radiation that influence the occurrence probability of snow avalanches) or trigger events (e.g. heavy snow fall) to predict spontaneous hazard events in advance. They encompass regional or national measuring networks and satisfy additional demands such as the standardisation of the measuring stations. The developed classification and the characteristics, which were revealed for each class, yield a valuable input to quantifying the reliability of warning and alarm systems. Importantly, this will facilitate to compare them with well-established standard mitigation measures such as dams, nets and galleries within an integrated risk management approach.
Classification of current anticancer immunotherapies
Vacchelli, Erika; Pedro, José-Manuel Bravo-San; Buqué, Aitziber; Senovilla, Laura; Baracco, Elisa Elena; Bloy, Norma; Castoldi, Francesca; Abastado, Jean-Pierre; Agostinis, Patrizia; Apte, Ron N.; Aranda, Fernando; Ayyoub, Maha; Beckhove, Philipp; Blay, Jean-Yves; Bracci, Laura; Caignard, Anne; Castelli, Chiara; Cavallo, Federica; Celis, Estaban; Cerundolo, Vincenzo; Clayton, Aled; Colombo, Mario P.; Coussens, Lisa; Dhodapkar, Madhav V.; Eggermont, Alexander M.; Fearon, Douglas T.; Fridman, Wolf H.; Fučíková, Jitka; Gabrilovich, Dmitry I.; Galon, Jérôme; Garg, Abhishek; Ghiringhelli, François; Giaccone, Giuseppe; Gilboa, Eli; Gnjatic, Sacha; Hoos, Axel; Hosmalin, Anne; Jäger, Dirk; Kalinski, Pawel; Kärre, Klas; Kepp, Oliver; Kiessling, Rolf; Kirkwood, John M.; Klein, Eva; Knuth, Alexander; Lewis, Claire E.; Liblau, Roland; Lotze, Michael T.; Lugli, Enrico; Mach, Jean-Pierre; Mattei, Fabrizio; Mavilio, Domenico; Melero, Ignacio; Melief, Cornelis J.; Mittendorf, Elizabeth A.; Moretta, Lorenzo; Odunsi, Adekunke; Okada, Hideho; Palucka, Anna Karolina; Peter, Marcus E.; Pienta, Kenneth J.; Porgador, Angel; Prendergast, George C.; Rabinovich, Gabriel A.; Restifo, Nicholas P.; Rizvi, Naiyer; Sautès-Fridman, Catherine; Schreiber, Hans; Seliger, Barbara; Shiku, Hiroshi; Silva-Santos, Bruno; Smyth, Mark J.; Speiser, Daniel E.; Spisek, Radek; Srivastava, Pramod K.; Talmadge, James E.; Tartour, Eric; Van Der Burg, Sjoerd H.; Van Den Eynde, Benoît J.; Vile, Richard; Wagner, Hermann; Weber, Jeffrey S.; Whiteside, Theresa L.; Wolchok, Jedd D.; Zitvogel, Laurence; Zou, Weiping
2014-01-01
During the past decades, anticancer immunotherapy has evolved from a promising therapeutic option to a robust clinical reality. Many immunotherapeutic regimens are now approved by the US Food and Drug Administration and the European Medicines Agency for use in cancer patients, and many others are being investigated as standalone therapeutic interventions or combined with conventional treatments in clinical studies. Immunotherapies may be subdivided into “passive” and “active” based on their ability to engage the host immune system against cancer. Since the anticancer activity of most passive immunotherapeutics (including tumor-targeting monoclonal antibodies) also relies on the host immune system, this classification does not properly reflect the complexity of the drug-host-tumor interaction. Alternatively, anticancer immunotherapeutics can be classified according to their antigen specificity. While some immunotherapies specifically target one (or a few) defined tumor-associated antigen(s), others operate in a relatively non-specific manner and boost natural or therapy-elicited anticancer immune responses of unknown and often broad specificity. Here, we propose a critical, integrated classification of anticancer immunotherapies and discuss the clinical relevance of these approaches. PMID:25537519
Delineation and geometric modeling of road networks
NASA Astrophysics Data System (ADS)
Poullis, Charalambos; You, Suya
In this work we present a novel vision-based system for automatic detection and extraction of complex road networks from various sensor resources such as aerial photographs, satellite images, and LiDAR. Uniquely, the proposed system is an integrated solution that merges the power of perceptual grouping theory (Gabor filtering, tensor voting) and optimized segmentation techniques (global optimization using graph-cuts) into a unified framework to address the challenging problems of geospatial feature detection and classification. Firstly, the local precision of the Gabor filters is combined with the global context of the tensor voting to produce accurate classification of the geospatial features. In addition, the tensorial representation used for the encoding of the data eliminates the need for any thresholds, therefore removing any data dependencies. Secondly, a novel orientation-based segmentation is presented which incorporates the classification of the perceptual grouping, and results in segmentations with better defined boundaries and continuous linear segments. Finally, a set of gaussian-based filters are applied to automatically extract centerline information (magnitude, width and orientation). This information is then used for creating road segments and transforming them to their polygonal representations.
Jacob, Joshua; Desai, Ankit; Trompeter, Alex
2017-01-01
Currently, approximately half of all hip fractures are extracapsular, with an incidence as high as 50 in 100,000 in some countries. The common classification systems fail to explain the logistics of fracture classification and whether they all behave in the same manner. The Muller AO classification system is a useful platform to delineate stable and unstable fractures. The Dynamic hip screw (DHS) however, has remained the ‘gold standard’ implant of choice for application in all extracapsular fractures. The DHS relies on the integrity and strength of the lateral femoral wall as well as the postero-medial fragment. An analysis of several studies indicates significant improvements in design and techniques to ensure a better outcome with intramedullary nails. This article reviews the historical trends that helped to evolve the DHS implant as well as discussing if the surgeon should remain content with this implant. We suggest that the gold standard surgical management of extracapsular fractures can, and should, evolve. PMID:29290858
Similarity-Dissimilarity Competition in Disjunctive Classification Tasks
Mathy, Fabien; Haladjian, Harry H.; Laurent, Eric; Goldstone, Robert L.
2013-01-01
Typical disjunctive artificial classification tasks require participants to sort stimuli according to rules such as “x likes cars only when black and coupe OR white and SUV.” For categories like this, increasing the salience of the diagnostic dimensions has two simultaneous effects: increasing the distance between members of the same category and increasing the distance between members of opposite categories. Potentially, these two effects respectively hinder and facilitate classification learning, leading to competing predictions for learning. Increasing saliency may lead to members of the same category to be considered less similar, while the members of separate categories might be considered more dissimilar. This implies a similarity-dissimilarity competition between two basic classification processes. When focusing on sub-category similarity, one would expect more difficult classification when members of the same category become less similar (disregarding the increase of between-category dissimilarity); however, the between-category dissimilarity increase predicts a less difficult classification. Our categorization study suggests that participants rely more on using dissimilarities between opposite categories than finding similarities between sub-categories. We connect our results to rule- and exemplar-based classification models. The pattern of influences of within- and between-category similarities are challenging for simple single-process categorization systems based on rules or exemplars. Instead, our results suggest that either these processes should be integrated in a hybrid model, or that category learning operates by forming clusters within each category. PMID:23403979
James, Conrad D.; Aimone, James B.; Miner, Nadine E.; ...
2017-01-04
In this study, biological neural networks continue to inspire new developments in algorithms and microelectronic hardware to solve challenging data processing and classification problems. Here in this research, we survey the history of neural-inspired and neuromorphic computing in order to examine the complex and intertwined trajectories of the mathematical theory and hardware developed in this field. Early research focused on adapting existing hardware to emulate the pattern recognition capabilities of living organisms. Contributions from psychologists, mathematicians, engineers, neuroscientists, and other professions were crucial to maturing the field from narrowly-tailored demonstrations to more generalizable systems capable of addressing difficult problem classesmore » such as object detection and speech recognition. Algorithms that leverage fundamental principles found in neuroscience such as hierarchical structure, temporal integration, and robustness to error have been developed, and some of these approaches are achieving world-leading performance on particular data classification tasks. Additionally, novel microelectronic hardware is being developed to perform logic and to serve as memory in neuromorphic computing systems with optimized system integration and improved energy efficiency. Key to such advancements was the incorporation of new discoveries in neuroscience research, the transition away from strict structural replication and towards the functional replication of neural systems, and the use of mathematical theory frameworks to guide algorithm and hardware developments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
James, Conrad D.; Aimone, James B.; Miner, Nadine E.
In this study, biological neural networks continue to inspire new developments in algorithms and microelectronic hardware to solve challenging data processing and classification problems. Here in this research, we survey the history of neural-inspired and neuromorphic computing in order to examine the complex and intertwined trajectories of the mathematical theory and hardware developed in this field. Early research focused on adapting existing hardware to emulate the pattern recognition capabilities of living organisms. Contributions from psychologists, mathematicians, engineers, neuroscientists, and other professions were crucial to maturing the field from narrowly-tailored demonstrations to more generalizable systems capable of addressing difficult problem classesmore » such as object detection and speech recognition. Algorithms that leverage fundamental principles found in neuroscience such as hierarchical structure, temporal integration, and robustness to error have been developed, and some of these approaches are achieving world-leading performance on particular data classification tasks. Additionally, novel microelectronic hardware is being developed to perform logic and to serve as memory in neuromorphic computing systems with optimized system integration and improved energy efficiency. Key to such advancements was the incorporation of new discoveries in neuroscience research, the transition away from strict structural replication and towards the functional replication of neural systems, and the use of mathematical theory frameworks to guide algorithm and hardware developments.« less
Tluczkiewicz, I; Kühne, R; Ebert, R-U; Batke, M; Schüürmann, G; Mangelsdorf, I; Escher, S E
2016-07-01
The present publication describes an integrative grouping concept to derive threshold values for inhalation exposure. The classification scheme starts with differences in toxicological potency and develops criteria to group compounds into two potency classes, namely toxic (T-group) or low toxic (L-group). The TTC concept for inhalation exposure is based on the TTC RepDose data set, consisting of 296 organic compounds with 608 repeated-dose inhalation studies. Initially, 21 structural features (SFs) were identified as being characteristic for compounds of either high or low NOEC values (Schüürmann et al., 2016). In subsequent analyses these SF groups were further refined by taking into account structural homogeneity, type of toxicological effect observed, differences in absorption, metabolism and mechanism of action (MoA), to better define their structural and toxicological boundaries. Differentiation of a local or systemic mode of action did not improve the classification scheme. Finally, 28 groups were discriminated: 19 T-groups and 9 L-groups. Clearly distinct thresholds were derived for the T- and L-toxicity groups, being 2 × 10(-5) ppm (2 μg/person/day) and 0.05 ppm (4260 μg/person/day), respectively. The derived thresholds and the classification are compared to the initial mainly structure driven grouping (Schüürmann et al., 2016) and to the Cramer classification. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Mellstrom, J. A.; Smyth, P.
1991-01-01
The results of applying pattern recognition techniques to diagnose fault conditions in the pointing system of one of the Deep Space network's large antennas, the DSS 13 34-meter structure, are discussed. A previous article described an experiment whereby a neural network technique was used to identify fault classes by using data obtained from a simulation model of the Deep Space Network (DSN) 70-meter antenna system. Described here is the extension of these classification techniques to the analysis of real data from the field. The general architecture and philosophy of an autonomous monitoring paradigm is described and classification results are discussed and analyzed in this context. Key features of this approach include a probabilistic time-varying context model, the effective integration of signal processing and system identification techniques with pattern recognition algorithms, and the ability to calibrate the system given limited amounts of training data. Reported here are recognition accuracies in the 97 to 98 percent range for the particular fault classes included in the experiments.
MAC Europe 1991 campaign: AIRSAR/AVIRIS data integration for agricultural test site classification
NASA Technical Reports Server (NTRS)
Sangiovanni, S.; Buongiorno, M. F.; Ferrarini, M.; Fiumara, A.
1993-01-01
During summer 1991, multi-sensor data were acquired over the Italian test site 'Otrepo Pavese', an agricultural flat area in Northern Italy. This area has been the Telespazio pilot test site for experimental activities related to agriculture applications. The aim of the investigation described in the following paper is to assess the amount of information contained in the AIRSAR (Airborne Synthetic Aperture Radar) and AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) data, and to evaluate classification results obtained from each sensor data separately and from the combined dataset. All classifications are examined by means of the resulting confusion matrices and Khat coefficients. Improvements of the classification results obtained by using the integrated dataset are finally evaluated.
Integrating language models into classifiers for BCI communication: a review
NASA Astrophysics Data System (ADS)
Speier, W.; Arnold, C.; Pouratian, N.
2016-06-01
Objective. The present review systematically examines the integration of language models to improve classifier performance in brain-computer interface (BCI) communication systems. Approach. The domain of natural language has been studied extensively in linguistics and has been used in the natural language processing field in applications including information extraction, machine translation, and speech recognition. While these methods have been used for years in traditional augmentative and assistive communication devices, information about the output domain has largely been ignored in BCI communication systems. Over the last few years, BCI communication systems have started to leverage this information through the inclusion of language models. Main results. Although this movement began only recently, studies have already shown the potential of language integration in BCI communication and it has become a growing field in BCI research. BCI communication systems using language models in their classifiers have progressed down several parallel paths, including: word completion; signal classification; integration of process models; dynamic stopping; unsupervised learning; error correction; and evaluation. Significance. Each of these methods have shown significant progress, but have largely been addressed separately. Combining these methods could use the full potential of language model, yielding further performance improvements. This integration should be a priority as the field works to create a BCI system that meets the needs of the amyotrophic lateral sclerosis population.
Integrating language models into classifiers for BCI communication: a review.
Speier, W; Arnold, C; Pouratian, N
2016-06-01
The present review systematically examines the integration of language models to improve classifier performance in brain-computer interface (BCI) communication systems. The domain of natural language has been studied extensively in linguistics and has been used in the natural language processing field in applications including information extraction, machine translation, and speech recognition. While these methods have been used for years in traditional augmentative and assistive communication devices, information about the output domain has largely been ignored in BCI communication systems. Over the last few years, BCI communication systems have started to leverage this information through the inclusion of language models. Although this movement began only recently, studies have already shown the potential of language integration in BCI communication and it has become a growing field in BCI research. BCI communication systems using language models in their classifiers have progressed down several parallel paths, including: word completion; signal classification; integration of process models; dynamic stopping; unsupervised learning; error correction; and evaluation. Each of these methods have shown significant progress, but have largely been addressed separately. Combining these methods could use the full potential of language model, yielding further performance improvements. This integration should be a priority as the field works to create a BCI system that meets the needs of the amyotrophic lateral sclerosis population.
NASA Astrophysics Data System (ADS)
Li, Jiawen; Ma, Teng; Mohar, Dilbahar; Correa, Adrian; Minami, Hataka; Jing, Joseph; Zhou, Qifa; Patel, Pranav M.; Chen, Zhongping
2014-03-01
Intravascular ultrasound (IVUS) imaging and optical coherence tomography (OCT), two commonly used intracoronary imaging modalities, play important roles in plaque evaluation. The combined use of IVUS (to visualize the entire plaque volume) and OCT (to quantify the thickness of the plaque cap, if any) is hypothesized to increase plaque diagnostic accuracy. Our group has developed a fully-integrated dual-modality IVUS-OCT imaging system and 3.6F catheter for simultaneous IVUS-OCT imaging with a high resolution and deep penetration depth. However, the diagnostic accuracy of an integrated IVUS-OCT system has not been investigated. In this study, we imaged 175 coronary artery sites (241 regions of interest) from 20 cadavers using our previous reported integrated IVUS-OCT system. IVUS-OCT images were read by two skilled interventional cardiologists. Each region of interest was classified as either calcification, lipid pool or fibrosis. Comparing the diagnosis by cardiologists using IVUSOCT images with the diagnosis by the pathologist, we calculated the sensitivity and specificity for characterization of calcification, lipid pool or fibrosis with this integrated system. In vitro imaging of cadaver coronary specimens demonstrated the complementary nature of these two modalities for plaques classification. A higher accuracy was shown than using a single modality alone.
A transient search using combined human and machine classifications
NASA Astrophysics Data System (ADS)
Wright, Darryl E.; Lintott, Chris J.; Smartt, Stephen J.; Smith, Ken W.; Fortson, Lucy; Trouille, Laura; Allen, Campbell R.; Beck, Melanie; Bouslog, Mark C.; Boyer, Amy; Chambers, K. C.; Flewelling, Heather; Granger, Will; Magnier, Eugene A.; McMaster, Adam; Miller, Grant R. M.; O'Donnell, James E.; Simmons, Brooke; Spiers, Helen; Tonry, John L.; Veldthuis, Marten; Wainscoat, Richard J.; Waters, Chris; Willman, Mark; Wolfenbarger, Zach; Young, Dave R.
2017-12-01
Large modern surveys require efficient review of data in order to find transient sources such as supernovae, and to distinguish such sources from artefacts and noise. Much effort has been put into the development of automatic algorithms, but surveys still rely on human review of targets. This paper presents an integrated system for the identification of supernovae in data from Pan-STARRS1, combining classifications from volunteers participating in a citizen science project with those from a convolutional neural network. The unique aspect of this work is the deployment, in combination, of both human and machine classifications for near real-time discovery in an astronomical project. We show that the combination of the two methods outperforms either one used individually. This result has important implications for the future development of transient searches, especially in the era of Large Synoptic Survey Telescope and other large-throughput surveys.
Satellite image analysis using neural networks
NASA Technical Reports Server (NTRS)
Sheldon, Roger A.
1990-01-01
The tremendous backlog of unanalyzed satellite data necessitates the development of improved methods for data cataloging and analysis. Ford Aerospace has developed an image analysis system, SIANN (Satellite Image Analysis using Neural Networks) that integrates the technologies necessary to satisfy NASA's science data analysis requirements for the next generation of satellites. SIANN will enable scientists to train a neural network to recognize image data containing scenes of interest and then rapidly search data archives for all such images. The approach combines conventional image processing technology with recent advances in neural networks to provide improved classification capabilities. SIANN allows users to proceed through a four step process of image classification: filtering and enhancement, creation of neural network training data via application of feature extraction algorithms, configuring and training a neural network model, and classification of images by application of the trained neural network. A prototype experimentation testbed was completed and applied to climatological data.
NASA Technical Reports Server (NTRS)
Buntine, Wray
1993-01-01
This paper introduces the IND Tree Package to prospective users. IND does supervised learning using classification trees. This learning task is a basic tool used in the development of diagnosis, monitoring and expert systems. The IND Tree Package was developed as part of a NASA project to semi-automate the development of data analysis and modelling algorithms using artificial intelligence techniques. The IND Tree Package integrates features from CART and C4 with newer Bayesian and minimum encoding methods for growing classification trees and graphs. The IND Tree Package also provides an experimental control suite on top. The newer features give improved probability estimates often required in diagnostic and screening tasks. The package comes with a manual, Unix 'man' entries, and a guide to tree methods and research. The IND Tree Package is implemented in C under Unix and was beta-tested at university and commercial research laboratories in the United States.
Sonic CPT Probing in Support of DNAPL Characterization
2000-11-21
directed at developing advanced sensors for delivery by the cone penetrometer. To accommodate these new sensors , probe sizes have increased (from 1.44-in...capability of the CPT, a sonic vibratory system was integrated with conventional CPT to advance cone penetrometer sensor packages past currently attainable...Sonic, Cone Penetrometer, Site Characterization, Fluorescense, Sensor , Shock Hardened Sensors , Geoprobe• 17. SECURITY CLASSIFICATION OF REPORT
Proceedings of the Third Annual Symposium on Mathematical Pattern Recognition and Image Analysis
NASA Technical Reports Server (NTRS)
Guseman, L. F., Jr.
1985-01-01
Topics addressed include: multivariate spline method; normal mixture analysis applied to remote sensing; image data analysis; classifications in spatially correlated environments; probability density functions; graphical nonparametric methods; subpixel registration analysis; hypothesis integration in image understanding systems; rectification of satellite scanner imagery; spatial variation in remotely sensed images; smooth multidimensional interpolation; and optimal frequency domain textural edge detection filters.
Using molt cycles to categorize the age of tropical birds: an integrative new system
Jared D. Wolfe; Thomas B. Ryder; Peter Pyle
2010-01-01
Accurately differentiating age classes is essential for the long-term monitoring of resident New World tropical bird species. Molt and plumage criteria have long been used to accurately age temperate birds, but application of temperate age-classification models to the Neotropics has been hindered because annual life-cycle events of tropical birds do not always...
Early Childhood Education and Care in Europe: Tackling Social and Cultural Inequalities. Lithuania
ERIC Educational Resources Information Center
Seibokiene, Grazina
2008-01-01
In Lithuania early childhood education and care embraces children of the age from one to seven and is an integrated part of the education system. According to Lithuanian education classification, it belongs to the zero level of education. Though defined as pre-school education yet this stage is composed of two parts--pre-school education of…
Prediction of brain-computer interface aptitude from individual brain structure.
Halder, S; Varkuti, B; Bogdan, M; Kübler, A; Rosenstiel, W; Sitaram, R; Birbaumer, N
2013-01-01
Brain-computer interface (BCI) provide a non-muscular communication channel for patients with impairments of the motor system. A significant number of BCI users is unable to obtain voluntary control of a BCI-system in proper time. This makes methods that can be used to determine the aptitude of a user necessary. We hypothesized that integrity and connectivity of involved white matter connections may serve as a predictor of individual BCI-performance. Therefore, we analyzed structural data from anatomical scans and DTI of motor imagery BCI-users differentiated into high and low BCI-aptitude groups based on their overall performance. Using a machine learning classification method we identified discriminating structural brain trait features and correlated the best features with a continuous measure of individual BCI-performance. Prediction of the aptitude group of each participant was possible with near perfect accuracy (one error). Tissue volumetric analysis yielded only poor classification results. In contrast, the structural integrity and myelination quality of deep white matter structures such as the Corpus Callosum, Cingulum, and Superior Fronto-Occipital Fascicle were positively correlated with individual BCI-performance. This confirms that structural brain traits contribute to individual performance in BCI use.
Prediction of brain-computer interface aptitude from individual brain structure
Halder, S.; Varkuti, B.; Bogdan, M.; Kübler, A.; Rosenstiel, W.; Sitaram, R.; Birbaumer, N.
2013-01-01
Objective: Brain-computer interface (BCI) provide a non-muscular communication channel for patients with impairments of the motor system. A significant number of BCI users is unable to obtain voluntary control of a BCI-system in proper time. This makes methods that can be used to determine the aptitude of a user necessary. Methods: We hypothesized that integrity and connectivity of involved white matter connections may serve as a predictor of individual BCI-performance. Therefore, we analyzed structural data from anatomical scans and DTI of motor imagery BCI-users differentiated into high and low BCI-aptitude groups based on their overall performance. Results: Using a machine learning classification method we identified discriminating structural brain trait features and correlated the best features with a continuous measure of individual BCI-performance. Prediction of the aptitude group of each participant was possible with near perfect accuracy (one error). Conclusions: Tissue volumetric analysis yielded only poor classification results. In contrast, the structural integrity and myelination quality of deep white matter structures such as the Corpus Callosum, Cingulum, and Superior Fronto-Occipital Fascicle were positively correlated with individual BCI-performance. Significance: This confirms that structural brain traits contribute to individual performance in BCI use. PMID:23565083
NASA Astrophysics Data System (ADS)
Fang, Yi-Chin; Wu, Bo-Wen; Lin, Wei-Tang; Jon, Jen-Liung
2007-11-01
Resolution and color are two main directions for measuring optical digital image, but it will be a hard work to integral improve the image quality of optical system, because there are many limits such as size, materials and environment of optical system design. Therefore, it is important to let blurred images as aberrations and noises or due to the characteristics of human vision as far distance and small targets to raise the capability of image recognition with artificial intelligence such as genetic algorithm and neural network in the condition that decreasing color aberration of optical system and not to increase complex calculation in the image processes. This study could achieve the goal of integral, economically and effectively to improve recognition and classification in low quality image from optical system and environment.
Tseng, Yi-Ju; Wu, Jung-Hsuan; Lin, Hui-Chi; Chen, Ming-Yuan; Ping, Xiao-Ou; Sun, Chun-Chuan; Shang, Rung-Ji; Sheng, Wang-Huei; Chen, Yee-Chun; Lai, Feipei; Chang, Shan-Chwen
2015-09-21
Surveillance of health care-associated infections is an essential component of infection prevention programs, but conventional systems are labor intensive and performance dependent. To develop an automatic surveillance and classification system for health care-associated bloodstream infection (HABSI), and to evaluate its performance by comparing it with a conventional infection control personnel (ICP)-based surveillance system. We developed a Web-based system that was integrated into the medical information system of a 2200-bed teaching hospital in Taiwan. The system automatically detects and classifies HABSIs. In this study, the number of computer-detected HABSIs correlated closely with the number of HABSIs detected by ICP by department (n=20; r=.999 P<.001) and by time (n=14; r=.941; P<.001). Compared with reference standards, this system performed excellently with regard to sensitivity (98.16%), specificity (99.96%), positive predictive value (95.81%), and negative predictive value (99.98%). The system enabled decreasing the delay in confirmation of HABSI cases, on average, by 29 days. This system provides reliable and objective HABSI data for quality indicators, improving the delay caused by a conventional surveillance system.
Self-organizing ontology of biochemically relevant small molecules
2012-01-01
Background The advent of high-throughput experimentation in biochemistry has led to the generation of vast amounts of chemical data, necessitating the development of novel analysis, characterization, and cataloguing techniques and tools. Recently, a movement to publically release such data has advanced biochemical structure-activity relationship research, while providing new challenges, the biggest being the curation, annotation, and classification of this information to facilitate useful biochemical pattern analysis. Unfortunately, the human resources currently employed by the organizations supporting these efforts (e.g. ChEBI) are expanding linearly, while new useful scientific information is being released in a seemingly exponential fashion. Compounding this, currently existing chemical classification and annotation systems are not amenable to automated classification, formal and transparent chemical class definition axiomatization, facile class redefinition, or novel class integration, thus further limiting chemical ontology growth by necessitating human involvement in curation. Clearly, there is a need for the automation of this process, especially for novel chemical entities of biological interest. Results To address this, we present a formal framework based on Semantic Web technologies for the automatic design of chemical ontology which can be used for automated classification of novel entities. We demonstrate the automatic self-assembly of a structure-based chemical ontology based on 60 MeSH and 40 ChEBI chemical classes. This ontology is then used to classify 200 compounds with an accuracy of 92.7%. We extend these structure-based classes with molecular feature information and demonstrate the utility of our framework for classification of functionally relevant chemicals. Finally, we discuss an iterative approach that we envision for future biochemical ontology development. Conclusions We conclude that the proposed methodology can ease the burden of chemical data annotators and dramatically increase their productivity. We anticipate that the use of formal logic in our proposed framework will make chemical classification criteria more transparent to humans and machines alike and will thus facilitate predictive and integrative bioactivity model development. PMID:22221313
Melanoma recognition framework based on expert definition of ABCD for dermoscopic images.
Abbas, Qaisar; Emre Celebi, M; Garcia, Irene Fondón; Ahmad, Waqar
2013-02-01
Melanoma Recognition based on clinical ABCD rule is widely used for clinical diagnosis of pigmented skin lesions in dermoscopy images. However, the current computer-aided diagnostic (CAD) systems for classification between malignant and nevus lesions using the ABCD criteria are imperfect due to use of ineffective computerized techniques. In this study, a novel melanoma recognition system (MRS) is presented by focusing more on extracting features from the lesions using ABCD criteria. The complete MRS system consists of the following six major steps: transformation to the CIEL*a*b* color space, preprocessing to enhance the tumor region, black-frame and hair artifacts removal, tumor-area segmentation, quantification of feature using ABCD criteria and normalization, and finally feature selection and classification. The MRS system for melanoma-nevus lesions is tested on a total of 120 dermoscopic images. To test the performance of the MRS diagnostic classifier, the area under the receiver operating characteristics curve (AUC) is utilized. The proposed classifier achieved a sensitivity of 88.2%, specificity of 91.3%, and AUC of 0.880. The experimental results show that the proposed MRS system can accurately distinguish between malignant and benign lesions. The MRS technique is fully automatic and can easily integrate to an existing CAD system. To increase the classification accuracy of MRS, the CASH pattern recognition technique, visual inspection of dermatologist, contextual information from the patients, and the histopathological tests can be included to investigate the impact with this system. © 2012 John Wiley & Sons A/S.
PANDORA: keyword-based analysis of protein sets by integration of annotation sources.
Kaplan, Noam; Vaaknin, Avishay; Linial, Michal
2003-10-01
Recent advances in high-throughput methods and the application of computational tools for automatic classification of proteins have made it possible to carry out large-scale proteomic analyses. Biological analysis and interpretation of sets of proteins is a time-consuming undertaking carried out manually by experts. We have developed PANDORA (Protein ANnotation Diagram ORiented Analysis), a web-based tool that provides an automatic representation of the biological knowledge associated with any set of proteins. PANDORA uses a unique approach of keyword-based graphical analysis that focuses on detecting subsets of proteins that share unique biological properties and the intersections of such sets. PANDORA currently supports SwissProt keywords, NCBI Taxonomy, InterPro entries and the hierarchical classification terms from ENZYME, SCOP and GO databases. The integrated study of several annotation sources simultaneously allows a representation of biological relations of structure, function, cellular location, taxonomy, domains and motifs. PANDORA is also integrated into the ProtoNet system, thus allowing testing thousands of automatically generated clusters. We illustrate how PANDORA enhances the biological understanding of large, non-uniform sets of proteins originating from experimental and computational sources, without the need for prior biological knowledge on individual proteins.
NASA Astrophysics Data System (ADS)
Zhu, L.; Radeloff, V.; Ives, A. R.; Barton, B.
2015-12-01
Deriving crop pattern with high accuracy is of great importance for characterizing landscape diversity, which affects the resilience of food webs in agricultural systems in the face of climatic and land cover changes. Landsat sensors were originally designed to monitor agricultural areas, and both radiometric and spatial resolution are optimized for monitoring large agricultural fields. Unfortunately, few clear Landsat images per year are available, which has limited the use of Landsat for making crop classification, and this situation is worse in cloudy areas of the Earth. Meanwhile, the MODerate Resolution Imaging Spectroradiometer (MODIS) data has better temporal resolution but cannot capture fine spatial heterogeneity of agricultural systems. Our question was to what extent fusing imagery from both sensors could improve crop classifications. We utilized the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) algorithm to simulate Landsat-like images at MODIS temporal resolution. Based on Random Forests (RF) classifier, we tested whether and by what degree crop maps from 2000 to 2014 of the Arlington Agricultural Research Station (Wisconsin, USA) were improved by integrating available clear Landsat images each year with synthetic images. We predicted that the degree to which classification accuracy can be improved by incorporating synthetic imagery depends on the number and acquisition time of clear Landsat images. Moreover, multi-season data are essential for mapping crop types by capturing their phenological dynamics, and STARFM-simulated images can be used to compensate for missing Landsat observations. Our study is helpful for eliminating the limits of the use of Landsat data in mapping crop patterns, and can provide a benchmark of accuracy when choosing STARFM-simulated images to make crop classification at broader scales.
NASA Astrophysics Data System (ADS)
Land, Walker H., Jr.; Sadik, Omowunmi A.; Embrechts, Mark J.; Leibensperger, Dale; Wong, Lut; Wanekaya, Adam; Uematsu, Michiko
2003-08-01
Due to the increased threats of chemical and biological weapons of mass destruction (WMD) by international terrorist organizations, a significant effort is underway to develop tools that can be used to detect and effectively combat biochemical warfare. Furthermore, recent events have highlighted awareness that chemical and biological agents (CBAs) may become the preferred, cheap alternative WMD, because these agents can effectively attack large populations while leaving infrastructures intact. Despite the availability of numerous sensing devices, intelligent hybrid sensors that can detect and degrade CBAs are virtually nonexistent. This paper reports the integration of multi-array sensors with Support Vector Machines (SVMs) for the detection of organophosphates nerve agents using parathion and dichlorvos as model stimulants compounds. SVMs were used for the design and evaluation of new and more accurate data extraction, preprocessing and classification. Experimental results for the paradigms developed using Structural Risk Minimization, show a significant increase in classification accuracy when compared to the existing AromaScan baseline system. Specifically, the results of this research has demonstrated that, for the Parathion versus Dichlorvos pair, when compared to the AromaScan baseline system: (1) a 23% improvement in the overall ROC Az index using the S2000 kernel, with similar improvements with the Gaussian and polynomial (of degree 2) kernels, (2) a significant 173% improvement in specificity with the S2000 kernel. This means that the number of false negative errors were reduced by 173%, while making no false positive errors, when compared to the AromaScan base line performance. (3) The Gaussian and polynomial kernels demonstrated similar specificity at 100% sensitivity. All SVM classifiers provided essentially perfect classification performance for the Dichlorvos versus Trichlorfon pair. For the most difficult classification task, the Parathion versus Paraoxon pair, the following results were achieved (using the three SVM kernels: (1) ROC Az indices from approximately 93% to greater than 99%, (2) partial Az values from ~79% to 93%, (3) specificities from 76% to ~84% at 100 and 98% sensitivity, and (4) PPVs from 73% to ~84% at 100% and 98% sensitivities. These are excellent results, considering only one atom differentiates these nerve agents.
Attention Recognition in EEG-Based Affective Learning Research Using CFS+KNN Algorithm.
Hu, Bin; Li, Xiaowei; Sun, Shuting; Ratcliffe, Martyn
2018-01-01
The research detailed in this paper focuses on the processing of Electroencephalography (EEG) data to identify attention during the learning process. The identification of affect using our procedures is integrated into a simulated distance learning system that provides feedback to the user with respect to attention and concentration. The authors propose a classification procedure that combines correlation-based feature selection (CFS) and a k-nearest-neighbor (KNN) data mining algorithm. To evaluate the CFS+KNN algorithm, it was test against CFS+C4.5 algorithm and other classification algorithms. The classification performance was measured 10 times with different 3-fold cross validation data. The data was derived from 10 subjects while they were attempting to learn material in a simulated distance learning environment. A self-assessment model of self-report was used with a single valence to evaluate attention on 3 levels (high, neutral, low). It was found that CFS+KNN had a much better performance, giving the highest correct classification rate (CCR) of % for the valence dimension divided into three classes.
EEG-based driver fatigue detection using hybrid deep generic model.
Phyo Phyo San; Sai Ho Ling; Rifai Chai; Tran, Yvonne; Craig, Ashley; Hung Nguyen
2016-08-01
Classification of electroencephalography (EEG)-based application is one of the important process for biomedical engineering. Driver fatigue is a major case of traffic accidents worldwide and considered as a significant problem in recent decades. In this paper, a hybrid deep generic model (DGM)-based support vector machine is proposed for accurate detection of driver fatigue. Traditionally, a probabilistic DGM with deep architecture is quite good at learning invariant features, but it is not always optimal for classification due to its trainable parameters are in the middle layer. Alternatively, Support Vector Machine (SVM) itself is unable to learn complicated invariance, but produces good decision surface when applied to well-behaved features. Consolidating unsupervised high-level feature extraction techniques, DGM and SVM classification makes the integrated framework stronger and enhance mutually in feature extraction and classification. The experimental results showed that the proposed DBN-based driver fatigue monitoring system achieves better testing accuracy of 73.29 % with 91.10 % sensitivity and 55.48 % specificity. In short, the proposed hybrid DGM-based SVM is an effective method for the detection of driver fatigue in EEG.
Molecular Phylogeny of the Widely Distributed Marine Protists, Phaeodaria (Rhizaria, Cercozoa).
Nakamura, Yasuhide; Imai, Ichiro; Yamaguchi, Atsushi; Tuji, Akihiro; Not, Fabrice; Suzuki, Noritoshi
2015-07-01
Phaeodarians are a group of widely distributed marine cercozoans. These plankton organisms can exhibit a large biomass in the environment and are supposed to play an important role in marine ecosystems and in material cycles in the ocean. Accurate knowledge of phaeodarian classification is thus necessary to better understand marine biology, however, phylogenetic information on Phaeodaria is limited. The present study analyzed 18S rDNA sequences encompassing all existing phaeodarian orders, to clarify their phylogenetic relationships and improve their taxonomic classification. The monophyly of Phaeodaria was confirmed and strongly supported by phylogenetic analysis with a larger data set than in previous studies. The phaeodarian clade contained 11 subclades which generally did not correspond to the families and orders of the current classification system. Two families (Challengeriidae and Aulosphaeridae) and two orders (Phaeogromida and Phaeocalpida) are possibly polyphyletic or paraphyletic, and consequently the classification needs to be revised at both the family and order levels by integrative taxonomy approaches. Two morphological criteria, 1) the scleracoma type and 2) its surface structure, could be useful markers at the family level. Copyright © 2015 Elsevier GmbH. All rights reserved.
Integrated terrain mapping with digital Landsat images in Queensland, Australia
Robinove, Charles Joseph
1979-01-01
Mapping with Landsat images usually is done by selecting single types of features, such as soils, vegetation, or rocks, and creating visually interpreted or digitally classified maps of each feature. Individual maps can then be overlaid on or combined with other maps to characterize the terrain. Integrated terrain mapping combines several terrain features into each map unit which, in many cases, is more directly related to uses of the land and to methods of land management than the single features alone. Terrain brightness, as measured by the multispectral scanners in Landsat 1 and 2, represents an integration of reflectance from the terrain features within the scanner's instantaneous field of view and is therefore more correlatable with integrated terrain units than with differentiated ones, such as rocks, soils, and vegetation. A test of the feasibilty of the technique of mapping integrated terrain units was conducted in a part of southwestern Queensland, Australia, in cooperation with scientists of the Queensland Department of Primary Industries. The primary purpose was to test the use of digital classification techniques to create a 'land systems map' usable for grazing land management. A recently published map of 'land systems' in the area (made by aerial photograph interpretation and ground surveys), which are integrated terrain units composed of vegetation, soil, topography, and geomorphic features, was used as a basis for comparison with digitally classified Landsat multispectral images. The land systems, in turn, each have a specific grazing capacity for cattle (expressed in beasts per km 2 ) which is estimated following analysis of both research results and property carrying capacities. Landsat images, in computer-compatible tape form, were first contrast-stretched to increase their visual interpretability, and digitally classified by the parallelepiped method into distinct spectral classes to determine their correspondence to the land systems classes and to areally smaller, but readily recognizable, 'land units.' Many land systems appeared as distinct spectral classes or as acceptably homogeneous combinations of several spectral classes. The digitally classified map corresponded to the general geographic patterns of many of the land systems. Statistical correlation of the digitally classified map and the published map was not possible because the published map showed only land systems whereas the digitally classified map showed some land units as well as systems. The general correspondence of spectral classes to the integrated terrain units means that the digital mapping of the units may precede fieldwork and act as a guide to field sampling and detailed terrain unit description as well as measuring of the location, area, and extent of each unit. Extension of the Landsat mapping and classification technique to other arid and semi-arid regions of the world may be feasible.
Zhao, Weixiang; Davis, Cristina E.
2011-01-01
Objective This paper introduces a modified artificial immune system (AIS)-based pattern recognition method to enhance the recognition ability of the existing conventional AIS-based classification approach and demonstrates the superiority of the proposed new AIS-based method via two case studies of breast cancer diagnosis. Methods and materials Conventionally, the AIS approach is often coupled with the k nearest neighbor (k-NN) algorithm to form a classification method called AIS-kNN. In this paper we discuss the basic principle and possible problems of this conventional approach, and propose a new approach where AIS is integrated with the radial basis function – partial least square regression (AIS-RBFPLS). Additionally, both the two AIS-based approaches are compared with two classical and powerful machine learning methods, back-propagation neural network (BPNN) and orthogonal radial basis function network (Ortho-RBF network). Results The diagnosis results show that: (1) both the AIS-kNN and the AIS-RBFPLS proved to be a good machine leaning method for clinical diagnosis, but the proposed AIS-RBFPLS generated an even lower misclassification ratio, especially in the cases where the conventional AIS-kNN approach generated poor classification results because of possible improper AIS parameters. For example, based upon the AIS memory cells of “replacement threshold = 0.3”, the average misclassification ratios of two approaches for study 1 are 3.36% (AIS-RBFPLS) and 9.07% (AIS-kNN), and the misclassification ratios for study 2 are 19.18% (AIS-RBFPLS) and 28.36% (AIS-kNN); (2) the proposed AIS-RBFPLS presented its robustness in terms of the AIS-created memory cells, showing a smaller standard deviation of the results from the multiple trials than AIS-kNN. For example, using the result from the first set of AIS memory cells as an example, the standard deviations of the misclassification ratios for study 1 are 0.45% (AIS-RBFPLS) and 8.71% (AIS-kNN) and those for study 2 are 0.49% (AIS-RBFPLS) and 6.61% (AIS-kNN); and (3) the proposed AIS-RBFPLS classification approaches also yielded better diagnosis results than two classical neural network approaches of BPNN and Ortho-RBF network. Conclusion In summary, this paper proposed a new machine learning method for complex systems by integrating the AIS system with RBFPLS. This new method demonstrates its satisfactory effect on classification accuracy for clinical diagnosis, and also indicates its wide potential applications to other diagnosis and detection problems. PMID:21515033
ChlamyCyc: an integrative systems biology database and web-portal for Chlamydomonas reinhardtii.
May, Patrick; Christian, Jan-Ole; Kempa, Stefan; Walther, Dirk
2009-05-04
The unicellular green alga Chlamydomonas reinhardtii is an important eukaryotic model organism for the study of photosynthesis and plant growth. In the era of modern high-throughput technologies there is an imperative need to integrate large-scale data sets from high-throughput experimental techniques using computational methods and database resources to provide comprehensive information about the molecular and cellular organization of a single organism. In the framework of the German Systems Biology initiative GoFORSYS, a pathway database and web-portal for Chlamydomonas (ChlamyCyc) was established, which currently features about 250 metabolic pathways with associated genes, enzymes, and compound information. ChlamyCyc was assembled using an integrative approach combining the recently published genome sequence, bioinformatics methods, and experimental data from metabolomics and proteomics experiments. We analyzed and integrated a combination of primary and secondary database resources, such as existing genome annotations from JGI, EST collections, orthology information, and MapMan classification. ChlamyCyc provides a curated and integrated systems biology repository that will enable and assist in systematic studies of fundamental cellular processes in Chlamydomonas. The ChlamyCyc database and web-portal is freely available under http://chlamycyc.mpimp-golm.mpg.de.
Earth Observatory Satellite system definition study. Report 2: Instrument constraints and interfaces
NASA Technical Reports Server (NTRS)
1974-01-01
The instrument constraints and interface specifications for the Earth Observatory Satellite (EOS) are discussed. The Land Use Classification Mission using a 7 band Thematic Mapper and a 4 band High Resolution Pointable Imager is stressed. The mission and performance of the instruments were reviewed and expanded to reflect the instrument as a part of the total remote sensing system. A preliminary EOS interface handbook is provided to describe the mission and system, to specify the spacecraft interfaces to potential instrument contractors, and to describe the instrument interface data required by the system integration contractor.
Biosonar-inspired technology: goals, challenges and insights.
Müller, Rolf; Kuc, Roman
2007-12-01
Bioinspired engineering based on biosonar systems in nature is reviewed and discussed in terms of the merits of different approaches and their results: biosonar systems are attractive technological paragons because of their capabilities, built-in task-specific knowledge, intelligent system integration and diversity. Insights from the diverse set of sensing tasks solved by bats are relevant to a wide range of application areas such as sonar, biomedical ultrasound, non-destructive testing, sensors for autonomous systems and wireless communication. Challenges in the design of bioinspired sonar systems are posed by transducer performance, actuation for sensor mobility, design, actuation and integration of beamforming baffle shapes, echo encoding for signal processing, estimation algorithms and their implementations, as well as system integration and feedback control. The discussed examples of experimental systems have capabilities that include localization and tracking using binaural and multiple-band hearing as well as self-generated dynamic cues, classification of small deterministic and large random targets, beamforming with bioinspired baffle shapes, neuromorphic spike processing, artifact rejection in sonar maps and passing range estimation. In future research, bioinspired engineering could capitalize on some of its strengths to serve as a model system for basic automation methodologies for the bioinspired engineering process.
Universal Hitting Time Statistics for Integrable Flows
NASA Astrophysics Data System (ADS)
Dettmann, Carl P.; Marklof, Jens; Strömbergsson, Andreas
2017-02-01
The perceived randomness in the time evolution of "chaotic" dynamical systems can be characterized by universal probabilistic limit laws, which do not depend on the fine features of the individual system. One important example is the Poisson law for the times at which a particle with random initial data hits a small set. This was proved in various settings for dynamical systems with strong mixing properties. The key result of the present study is that, despite the absence of mixing, the hitting times of integrable flows also satisfy universal limit laws which are, however, not Poisson. We describe the limit distributions for "generic" integrable flows and a natural class of target sets, and illustrate our findings with two examples: the dynamics in central force fields and ellipse billiards. The convergence of the hitting time process follows from a new equidistribution theorem in the space of lattices, which is of independent interest. Its proof exploits Ratner's measure classification theorem for unipotent flows, and extends earlier work of Elkies and McMullen.
High-speed railway real-time localization auxiliary method based on deep neural network
NASA Astrophysics Data System (ADS)
Chen, Dongjie; Zhang, Wensheng; Yang, Yang
2017-11-01
High-speed railway intelligent monitoring and management system is composed of schedule integration, geographic information, location services, and data mining technology for integration of time and space data. Assistant localization is a significant submodule of the intelligent monitoring system. In practical application, the general access is to capture the image sequences of the components by using a high-definition camera, digital image processing technique and target detection, tracking and even behavior analysis method. In this paper, we present an end-to-end character recognition method based on a deep CNN network called YOLO-toc for high-speed railway pillar plate number. Different from other deep CNNs, YOLO-toc is an end-to-end multi-target detection framework, furthermore, it exhibits a state-of-art performance on real-time detection with a nearly 50fps achieved on GPU (GTX960). Finally, we realize a real-time but high-accuracy pillar plate number recognition system and integrate natural scene OCR into a dedicated classification YOLO-toc model.
Integrating Programming Language and Operating System Information Security Mechanisms
2016-08-31
suggestions for reducing the burden, to the Department of Defense, Executive Service Directorate (0704-0188). Respondents should be aware that...improve the precision of security enforcement, and to provide greater assurance of information security. This grant focuses on two key projects: language...based control of authority; and formal guarantees for the correctness of audit information. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17
Peter U. Kennedy; Victor B. Shelburne
2002-01-01
Geographic Information Systems (GIS) data and historical plats ranging from 1716 to 1894 in the Coastal Flatwoods Region of South Carolina were used to quantify changes on a temporal scale. Combining the historic plats and associated witness trees (trees marking the boundaries of historic plats) with an existing database of the soils and other attributes was the basis...
Jessica E. Halofsky; Stephanie K. Hart; Miles A. Hemstrom; Joshua S. Halofsky; Morris C. Johnson
2014-01-01
Information on the effects of management activities such as fuel reduction treatments and of processes such as vegetation growth and disturbance on fire hazard can help land managers prioritize treatments across a landscape to best meet management goals. State-and-transition models (STMs) allow landscape-scale simulations that incorporate effects of succession,...
Forest ecosystems of a Lower Gulf Coastal Plainlandscape: multifactor classification and analysis
P. Charles Goebel; Brian J. Palik; L. Katherine Kirkman; Mark B. Drew; Larry West; Dee C. Pederson
2001-01-01
The most common forestland classification techniques applied in the southeastern United States are vegetation-based. While not completely ignored, the application of multifactor, hierarchical ecosystem classifications are limited despite their widespread use in other regions of the eastern United States. We present one of the few truly integrated ecosystem...
Frail elderly patients. New model for integrated service delivery.
Hébert, Rejean; Durand, Pierre J.; Dubuc, Nicole; Tourigny, André
2003-01-01
PROBLEM BEING ADDRESSED: Given the complex needs of frail older people and the multiplicity of care providers and services, care for this clientele lacks continuity. OBJECTIVE OF PROGRAM: Integrated service delivery (ISD) systems have been developed to improve continuity and increase the efficacy and efficiency of services. PROGRAM DESCRIPTION: The Program of Research to Integrate Services for the Maintenance of Autonomy (PRISMA) is an innovative ISD model based on coordination. It includes coordination between decision makers and managers of different organizations and services; a single entry point; a case-management process; individualized service plans; a single assessment instrument based on clients' functional autonomy, coupled with a case-mix classification system; and a computerized clinical chart for communicating between institutions and professionals for client monitoring. CONCLUSION: Preliminary results on the efficacy of this model showed a decreased incidence of functional decline, a decreased burden for caregivers, and a smaller proportion of older people wishing to enter institutions. PMID:12943358
Classification of Physical Activity
Turksoy, Kamuran; Paulino, Thiago Marques Luz; Zaharieva, Dessi P.; Yavelberg, Loren; Jamnik, Veronica; Riddell, Michael C.; Cinar, Ali
2015-01-01
Physical activity has a wide range of effects on glucose concentrations in type 1 diabetes (T1D) depending on the type (ie, aerobic, anaerobic, mixed) and duration of activity performed. This variability in glucose responses to physical activity makes the development of artificial pancreas (AP) systems challenging. Automatic detection of exercise type and intensity, and its classification as aerobic or anaerobic would provide valuable information to AP control algorithms. This can be achieved by using a multivariable AP approach where biometric variables are measured and reported to the AP at high frequency. We developed a classification system that identifies, in real time, the exercise intensity and its reliance on aerobic or anaerobic metabolism and tested this approach using clinical data collected from 5 persons with T1D and 3 individuals without T1D in a controlled laboratory setting using a variety of common types of physical activity. The classifier had an average sensitivity of 98.7% for physiological data collected over a range of exercise modalities and intensities in these subjects. The classifier will be added as a new module to the integrated multivariable adaptive AP system to enable the detection of aerobic and anaerobic exercise for enhancing the accuracy of insulin infusion strategies during and after exercise. PMID:26443291
High-speed cell recognition algorithm for ultrafast flow cytometer imaging system.
Zhao, Wanyue; Wang, Chao; Chen, Hongwei; Chen, Minghua; Yang, Sigang
2018-04-01
An optical time-stretch flow imaging system enables high-throughput examination of cells/particles with unprecedented high speed and resolution. A significant amount of raw image data is produced. A high-speed cell recognition algorithm is, therefore, highly demanded to analyze large amounts of data efficiently. A high-speed cell recognition algorithm consisting of two-stage cascaded detection and Gaussian mixture model (GMM) classification is proposed. The first stage of detection extracts cell regions. The second stage integrates distance transform and the watershed algorithm to separate clustered cells. Finally, the cells detected are classified by GMM. We compared the performance of our algorithm with support vector machine. Results show that our algorithm increases the running speed by over 150% without sacrificing the recognition accuracy. This algorithm provides a promising solution for high-throughput and automated cell imaging and classification in the ultrafast flow cytometer imaging platform. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Regional agriculture surveys using ERTS-1 data
NASA Technical Reports Server (NTRS)
Draeger, W. C.; Nichols, J. D.; Benson, A. S.; Larrabee, D. G.; Jenkus, W. M.; Hay, C. M.
1974-01-01
The Center for Remote Sensing Research has conducted studies designed to evaluate the potential application of ERTS data in performing agricultural inventories, and to develop efficient methods of data handling and analysis useful in the operational context for performing large area surveys. This work has resulted in the development of an integrated system utilizing both human and computer analysis of ground, aerial, and space imagery, which has been shown to be very efficient for regional crop acreage inventories. The technique involves: (1) the delineation of ERTS images into relatively homogeneous strata by human interpreters, (2) the point-by-point classification of the area within each strata on the basis of crop type using a human/machine interactive digital image processing system; and (3) a multistage sampling procedure for the collection of supporting aerial and ground data used in the adjustment and verification of the classification results.
On the convergence of nanotechnology and Big Data analysis for computer-aided diagnosis.
Rodrigues, Jose F; Paulovich, Fernando V; de Oliveira, Maria Cf; de Oliveira, Osvaldo N
2016-04-01
An overview is provided of the challenges involved in building computer-aided diagnosis systems capable of precise medical diagnostics based on integration and interpretation of data from different sources and formats. The availability of massive amounts of data and computational methods associated with the Big Data paradigm has brought hope that such systems may soon be available in routine clinical practices, which is not the case today. We focus on visual and machine learning analysis of medical data acquired with varied nanotech-based techniques and on methods for Big Data infrastructure. Because diagnosis is essentially a classification task, we address the machine learning techniques with supervised and unsupervised classification, making a critical assessment of the progress already made in the medical field and the prospects for the near future. We also advocate that successful computer-aided diagnosis requires a merge of methods and concepts from nanotechnology and Big Data analysis.
High-speed cell recognition algorithm for ultrafast flow cytometer imaging system
NASA Astrophysics Data System (ADS)
Zhao, Wanyue; Wang, Chao; Chen, Hongwei; Chen, Minghua; Yang, Sigang
2018-04-01
An optical time-stretch flow imaging system enables high-throughput examination of cells/particles with unprecedented high speed and resolution. A significant amount of raw image data is produced. A high-speed cell recognition algorithm is, therefore, highly demanded to analyze large amounts of data efficiently. A high-speed cell recognition algorithm consisting of two-stage cascaded detection and Gaussian mixture model (GMM) classification is proposed. The first stage of detection extracts cell regions. The second stage integrates distance transform and the watershed algorithm to separate clustered cells. Finally, the cells detected are classified by GMM. We compared the performance of our algorithm with support vector machine. Results show that our algorithm increases the running speed by over 150% without sacrificing the recognition accuracy. This algorithm provides a promising solution for high-throughput and automated cell imaging and classification in the ultrafast flow cytometer imaging platform.
Computer vision-based classification of hand grip variations in neurorehabilitation.
Zariffa, José; Steeves, John D
2011-01-01
The complexity of hand function is such that most existing upper limb rehabilitation robotic devices use only simplified hand interfaces. This is in contrast to the importance of the hand in regaining function after neurological injury. Computer vision technology has been used to identify hand posture in the field of Human Computer Interaction, but this approach has not been translated to the rehabilitation context. We describe a computer vision-based classifier that can be used to discriminate rehabilitation-relevant hand postures, and could be integrated into a virtual reality-based upper limb rehabilitation system. The proposed system was tested on a set of video recordings from able-bodied individuals performing cylindrical grasps, lateral key grips, and tip-to-tip pinches. The overall classification success rate was 91.2%, and was above 98% for 6 out of the 10 subjects. © 2011 IEEE
NASA Astrophysics Data System (ADS)
Martens, Kristine; Van Camp, Marc; Van Damme, Dirk; Walraevens, Kristine
2013-08-01
Within the European Union, Habitat Directives are developed with the aim of restoration and preservation of endangered species. The level of biodiversity in coastal dune systems is generally very high compared to other natural ecosystems, but suffers from deterioration. Groundwater extraction and urbanisation are the main reasons for the decrease in biodiversity. Many restoration actions are being carried out and are focusing on the restoration of groundwater level with the aim of re-establishing rare species. These actions have different degrees of success. The evaluation of the actions is mainly based on the appearance of red list species. The groundwater classes, developed in the Netherlands, are used for the evaluation of opportunities for vegetation, while the natural variability of the groundwater level and quality are under-estimated. Vegetation is used as a seepage indicator. The existing classification is not valid in the Belgian dunes, as the vegetation observed in the study area is not in correspondence with this classification. Therefore, a new classification is needed. The new classification is based on the variability of the groundwater level on a long term with integration of ecological factors. Based on the new classification, the importance of seasonal and inter-yearly fluctuations of the water table can be deduced. Inter-yearly fluctuations are more important in recharge areas while seasonal fluctuations are dominant in discharge areas. The new classification opens opportunities for relating vegetation and groundwater dynamics.
Less-Complex Method of Classifying MPSK
NASA Technical Reports Server (NTRS)
Hamkins, Jon
2006-01-01
An alternative to an optimal method of automated classification of signals modulated with M-ary phase-shift-keying (M-ary PSK or MPSK) has been derived. The alternative method is approximate, but it offers nearly optimal performance and entails much less complexity, which translates to much less computation time. Modulation classification is becoming increasingly important in radio-communication systems that utilize multiple data modulation schemes and include software-defined or software-controlled receivers. Such a receiver may "know" little a priori about an incoming signal but may be required to correctly classify its data rate, modulation type, and forward error-correction code before properly configuring itself to acquire and track the symbol timing, carrier frequency, and phase, and ultimately produce decoded bits. Modulation classification has long been an important component of military interception of initially unknown radio signals transmitted by adversaries. Modulation classification may also be useful for enabling cellular telephones to automatically recognize different signal types and configure themselves accordingly. The concept of modulation classification as outlined in the preceding paragraph is quite general. However, at the present early stage of development, and for the purpose of describing the present alternative method, the term "modulation classification" or simply "classification" signifies, more specifically, a distinction between M-ary and M'-ary PSK, where M and M' represent two different integer multiples of 2. Both the prior optimal method and the present alternative method require the acquisition of magnitude and phase values of a number (N) of consecutive baseband samples of the incoming signal + noise. The prior optimal method is based on a maximum- likelihood (ML) classification rule that requires a calculation of likelihood functions for the M and M' hypotheses: Each likelihood function is an integral, over a full cycle of carrier phase, of a complicated sum of functions of the baseband sample values, the carrier phase, the carrier-signal and noise magnitudes, and M or M'. Then the likelihood ratio, defined as the ratio between the likelihood functions, is computed, leading to the choice of whichever hypothesis - M or M'- is more likely. In the alternative method, the integral in each likelihood function is approximated by a sum over values of the integrand sampled at a number, 1, of equally spaced values of carrier phase. Used in this way, 1 is a parameter that can be adjusted to trade computational complexity against the probability of misclassification. In the limit as 1 approaches infinity, one obtains the integral form of the likelihood function and thus recovers the ML classification. The present approximate method has been tested in comparison with the ML method by means of computational simulations. The results of the simulations have shown that the performance (as quantified by probability of misclassification) of the approximate method is nearly indistinguishable from that of the ML method (see figure).
Stucki, Gerold; Bickenbach, Jerome; Melvin, John
2017-09-01
A complete understanding of the experience of health requires information relevant not merely to the health indicators of mortality and morbidity but also to functioning-that is, information about what it means to live in a health state, "the lived experience of health." Not only is functioning information relevant to healthcare and the overall objectives of person-centered healthcare but to the successful operation of all components of health systems.In light of population aging and major epidemiological trends, the health strategy of rehabilitation, whose aim has always been to optimize functioning and minimize disability, will become a key health strategy. The increasing prominence of the rehabilitative strategy within the health system drives the argument for the integration of functioning information as an essential component in national health information systems.Rehabilitation professionals and researchers have long recognized in WHO's International Classification of Functioning, Disability and Health the best prospect for an internationally recognized, sufficiently complete and powerful information reference for the documentation of functioning information. This paper opens the discussion of the promise of integrating the ICF as an essential component in national health systems to secure access to functioning information for rehabilitation, across health systems and countries.
NASA Technical Reports Server (NTRS)
Shull, Sarah A.; Gralla, Erica L.; deWeck, Olivier L.; Shishko, Robert
2006-01-01
One of the major logistical challenges in human space exploration is asset management. This paper presents observations on the practice of asset management in support of human space flight to date and discusses a functional-based supply classification and a framework for an integrated database that could be used to improve asset management and logistics for human missions to the Moon, Mars and beyond.
NASA Astrophysics Data System (ADS)
Krappe, Sebastian; Wittenberg, Thomas; Haferlach, Torsten; Münzenmayer, Christian
2016-03-01
The morphological differentiation of bone marrow is fundamental for the diagnosis of leukemia. Currently, the counting and classification of the different types of bone marrow cells is done manually under the use of bright field microscopy. This is a time-consuming, subjective, tedious and error-prone process. Furthermore, repeated examinations of a slide may yield intra- and inter-observer variances. For that reason a computer assisted diagnosis system for bone marrow differentiation is pursued. In this work we focus (a) on a new method for the separation of nucleus and plasma parts and (b) on a knowledge-based hierarchical tree classifier for the differentiation of bone marrow cells in 16 different classes. Classification trees are easily interpretable and understandable and provide a classification together with an explanation. Using classification trees, expert knowledge (i.e. knowledge about similar classes and cell lines in the tree model of hematopoiesis) is integrated in the structure of the tree. The proposed segmentation method is evaluated with more than 10,000 manually segmented cells. For the evaluation of the proposed hierarchical classifier more than 140,000 automatically segmented bone marrow cells are used. Future automated solutions for the morphological analysis of bone marrow smears could potentially apply such an approach for the pre-classification of bone marrow cells and thereby shortening the examination time.
Classification of permafrost active layer depth from remotely sensed and topographic evidence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peddle, D.R.; Franklin, S.E.
1993-04-01
The remote detection of permafrost (perennially frozen ground) has important implications to environmental resource development, engineering studies, natural hazard prediction, and climate change research. In this study, the authors present results from two experiments into the classification of permafrost active layer depth within the zone of discontinuous permafrost in northern Canada. A new software system based on evidential reasoning was implemented to permit the integrated classification of multisource data consisting of landcover, terrain aspect, and equivalent latitude, each of which possessed different formats, data types, or statistical properties that could not be handled by conventional classification algorithms available to thismore » study. In the first experiment, four active layer depth classes were classified using ground based measurements of the three variables with an accuracy of 83% compared to in situ soil probe determination of permafrost active layer depth at over 500 field sites. This confirmed the environmental significance of the variables selected, and provided a baseline result to which a remote sensing classification could be compared. In the second experiment, evidence for each input variable was obtained from image processing of digital SPOT imagery and a photogrammetric digital elevation model, and used to classify active layer depth with an accuracy of 79%. These results suggest the classification of evidence from remotely sensed measures of spectral response and topography may provide suitable indicators of permafrost active layer depth.« less
Creating a Canonical Scientific and Technical Information Classification System for NCSTRL+
NASA Technical Reports Server (NTRS)
Tiffany, Melissa E.; Nelson, Michael L.
1998-01-01
The purpose of this paper is to describe the new subject classification system for the NCSTRL+ project. NCSTRL+ is a canonical digital library (DL) based on the Networked Computer Science Technical Report Library (NCSTRL). The current NCSTRL+ classification system uses the NASA Scientific and Technical (STI) subject classifications, which has a bias towards the aerospace, aeronautics, and engineering disciplines. Examination of other scientific and technical information classification systems showed similar discipline-centric weaknesses. Traditional, library-oriented classification systems represented all disciplines, but were too generalized to serve the needs of a scientific and technically oriented digital library. Lack of a suitable existing classification system led to the creation of a lightweight, balanced, general classification system that allows the mapping of more specialized classification schemes into the new framework. We have developed the following classification system to give equal weight to all STI disciplines, while being compact and lightweight.
An Approach for the Assessment of System Upset Resilience
NASA Technical Reports Server (NTRS)
Torres-Pomales, Wilfredo
2013-01-01
This report describes an approach for the assessment of upset resilience that is applicable to systems in general, including safety-critical, real-time systems. For this work, resilience is defined as the ability to preserve and restore service availability and integrity under stated conditions of configuration, functional inputs and environmental conditions. To enable a quantitative approach, we define novel system service degradation metrics and propose a new mathematical definition of resilience. These behavioral-level metrics are based on the fundamental service classification criteria of correctness, detectability, symmetry and persistence. This approach consists of a Monte-Carlo-based stimulus injection experiment, on a physical implementation or an error-propagation model of a system, to generate a system response set that can be characterized in terms of dimensional error metrics and integrated to form an overall measure of resilience. We expect this approach to be helpful in gaining insight into the error containment and repair capabilities of systems for a wide range of conditions.
Karayannis, Nicholas V; Jull, Gwendolen A; Hodges, Paul W
2012-02-20
Several classification schemes, each with its own philosophy and categorizing method, subgroup low back pain (LBP) patients with the intent to guide treatment. Physiotherapy derived schemes usually have a movement impairment focus, but the extent to which other biological, psychological, and social factors of pain are encompassed requires exploration. Furthermore, within the prevailing 'biological' domain, the overlap of subgrouping strategies within the orthopaedic examination remains unexplored. The aim of this study was "to review and clarify through developer/expert survey, the theoretical basis and content of physical movement classification schemes, determine their relative reliability and similarities/differences, and to consider the extent of incorporation of the bio-psycho-social framework within the schemes". A database search for relevant articles related to LBP and subgrouping or classification was conducted. Five dominant movement-based schemes were identified: Mechanical Diagnosis and Treatment (MDT), Treatment Based Classification (TBC), Pathoanatomic Based Classification (PBC), Movement System Impairment Classification (MSI), and O'Sullivan Classification System (OCS) schemes. Data were extracted and a survey sent to the classification scheme developers/experts to clarify operational criteria, reliability, decision-making, and converging/diverging elements between schemes. Survey results were integrated into the review and approval obtained for accuracy. Considerable diversity exists between schemes in how movement informs subgrouping and in the consideration of broader neurosensory, cognitive, emotional, and behavioural dimensions of LBP. Despite differences in assessment philosophy, a common element lies in their objective to identify a movement pattern related to a pain reduction strategy. Two dominant movement paradigms emerge: (i) loading strategies (MDT, TBC, PBC) aimed at eliciting a phenomenon of centralisation of symptoms; and (ii) modified movement strategies (MSI, OCS) targeted towards documenting the movement impairments associated with the pain state. Schemes vary on: the extent to which loading strategies are pursued; the assessment of movement dysfunction; and advocated treatment approaches. A biomechanical assessment predominates in the majority of schemes (MDT, PBC, MSI), certain psychosocial aspects (fear-avoidance) are considered in the TBC scheme, certain neurophysiologic (central versus peripherally mediated pain states) and psychosocial (cognitive and behavioural) aspects are considered in the OCS scheme.
da Silva, Natália Chantal Magalhães; de Souza Oliveira, Ana Railka; de Carvalho, Emília Campos
2015-12-01
To identify the knowledge produced from the outcomes of the Nursing Outcomes Classification (NOC). A literature review using the integrative databases: Latin American and Caribbean Health Sciences (LILACS), US National Library of Medicine (PubMed), Cumulative Index to Nursing & Allied Health Literature (CINAHL) and Scopus Info Site (SCOPUS), during the months of August and September 2014. The review consisted of 21 articles that addressed different issues: Translation and Cultural adaptation (4.77%); Applicability in clinical practice (33.33%); and, Validation (63.90%). Analysis of these articles showed that the knowledge produced from the Nursing Outcomes Classification includes translation and cultural adaptation, evaluation of applicability and validation of its items. Considering the continuous evolution of this classification, periodic reviews should be carried out to identify the knowledge, use and effects of the NOC.
Integrating Human and Machine Intelligence in Galaxy Morphology Classification Tasks
NASA Astrophysics Data System (ADS)
Beck, Melanie Renee
The large flood of data flowing from observatories presents significant challenges to astronomy and cosmology--challenges that will only be magnified by projects currently under development. Growth in both volume and velocity of astrophysics data is accelerating: whereas the Sloan Digital Sky Survey (SDSS) has produced 60 terabytes of data in the last decade, the upcoming Large Synoptic Survey Telescope (LSST) plans to register 30 terabytes per night starting in the year 2020. Additionally, the Euclid Mission will acquire imaging for 5 x 107 resolvable galaxies. The field of galaxy evolution faces a particularly challenging future as complete understanding often cannot be reached without analysis of detailed morphological galaxy features. Historically, morphological analysis has relied on visual classification by astronomers, accessing the human brains capacity for advanced pattern recognition. However, this accurate but inefficient method falters when confronted with many thousands (or millions) of images. In the SDSS era, efforts to automate morphological classifications of galaxies (e.g., Conselice et al., 2000; Lotz et al., 2004) are reasonably successful and can distinguish between elliptical and disk-dominated galaxies with accuracies of 80%. While this is statistically very useful, a key problem with these methods is that they often cannot say which 80% of their samples are accurate. Furthermore, when confronted with the more complex task of identifying key substructure within galaxies, automated classification algorithms begin to fail. The Galaxy Zoo project uses a highly innovative approach to solving the scalability problem of visual classification. Displaying images of SDSS galaxies to volunteers via a simple and engaging web interface, www.galaxyzoo.org asks people to classify images by eye. Within the first year hundreds of thousands of members of the general public had classified each of the 1 million SDSS galaxies an average of 40 times. Galaxy Zoo thus solved both the visual classification problem of time efficiency and improved accuracy by producing a distribution of independent classifications for each galaxy. While crowd-sourced galaxy classifications have proven their worth, challenges remain before establishing this method as a critical and standard component of the data processing pipelines for the next generation of surveys. In particular, though innovative, crowd-sourcing techniques do not have the capacity to handle the data volume and rates expected in the next generation of surveys. These algorithms will be delegated to handle the majority of the classification tasks, freeing citizen scientists to contribute their efforts on subtler and more complex assignments. This thesis presents a solution through an integration of visual and automated classifications, preserving the best features of both human and machine. We demonstrate the effectiveness of such a system through a re-analysis of visual galaxy morphology classifications collected during the Galaxy Zoo 2 (GZ2) project. We reprocess the top-level question of the GZ2 decision tree with a Bayesian classification aggregation algorithm dubbed SWAP, originally developed for the Space Warps gravitational lens project. Through a simple binary classification scheme we increase the classification rate nearly 5-fold classifying 226,124 galaxies in 92 days of GZ2 project time while reproducing labels derived from GZ2 classification data with 95.7% accuracy. We next combine this with a Random Forest machine learning algorithm that learns on a suite of non-parametric morphology indicators widely used for automated morphologies. We develop a decision engine that delegates tasks between human and machine and demonstrate that the combined system provides a factor of 11.4 increase in the classification rate, classifying 210,803 galaxies in just 32 days of GZ2 project time with 93.1% accuracy. As the Random Forest algorithm requires a minimal amount of computational cost, this result has important implications for galaxy morphology identification tasks in the era of Euclid and other large-scale surveys.
Van Berkel, Gary J.; Kertesz, Vilmos
2016-11-15
An “Open Access”-like mass spectrometric platform to fully utilize the simplicity of the manual open port sampling interface for rapid characterization of unprocessed samples by liquid introduction atmospheric pressure ionization mass spectrometry has been lacking. The in-house developed integrated software with a simple, small and relatively low-cost mass spectrometry system introduced here fills this void. Software was developed to operate the mass spectrometer, to collect and process mass spectrometric data files, to build a database and to classify samples using such a database. These tasks were accomplished via the vendorprovided software libraries. Sample classification based on spectral comparison utilized themore » spectral contrast angle method. As a result, using the developed software platform near real-time sample classification is exemplified using a series of commercially available blue ink rollerball pens and vegetable oils. In the case of the inks, full scan positive and negative ion ESI mass spectra were both used for database generation and sample classification. For the vegetable oils, full scan positive ion mode APCI mass spectra were recorded. The overall accuracy of the employed spectral contrast angle statistical model was 95.3% and 98% in case of the inks and oils, respectively, using leave-one-out cross-validation. In conclusion, this work illustrates that an open port sampling interface/mass spectrometer combination, with appropriate instrument control and data processing software, is a viable direct liquid extraction sampling and analysis system suitable for the non-expert user and near real-time sample classification via database matching.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Berkel, Gary J.; Kertesz, Vilmos
An “Open Access”-like mass spectrometric platform to fully utilize the simplicity of the manual open port sampling interface for rapid characterization of unprocessed samples by liquid introduction atmospheric pressure ionization mass spectrometry has been lacking. The in-house developed integrated software with a simple, small and relatively low-cost mass spectrometry system introduced here fills this void. Software was developed to operate the mass spectrometer, to collect and process mass spectrometric data files, to build a database and to classify samples using such a database. These tasks were accomplished via the vendorprovided software libraries. Sample classification based on spectral comparison utilized themore » spectral contrast angle method. As a result, using the developed software platform near real-time sample classification is exemplified using a series of commercially available blue ink rollerball pens and vegetable oils. In the case of the inks, full scan positive and negative ion ESI mass spectra were both used for database generation and sample classification. For the vegetable oils, full scan positive ion mode APCI mass spectra were recorded. The overall accuracy of the employed spectral contrast angle statistical model was 95.3% and 98% in case of the inks and oils, respectively, using leave-one-out cross-validation. In conclusion, this work illustrates that an open port sampling interface/mass spectrometer combination, with appropriate instrument control and data processing software, is a viable direct liquid extraction sampling and analysis system suitable for the non-expert user and near real-time sample classification via database matching.« less
Inverse imaging of the breast with a material classification technique.
Manry, C W; Broschat, S L
1998-03-01
In recent publications [Chew et al., IEEE Trans. Blomed. Eng. BME-9, 218-225 (1990); Borup et al., Ultrason. Imaging 14, 69-85 (1992)] the inverse imaging problem has been solved by means of a two-step iterative method. In this paper, a third step is introduced for ultrasound imaging of the breast. In this step, which is based on statistical pattern recognition, classification of tissue types and a priori knowledge of the anatomy of the breast are integrated into the iterative method. Use of this material classification technique results in more rapid convergence to the inverse solution--approximately 40% fewer iterations are required--as well as greater accuracy. In addition, tumors are detected early in the reconstruction process. Results for reconstructions of a simple two-dimensional model of the human breast are presented. These reconstructions are extremely accurate when system noise and variations in tissue parameters are not too great. However, for the algorithm used, degradation of the reconstructions and divergence from the correct solution occur when system noise and variations in parameters exceed threshold values. Even in this case, however, tumors are still identified within a few iterations.
Supply chain planning classification
NASA Astrophysics Data System (ADS)
Hvolby, Hans-Henrik; Trienekens, Jacques; Bonde, Hans
2001-10-01
Industry experience a need to shift in focus from internal production planning towards planning in the supply network. In this respect customer oriented thinking becomes almost a common good amongst companies in the supply network. An increase in the use of information technology is needed to enable companies to better tune their production planning with customers and suppliers. Information technology opportunities and supply chain planning systems facilitate companies to monitor and control their supplier network. In spite if these developments, most links in today's supply chains make individual plans, because the real demand information is not available throughout the chain. The current systems and processes of the supply chains are not designed to meet the requirements now placed upon them. For long term relationships with suppliers and customers, an integrated decision-making process is needed in order to obtain a satisfactory result for all parties. Especially when customized production and short lead-time is in focus. An effective value chain makes inventory available and visible among the value chain members, minimizes response time and optimizes total inventory value held throughout the chain. In this paper a supply chain planning classification grid is presented based current manufacturing classifications and supply chain planning initiatives.
NASA Astrophysics Data System (ADS)
Ninos, K.; Georgiadis, P.; Cavouras, D.; Nomicos, C.
2010-05-01
This study presents the design and development of a mobile wireless platform to be used for monitoring and analysis of seismic events and related electromagnetic (EM) signals, employing Personal Digital Assistants (PDAs). A prototype custom-developed application was deployed on a 3G enabled PDA that could connect to the FTP server of the Institute of Geodynamics of the National Observatory of Athens and receive and display EM signals at 4 receiver frequencies (3 KHz (E-W, N-S), 10 KHz (E-W, N-S), 41 MHz and 46 MHz). Signals may originate from any one of the 16 field-stations located around the Greek territory. Employing continuous recordings of EM signals gathered from January 2003 till December 2007, a Support Vector Machines (SVM)-based classification system was designed to distinguish EM precursor signals within noisy background. EM-signals corresponding to recordings preceding major seismic events (Ms≥5R) were segmented, by an experienced scientist, and five features (mean, variance, skewness, kurtosis, and a wavelet based feature), derived from the EM-signals were calculated. These features were used to train the SVM-based classification scheme. The performance of the system was evaluated by the exhaustive search and leave-one-out methods giving 87.2% overall classification accuracy, in correctly identifying EM precursor signals within noisy background employing all calculated features. Due to the insufficient processing power of the PDAs, this task was performed on a typical desktop computer. This optimal trained context of the SVM classifier was then integrated in the PDA based application rendering the platform capable to discriminate between EM precursor signals and noise. System's efficiency was evaluated by an expert who reviewed 1/ multiple EM-signals, up to 18 days prior to corresponding past seismic events, and 2/ the possible EM-activity of a specific region employing the trained SVM classifier. Additionally, the proposed architecture can form a base platform for a future integrated system that will incorporate services such as notifications for field station power failures, disruption of data flow, occurring SEs, and even other types of measurement and analysis processes such as the integration of a special analysis algorithm based on the ratio of short term to long term signal average.
Classification of time series patterns from complex dynamic systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schryver, J.C.; Rao, N.
1998-07-01
An increasing availability of high-performance computing and data storage media at decreasing cost is making possible the proliferation of large-scale numerical databases and data warehouses. Numeric warehousing enterprises on the order of hundreds of gigabytes to terabytes are a reality in many fields such as finance, retail sales, process systems monitoring, biomedical monitoring, surveillance and transportation. Large-scale databases are becoming more accessible to larger user communities through the internet, web-based applications and database connectivity. Consequently, most researchers now have access to a variety of massive datasets. This trend will probably only continue to grow over the next several years. Unfortunately,more » the availability of integrated tools to explore, analyze and understand the data warehoused in these archives is lagging far behind the ability to gain access to the same data. In particular, locating and identifying patterns of interest in numerical time series data is an increasingly important problem for which there are few available techniques. Temporal pattern recognition poses many interesting problems in classification, segmentation, prediction, diagnosis and anomaly detection. This research focuses on the problem of classification or characterization of numerical time series data. Highway vehicles and their drivers are examples of complex dynamic systems (CDS) which are being used by transportation agencies for field testing to generate large-scale time series datasets. Tools for effective analysis of numerical time series in databases generated by highway vehicle systems are not yet available, or have not been adapted to the target problem domain. However, analysis tools from similar domains may be adapted to the problem of classification of numerical time series data.« less
NASA Technical Reports Server (NTRS)
Djorgovski, George
1993-01-01
The existing and forthcoming data bases from NASA missions contain an abundance of information whose complexity cannot be efficiently tapped with simple statistical techniques. Powerful multivariate statistical methods already exist which can be used to harness much of the richness of these data. Automatic classification techniques have been developed to solve the problem of identifying known types of objects in multiparameter data sets, in addition to leading to the discovery of new physical phenomena and classes of objects. We propose an exploratory study and integration of promising techniques in the development of a general and modular classification/analysis system for very large data bases, which would enhance and optimize data management and the use of human research resource.
NASA Technical Reports Server (NTRS)
Djorgovski, Stanislav
1992-01-01
The existing and forthcoming data bases from NASA missions contain an abundance of information whose complexity cannot be efficiently tapped with simple statistical techniques. Powerful multivariate statistical methods already exist which can be used to harness much of the richness of these data. Automatic classification techniques have been developed to solve the problem of identifying known types of objects in multi parameter data sets, in addition to leading to the discovery of new physical phenomena and classes of objects. We propose an exploratory study and integration of promising techniques in the development of a general and modular classification/analysis system for very large data bases, which would enhance and optimize data management and the use of human research resources.
Bourdais-Mannone, Claire; Cherikh, Faredj; Gicquel, Nathalie; Gelsi, Eve; Jove, Frédérique; Staccini, Pascal
2011-01-01
The purpose of this study was to conduct a descriptive and comparative analysis of the tools used by healthcare professionals specializing in addictive disorders to promote a rapprochement of information systems. The evaluation guide used to assess the compensation needs of disabled persons treated in "Maisons Départementales des Personnes Handicapées" (centres for disabled people) organizes information in different areas, including a psychological component. The guide includes social and environmental information in the "Recueil Commun sur les Addictions et les Prises en charges" (Joint Report on Drug Addiction and Drug Treatment). While the program for the medicalization of information systems includes care data, the current information about social situations remains inadequate. The international classification of diseases provides synthetic diagnostic codes to describe substance use, etiologic factors and the somatic and psychological complications inherent to addictive disorders. The current system could be radically simplified and harmonized and would benefit from adopting a more individualized approach to non-substance behavioral addictions. The international classification of disabilities provides tools for evaluating the psychological component included in the recent definition of addictive disorders. Legal information should play an integral role in the structure of the information system and in international classifications. The prevalence of episodes of care and treatment of addictive and psychological disorders was assessed at Nice University Hospital in all disciplines. Except in addiction treatment units, very few patients were found to have a RECAP file.
Argumentation Based Joint Learning: A Novel Ensemble Learning Approach
Xu, Junyi; Yao, Li; Li, Le
2015-01-01
Recently, ensemble learning methods have been widely used to improve classification performance in machine learning. In this paper, we present a novel ensemble learning method: argumentation based multi-agent joint learning (AMAJL), which integrates ideas from multi-agent argumentation, ensemble learning, and association rule mining. In AMAJL, argumentation technology is introduced as an ensemble strategy to integrate multiple base classifiers and generate a high performance ensemble classifier. We design an argumentation framework named Arena as a communication platform for knowledge integration. Through argumentation based joint learning, high quality individual knowledge can be extracted, and thus a refined global knowledge base can be generated and used independently for classification. We perform numerous experiments on multiple public datasets using AMAJL and other benchmark methods. The results demonstrate that our method can effectively extract high quality knowledge for ensemble classifier and improve the performance of classification. PMID:25966359
42 CFR 412.620 - Patient classification system.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 42 Public Health 2 2010-10-01 2010-10-01 false Patient classification system. 412.620 Section 412... Inpatient Rehabilitation Hospitals and Rehabilitation Units § 412.620 Patient classification system. (a) Classification methodology. (1) A patient classification system is used to classify patients in inpatient...
42 CFR 412.620 - Patient classification system.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 42 Public Health 2 2011-10-01 2011-10-01 false Patient classification system. 412.620 Section 412... Inpatient Rehabilitation Hospitals and Rehabilitation Units § 412.620 Patient classification system. (a) Classification methodology. (1) A patient classification system is used to classify patients in inpatient...
NASA Astrophysics Data System (ADS)
Morfa, Carlos Recarey; Cortés, Lucía Argüelles; Farias, Márcio Muniz de; Morales, Irvin Pablo Pérez; Valera, Roberto Roselló; Oñate, Eugenio
2018-07-01
A methodology that comprises several characterization properties for particle packings is proposed in this paper. The methodology takes into account factors such as dimension and shape of particles, space occupation, homogeneity, connectivity and isotropy, among others. This classification and integration of several properties allows to carry out a characterization process to systemically evaluate the particle packings in order to guarantee the quality of the initial meshes in discrete element simulations, in both the micro- and the macroscales. Several new properties were created, and improvements in existing ones are presented. Properties from other disciplines were adapted to be used in the evaluation of particle systems. The methodology allows to easily characterize media at the level of the microscale (continuous geometries—steels, rocks microstructures, etc., and discrete geometries) and the macroscale. A global, systemic and integral system for characterizing and evaluating particle sets, based on fuzzy logic, is presented. Such system allows researchers to have a unique evaluation criterion based on the aim of their research. Examples of applications are shown.
NASA Astrophysics Data System (ADS)
Morfa, Carlos Recarey; Cortés, Lucía Argüelles; Farias, Márcio Muniz de; Morales, Irvin Pablo Pérez; Valera, Roberto Roselló; Oñate, Eugenio
2017-10-01
A methodology that comprises several characterization properties for particle packings is proposed in this paper. The methodology takes into account factors such as dimension and shape of particles, space occupation, homogeneity, connectivity and isotropy, among others. This classification and integration of several properties allows to carry out a characterization process to systemically evaluate the particle packings in order to guarantee the quality of the initial meshes in discrete element simulations, in both the micro- and the macroscales. Several new properties were created, and improvements in existing ones are presented. Properties from other disciplines were adapted to be used in the evaluation of particle systems. The methodology allows to easily characterize media at the level of the microscale (continuous geometries—steels, rocks microstructures, etc., and discrete geometries) and the macroscale. A global, systemic and integral system for characterizing and evaluating particle sets, based on fuzzy logic, is presented. Such system allows researchers to have a unique evaluation criterion based on the aim of their research. Examples of applications are shown.
System Specification for ADA Integrated Environment Type A AIE(1).
1982-11-12
includes program library support tools and the linker. The program library is the means by which the AIE supports independent, modular program development...KAPSE TUOL COMMUNICATION Package KAPSE-KAPS ECOMMUNICATION (KAPSE.RTS) (Most of it, except the "Language-Defined Packages" CPC) The overall...including classification of errors by severity; 5. perform optimizations for timing and/or space, without changing the functional meaning of a program by the
Reduze - Feynman integral reduction in C++
NASA Astrophysics Data System (ADS)
Studerus, C.
2010-07-01
Reduze is a computer program for reducing Feynman integrals to master integrals employing a Laporta algorithm. The program is written in C++ and uses classes provided by the GiNaC library to perform the simplifications of the algebraic prefactors in the system of equations. Reduze offers the possibility to run reductions in parallel. Program summaryProgram title:Reduze Catalogue identifier: AEGE_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGE_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions:: yes No. of lines in distributed program, including test data, etc.: 55 433 No. of bytes in distributed program, including test data, etc.: 554 866 Distribution format: tar.gz Programming language: C++ Computer: All Operating system: Unix/Linux Number of processors used: The number of processors is problem dependent. More than one possible but not arbitrary many. RAM: Depends on the complexity of the system. Classification: 4.4, 5 External routines: CLN ( http://www.ginac.de/CLN/), GiNaC ( http://www.ginac.de/) Nature of problem: Solving large systems of linear equations with Feynman integrals as unknowns and rational polynomials as prefactors. Solution method: Using a Gauss/Laporta algorithm to solve the system of equations. Restrictions: Limitations depend on the complexity of the system (number of equations, number of kinematic invariants). Running time: Depends on the complexity of the system.
Bhaduri, Aritra; Banerjee, Amitava; Roy, Subhrajit; Kar, Sougata; Basu, Arindam
2018-03-01
We present a neuromorphic current mode implementation of a spiking neural classifier with lumped square law dendritic nonlinearity. It has been shown previously in software simulations that such a system with binary synapses can be trained with structural plasticity algorithms to achieve comparable classification accuracy with fewer synaptic resources than conventional algorithms. We show that even in real analog systems with manufacturing imperfections (CV of 23.5% and 14.4% for dendritic branch gains and leaks respectively), this network is able to produce comparable results with fewer synaptic resources. The chip fabricated in [Formula: see text]m complementary metal oxide semiconductor has eight dendrites per cell and uses two opposing cells per class to cancel common-mode inputs. The chip can operate down to a [Formula: see text] V and dissipates 19 nW of static power per neuronal cell and [Formula: see text] 125 pJ/spike. For two-class classification problems of high-dimensional rate encoded binary patterns, the hardware achieves comparable performance as software implementation of the same with only about a 0.5% reduction in accuracy. On two UCI data sets, the IC integrated circuit has classification accuracy comparable to standard machine learners like support vector machines and extreme learning machines while using two to five times binary synapses. We also show that the system can operate on mean rate encoded spike patterns, as well as short bursts of spikes. To the best of our knowledge, this is the first attempt in hardware to perform classification exploiting dendritic properties and binary synapses.
A Unified Classification of Alien Species Based on the Magnitude of their Environmental Impacts
Blackburn, Tim M.; Essl, Franz; Evans, Thomas; Hulme, Philip E.; Jeschke, Jonathan M.; Kühn, Ingolf; Kumschick, Sabrina; Marková, Zuzana; Mrugała, Agata; Nentwig, Wolfgang; Pergl, Jan; Pyšek, Petr; Rabitsch, Wolfgang; Ricciardi, Anthony; Richardson, David M.; Sendek, Agnieszka; Vilà, Montserrat; Wilson, John R. U.; Winter, Marten; Genovesi, Piero; Bacher, Sven
2014-01-01
Species moved by human activities beyond the limits of their native geographic ranges into areas in which they do not naturally occur (termed aliens) can cause a broad range of significant changes to recipient ecosystems; however, their impacts vary greatly across species and the ecosystems into which they are introduced. There is therefore a critical need for a standardised method to evaluate, compare, and eventually predict the magnitudes of these different impacts. Here, we propose a straightforward system for classifying alien species according to the magnitude of their environmental impacts, based on the mechanisms of impact used to code species in the International Union for Conservation of Nature (IUCN) Global Invasive Species Database, which are presented here for the first time. The classification system uses five semi-quantitative scenarios describing impacts under each mechanism to assign species to different levels of impact—ranging from Minimal to Massive—with assignment corresponding to the highest level of deleterious impact associated with any of the mechanisms. The scheme also includes categories for species that are Not Evaluated, have No Alien Population, or are Data Deficient, and a method for assigning uncertainty to all the classifications. We show how this classification system is applicable at different levels of ecological complexity and different spatial and temporal scales, and embraces existing impact metrics. In fact, the scheme is analogous to the already widely adopted and accepted Red List approach to categorising extinction risk, and so could conceivably be readily integrated with existing practices and policies in many regions. PMID:24802715
Intra- and Interobserver Reliability of Three Classification Systems for Hallux Rigidus.
Dillard, Sarita; Schilero, Christina; Chiang, Sharon; Pham, Peter
2018-04-18
There are over ten classification systems currently used in the staging of hallux rigidus. This results in confusion and inconsistency with radiographic interpretation and treatment. The reliability of hallux rigidus classification systems has not yet been tested. The purpose of this study was to evaluate intra- and interobserver reliability using three commonly used classifications for hallux rigidus. Twenty-one plain radiograph sets were presented to ten ACFAS board-certified foot and ankle surgeons. Each physician classified each radiograph based on clinical experience and knowledge according to the Regnauld, Roukis, and Hattrup and Johnson classification systems. The two-way mixed single-measure consistency intraclass correlation was used to calculate intra- and interrater reliability. The intrarater reliability of individual sets for the Roukis and Hattrup and Johnson classification systems was "fair to good" (Roukis, 0.62±0.19; Hattrup and Johnson, 0.62±0.28), whereas the intrarater reliability of individual sets for the Regnauld system bordered between "fair to good" and "poor" (0.43±0.24). The interrater reliability of the mean classification was "excellent" for all three classification systems. Conclusions Reliable and reproducible classification systems are essential for treatment and prognostic implications in hallux rigidus. In our study, Roukis classification system had the best intrarater reliability. Although there are various classification systems for hallux rigidus, our results indicate that all three of these classification systems show reliability and reproducibility.
Park, Myoung-Ok
2017-02-01
[Purpose] The purpose of this study was to determine effects of Gross Motor Function Classification System and Manual Ability Classification System levels on performance-based motor skills of children with spastic cerebral palsy. [Subjects and Methods] Twenty-three children with cerebral palsy were included. The Assessment of Motor and Process Skills was used to evaluate performance-based motor skills in daily life. Gross motor function was assessed using Gross Motor Function Classification Systems, and manual function was measured using the Manual Ability Classification System. [Results] Motor skills in daily activities were significantly different on Gross Motor Function Classification System level and Manual Ability Classification System level. According to the results of multiple regression analysis, children categorized as Gross Motor Function Classification System level III scored lower in terms of performance based motor skills than Gross Motor Function Classification System level I children. Also, when analyzed with respect to Manual Ability Classification System level, level II was lower than level I, and level III was lower than level II in terms of performance based motor skills. [Conclusion] The results of this study indicate that performance-based motor skills differ among children categorized based on Gross Motor Function Classification System and Manual Ability Classification System levels of cerebral palsy.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-26
...-AM78 Prevailing Rate Systems; North American Industry Classification System Based Federal Wage System... 2007 North American Industry Classification System (NAICS) codes currently used in Federal Wage System... (OPM) issued a final rule (73 FR 45853) to update the 2002 North American Industry Classification...
Updating Landsat-derived land-cover maps using change detection and masking techniques
NASA Technical Reports Server (NTRS)
Likens, W.; Maw, K.
1982-01-01
The California Integrated Remote Sensing System's San Bernardino County Project was devised to study the utilization of a data base at a number of jurisdictional levels. The present paper discusses the implementation of change-detection and masking techniques in the updating of Landsat-derived land-cover maps. A baseline landcover classification was first created from a 1976 image, then the adjusted 1976 image was compared with a 1979 scene by the techniques of (1) multidate image classification, (2) difference image-distribution tails thresholding, (3) difference image classification, and (4) multi-dimensional chi-square analysis of a difference image. The union of the results of methods 1, 3 and 4 was used to create a mask of possible change areas between 1976 and 1979, which served to limit analysis of the update image and reduce comparison errors in unchanged areas. The techniques of spatial smoothing of change-detection products, and of combining results of difference change-detection algorithms are also shown to improve Landsat change-detection accuracies.
Prototype learning and dissociable categorization systems in Alzheimer's disease.
Heindel, William C; Festa, Elena K; Ott, Brian R; Landy, Kelly M; Salmon, David P
2013-08-01
Recent neuroimaging studies suggest that prototype learning may be mediated by at least two dissociable memory systems depending on the mode of acquisition, with A/Not-A prototype learning dependent upon a perceptual representation system located within posterior visual cortex and A/B prototype learning dependent upon a declarative memory system associated with medial temporal and frontal regions. The degree to which patients with Alzheimer's disease (AD) can acquire new categorical information may therefore critically depend upon the mode of acquisition. The present study examined A/Not-A and A/B prototype learning in AD patients using procedures that allowed direct comparison of learning across tasks. Despite impaired explicit recall of category features in all tasks, patients showed differential patterns of category acquisition across tasks. First, AD patients demonstrated impaired prototype induction along with intact exemplar classification under incidental A/Not-A conditions, suggesting that the loss of functional connectivity within visual cortical areas disrupted the integration processes supporting prototype induction within the perceptual representation system. Second, AD patients demonstrated intact prototype induction but impaired exemplar classification during A/B learning under observational conditions, suggesting that this form of prototype learning is dependent on a declarative memory system that is disrupted in AD. Third, the surprisingly intact classification of both prototypes and exemplars during A/B learning under trial-and-error feedback conditions suggests that AD patients shifted control from their deficient declarative memory system to a feedback-dependent procedural memory system when training conditions allowed. Taken together, these findings serve to not only increase our understanding of category learning in AD, but to also provide new insights into the ways in which different memory systems interact to support the acquisition of categorical knowledge. Copyright © 2013 Elsevier Ltd. All rights reserved.
Prototype Learning and Dissociable Categorization Systems in Alzheimer’s Disease
Heindel, William C.; Festa, Elena K.; Ott, Brian R.; Landy, Kelly M.; Salmon, David P.
2015-01-01
Recent neuroimaging studies suggest that prototype learning may be mediated by at least two dissociable memory systems depending on the mode of acquisition, with A/Not-A prototype learning dependent upon a perceptual representation system located within posterior visual cortex and A/B prototype learning dependent upon a declarative memory system associated with medial temporal and frontal regions. The degree to which patients with Alzheimer’s disease (AD) can acquire new categorical information may therefore critically depend upon the mode of acquisition. The present study examined A/Not-A and A/B prototype learning in AD patients using procedures that allowed direct comparison of learning across tasks. Despite impaired explicit recall of category features in all tasks, patients showed differential patterns of category acquisition across tasks. First, AD patients demonstrated impaired prototype induction along with intact exemplar classification under incidental A/Not-A conditions, suggesting that the loss of functional connectivity within visual cortical areas disrupted the integration processes supporting prototype induction within the perceptual representation system. Second, AD patients demonstrated intact prototype induction but impaired exemplar classification during A/B learning under observational conditions, suggesting that this form of prototype learning is dependent on a declarative memory system that is disrupted in AD. Third, the surprisingly intact classification of both prototypes and exemplars during A/B learning under trial-and-error feedback conditions suggests that AD patients shifted control from their deficient declarative memory system to a feedback-dependent procedural memory system when training conditions allowed. Taken together, these findings serve to not only increase our understanding of category learning in AD, but to also provide new insights into the ways in which different memory systems interact to support the acquisition of categorical knowledge. PMID:23751172
Land Cover Classification in a Complex Urban-Rural Landscape with Quickbird Imagery
Moran, Emilio Federico.
2010-01-01
High spatial resolution images have been increasingly used for urban land use/cover classification, but the high spectral variation within the same land cover, the spectral confusion among different land covers, and the shadow problem often lead to poor classification performance based on the traditional per-pixel spectral-based classification methods. This paper explores approaches to improve urban land cover classification with Quickbird imagery. Traditional per-pixel spectral-based supervised classification, incorporation of textural images and multispectral images, spectral-spatial classifier, and segmentation-based classification are examined in a relatively new developing urban landscape, Lucas do Rio Verde in Mato Grosso State, Brazil. This research shows that use of spatial information during the image classification procedure, either through the integrated use of textural and spectral images or through the use of segmentation-based classification method, can significantly improve land cover classification performance. PMID:21643433
Muruve, Daniel A; Mann, Michelle C; Chapman, Kevin; Wong, Josee F; Ravani, Pietro; Page, Stacey A; Benediktsson, Hallgrimur
2017-07-26
Advances in technology and the ability to interrogate disease pathogenesis using systems biology approaches are exploding. As exemplified by the substantial progress in the personalized diagnosis and treatment of cancer, the application of systems biology to enable precision medicine in other disciplines such as Nephrology is well underway. Infrastructure that permits the integration of clinical data, patient biospecimens and advanced technologies is required for institutions to contribute to, and benefit from research in molecular disease classification and to devise specific and patient-oriented treatments. We describe the establishment of the Biobank for the Molecular Classification of Kidney Disease (BMCKD) at the University of Calgary, Alberta, Canada. The BMCKD consists of a fully equipped wet laboratory, an information technology infrastructure, and a formal operational, ethical and legal framework for banking human biospecimens and storing clinical data. The BMCKD first consolidated a large retrospective cohort of kidney biopsy specimens to create a population-based renal pathology database and tissue inventory of glomerular and other kidney diseases. The BMCKD will continue to prospectively bank all kidney biopsies performed in Southern Alberta. The BMCKD is equipped to perform molecular, clinical and epidemiologic studies in renal pathology. The BMCKD also developed formal biobanking procedures for human specimens such as blood, urine and nucleic acids collected for basic and clinical research studies or for advanced diagnostic technologies in clinical care. The BMCKD is guided by standard operating procedures, an ethics framework and legal agreements with stakeholders that include researchers, data custodians and patients. The design and structure of the BMCKD permits its inclusion in a wide variety of research and clinical activities. The BMCKD is a core multidisciplinary facility that will bridge basic and clinical research and integrate precision medicine into renal pathology and nephrology.
Debener, Stefan; Emkes, Reiner; Volkening, Nils; Fudickar, Sebastian; Bleichner, Martin G.
2017-01-01
Objective Our aim was the development and validation of a modular signal processing and classification application enabling online electroencephalography (EEG) signal processing on off-the-shelf mobile Android devices. The software application SCALA (Signal ProCessing and CLassification on Android) supports a standardized communication interface to exchange information with external software and hardware. Approach In order to implement a closed-loop brain-computer interface (BCI) on the smartphone, we used a multiapp framework, which integrates applications for stimulus presentation, data acquisition, data processing, classification, and delivery of feedback to the user. Main Results We have implemented the open source signal processing application SCALA. We present timing test results supporting sufficient temporal precision of audio events. We also validate SCALA with a well-established auditory selective attention paradigm and report above chance level classification results for all participants. Regarding the 24-channel EEG signal quality, evaluation results confirm typical sound onset auditory evoked potentials as well as cognitive event-related potentials that differentiate between correct and incorrect task performance feedback. Significance We present a fully smartphone-operated, modular closed-loop BCI system that can be combined with different EEG amplifiers and can easily implement other paradigms. PMID:29349070
Evolutionary fuzzy ARTMAP neural networks for classification of semiconductor defects.
Tan, Shing Chiang; Watada, Junzo; Ibrahim, Zuwairie; Khalid, Marzuki
2015-05-01
Wafer defect detection using an intelligent system is an approach of quality improvement in semiconductor manufacturing that aims to enhance its process stability, increase production capacity, and improve yields. Occasionally, only few records that indicate defective units are available and they are classified as a minority group in a large database. Such a situation leads to an imbalanced data set problem, wherein it engenders a great challenge to deal with by applying machine-learning techniques for obtaining effective solution. In addition, the database may comprise overlapping samples of different classes. This paper introduces two models of evolutionary fuzzy ARTMAP (FAM) neural networks to deal with the imbalanced data set problems in a semiconductor manufacturing operations. In particular, both the FAM models and hybrid genetic algorithms are integrated in the proposed evolutionary artificial neural networks (EANNs) to classify an imbalanced data set. In addition, one of the proposed EANNs incorporates a facility to learn overlapping samples of different classes from the imbalanced data environment. The classification results of the proposed evolutionary FAM neural networks are presented, compared, and analyzed using several classification metrics. The outcomes positively indicate the effectiveness of the proposed networks in handling classification problems with imbalanced data sets.
Blum, Sarah; Debener, Stefan; Emkes, Reiner; Volkening, Nils; Fudickar, Sebastian; Bleichner, Martin G
2017-01-01
Our aim was the development and validation of a modular signal processing and classification application enabling online electroencephalography (EEG) signal processing on off-the-shelf mobile Android devices. The software application SCALA (Signal ProCessing and CLassification on Android) supports a standardized communication interface to exchange information with external software and hardware. In order to implement a closed-loop brain-computer interface (BCI) on the smartphone, we used a multiapp framework, which integrates applications for stimulus presentation, data acquisition, data processing, classification, and delivery of feedback to the user. We have implemented the open source signal processing application SCALA. We present timing test results supporting sufficient temporal precision of audio events. We also validate SCALA with a well-established auditory selective attention paradigm and report above chance level classification results for all participants. Regarding the 24-channel EEG signal quality, evaluation results confirm typical sound onset auditory evoked potentials as well as cognitive event-related potentials that differentiate between correct and incorrect task performance feedback. We present a fully smartphone-operated, modular closed-loop BCI system that can be combined with different EEG amplifiers and can easily implement other paradigms.
Advances in the molecular genetics of gliomas - implications for classification and therapy.
Reifenberger, Guido; Wirsching, Hans-Georg; Knobbe-Thomsen, Christiane B; Weller, Michael
2017-07-01
Genome-wide molecular-profiling studies have revealed the characteristic genetic alterations and epigenetic profiles associated with different types of gliomas. These molecular characteristics can be used to refine glioma classification, to improve prediction of patient outcomes, and to guide individualized treatment. Thus, the WHO Classification of Tumours of the Central Nervous System was revised in 2016 to incorporate molecular biomarkers - together with classic histological features - in an integrated diagnosis, in order to define distinct glioma entities as precisely as possible. This paradigm shift is markedly changing how glioma is diagnosed, and has important implications for future clinical trials and patient management in daily practice. Herein, we highlight the developments in our understanding of the molecular genetics of gliomas, and review the current landscape of clinically relevant molecular biomarkers for use in classification of the disease subtypes. Novel approaches to the genetic characterization of gliomas based on large-scale DNA-methylation profiling and next-generation sequencing are also discussed. In addition, we illustrate how advances in the molecular genetics of gliomas can promote the development and clinical translation of novel pathogenesis-based therapeutic approaches, thereby paving the way towards precision medicine in neuro-oncology.
Toward a Reasoned Classification of Diseases Using Physico-Chemical Based Phenotypes
Schwartz, Laurent; Lafitte, Olivier; da Veiga Moreira, Jorgelindo
2018-01-01
Background: Diseases and health conditions have been classified according to anatomical site, etiological, and clinical criteria. Physico-chemical mechanisms underlying the biology of diseases, such as the flow of energy through cells and tissues, have been often overlooked in classification systems. Objective: We propose a conceptual framework toward the development of an energy-oriented classification of diseases, based on the principles of physical chemistry. Methods: A review of literature on the physical chemistry of biological interactions in a number of diseases is traced from the point of view of the fluid and solid mechanics, electricity, and chemistry. Results: We found consistent evidence in literature of decreased and/or increased physical and chemical forces intertwined with biological processes of numerous diseases, which allowed the identification of mechanical, electric and chemical phenotypes of diseases. Discussion: Biological mechanisms of diseases need to be evaluated and integrated into more comprehensive theories that should account with principles of physics and chemistry. A hypothetical model is proposed relating the natural history of diseases to mechanical stress, electric field, and chemical equilibria (ATP) changes. The present perspective toward an innovative disease classification may improve drug-repurposing strategies in the future. PMID:29541031
Classification of anemia for gastroenterologists
Moreno Chulilla, Jose Antonio; Romero Colás, Maria Soledad; Gutiérrez Martín, Martín
2009-01-01
Most anemia is related to the digestive system by dietary deficiency, malabsorption, or chronic bleeding. We review the World Health Organization definition of anemia, its morphological classification (microcytic, macrocytic and normocytic) and pathogenic classification (regenerative and hypo regenerative), and integration of these classifications. Interpretation of laboratory tests is included, from the simplest (blood count, routine biochemistry) to the more specific (iron metabolism, vitamin B12, folic acid, reticulocytes, erythropoietin, bone marrow examination and Schilling test). In the text and various algorithms, we propose a hierarchical and logical way to reach a diagnosis as quickly as possible, by properly managing the medical interview, physical examination, appropriate laboratory tests, bone marrow examination, and other complementary tests. The prevalence is emphasized in all sections so that the gastroenterologist can direct the diagnosis to the most common diseases, although the tables also include rare diseases. Digestive diseases potentially causing anemia have been studied in preference, but other causes of anemia have been included in the text and tables. Primitive hematological diseases that cause anemia are only listed, but are not discussed in depth. The last section is dedicated to simplifying all items discussed above, using practical rules to guide diagnosis and medical care with the greatest economy of resources and time. PMID:19787825
Structural Validation of Nursing Terminologies
Hardiker, Nicholas R.; Rector, Alan L.
2001-01-01
Objective: The purpose of the study is twofold: 1) to explore the applicability of combinatorial terminologies as the basis for building enumerated classifications, and 2) to investigate the usefulness of formal terminological systems for performing such classification and for assisting in the refinement of both combinatorial terminologies and enumerated classifications. Design: A formal model of the beta version of the International Classification for Nursing Practice (ICNP) was constructed in the compositional terminological language GRAIL (GALEN Representation and Integration Language). Terms drawn from the North American Nursing Diagnosis Association Taxonomy I (NANDA taxonomy) were mapped into the model and classified automatically using GALEN technology. Measurements: The resulting generated hierarchy was compared with the NANDA taxonomy to assess coverage and accuracy of classification. Results: In terms of coverage, in this study ICNP was able to capture 77 percent of NANDA terms using concepts drawn from five of its eight axes. Three axes—Body Site, Topology, and Frequency—were not needed. In terms of accuracy, where hierarchic relationships existed in the generated hierarchy or the NANDA taxonomy, or both, 6 were identical, 19 existed in the generated hierarchy alone (2 of these were considered suitable for incorporation into the NANDA taxonomy and 17 were considered inaccurate), and 23 appeared in the NANDA taxonomy alone (8 of these were considered suitable for incorporation into ICNP, 9 were considered inaccurate, and 6 reflected different, equally valid perspectives). Sixty terms appeared at the top level, with no indenting, in both the generated hierarchy and the NANDA taxonomy. Conclusions: With appropriate refinement, combinatorial terminologies such as ICNP have the potential to provide a useful foundation for representing enumerated classifications such as NANDA. Technologies such as GALEN make possible the process of building automatically enumerated classifications while providing a useful means of validating and refining both combinatorial terminologies and enumerated classifications. PMID:11320066
NASA Astrophysics Data System (ADS)
Lau, Katherine; Isabelle, Martin; Lloyd, Gavin R.; Old, Oliver; Shepherd, Neil; Bell, Ian M.; Dorney, Jennifer; Lewis, Aaran; Gaifulina, Riana; Rodriguez-Justo, Manuel; Kendall, Catherine; Stone, Nicolas; Thomas, Geraint; Reece, David
2016-03-01
Despite the demonstrated potential as an accurate cancer diagnostic tool, Raman spectroscopy (RS) is yet to be adopted by the clinic for histopathology reviews. The Stratified Medicine through Advanced Raman Technologies (SMART) consortium has begun to address some of the hurdles in its adoption for cancer diagnosis. These hurdles include awareness and acceptance of the technology, practicality of integration into the histopathology workflow, data reproducibility and availability of transferrable models. We have formed a consortium, in joint efforts, to develop optimised protocols for tissue sample preparation, data collection and analysis. These protocols will be supported by provision of suitable hardware and software tools to allow statistically sound classification models to be built and transferred for use on different systems. In addition, we are building a validated gastrointestinal (GI) cancers model, which can be trialled as part of the histopathology workflow at hospitals, and a classification tool. At the end of the project, we aim to deliver a robust Raman based diagnostic platform to enable clinical researchers to stage cancer, define tumour margin, build cancer diagnostic models and discover novel disease bio markers.
Classification of US hydropower dams by their modes of operation
McManamay, Ryan A.; Oigbokie, II, Clement O.; Kao, Shih -Chieh; ...
2016-02-19
A key challenge to understanding ecohydrologic responses to dam regulation is the absence of a universally transferable classification framework for how dams operate. In the present paper, we develop a classification system to organize the modes of operation (MOPs) for U.S. hydropower dams and powerplants. To determine the full diversity of MOPs, we mined federal documents, open-access data repositories, and internet sources. W then used CART classification trees to predict MOPs based on physical characteristics, regulation, and project generation. Finally, we evaluated how much variation MOPs explained in sub-daily discharge patterns for stream gages downstream of hydropower dams. After reviewingmore » information for 721 dams and 597 power plants, we developed a 2-tier hierarchical classification based on 1) the storage and control of flows to powerplants, and 2) the presence of a diversion around the natural stream bed. This resulted in nine tier-1 MOPs representing a continuum of operations from strictly peaking, to reregulating, to run-of-river, and two tier-2 MOPs, representing diversion and integral dam-powerhouse configurations. Although MOPs differed in physical characteristics and energy production, classification trees had low accuracies (<62%), which suggested accurate evaluations of MOPs may require individual attention. MOPs and dam storage explained 20% of the variation in downstream subdaily flow characteristics and showed consistent alterations in subdaily flow patterns from reference streams. Lastly, this standardized classification scheme is important for future research including estimating reservoir operations for large-scale hydrologic models and evaluating project economics, environmental impacts, and mitigation.« less
Gross, Douglas P; Zhang, Jing; Steenstra, Ivan; Barnsley, Susan; Haws, Calvin; Amell, Tyler; McIntosh, Greg; Cooper, Juliette; Zaiane, Osmar
2013-12-01
To develop a classification algorithm and accompanying computer-based clinical decision support tool to help categorize injured workers toward optimal rehabilitation interventions based on unique worker characteristics. Population-based historical cohort design. Data were extracted from a Canadian provincial workers' compensation database on all claimants undergoing work assessment between December 2009 and January 2011. Data were available on: (1) numerous personal, clinical, occupational, and social variables; (2) type of rehabilitation undertaken; and (3) outcomes following rehabilitation (receiving time loss benefits or undergoing repeat programs). Machine learning, concerned with the design of algorithms to discriminate between classes based on empirical data, was the foundation of our approach to build a classification system with multiple independent and dependent variables. The population included 8,611 unique claimants. Subjects were predominantly employed (85 %) males (64 %) with diagnoses of sprain/strain (44 %). Baseline clinician classification accuracy was high (ROC = 0.86) for selecting programs that lead to successful return-to-work. Classification performance for machine learning techniques outperformed the clinician baseline classification (ROC = 0.94). The final classifiers were multifactorial and included the variables: injury duration, occupation, job attachment status, work status, modified work availability, pain intensity rating, self-rated occupational disability, and 9 items from the SF-36 Health Survey. The use of machine learning classification techniques appears to have resulted in classification performance better than clinician decision-making. The final algorithm has been integrated into a computer-based clinical decision support tool that requires additional validation in a clinical sample.
Classification of US hydropower dams by their modes of operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
McManamay, Ryan A.; Oigbokie, II, Clement O.; Kao, Shih -Chieh
A key challenge to understanding ecohydrologic responses to dam regulation is the absence of a universally transferable classification framework for how dams operate. In the present paper, we develop a classification system to organize the modes of operation (MOPs) for U.S. hydropower dams and powerplants. To determine the full diversity of MOPs, we mined federal documents, open-access data repositories, and internet sources. W then used CART classification trees to predict MOPs based on physical characteristics, regulation, and project generation. Finally, we evaluated how much variation MOPs explained in sub-daily discharge patterns for stream gages downstream of hydropower dams. After reviewingmore » information for 721 dams and 597 power plants, we developed a 2-tier hierarchical classification based on 1) the storage and control of flows to powerplants, and 2) the presence of a diversion around the natural stream bed. This resulted in nine tier-1 MOPs representing a continuum of operations from strictly peaking, to reregulating, to run-of-river, and two tier-2 MOPs, representing diversion and integral dam-powerhouse configurations. Although MOPs differed in physical characteristics and energy production, classification trees had low accuracies (<62%), which suggested accurate evaluations of MOPs may require individual attention. MOPs and dam storage explained 20% of the variation in downstream subdaily flow characteristics and showed consistent alterations in subdaily flow patterns from reference streams. Lastly, this standardized classification scheme is important for future research including estimating reservoir operations for large-scale hydrologic models and evaluating project economics, environmental impacts, and mitigation.« less
Automatic grade classification of Barretts Esophagus through feature enhancement
NASA Astrophysics Data System (ADS)
Ghatwary, Noha; Ahmed, Amr; Ye, Xujiong; Jalab, Hamid
2017-03-01
Barretts Esophagus (BE) is a precancerous condition that affects the esophagus tube and has the risk of developing esophageal adenocarcinoma. BE is the process of developing metaplastic intestinal epithelium and replacing the normal cells in the esophageal area. The detection of BE is considered difficult due to its appearance and properties. The diagnosis is usually done through both endoscopy and biopsy. Recently, Computer Aided Diagnosis systems have been developed to support physicians opinion when facing difficulty in detection/classification in different types of diseases. In this paper, an automatic classification of Barretts Esophagus condition is introduced. The presented method enhances the internal features of a Confocal Laser Endomicroscopy (CLE) image by utilizing a proposed enhancement filter. This filter depends on fractional differentiation and integration that improve the features in the discrete wavelet transform of an image. Later on, various features are extracted from each enhanced image on different levels for the multi-classification process. Our approach is validated on a dataset that consists of a group of 32 patients with 262 images with different histology grades. The experimental results demonstrated the efficiency of the proposed technique. Our method helps clinicians for more accurate classification. This potentially helps to reduce the need for biopsies needed for diagnosis, facilitate the regular monitoring of treatment/development of the patients case and can help train doctors with the new endoscopy technology. The accurate automatic classification is particularly important for the Intestinal Metaplasia (IM) type, which could turn into deadly cancerous. Hence, this work contributes to automatic classification that facilitates early intervention/treatment and decreasing biopsy samples needed.
An FPGA-Based Rapid Wheezing Detection System
Lin, Bor-Shing; Yen, Tian-Shiue
2014-01-01
Wheezing is often treated as a crucial indicator in the diagnosis of obstructive pulmonary diseases. A rapid wheezing detection system may help physicians to monitor patients over the long-term. In this study, a portable wheezing detection system based on a field-programmable gate array (FPGA) is proposed. This system accelerates wheezing detection, and can be used as either a single-process system, or as an integrated part of another biomedical signal detection system. The system segments sound signals into 2-second units. A short-time Fourier transform was used to determine the relationship between the time and frequency components of wheezing sound data. A spectrogram was processed using 2D bilateral filtering, edge detection, multithreshold image segmentation, morphological image processing, and image labeling, to extract wheezing features according to computerized respiratory sound analysis (CORSA) standards. These features were then used to train the support vector machine (SVM) and build the classification models. The trained model was used to analyze sound data to detect wheezing. The system runs on a Xilinx Virtex-6 FPGA ML605 platform. The experimental results revealed that the system offered excellent wheezing recognition performance (0.912). The detection process can be used with a clock frequency of 51.97 MHz, and is able to perform rapid wheezing classification. PMID:24481034
Improved Hierarchical Optimization-Based Classification of Hyperspectral Images Using Shape Analysis
NASA Technical Reports Server (NTRS)
Tarabalka, Yuliya; Tilton, James C.
2012-01-01
A new spectral-spatial method for classification of hyperspectral images is proposed. The HSegClas method is based on the integration of probabilistic classification and shape analysis within the hierarchical step-wise optimization algorithm. First, probabilistic support vector machines classification is applied. Then, at each iteration two neighboring regions with the smallest Dissimilarity Criterion (DC) are merged, and classification probabilities are recomputed. The important contribution of this work consists in estimating a DC between regions as a function of statistical, classification and geometrical (area and rectangularity) features. Experimental results are presented on a 102-band ROSIS image of the Center of Pavia, Italy. The developed approach yields more accurate classification results when compared to previously proposed methods.
Feature generation and representations for protein-protein interaction classification.
Lan, Man; Tan, Chew Lim; Su, Jian
2009-10-01
Automatic detecting protein-protein interaction (PPI) relevant articles is a crucial step for large-scale biological database curation. The previous work adopted POS tagging, shallow parsing and sentence splitting techniques, but they achieved worse performance than the simple bag-of-words representation. In this paper, we generated and investigated multiple types of feature representations in order to further improve the performance of PPI text classification task. Besides the traditional domain-independent bag-of-words approach and the term weighting methods, we also explored other domain-dependent features, i.e. protein-protein interaction trigger keywords, protein named entities and the advanced ways of incorporating Natural Language Processing (NLP) output. The integration of these multiple features has been evaluated on the BioCreAtIvE II corpus. The experimental results showed that both the advanced way of using NLP output and the integration of bag-of-words and NLP output improved the performance of text classification. Specifically, in comparison with the best performance achieved in the BioCreAtIvE II IAS, the feature-level and classifier-level integration of multiple features improved the performance of classification 2.71% and 3.95%, respectively.
Strudwick, Gillian; Hardiker, Nicholas R
2016-10-01
In the era of evidenced based healthcare, nursing is required to demonstrate that care provided by nurses is associated with optimal patient outcomes, and a high degree of quality and safety. The use of standardized nursing terminologies and classification systems are a way that nursing documentation can be leveraged to generate evidence related to nursing practice. Several widely-reported nursing specific terminologies and classifications systems currently exist including the Clinical Care Classification System, International Classification for Nursing Practice(®), Nursing Intervention Classification, Nursing Outcome Classification, Omaha System, Perioperative Nursing Data Set and NANDA International. However, the influence of these systems on demonstrating the value of nursing and the professions' impact on quality, safety and patient outcomes in published research is relatively unknown. This paper seeks to understand the use of standardized nursing terminology and classification systems in published research, using the International Classification for Nursing Practice(®) as a case study. A systematic review of international published empirical studies on, or using, the International Classification for Nursing Practice(®) were completed using Medline and the Cumulative Index for Nursing and Allied Health Literature. Since 2006, 38 studies have been published on the International Classification for Nursing Practice(®). The main objectives of the published studies have been to validate the appropriateness of the classification system for particular care areas or populations, further develop the classification system, or utilize it to support the generation of new nursing knowledge. To date, most studies have focused on the classification system itself, and a lesser number of studies have used the system to generate information about the outcomes of nursing practice. Based on the published literature that features the International Classification for Nursing Practice, standardized nursing terminology and classification systems appear to be well developed for various populations, settings and to harmonize with other health-related terminology systems. However, the use of the systems to generate new nursing knowledge, and to validate nursing practice is still in its infancy. There is an opportunity now to utilize the well-developed systems in their current state to further what is know about nursing practice, and how best to demonstrate improvements in patient outcomes through nursing care. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Dennis L. Mengel; D. Thompson Tew; [Editors
1991-01-01
Eighteen papers representing four categories-Regional Overviews; Classification System Development; Classification System Interpretation; Mapping/GIS Applications in Classification Systems-present the state of the art in forest-land classification and evaluation in the South. In addition, nine poster papers are presented.
Corvaro, M; Gehen, S; Andrews, K; Chatfield, R; Arasti, C; Mehta, J
2016-12-01
Acute systemic (oral, dermal, inhalation) toxicity testing of agrochemical formulations (end-use products) is mainly needed for Classification and Labelling (C&L) and definition of personal protection equipment (PPE). A retrospective analysis of 225 formulations with available in vivo data showed that: A) LD 50 /LC 50 values were above limit doses in <20.2% via oral route but only in <1% and <2.4% of cases via dermal and inhalation route, respectively; B) for each formulation the acute oral toxicity is always equal or greater than the Acute Toxicity Estimate (ATE) via the other two routes; C) the GHS (Global Harmonised System) computational method based on ATE, currently of limited acceptance, has very high accuracy and specificity for prediction of agrochemical mixture toxicity according to the internationally established classification thresholds. By integrating this evidence, an exposure- and data-based waiving strategy is proposed to determine classification and adequate PPE and to ensure only triggered animal testing is used. Safety characterisation above 2000 mg/kg body weight or 1.0 mg/L air should not be recommended, based on the agrochemical exposure scenarios. The global implementation of these tools would allow a remarkable reduction (up to 95%) in in vivo testing, often inducing lethality and/or severe toxicity, for agrochemical formulations. Copyright © 2016. Published by Elsevier Inc.
Al-Bayati, Mohammad; Grueneisen, Johannes; Lütje, Susanne; Sawicki, Lino M; Suntharalingam, Saravanabavaan; Tschirdewahn, Stephan; Forsting, Michael; Rübben, Herbert; Herrmann, Ken; Umutlu, Lale; Wetter, Axel
2018-01-01
To evaluate diagnostic accuracy of integrated 68Gallium labelled prostate-specific membrane antigen (68Ga-PSMA)-11 positron emission tomography (PET)/MRI in patients with primary prostate cancer (PCa) as compared to multi-parametric MRI. A total of 22 patients with recently diagnosed primary PCa underwent clinically indicated 68Ga-PSMA-11 PET/CT for initial staging followed by integrated 68Ga-PSMA-11 PET/MRI. Images of multi-parametric magnetic resonance imaging (mpMRI), PET and PET/MRI were evaluated separately by applying Prostate Imaging Reporting and Data System (PIRADSv2) for mpMRI and a 5-point Likert scale for PET and PET/MRI. Results were compared with pathology reports of biopsy or resection. Statistical analyses including receiver operating characteristics analysis were performed to compare the diagnostic performance of mpMRI, PET and PET/MRI. PET and integrated PET/MRI demonstrated a higher diagnostic accuracy than mpMRI (area under the curve: mpMRI: 0.679, PET and PET/MRI: 0.951). The proportion of equivocal results (PIRADS 3 and Likert 3) was considerably higher in mpMRI than in PET and PET/MRI. In a notable proportion of equivocal PIRADS results, PET led to a correct shift towards higher suspicion of malignancy and enabled correct lesion classification. Integrated 68Ga-PSMA-11 PET/MRI demonstrates higher diagnostic accuracy than mpMRI and is particularly valuable in tumours with equivocal results from PIRADS classification. © 2018 S. Karger AG, Basel.
A view of personality disorder from the colonial periphery.
Hickling, F W; Walcott, G
2013-01-01
To examine the history of personality disorder in the context of contemporary post-colonial Jamaican society. The literature outlining the development and classification of personality disorder is reviewed. The social, psychiatric and epidemiological studies of personality disorder in Jamaica are presented. A categorical classification system of personality disorder has been in use by the International Classification of Diseases (ICD) and the Diagnostic and Statistical Manual of Mental Disorders (DSM) from the mid 20th century. Challenging that approach is the Minnesota Multiphasic Personality Inventory (MMPI), which represents the dimensional method, which views pathology as a continuum from normal personality traits. Both systems suffer from an absence of cultural flexibility, an absence of a a system of severity, and a lack of treatment specificity, which foster misdiagnosis while making treatment planning difficult and unreliable. The proposed DSM-5 attempts to integrate a prototypematching system and identification of personality traits promises disappointing outcomes. The University of the West Indies, Section of Psychiatry, proposes a phenomenological nosological approach, advocating an alternate DSM Axis I category called Shakatani derived from Swahili shaka (problem), tani (power), and developing a 38-item Jamaica Personality Disorder Inventory (JPDI) screening questionnaire for diagnosing this condition. The epidemiological results using this instrument are reviewed, and the Jamaican print, broadcast and social media responses to this research in Jamaica are described. The heritage of slavery and colonial oppression in Jamaica has resulted in maladaptive personality disorders that have led to extremely high rates of homicide, violence and transgressive behaviour.
2014-10-02
potential advantages of using multi- variate classification/discrimination/ anomaly detection meth- ods on real world accelerometric condition monitoring ...case of false anomaly reports. A possible explanation of this phenomenon could be given 8 ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT...of those helicopters. 1. Anomaly detection by means of a self-learning Shewhart control chart. A problem highlighted by the experts of Agusta- Westland
1994-01-01
systems, other European descriptions of similar statement analyses can be found in Arntzen (1970) (cited in Kdhnken & Steller, 1988), Szewczyk (1973...deals solely with the verbal content of the witness’ statement or allegation. Arntzen provided the first classification of the specific CBCA criteria...criteria as unsystematic and unconvincing. Steller and Kdhnken (1989) integrated the criteria provided by Arntzen and previous investigators to
IWRM Policy in Colombia, drawbacks and strategies towards integration
NASA Astrophysics Data System (ADS)
Cardona, C. A.
2016-12-01
Since the establishment of the Integrated Water Resource Management National Policy in Colombia in 2010- IWRMNP, several initiatives has been developed in order to understand and manage water within the integration perspective. However, the Colombian institutional and legal frameworks do not favor the implementation of integrated management exercises, and many efforts have been fruitless in recent years. Additionally, there is an avalanche of techniques and available technologies to develop integrated models, analysis or assessments, which frequently are interpreted as the same tool. An analysis of the Colombian context in regulatory terms and institutions involved is carried out, as a prelude to address the topic of analysis modeling and integrated management. Moreover, in Colombian legislation there exists policies regarding integrated soil management, integrated biodiversity management, as well as several current international trends such as integrated landscape planning, integrated urban areas management etc. Therefore, and in light of the initial analysis, a discussion of redundancy or complementarity of such management it is carried out. Finally, a strategy is proposed for decision makers of local and regional level, trying to overcome technical gaps left by national policy and regulations. This is done from a discussion of the various anthropic damages to water resources systems. Also a classification of integrated models is proposed and a general approach to systems integrated resource management to finally present a state- management matrix methodology applicable to different cases and management requirements. The results of its implementation in a small basin is presented.
42 CFR 412.513 - Patient classification system.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 42 Public Health 2 2010-10-01 2010-10-01 false Patient classification system. 412.513 Section 412... Long-Term Care Hospitals § 412.513 Patient classification system. (a) Classification methodology. CMS...-DRGs. (1) The classification of a particular discharge is based, as appropriate, on the patient's age...
42 CFR 412.513 - Patient classification system.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 42 Public Health 2 2011-10-01 2011-10-01 false Patient classification system. 412.513 Section 412... Long-Term Care Hospitals § 412.513 Patient classification system. (a) Classification methodology. CMS...-DRGs. (1) The classification of a particular discharge is based, as appropriate, on the patient's age...
Henriksen, James A.; Heasley, John; Kennen, Jonathan G.; Nieswand, Steven
2006-01-01
Applying the Hydroecological Integrity Assessment Process involves four steps: (1) a hydrologic classification of relatively unmodified streams in a geographic area using long-term gage records and 171 ecologically relevant indices; (2) the identification of statistically significant, nonredundant, hydroecologically relevant indices associated with the five major flow components for each stream class; and (3) the development of a stream-classification tool and a hydrologic assessment tool. Four computer software tools have been developed.
Neural CMOS-integrated circuit and its application to data classification.
Göknar, Izzet Cem; Yildiz, Merih; Minaei, Shahram; Deniz, Engin
2012-05-01
Implementation and new applications of a tunable complementary metal-oxide-semiconductor-integrated circuit (CMOS-IC) of a recently proposed classifier core-cell (CC) are presented and tested with two different datasets. With two algorithms-one based on Fisher's linear discriminant analysis and the other based on perceptron learning, used to obtain CCs' tunable parameters-the Haberman and Iris datasets are classified. The parameters so obtained are used for hard-classification of datasets with a neural network structured circuit. Classification performance and coefficient calculation times for both algorithms are given. The CC has 6-ns response time and 1.8-mW power consumption. The fabrication parameters used for the IC are taken from CMOS AMS 0.35-μm technology.
NASA Astrophysics Data System (ADS)
Ding, Kai; Jiang, Ping-Yu
2017-09-01
Currently, little work has been devoted to the mediators and tools for multi-role production interactions in the mass individualization environment. This paper proposes a kind of hardware-software-integrated mediators called social sensors (S2ensors) to facilitate the production interactions among customers, manufacturers, and other stakeholders in the social manufacturing systems (SMS). The concept, classification, operational logics, and formalization of S2ensors are clarified. S2ensors collect subjective data from physical sensors and objective data from sensory input in mobile Apps, merge them into meaningful information for decision-making, and finally feed the decisions back for reaction and execution. Then, an S2ensors-Cloud platform is discussed to integrate different S2ensors to work for SMSs in an autonomous way. A demonstrative case is studied by developing a prototype system and the results show that S2ensors and S2ensors-Cloud platform can assist multi-role stakeholders interact and collaborate for the production tasks. It reveals the mediator-enabled mechanisms and methods for production interactions among stakeholders in SMS.
Van Berkel, Gary J; Kertesz, Vilmos
2017-02-15
An "Open Access"-like mass spectrometric platform to fully utilize the simplicity of the manual open port sampling interface for rapid characterization of unprocessed samples by liquid introduction atmospheric pressure ionization mass spectrometry has been lacking. The in-house developed integrated software with a simple, small and relatively low-cost mass spectrometry system introduced here fills this void. Software was developed to operate the mass spectrometer, to collect and process mass spectrometric data files, to build a database and to classify samples using such a database. These tasks were accomplished via the vendor-provided software libraries. Sample classification based on spectral comparison utilized the spectral contrast angle method. Using the developed software platform near real-time sample classification is exemplified using a series of commercially available blue ink rollerball pens and vegetable oils. In the case of the inks, full scan positive and negative ion ESI mass spectra were both used for database generation and sample classification. For the vegetable oils, full scan positive ion mode APCI mass spectra were recorded. The overall accuracy of the employed spectral contrast angle statistical model was 95.3% and 98% in case of the inks and oils, respectively, using leave-one-out cross-validation. This work illustrates that an open port sampling interface/mass spectrometer combination, with appropriate instrument control and data processing software, is a viable direct liquid extraction sampling and analysis system suitable for the non-expert user and near real-time sample classification via database matching. Published in 2016. This article is a U.S. Government work and is in the public domain in the USA. Published in 2016. This article is a U.S. Government work and is in the public domain in the USA.
CV-Muzar - The Virtual Community Environment that Uses Multiagent Systems for Formation of Groups
NASA Astrophysics Data System (ADS)
de Marchi, Ana Carolina Bertoletti; Moraes, Márcia Cristina
The purpose of this chapter is to present two agents' societies responsible for group formation (sub-communities) in CV-Muzar (Augusto Ruschi Zoobotanical Museum Virtual Community of the University of Passo Fundo). These societies are integrated to execute a data mining classification process. The first society is a static society that intends preprocessing data, investigating the information about groups in the CV-Muzar. The second society is a dynamical society that will make a classification process by analyzing the existing groups and look for participants that have common subjects in order to constitute a sub-community. The formation of sub-communities is a new functionality within the CV-Muzar that intends to bring the participants together according to two scopes: interest similarity and knowledge complementarities.
NASA Astrophysics Data System (ADS)
Chestek, Cynthia A.; Gilja, Vikash; Blabe, Christine H.; Foster, Brett L.; Shenoy, Krishna V.; Parvizi, Josef; Henderson, Jaimie M.
2013-04-01
Objective. Brain-machine interface systems translate recorded neural signals into command signals for assistive technology. In individuals with upper limb amputation or cervical spinal cord injury, the restoration of a useful hand grasp could significantly improve daily function. We sought to determine if electrocorticographic (ECoG) signals contain sufficient information to select among multiple hand postures for a prosthetic hand, orthotic, or functional electrical stimulation system.Approach. We recorded ECoG signals from subdural macro- and microelectrodes implanted in motor areas of three participants who were undergoing inpatient monitoring for diagnosis and treatment of intractable epilepsy. Participants performed five distinct isometric hand postures, as well as four distinct finger movements. Several control experiments were attempted in order to remove sensory information from the classification results. Online experiments were performed with two participants. Main results. Classification rates were 68%, 84% and 81% for correct identification of 5 isometric hand postures offline. Using 3 potential controls for removing sensory signals, error rates were approximately doubled on average (2.1×). A similar increase in errors (2.6×) was noted when the participant was asked to make simultaneous wrist movements along with the hand postures. In online experiments, fist versus rest was successfully classified on 97% of trials; the classification output drove a prosthetic hand. Online classification performance for a larger number of hand postures remained above chance, but substantially below offline performance. In addition, the long integration windows used would preclude the use of decoded signals for control of a BCI system. Significance. These results suggest that ECoG is a plausible source of command signals for prosthetic grasp selection. Overall, avenues remain for improvement through better electrode designs and placement, better participant training, and characterization of non-stationarities such that ECoG could be a viable signal source for grasp control for amputees or individuals with paralysis.
Facial clefts and facial dysplasia: revisiting the classification.
Mazzola, Riccardo F; Mazzola, Isabella C
2014-01-01
Most craniofacial malformations are identified by their appearance. The majority of the classification systems are mainly clinical or anatomical, not related to the different levels of development of the malformation, and underlying pathology is usually not taken into consideration. In 1976, Tessier first emphasized the relationship between soft tissues and the underlying bone stating that "a fissure of the soft tissue corresponds, as a general rule, with a cleft of the bony structure". He introduced a cleft numbering system around the orbit from 0 to 14 depending on its relationship to the zero line (ie, the vertical midline cleft of the face). The classification, easy to understand, became widely accepted because the recording of the malformations was simple and communication between observers facilitated. It represented a great breakthrough in identifying craniofacial malformations, named clefts by him. In the present paper, the embryological-based classification of craniofacial malformations, proposed in 1983 and in 1990 by us, has been revisited. Its aim was to clarify some unanswered questions regarding apparently atypical or bizarre anomalies and to establish as much as possible the moment when this event occurred. In our opinion, this classification system may well integrate the one proposed by Tessier and tries at the same time to find a correlation between clinical observation and morphogenesis.Terminology is important. The overused term cleft should be reserved to true clefts only, developed from disturbances in the union of the embryonic facial processes, between the lateronasal and maxillary process (or oro-naso-ocular cleft); between the medionasal and maxillary process (or cleft of the lip); between the maxillary processes (or cleft of the palate); and between the maxillary and mandibular process (or macrostomia).For the other types of defects, derived from alteration of bone production centers, the word dysplasia should be used instead. Facial dysplasias have been ranged in a helix form and named after the site of the developmental arrest. Thus, an internasal, nasal, nasomaxillary, maxillary and malar dysplasia, depending on the involved area, have been identified.The classification may provide a useful guide in better understanding the morphogenesis of rare craniofacial malformations.
Tastan, Sevinc; Linch, Graciele C. F.; Keenan, Gail M.; Stifter, Janet; McKinney, Dawn; Fahey, Linda; Dunn Lopez, Karen; Yao, Yingwei; Wilkie, Diana J.
2014-01-01
Objective To determine the state of the science for the five standardized nursing terminology sets in terms of level of evidence and study focus. Design Systematic Review. Data sources Keyword search of PubMed, CINAHL, and EMBASE databases from 1960s to March 19, 2012 revealed 1,257 publications. Review Methods From abstract review we removed duplicate articles, those not in English or with no identifiable standardized nursing terminology, and those with a low-level of evidence. From full text review of the remaining 312 articles, eight trained raters used a coding system to record standardized nursing terminology names, publication year, country, and study focus. Inter-rater reliability confirmed the level of evidence. We analyzed coded results. Results On average there were 4 studies per year between 1985 and 1995. The yearly number increased to 14 for the decade between 1996–2005, 21 between 2006–2010, and 25 in 2011. Investigators conducted the research in 27 countries. By evidence level for the 312 studies 72.4% were descriptive, 18.9% were observational, and 8.7% were intervention studies. Of the 312 reports, 72.1% focused on North American Nursing Diagnosis-International, Nursing Interventions Classification, Nursing Outcome Classification, or some combination of those three standardized nursing terminologies; 9.6% on Omaha System; 7.1% on International Classification for Nursing Practice; 1.6% on Clinical Care Classification/Home Health Care Classification; 1.6% on Perioperative Nursing Data Set; and 8.0% on two or more standardized nursing terminology sets. There were studies in all 10 foci categories including those focused on concept analysis/classification infrastructure (n = 43), the identification of the standardized nursing terminology concepts applicable to a health setting from registered nurses’ documentation (n = 54), mapping one terminology to another (n = 58), implementation of standardized nursing terminologies into electronic health records (n = 12), and secondary use of electronic health record data (n = 19). Conclusions Findings reveal that the number of standardized nursing terminology publications increased primarily since 2000 with most focusing on North American Nursing Diagnosis-International, Nursing Interventions Classification, and Nursing Outcome Classification. The majority of the studies were descriptive, qualitative, or correlational designs that provide a strong base for understanding the validity and reliability of the concepts underlying the standardized nursing terminologies. There is evidence supporting the successful integration and use in electronic health records for two standardized nursing terminology sets: (1) the North American Nursing Diagnosis-International, Nursing Interventions Classification, and Nursing Outcome Classification set; and (2) the Omaha System set. Researchers, however, should continue to strengthen standardized nursing terminology study designs to promote continuous improvement of the standardized nursing terminologies and use in clinical practice. PMID:24412062
Pirih, Nina; Kunej, Tanja
2018-05-01
The volume of publications and the type of research approaches used in omics system sciences are vast and continue to expand rapidly. This increased complexity and heterogeneity of omics data are challenging data extraction, sensemaking, analyses, knowledge translation, and interpretation. An extended and dynamic taxonomy for the classification and summary of omics studies are essential. We present an updated taxonomy for classification of omics research studies based on four criteria: (1) type and number of genomic loci in a research study, (2) number of species and biological samples, (3) the type of omics technology (e.g., genomics, transcriptomics, and proteomics) and omics technology application type (e.g., pharmacogenomics and nutrigenomics), and (4) phenotypes. In addition, we present a graphical summary approach that enables the researchers to define the main characteristics of their study in a single figure, and offers the readers to rapidly grasp the published study and omics data. We searched the PubMed and the Web of Science from 09/2002 to 02/2018, including research and review articles, and identified 90 scientific publications. We propose a call toward omics studies' standardization for reporting in scientific literature. We anticipate the proposed classification scheme will usefully contribute to improved classification of published reports in genomics and other omics fields, and help data extraction from publications for future multiomics data integration.
Liu, Yanqiu; Lu, Huijuan; Yan, Ke; Xia, Haixia; An, Chunlin
2016-01-01
Embedding cost-sensitive factors into the classifiers increases the classification stability and reduces the classification costs for classifying high-scale, redundant, and imbalanced datasets, such as the gene expression data. In this study, we extend our previous work, that is, Dissimilar ELM (D-ELM), by introducing misclassification costs into the classifier. We name the proposed algorithm as the cost-sensitive D-ELM (CS-D-ELM). Furthermore, we embed rejection cost into the CS-D-ELM to increase the classification stability of the proposed algorithm. Experimental results show that the rejection cost embedded CS-D-ELM algorithm effectively reduces the average and overall cost of the classification process, while the classification accuracy still remains competitive. The proposed method can be extended to classification problems of other redundant and imbalanced data.
A computer-aided detection (CAD) system with a 3D algorithm for small acute intracranial hemorrhage
NASA Astrophysics Data System (ADS)
Wang, Ximing; Fernandez, James; Deshpande, Ruchi; Lee, Joon K.; Chan, Tao; Liu, Brent
2012-02-01
Acute Intracranial hemorrhage (AIH) requires urgent diagnosis in the emergency setting to mitigate eventual sequelae. However, experienced radiologists may not always be available to make a timely diagnosis. This is especially true for small AIH, defined as lesion smaller than 10 mm in size. A computer-aided detection (CAD) system for the detection of small AIH would facilitate timely diagnosis. A previously developed 2D algorithm shows high false positive rates in the evaluation based on LAC/USC cases, due to the limitation of setting up correct coordinate system for the knowledge-based classification system. To achieve a higher sensitivity and specificity, a new 3D algorithm is developed. The algorithm utilizes a top-hat transformation and dynamic threshold map to detect small AIH lesions. Several key structures of brain are detected and are used to set up a 3D anatomical coordinate system. A rule-based classification of the lesion detected is applied based on the anatomical coordinate system. For convenient evaluation in clinical environment, the CAD module is integrated with a stand-alone system. The CAD is evaluated by small AIH cases and matched normal collected in LAC/USC. The result of 3D CAD and the previous 2D CAD has been compared.
Bellos, Christos; Papadopoulos, Athanassios; Rosso, Roberto; Fotiadis, Dimitrios I
2011-01-01
CHRONIOUS system is an integrated platform aiming at the management of chronic disease patients. One of the most important components of the system is a Decision Support System (DSS) that has been developed in a Smart Device (SD). This component decides on patient's current health status by combining several data, which are acquired either by wearable sensors or manually inputted by the patient or retrieved from the specific database. In case no abnormal situation has been tracked, the DSS takes no action and remains deactivated until next abnormal situation pack of data are being acquired or next scheduled data being transmitted. The DSS that has been implemented is an integrated classification system with two parallel classifiers, combining an expert system (rule-based system) and a supervised classifier, such as Support Vector Machines (SVM), Random Forests, artificial Neural Networks (aNN like the Multi-Layer Perceptron), Decision Trees and Naïve Bayes. The above categorized system is useful for providing critical information about the health status of the patient.
NASA Astrophysics Data System (ADS)
Hu, Yifan; Han, Hao; Zhu, Wei; Li, Lihong; Pickhardt, Perry J.; Liang, Zhengrong
2016-03-01
Feature classification plays an important role in differentiation or computer-aided diagnosis (CADx) of suspicious lesions. As a widely used ensemble learning algorithm for classification, random forest (RF) has a distinguished performance for CADx. Our recent study has shown that the location index (LI), which is derived from the well-known kNN (k nearest neighbor) and wkNN (weighted k nearest neighbor) classifier [1], has also a distinguished role in the classification for CADx. Therefore, in this paper, based on the property that the LI will achieve a very high accuracy, we design an algorithm to integrate the LI into RF for improved or higher value of AUC (area under the curve of receiver operating characteristics -- ROC). Experiments were performed by the use of a database of 153 lesions (polyps), including 116 neoplastic lesions and 37 hyperplastic lesions, with comparison to the existing classifiers of RF and wkNN, respectively. A noticeable gain by the proposed integrated classifier was quantified by the AUC measure.
Emotion recognition from EEG using higher order crossings.
Petrantonakis, Panagiotis C; Hadjileontiadis, Leontios J
2010-03-01
Electroencephalogram (EEG)-based emotion recognition is a relatively new field in the affective computing area with challenging issues regarding the induction of the emotional states and the extraction of the features in order to achieve optimum classification performance. In this paper, a novel emotion evocation and EEG-based feature extraction technique is presented. In particular, the mirror neuron system concept was adapted to efficiently foster emotion induction by the process of imitation. In addition, higher order crossings (HOC) analysis was employed for the feature extraction scheme and a robust classification method, namely HOC-emotion classifier (HOC-EC), was implemented testing four different classifiers [quadratic discriminant analysis (QDA), k-nearest neighbor, Mahalanobis distance, and support vector machines (SVMs)], in order to accomplish efficient emotion recognition. Through a series of facial expression image projection, EEG data have been collected by 16 healthy subjects using only 3 EEG channels, namely Fp1, Fp2, and a bipolar channel of F3 and F4 positions according to 10-20 system. Two scenarios were examined using EEG data from a single-channel and from combined-channels, respectively. Compared with other feature extraction methods, HOC-EC appears to outperform them, achieving a 62.3% (using QDA) and 83.33% (using SVM) classification accuracy for the single-channel and combined-channel cases, respectively, differentiating among the six basic emotions, i.e., happiness, surprise, anger, fear, disgust, and sadness. As the emotion class-set reduces its dimension, the HOC-EC converges toward maximum classification rate (100% for five or less emotions), justifying the efficiency of the proposed approach. This could facilitate the integration of HOC-EC in human machine interfaces, such as pervasive healthcare systems, enhancing their affective character and providing information about the user's emotional status (e.g., identifying user's emotion experiences, recurring affective states, time-dependent emotional trends).
Keeley, Jared W; Reed, Geoffrey M; Roberts, Michael C; Evans, Spencer C; Medina-Mora, María Elena; Robles, Rebeca; Rebello, Tahilia; Sharan, Pratap; Gureje, Oye; First, Michael B; Andrews, Howard F; Ayuso-Mateos, José Luís; Gaebel, Wolfgang; Zielasek, Juergen; Saxena, Shekhar
2016-01-01
The World Health Organization (WHO) Department of Mental Health and Substance Abuse has developed a systematic program of field studies to evaluate and improve the clinical utility of the proposed diagnostic guidelines for mental and behavioral disorders in the Eleventh Revision of the International Classification of Diseases and Related Health Problems (ICD-11). The clinical utility of a diagnostic classification is critical to its function as the interface between health encounters and health information, and to making the ICD-11 be a more effective tool for helping the WHO's 194 member countries, including the United States, reduce the global disease burden of mental disorders. This article describes the WHO's efforts to develop a science of clinical utility in regard to one of the two major classification systems for mental disorders. We present the rationale and methodologies for an integrated and complementary set of field study strategies, including large international surveys, formative field studies of the structure of clinicians' conceptualization of mental disorders, case-controlled field studies using experimental methodologies to evaluate the impact of proposed changes to the diagnostic guidelines on clinicians' diagnostic decision making, and ecological implementation field studies of clinical utility in the global settings in which the guidelines will ultimately be implemented. The results of these studies have already been used in making decisions about the structure and content of ICD-11. If clinical utility is indeed among the highest aims of diagnostic systems for mental disorders, as their developers routinely claim, future revision efforts should continue to build on these efforts. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Automatic identification of species with neural networks.
Hernández-Serna, Andrés; Jiménez-Segura, Luz Fernanda
2014-01-01
A new automatic identification system using photographic images has been designed to recognize fish, plant, and butterfly species from Europe and South America. The automatic classification system integrates multiple image processing tools to extract the geometry, morphology, and texture of the images. Artificial neural networks (ANNs) were used as the pattern recognition method. We tested a data set that included 740 species and 11,198 individuals. Our results show that the system performed with high accuracy, reaching 91.65% of true positive fish identifications, 92.87% of plants and 93.25% of butterflies. Our results highlight how the neural networks are complementary to species identification.
Reliability of injury grading systems for patients with blunt splenic trauma.
Olthof, D C; van der Vlies, C H; Scheerder, M J; de Haan, R J; Beenen, L F M; Goslings, J C; van Delden, O M
2014-01-01
The most widely used grading system for blunt splenic injury is the American Association for the Surgery of Trauma (AAST) organ injury scale. In 2007 a new grading system was developed. This 'Baltimore CT grading system' is superior to the AAST classification system in predicting the need for angiography and embolization or surgery. The objective of this study was to assess inter- and intraobserver reliability between radiologists in classifying splenic injury according to both grading systems. CT scans of 83 patients with blunt splenic injury admitted between 1998 and 2008 to an academic Level 1 trauma centre were retrospectively reviewed. Inter and intrarater reliability were expressed in Cohen's or weighted Kappa values. Overall weighted interobserver Kappa coefficients for the AAST and 'Baltimore CT grading system' were respectively substantial (kappa=0.80) and almost perfect (kappa=0.85). Average weighted intraobserver Kappa's values were in the 'almost perfect' range (AAST: kappa=0.91, 'Baltimore CT grading system': kappa=0.81). The present study shows that overall the inter- and intraobserver reliability for grading splenic injury according to the AAST grading system and 'Baltimore CT grading system' are equally high. Because of the integration of vascular injury, the 'Baltimore CT grading system' supports clinical decision making. We therefore recommend use of this system in the classification of splenic injury. Copyright © 2012 Elsevier Ltd. All rights reserved.
Waring, R; Knight, R
2013-01-01
Children with speech sound disorders (SSD) form a heterogeneous group who differ in terms of the severity of their condition, underlying cause, speech errors, involvement of other aspects of the linguistic system and treatment response. To date there is no universal and agreed-upon classification system. Instead, a number of theoretically differing classification systems have been proposed based on either an aetiological (medical) approach, a descriptive-linguistic approach or a processing approach. To describe and review the supporting evidence, and to provide a critical evaluation of the current childhood SSD classification systems. Descriptions of the major specific approaches to classification are reviewed and research papers supporting the reliability and validity of the systems are evaluated. Three specific paediatric SSD classification systems; the aetiologic-based Speech Disorders Classification System, the descriptive-linguistic Differential Diagnosis system, and the processing-based Psycholinguistic Framework are identified as potentially useful in classifying children with SSD into homogeneous subgroups. The Differential Diagnosis system has a growing body of empirical support from clinical population studies, across language error pattern studies and treatment efficacy studies. The Speech Disorders Classification System is currently a research tool with eight proposed subgroups. The Psycholinguistic Framework is a potential bridge to linking cause and surface level speech errors. There is a need for a universally agreed-upon classification system that is useful to clinicians and researchers. The resulting classification system needs to be robust, reliable and valid. A universal classification system would allow for improved tailoring of treatments to subgroups of SSD which may, in turn, lead to improved treatment efficacy. © 2012 Royal College of Speech and Language Therapists.
Lawrason Hughes, Amy; Murray, Nicole; Valdez, Tulio A; Kelly, Raeanne; Kavanagh, Katherine
2014-01-01
National attention has focused on the importance of handoffs in medicine. Our practice during airway patient handoffs is to communicate a patient-specific emergency plan for airway reestablishment; patients who are not intubatable by standard means are at higher risk for failure. There is currently no standard classification system describing airway risk in tracheotomized patients. To introduce and assess the interrater reliability of a simple airway risk classification system, the Connecticut Airway Risk Evaluation (CARE) system. We created a novel classification system, the CARE system, based on ease of intubation and the need for ventilation: group 1, easily intubatable; group 2, intubatable with special equipment and/or maneuvers; group 3, not intubatable. A "v" was appended to any group number to indicate the need for mechanical ventilation. We performed a retrospective medical chart review of patients aged 0 to 18 years who were undergoing tracheotomy at our tertiary care pediatric hospital between January 2000 and April 2011. INTERVENTIONS Each patient's medical history, including airway disease and means of intubation, was reviewed by 4 raters. Patient airways were separately rated as CARE groups 1, 2, or 3, each group with or without a v appended, as appropriate, based on the available information. After the patients were assigned to an airway group by each of the 4 raters, the interrater reliability was calculated to determine the ease of use of the rating system. We identified complete data for 155 of 169 patients (92%), resulting in a total of 620 ratings. Based on the patient's ease of intubation, raters categorized tracheotomized patients into group 1 (70%, 432 of 620); group 2 (25%, 157 of 620); or group 3 (5%, 29 of 620), each with a v appended if appropriate. The interrater reliability was κ = 0.95. We propose an airway risk classification system for tracheotomized patients, CARE, that has high interrater reliability and is easy to use and interpret. As medical providers and national organizations place more focus on improvements in interprovider communication, the creation of an airway handoff tool is integral to improving patient safety and airway management strategies following tracheotomy complications.
Cao, Lu; Graauw, Marjo de; Yan, Kuan; Winkel, Leah; Verbeek, Fons J
2016-05-03
Endocytosis is regarded as a mechanism of attenuating the epidermal growth factor receptor (EGFR) signaling and of receptor degradation. There is increasing evidence becoming available showing that breast cancer progression is associated with a defect in EGFR endocytosis. In order to find related Ribonucleic acid (RNA) regulators in this process, high-throughput imaging with fluorescent markers is used to visualize the complex EGFR endocytosis process. Subsequently a dedicated automatic image and data analysis system is developed and applied to extract the phenotype measurement and distinguish different developmental episodes from a huge amount of images acquired through high-throughput imaging. For the image analysis, a phenotype measurement quantifies the important image information into distinct features or measurements. Therefore, the manner in which prominent measurements are chosen to represent the dynamics of the EGFR process becomes a crucial step for the identification of the phenotype. In the subsequent data analysis, classification is used to categorize each observation by making use of all prominent measurements obtained from image analysis. Therefore, a better construction for a classification strategy will support to raise the performance level in our image and data analysis system. In this paper, we illustrate an integrated analysis method for EGFR signalling through image analysis of microscopy images. Sophisticated wavelet-based texture measurements are used to obtain a good description of the characteristic stages in the EGFR signalling. A hierarchical classification strategy is designed to improve the recognition of phenotypic episodes of EGFR during endocytosis. Different strategies for normalization, feature selection and classification are evaluated. The results of performance assessment clearly demonstrate that our hierarchical classification scheme combined with a selected set of features provides a notable improvement in the temporal analysis of EGFR endocytosis. Moreover, it is shown that the addition of the wavelet-based texture features contributes to this improvement. Our workflow can be applied to drug discovery to analyze defected EGFR endocytosis processes.
NASA Astrophysics Data System (ADS)
Wan, Xiaoqing; Zhao, Chunhui; Gao, Bing
2017-11-01
The integration of an edge-preserving filtering technique in the classification of a hyperspectral image (HSI) has been proven effective in enhancing classification performance. This paper proposes an ensemble strategy for HSI classification using an edge-preserving filter along with a deep learning model and edge detection. First, an adaptive guided filter is applied to the original HSI to reduce the noise in degraded images and to extract powerful spectral-spatial features. Second, the extracted features are fed as input to a stacked sparse autoencoder to adaptively exploit more invariant and deep feature representations; then, a random forest classifier is applied to fine-tune the entire pretrained network and determine the classification output. Third, a Prewitt compass operator is further performed on the HSI to extract the edges of the first principal component after dimension reduction. Moreover, the regional growth rule is applied to the resulting edge logical image to determine the local region for each unlabeled pixel. Finally, the categories of the corresponding neighborhood samples are determined in the original classification map; then, the major voting mechanism is implemented to generate the final output. Extensive experiments proved that the proposed method achieves competitive performance compared with several traditional approaches.
NASA Astrophysics Data System (ADS)
Adelabu, Samuel; Mutanga, Onisimo; Adam, Elhadi; Cho, Moses Azong
2013-01-01
Classification of different tree species in semiarid areas can be challenging as a result of the change in leaf structure and orientation due to soil moisture constraints. Tree species mapping is, however, a key parameter for forest management in semiarid environments. In this study, we examined the suitability of 5-band RapidEye satellite data for the classification of five tree species in mopane woodland of Botswana using machine leaning algorithms with limited training samples.We performed classification using random forest (RF) and support vector machines (SVM) based on EnMap box. The overall accuracies for classifying the five tree species was 88.75 and 85% for both SVM and RF, respectively. We also demonstrated that the new red-edge band in the RapidEye sensor has the potential for classifying tree species in semiarid environments when integrated with other standard bands. Similarly, we observed that where there are limited training samples, SVM is preferred over RF. Finally, we demonstrated that the two accuracy measures of quantity and allocation disagreement are simpler and more helpful for the vast majority of remote sensing classification process than the kappa coefficient. Overall, high species classification can be achieved using strategically located RapidEye bands integrated with advanced processing algorithms.
Detection of interaction articles and experimental methods in biomedical literature.
Schneider, Gerold; Clematide, Simon; Rinaldi, Fabio
2011-10-03
This article describes the approaches taken by the OntoGene group at the University of Zurich in dealing with two tasks of the BioCreative III competition: classification of articles which contain curatable protein-protein interactions (PPI-ACT) and extraction of experimental methods (PPI-IMT). Two main achievements are described in this paper: (a) a system for document classification which crucially relies on the results of an advanced pipeline of natural language processing tools; (b) a system which is capable of detecting all experimental methods mentioned in scientific literature, and listing them with a competitive ranking (AUC iP/R > 0.5). The results of the BioCreative III shared evaluation clearly demonstrate that significant progress has been achieved in the domain of biomedical text mining in the past few years. Our own contribution, together with the results of other participants, provides evidence that natural language processing techniques have become by now an integral part of advanced text mining approaches.
Prasoon, Adhish; Petersen, Kersten; Igel, Christian; Lauze, François; Dam, Erik; Nielsen, Mads
2013-01-01
Segmentation of anatomical structures in medical images is often based on a voxel/pixel classification approach. Deep learning systems, such as convolutional neural networks (CNNs), can infer a hierarchical representation of images that fosters categorization. We propose a novel system for voxel classification integrating three 2D CNNs, which have a one-to-one association with the xy, yz and zx planes of 3D image, respectively. We applied our method to the segmentation of tibial cartilage in low field knee MRI scans and tested it on 114 unseen scans. Although our method uses only 2D features at a single scale, it performs better than a state-of-the-art method using 3D multi-scale features. In the latter approach, the features and the classifier have been carefully adapted to the problem at hand. That we were able to get better results by a deep learning architecture that autonomously learns the features from the images is the main insight of this study.
Soleymani, Ali; Pennekamp, Frank; Petchey, Owen L.; Weibel, Robert
2015-01-01
Recent advances in tracking technologies such as GPS or video tracking systems describe the movement paths of individuals in unprecedented details and are increasingly used in different fields, including ecology. However, extracting information from raw movement data requires advanced analysis techniques, for instance to infer behaviors expressed during a certain period of the recorded trajectory, or gender or species identity in case data is obtained from remote tracking. In this paper, we address how different movement features affect the ability to automatically classify the species identity, using a dataset of unicellular microbes (i.e., ciliates). Previously, morphological attributes and simple movement metrics, such as speed, were used for classifying ciliate species. Here, we demonstrate that adding advanced movement features, in particular such based on discrete wavelet transform, to morphological features can improve classification. These results may have practical applications in automated monitoring of waste water facilities as well as environmental monitoring of aquatic systems. PMID:26680591
A boosted optimal linear learner for retinal vessel segmentation
NASA Astrophysics Data System (ADS)
Poletti, E.; Grisan, E.
2014-03-01
Ocular fundus images provide important information about retinal degeneration, which may be related to acute pathologies or to early signs of systemic diseases. An automatic and quantitative assessment of vessel morphological features, such as diameters and tortuosity, can improve clinical diagnosis and evaluation of retinopathy. At variance with available methods, we propose a data-driven approach, in which the system learns a set of optimal discriminative convolution kernels (linear learner). The set is progressively built based on an ADA-boost sample weighting scheme, providing seamless integration between linear learner estimation and classification. In order to capture the vessel appearance changes at different scales, the kernels are estimated on a pyramidal decomposition of the training samples. The set is employed as a rotating bank of matched filters, whose response is used by the boosted linear classifier to provide a classification of each image pixel into the two classes of interest (vessel/background). We tested the approach fundus images available from the DRIVE dataset. We show that the segmentation performance yields an accuracy of 0.94.
Reddy, T.B.K.; Thomas, Alex D.; Stamatis, Dimitri; Bertsch, Jon; Isbandi, Michelle; Jansson, Jakob; Mallajosyula, Jyothi; Pagani, Ioanna; Lobos, Elizabeth A.; Kyrpides, Nikos C.
2015-01-01
The Genomes OnLine Database (GOLD; http://www.genomesonline.org) is a comprehensive online resource to catalog and monitor genetic studies worldwide. GOLD provides up-to-date status on complete and ongoing sequencing projects along with a broad array of curated metadata. Here we report version 5 (v.5) of the database. The newly designed database schema and web user interface supports several new features including the implementation of a four level (meta)genome project classification system and a simplified intuitive web interface to access reports and launch search tools. The database currently hosts information for about 19 200 studies, 56 000 Biosamples, 56 000 sequencing projects and 39 400 analysis projects. More than just a catalog of worldwide genome projects, GOLD is a manually curated, quality-controlled metadata warehouse. The problems encountered in integrating disparate and varying quality data into GOLD are briefly highlighted. GOLD fully supports and follows the Genomic Standards Consortium (GSC) Minimum Information standards. PMID:25348402
Dasari, Ramachandra Rao; Barman, Ishan; Gundawar, Manoj Kumar
2014-01-01
We demonstrate the application of non-gated laser induced breakdown spectroscopy (LIBS) for characterization and classification of organic materials with similar chemical composition. While use of such a system introduces substantive continuum background in the spectral dataset, we show that appropriate treatment of the continuum and characteristic emission results in accurate discrimination of pharmaceutical formulations of similar stoichiometry. Specifically, our results suggest that near-perfect classification can be obtained by employing suitable multivariate analysis on the acquired spectra, without prior removal of the continuum background. Indeed, we conjecture that pre-processing in the form of background removal may introduce spurious features in the signal. Our findings in this report significantly advance the prior results in time-integrated LIBS application and suggest the possibility of a portable, non-gated LIBS system as a process analytical tool, given its simple instrumentation needs, real-time capability and lack of sample preparation requirements. PMID:25084522
Semantic Enhancement for Enterprise Data Management
NASA Astrophysics Data System (ADS)
Ma, Li; Sun, Xingzhi; Cao, Feng; Wang, Chen; Wang, Xiaoyuan; Kanellos, Nick; Wolfson, Dan; Pan, Yue
Taking customer data as an example, the paper presents an approach to enhance the management of enterprise data by using Semantic Web technologies. Customer data is the most important kind of core business entity a company uses repeatedly across many business processes and systems, and customer data management (CDM) is becoming critical for enterprises because it keeps a single, complete and accurate record of customers across the enterprise. Existing CDM systems focus on integrating customer data from all customer-facing channels and front and back office systems through multiple interfaces, as well as publishing customer data to different applications. To make the effective use of the CDM system, this paper investigates semantic query and analysis over the integrated and centralized customer data, enabling automatic classification and relationship discovery. We have implemented these features over IBM Websphere Customer Center, and shown the prototype to our clients. We believe that our study and experiences are valuable for both Semantic Web community and data management community.
5 CFR 9701.231 - Conversion of positions and employees to the DHS classification system.
Code of Federal Regulations, 2011 CFR
2011-01-01
... the DHS classification system. 9701.231 Section 9701.231 Administrative Personnel DEPARTMENT OF... MANAGEMENT) DEPARTMENT OF HOMELAND SECURITY HUMAN RESOURCES MANAGEMENT SYSTEM Classification Transitional Provisions § 9701.231 Conversion of positions and employees to the DHS classification system. (a) This...
[Integrated health information system based on Resident Assessment Instruments].
Frijters, D; Achterberg, W; Hirdes, J P; Fries, B E; Morris, J N; Steel, K
2001-02-01
The paper explores the meaning of Resident Assessment Instruments. It gives a summary of existing RAI instruments and derived applications. It argues how all of these form the basis for an integrated health information system for "chain care" (home care, home for the elderly care, nursing home care, mental health care and acute care). The primary application of RAI systems is the assessment of client care needs, followed by an analysis of the required and administered care with the objective to make an optimal individual care plan. On the basis of RAI, however, applications have been derived for reimbursement systems, quality improvement programs, accreditation, benchmarking, best practice comparison and care eligibility systems. These applications have become possible by the development on the basis of the Minimum Data Set of RAI of outcome measures (item scores, scales and indices), case-mix classifications and quality indicators. To illustrate the possibilities of outcome measures of RAI we present a table and a figure with data of six Dutch nursing homes which shows how social engagement is related to ADL and cognition. We argue that RAI/MDS assessment instruments comprise an integrated health information system because they have consistent terminology, common core items, and a common conceptual basis in a clinical approach that emphasizes the identification of functional problems.
NASA Astrophysics Data System (ADS)
Mendoza, Edgar A.; Kempen, Cornelia; Sun, Sunjian; Esterkin, Yan
2014-09-01
This paper describes recent progress towards the development of an innovative light weight, high-speed, and selfpowered wireless fiber optic sensor (WiFOS™) structural health monitor system suitable for the onboard and in-flight unattended detection, localization, and classification of load, fatigue, and structural damage in advanced composite materials commonly used in avionics and aerospace systems. The WiFOS™ system is based on ROI's advancements on monolithic photonic integrated circuit microchip technology, integrated with smart power management, on-board data processing, wireless data transmission optoelectronics, and self-power using energy harvesting tools such as solar, vibration, thermoelectric, and magneto-electric. The self-powered, wireless WiFOS™ system offers a versatile and powerful SHM tool to enhance the reliability and safety of avionics platforms, jet fighters, helicopters, commercial aircraft that use lightweight composite material structures, by providing comprehensive information about the structural integrity of the structure from a large number of locations. Immediate SHM applications are found in rotorcraft and aircraft, ships, submarines, and in next generation weapon systems, and in commercial oil and petrochemical, aerospace industries, civil structures, power utilities, portable medical devices, and biotechnology, homeland security and a wide spectrum of other applications.
Doostparast Torshizi, Abolfazl; Petzold, Linda R
2018-01-01
Data integration methods that combine data from different molecular levels such as genome, epigenome, transcriptome, etc., have received a great deal of interest in the past few years. It has been demonstrated that the synergistic effects of different biological data types can boost learning capabilities and lead to a better understanding of the underlying interactions among molecular levels. In this paper we present a graph-based semi-supervised classification algorithm that incorporates latent biological knowledge in the form of biological pathways with gene expression and DNA methylation data. The process of graph construction from biological pathways is based on detecting condition-responsive genes, where 3 sets of genes are finally extracted: all condition responsive genes, high-frequency condition-responsive genes, and P-value-filtered genes. The proposed approach is applied to ovarian cancer data downloaded from the Human Genome Atlas. Extensive numerical experiments demonstrate superior performance of the proposed approach compared to other state-of-the-art algorithms, including the latest graph-based classification techniques. Simulation results demonstrate that integrating various data types enhances classification performance and leads to a better understanding of interrelations between diverse omics data types. The proposed approach outperforms many of the state-of-the-art data integration algorithms. © The Author 2017. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Design of a Multi-Sensor Cooperation Travel Environment Perception System for Autonomous Vehicle
Chen, Long; Li, Qingquan; Li, Ming; Zhang, Liang; Mao, Qingzhou
2012-01-01
This paper describes the environment perception system designed for intelligent vehicle SmartV-II, which won the 2010 Future Challenge. This system utilizes the cooperation of multiple lasers and cameras to realize several necessary functions of autonomous navigation: road curb detection, lane detection and traffic sign recognition. Multiple single scan lasers are integrated to detect the road curb based on Z-variance method. Vision based lane detection is realized by two scans method combining with image model. Haar-like feature based method is applied for traffic sign detection and SURF matching method is used for sign classification. The results of experiments validate the effectiveness of the proposed algorithms and the whole system.
Che Hasan, Rozaimi; Ierodiaconou, Daniel; Laurenson, Laurie; Schimel, Alexandre
2014-01-01
Multibeam echosounders (MBES) are increasingly becoming the tool of choice for marine habitat mapping applications. In turn, the rapid expansion of habitat mapping studies has resulted in a need for automated classification techniques to efficiently map benthic habitats, assess confidence in model outputs, and evaluate the importance of variables driving the patterns observed. The benthic habitat characterisation process often involves the analysis of MBES bathymetry, backscatter mosaic or angular response with observation data providing ground truth. However, studies that make use of the full range of MBES outputs within a single classification process are limited. We present an approach that integrates backscatter angular response with MBES bathymetry, backscatter mosaic and their derivatives in a classification process using a Random Forests (RF) machine-learning algorithm to predict the distribution of benthic biological habitats. This approach includes a method of deriving statistical features from backscatter angular response curves created from MBES data collated within homogeneous regions of a backscatter mosaic. Using the RF algorithm we assess the relative importance of each variable in order to optimise the classification process and simplify models applied. The results showed that the inclusion of the angular response features in the classification process improved the accuracy of the final habitat maps from 88.5% to 93.6%. The RF algorithm identified bathymetry and the angular response mean as the two most important predictors. However, the highest classification rates were only obtained after incorporating additional features derived from bathymetry and the backscatter mosaic. The angular response features were found to be more important to the classification process compared to the backscatter mosaic features. This analysis indicates that integrating angular response information with bathymetry and the backscatter mosaic, along with their derivatives, constitutes an important improvement for studying the distribution of benthic habitats, which is necessary for effective marine spatial planning and resource management. PMID:24824155
Integration of Control Algorithms for Quadrotor UAV’s Using an Indoor Sensor Environment
2011-09-01
PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT Unclassified 18. SECURITY CLASSIFICATION OF THIS PAGE Unclassified 19. SECURITY...gorgeous wife, Maggie, thank you for your loving support and continuous study snacks . xvi THIS PAGE INTENTIONALLY LEFT BLANK 1 I
An Integrative Dimensional Classification of Personality Disorder
ERIC Educational Resources Information Center
Widiger, Thomas A.; Livesley, W. John; Clark, Lee Anna
2009-01-01
Psychological assessment research concerns how to describe psychological dysfunction in ways that are both valid and useful. Recent advances in assessment research hold the promise of facilitating significant improvements in description and diagnosis. One such contribution is in the classification of personality disorder symptomatology. The…
2006-06-01
Horizontal Fusion, the JCDX team developed two web services, a Classification Policy Decision Service (cPDS), and a Federated Search Provider (FSP...The cPDS web service primarily provides other systems with methods for handling labeled data such as label comparison. The federated search provider...level domains. To provide defense-in-depth, cPDS and the Federated Search Provider are implemented on a separate server known as the JCDX Web
Tanno, Luciana Kase; Calderon, Moises A; Goldberg, Bruce J; Akdis, Cezmi A; Papadopoulos, Nikolaos G; Demoly, Pascal
2014-01-01
Although efforts to improve the classification of hypersensitivity/allergic diseases have been made, they have not been considered a top-level category in the International Classification of Diseases (ICD)-10 and still are not in the ICD-11 beta phase linearization. ICD-10 is the most used classification system by the allergy community worldwide but it is not considered as appropriate for clinical practice. The Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT) on the other hand contains a tightly integrated classification of hypersensitivity/allergic disorders based on the EAACI/WAO nomenclature and the World Health Organization (WHO) may plan to align ICD-11 with SNOMED CT so that they share a common ontological basis. With the aim of actively supporting the ongoing ICD-11 revision and the optimal practice of Allergology, we performed a careful comparison of ICD-10 and 11 beta phase linearization codes to identify gaps, areas of regression in allergy coding and possibly reach solutions, in collaboration with committees in charge of the ICD-11 revision. We have found a significant degree of misclassification of terms in the allergy-related hierarchies. This stems not only from unclear definitions of these conditions but also the use of common names that falsely imply allergy. The lack of understanding of the immune mechanisms underlying some of the conditions contributes to the difficulty in classification. More than providing data to support specific changes into the ongoing linearization, these results highlight the need for either a new chapter entitled Hypersensitivity/Allergic Disorders as in SNOMED CT or a high level structure in the Immunology chapter in order to make classification more appropriate and usable.
The ITE Land classification: Providing an environmental stratification of Great Britain.
Bunce, R G; Barr, C J; Gillespie, M K; Howard, D C
1996-01-01
The surface of Great Britain (GB) varies continuously in land cover from one area to another. The objective of any environmentally based land classification is to produce classes that match the patterns that are present by helping to define clear boundaries. The more appropriate the analysis and data used, the better the classes will fit the natural patterns. The observation of inter-correlations between ecological factors is the basis for interpreting ecological patterns in the field, and the Institute of Terrestrial Ecology (ITE) Land Classification formalises such subjective ideas. The data inevitably comprise a large number of factors in order to describe the environment adequately. Single factors, such as altitude, would only be useful on a national basis if they were the only dominant causative agent of ecological variation.The ITE Land Classification has defined 32 environmental categories called 'land classes', initially based on a sample of 1-km squares in Great Britain but subsequently extended to all 240 000 1-km squares. The original classification was produced using multivariate analysis of 75 environmental variables. The extension to all squares in GB was performed using a combination of logistic discrimination and discriminant functions. The classes have provided a stratification for successive ecological surveys, the results of which have characterised the classes in terms of botanical, zoological and landscape features.The classification has also been applied to integrate diverse datasets including satellite imagery, soils and socio-economic information. A variety of models have used the structure of the classification, for example to show potential land use change under different economic conditions. The principal data sets relevant for planning purposes have been incorporated into a user-friendly computer package, called the 'Countryside Information System'.
Periodontal inflamed surface area as a novel numerical variable describing periodontal conditions
2017-01-01
Purpose A novel index, the periodontal inflamed surface area (PISA), represents the sum of the periodontal pocket depth of bleeding on probing (BOP)-positive sites. In the present study, we evaluated correlations between PISA and periodontal classifications, and examined PISA as an index integrating the discrete conventional periodontal indexes. Methods This study was a cross-sectional subgroup analysis of data from a prospective cohort study investigating the association between chronic periodontitis and the clinical features of ankylosing spondylitis. Data from 84 patients without systemic diseases (the control group in the previous study) were analyzed in the present study. Results PISA values were positively correlated with conventional periodontal classifications (Spearman correlation coefficient=0.52; P<0.01) and with periodontal indexes, such as BOP and the plaque index (PI) (r=0.94; P<0.01 and r=0.60; P<0.01, respectively; Pearson correlation test). Porphyromonas gingivalis (P. gingivalis) expression and the presence of serum P. gingivalis antibodies were significant factors affecting PISA values in a simple linear regression analysis, together with periodontal classification, PI, bleeding index, and smoking, but not in the multivariate analysis. In the multivariate linear regression analysis, PISA values were positively correlated with the quantity of current smoking, PI, and severity of periodontal disease. Conclusions PISA integrates multiple periodontal indexes, such as probing pocket depth, BOP, and PI into a numerical variable. PISA is advantageous for quantifying periodontal inflammation and plaque accumulation. PMID:29093989
2014-01-01
Background We recently demonstrated that quality of spirometry in primary care could markedly improve with remote offline support from specialized professionals. It is hypothesized that implementation of automatic online assessment of quality of spirometry using information and communication technologies may significantly enhance the potential for extensive deployment of a high quality spirometry program in integrated care settings. Objective The objective of the study was to elaborate and validate a Clinical Decision Support System (CDSS) for automatic online quality assessment of spirometry. Methods The CDSS was done through a three step process including: (1) identification of optimal sampling frequency; (2) iterations to build-up an initial version using the 24 standard spirometry curves recommended by the American Thoracic Society; and (3) iterations to refine the CDSS using 270 curves from 90 patients. In each of these steps the results were checked against one expert. Finally, 778 spirometry curves from 291 patients were analyzed for validation purposes. Results The CDSS generated appropriate online classification and certification in 685/778 (88.1%) of spirometry testing, with 96% sensitivity and 95% specificity. Conclusions Consequently, only 93/778 (11.9%) of spirometry testing required offline remote classification by an expert, indicating a potential positive role of the CDSS in the deployment of a high quality spirometry program in an integrated care setting. PMID:25600957
Waltho, Daniel; Hatchell, Alexandra; Thoma, Achilleas
2017-03-01
Gynecomastia is a common deformity of the male breast, where certain cases warrant surgical management. There are several surgical options, which vary depending on the breast characteristics. To guide surgical management, several classification systems for gynecomastia have been proposed. A systematic review was performed to (1) identify all classification systems for the surgical management of gynecomastia, and (2) determine the adequacy of these classification systems to appropriately categorize the condition for surgical decision-making. The search yielded 1012 articles, and 11 articles were included in the review. Eleven classification systems in total were ascertained, and a total of 10 unique features were identified: (1) breast size, (2) skin redundancy, (3) breast ptosis, (4) tissue predominance, (5) upper abdominal laxity, (6) breast tuberosity, (7) nipple malposition, (8) chest shape, (9) absence of sternal notch, and (10) breast skin elasticity. On average, classification systems included two or three of these features. Breast size and ptosis were the most commonly included features. Based on their review of the current classification systems, the authors believe the ideal classification system should be universal and cater to all causes of gynecomastia; be surgically useful and easy to use; and should include a comprehensive set of clinically appropriate patient-related features, such as breast size, breast ptosis, tissue predominance, and skin redundancy. None of the current classification systems appears to fulfill these criteria.
Veselka, Walter; Anderson, James T; Kordek, Walter S
2010-05-01
Considerable resources are being used to develop and implement bioassessment methods for wetlands to ensure that "biological integrity" is maintained under the United States Clean Water Act. Previous research has demonstrated that avian composition is susceptible to human impairments at multiple spatial scales. Using a site-specific disturbance gradient, we built avian wetland indices of biological integrity (AW-IBI) specific to two wetland classification schemes, one based on vegetative structure and the other based on the wetland's position in the landscape and sources of water. The resulting class-specific AW-IBI was comprised of one to four metrics that varied in their sensitivity to the disturbance gradient. Some of these metrics were specific to only one of the classification schemes, whereas others could discriminate varying levels of disturbance regardless of classification scheme. Overall, all of the derived biological indices specific to the vegetative structure-based classes of wetlands had a significant relation with the disturbance gradient; however, the biological index derived for floodplain wetlands exhibited a more consistent response to a local disturbance gradient. We suspect that the consistency of this response is due to the inherent nature of the connectivity of available habitat in floodplain wetlands.
Advances in rehabilitation medicine.
Ng, Yee Sien; Chew, Effie; Samuel, Geoffrey S; Tan, Yeow Leng; Kong, Keng He
2013-10-01
Rehabilitation medicine is the medical specialty that integrates rehabilitation as its core therapeutic modality in disability management. More than a billion people worldwide are disabled, and the World Health Organization has developed the International Classification of Functioning, Disability and Health as a framework through which disability is addressed. Herein, we explore paradigm shifts in neurorehabilitation, with a focus on restoration, and provide overviews on developments in neuropharmacology, rehabilitation robotics, virtual reality, constraint-induced therapy and brain stimulation. We also discuss important issues in rehabilitation systems of care, including integrated care pathways, very early rehabilitation, early supported discharge and telerehabilitation. Finally, we highlight major new fields of rehabilitation such as spasticity management, frailty and geriatric rehabilitation, intensive care and cancer rehabilitation.
Harvey, Carol
2005-01-01
Wound healing in orthopaedic care is affected by the causes of the wound, as well as concomitant therapies used to repair musculoskeletal structures. Promoting the health of the host and creating an environment to foster natural healing processes is essential for helping to restore skin integrity. Normal wound healing physiologic processes, factors affecting wound healing, wound classification systems, unique characteristics of orthopaedic wounds, wound contamination and drainage characteristics, and potential complications are important to understand in anticipation of patient needs. Accurate wound assessment and knowledge of nursing implications with specific wound care measures (cleansing, debridement, and dressings) is important for quality care. New technologies are enhancing traditional wound care measures with goals of effective comfortable wound care to promote restoration of skin integrity.
Jouhet, Vianney; Mougin, Fleur; Bréchat, Bérénice; Thiessard, Frantz
2017-02-07
Identifying incident cancer cases within a population remains essential for scientific research in oncology. Data produced within electronic health records can be useful for this purpose. Due to the multiplicity of providers, heterogeneous terminologies such as ICD-10 and ICD-O-3 are used for oncology diagnosis recording purpose. To enable disease identification based on these diagnoses, there is a need for integrating disease classifications in oncology. Our aim was to build a model integrating concepts involved in two disease classifications, namely ICD-10 (diagnosis) and ICD-O-3 (topography and morphology), despite their structural heterogeneity. Based on the NCIt, a "derivative" model for linking diagnosis and topography-morphology combinations was defined and built. ICD-O-3 and ICD-10 codes were then used to instantiate classes of the "derivative" model. Links between terminologies obtained through the model were then compared to mappings provided by the Surveillance, Epidemiology, and End Results (SEER) program. The model integrated 42% of neoplasm ICD-10 codes (excluding metastasis), 98% of ICD-O-3 morphology codes (excluding metastasis) and 68% of ICD-O-3 topography codes. For every codes instantiating at least a class in the "derivative" model, comparison with SEER mappings reveals that all mappings were actually available in the model as a link between the corresponding codes. We have proposed a method to automatically build a model for integrating ICD-10 and ICD-O-3 based on the NCIt. The resulting "derivative" model is a machine understandable resource that enables an integrated view of these heterogeneous terminologies. The NCIt structure and the available relationships can help to bridge disease classifications taking into account their structural and granular heterogeneities. However, (i) inconsistencies exist within the NCIt leading to misclassifications in the "derivative" model, (ii) the "derivative" model only integrates a part of ICD-10 and ICD-O-3. The NCIt is not sufficient for integration purpose and further work based on other termino-ontological resources is needed in order to enrich the model and avoid identified inconsistencies.
An algorithm for the arithmetic classification of multilattices.
Indelicato, Giuliana
2013-01-01
A procedure for the construction and the classification of monoatomic multilattices in arbitrary dimension is developed. The algorithm allows one to determine the location of the points of all monoatomic multilattices with a given symmetry, or to determine whether two assigned multilattices are arithmetically equivalent. This approach is based on ideas from integral matrix theory, in particular the reduction to the Smith normal form, and can be coded to provide a classification software package.
van der Heijden, Martijn; Dikkers, Frederik G; Halmos, Gyorgy B
2015-12-01
Laryngomalacia is the most common cause of dyspnea and stridor in newborn infants. Laryngomalacia is a dynamic change of the upper airway based on abnormally pliable supraglottic structures, which causes upper airway obstruction. In the past, different classification systems have been introduced. Until now no classification system is widely accepted and applied. Our goal is to provide a simple and complete classification system based on systematic literature search and our experiences. Retrospective cohort study with literature review. All patients with laryngomalacia under the age of 5 at time of diagnosis were included. Photo and video documentation was used to confirm diagnosis and characteristics of dynamic airway change. Outcome was compared with available classification systems in literature. Eighty-five patients were included. In contrast to other classification systems, only three typical different dynamic changes have been identified in our series. Two existing classification systems covered 100% of our findings, but there was an unnecessary overlap between different types in most of the systems. Based on our finding, we propose a new a classification system for laryngomalacia, which is purely based on dynamic airway changes. The groningen laryngomalacia classification is a new, simplified classification system with three types, based on purely dynamic laryngeal changes, tested in a tertiary referral center: Type 1: inward collapse of arytenoids cartilages, Type 2: medial displacement of aryepiglottic folds, and Type 3: posterocaudal displacement of epiglottis against the posterior pharyngeal wall. © 2015 Wiley Periodicals, Inc.
Danuso, Francesco
2017-12-22
A major bottleneck for improving the governance of complex systems, rely on our ability to integrate different forms of knowledge into a decision support system (DSS). Preliminary aspects are the classification of different types of knowledge (a priori or general, a posteriori or specific, with uncertainty, numerical, textual, algorithmic, complete/incomplete, etc.), the definition of ontologies for knowledge management and the availability of proper tools like continuous simulation models, event driven models, statistical approaches, computational methods (neural networks, evolutionary optimization, rule based systems etc.) and procedure for textual documentation. Following these views at University of Udine, a computer language (SEMoLa, Simple, Easy Modelling Language) for knowledge integration has been developed. SEMoLa can handle models, data, metadata and textual knowledge; it implements and extends the system dynamics ontology (Forrester, 1968; Jørgensen, 1994) in which systems are modelled by the concepts of material, group, state, rate, parameter, internal and external events and driving variables. As an example, a SEMoLa model to improve management and sustainability (economical, energetic, environmental) of the agricultural farms is presented. The model (X-Farm) simulates a farm in which cereal and forage yield, oil seeds, milk, calves and wastes can be sold or reused. X-Farm is composed by integrated modules describing fields (crop and soil), feeds and materials storage, machinery management, manpower management, animal husbandry, economic and energetic balances, seed oil extraction, manure and wastes management, biogas production from animal wastes and biomasses.
A decision support model for investment on P2P lending platform.
Zeng, Xiangxiang; Liu, Li; Leung, Stephen; Du, Jiangze; Wang, Xun; Li, Tao
2017-01-01
Peer-to-peer (P2P) lending, as a novel economic lending model, has triggered new challenges on making effective investment decisions. In a P2P lending platform, one lender can invest N loans and a loan may be accepted by M investors, thus forming a bipartite graph. Basing on the bipartite graph model, we built an iteration computation model to evaluate the unknown loans. To validate the proposed model, we perform extensive experiments on real-world data from the largest American P2P lending marketplace-Prosper. By comparing our experimental results with those obtained by Bayes and Logistic Regression, we show that our computation model can help borrowers select good loans and help lenders make good investment decisions. Experimental results also show that the Logistic classification model is a good complement to our iterative computation model, which motivates us to integrate the two classification models. The experimental results of the hybrid classification model demonstrate that the logistic classification model and our iteration computation model are complementary to each other. We conclude that the hybrid model (i.e., the integration of iterative computation model and Logistic classification model) is more efficient and stable than the individual model alone.
A decision support model for investment on P2P lending platform
Liu, Li; Leung, Stephen; Du, Jiangze; Wang, Xun; Li, Tao
2017-01-01
Peer-to-peer (P2P) lending, as a novel economic lending model, has triggered new challenges on making effective investment decisions. In a P2P lending platform, one lender can invest N loans and a loan may be accepted by M investors, thus forming a bipartite graph. Basing on the bipartite graph model, we built an iteration computation model to evaluate the unknown loans. To validate the proposed model, we perform extensive experiments on real-world data from the largest American P2P lending marketplace—Prosper. By comparing our experimental results with those obtained by Bayes and Logistic Regression, we show that our computation model can help borrowers select good loans and help lenders make good investment decisions. Experimental results also show that the Logistic classification model is a good complement to our iterative computation model, which motivates us to integrate the two classification models. The experimental results of the hybrid classification model demonstrate that the logistic classification model and our iteration computation model are complementary to each other. We conclude that the hybrid model (i.e., the integration of iterative computation model and Logistic classification model) is more efficient and stable than the individual model alone. PMID:28877234
Robust feature detection and local classification for surfaces based on moment analysis.
Clarenz, Ulrich; Rumpf, Martin; Telea, Alexandru
2004-01-01
The stable local classification of discrete surfaces with respect to features such as edges and corners or concave and convex regions, respectively, is as quite difficult as well as indispensable for many surface processing applications. Usually, the feature detection is done via a local curvature analysis. If concerned with large triangular and irregular grids, e.g., generated via a marching cube algorithm, the detectors are tedious to treat and a robust classification is hard to achieve. Here, a local classification method on surfaces is presented which avoids the evaluation of discretized curvature quantities. Moreover, it provides an indicator for smoothness of a given discrete surface and comes together with a built-in multiscale. The proposed classification tool is based on local zero and first moments on the discrete surface. The corresponding integral quantities are stable to compute and they give less noisy results compared to discrete curvature quantities. The stencil width for the integration of the moments turns out to be the scale parameter. Prospective surface processing applications are the segmentation on surfaces, surface comparison, and matching and surface modeling. Here, a method for feature preserving fairing of surfaces is discussed to underline the applicability of the presented approach.
Treatment outcomes of saddle nose correction.
Hyun, Sang Min; Jang, Yong Ju
2013-01-01
Many valuable classification schemes for saddle nose have been suggested that integrate clinical deformity and treatment; however, there is no consensus regarding the most suitable classification and surgical method for saddle nose correction. To present clinical characteristics and treatment outcome of saddle nose deformity and to propose a modified classification system to better characterize the variety of different saddle nose deformities. The retrospective study included 91 patients who underwent rhinoplasty for correction of saddle nose from April 1, 2003, through December 31, 2011, with a minimum follow-up of 8 months. Saddle nose was classified into 4 types according to a modified classification. Aesthetic outcomes were classified as excellent, good, fair, or poor. Patients underwent minor cosmetic concealment by dorsal augmentation (n = 8) or major septal reconstruction combined with dorsal augmentation (n = 83). Autologous costal cartilages were used in 40 patients (44%), and homologous costal cartilages were used in 5 patients (6%). According to postoperative assessment, 29 patients had excellent, 42 patients had good, 18 patients had fair, and 2 patients had poor aesthetic outcomes. No statistical difference in surgical outcome according to saddle nose classification was observed. Eight patients underwent revision rhinoplasty, owing to recurrence of saddle, wound infection, or warping of the costal cartilage for dorsal augmentation. We introduce a modified saddle nose classification scheme that is simpler and better able to characterize different deformities. Among 91 patients with saddle nose, 20 (22%) had unsuccessful outcomes (fair or poor) and 8 (9%) underwent subsequent revision rhinoplasty. Thus, management of saddle nose deformities remains challenging. 4.
NASA Technical Reports Server (NTRS)
Scardino, Frank L.
1992-01-01
In the design of textile composites, the selection of materials and constructional techniques must be matched with product performance, productivity, and cost requirements. Constructional techniques vary. A classification of various textile composite systems is given. In general, the chopped fiber system is not suitable for structural composite applications because of fiber discontinuity, uncontrolled fiber orientation and a lack of fiber integration or entanglement. Linear filament yarn systems are acceptable for structural components which are exposed to simple tension in their applications. To qualify for more general use as structural components, filament yarn systems must be multi-directionally positioned. With the most sophisticated filament winding and laying techniques, however, the Type 2 systems have limited potential for general load-bearing applications because of a lack of filament integration or entanglement, which means vulnerability to splitting and delamination among filament layers. The laminar systems (Type 3) represented by a variety of simple fabrics (woven, knitted, braided and nonwoven) are especially suitable for load-bearing panels in flat form and for beams in a roled up to wound form. The totally integrated, advanced fabric system (Type 4) are thought to be the most reliable for general load-bearing applications because of fiber continuity and because of controlled multiaxial fiber orientation and entanglement. Consequently, the risk of splitting and delamination is minimized and practically omitted. Type 4 systems can be woven, knitted, braided or stitched through with very special equipment. Multiaxial fabric technologies are discussed.
A prototype of mammography CADx scheme integrated to imaging quality evaluation techniques
NASA Astrophysics Data System (ADS)
Schiabel, Homero; Matheus, Bruno R. N.; Angelo, Michele F.; Patrocínio, Ana Claudia; Ventura, Liliane
2011-03-01
As all women over the age of 40 are recommended to perform mammographic exams every two years, the demands on radiologists to evaluate mammographic images in short periods of time has increased considerably. As a tool to improve quality and accelerate analysis CADe/Dx (computer-aided detection/diagnosis) schemes have been investigated, but very few complete CADe/Dx schemes have been developed and most are restricted to detection and not diagnosis. The existent ones usually are associated to specific mammographic equipment (usually DR), which makes them very expensive. So this paper describes a prototype of a complete mammography CADx scheme developed by our research group integrated to an imaging quality evaluation process. The basic structure consists of pre-processing modules based on image acquisition and digitization procedures (FFDM, CR or film + scanner), a segmentation tool to detect clustered microcalcifications and suspect masses and a classification scheme, which evaluates as the presence of microcalcifications clusters as well as possible malignant masses based on their contour. The aim is to provide enough information not only on the detected structures but also a pre-report with a BI-RADS classification. At this time the system is still lacking an interface integrating all the modules. Despite this, it is functional as a prototype for clinical practice testing, with results comparable to others reported in literature.
[Application of the balanced scorecard for evaluating the training process].
Picogna, Michele
2009-01-01
Over the last 20 years systems for standardizing nursing care have been elaborated and refined. Such systems are widely employed in teaching and research but very little in clinical practice (Kautz D., et al., 2006) ) However, it would be useful to integrate these systems with synthetic descriptions of nursing intervention to improve our knowledge of "offer and demand" in this field (Jungher, 2006). It is no coincidence that these systems are used more in countries where the type of health system makes it necessary to quantify the contribution of each single health operator in the overall care procedure. The aim of the study was to assess the relevance of the different classifications , considering them not only influenced by nursing but also to some degree influential.
Designing and Implementation of River Classification Assistant Management System
NASA Astrophysics Data System (ADS)
Zhao, Yinjun; Jiang, Wenyuan; Yang, Rujun; Yang, Nan; Liu, Haiyan
2018-03-01
In an earlier publication, we proposed a new Decision Classifier (DCF) for Chinese river classification based on their structures. To expand, enhance and promote the application of the DCF, we build a computer system to support river classification named River Classification Assistant Management System. Based on ArcEngine and ArcServer platform, this system implements many functions such as data management, extraction of river network, river classification, and results publication under combining Client / Server with Browser / Server framework.
The DSM-5: Classification and criteria changes.
Regier, Darrel A; Kuhl, Emily A; Kupfer, David J
2013-06-01
The Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) marks the first significant revision of the publication since the DSM-IV in 1994. Changes to the DSM were largely informed by advancements in neuroscience, clinical and public health need, and identified problems with the classification system and criteria put forth in the DSM-IV. Much of the decision-making was also driven by a desire to ensure better alignment with the International Classification of Diseases and its upcoming 11th edition (ICD-11). In this paper, we describe select revisions in the DSM-5, with an emphasis on changes projected to have the greatest clinical impact and those that demonstrate efforts to enhance international compatibility, including integration of cultural context with diagnostic criteria and changes that facilitate DSM-ICD harmonization. It is anticipated that this collaborative spirit between the American Psychiatric Association (APA) and the World Health Organization (WHO) will continue as the DSM-5 is updated further, bringing the field of psychiatry even closer to a singular, cohesive nosology. Copyright © 2013 World Psychiatric Association.
[Identification of green tea brand based on hyperspectra imaging technology].
Zhang, Hai-Liang; Liu, Xiao-Li; Zhu, Feng-Le; He, Yong
2014-05-01
Hyperspectral imaging technology was developed to identify different brand famous green tea based on PCA information and image information fusion. First 512 spectral images of six brands of famous green tea in the 380 approximately 1 023 nm wavelength range were collected and principal component analysis (PCA) was performed with the goal of selecting two characteristic bands (545 and 611 nm) that could potentially be used for classification system. Then, 12 gray level co-occurrence matrix (GLCM) features (i. e., mean, covariance, homogeneity, energy, contrast, correlation, entropy, inverse gap, contrast, difference from the second-order and autocorrelation) based on the statistical moment were extracted from each characteristic band image. Finally, integration of the 12 texture features and three PCA spectral characteristics for each green tea sample were extracted as the input of LS-SVM. Experimental results showed that discriminating rate was 100% in the prediction set. The receiver operating characteristic curve (ROC) assessment methods were used to evaluate the LS-SVM classification algorithm. Overall results sufficiently demonstrate that hyperspectral imaging technology can be used to perform classification of green tea.
Improving imbalanced scientific text classification using sampling strategies and dictionaries.
Borrajo, L; Romero, R; Iglesias, E L; Redondo Marey, C M
2011-09-15
Many real applications have the imbalanced class distribution problem, where one of the classes is represented by a very small number of cases compared to the other classes. One of the systems affected are those related to the recovery and classification of scientific documentation. Sampling strategies such as Oversampling and Subsampling are popular in tackling the problem of class imbalance. In this work, we study their effects on three types of classifiers (Knn, SVM and Naive-Bayes) when they are applied to search on the PubMed scientific database. Another purpose of this paper is to study the use of dictionaries in the classification of biomedical texts. Experiments are conducted with three different dictionaries (BioCreative, NLPBA, and an ad-hoc subset of the UniProt database named Protein) using the mentioned classifiers and sampling strategies. Best results were obtained with NLPBA and Protein dictionaries and the SVM classifier using the Subsampling balancing technique. These results were compared with those obtained by other authors using the TREC Genomics 2005 public corpus. Copyright 2011 The Author(s). Published by Journal of Integrative Bioinformatics.
Fan, Ming; Zheng, Bin; Li, Lihua
2015-10-01
Knowledge of the structural class of a given protein is important for understanding its folding patterns. Although a lot of efforts have been made, it still remains a challenging problem for prediction of protein structural class solely from protein sequences. The feature extraction and classification of proteins are the main problems in prediction. In this research, we extended our earlier work regarding these two aspects. In protein feature extraction, we proposed a scheme by calculating the word frequency and word position from sequences of amino acid, reduced amino acid, and secondary structure. For an accurate classification of the structural class of protein, we developed a novel Multi-Agent Ada-Boost (MA-Ada) method by integrating the features of Multi-Agent system into Ada-Boost algorithm. Extensive experiments were taken to test and compare the proposed method using four benchmark datasets in low homology. The results showed classification accuracies of 88.5%, 96.0%, 88.4%, and 85.5%, respectively, which are much better compared with the existing methods. The source code and dataset are available on request.
Jang, Jae-Wook; Yun, Jaesung; Mohaisen, Aziz; Woo, Jiyoung; Kim, Huy Kang
2016-01-01
Mass-market mobile security threats have increased recently due to the growth of mobile technologies and the popularity of mobile devices. Accordingly, techniques have been introduced for identifying, classifying, and defending against mobile threats utilizing static, dynamic, on-device, and off-device techniques. Static techniques are easy to evade, while dynamic techniques are expensive. On-device techniques are evasion, while off-device techniques need being always online. To address some of those shortcomings, we introduce Andro-profiler, a hybrid behavior based analysis and classification system for mobile malware. Andro-profiler main goals are efficiency, scalability, and accuracy. For that, Andro-profiler classifies malware by exploiting the behavior profiling extracted from the integrated system logs including system calls. Andro-profiler executes a malicious application on an emulator in order to generate the integrated system logs, and creates human-readable behavior profiles by analyzing the integrated system logs. By comparing the behavior profile of malicious application with representative behavior profile for each malware family using a weighted similarity matching technique, Andro-profiler detects and classifies it into malware families. The experiment results demonstrate that Andro-profiler is scalable, performs well in detecting and classifying malware with accuracy greater than 98 %, outperforms the existing state-of-the-art work, and is capable of identifying 0-day mobile malware samples.
Griewank, Klaus; Koelsche, Christian; van de Nes, Johannes A P; Schrimpf, Daniel; Gessi, Marco; Möller, Inga; Sucker, Antje; Scolyer, Richard A; Buckland, Michael E; Murali, Rajmohan; Pietsch, Torsten; von Deimling, Andreas; Schadendorf, Dirk
2018-06-11
In the central nervous system, distinguishing primary leptomeningeal melanocytic tumors from melanoma metastases and predicting their biological behavior solely using histopathologic criteria can be challenging. We aimed to assess the diagnostic and prognostic value of integrated molecular analysis. Targeted next-generation-sequencing, array-based genome-wide methylation analysis and BAP1 immunohistochemistry was performed on the largest cohort of central nervous system melanocytic tumors analyzed to date, incl. 47 primary tumors of the central nervous system, 16 uveal melanomas. 13 cutaneous melanoma metastasis and 2 blue nevus-like melanomas. Gene mutation, DNA-methylation and copy-number profiles were correlated with clinicopathological features. Combining mutation, copy-number and DNA-methylation profiles clearly distinguished cutaneous melanoma metastases from other melanocytic tumors. Primary leptomeningeal melanocytic tumors, uveal melanomas and blue nevus-like melanoma showed common DNA-methylation, copy-number alteration and gene mutation signatures. Notably, tumors demonstrating chromosome 3 monosomy and BAP1 alterations formed a homogeneous subset within this group. Integrated molecular profiling aids in distinguishing primary from metastatic melanocytic tumors of the central nervous system. Primary leptomeningeal melanocytic tumors, uveal melanoma and blue nevus-like melanoma share molecular similarity with chromosome 3 and BAP1 alterations markers of poor prognosis. Copyright ©2018, American Association for Cancer Research.
42 CFR 412.10 - Changes in the DRG classification system.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 42 Public Health 2 2010-10-01 2010-10-01 false Changes in the DRG classification system. 412.10... § 412.10 Changes in the DRG classification system. (a) General rule. CMS issues changes in the DRG classification system in a Federal Register notice at least annually. Except as specified in paragraphs (c) and...
42 CFR 412.10 - Changes in the DRG classification system.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 42 Public Health 2 2011-10-01 2011-10-01 false Changes in the DRG classification system. 412.10... § 412.10 Changes in the DRG classification system. (a) General rule. CMS issues changes in the DRG classification system in a Federal Register notice at least annually. Except as specified in paragraphs (c) and...
ERIC Educational Resources Information Center
Hidecker, Mary Jo Cooley; Ho, Nhan Thi; Dodge, Nancy; Hurvitz, Edward A.; Slaughter, Jaime; Workinger, Marilyn Seif; Kent, Ray D.; Rosenbaum, Peter; Lenski, Madeleine; Messaros, Bridget M.; Vanderbeek, Suzette B.; Deroos, Steven; Paneth, Nigel
2012-01-01
Aim: To investigate the relationships among the Gross Motor Function Classification System (GMFCS), Manual Ability Classification System (MACS), and Communication Function Classification System (CFCS) in children with cerebral palsy (CP). Method: Using questionnaires describing each scale, mothers reported GMFCS, MACS, and CFCS levels in 222…
NASA Astrophysics Data System (ADS)
Warren, Sean N.; Kallu, Raj R.; Barnard, Chase K.
2016-11-01
Underground gold mines in Nevada are exploiting increasingly deeper ore bodies comprised of weak to very weak rock masses. The Rock Mass Rating (RMR) classification system is widely used at underground gold mines in Nevada and is applicable in fair to good-quality rock masses, but is difficult to apply and loses reliability in very weak rock mass to soil-like material. Because very weak rock masses are transition materials that border engineering rock mass and soil classification systems, soil classification may sometimes be easier and more appropriate to provide insight into material behavior and properties. The Unified Soil Classification System (USCS) is the most likely choice for the classification of very weak rock mass to soil-like material because of its accepted use in tunnel engineering projects and its ability to predict soil-like material behavior underground. A correlation between the RMR and USCS systems was developed by comparing underground geotechnical RMR mapping to laboratory testing of bulk samples from the same locations, thereby assigning a numeric RMR value to the USCS classification that can be used in spreadsheet calculations and geostatistical analyses. The geotechnical classification system presented in this paper including a USCS-RMR correlation, RMR rating equations, and the Geo-Pick Strike Index is collectively introduced as the Weak Rock Mass Rating System (W-RMR). It is the authors' hope that this system will aid in the classification of weak rock masses and more usable design tools based on the RMR system. More broadly, the RMR-USCS correlation and the W-RMR system help define the transition between engineering soil and rock mass classification systems and may provide insight for geotechnical design in very weak rock masses.
Medehouenou, Thierry Comlan Marc; Ayotte, Pierre; St-Jean, Audray; Meziou, Salma; Roy, Cynthia; Muckle, Gina; Lucas, Michel
2015-07-01
Little is known about the suitability of three commonly used body mass index (BMI) classification system for Indigenous children. This study aims to estimate overweight and obesity prevalence among school-aged Nunavik Inuit children according to International Obesity Task Force (IOTF), Centers for Disease Control and Prevention (CDC), and World Health Organization (WHO) BMI classification systems, to measure agreement between those classification systems, and to investigate whether BMI status as defined by these classification systems is associated with levels of metabolic and inflammatory biomarkers. Data were collected on 290 school-aged children (aged 8-14 years; 50.7% girls) from the Nunavik Child Development Study with data collected in 2005-2010. Anthropometric parameters were measured and blood sampled. Participants were classified as normal weight, overweight, and obese according to BMI classification systems. Weighted kappa (κw) statistics assessed agreement between different BMI classification systems, and multivariate analysis of variance ascertained their relationship with metabolic and inflammatory biomarkers. The combined prevalence rate of overweight/obesity was 26.9% (with 6.6% obesity) with IOTF, 24.1% (11.0%) with CDC, and 40.4% (12.8%) with WHO classification systems. Agreement was the highest between IOTF and CDC (κw = .87) classifications, and substantial for IOTF and WHO (κw = .69) and for CDC and WHO (κw = .73). Insulin and high-sensitivity C-reactive protein plasma levels were significantly higher from normal weight to obesity, regardless of classification system. Among obese subjects, higher insulin level was observed with IOTF. Compared with other systems, IOTF classification appears to be more specific to identify overweight and obesity in Inuit children. Copyright © 2015 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.
Stroke subtyping for genetic association studies? A comparison of the CCS and TOAST classifications.
Lanfranconi, Silvia; Markus, Hugh S
2013-12-01
A reliable and reproducible classification system of stroke subtype is essential for epidemiological and genetic studies. The Causative Classification of Stroke system is an evidence-based computerized algorithm with excellent inter-rater reliability. It has been suggested that, compared to the Trial of ORG 10172 in Acute Stroke Treatment classification, it increases the proportion of cases with defined subtype that may increase power in genetic association studies. We compared Trial of ORG 10172 in Acute Stroke Treatment and Causative Classification of Stroke system classifications in a large cohort of well-phenotyped stroke patients. Six hundred ninety consecutively recruited patients with first-ever ischemic stroke were classified, using review of clinical data and original imaging, according to the Trial of ORG 10172 in Acute Stroke Treatment and Causative Classification of Stroke system classifications. There was excellent agreement subtype assigned by between Trial of ORG 10172 in Acute Stroke Treatment and Causative Classification of Stroke system (kappa = 0·85). The agreement was excellent for the major individual subtypes: large artery atherosclerosis kappa = 0·888, small-artery occlusion kappa = 0·869, cardiac embolism kappa = 0·89, and undetermined category kappa = 0·884. There was only moderate agreement (kappa = 0·41) for the subjects with at least two competing underlying mechanism. Thirty-five (5·8%) patients classified as undetermined by Trial of ORG 10172 in Acute Stroke Treatment were assigned to a definite subtype by Causative Classification of Stroke system. Thirty-two subjects assigned to a definite subtype by Trial of ORG 10172 in Acute Stroke Treatment were classified as undetermined by Causative Classification of Stroke system. There is excellent agreement between classification using Trial of ORG 10172 in Acute Stroke Treatment and Causative Classification of Stroke systems but no evidence that Causative Classification of Stroke system reduced the proportion of patients classified to undetermined subtypes. The excellent inter-rater reproducibility and web-based semiautomated nature make Causative Classification of Stroke system suitable for multicenter studies, but the benefit of reclassifying cases already classified using the Trial of ORG 10172 in Acute Stroke Treatment system on existing databases is likely to be small. © 2012 The Authors. International Journal of Stroke © 2012 World Stroke Organization.
Validity: Applying Current Concepts and Standards to Gynecologic Surgery Performance Assessments
ERIC Educational Resources Information Center
LeClaire, Edgar L.; Nihira, Mikio A.; Hardré, Patricia L.
2015-01-01
Validity is critical for meaningful assessment of surgical competency. According to the Standards for Educational and Psychological Testing, validation involves the integration of data from well-defined classifications of evidence. In the authoritative framework, data from all classifications support construct validity claims. The two aims of this…
Oliveira, Roberta B; Pereira, Aledir S; Tavares, João Manuel R S
2017-10-01
The number of deaths worldwide due to melanoma has risen in recent times, in part because melanoma is the most aggressive type of skin cancer. Computational systems have been developed to assist dermatologists in early diagnosis of skin cancer, or even to monitor skin lesions. However, there still remains a challenge to improve classifiers for the diagnosis of such skin lesions. The main objective of this article is to evaluate different ensemble classification models based on input feature manipulation to diagnose skin lesions. Input feature manipulation processes are based on feature subset selections from shape properties, colour variation and texture analysis to generate diversity for the ensemble models. Three subset selection models are presented here: (1) a subset selection model based on specific feature groups, (2) a correlation-based subset selection model, and (3) a subset selection model based on feature selection algorithms. Each ensemble classification model is generated using an optimum-path forest classifier and integrated with a majority voting strategy. The proposed models were applied on a set of 1104 dermoscopic images using a cross-validation procedure. The best results were obtained by the first ensemble classification model that generates a feature subset ensemble based on specific feature groups. The skin lesion diagnosis computational system achieved 94.3% accuracy, 91.8% sensitivity and 96.7% specificity. The input feature manipulation process based on specific feature subsets generated the greatest diversity for the ensemble classification model with very promising results. Copyright © 2017 Elsevier B.V. All rights reserved.
Zhao, Jiangsan; Bodner, Gernot; Rewald, Boris
2016-01-01
Phenotyping local crop cultivars is becoming more and more important, as they are an important genetic source for breeding – especially in regard to inherent root system architectures. Machine learning algorithms are promising tools to assist in the analysis of complex data sets; novel approaches are need to apply them on root phenotyping data of mature plants. A greenhouse experiment was conducted in large, sand-filled columns to differentiate 16 European Pisum sativum cultivars based on 36 manually derived root traits. Through combining random forest and support vector machine models, machine learning algorithms were successfully used for unbiased identification of most distinguishing root traits and subsequent pairwise cultivar differentiation. Up to 86% of pea cultivar pairs could be distinguished based on top five important root traits (Timp5) – Timp5 differed widely between cultivar pairs. Selecting top important root traits (Timp) provided a significant improved classification compared to using all available traits or randomly selected trait sets. The most frequent Timp of mature pea cultivars was total surface area of lateral roots originating from tap root segments at 0–5 cm depth. The high classification rate implies that culturing did not lead to a major loss of variability in root system architecture in the studied pea cultivars. Our results illustrate the potential of machine learning approaches for unbiased (root) trait selection and cultivar classification based on rather small, complex phenotypic data sets derived from pot experiments. Powerful statistical approaches are essential to make use of the increasing amount of (root) phenotyping information, integrating the complex trait sets describing crop cultivars. PMID:27999587
2014-01-01
Background The inter-patient classification schema and the Association for the Advancement of Medical Instrumentation (AAMI) standards are important to the construction and evaluation of automated heartbeat classification systems. The majority of previously proposed methods that take the above two aspects into consideration use the same features and classification method to classify different classes of heartbeats. The performance of the classification system is often unsatisfactory with respect to the ventricular ectopic beat (VEB) and supraventricular ectopic beat (SVEB). Methods Based on the different characteristics of VEB and SVEB, a novel hierarchical heartbeat classification system was constructed. This was done in order to improve the classification performance of these two classes of heartbeats by using different features and classification methods. First, random projection and support vector machine (SVM) ensemble were used to detect VEB. Then, the ratio of the RR interval was compared to a predetermined threshold to detect SVEB. The optimal parameters for the classification models were selected on the training set and used in the independent testing set to assess the final performance of the classification system. Meanwhile, the effect of different lead configurations on the classification results was evaluated. Results Results showed that the performance of this classification system was notably superior to that of other methods. The VEB detection sensitivity was 93.9% with a positive predictive value of 90.9%, and the SVEB detection sensitivity was 91.1% with a positive predictive value of 42.2%. In addition, this classification process was relatively fast. Conclusions A hierarchical heartbeat classification system was proposed based on the inter-patient data division to detect VEB and SVEB. It demonstrated better classification performance than existing methods. It can be regarded as a promising system for detecting VEB and SVEB of unknown patients in clinical practice. PMID:24981916
Event Driven Messaging with Role-Based Subscriptions
NASA Technical Reports Server (NTRS)
Bui, Tung; Bui, Bach; Malhotra, Shantanu; Chen, Fannie; Kim, rachel; Allen, Christopher; Luong, Ivy; Chang, George; Zendejas, Silvino; Sadaqathulla, Syed
2009-01-01
Event Driven Messaging with Role-Based Subscriptions (EDM-RBS) is a framework integrated into the Service Management Database (SMDB) to allow for role-based and subscription-based delivery of synchronous and asynchronous messages over JMS (Java Messaging Service), SMTP (Simple Mail Transfer Protocol), or SMS (Short Messaging Service). This allows for 24/7 operation with users in all parts of the world. The software classifies messages by triggering data type, application source, owner of data triggering event (mission), classification, sub-classification and various other secondary classifying tags. Messages are routed to applications or users based on subscription rules using a combination of the above message attributes. This program provides a framework for identifying connected users and their applications for targeted delivery of messages over JMS to the client applications the user is logged into. EDMRBS provides the ability to send notifications over e-mail or pager rather than having to rely on a live human to do it. It is implemented as an Oracle application that uses Oracle relational database management system intrinsic functions. It is configurable to use Oracle AQ JMS API or an external JMS provider for messaging. It fully integrates into the event-logging framework of SMDB (Subnet Management Database).
Extensions to the Speech Disorders Classification System (SDCS)
ERIC Educational Resources Information Center
Shriberg, Lawrence D.; Fourakis, Marios; Hall, Sheryl D.; Karlsson, Heather B.; Lohmeier, Heather L.; McSweeny, Jane L.; Potter, Nancy L.; Scheer-Cohen, Alison R.; Strand, Edythe A.; Tilkens, Christie M.; Wilson, David L.
2010-01-01
This report describes three extensions to a classification system for paediatric speech sound disorders termed the Speech Disorders Classification System (SDCS). Part I describes a classification extension to the SDCS to differentiate motor speech disorders from speech delay and to differentiate among three sub-types of motor speech disorders.…
Comparison of Danish dichotomous and BI-RADS classifications of mammographic density.
Hodge, Rebecca; Hellmann, Sophie Sell; von Euler-Chelpin, My; Vejborg, Ilse; Andersen, Zorana Jovanovic
2014-06-01
In the Copenhagen mammography screening program from 1991 to 2001, mammographic density was classified either as fatty or mixed/dense. This dichotomous mammographic density classification system is unique internationally, and has not been validated before. To compare the Danish dichotomous mammographic density classification system from 1991 to 2001 with the density BI-RADS classifications, in an attempt to validate the Danish classification system. The study sample consisted of 120 mammograms taken in Copenhagen in 1991-2001, which tested false positive, and which were in 2012 re-assessed and classified according to the BI-RADS classification system. We calculated inter-rater agreement between the Danish dichotomous mammographic classification as fatty or mixed/dense and the four-level BI-RADS classification by the linear weighted Kappa statistic. Of the 120 women, 32 (26.7%) were classified as having fatty and 88 (73.3%) as mixed/dense mammographic density, according to Danish dichotomous classification. According to BI-RADS density classification, 12 (10.0%) women were classified as having predominantly fatty (BI-RADS code 1), 46 (38.3%) as having scattered fibroglandular (BI-RADS code 2), 57 (47.5%) as having heterogeneously dense (BI-RADS 3), and five (4.2%) as having extremely dense (BI-RADS code 4) mammographic density. The inter-rater variability assessed by weighted kappa statistic showed a substantial agreement (0.75). The dichotomous mammographic density classification system utilized in early years of Copenhagen's mammographic screening program (1991-2001) agreed well with the BI-RADS density classification system.
Cheng, Wei; Ji, Xiaoxi; Zhang, Jie; Feng, Jianfeng
2012-01-01
Accurate classification or prediction of the brain state across individual subject, i.e., healthy, or with brain disorders, is generally a more difficult task than merely finding group differences. The former must be approached with highly informative and sensitive biomarkers as well as effective pattern classification/feature selection approaches. In this paper, we propose a systematic methodology to discriminate attention deficit hyperactivity disorder (ADHD) patients from healthy controls on the individual level. Multiple neuroimaging markers that are proved to be sensitive features are identified, which include multiscale characteristics extracted from blood oxygenation level dependent (BOLD) signals, such as regional homogeneity (ReHo) and amplitude of low-frequency fluctuations. Functional connectivity derived from Pearson, partial, and spatial correlation is also utilized to reflect the abnormal patterns of functional integration, or, dysconnectivity syndromes in the brain. These neuroimaging markers are calculated on either voxel or regional level. Advanced feature selection approach is then designed, including a brain-wise association study (BWAS). Using identified features and proper feature integration, a support vector machine (SVM) classifier can achieve a cross-validated classification accuracy of 76.15% across individuals from a large dataset consisting of 141 healthy controls and 98 ADHD patients, with the sensitivity being 63.27% and the specificity being 85.11%. Our results show that the most discriminative features for classification are primarily associated with the frontal and cerebellar regions. The proposed methodology is expected to improve clinical diagnosis and evaluation of treatment for ADHD patient, and to have wider applications in diagnosis of general neuropsychiatric disorders. PMID:22888314
The history of female genital tract malformation classifications and proposal of an updated system.
Acién, Pedro; Acién, Maribel I
2011-01-01
A correct classification of malformations of the female genital tract is essential to prevent unnecessary and inadequate surgical operations and to compare reproductive results. An ideal classification system should be based on aetiopathogenesis and should suggest the appropriate therapeutic strategy. We conducted a systematic review of relevant articles found in PubMed, Scopus, Scirus and ISI webknowledge, and analysis of historical collections of 'female genital malformations' and 'classifications'. Of 124 full-text articles assessed for eligibility, 64 were included because they contained original general, partial or modified classifications. All the existing classifications were analysed and grouped. The unification of terms and concepts was also analysed. Traditionally, malformations of the female genital tract have been catalogued and classified as Müllerian malformations due to agenesis, lack of fusion, the absence of resorption and lack of posterior development of the Müllerian ducts. The American Fertility Society classification of the late 1980s included seven basic groups of malformations also considering the Müllerian development and the relationship of the malformations to fertility. Other classifications are based on different aspects: functional, defects in vertical fusion, embryological or anatomical (Vagina, Cervix, Uterus, Adnex and Associated Malformation: VCUAM classification). However, an embryological-clinical classification system seems to be the most appropriate. Accepting the need for a new classification system of genitourinary malformations that considers the experience gained from the application of the current classification systems, the aetiopathogenesis and that also suggests the appropriate treatment, we proposed an update of our embryological-clinical classification as a new system with six groups of female genitourinary anomalies.
NASA Astrophysics Data System (ADS)
Hamedianfar, Alireza; Shafri, Helmi Zulhaidi Mohd
2016-04-01
This paper integrates decision tree-based data mining (DM) and object-based image analysis (OBIA) to provide a transferable model for the detailed characterization of urban land-cover classes using WorldView-2 (WV-2) satellite images. Many articles have been published on OBIA in recent years based on DM for different applications. However, less attention has been paid to the generation of a transferable model for characterizing detailed urban land cover features. Three subsets of WV-2 images were used in this paper to generate transferable OBIA rule-sets. Many features were explored by using a DM algorithm, which created the classification rules as a decision tree (DT) structure from the first study area. The developed DT algorithm was applied to object-based classifications in the first study area. After this process, we validated the capability and transferability of the classification rules into second and third subsets. Detailed ground truth samples were collected to assess the classification results. The first, second, and third study areas achieved 88%, 85%, and 85% overall accuracies, respectively. Results from the investigation indicate that DM was an efficient method to provide the optimal and transferable classification rules for OBIA, which accelerates the rule-sets creation stage in the OBIA classification domain.
LDA boost classification: boosting by topics
NASA Astrophysics Data System (ADS)
Lei, La; Qiao, Guo; Qimin, Cao; Qitao, Li
2012-12-01
AdaBoost is an efficacious classification algorithm especially in text categorization (TC) tasks. The methodology of setting up a classifier committee and voting on the documents for classification can achieve high categorization precision. However, traditional Vector Space Model can easily lead to the curse of dimensionality and feature sparsity problems; so it affects classification performance seriously. This article proposed a novel classification algorithm called LDABoost based on boosting ideology which uses Latent Dirichlet Allocation (LDA) to modeling the feature space. Instead of using words or phrase, LDABoost use latent topics as the features. In this way, the feature dimension is significantly reduced. Improved Naïve Bayes (NB) is designed as the weaker classifier which keeps the efficiency advantage of classic NB algorithm and has higher precision. Moreover, a two-stage iterative weighted method called Cute Integration in this article is proposed for improving the accuracy by integrating weak classifiers into strong classifier in a more rational way. Mutual Information is used as metrics of weights allocation. The voting information and the categorization decision made by basis classifiers are fully utilized for generating the strong classifier. Experimental results reveals LDABoost making categorization in a low-dimensional space, it has higher accuracy than traditional AdaBoost algorithms and many other classic classification algorithms. Moreover, its runtime consumption is lower than different versions of AdaBoost, TC algorithms based on support vector machine and Neural Networks.
2007-09-01
The data are recorded at depth (1–5 km) by arrays of three-component geophones operated by AngloGold Ashanti, Ltd. and Integrated Seismic Systems...case-based event identification using regional arrays , Bull. Seism. Soc. Am. 80: 1874–1892. Bennett, T. J. and J. R. Murphy, Analysis of seismic ... seismic event classification at the NORESS array : seismological measurements and the use of trained neural networks, Bull. Seism. Soc. Am. 80: 1910
An Integrated Approach to the Detection, Localization, and Classification of Mines
2002-04-30
the TeO2 AOTF used here. In this work our imaging system was limited to wavelengths shorter than 700 nm. Thus to demonstrate the capabilities of an...is diagrammed in Figure 4 and employs a TeO2 AOTF (Brimrose, Inc. tunable from 450 to 700 nm), a thermoelectrically cooled CCD (Santa Barbara...which were filled with sand in the wavelength-resolved images. The best images in RF signal generator TeO2 AOTF light at selected wavelength (6° tilt
Transforming the Security Classification System
2012-11-01
report, the Board heard from the following individuals and groups: • Steve Aftergood, Senior Research Analyst, Project on Government Secrecy...National Intelligence, ODNI H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H 36 | PUBLIC INTEREST DECLASSIFICATION B OARD • Steve Henry...Deputy Associate Director for Community Integration, Policy and Records, NSA • Vincent Jarvie , Vice President for Corporate Security, L3
LANDSAT land cover analysis completed for CIRSS/San Bernardino County project
NASA Technical Reports Server (NTRS)
Likens, W.; Maw, K.; Sinnott, D. (Principal Investigator)
1982-01-01
The LANDSAT analysis carried out as part of Ames Research Center's San Bernardino County Project, one of four projects sponsored by NASA as part of the California Integrated Remote Sensing System (CIRSS) effort for generating and utilizing digital geographic data bases, is described. Topics explored include use of data-base modeling with spectral cluster data to improve LANDSAT data classification, and quantitative evaluation of several change techniques. Both 1976 and 1979 LANDSAT data were used in the project.
Prototype Expert System for Climate Classification.
ERIC Educational Resources Information Center
Harris, Clay
Many students find climate classification laborious and time-consuming, and through their lack of repetition fail to grasp the details of classification. This paper describes an expert system for climate classification that is being developed at Middle Tennessee State University. Topics include: (1) an introduction to the nature of classification,…
[Digital teaching archive. Concept, implementation, and experiences in a university setting].
Trumm, C; Dugas, M; Wirth, S; Treitl, M; Lucke, A; Küttner, B; Pander, E; Clevert, D-A; Glaser, C; Reiser, M
2005-08-01
Film-based teaching files require a substantial investment in human, logistic, and financial resources. The combination of computer and network technology facilitates the workflow integration of distributing radiologic teaching cases within an institution (intranet) or via the World Wide Web (Internet). A digital teaching file (DTF) should include the following basic functions: image import from different sources and of different formats, editing of imported images, uniform case classification, quality control (peer review), a controlled access of different user groups (in-house and external), and an efficient retrieval strategy. The portable network graphics image format (PNG) is especially suitable for DTFs because of several features: pixel support, 2D-interlacing, gamma correction, and lossless compression. The American College of Radiology (ACR) "Index for Radiological Diagnoses" is hierarchically organized and thus an ideal classification system for a DTF. Computer-based training (CBT) in radiology is described in numerous publications, from supplementing traditional learning methods to certified education via the Internet. Attractiveness of a CBT application can be increased by integration of graphical and interactive elements but makes workflow integration of daily case input more difficult. Our DTF was built with established Internet instruments and integrated into a heterogeneous PACS/RIS environment. It facilitates a quick transfer (DICOM_Send) of selected images at the time of interpretation to the DTF and access to the DTF application at any time anywhere within the university hospital intranet employing a standard web browser. A DTF is a small but important building block in an institutional strategy of knowledge management.
5 CFR 9901.221 - Classification requirements.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Section 9901.221 Administrative Personnel DEPARTMENT OF DEFENSE HUMAN RESOURCES MANAGEMENT AND LABOR RELATIONS SYSTEMS (DEPARTMENT OF DEFENSE-OFFICE OF PERSONNEL MANAGEMENT) DEPARTMENT OF DEFENSE NATIONAL SECURITY PERSONNEL SYSTEM (NSPS) Classification Classification Process § 9901.221 Classification...
5 CFR 9701.221 - Classification requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Section 9701.221 Administrative Personnel DEPARTMENT OF HOMELAND SECURITY HUMAN RESOURCES MANAGEMENT SYSTEM (DEPARTMENT OF HOMELAND SECURITY-OFFICE OF PERSONNEL MANAGEMENT) DEPARTMENT OF HOMELAND SECURITY HUMAN RESOURCES MANAGEMENT SYSTEM Classification Classification Process § 9701.221 Classification...
5 CFR 9701.221 - Classification requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Section 9701.221 Administrative Personnel DEPARTMENT OF HOMELAND SECURITY HUMAN RESOURCES MANAGEMENT SYSTEM (DEPARTMENT OF HOMELAND SECURITY-OFFICE OF PERSONNEL MANAGEMENT) DEPARTMENT OF HOMELAND SECURITY HUMAN RESOURCES MANAGEMENT SYSTEM Classification Classification Process § 9701.221 Classification...
5 CFR 9701.221 - Classification requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Section 9701.221 Administrative Personnel DEPARTMENT OF HOMELAND SECURITY HUMAN RESOURCES MANAGEMENT SYSTEM (DEPARTMENT OF HOMELAND SECURITY-OFFICE OF PERSONNEL MANAGEMENT) DEPARTMENT OF HOMELAND SECURITY HUMAN RESOURCES MANAGEMENT SYSTEM Classification Classification Process § 9701.221 Classification...
5 CFR 9701.221 - Classification requirements.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Section 9701.221 Administrative Personnel DEPARTMENT OF HOMELAND SECURITY HUMAN RESOURCES MANAGEMENT SYSTEM (DEPARTMENT OF HOMELAND SECURITY-OFFICE OF PERSONNEL MANAGEMENT) DEPARTMENT OF HOMELAND SECURITY HUMAN RESOURCES MANAGEMENT SYSTEM Classification Classification Process § 9701.221 Classification...
Integrating visual learning within a model-based ATR system
NASA Astrophysics Data System (ADS)
Carlotto, Mark; Nebrich, Mark
2017-05-01
Automatic target recognition (ATR) systems, like human photo-interpreters, rely on a variety of visual information for detecting, classifying, and identifying manmade objects in aerial imagery. We describe the integration of a visual learning component into the Image Data Conditioner (IDC) for target/clutter and other visual classification tasks. The component is based on an implementation of a model of the visual cortex developed by Serre, Wolf, and Poggio. Visual learning in an ATR context requires the ability to recognize objects independent of location, scale, and rotation. Our method uses IDC to extract, rotate, and scale image chips at candidate target locations. A bootstrap learning method effectively extends the operation of the classifier beyond the training set and provides a measure of confidence. We show how the classifier can be used to learn other features that are difficult to compute from imagery such as target direction, and to assess the performance of the visual learning process itself.
Face biometrics with renewable templates
NASA Astrophysics Data System (ADS)
van der Veen, Michiel; Kevenaar, Tom; Schrijen, Geert-Jan; Akkermans, Ton H.; Zuo, Fei
2006-02-01
In recent literature, privacy protection technologies for biometric templates were proposed. Among these is the so-called helper-data system (HDS) based on reliable component selection. In this paper we integrate this approach with face biometrics such that we achieve a system in which the templates are privacy protected, and multiple templates can be derived from the same facial image for the purpose of template renewability. Extracting binary feature vectors forms an essential step in this process. Using the FERET and Caltech databases, we show that this quantization step does not significantly degrade the classification performance compared to, for example, traditional correlation-based classifiers. The binary feature vectors are integrated in the HDS leading to a privacy protected facial recognition algorithm with acceptable FAR and FRR, provided that the intra-class variation is sufficiently small. This suggests that a controlled enrollment procedure with a sufficient number of enrollment measurements is required.
Kashyap, Vipul; Morales, Alfredo; Hongsermeier, Tonya
2006-01-01
We present an approach and architecture for implementing scalable and maintainable clinical decision support at the Partners HealthCare System. The architecture integrates a business rules engine that executes declarative if-then rules stored in a rule-base referencing objects and methods in a business object model. The rules engine executes object methods by invoking services implemented on the clinical data repository. Specialized inferences that support classification of data and instances into classes are identified and an approach to implement these inferences using an OWL based ontology engine is presented. Alternative representations of these specialized inferences as if-then rules or OWL axioms are explored and their impact on the scalability and maintenance of the system is presented. Architectural alternatives for integration of clinical decision support functionality with the invoking application and the underlying clinical data repository; and their associated trade-offs are discussed and presented.
Autonomous power management and distribution
NASA Technical Reports Server (NTRS)
Dolce, Jim; Kish, Jim
1990-01-01
The goal of the Autonomous Power System program is to develop and apply intelligent problem solving and control to the Space Station Freedom's electric power testbed being developed at NASA's Lewis Research Center. Objectives are to establish artificial intelligence technology paths, craft knowledge-based tools and products for power systems, and integrate knowledge-based and conventional controllers. This program represents a joint effort between the Space Station and Office of Aeronautics and Space Technology to develop and demonstrate space electric power automation technology capable of: (1) detection and classification of system operating status, (2) diagnosis of failure causes, and (3) cooperative problem solving for power scheduling and failure recovery. Program details, status, and plans will be presented.
Hoelzer, Simon; Schweiger, Ralf K; Liu, Raymond; Rudolf, Dirk; Rieger, Joerg; Dudeck, Joachim
2005-01-01
With the introduction of the ICD-10 as the standard for diagnosis, the development of an electronic representation of its complete content, inherent semantics and coding rules is necessary. Our concept refers to current efforts of the CEN/TC 251 to establish a European standard for hierarchical classification systems in healthcare. We have developed an electronic representation of the ICD-10 with the extensible Markup Language (XML) that facilitates the integration in current information systems or coding software taking into account different languages and versions. In this context, XML offers a complete framework of related technologies and standard tools for processing that helps to develop interoperable applications.
The Adult Attachment Projective Picture System: integrating attachment into clinical assessment.
George, Carol; West, Malcolm
2011-01-01
This article summarizes the development and validation of the Adult Attachment Projective System (AAP), a measure we developed from the Bowlby-Ainsworth developmental tradition to assess adult attachment status. The AAP has demonstrated excellent concurrent validity with the Adult Attachment Interview (George, Kaplan, & Main, 1984/1985/1996; Main & Goldwyn, 1985-1994; Main, Goldwyn, & Hesse, 2003), interjudge reliability, and test-retest reliability, with no effects of verbal intelligence or social desirability. The AAP coding and classification system and application in clinical and community samples are summarized. Finally, we introduce the 3 other articles that are part of this Special Section and discuss the use of the AAP in therapeutic assessment and treatment.
Systems and methods for knowledge discovery in spatial data
Obradovic, Zoran; Fiez, Timothy E.; Vucetic, Slobodan; Lazarevic, Aleksandar; Pokrajac, Dragoljub; Hoskinson, Reed L.
2005-03-08
Systems and methods are provided for knowledge discovery in spatial data as well as to systems and methods for optimizing recipes used in spatial environments such as may be found in precision agriculture. A spatial data analysis and modeling module is provided which allows users to interactively and flexibly analyze and mine spatial data. The spatial data analysis and modeling module applies spatial data mining algorithms through a number of steps. The data loading and generation module obtains or generates spatial data and allows for basic partitioning. The inspection module provides basic statistical analysis. The preprocessing module smoothes and cleans the data and allows for basic manipulation of the data. The partitioning module provides for more advanced data partitioning. The prediction module applies regression and classification algorithms on the spatial data. The integration module enhances prediction methods by combining and integrating models. The recommendation module provides the user with site-specific recommendations as to how to optimize a recipe for a spatial environment such as a fertilizer recipe for an agricultural field.
Knowledge Representation Of CT Scans Of The Head
NASA Astrophysics Data System (ADS)
Ackerman, Laurens V.; Burke, M. W.; Rada, Roy
1984-06-01
We have been investigating diagnostic knowledge models which assist in the automatic classification of medical images by combining information extracted from each image with knowledge specific to that class of images. In a more general sense we are trying to integrate verbal and pictorial descriptions of disease via representations of knowledge, study automatic hypothesis generation as related to clinical medicine, evolve new mathematical image measures while integrating them into the total diagnostic process, and investigate ways to augment the knowledge of the physician. Specifically, we have constructed an artificial intelligence knowledge model using the technique of a production system blending pictorial and verbal knowledge about the respective CT scan and patient history. It is an attempt to tie together different sources of knowledge representation, picture feature extraction and hypothesis generation. Our knowledge reasoning and representation system (KRRS) works with data at the conscious reasoning level of the practicing physician while at the visual perceptional level we are building another production system, the picture parameter extractor (PPE). This paper describes KRRS and its relationship to PPE.
Finding the way with a noisy brain.
Cheung, Allen; Vickerstaff, Robert
2010-11-11
Successful navigation is fundamental to the survival of nearly every animal on earth, and achieved by nervous systems of vastly different sizes and characteristics. Yet surprisingly little is known of the detailed neural circuitry from any species which can accurately represent space for navigation. Path integration is one of the oldest and most ubiquitous navigation strategies in the animal kingdom. Despite a plethora of computational models, from equational to neural network form, there is currently no consensus, even in principle, of how this important phenomenon occurs neurally. Recently, all path integration models were examined according to a novel, unifying classification system. Here we combine this theoretical framework with recent insights from directed walk theory, and develop an intuitive yet mathematically rigorous proof that only one class of neural representation of space can tolerate noise during path integration. This result suggests many existing models of path integration are not biologically plausible due to their intolerance to noise. This surprising result imposes significant computational limitations on the neurobiological spatial representation of all successfully navigating animals, irrespective of species. Indeed, noise-tolerance may be an important functional constraint on the evolution of neuroarchitectural plans in the animal kingdom.
An integrative dimensional classification of personality disorder.
Widiger, Thomas A; Livesley, W John; Clark, Lee Anna
2009-09-01
Psychological assessment research concerns how to describe psychological dysfunction in ways that are both valid and useful. Recent advances in assessment research hold the promise of facilitating significant improvements in description and diagnosis. One such contribution is in the classification of personality disorder symptomatology. The American Psychiatric Association's diagnostic manual considers personality disorders to be categorically distinct entities. However, research assessing personality disorders has consistently supported a dimensional perspective. Recognition of the many limitations of categorical models of personality disorder classification has led to the development of a variety of alternative proposals, which further research has indicated can be integrated within a common hierarchical structure. This article offers an alternative integrated dimensional model of normal and abnormal personality structure, and it illustrates how such a model could be used clinically to describe patients' normal adaptive personality traits as well as their maladaptive personality traits that could provide the basis for future assessments of personality disorder. The empirical support, feasibility, and clinical utility of the proposal are discussed. Points of ambiguity and dispute are highlighted, and suggestions for future research are provided. Copyright 2009 APA, all rights reserved.
An incremental approach to genetic-algorithms-based classification.
Guan, Sheng-Uei; Zhu, Fangming
2005-04-01
Incremental learning has been widely addressed in the machine learning literature to cope with learning tasks where the learning environment is ever changing or training samples become available over time. However, most research work explores incremental learning with statistical algorithms or neural networks, rather than evolutionary algorithms. The work in this paper employs genetic algorithms (GAs) as basic learning algorithms for incremental learning within one or more classifier agents in a multiagent environment. Four new approaches with different initialization schemes are proposed. They keep the old solutions and use an "integration" operation to integrate them with new elements to accommodate new attributes, while biased mutation and crossover operations are adopted to further evolve a reinforced solution. The simulation results on benchmark classification data sets show that the proposed approaches can deal with the arrival of new input attributes and integrate them with the original input space. It is also shown that the proposed approaches can be successfully used for incremental learning and improve classification rates as compared to the retraining GA. Possible applications for continuous incremental training and feature selection are also discussed.
NASA Astrophysics Data System (ADS)
Liu, G.; Wu, C.; Li, X.; Song, P.
2013-12-01
The 3D urban geological information system has been a major part of the national urban geological survey project of China Geological Survey in recent years. Large amount of multi-source and multi-subject data are to be stored in the urban geological databases. There are various models and vocabularies drafted and applied by industrial companies in urban geological data. The issues such as duplicate and ambiguous definition of terms and different coding structure increase the difficulty of information sharing and data integration. To solve this problem, we proposed a national standard-driven information classification and coding method to effectively store and integrate urban geological data, and we applied the data dictionary technology to achieve structural and standard data storage. The overall purpose of this work is to set up a common data platform to provide information sharing service. Research progresses are as follows: (1) A unified classification and coding method for multi-source data based on national standards. Underlying national standards include GB 9649-88 for geology and GB/T 13923-2006 for geography. Current industrial models are compared with national standards to build a mapping table. The attributes of various urban geological data entity models are reduced to several categories according to their application phases and domains. Then a logical data model is set up as a standard format to design data file structures for a relational database. (2) A multi-level data dictionary for data standardization constraint. Three levels of data dictionary are designed: model data dictionary is used to manage system database files and enhance maintenance of the whole database system; attribute dictionary organizes fields used in database tables; term and code dictionary is applied to provide a standard for urban information system by adopting appropriate classification and coding methods; comprehensive data dictionary manages system operation and security. (3) An extension to system data management function based on data dictionary. Data item constraint input function is making use of the standard term and code dictionary to get standard input result. Attribute dictionary organizes all the fields of an urban geological information database to ensure the consistency of term use for fields. Model dictionary is used to generate a database operation interface automatically with standard semantic content via term and code dictionary. The above method and technology have been applied to the construction of Fuzhou Urban Geological Information System, South-East China with satisfactory results.
The Bellevue Classification System: nursing's voice upon the library shelves*†
Mages, Keith C
2011-01-01
This article examines the inspiration, construction, and meaning of the Bellevue Classification System (BCS), created during the 1930s for use in the Bellevue School of Nursing Library. Nursing instructor Ann Doyle, with assistance from librarian Mary Casamajor, designed the BCS after consulting with library leaders and examining leading contemporary classification systems, including the Dewey Decimal Classification and Library of Congress, Ballard, and National Health Library classification systems. A close textual reading of the classes, subclasses, and subdivisions of these classification systems against those of the resulting BCS, reveals Doyle's belief that the BCS was created not only to organize the literature, but also to promote the burgeoning intellectualism and professionalism of early twentieth-century American nursing. PMID:21243054
Takada, Junko; Meguro, Kenichi; Sato, Yuko; Chiba, Yumiko
2014-09-01
In Japan, the integrated community care system aims to enable people to continue to live in their homes. Based on the concept, one of the activities of a Community General Support Center (CGSC) is to provide preventive intervention based on a Community Support Program. Currently, a Basic Checklist (BC) is sent to elderly people to identify persons appropriate for a Secondary Prevention Program. To find people who had not responded to the BC, CGSC staff evaluated the files of 592 subjects who had participated in the Kurihara Project to identify activities they cannot do that they did in the past, decreased activity levels at home, loss of interaction with people other than their family, and the need for medical interventions. This information was classified, when applicable, into the following categories: (A) 'no life concerns'; (B) 'undecided'; and (C) 'life concerns'. The relationships between these classifications and clinical information, certified need for long-term care, and items on the BC were examined. The numbers of subjects in categories A, B, and C were 291, 42, and 186, respectively. Life concerns were related to scores on the Clinical Dementia Rating, global cognitive function, depressive state, and apathy. Most items on the BC were not associated with classification into category C, but ≥25% of the subjects had life concerns related to these items. Assessment of life concerns by the CGSC staff has clinical validity. The results suggest that there are people who do not respond to the checklist or apply for Long-Term Care Insurance, meaning that they 'hide' in the community, probably due to apathy or depressive state. To organize a more effective integrated community care system, the CGSC staff should focus mainly on preventive care. © 2014 The Authors. Psychogeriatrics © 2014 Japanese Psychogeriatric Society.
DOT National Transportation Integrated Search
1996-02-01
This study reviewed the low volume road (LVR) classifications in Kansas in conjunction with the State A, B, C, D, E road classification system and addressed alignment of these differences. As an extension to the State system, an F, G, H classificatio...
Araki, Tadashi; Jain, Pankaj K; Suri, Harman S; Londhe, Narendra D; Ikeda, Nobutaka; El-Baz, Ayman; Shrivastava, Vimal K; Saba, Luca; Nicolaides, Andrew; Shafique, Shoaib; Laird, John R; Gupta, Ajay; Suri, Jasjit S
2017-01-01
Stroke risk stratification based on grayscale morphology of the ultrasound carotid wall has recently been shown to have a promise in classification of high risk versus low risk plaque or symptomatic versus asymptomatic plaques. In previous studies, this stratification has been mainly based on analysis of the far wall of the carotid artery. Due to the multifocal nature of atherosclerotic disease, the plaque growth is not restricted to the far wall alone. This paper presents a new approach for stroke risk assessment by integrating assessment of both the near and far walls of the carotid artery using grayscale morphology of the plaque. Further, this paper presents a scientific validation system for stroke risk assessment. Both these innovations have never been presented before. The methodology consists of an automated segmentation system of the near wall and far wall regions in grayscale carotid B-mode ultrasound scans. Sixteen grayscale texture features are computed, and fed into the machine learning system. The training system utilizes the lumen diameter to create ground truth labels for the stratification of stroke risk. The cross-validation procedure is adapted in order to obtain the machine learning testing classification accuracy through the use of three sets of partition protocols: (5, 10, and Jack Knife). The mean classification accuracy over all the sets of partition protocols for the automated system in the far and near walls is 95.08% and 93.47%, respectively. The corresponding accuracies for the manual system are 94.06% and 92.02%, respectively. The precision of merit of the automated machine learning system when compared against manual risk assessment system are 98.05% and 97.53% for the far and near walls, respectively. The ROC of the risk assessment system for the far and near walls is close to 1.0 demonstrating high accuracy. Copyright © 2016 Elsevier Ltd. All rights reserved.
Post-deployment Multi-symptom Disorder rehabilitation: An integrated approach to rehabilitation.
Bosco, Michelle A; Murphy, Jennifer; Peters, Walter E; Clark, Michael E
2015-01-01
Veterans and active duty service members returning from Operation New Dawn and those having returned from Operations Iraqi and Enduring Freedom frequently report the presence of overlapping, co-morbid symptom clusters consisting of chronic pain, mild cognitive complaints, and posttraumatic stress symptoms/disorder or mood disturbance. This presentation has been called Post-deployment Multi-symptom Disorder (PMD) and its implications not only impact various functional domains, but have also influenced a system/continuum of care to rise to meet the challenges of treating PMD. This continuum is based on innovation informed by evidence-based therapies, systemic limitations, and a focus on functional improvement rather than diagnostic classification. The purpose of this paper is to describe the symptomatic, functional and systemic challenges inherent to PMD conceptualization and treatment. The constituent clusters of PMD are defined and exemplified, its functional impact is illustrated, and a continuum of care at a large southeastern Veterans Affairs (VA) hospital offering an interdisciplinary approach to integrated rehabilitation is described. Three case examples are provided that that underscore the importance of vocation for improved behavioral health and quality of life. The case examples demonstrate how vocational rehabilitation services are an integral component of PMD treatment.}
A support vector machine approach for classification of welding defects from ultrasonic signals
NASA Astrophysics Data System (ADS)
Chen, Yuan; Ma, Hong-Wei; Zhang, Guang-Ming
2014-07-01
Defect classification is an important issue in ultrasonic non-destructive evaluation. A layered multi-class support vector machine (LMSVM) classification system, which combines multiple SVM classifiers through a layered architecture, is proposed in this paper. The proposed LMSVM classification system is applied to the classification of welding defects from ultrasonic test signals. The measured ultrasonic defect echo signals are first decomposed into wavelet coefficients by the wavelet packet transform. The energy of the wavelet coefficients at different frequency channels are used to construct the feature vectors. The bees algorithm (BA) is then used for feature selection and SVM parameter optimisation for the LMSVM classification system. The BA-based feature selection optimises the energy feature vectors. The optimised feature vectors are input to the LMSVM classification system for training and testing. Experimental results of classifying welding defects demonstrate that the proposed technique is highly robust, precise and reliable for ultrasonic defect classification.
Classifications of Acute Scaphoid Fractures: A Systematic Literature Review.
Ten Berg, Paul W; Drijkoningen, Tessa; Strackee, Simon D; Buijze, Geert A
2016-05-01
Background In the lack of consensus, surgeon-based preference determines how acute scaphoid fractures are classified. There is a great variety of classification systems with considerable controversies. Purposes The purpose of this study was to provide an overview of the different classification systems, clarifying their subgroups and analyzing their popularity by comparing citation indexes. The intention was to improve data comparison between studies using heterogeneous fracture descriptions. Methods We performed a systematic review of the literature based on a search of medical literature from 1950 to 2015, and a manual search using the reference lists in relevant book chapters. Only original descriptions of classifications of acute scaphoid fractures in adults were included. Popularity was based on citation index as reported in the databases of Web of Science (WoS) and Google Scholar. Articles that were cited <10 times in WoS were excluded. Results Our literature search resulted in 308 potentially eligible descriptive reports of which 12 reports met the inclusion criteria. We distinguished 13 different (sub) classification systems based on (1) fracture location, (2) fracture plane orientation, and (3) fracture stability/displacement. Based on citations numbers, the Herbert classification was most popular, followed by the Russe and Mayo classifications. All classification systems were based on plain radiography. Conclusions Most classification systems were based on fracture location, displacement, or stability. Based on the controversy and limited reliability of current classification systems, suggested research areas for an updated classification include three-dimensional fracture pattern etiology and fracture fragment mobility assessed by dynamic imaging.
Optical design and tolerancing of an ophthalmological system
NASA Astrophysics Data System (ADS)
Sieber, Ingo; Martin, Thomas; Yi, Allen; Li, Likai; Rübenach, Olaf
2014-09-01
Tolerance analysis by means of simulation is an essential step in system integration. Tolerance analysis allows for predicting the performance of a system setup of real manufactured parts and for an estimation of the yield with respect to evaluation figures, such as performance requirements, systems specification or cost demands. Currently, optical freeform optics is gaining importance in optical systems design. The performance of freeform optics often strongly depends on the manufacturing accuracy of the surfaces. For this reason, a tolerance analysis with respect to the fabrication accuracy is of crucial importance. The characterization of form tolerances caused by the manufacturing process is based on the definition of straightness, flatness, roundness, and cylindricity. In case of freeform components, however, it is often impossible to define a form deviation by means of this standard classification. Hence, prediction of the impact of manufacturing tolerances on the optical performance is not possible by means of a conventional tolerance analysis. To carry out a tolerance analysis of the optical subsystem, including freeform optics, metrology data of the fabricated surfaces have to be integrated into the optical model. The focus of this article is on design for manufacturability of freeform optics with integrated alignment structures and on tolerance analysis of the optical subsystem based on the measured surface data of manufactured optical freeform components with respect to assembly and manufacturing tolerances. This approach will be reported here using an ophthalmological system as an example.
1987-05-04
FTIILE COP’ AD-A196 840 EMERGING TECHNOLOGIES PROGRAM INTEGRATION REPORT VOLUME II BACKGROUND, DELPHI AND WORKSHOP DATA, APPENDICES . -- PREPARED...Security Classification) Emerging Technologies Program Integration Report Volume II: Background, Delphi and Workshop Data; Appendices (U) 12 PERSONAL...volumes of this integration report assess and synthesize information gathered through a Delphi survey, defense needs prioritization workshops, and
Saini, Harsh; Lal, Sunil Pranit; Naidu, Vimal Vikash; Pickering, Vincel Wince; Singh, Gurmeet; Tsunoda, Tatsuhiko; Sharma, Alok
2016-12-05
High dimensional feature space generally degrades classification in several applications. In this paper, we propose a strategy called gene masking, in which non-contributing dimensions are heuristically removed from the data to improve classification accuracy. Gene masking is implemented via a binary encoded genetic algorithm that can be integrated seamlessly with classifiers during the training phase of classification to perform feature selection. It can also be used to discriminate between features that contribute most to the classification, thereby, allowing researchers to isolate features that may have special significance. This technique was applied on publicly available datasets whereby it substantially reduced the number of features used for classification while maintaining high accuracies. The proposed technique can be extremely useful in feature selection as it heuristically removes non-contributing features to improve the performance of classifiers.
Spatial-spectral blood cell classification with microscopic hyperspectral imagery
NASA Astrophysics Data System (ADS)
Ran, Qiong; Chang, Lan; Li, Wei; Xu, Xiaofeng
2017-10-01
Microscopic hyperspectral images provide a new way for blood cell examination. The hyperspectral imagery can greatly facilitate the classification of different blood cells. In this paper, the microscopic hyperspectral images are acquired by connecting the microscope and the hyperspectral imager, and then tested for blood cell classification. For combined use of the spectral and spatial information provided by hyperspectral images, a spatial-spectral classification method is improved from the classical extreme learning machine (ELM) by integrating spatial context into the image classification task with Markov random field (MRF) model. Comparisons are done among ELM, ELM-MRF, support vector machines(SVM) and SVMMRF methods. Results show the spatial-spectral classification methods(ELM-MRF, SVM-MRF) perform better than pixel-based methods(ELM, SVM), and the proposed ELM-MRF has higher precision and show more accurate location of cells.
Classification of close binary systems by Svechnikov
NASA Astrophysics Data System (ADS)
Dryomova, G. N.
The paper presents the historical overview of classification schemes of eclipsing variable stars with the foreground of advantages of the classification scheme by Svechnikov being widely appreciated for Close Binary Systems due to simplicity of classification criteria and brevity.
Ecoregions and ecodistricts: Ecological regionalizations for the Netherlands' environmental policy
NASA Astrophysics Data System (ADS)
Klijn, Frans; de Waal, Rein W.; Oude Voshaar, Jan H.
1995-11-01
For communicating data on the state of the environment to policy makers, various integrative frameworks are used, including regional integration. For this kind of integration we have developed two related ecological regionalizations, ecoregions and ecodistricts, which are two levels in a series of classifications for hierarchically nested ecosystems at different spatial scale levels. We explain the compilation of the maps from existing geographical data, demonstrating the relatively holistic, a priori integrated approach. The resulting maps are submitted to discriminant analysis to test the consistancy of the use of mapping characteristics, using data on individual abiotic ecosystem components from a national database on a 1-km2 grid. This reveals that the spatial patterns of soil, groundwater, and geomorphology correspond with the ecoregion and ecodistrict maps. Differences between the original maps and maps formed by automatically reclassifying 1-km2 cells with these discriminant components are found to be few. These differences are discussed against the background of the principal dilemma between deductive, a priori integrated, and inductive, a posteriori, classification.
Recursive heuristic classification
NASA Technical Reports Server (NTRS)
Wilkins, David C.
1994-01-01
The author will describe a new problem-solving approach called recursive heuristic classification, whereby a subproblem of heuristic classification is itself formulated and solved by heuristic classification. This allows the construction of more knowledge-intensive classification programs in a way that yields a clean organization. Further, standard knowledge acquisition and learning techniques for heuristic classification can be used to create, refine, and maintain the knowledge base associated with the recursively called classification expert system. The method of recursive heuristic classification was used in the Minerva blackboard shell for heuristic classification. Minerva recursively calls itself every problem-solving cycle to solve the important blackboard scheduler task, which involves assigning a desirability rating to alternative problem-solving actions. Knowing these ratings is critical to the use of an expert system as a component of a critiquing or apprenticeship tutoring system. One innovation of this research is a method called dynamic heuristic classification, which allows selection among dynamically generated classification categories instead of requiring them to be prenumerated.
A CMOS VLSI IC for Real-Time Opto-Electronic Two-Dimensional Histogram Generation
1993-12-01
large scale integration) design; MAGIC ; CMOS; optics; image processing; 93 16. PRICE CODE 17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATiON 19...1. Sun SPARCstation ............. .............. 6 2. Magic .................. ................... 6 a. Peg ................. .................. 7 b...38 v APPENDIX B. MAGIC CELL LAYOUTS .... ............ .. 39 APPENDIX C: SIMULATION DATA ....... ............. .. 56 A. FINITE STATE MACHINE
Classifying Language-Minority Students: A Closer Look at Individual Student Data
ERIC Educational Resources Information Center
Okhremtchouk, Irina S.
2014-01-01
This article presents an exploratory case study of site-level classification practices for language-minority students. The study examines individual classification data of 439 language-minority student cases from one California urban school district and two of its schools. The review process involved a thorough examination of data integrity,…
A Cradle-to-Grave Integrated Approach to Using UNIFORMAT II
ERIC Educational Resources Information Center
Schneider, Richard C.; Cain, David A.
2009-01-01
The ASTM E1557/UNIFORMAT II standard is a three-level, function-oriented classification which links the schematic phase Preliminary Project Descriptions (PPD), based on Construction Standard Institute (CSI) Practice FF/180, to elemental cost estimates based on R.S. Means Cost Data. With the UNIFORMAT II Standard Classification for Building…
Dijemeni, Esuabom; D'Amone, Gabriele; Gbati, Israel
2017-12-01
Drug-induced sedation endoscopy (DISE) classification systems have been used to assess anatomical findings on upper airway obstruction, and decide and plan surgical treatments and act as a predictor for surgical treatment outcome for obstructive sleep apnoea management. The first objective is to identify if there is a universally accepted DISE grading and classification system for analysing DISE findings. The second objective is to identify if there is one DISE grading and classification treatment planning framework for deciding appropriate surgical treatment for obstructive sleep apnoea (OSA). The third objective is to identify if there is one DISE grading and classification treatment outcome framework for determining the likelihood of success for a given OSA surgical intervention. A systematic review was performed to identify new and significantly modified DISE classification systems: concept, advantages and disadvantages. Fourteen studies proposing a new DISE classification system and three studies proposing a significantly modified DISE classification were identified. None of the studies were based on randomised control trials. DISE is an objective method for visualising upper airway obstruction. The classification and assessment of clinical findings based on DISE is highly subjective due to the increasing number of DISE classification systems. Hence, this creates a growing divergence in surgical treatment planning and treatment outcome. Further research on a universally accepted objective DISE assessment is critically needed.
A New Tool for Climatic Analysis Using the Koppen Climate Classification
ERIC Educational Resources Information Center
Larson, Paul R.; Lohrengel, C. Frederick, II
2011-01-01
The purpose of climate classification is to help make order of the seemingly endless spatial distribution of climates. The Koppen classification system in a modified format is the most widely applied system in use today. This system may not be the best nor most complete climate classification that can be conceived, but it has gained widespread…