Science.gov

Sample records for integrated control rooms

  1. CEBAF Control Room Renovation

    SciTech Connect

    Michael Spata; Thomas Oren

    2005-05-01

    The Machine Control Center at Jefferson Lab's Continuous Electron Beam Accelerator Facility was initially constructed in the early 1990s and based on proven technology of that era. Through our experience over the last 15 years and in our planning for the facilities 12 GeV upgrade we reevaluated the control room environment to capitalize on emerging visualization and display technologies and improve on workflow processes and ergonomic attributes. This effort also sets the foundation for the redevelopment of the accelerator's control system to deliver high reliability performance with improvements in beam specifications management and information flow. The complete renovation was performed over a three-week period with no interruption to beam operations. We present the results of this effort.

  2. CEBAF Control Room Renovation

    SciTech Connect

    Michael Spata; Thomas Oren

    2005-05-01

    The Machine Control Center (MCC) at Jefferson Lab's Continuous Electron Beam Accelerator Facility (CEBAF) was initially constructed in the early 1990s and based on proven technology of that era. Through our experience over the last 15 years and in our planning for the facility's 12 GeV upgrade we reevaluated the control room environment to capitalize on emerging visualization and display technologies and improve workflow processes and ergonomic attributes. This effort also sets the foundation for the redevelopment of the accelerator's control system to deliver high reliability performance with improvements in beam specifications management and information flow. The complete renovation was performed over a three-week maintenance period with no interruption to beam operations. We present the results of this effort.

  3. CEBAF Control Room Renovation

    SciTech Connect

    Michael Spata; Anthony Cuffe; Thomas Oren

    2005-03-22

    The Machine Control Center (MCC) at Jefferson Lab's Continuous Electron Beam Accelerator Facility (CEBAF) was constructed in the early 1990s and based on proven technology of that era. Through our experience over the last 15 years and in our planning for the facilities 12 GeV upgrade we reevaluated the control room environment to capitalize on emerging visualization and display technologies and improve on work-flow processes and ergonomic attributes. The renovation was performed in two phases during the summer of 2004, with one phase occurring during machine operations and the latter, more extensive phase, occurring during our semi-annual shutdown period. The new facility takes advantage of advances in display technology, analog and video signal management, server technology, ergonomic workspace design, lighting engineering, acoustic ceilings and raised flooring solutions to provide a marked improvement in the overall environment of machine operations.

  4. BEYOND INTEGRATED SYSTEM VALIDATION: USE OF A CONTROL ROOM TRAINING SIMULATOR FOR PROOF-OF-CONCEPT INTERFACE DEVELOPMENT

    SciTech Connect

    Ronald Boring; Vivek Agarwal

    2012-07-01

    This paper provides background on a reconfigurable control room simulator for nuclear power plants. The main control rooms in current nuclear power plants feature analog technology that is growing obsolete. The need to upgrade control rooms serves the practical need of maintainability as well as the opportunity to implement newer digital technologies with added functionality. There currently exists no dedicated research simulator for use in human factors design and evaluation activities for nuclear power plants in the US. The new research simulator discussed in this paper provides a test bed in which operator performance on new control room concepts can be benchmarked against existing control rooms and in which new technologies can be validated for safety and usability prior to deployment.

  5. 10. CONTROL ROOM INTERIOR. Looking into southwest corner. CONTROL ROOM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. CONTROL ROOM INTERIOR. Looking into southwest corner. CONTROL ROOM INTERIOR, SHOWING ESCAPE HATCH. Looking north along east wall. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Instrumentation & Control Building, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  6. Nuclear reactor control room construction

    DOEpatents

    Lamuro, Robert C.; Orr, Richard

    1993-01-01

    A control room 10 for a nuclear plant is disclosed. In the control room, objects 12, 20, 22, 26, 30 are no less than four inches from walls 10.2. A ceiling 32 contains cooling fins 35 that extend downwards toward the floor from metal plates 34. A concrete slab 33 is poured over the plates. Studs 36 are welded to the plates and are encased in the concrete.

  7. Nuclear reactor control room construction

    DOEpatents

    Lamuro, R.C.; Orr, R.

    1993-11-16

    A control room for a nuclear plant is disclosed. In the control room, objects labelled 12, 20, 22, 26, 30 in the drawing are no less than four inches from walls labelled 10.2. A ceiling contains cooling fins that extend downwards toward the floor from metal plates. A concrete slab is poured over the plates. Studs are welded to the plates and are encased in the concrete. 6 figures.

  8. Advanced nuclear plant control room complex

    DOEpatents

    Scarola, Kenneth; Jamison, David S.; Manazir, Richard M.; Rescorl, Robert L.; Harmon, Daryl L.

    1993-01-01

    An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

  9. 10. Interior view of control room in Components Test Laboratory ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Interior view of control room in Components Test Laboratory (T-27), looking east. The control room is located in the center of the building and abuts the Test Cell 8, 9, and 10 and equipment room wings. Photograph shows upgraded instrumentation, piping, and technological modifications installed in 1997-99 to accommodate component testing requirements for the Atlas V missile. - Air Force Plant PJKS, Systems Integration Laboratory, Components Test Laboratory, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  10. 38. ENGINE ROOM, FROM STARBOARD SIDE OF CONTROL CONSOLE, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    38. ENGINE ROOM, FROM STARBOARD SIDE OF CONTROL CONSOLE, LOOKING TOWARDS PORT, DETAIL OF PORT ENGINE. - U.S. Coast Guard Cutter WHITE HEATH, USGS Integrated Support Command Boston, 427 Commercial Street, Boston, Suffolk County, MA

  11. 37. ENGINE ROOM, FROM PORT SIDE OF CONTROL CONSOLE, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. ENGINE ROOM, FROM PORT SIDE OF CONTROL CONSOLE, LOOKING TOWARDS STERN, PORT ENGINE AT RIGHT, STARBOARD ENGINE AT LEFT, BOTH ARE DIESEL ENGINES, IN BACKGROUND IS STAIRS UP TO CREWS' BERTHING, BEYONE THE STAIRS IS THE DOOR TO AFT ENGINE ROOM & MACHINE SHOP. - U.S. Coast Guard Cutter WHITE HEATH, USGS Integrated Support Command Boston, 427 Commercial Street, Boston, Suffolk County, MA

  12. Smokey Visits Station Flight Control Room

    NASA Video Gallery

    Smokey Bear celebrated his 68th birthday with a special visit to the International Space Station Flight Control Room at Johnson Space Center in Houston. On May 14, Smokey went where no bear had gon...

  13. Designing an Alternate Mission Operations Control Room

    NASA Technical Reports Server (NTRS)

    Montgomery, Patty; Reeves, A. Scott

    2014-01-01

    The Huntsville Operations Support Center (HOSC) is a multi-project facility that is responsible for 24x7 real-time International Space Station (ISS) payload operations management, integration, and control and has the capability to support small satellite projects and will provide real-time support for SLS launches. The HOSC is a service-oriented/ highly available operations center for ISS payloads-directly supporting science teams across the world responsible for the payloads. The HOSC is required to endure an annual 2-day power outage event for facility preventive maintenance and safety inspection of the core electro-mechanical systems. While complete system shut-downs are against the grain of a highly available sub-system, the entire facility must be powered down for a weekend for environmental and safety purposes. The consequence of this ground system outage is far reaching: any science performed on ISS during this outage weekend is lost. Engineering efforts were focused to maximize the ISS investment by engineering a suitable solution capable of continuing HOSC services while supporting safety requirements. The HOSC Power Outage Contingency (HPOC) System is a physically diversified compliment of systems capable of providing identified real-time services for the duration of a planned power outage condition from an alternate control room. HPOC was designed to maintain ISS payload operations for approximately three continuous days during planned HOSC power outages and support a local Payload Operations Team, International Partners, as well as remote users from the alternate control room located in another building.

  14. CONTROL ROOM WITH SPRINKLER SYSTEM CONTROLS, INCLUDING MANUAL CONTROL BOXES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONTROL ROOM WITH SPRINKLER SYSTEM CONTROLS, INCLUDING MANUAL CONTROL BOXES FOR THE VENTILATION SYSTEM AND A PLC SWITCH FOR AUTOMATIC CO (CARBON MONOXIDE) SYSTEM. THE AIR TESTING SYSTEM IS FREE STANDING AND THE FANS ARE COMPUTER-OPERATED. - Alaskan Way Viaduct and Battery Street Tunnel, Seattle, King County, WA

  15. 21. Interior view of citric acid air pollution control room ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. Interior view of citric acid air pollution control room (also known as scrubber room) in Components Test Laboratory (T-27), looking southeast. Photograph shows upgraded instrumentation, piping, tanks, and technological modifications installed in 1997-99 to accommodate component testing requirements for the Atlas V missile. - Air Force Plant PJKS, Systems Integration Laboratory, Components Test Laboratory, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  16. Guidelines on ergonomic aspects of control rooms

    NASA Technical Reports Server (NTRS)

    Mitchell, C. M.; Bocast, A. K.; Stewart, L. J.

    1983-01-01

    The anthropometry, workstation design, and environmental design of control rooms are outlined. The automated interface and VDTs and displays and various modes of communication between the system and the human operator using VDTs are discussed. The man in the loop is examined, the single controller single task framework and multiple controller multiple tasks issues are considered.

  17. Advanced control room design review guidelines: Integration of the NUREG-0700 guidelines and development of new human-system interface guidelines

    SciTech Connect

    Carter, R.J.

    1997-07-01

    This report documents the work conducted in four tasks of the Nuclear Regulatory Commission (NRC) project entitled Review Criteria for Human Factors Aspects of Advanced Controls and Instrumentation. The purpose of the first task was to integrate the applicable sections of NUREG-0700 into the advanced control room design review (ACRDR) guidelines to ensure that all applicable guidelines are together in one document and conveniently accessible to users. The primary objective of the second task was to formulate a strategy for the development of new ACRDR guidelines that have not otherwise been identified. The main focus of the third task was to modify the individual ACRDR guidelines generated to date to ensure that they are suitable for the intended nuclear power plant (NPP) control station system application. The goal of the fourth task was to develop human factors guidelines for two human-system interface categories that are missing from the current ACRDR guidelines document. During the first task those areas in NUREG-0700 that are not addressed by the ACRDR guidelines document were identified, the areas were subsequently reviewed against six recent industry human factors engineering review guidelines, and the NUREG-0700 guidelines were updated as necessary. In the second task 13 general categories of human-system interface guidelines that are either missing from or not adequately addressed by the ACRDR document were discovered. An approach was derived for the development of new ACRDR guidelines, a preliminary assessment of the available sources that may be useful in the creation of new guidelines and their applicability to the identified human-system interface categories was performed, and an estimate was made of the amount of time and level of effort required to complete the development of needed new ACRDR guidelines. During the third task those NPP control station systems to which the NUREG-0700 and ACRDR guidelines apply were identified, matrices of such

  18. Software Support during a Control Room Upgrade

    SciTech Connect

    Michele Joyce; Michael Spata; Thomas Oren; Anthony Cuffe; Theo McGuckin; Isadoro Carlino; C. Higgins; Harry Fanning; Matthew Bickley; Brian Bevins

    2005-09-21

    In 2004, after 14 years of accelerator operations and commissioning, Jefferson Lab renovated its main control room. Changes in technology and lessons learned during those 14 years drove the control room redesign in a new direction, one that optimizes workflow and makes critical information and controls available to everyone in the control room. Fundamental changes in a variety of software applications were required to facilitate the new operating paradigm. A critical component of the new control room design is a large-format video wall that is used to make a variety of operating information available to everyone in the room. Analog devices such as oscilloscopes and function generators are now displayed on the video wall through two crosspoint switchers: one for analog signals and another for video signals. A new software GUI replaces manual configuration of the oscilloscopes and function generators and helps automate setup. Monitoring screens, customized for the video wall, now make important operating information visible to everyone, not just a single operator. New alarm handler software gives any operator, on any workstation, access to all alarm handler functionality, and multiple users can now contribute to a single electronic logbook entry. To further support the shift to distributed access and control, many applications have been redesigned to run on servers instead of on individual workstations.

  19. A New Control Room for SLAC Accelerators

    SciTech Connect

    Erickson, Roger; Guerra, E.; Stanek, M.; Hoover, Z.Van; Warren, J.; /SLAC

    2012-06-04

    We are planning to construct a new control room at SLAC to unify and improve the operation of the LCLS, SPEAR3, and FACET accelerator facilities, and to provide the space and flexibility needed to support the LCLS-II and proposed new test beam facilities. The existing control rooms for the linac and SPEAR3 have been upgraded in various ways over the last decade, but their basic features have remained unchanged. We propose to build a larger modern Accelerator Control Room (ACR) in the new Research Support Building (RSB) which is currently under construction at SLAC. Shifting the center of control for the accelerator facilities entails both technical and administrative challenges. In this paper, we describe the history, concept, and status of this project.

  20. 7. VIEW OF SLC3W CONTROL ROOM (ROOM 105) FROM ITS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VIEW OF SLC-3W CONTROL ROOM (ROOM 105) FROM ITS SOUTHWEST CORNER. NOTE RAISED FLATFORM IN CENTER OF ROOM. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  1. Transition Flight Control Room Automation

    NASA Technical Reports Server (NTRS)

    Welborn, Curtis Ray

    1990-01-01

    The Workstation Prototype Laboratory is currently working on a number of projects which we feel can have a direct impact on ground operations automation. These projects include: The Fuel Cell Monitoring System (FCMS), which will monitor and detect problems with the fuel cells on the Shuttle. FCMS will use a combination of rules (forward/backward) and multi-threaded procedures which run concurrently with the rules, to implement the malfunction algorithms of the EGIL flight controllers. The combination of rule based reasoning and procedural reasoning allows us to more easily map the malfunction algorithms into a real-time system implementation. A graphical computation language (AGCOMPL). AGCOMPL is an experimental prototype to determine the benefits and drawbacks of using a graphical language to design computations (algorithms) to work on Shuttle or Space Station telemetry and trajectory data. The design of a system which will allow a model of an electrical system, including telemetry sensors, to be configured on the screen graphically using previously defined electrical icons. This electrical model would then be used to generate rules and procedures for detecting malfunctions in the electrical components of the model. A generic message management (GMM) system. GMM is being designed as a message management system for real-time applications which send advisory messages to a user. The primary purpose of GMM is to reduce the risk of overloading a user with information when multiple failures occurs and in assisting the developer in devising an explanation facility. The emphasis of our work is to develop practical tools and techniques, while determining the feasibility of a given approach, including identification of appropriate software tools to support research, application and tool building activities.

  2. Transition flight control room automation

    NASA Technical Reports Server (NTRS)

    Welborn, Curtis Ray

    1990-01-01

    The Workstation Prototype Laboratory is currently working on a number of projects which can have a direct impact on ground operations automation. These projects include: (1) The fuel cell monitoring system (FCMS), which will monitor and detect problems with the fuel cells on the shuttle. FCMS will use a combination of rules (forward/backward) and multithreaded procedures, which run concurrently with the rules, to implement the malfunction algorithms of the EGIL flight controllers. The combination of rule-based reasoning and procedural reasoning allows us to more easily map the malfunction algorithms into a real-time system implementation. (2) A graphical computation language (AGCOMPL) is an experimental prototype to determine the benefits and drawbacks of using a graphical language to design computations (algorithms) to work on shuttle or space station telemetry and trajectory data. (3) The design of a system will allow a model of an electrical system, including telemetry sensors, to be configured on the screen graphically using previously defined electrical icons. This electrical model would then be used to generate rules and procedures for detecting malfunctions in the electrical components of the model. (4) A generic message management (GMM) system is being designed for real-time applications as a message management system which sends advisory messages to a user. The primary purpose of GMM is to reduce the risk of overloading a user with information when multiple failures occur and to assist the developer in the devising an explanation facility. The emphasis of our work is to develop practical tools and techniques, including identification of appropriate software tools to support research, application, and tool building activities, while determining the feasibility of a given approach.

  3. Control room habitability system review models

    SciTech Connect

    Gilpin, H. )

    1990-12-01

    This report provides a method of calculating control room operator doses from postulated reactor accidents and chemical spills as part of the resolution of TMI Action Plan III.D.3.4. The computer codes contained in this report use source concentrations calculated by either TACT5, FPFP, or EXTRAN, and transport them via user-defined flow rates to the control room envelope. The codes compute doses to six organs from up to 150 radionuclides (or 1 toxic chemical) for time steps as short as one second. Supporting codes written in Clipper assist in data entry and manipulation, and graphically display the results of the FORTRAN calculations. 7 refs., 22 figs.

  4. 11. Interior view of control room in Components Test Laboratory ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Interior view of control room in Components Test Laboratory (T-27), looking north. Photograph shows upgraded instrumentation, piping, and technological modifications installed in 1997-99 to accommodate component testing requirements for the Atlas V missile. - Air Force Plant PJKS, Systems Integration Laboratory, Components Test Laboratory, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  5. Individual room temperature control: A peaceful solution to thermostat wars

    SciTech Connect

    Pieper, C.A. )

    1994-01-01

    This article addresses the problem of maintaining thermal comfort in individual rooms using an individual room temperature control concept to provide greater occupant comfort and potentially reduce energy consumption. The topics of the article include occupant temperature control methods, multi-room zone control, HVAC system operation, computer simulation, and the results of using individual room temperature control.

  6. Electric control of magnetism at room temperature

    PubMed Central

    Wang, Liaoyu; Wang, Dunhui; Cao, Qingqi; Zheng, Yuanxia; Xuan, Haicheng; Gao, Jinlong; Du, Youwei

    2012-01-01

    In the single-phase multiferroics, the coupling between electric polarization (P) and magnetization (M) would enable the magnetoelectric (ME) effect, namely M induced and modulated by E, and conversely P by H. Especially, the manipulation of magnetization by an electric field at room-temperature is of great importance in technological applications, such as new information storage technology, four-state logic device, magnetoelectric sensors, low-power magnetoelectric device and so on. Furthermore, it can reduce power consumption and realize device miniaturization, which is very useful for the practical applications. In an M-type hexaferrite SrCo2Ti2Fe8O19, large magnetization and electric polarization were observed simultaneously at room-temperature. Moreover, large effect of electric field-controlled magnetization was observed even without magnetic bias field. These results illuminate a promising potential to apply in magnetoelectric devices at room temperature and imply plentiful physics behind them. PMID:22355737

  7. 28. MAIN CONTROL ROOM, PANELS WEST OF MAIN CONTROL AREA, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. MAIN CONTROL ROOM, PANELS WEST OF MAIN CONTROL AREA, LOOKING NORTH (LOCATION Q) - Shippingport Atomic Power Station, On Ohio River, 25 miles Northwest of Pittsburgh, Shippingport, Beaver County, PA

  8. 29. MAIN CONTROL ROOM, PANELS WEST OF MAIN CONTROL AREA, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. MAIN CONTROL ROOM, PANELS WEST OF MAIN CONTROL AREA, LOOKING SOUTH (LOCATION Q) - Shippingport Atomic Power Station, On Ohio River, 25 miles Northwest of Pittsburgh, Shippingport, Beaver County, PA

  9. Priority coding for control room alarms

    DOEpatents

    Scarola, Kenneth; Jamison, David S.; Manazir, Richard M.; Rescorl, Robert L.; Harmon, Daryl L.

    1994-01-01

    Indicating the priority of a spatially fixed, activated alarm tile on an alarm tile array by a shape coding at the tile, and preferably using the same shape coding wherever the same alarm condition is indicated elsewhere in the control room. The status of an alarm tile can change automatically or by operator acknowledgement, but tones and/or flashing cues continue to provide status information to the operator.

  10. White Paper for Virtual Control Room

    NASA Technical Reports Server (NTRS)

    Little, William; Tully-Hanson, Benjamin

    2015-01-01

    The Virtual Control Room (VCR) Proof of Concept (PoC) project is the result of an award given by the Fourth Annual NASA T&I Labs Challenge Project Call. This paper will outline the work done over the award period to build and enhance the capabilities of the Augmented/Virtual Reality (AVR) Lab at NASA's Kennedy Space Center (KSC) to create the VCR.

  11. 13. CONTROL ROOM OF GENE PUMPING STATION. CONTROL CUBICLES ARRAYED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. CONTROL ROOM OF GENE PUMPING STATION. CONTROL CUBICLES ARRAYED BEHIND MANAGER'S ART DECO-STYLE CONTROL DESK, WITH CONTROL CUBICLE 1 AT FAR RIGHT AND CONTROL CUBICLE 9 AT FAR LEFT. - Gene Pump Plant, South of Gene Wash Reservoir, 2 miles west of Whitsett Pump Plant, Parker Dam, San Bernardino County, CA

  12. Advanced interaction media in nuclear power plant control rooms.

    PubMed

    Stephane, Lucas

    2012-01-01

    The shift from analog to digital Instruments (related mainly to information visualization) and Controls in Nuclear Power Plant Main Control Rooms (NPP MCR) is a central current topic of investigation. In NPP MCR, digitalization was implemented gradually, analog and digital systems still coexisting for the two main systems related to safety--Safety Instruments and Control System (SICS) and Process Instruments and Controls System (PICS). My ongoing research focuses on the introduction of Advanced Interaction Media (AIM) such as stereoscopic 3D visualization and multi-touch surfaces in control rooms. This paper proposes a Safety-Centric approach for gathering the Design Rationale needed in the specification of such novel AIM concepts as well as their evaluation through user tests. Beyond methodological research, the final output of the current research is to build an experimental simulator aiming to enhance improvements in Human-Systems Integration (HSI). This paper provides an overview of the topics under consideration.

  13. Advanced interaction media in nuclear power plant control rooms.

    PubMed

    Stephane, Lucas

    2012-01-01

    The shift from analog to digital Instruments (related mainly to information visualization) and Controls in Nuclear Power Plant Main Control Rooms (NPP MCR) is a central current topic of investigation. In NPP MCR, digitalization was implemented gradually, analog and digital systems still coexisting for the two main systems related to safety--Safety Instruments and Control System (SICS) and Process Instruments and Controls System (PICS). My ongoing research focuses on the introduction of Advanced Interaction Media (AIM) such as stereoscopic 3D visualization and multi-touch surfaces in control rooms. This paper proposes a Safety-Centric approach for gathering the Design Rationale needed in the specification of such novel AIM concepts as well as their evaluation through user tests. Beyond methodological research, the final output of the current research is to build an experimental simulator aiming to enhance improvements in Human-Systems Integration (HSI). This paper provides an overview of the topics under consideration. PMID:22317419

  14. 6. VIEW OF SLC3W CONTROL ROOM (ROOM 105) FROM ITS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. VIEW OF SLC-3W CONTROL ROOM (ROOM 105) FROM ITS SOUTHEAST CORNER - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  15. 55. VIEW OF SLC3E CONTROL ROOM (ROOM 107) FROM ITS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    55. VIEW OF SLC-3E CONTROL ROOM (ROOM 107) FROM ITS NORTHEAST CORNER - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  16. Computer codes for evaluation of control room habitability (HABIT)

    SciTech Connect

    Stage, S.A.

    1996-06-01

    This report describes the Computer Codes for Evaluation of Control Room Habitability (HABIT). HABIT is a package of computer codes designed to be used for the evaluation of control room habitability in the event of an accidental release of toxic chemicals or radioactive materials. Given information about the design of a nuclear power plant, a scenario for the release of toxic chemicals or radionuclides, and information about the air flows and protection systems of the control room, HABIT can be used to estimate the chemical exposure or radiological dose to control room personnel. HABIT is an integrated package of several programs that previously needed to be run separately and required considerable user intervention. This report discusses the theoretical basis and physical assumptions made by each of the modules in HABIT and gives detailed information about the data entry windows. Sample runs are given for each of the modules. A brief section of programming notes is included. A set of computer disks will accompany this report if the report is ordered from the Energy Science and Technology Software Center. The disks contain the files needed to run HABIT on a personal computer running DOS. Source codes for the various HABIT routines are on the disks. Also included are input and output files for three demonstration runs.

  17. 17. CONTROL ROOM, NORTH SIDE, WITH BRIDGE SWING CONTROLS ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. CONTROL ROOM, NORTH SIDE, WITH BRIDGE SWING CONTROLS ON LEFT, SIGNAL CONTROLS ON RIGHT, WHISTLE PULL TOP. RADIO TELEPHONE IN CENTER BACK (Fred Small) - Burlington Northern Railroad Bridge, Spanning Willamette River at River Mile 6.9, Portland, Multnomah County, OR

  18. Information presentation in power plant control rooms

    NASA Astrophysics Data System (ADS)

    Kautto, A.

    1984-11-01

    The organization and presentation of information in a pressurized water reactor control room is discussed. Design of the alert function so as to reduce the number of alarms during plant shutdown, e.g., during the refuelling or maintenance period and during a disturbance, is considered. Validation of the Critical Function Monitoring System on a training simulator is described. Functional decomposition of information is shown to be helpful in designing displays. Criteria for designing displays, the structure of the information presentation system, and the main interactions are presented.

  19. 8. VIEW OF SLC3W CONTROL ROOM (ROOM 105) FROM ITS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. VIEW OF SLC-3W CONTROL ROOM (ROOM 105) FROM ITS NORTHEAST CORNER. TELEMETRY ROOM VISIBLE THROUGH WINDOWS IN SOUTH WALL. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  20. 49 CFR 195.446 - Control room management.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Control room management. 195.446 Section 195.446... PIPELINE Operation and Maintenance § 195.446 Control room management. (a) General. This section applies to... written control room management procedures that implement the requirements of this section. The...

  1. [Controlling systems for operating room managers].

    PubMed

    Schüpfer, G; Bauer, M; Scherzinger, B; Schleppers, A

    2005-08-01

    Management means developing, shaping and controlling of complex, productive and social systems. Therefore, operating room managers also need to develop basic skills in financial and managerial accounting as a basis for operative and strategic controlling which is an essential part of their work. A good measurement system should include financial and strategic concepts for market position, innovation performance, productivity, attractiveness, liquidity/cash flow and profitability. Since hospitals need to implement a strategy to reach their business objectives, the performance measurement system has to be individually adapted to the strategy of the hospital. In this respect the navigation system developed by Gälweiler is compared to the "balanced score card" system of Kaplan and Norton. PMID:15959742

  2. MTR CONTROL ROOM WITH CONTROL CONSOLE AND STATUS READOUTS ALONG ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MTR CONTROL ROOM WITH CONTROL CONSOLE AND STATUS READOUTS ALONG WALL. WORKERS MAKE ELECTRICAL AND OTHER CONNECTIONS. INL NEGATIVE NO. 4289. Unknown Photographer, 2/26/1952 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  3. 141. Detail of east control panel in control room, looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    141. Detail of east control panel in control room, looking east. This panel contains electrical switches that were used to control valves at circular forebay. It also contains voltage regulators, synchroscope adjust field breaker, ammeters, wattmeters, temperature indicator of generator windings, and butterfly valve and governor controls. Photo by Jet Lowe, HAER, 1989. - Puget Sound Power & Light Company, White River Hydroelectric Project, 600 North River Avenue, Dieringer, Pierce County, WA

  4. Requirements for Control Room Computer-Based Procedures for use in Hybrid Control Rooms

    SciTech Connect

    Le Blanc, Katya Lee; Oxstrand, Johanna Helene; Joe, Jeffrey Clark

    2015-05-01

    Many plants in the U.S. are currently undergoing control room modernization. The main drivers for modernization are the aging and obsolescence of existing equipment, which typically results in a like-for-like replacement of analogue equipment with digital systems. However, the modernization efforts present an opportunity to employ advanced technology that would not only extend the life, but enhance the efficiency and cost competitiveness of nuclear power. Computer-based procedures (CBPs) are one example of near-term advanced technology that may provide enhanced efficiencies above and beyond like for like replacements of analog systems. Researchers in the LWRS program are investigating the benefits of advanced technologies such as CBPs, with the goal of assisting utilities in decision making during modernization projects. This report will describe the existing research on CBPs, discuss the unique issues related to using CBPs in hybrid control rooms (i.e., partially modernized analog control rooms), and define the requirements of CBPs for hybrid control rooms.

  5. 5. INTERIOR VIEW, SHOWING A CONTROL ROOM INSIDE THE RADIOGRAPHY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. INTERIOR VIEW, SHOWING A CONTROL ROOM INSIDE THE RADIOGRAPHY ROOM; PASS-THROUGH FOR EXPOSED FILM ON RIGHT - Fort McCoy, Building No. T-1031, North side of South Tenth Avenue, Block 10, Sparta, Monroe County, WI

  6. 3. GENERAL VIEW OF BOILER ROOM, LOOKING NORTH; CONTROL PANEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. GENERAL VIEW OF BOILER ROOM, LOOKING NORTH; CONTROL PANEL AT CENTER; BOXLIKE, RIVETED HOUSING AT TOP CENTER CONTAINED AUGER FOR COAL DISTRIBUTION SYSTEM - Rath Packing Company, Boiler Room, Sycamore Street between Elm & Eighteenth Streets, Waterloo, Black Hawk County, IA

  7. 3. OBLIQUE VIEW OF THE PRESENT CONTROL ROOM (ORIGINALLY THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. OBLIQUE VIEW OF THE PRESENT CONTROL ROOM (ORIGINALLY THE TRANSFORMER ROOM). - Washington Water Power Company Post Falls Power Plant, Middle Channel Powerhouse & Dam, West of intersection of Spokane & Fourth Streets, Post Falls, Kootenai County, ID

  8. IET control building (TAN620). control room. facing east. windows on ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    IET control building (TAN-620). control room. facing east. windows on east end of control room with data room beyond. INEEL negative no. HD-21-3-4 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  9. Verification and Validation of Digitally Upgraded Control Rooms

    SciTech Connect

    Boring, Ronald; Lau, Nathan

    2015-09-01

    As nuclear power plants undertake main control room modernization, a challenge is the lack of a clearly defined human factors process to follow. Verification and validation (V&V) as applied in the nuclear power community has tended to involve efforts such as integrated system validation, which comes at the tail end of the design stage. To fill in guidance gaps and create a step-by-step process for control room modernization, we have developed the Guideline for Operational Nuclear Usability and Knowledge Elicitation (GONUKE). This approach builds on best practices in the software industry, which prescribe an iterative user-centered approach featuring multiple cycles of design and evaluation. Nuclear regulatory guidance for control room design emphasizes summative evaluation—which occurs after the design is complete. In the GONUKE approach, evaluation is also performed at the formative stage of design—early in the design cycle using mockups and prototypes for evaluation. The evaluation may involve expert review (e.g., software heuristic evaluation at the formative stage and design verification against human factors standards like NUREG-0700 at the summative stage). The evaluation may also involve user testing (e.g., usability testing at the formative stage and integrated system validation at the summative stage). An additional, often overlooked component of evaluation is knowledge elicitation, which captures operator insights into the system. In this report we outline these evaluation types across design phases that support the overall modernization process. The objective is to provide industry-suitable guidance for steps to be taken in support of the design and evaluation of a new human-machine interface (HMI) in the control room. We suggest the value of early-stage V&V and highlight how this early-stage V&V can help improve the design process for control room modernization. We argue that there is a need to overcome two shortcomings of V&V in current practice

  10. 10. Credit BG. Interior of control and observation room at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Credit BG. Interior of control and observation room at Control and Recording Center Building 4221/E-22. - Jet Propulsion Laboratory Edwards Facility, Control & Recording Center, Edwards Air Force Base, Boron, Kern County, CA

  11. 5. INTERIOR VIEW OF UPPER LEVEL ROOM OF THE CONTROL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. INTERIOR VIEW OF UPPER LEVEL ROOM OF THE CONTROL HOUSE LOCATED ON THE SOUTH END OF BIG TUJUNGA DAM SHOWING THE CONTROL PANEL. - Big Tujunga Dam, Control House, 809 West Big Tujunga Road, Sunland, Los Angeles County, CA

  12. 11. Credit BG. Interior of control and observation room at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Credit BG. Interior of control and observation room at Control and Recording Center, showing detail of switchboard and closed circuit television monitors. - Jet Propulsion Laboratory Edwards Facility, Control & Recording Center, Edwards Air Force Base, Boron, Kern County, CA

  13. 11. Historic view of Building 100 control room, showing personnel ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Historic view of Building 100 control room, showing personnel operating rocket engine test controls and observer watching activity from observation room. May 27, 1957. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA photo number C-45020. - Rocket Engine Testing Facility, GRC Building No. 100, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  14. Main control room, showing original sixpane windows and doors to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Main control room, showing original six-pane windows and doors to pump motor room at left. The main control cabinets and switchgear, visible on right, were replaced in 2003. View to the south - Wellton-Mohawk Irrigation System, Pumping Plant No. 2, Bounded by Interstate 8 to south, Wellton, Yuma County, AZ

  15. Assessment of control rooms of nuclear power plants

    NASA Astrophysics Data System (ADS)

    Norros, L.; Ranta, J.; Wahlstroem, B.

    1983-05-01

    The NUREG 0700 recommendations were assessed for implementation in the control rooms of Finnish nuclear power plants. Direct conclusions drawn from the American situation are misleading, because of differences in, for example, procurement of instruments or personnel training. If the review is limited to control room details, the NRC program (checklist) is successful. It can also be used during planning to observe small discrepancies.

  16. PBF Control Building (PER619). Interior of control room. Control console ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Control Building (PER-619). Interior of control room. Control console in center of room. Indicator panels along walls. Window shown in ID-33-F-120 is between control panels at left. Camera facing northwest. Date: May 2004. INEEL negative no. HD-41-7-3 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  17. 49 CFR 192.631 - Control room management.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... must be reported pursuant to 49 CFR part 191 to determine if control room actions contributed to the... sufficient to achieve eight hours of continuous sleep; (2) Educate controllers and supervisors in...

  18. 49 CFR 192.631 - Control room management.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... must be reported pursuant to 49 CFR part 191 to determine if control room actions contributed to the... sufficient to achieve eight hours of continuous sleep; (2) Educate controllers and supervisors in...

  19. 49 CFR 192.631 - Control room management.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... must be reported pursuant to 49 CFR part 191 to determine if control room actions contributed to the... sufficient to achieve eight hours of continuous sleep; (2) Educate controllers and supervisors in...

  20. 11. LAUNCH CONTROL SUPPORT BUILDING. INTERIOR OF MECHANICAL ROOM. VIEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. LAUNCH CONTROL SUPPORT BUILDING. INTERIOR OF MECHANICAL ROOM. VIEW TO SOUTHEAST. - Minuteman III ICBM Launch Control Facility November-1, 1.5 miles North of New Raymer & State Highway 14, New Raymer, Weld County, CO

  1. 12. LAUNCH CONTROL SUPPORT BUILDING. INTERIOR OF GENERATOR ROOM. VIEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. LAUNCH CONTROL SUPPORT BUILDING. INTERIOR OF GENERATOR ROOM. VIEW TO EAST. - Minuteman III ICBM Launch Control Facility November-1, 1.5 miles North of New Raymer & State Highway 14, New Raymer, Weld County, CO

  2. The multifunctional therapy room of the future: image guidance, interdisciplinarity, integration and impact on patient pathways.

    PubMed

    Jacob, A L; Regazzoni, P; Steinbrich, W; Messmer, P

    2000-01-01

    With few exceptions the interventional rooms of the present are either imaging suites or sterile operating rooms. Their users are restricted to either percutaneous procedures or to two-staged image-guided surgery without intra-operative imaging control. Since interventional therapy of the future will be minimally invasive and since minimally invasive therapy is essentially image-guided therapy, a new physical place for these activities has to be devised: the multifunctional therapy room of the future integrates sophisticated imaging and image guidance modalities together with advanced surgical and life-support equipment in a sterile environment [1, 2, 3]. Even given a high degree of integration, this will be a complex and costly piece of medical technology. These two factors--complexity and cost-- require interdisciplinary technological and medical collaboration to bring it into existence, distribute its cost and maximize usage and medical benefit. Yet another dimension of multifunctionality will be introduced and a significant impact on the care of vitally threatened patients will be exerted by using this room not only for elective image-guided therapy but also for emergent one-stop diagnosis and treatment. Motivation, technology, implementation strategies and funding of this image-guided, integrated and interdisciplinary therapy room, as well as a comprehensive approach combining emergency care and elective computer-assisted therapy (CAT), are discussed in this paper.

  3. The Aircraft Simulation Role in Improving Flight Safety Through Control Room Training

    NASA Technical Reports Server (NTRS)

    Shy, Karla S.; Hageman, Jacob J.; Le, Jeanette H.; Sitz, Joel (Technical Monitor)

    2002-01-01

    NASA Dryden Flight Research Center uses its six-degrees-of-freedom (6-DOF) fixed-base simulations for mission control room training to improve flight safety and operations. This concept is applied to numerous flight projects such as the F-18 High Alpha Research Vehicle (HARV), the F-15 Intelligent Flight Control System (IFCS), the X-38 Actuator Control Test (XACT), and X-43A (Hyper-X). The Dryden 6-DOF simulations are typically used through various stages of a project, from design to ground tests. The roles of these simulations have expanded to support control room training, reinforcing flight safety by building control room staff proficiency. Real-time telemetry, radar, and video data are generated from flight vehicle simulation models. These data are used to drive the control room displays. Nominal static values are used to complete information where appropriate. Audio communication is also an integral part of training sessions. This simulation capability is used to train control room personnel and flight crew for nominal missions and emergency situations. Such training sessions are also opportunities to refine flight cards and control room display pages, exercise emergency procedures, and practice control room setup for the day of flight. This paper describes this technology as it is used in the X-43A and F-15 IFCS and XACT projects.

  4. PBF Control Building (PER619). Interior of control room shows control ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Control Building (PER-619). Interior of control room shows control console from direction facing visitors room and its observation window. Camera facing northeast. Date: May 2004. INEEL negative no. HD-41-7-1 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  5. Design of a multisystem remote maintenance control room

    SciTech Connect

    Draper, J.V.; Handel, S.J.; Kring, C.T.; Kawatsuma, S.

    1988-01-01

    The Remote Systems Development Section of the Consolidated Fuel Reprocessing Program at the Oak Ridge National Laboratory (ORNL) and Japan's Power Reactor and Nuclear Fuel Development Corporation (PNC) recently collaborated in the development of a control room concept for remote operations. This report describes design methods and the resulting control room concept. The design project included five stages. The first was compilation of a complete function list; functions are tasks performed by operators in the control room while operating equipment located in the remote area. The second step was organization of the function list into ''function groups;'' function groups are sets of functions that operate one piece of equipment. The third stage was determination of crew size and requirements for supervision. The fourth stage was development of conceptual designs of displays and controls. The fifth stage was development of plans for placement of crew stations within the control room. 5 figs., 1 tab.

  6. Using a Research Simulator for Validating Control Room Modernization Concepts

    SciTech Connect

    Ronald L. Boring; Vivek Agarwal; Julius J. Persensky; Jeffrey C. Joe

    2012-05-01

    The Light Water Reactor Sustainability Program is a research, development, and deployment program sponsored by the United States Department of Energy. The program is operated in close collaboration with industry research and development programs to provide the technical foundations for licensing and managing the long-term, safe, and economical operation of nuclear power plants that are currently in operation. Advanced instrumentation and control (I&C) technologies are needed to support the continued safe and reliable production of power from nuclear energy systems during sustained periods of operation up to and beyond their expected licensed lifetime. This requires that new capabilities to achieve process control be developed and eventually implemented in existing nuclear control rooms. It also requires that approaches be developed and proven to achieve sustainability of I&C systems throughout the period of extended operation. Idaho National Laboratory (INL) is working closely with nuclear utilities to develop technologies and solutions to help ensure the safe life extension of current reactors. One of the main areas of focus is control room modernization. Current analog control rooms are growing obsolete, and it is difficult for utilities to maintain them. Using its reconfigurable control room simulator adapted from a training simulator, INL serves as a neutral test bed for implementing new control room system technologies and assisting in control room modernization efforts across.

  7. 16. View of Building 100 control room. 1987. On file ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. View of Building 100 control room. 1987. On file at NASA Glenn Research Center, Cleveland, Ohio. - Rocket Engine Testing Facility, GRC Building No. 100, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  8. VIEW OF THE CONTROL ROOM FOR THE ALTITUDE CHAMBERS, FACING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF THE CONTROL ROOM FOR THE ALTITUDE CHAMBERS, FACING SOUTHWEST - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  9. 30. Perimeter acquisition radar building room #318, showing radar control. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. Perimeter acquisition radar building room #318, showing radar control. Console and line printers - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  10. 11. VIEW LOOKING EAST AT MODEL AIRCRAFT CONTROL ROOM; MODEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. VIEW LOOKING EAST AT MODEL AIRCRAFT CONTROL ROOM; MODEL OF BOEING 737 AT TOP OF PHOTOGRAPH IN FULL-SCALE WIND TUNNEL. - NASA Langley Research Center, Full-Scale Wind Tunnel, 224 Hunting Avenue, Hampton, Hampton, VA

  11. 133. NITROGEN SUPPLY PANEL ON SOUTH WALL OF CONTROL ROOM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    133. NITROGEN SUPPLY PANEL ON SOUTH WALL OF CONTROL ROOM (114), LSB (BLDG. 770) - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  12. 143. MOBILE HIGH PRESSURE NITROGEN CART STORED IN CONTROL ROOM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    143. MOBILE HIGH PRESSURE NITROGEN CART STORED IN CONTROL ROOM (214), LSB (BLDG. 751) - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  13. 137. VALVES ON SOUTH WALL OF LIQUID NITROGEN CONTROL ROOM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    137. VALVES ON SOUTH WALL OF LIQUID NITROGEN CONTROL ROOM (115), LSB (BLDG. 770) - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  14. VIEW OUT WINDOW OF CONTROL ROOM IN THE TOWER OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OUT WINDOW OF CONTROL ROOM IN THE TOWER OF BUILDING 1, FACING SOUTH, WITH PIER 9 VISIBLE - Roosevelt Base, Administration & Brig Building, Bounded by Nevada & Colorado Streets, Reeves & Richardson Avenues, Long Beach, Los Angeles County, CA

  15. 73. LOOKING EAST INSIDE THE BLOWERS CONTROL ROOM FOR DOROTHY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    73. LOOKING EAST INSIDE THE BLOWERS CONTROL ROOM FOR DOROTHY SIX BLAST FURNACE WITH SNORT WHEEL IN FOREGROUND ON RIGHT. (Jet Lowe) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  16. 36. HEADQUARTERS AND MAINTENANCE BUILDING, MAIN CONTROL ROOM FOR ALL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    36. HEADQUARTERS AND MAINTENANCE BUILDING, MAIN CONTROL ROOM FOR ALL VENTILATION, MECHANICAL, AND ELECTRICAL SYSTEMS - Holland Tunnel, Beneath Hudson River between New York & Jersey City, New York County, NY

  17. 18. Historic plan of Building 100 control room. March 21, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. Historic plan of Building 100 control room. March 21, 1956. NASA GRC drawing number CE-101736. (On file at NASA Glenn Research Center). - Rocket Engine Testing Facility, GRC Building No. 100, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  18. 11. ENGINE TEST CELL BUILDING INTERIOR. CONTROL ROOM FOR CELLS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. ENGINE TEST CELL BUILDING INTERIOR. CONTROL ROOM FOR CELLS 2 AND 4. LOOKING SOUTHEAST. - Fairchild Air Force Base, Engine Test Cell Building, Near intersection of Arnold Street & George Avenue, Spokane, Spokane County, WA

  19. 4. INTERIOR VIEW, LOOKING EAST FROM THE CONTROL ROOM, TOWARD ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. INTERIOR VIEW, LOOKING EAST FROM THE CONTROL ROOM, TOWARD THE GREY IRON CUPOLA WITH CUPOLA TENDER (LEFT) MAKING CERTAIN MOLTEN IRON FLOWS UNIMPEDED. - Stockham Pipe & Fittings Company, Grey Iron Foundry, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  20. 8. INTERIOR, FIRE ALARM CONTROL ROOM (NORTH OF MAIN GARAGE), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. INTERIOR, FIRE ALARM CONTROL ROOM (NORTH OF MAIN GARAGE), FROM ENTRYWAY, LOOKING NORTH, SHOWING ADDITIONAL 'GAMEWELL' FIRE ALARM SYSTEMS. - Oakland Naval Supply Center, Firehouse, East of Fourth Street, between A & B Streets, Oakland, Alameda County, CA

  1. 5. VIEW TO SOUTH IN CONTROL ROOM ABOVE PUMP CHAMBER, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW TO SOUTH IN CONTROL ROOM ABOVE PUMP CHAMBER, SHOWING PUMP MOTOR AND STEEL BULKHEADS IN FLOOR FOR ACCESS TO PUMPS - Providence Sewage Treatment System, Reservoir Avenue Pumping Station, Reservoir & Pontiac Avenues, Providence, Providence County, RI

  2. 15. Interior view of unoccupied controlled computer room looking at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. Interior view of unoccupied controlled computer room looking at exit door and office; northwest corner of unoccupied portion; view to south. - Ellsworth Air Force Base, Mess & Administration Building, 2279 Risner Drive, Blackhawk, Meade County, SD

  3. 68. TURBINE HALL, LOOKING DOWN FROM THE CONTROL ROOM INTO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    68. TURBINE HALL, LOOKING DOWN FROM THE CONTROL ROOM INTO TURBINE HALL AT UNITS 3, 5, AND 2) - Delaware County Electric Company, Chester Station, Delaware River at South end of Ward Street, Chester, Delaware County, PA

  4. Overview of curtain walls at Control Room. Backup exciter in ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Overview of curtain walls at Control Room. Backup exciter in foreground. View to west-southwest - Mystic Lake Hydroelectric Facility, Powerhouse, Along West Rosebud Creek, 1 3/4 miles northeast of Mystic Lake Dam, Fishtail, Stillwater County, MT

  5. 38. VAL, DETAIL OF PANEL AT SECONDARY CONTROL ROOM INSIDE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    38. VAL, DETAIL OF PANEL AT SECONDARY CONTROL ROOM INSIDE CONCRETE 'A' FRAME STRUCTURE. - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  6. 14. GENE PUMPING STATION CONTROL ROOM AS SEEN FROM MAIN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. GENE PUMPING STATION CONTROL ROOM AS SEEN FROM MAIN STATION MANAGER'S CONTROL DESK. ELECTRICAL CONTROL INDICATORS AND CONTROLS FOR REGULATING ELECTRICITY INTO PLANT AS WELL AS SYNCHRONIZING STARTUP OF PUMPS. - Gene Pump Plant, South of Gene Wash Reservoir, 2 miles west of Whitsett Pump Plant, Parker Dam, San Bernardino County, CA

  7. 143. ARAIII Control building (ARA607) Floor plan. Shows control room, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    143. ARA-III Control building (ARA-607) Floor plan. Shows control room, contaminated work area, counting and computer room, health physics room, instrument repair room, offices, and other rooms. Aerojet-general 880-area/GCRE-607-A-1. Date: February 1958. Ineel index code no. 063-0607-00-013-102546. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID

  8. Control room concept for remote maintenance in high radiation areas

    SciTech Connect

    Clarke, M.M.; Kreifeldt, J.G.

    1984-01-01

    This paper summarizes the design of a control room concept for an operator interface with remote maintenance equipment consisting of force-reflecting manipulators, tools, hoists, cranes, cameras, and lights. The design development involved two major activities. First, detailed requirements were defined for foreseeable functions that will be performed by the control room operators. Second, concepts were developed, tested, and refined to meet these requirements. 6 references, 3 figures.

  9. Control room concept for remote maintenance in high radiation areas

    SciTech Connect

    Clarke, M.M.; Kreifeldt, J.G.

    1984-01-01

    This paper summarizes the design of a control room concept for an operator interface with remote maintenance equipment consisting of force-reflecting manipulators, tools, hoists, cranes, cameras, and lights. The design development involved two major activities. First, detailed requirements were defined for foreseeable functions that will be performed by the control room operators. Second, concepts were developed, tested, and refined to meet these requirements. Each of these activities is summarized below. 6 references, 3 figures.

  10. Control and Room Temperature Optimization of Energy Efficient Buildings

    SciTech Connect

    Djouadi, Seddik M; Kuruganti, Phani Teja

    2012-01-01

    The building sector consumes a large part of the energy used in the United States and is responsible for nearly 40% of greenhouse gas emissions. It is therefore economically and environmentally important to reduce the building energy consumption to realize massive energy savings. In this paper, a method to control room temperature in buildings is proposed. The approach is based on a distributed parameter model represented by a three dimensional (3D) heat equation in a room with heater/cooler located at ceiling. The latter is resolved using finite element methods, and results in a model for room temperature with thousands of states. The latter is not amenable to control design. A reduced order model of only few states is then derived using Proper Orthogonal Decomposition (POD). A Linear Quadratic Regulator (LQR) is computed based on the reduced model, and applied to the full order model to control room temperature.

  11. IET control building (TAN620). control room. facing north. control consoles ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    IET control building (TAN-620). control room. facing north. control consoles have been removed. Openings in floor were communication and control conduits. Periscope controls at center left (see also HAER No. ID-33-E-20). INEEL negative no. HD-21-3-1 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  12. Robust isothermal electric control of exchange bias at room temperature

    SciTech Connect

    He, X.; Vescovo, E.; Wang, Y.; Caruso, A.N.; Belashchenko, K.D.; Dowben, P.A.; Binek, C.

    2010-06-20

    Voltage-controlled spin electronics is crucial for continued progress in information technology. It aims at reduced power consumption, increased integration density and enhanced functionality where non-volatile memory is combined with high-speed logical processing. Promising spintronic device concepts use the electric control of interface and surface magnetization. From the combination of magnetometry, spin-polarized photoemission spectroscopy, symmetry arguments and first-principles calculations, we show that the (0001) surface of magnetoelectric Cr{sub 2}O{sub 3} has a roughness-insensitive, electrically switchable magnetization. Using a ferromagnetic Pd/Co multilayer deposited on the (0001) surface of a Cr{sub 2}O{sub 3} single crystal, we achieve reversible, room-temperature isothermal switching of the exchange-bias field between positive and negative values by reversing the electric field while maintaining a permanent magnetic field. This effect reflects the switching of the bulk antiferromagnetic domain state and the interface magnetization coupled to it. The switchable exchange bias sets in exactly at the bulk Neel temperature.

  13. Robust isothermal electric control of exchange bias at room temperature.

    PubMed

    He, Xi; Wang, Yi; Wu, Ning; Caruso, Anthony N; Vescovo, Elio; Belashchenko, Kirill D; Dowben, Peter A; Binek, Christian

    2010-07-01

    Voltage-controlled spin electronics is crucial for continued progress in information technology. It aims at reduced power consumption, increased integration density and enhanced functionality where non-volatile memory is combined with high-speed logical processing. Promising spintronic device concepts use the electric control of interface and surface magnetization. From the combination of magnetometry, spin-polarized photoemission spectroscopy, symmetry arguments and first-principles calculations, we show that the (0001) surface of magnetoelectric Cr(2)O(3) has a roughness-insensitive, electrically switchable magnetization. Using a ferromagnetic Pd/Co multilayer deposited on the (0001) surface of a Cr(2)O(3) single crystal, we achieve reversible, room-temperature isothermal switching of the exchange-bias field between positive and negative values by reversing the electric field while maintaining a permanent magnetic field. This effect reflects the switching of the bulk antiferromagnetic domain state and the interface magnetization coupled to it. The switchable exchange bias sets in exactly at the bulk Néel temperature.

  14. 114. WEST SIDE OF LIQUID OXYGEN CONTROL ROOM (205). LIQUID ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    114. WEST SIDE OF LIQUID OXYGEN CONTROL ROOM (205). LIQUID NITROGEN (LN2) SUBCOOLER ON LEFT; SKID 8, LIQUID OXYGEN CONTROLLER FOR SWITCHING BETWEEN RAPID-LOAD AND TOPPING ON RIGHT. LIQUID OXYGEN LINE FROM SKID 9A AT RIGHT EDGE OF PHOTO. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  15. 12. Historic view of Building 100 control room, showing television ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Historic view of Building 100 control room, showing television monitoring of tests and personnel operating rocket engine test controls. May 27, 1957. On file at NASA Plumbrook Research Facility, Sandusky, Ohio. NASA photo number C-45021. - Rocket Engine Testing Facility, GRC Building No. 100, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  16. 6. UNDERGROUND FIRING CONTROL ROOM, INTERIOR. Looking southeast to escape ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. UNDERGROUND FIRING CONTROL ROOM, INTERIOR. Looking southeast to escape tunnel. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Firing Control Building, Test Area 1-100, northeast end of Test Area 1-100 Road, Boron, Kern County, CA

  17. 20. VIEW OF WASTE TREATMENT CONTROL ROOM IN BUILDING 374. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. VIEW OF WASTE TREATMENT CONTROL ROOM IN BUILDING 374. THE BUILDING 371/374 COMPLEX WAS DESIGNED TO EMPHASIZE AUTOMATICALLY CONTROLLED, REMOTELY OPERATED PROCESSES. (1/80) - Rocky Flats Plant, Plutonium Recovery Facility, Northwest portion of Rocky Flats Plant, Golden, Jefferson County, CO

  18. 8. INTERIOR, CONTROL AND INSTRUMENTATION ROOM. Looking southwest toward entrance ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. INTERIOR, CONTROL AND INSTRUMENTATION ROOM. Looking southwest toward entrance and inner blast door. - Edwards Air Force Base, South Base Sled Track, Firing & Control Blockhouse for 10,000-foot Track, South of Sled Track at midpoint of 20,000-foot track, Lancaster, Los Angeles County, CA

  19. Robust isothermal electric control of exchange bias at room temperature

    NASA Astrophysics Data System (ADS)

    Binek, Christian

    2011-03-01

    Voltage-controlled spintronics is of particular importance to continue progress in information technology through reduced power consumption, enhanced processing speed, integration density, and functionality in comparison with present day CMOS electronics. Almost all existing and prototypical solid-state spintronic devices rely on tailored interface magnetism, enabling spin-selective transmission or scattering of electrons. Controlling magnetism at thin-film interfaces, preferably by purely electrical means, is a key challenge to better spintronics. Currently, most attempts to electrically control magnetism focus on potentially large magnetoelectric effects of multiferroics. We report on our interest in magnetoelectric Cr 2 O3 (chromia). Robust isothermal electric control of exchange bias is achieved at room temperature in perpendicular anisotropic Cr 2 O3 (0001)/CoPd exchange bias heterostructures. This discovery promises significant implications for potential spintronics. From the perspective of basic science, our finding serves as macroscopic evidence for roughness-insensitive and electrically controllable equilibrium boundary magnetization in magnetoelectric antiferromagnets. The latter evolves at chromia (0001) surfaces and interfaces when chromia is in one of its two degenerate antiferromagnetic single domain states selected via magnetoelectric annealing. Theoretical insight into the boundary magnetization and its role in electrically controlled exchange bias is gained from first-principles calculations and general symmetry arguments. Measurements of spin-resolved ultraviolet photoemission, magnetometry at Cr 2 O3 (0001) surfaces, and detailed investigations of the unique exchange bias properties of Cr 2 O3 (0001)/CoPd including its electric controllability provide macroscopically averaged information about the boundary magnetization of chromia. Laterally resolved X-ray PEEM and temperature dependent MFM reveal detailed microscopic information of the chromia

  20. Method of installing a control room console in a nuclear power plant

    DOEpatents

    Scarola, Kenneth; Jamison, David S.; Manazir, Richard M.; Rescorl, Robert L.; Harmon, Daryl L.

    1994-01-01

    An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

  1. 75 FR 67450 - Pipeline Safety: Control Room Management Implementation Workshop

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-02

    ... Register published April 11, 2000, (65 FR 19477). Information on Services for Individuals with Disabilities... by November 5, 2010. SUPPLEMENTARY INFORMATION: On December 3, 2009, (74 FR 63310) PHMSA issued a... Pipeline and Hazardous Materials Safety Administration Pipeline Safety: Control Room...

  2. 36. ENGINE ROOM FROM STARBOARD SIDE OF CONTROL CONSOLE, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    36. ENGINE ROOM FROM STARBOARD SIDE OF CONTROL CONSOLE, LOOKING AT TWO DIESEL ENGINES, STAIRS LEAD UP TO CREW'S BERTHING. THIS IMAGE IS CLOSER TO THE STERN AND MORE ANGLED TOWARDS THE PORT THAN IMAGE 34. - U.S. Coast Guard Cutter WHITE LUPINE, U.S. Coast Guard Station Rockland, east end of Tillson Avenue, Rockland, Knox County, ME

  3. 130. VIEW OF CONTROL ROOM (114), LSB (BLDG. 770), FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    130. VIEW OF CONTROL ROOM (114), LSB (BLDG. 770), FROM WEST. HYDRAULIC PUMPING UNIT (HPU) IN CENTER OF PHOTO, FACING NORTH. NITROGEN SUPPLY PANEL ON SOUTH WALL (LEFT EDGE OF PHOTO); RELAY BOX FOR HPU ON SOUTH WALL BEHIND HPU. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  4. 144. VIEW OF EAST WALL OF CONTROL ROOM (214), LSB ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    144. VIEW OF EAST WALL OF CONTROL ROOM (214), LSB (BLDG. 751). PNEUMATIC SUPPLY PANEL ON LEFT; NITROGEN AND HELIUM PIPING AT TOP; PURGE PANEL AT BOTTOM OF PHOTOGRAPH. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  5. 16. NBS TOPSIDE CONTROL ROOM, THE NBS HYPERBARIC CHAMBER IS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. NBS TOPSIDE CONTROL ROOM, THE NBS HYPERBARIC CHAMBER IS VERY CLOSE TO THE WATER'S EDGE AND HERE FOR DIVER EMERGENCY SUPPORT. A MEDICAL STAFF IS LOCATED ON THE MARSHALL SPACE FLIGHT CENTER (MSFC) AND SUPPORTS THE NBS PERSONNEL WHEN HYPERBARIC CHAMBER OPERATION IS NECESSARY. - Marshall Space Flight Center, Neutral Buoyancy Simulator Facility, Rideout Road, Huntsville, Madison County, AL

  6. CONTROL ROOM ON MARCH 31, 1952, AS THE MTR GOES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONTROL ROOM ON MARCH 31, 1952, AS THE MTR GOES CRITICAL FOR THE FIRST TIME. COMPARE CEILING FIXTURES IN THIS PHOTO AND PHOTO ID-33-G-212 FOR COMMON PERSPECTIVE. INL NEGATIVE NO. 4517. Unknown Photographer, 3/31/1952 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  7. INTERIOR OF SECOND FLOOR CONTROL ROOM OF FUEL STORAGE BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR OF SECOND FLOOR CONTROL ROOM OF FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING SOUTHWEST. INL PHOTO NUMBER HD-54-19-2. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  8. 14. Historic view of engineer in Building 100 control room ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. Historic view of engineer in Building 100 control room examining data printout. 1957. On file at NASA Plumbrook Research Facility, Sandusky, Ohio. NASA photo number C-46210. - Rocket Engine Testing Facility, GRC Building No. 100, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  9. 15. Historic view of engineer in Building 100 control room ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. Historic view of engineer in Building 100 control room examining data printout. August 28, 1962. On file at NASA Plumbrook Research Facility, Sandusky, Ohio. NASA photo number C-61500. - Rocket Engine Testing Facility, GRC Building No. 100, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  10. 13. Historic view of Building 100 control room, showing personnel ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Historic view of Building 100 control room, showing personnel with data recording instrumentation. 1957. On file at NASA Plumbrook Research Facility, Sandusky, Ohio. NASA photo number C-46211. - Rocket Engine Testing Facility, GRC Building No. 100, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  11. Motor Room, overall view to the west. The control cabinet ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Motor Room, overall view to the west. The control cabinet and cement pipes along the south wall are being temporarily stored in the Pumping Plant and are not part of the original equipment - Wellton-Mohawk Irrigation System, Pumping Plant No. 1, Bounded by Gila River & Union Pacific Railroad, Wellton, Yuma County, AZ

  12. 101. ARAIII. View of control room with operators during attempted ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    101. ARA-III. View of control room with operators during attempted 500-hour run of ML-1 reactor. April 21, 1964. Ineel photo no. 64-2185. Photographer: Benson. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID

  13. VIEW OF HISTORIC SLATE SWITCHBOARD IN THE CONTROL ROOM OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF HISTORIC SLATE SWITCHBOARD IN THE CONTROL ROOM OF THE ELWHA POWERHOUSE, INCLUDING: METERS, PROTECTIVE RELAYS, AND SWITCHES. NOTE ADDITION OF PERSONAL COMPUTERS FOR POWER METERING AND OPERATIONS. PHOTO BY JET LOWE, HAER, 1995. - Elwha River Hydroelectric System, Elwha Hydroelectric Dam & Plant, Port Angeles, Clallam County, WA

  14. Control room envelope unfiltered air inleakage test protocols

    SciTech Connect

    Lagus, P.L.; Grot, R.A.

    1997-08-01

    In 1983, the Advisory Committee on Reactor Safeguards (ACRS) recommended that the US NRC develop a control room HVAC performance testing protocol. To date no such protocol has been forthcoming. Beginning in mid-1994, an effort was funded by NRC under a Small Business Innovation Research (SBIR) grant to develop several simplified test protocols based on the principles of tracer gas testing in order to measure the total unfiltered inleakage entering a CRE during emergency mode operation of the control room ventilation system. These would allow accurate assessment of unfiltered air inleakage as required in SRP 6.4. The continuing lack of a standard protocol is unfortunate since one of the significant parameters required to calculate operator dose is the amount of unfiltered air inleakage into the control room. Often it is assumed that, if the Control Room Envelope (CRE) is maintained at +1/8 in. w.g. differential pressure relative to the surroundings, no significant unfiltered inleakage can occur it is further assumed that inleakage due to door openings is the only source of unfiltered air. 23 refs., 13 figs., 2 tabs.

  15. An Electronic Logbook for the HEP Control Room

    SciTech Connect

    Gary Roediger et al.

    2001-11-26

    The Control Room Logbook (CRL) is designed to improve and replace the paper logbooks traditionally used in the HEP accelerator control room. Its features benefit the on-line coordinator, the shift operators, and the remote observers. This paper explains some of the most attractive features for each of these roles. The features include the ability to configure the logbook for the specific needs of a collaboration, a large variety of entry types an operator can add by simply clicking and dragging, and a flexible web interface for the remote observer to keep up with control room activities. The entries are saved as UTF-8 based XML files, which allowed us to give the data structure and meaning such that it can easily be parsed in the present and far into the future. The XML tag data is also indexed in a relational database, making queries on dates, keywords, entry type and other criteria feasible and fast. The CRL is used in the D0 control room. This presentation also discusses our experience with deployment, platform independence and other interesting issues that arose with the installation and use of the logbook.

  16. 49 CFR 192.631 - Control room management.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS... § 192.7) whenever a SCADA system is added, expanded or replaced, unless the operator demonstrates that... must be reported pursuant to 49 CFR part 191 to determine if control room actions contributed to...

  17. 49 CFR 192.631 - Control room management.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS... SCADA system is added, expanded or replaced, unless the operator demonstrates that certain provisions of... must be reported pursuant to 49 CFR part 191 to determine if control room actions contributed to...

  18. Information Foraging in Nuclear Power Plant Control Rooms

    SciTech Connect

    R.L. Boring

    2011-09-01

    nformation foraging theory articulates the role of the human as an 'informavore' that seeks information and follows optimal foraging strategies (i.e., the 'information scent') to find meaningful information. This paper briefly reviews the findings from information foraging theory outside the nuclear domain and then discusses the types of information foraging strategies operators employ for normal and off-normal operations in the control room. For example, operators may employ a predatory 'wolf' strategy of hunting for information in the face of a plant upset. However, during routine operations, the operators may employ a trapping 'spider' strategy of waiting for relevant indicators to appear. This delineation corresponds to information pull and push strategies, respectively. No studies have been conducted to determine explicitly the characteristics of a control room interface that is optimized for both push and pull information foraging strategies, nor has there been empirical work to validate operator performance when transitioning between push and pull strategies. This paper explores examples of control room operators as wolves vs. spiders and con- cludes by proposing a set of research questions to investigate information foraging in control room settings.

  19. 7. CONSTRUCTION PROGRESS VIEW (INTERIOR) OF CONTROL ROOM PANEL INSIDE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. CONSTRUCTION PROGRESS VIEW (INTERIOR) OF CONTROL ROOM PANEL INSIDE BUNKER. SHOWS OPENING TO CABLE CHASE, FOUR PULLEY DEVICES, POWER OUTLET, CONDUIT, AND EAST END WALL OF BUNKER. INEL PHOTO NUMBER 65-5441, TAKEN OCTOBER 20, 1965. - Idaho National Engineering Laboratory, Advanced Reentry Vehicle Fusing System, Scoville, Butte County, ID

  20. 18. NORTH SIDE OF CONTROL ROOM SHOWING MAIN ELECTRIC PANEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. NORTH SIDE OF CONTROL ROOM SHOWING MAIN ELECTRIC PANEL ON LEFT, SIGNAL SWITCH BOX IN CENTER, AND SIGNAL RELAYS ON RIGHT. RESISTOR BANK BEHIND ON RIGHT. BRIDGE TENDER'S DESK BEHIND ON SOUTH SIDE. (Fred Small) - Burlington Northern Railroad Bridge, Spanning Willamette River at River Mile 6.9, Portland, Multnomah County, OR

  1. 149. SOUTHEAST CORNER OF FUEL CONTROL ROOM (215), LSB (BLDG. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    149. SOUTHEAST CORNER OF FUEL CONTROL ROOM (215), LSB (BLDG. 751), WITH SKID 2 IN FOREGROUND; FUEL LINE TO LAUNCH VEHICLE ENTERING WALL ON LEFT BEHIND SKID 2 - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  2. STOVL Control Integration Program

    NASA Technical Reports Server (NTRS)

    Weiss, C.; Mcdowell, P.; Watts, S.

    1994-01-01

    An integrated flight/propulsion control for an advanced vector thrust supersonic STOVL aircraft, was developed by Pratt & Whitney and McDonnell Douglas Aerospace East. The IFPC design was based upon the partitioning of the global requirements into flight control and propulsion control requirements. To validate the design, aircraft and engine models were also developed for use on a NASA Ames piloted simulator. Different flight control implementations, evaluated for their handling qualities, are documented in the report along with the propulsion control, engine model, and aircraft model.

  3. Control of Computer Room Air Conditioning using IT Equipment Sensors

    SciTech Connect

    Bell, Geoffrey C.; Storey, Bill; Patterson, Michael K.

    2009-09-30

    The goal of this demonstration was to show how sensors in IT equipment could be accessed and used to directly control computer room air conditioning. The data provided from the sensors is available on the IT network and the challenge for this project was to connect this information to the computer room air handler's control system. A control strategy was developed to enable separate control of the chilled water flow and the fans in the computer room air handlers. By using these existing sensors in the IT equipment, an additional control system is eliminated (or could be redundant) and optimal cooling can be provided saving significant energy. Using onboard server temperature sensors will yield significant energy reductions in data centers. Intel hosted the demonstration in its Santa Clara, CA data center. Intel collaborated with IBM, HP, Emerson, Wunderlich-Malec Engineers, FieldServer Technologies, and LBNL to install the necessary components and develop the new control scheme. LBNL also validated the results of the demonstration.

  4. 14. NBS REMOTE MANIPULATOR SIMULATOR (RMS) CONTROL ROOM. THE RMS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. NBS REMOTE MANIPULATOR SIMULATOR (RMS) CONTROL ROOM. THE RMS CONTROL PANEL IS IDENTICAL TO THE SHUTTLE ORBITER AFT FLIGHT DECK WITH ALL RMS SWITCHES AND CONTROL KNOBS FOR INVOKING ANY POSSIBLE FLIGHT OPERATIONAL MODE. THIS INCLUDES ALL COMPUTER AIDED OPERATIONAL MODES, AS WELL AS FULL MANUAL MODE. THE MONITORS IN THE AFT FLIGHT DECK WINDOWS AND THE GLASSES THE OPERATOR WEARS PROVIDE A 3-D VIDEO PICTURE TO AID THE OPERATOR WITH DEPTH PERCEPTION WHILE OPERATING THE ARM. THIS IS REQUIRED BECAUSE THE RMS OPERATOR CANNOT VIEW RMS MOVEMENTS IN THE WATER WHILE AT THE CONTROL PANEL. - Marshall Space Flight Center, Neutral Buoyancy Simulator Facility, Rideout Road, Huntsville, Madison County, AL

  5. Integrated mobile robot control

    NASA Technical Reports Server (NTRS)

    Amidi, Omead; Thorpe, Charles

    1991-01-01

    This paper describes the structure, implementation, and operation of a real-time mobile robot controller which integrates capabilities such as: position estimation, path specification and tracking, human interfaces, fast communication, and multiple client support. The benefits of such high-level capabilities in a low-level controller was shown by its implementation for the Navlab autonomous vehicle. In addition, performance results from positioning and tracking systems are reported and analyzed.

  6. Integrated airframe propulsion control

    NASA Technical Reports Server (NTRS)

    Fennell, R. E.; Black, S. B.

    1982-01-01

    Perturbation equations which describe flight dynamics and engine operation about a given operating point are combined to form an integrated aircraft/propulsion system model. Included in the model are the dependence of aerodynamic coefficients upon atmospheric variables along with the dependence of engine variables upon flight condition and inlet performance. An off-design engine performance model is used to identify interaction parameters in the model. Inclusion of subsystem interaction effects introduces coupling between flight and propulsion variables. To analyze interaction effects on control, consideration is first given to control requirements for separate flight and engine models. For the separate airframe model, feedback control provides substantial improvement in short period damping. For the integrated system, feedback control compensates for the coupling present in the model and provides good overall system stability. However, this feedback control law involves many non-zero gains. Analysis of suboptimal control strategies indicates that performance of the closed loop integrated system can be maintained with a feedback matrix in which the number of non-zero gains is small relative to the number of components in the feedback matrix.

  7. Code System for Evaluation of Control Room Habitability.

    2002-04-11

    Version: 01 HABIT 1.1 is a suite of computer codes designed for evaluating control room habitability in the event of an accidental release of toxic chemicals or radioactive materials. EXTRAN 1.2, CHEM, TACT5, FPFP_2, and CONHAB are included in the system. HABIT was used in the verification and validation of RADTRAD, which NRC now uses to assess radiation exposure, typically in the control room, as well as site boundary doses, and to estimate dose attenuationmore » due to modification of a facility or accident sequence. RADTRAD does not assess chemical exposure, so HABIT is retained in the RSICC collection for this purpose. RADTRAD is available from Alion Science http://radtrad.com/.« less

  8. 3. Credit BG. The interior of the control room appears ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Credit BG. The interior of the control room appears in this view, looking north (0°). The control console in the room center permitted remote control of various propellant grinders and mixers in surrounding buildings. Television monitors (absent from their mounts in this view) permitted direct viewing of operating machinery. From foreground to background: Panel (1) contains OGAR warning light switches for Curing Buildings E-39, E-40, E-41 and E-86; (O=off, G=green safe, A=amber caution, R=red danger) Panel (2) E-85 Oxidizer Dryer Building console: OGAR switch Panel (3) E-84 Oxidizer Grinder Building console: controls for vibrator, feed, and hammer; Panel (4) E-36 Oxidizer Grinder Building console: controls for vibrator, feed, hammer, attritor, and SWECO ("SWECO" undefined) Panels (5) & (6) blank Panel (7) E-38 Mixer & Casting Building console: vacuum pump, blender, heating and cooling controls Panel (8) E-37 Mixer & Casting Building console: motor controls for 1 pint, 1 gallon, 5 gallon and 30 gallon mixers; vacuum pump, deluge (fire suppression), pot up/down, vibrator, feed, and SWECO. - Jet Propulsion Laboratory Edwards Facility, Weigh & Control Building, Edwards Air Force Base, Boron, Kern County, CA

  9. 51. MAIN CONTROL ROOM LOOKING NORTHEAST. THE INSTRUMENT LOCATED AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    51. MAIN CONTROL ROOM LOOKING NORTHEAST. THE INSTRUMENT LOCATED AT THE TOP CENTER IS A SYNCHROSCOPE USED TO ASCERTAIN PHASE OF A GENERATOR PRIOR TO CONNECTING IT ON THE LINE. WHEN THE OPERATOR DETERMINED THAT THE GENERATOR WAS SYNCHRONIZED WITH OTHER GENERATORS ON LINE, IT WOULD BE CONNECTED TO THE SYSTEM. - New York, New Haven & Hartford Railroad, Cos Cob Power Plant, Sound Shore Drive, Greenwich, Fairfield County, CT

  10. Remote control of magnetostriction-based nanocontacts at room temperature

    PubMed Central

    Jammalamadaka, S. Narayana; Kuntz, Sebastian; Berg, Oliver; Kittler, Wolfram; Kannan, U. Mohanan; Chelvane, J. Arout; Sürgers, Christoph

    2015-01-01

    The remote control of the electrical conductance through nanosized junctions at room temperature will play an important role in future nano-electromechanical systems and electronic devices. This can be achieved by exploiting the magnetostriction effects of ferromagnetic materials. Here we report on the electrical conductance of magnetic nanocontacts obtained from wires of the giant magnetostrictive compound Tb0.3Dy0.7Fe1.95 as an active element in a mechanically controlled break-junction device. The nanocontacts are reproducibly switched at room temperature between “open” (zero conductance) and “closed” (nonzero conductance) states by variation of a magnetic field applied perpendicularly to the long wire axis. Conductance measurements in a magnetic field oriented parallel to the long wire axis exhibit a different behaviour where the conductance switches between both states only in a limited field range close to the coercive field. Investigating the conductance in the regime of electron tunneling by mechanical or magnetostrictive control of the electrode separation enables an estimation of the magnetostriction. The present results pave the way to utilize the material in devices based on nano-electromechanical systems operating at room temperature. PMID:26323326

  11. Remote control of magnetostriction-based nanocontacts at room temperature

    NASA Astrophysics Data System (ADS)

    Jammalamadaka, S. Narayana; Kuntz, Sebastian; Berg, Oliver; Kittler, Wolfram; Kannan, U. Mohanan; Chelvane, J. Arout; Sürgers, Christoph

    2015-09-01

    The remote control of the electrical conductance through nanosized junctions at room temperature will play an important role in future nano-electromechanical systems and electronic devices. This can be achieved by exploiting the magnetostriction effects of ferromagnetic materials. Here we report on the electrical conductance of magnetic nanocontacts obtained from wires of the giant magnetostrictive compound Tb0.3Dy0.7Fe1.95 as an active element in a mechanically controlled break-junction device. The nanocontacts are reproducibly switched at room temperature between “open” (zero conductance) and “closed” (nonzero conductance) states by variation of a magnetic field applied perpendicularly to the long wire axis. Conductance measurements in a magnetic field oriented parallel to the long wire axis exhibit a different behaviour where the conductance switches between both states only in a limited field range close to the coercive field. Investigating the conductance in the regime of electron tunneling by mechanical or magnetostrictive control of the electrode separation enables an estimation of the magnetostriction. The present results pave the way to utilize the material in devices based on nano-electromechanical systems operating at room temperature.

  12. Remote control of magnetostriction-based nanocontacts at room temperature.

    PubMed

    Jammalamadaka, S Narayana; Kuntz, Sebastian; Berg, Oliver; Kittler, Wolfram; Kannan, U Mohanan; Chelvane, J Arout; Sürgers, Christoph

    2015-01-01

    The remote control of the electrical conductance through nanosized junctions at room temperature will play an important role in future nano-electromechanical systems and electronic devices. This can be achieved by exploiting the magnetostriction effects of ferromagnetic materials. Here we report on the electrical conductance of magnetic nanocontacts obtained from wires of the giant magnetostrictive compound Tb0.3Dy0.7Fe1.95 as an active element in a mechanically controlled break-junction device. The nanocontacts are reproducibly switched at room temperature between "open" (zero conductance) and "closed" (nonzero conductance) states by variation of a magnetic field applied perpendicularly to the long wire axis. Conductance measurements in a magnetic field oriented parallel to the long wire axis exhibit a different behaviour where the conductance switches between both states only in a limited field range close to the coercive field. Investigating the conductance in the regime of electron tunneling by mechanical or magnetostrictive control of the electrode separation enables an estimation of the magnetostriction. The present results pave the way to utilize the material in devices based on nano-electromechanical systems operating at room temperature. PMID:26323326

  13. 11. CENTRAL ATLAS CONTROL CONSOLE IN SLC3W CONTROL ROOM. COMMUNICATIONS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. CENTRAL ATLAS CONTROL CONSOLE IN SLC-3W CONTROL ROOM. COMMUNICATIONS HEADSETS IN FOREGROUND. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  14. 83. DETAIL OF HONEYWELL AIRCONDITIONING CONTROLS IN SLC3E CONTROL ROOM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    83. DETAIL OF HONEYWELL AIR-CONDITIONING CONTROLS IN SLC-3E CONTROL ROOM - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  15. IET control building (TAN620). interior service room. general electric control ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    IET control building (TAN-620). interior service room. general electric control panel and related piping. INEEL negative no. HD-21-2-3 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  16. Bridging the gap: adapting advanced display technologies for use in hybrid control rooms

    SciTech Connect

    Jokstad, Håkon; Boring, Ronald

    2015-02-01

    The Institute for Energy Technology (IFE), runs the OECD Halden Reactor Project (HRP), featuring a state-of-the-art research simulator facility in Halden, Norway, called HAMMLAB. HAMMLAB serves two main purposes: the study of human behaviour in interaction with complex process systems; and the development, test and evaluation of prototype control centres and their individual systems. By studying operator performance in HAMMLAB and integrating the knowledge gained into new designs, the HRP contributes to improving operational safety, reliability, efficiency and productivity. The U.S. Department of Energy’s (DOE) Light Water Reactor Sustainability (LWRS) Program has contracted IFE to assist DOE national laboratory staff at Idaho National Laboratory (INL) in adapting HAMMLAB design concepts for the purpose of control room modernization at nuclear power plants in the U.S. In support of this effort, the DOE has built a simulator research facility at INL called the Human Systems Simulation Laboratory (HSSL). The HSSL is centered on control room modernization, in which industry provided plant instrumentation and controls are modified for upgrade opportunities. The HSSL houses the LWRS simulator, which is a reconfigurable full-scale and full-scope control room simulator. Consisting of 45 large touchscreens on 15 panels, the LWRS simulator is currently using this glass top technology to digitally represent and replicate the functionality of the analog I&C systems in existing control rooms. The LWRS simulator is reconfigurable in that different plant training simulator models obtained from the utilities can be run on the panels, and the panels can be physically moved and arranged to mimic the layout of those control rooms. The glass top technology and reconfigurability capabilities allow the LWRS simulator to be the research platform that is necessary to design, prototype, and validate human-system interface (HSI) technologies that can replace existing analog I&C. IFE has

  17. A demonstrated method for upgrading existing control room interiors

    SciTech Connect

    Brice, R.M. ); Terrill, D. ); Brice, R.M.

    1991-01-01

    The main control room (MCR) of any nuclear power plant can justifiably be called the most important area staffed by personnel in the entire facility. The interior workstation configuration, equipment arrangement, and staff placement all affect the efficiency and habitability of the room. There are many guidelines available that describe various human factor principles to use when upgrading the environment of the MCR. These involve anthropometric standards and rules for placement of peripheral equipment. Due to the variations in plant design, however, hard-and-fast rules have not and cannot be standardized for retrofits in any significant way. How then does one develop criteria for the improvement of a MCR The purpose of this paper is to discuss, from the designer's point of view, a method for the collection of information, development of criteria, and creation of a final design for a MCR upgrade. This method is best understood by describing the successful implementation at Tennessee Valley Authority's Sequoyah nuclear plant.

  18. GUIDANCE FOR NUCLEAR POWER PLANT CONTROL ROOM AND HUMAN-SYSTEM INTERFACE MODERNIZATION

    SciTech Connect

    Naser, J.; Morris, G.

    2004-10-06

    Several nuclear power plants in the United States are starting instrumentation and control (I&C) modernization programs using digital equipment to address obsolescence issues and the need to improve plant performance while maintaining high levels of safety. As an integral part of the I&C modernization program at a nuclear power plant, the control room and other human-system interfaces (HSIs) are also being modernized. To support safe and effective operation, it is critical to plan, design, implement, train for, operate, and maintain the control room and HSI changes to take advantage of human cognitive processing abilities. A project, jointly funded by the Electric Power Research Institute (EPRI) and the United States Department of Energy (DOE) under the Nuclear Energy Plant Optimization (NEPO) Program, is developing guidance for specifying and designing control rooms, remote shut-down panels, HSIs etc. The guidance is intended for application by utilities and suppliers of control room and HSI modernization. The guidance will facilitate specification, design, implementation, operations, maintenance, training, and licensing activities. This guidance will be used to reduce the likelihood of human errors and licensing risk, to gain maximum benefit of implemented technology, and to increase performance. The guidance is of five types. The first is planning guidance to help a utility develop its plant-specific control room operating concepts, its plant-specific endpoint vision for the control room, its migration path to achieve that endpoint vision, and its regulatory, licensing, and human factors program plans. The second is process guidance for general HSI design and integration, human factors engineering analyses, verification and validation, in-service monitoring processes, etc. The third is detailed human factors engineering guidance for control room and HSI technical areas. The fourth is guidance for licensing. The fifth is guidance for special topics related to

  19. FRAMEWORK AND APPLICATION FOR MODELING CONTROL ROOM CREW PERFORMANCE AT NUCLEAR POWER PLANTS

    SciTech Connect

    Ronald L Boring; David I Gertman; Tuan Q Tran; Brian F Gore

    2008-09-01

    This paper summarizes an emerging project regarding the utilization of high-fidelity MIDAS simulations for visualizing and modeling control room crew performance at nuclear power plants. The key envisioned uses for MIDAS-based control room simulations are: (i) the estimation of human error associated with advanced control room equipment and configurations, (ii) the investigative determination of contributory cognitive factors for risk significant scenarios involving control room operating crews, and (iii) the certification of reduced staffing levels in advanced control rooms. It is proposed that MIDAS serves as a key component for the effective modeling of cognition, elements of situation awareness, and risk associated with human performance in next generation control rooms.

  20. The NuStart AP1000 Compact Control Room Implementation

    SciTech Connect

    Harmon, Daryl

    2006-07-01

    The nuclear power industry in the United States is experiencing renewed optimism that new nuclear power plants may be constructed in the foreseeable future. Presently a number of utilities in the U.S. are considering new nuclear plant construction. Among the reasons supporting the industry's optimism is the formation of the NuStart Energy Consortium. This consortium of leading energy companies, including Westinghouse Electric Company, is working with the U.S. Department of Energy to demonstrate and test the new licensing process for obtaining a Combined Construction and Operating License (COL) for an advanced light water reactor (ALWR). One ALWR design for which the NuStart Energy Consortium is pursuing a COL application is Westinghouse's passive AP1000. AP1000 received its Final Design Approval from the USNRC in the Fall of 2004 and was granted Design Certification by the NRC on December 30, 2005. A key element of the AP1000 COL application will be to close out Design Certification COL items related to the Main Control Room (MCR) and Human System Interface (HSI) design. During the AP1000 design certification licensing efforts, a control room and HSI design process was submitted and approved. Realizing that Instrumentation and Control (I and C) and HSI technology changes rapidly, Westinghouse chose to defer the detailed design of the control room and operator interfaces. This allows the latest technology to be used when a plant is actually going to be built. To fulfill the COL items for the upcoming application Westinghouse is performing a comprehensive Human Factors Engineering program in conjunction with development of an advanced set of HSI resources for a compact control room. This paper will discuss human factors program elements completed to date and the efforts currently in progress to complete the remaining elements. It will also describe the design progress for each HSI resource including a Wall Panel Information System, computerized procedure system

  1. Integrated Environmental Control Model

    1999-09-03

    IECM is a powerful multimedia engineering software program for simulating an integrated coal-fired power plant. It provides a capability to model various conventional and advanced processes for controlling air pollutant emissions from coal-fired power plants before, during, or after combustion. The principal purpose of the model is to calculate the performance, emissions, and cost of power plant configurations employing alternative environmental control methods. The model consists of various control technology modules, which may be integratedmore » into a complete utility plant in any desired combination. In contrast to conventional deterministic models, the IECM offers the unique capability to assign probabilistic values to all model input parameters, and to obtain probabilistic outputs in the form of cumulative distribution functions indicating the likelihood of dofferent costs and performance results. A Graphical Use Interface (GUI) facilitates the configuration of the technologies, entry of data, and retrieval of results.« less

  2. SIG -- The Role of Human-Computer Interaction in Next-Generation Control Rooms

    SciTech Connect

    Ronald L. Boring; Jacques Hugo; Christian Richard; Donald D. Dudenhoeffer

    2005-04-01

    The purpose of this CHI Special Interest Group (SIG) is to facilitate the convergence between human-computer interaction (HCI) and control room design. HCI researchers and practitioners actively need to infuse state-of-the-art interface technology into control rooms to meet usability, safety, and regulatory requirements. This SIG outlines potential HCI contributions to instrumentation and control (I&C) and automation in control rooms as well as to general control room design.

  3. NASA researchers in gold control room during an F-15 HiDEC flight

    NASA Technical Reports Server (NTRS)

    1993-01-01

    NASA researchers monitor equipment in the mission control Gold room at the Dryden Flight Research Center, Edwards, California, during a flight of an F-15 Highly Integrated Digital Electronic Control (HIDEC) research aircraft. The system was developed on the F-15 to investigate and demonstrate methods of obtaining optimum aircraft performance. The major elements of HIDEC were a Digital Electronic Flight Control System (DEFCS), a Digital Electronic Engine Control (DEEC), an on-board general purpose computer, and an integrated architecture to allow all components to 'talk to each other.' Unlike standard F-15s, which have a mechanical and analog electronic flight control system, the HIDEC F-15 also had a dual-channel, fail-safe digital flight control system programmed in Pascal. It was linked to the Military Standard 1553B and a H009 data bus which tied all the other electronic systems together.

  4. Capturing Control Room Simulator Data with the HERA Database

    SciTech Connect

    Ronald Boring; April Whaley; Bruce Hallbert; Karin Laumann; Per Oivind Braarud; Andreas Bye; Erasmia Lois; Yung Hsien James Chang

    2007-08-01

    The Human Event Repository and Analysis (HERA) system has been developed as a tool for classifying and recording human performance data extracted from primary data sources. This paper reviews the process of extracting data from simulator studies for use in HERA. Simulator studies pose unique data collection challenges, both in types and quality of data measures, but such studies are ideally suited to gather operator performance data, including the full spectrum of performance shaping factors used in a HERA analysis. This paper provides suggestions for obtaining relevant human performance data for a HERA analysis from a control room simulator study and for inputting those data in a format suitable for HERA.

  5. D0 Control Room Argon Test Cell Placement

    SciTech Connect

    Michael, J.; /Fermilab

    1991-04-01

    Due to the need of maintaining and providing high purity argon for the D0 experiment. it is necessary to have a purity verifying device readUy aVailable. The testing eqUipment used by the D0 cryo group is called the Argon Test Cell (ATC). It operates by taking a sample of the argon to be tested and running it through a test cell for purity determination. LiqUid nitrogen cooling loops are used to to keep the argon cold during the testing. The initial placement of the ATC was outside of the D0 Cryo Control Room. This was not a favorable place. mainly because of exposure to the elements on the operators and the device. A plan was made to move the ATe from outside to inside the control room. This would allow security. favorable environment conditions. and general overall improved access and operability. Havtng the ATC inside causes some concern over some issues. It is true that the ATC employs cryogenic piping components. so there is an ODH possibility ifthose components were to faU and leak. However. there are ways by which we can determine the ODH class fairly easily. Using the methods outlined in D0 EN-229. the components of the cryogenic pipelines are summed and grouped according to failure possibility and likely leakage upon failure. (Note that this is the reason that one type of component may be listed a multiple number of times in the appendix spreadsheet, as the different components have different possible leak rates. depending on position or size. etc.). The result is an ODH class 0. since the fatality rate has to be above 10{sup -7} for a hazard condition to be present. The fatality rates in this analysis only come within an order of magnitude of this safety limit due to using conservative estimates. Note that the 130 scfm fan must be active for the ODH status to remain O. The control room ventilation is on emergency power. An alarm attached to the fan will notify the operators of fan failure. but both the fan and the alarm can be turned off when they are not

  6. 1. VIEW OF THE CONTROL ROOM FOR THE XY RETRIEVER. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW OF THE CONTROL ROOM FOR THE X-Y RETRIEVER. USING THE X-Y RETRIEVER, OPERATORS RETRIEVED PLUTONIUM METAL FROM THE PLUTONIUM STORAGE VAULTS (IN MODULE K) AND CONVEYED IT TO THE X-Y SHUTTLE AREA WHERE IT WAS CUT AND WEIGHED. FROM THE SHUTTLE AREA THE PLUTONIUM WAS CONVEYED TO MODULES A, J OR K FOR CASTING, OR MODULE B FOR ROLLING AND FORMING. (5/17/71) - Rocky Flats Plant, Plutonium Manufacturing Facility, North-central section of Plant, just south of Building 776/777, Golden, Jefferson County, CO

  7. COMMERCIAL UTILITY PERSPECTIVES ON NUCLEAR POWER PLANT CONTROL ROOM MODERNIZATION

    SciTech Connect

    Jeffrey C. Joe; Ronald L. Boring; Julius J. Persensky

    2012-07-01

    Commercial nuclear power plants (NPPs) in the United States need to modernize their main control rooms (MCR). Many NPPs have done partial upgrades with some success and with some challenges. The Department of Energy’s (DOE) Light Water Reactor Sustainability (LWRS) Program, and in particular the Advanced Instrumentation and Controls (I&C) and Information Systems Technologies Research and Development (R&D) Pathway within LWRS, is designed to assist commercial nuclear power industry with their MCR modernization efforts. As part of this framework, a survey was issued to utility representatives of the LWRS Program Advanced Instrumentation, Information, and Control Systems/Technologies (II&C) Utility Working Group to obtain their views on a range of issues related to MCR modernization, including: drivers, barriers, and technology options, and the effects these aspects will have on concepts of operations, modernization strategies, and staffing. This paper summarizes the key survey results and discusses their implications.

  8. 75 FR 5536 - Pipeline Safety: Control Room Management/Human Factors, Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-03

    ... Safety: Control Room Management/Human Factors, Correction AGENCY: Pipeline and Hazardous Materials Safety... Regulations to address human factors and other aspects of control room management for pipelines where... 63310) entitled ``Pipeline Safety: Control Room Management/Human Factors.'' This final rule...

  9. 75 FR 69912 - Pipeline Safety: Control Room Management/Human Factors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-16

    ... Safety: Control Room Management/Human Factors AGENCY: Pipeline and Hazardous Materials Safety..., 2010, PHMSA published a Control Room Management/Human Factors notice of proposed rulemaking (NPRM... to expedite the program implementation deadlines of the Control Room Management/Human Factors rule...

  10. 15. NBS TOP SIDE CONTROL ROOM. THE SUIT SYSTEMS CONSOLE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. NBS TOP SIDE CONTROL ROOM. THE SUIT SYSTEMS CONSOLE IS USED TO CONTROL AIR FLOW AND WATER FLOW TO THE UNDERWATER SPACE SUIT DURING THE TEST. THE SUIT SYSTEMS ENGINEER MONITORS AIR FLOW ON THE PANEL TO THE LEFT, AND SUIT DATA ON THE COMPUTER MONITOR JUST SLIGHTLY TO HIS LEFT. WATER FLOW IS MONITORED ON THE PANEL JUST SLIGHTLY TO HIS RIGHT AND TEST VIDEO TO HIS FAR RIGHT. THE DECK CHIEF MONITORS THE DIVER'S DIVE TIMES ON THE COMPUTER IN THE UPPER RIGHT. THE DECK CHIEF LOGS THEM IN AS THEY ENTER THE WATER, AND LOGS THEM OUT AS THEY EXIT THE WATER. THE COMPUTER CALCULATES TOTAL DIVE TIME. - Marshall Space Flight Center, Neutral Buoyancy Simulator Facility, Rideout Road, Huntsville, Madison County, AL

  11. [Interface interconnection and data integration in implementing of digital operating room].

    PubMed

    Feng, Jingyi; Chen, Hua; Liu, Jiquan

    2011-10-01

    The digital operating-room, with highly integrated clinical information, is very important for rescuing lives of patients and improving quality of operations. Since equipments in domestic operating-rooms have diversified interface and nonstandard communication protocols, designing and implementing an integrated data sharing program for different kinds of diagnosing, monitoring, and treatment equipments become a key point in construction of digital operating room. This paper addresses interface interconnection and data integration for commonly used clinical equipments from aspects of hardware interface, interface connection and communication protocol, and offers a solution for interconnection and integration of clinical equipments in heterogeneous environment. Based on the solution, a case of an optimal digital operating-room is presented in this paper. Comparing with the international solution for digital operating-room, the solution proposed in this paper is more economical and effective. And finally, this paper provides a proposal for the platform construction of digital perating-room as well as a viewpoint for standardization of domestic clinical equipments.

  12. Making Room: Integrating Geo-Technologies into Teacher Education

    ERIC Educational Resources Information Center

    Gatrell, Jay D.

    2004-01-01

    Geo-educators focus on content standards, particularly the 1994 "Geography for Life" standards, as the primary rationale for integrating geo-spatial technologies into preservice teacher education programs. In this paper, an alternative framework is proposed to infuse GIS and GIScience into existing teacher education programs. Specifically, the…

  13. Integrating preconcentrator heat controller

    DOEpatents

    Bouchier, Francis A.; Arakaki, Lester H.; Varley, Eric S.

    2007-10-16

    A method and apparatus for controlling the electric resistance heating of a metallic chemical preconcentrator screen, for example, used in portable trace explosives detectors. The length of the heating time-period is automatically adjusted to compensate for any changes in the voltage driving the heating current across the screen, for example, due to gradual discharge or aging of a battery. The total deposited energy in the screen is proportional to the integral over time of the square of the voltage drop across the screen. Since the net temperature rise, .DELTA.T.sub.s, of the screen, from beginning to end of the heating pulse, is proportional to the total amount of heat energy deposited in the screen during the heating pulse, then this integral can be calculated in real-time and used to terminate the heating current when a pre-set target value has been reached; thereby providing a consistent and reliable screen temperature rise, .DELTA.T.sub.s, from pulse-to-pulse.

  14. Biofied room integrated with sensor agent robots to interact with residents and acquire environmental information

    NASA Astrophysics Data System (ADS)

    Sakurai, Fumi; Mita, Akira

    2011-04-01

    Current smart buildings are based on scenarios, so they are not prepared for unexpected events. We focus our attention on high adaptability of living matters to environmental changes. "Biofication of Living Spaces" is the concept of creating pleasant living environments using this high adaptability. Biofied room is integrated with sensor agent robots to interact with residents and acquire environmental information. In this research, we propose a highly adaptive algorithm to control the devices automatically. Based on physiological adaption, we can make the algorithm very flexible. As the first step in this research, a prototype of the sensor agent robot is built. Camera, microphone, proximity sensor, laser range-finder are mounted on the robot. As a sensor agent robot follows the residents, it acquires environmental information, and records the interaction between the robot and human. In a suggested control model, a resident is built in the control loop and his/her uncomfortable feeling plays a role of control signal. Following its signal, devices are controlled. Results obtained from the computer simulation show that models are able to maintain the human comfort feeling adaptively. This research suggests an adaptive, fault-tolerant, and energy-saving control models for building spaces, using simple algorithms based on physiological adaption.

  15. Current Approaches for Control Room I and C Modernization

    SciTech Connect

    Lopez, Alberto; Jimenez, Alfonso

    2002-07-01

    In general, instrumentation and control (I and C) systems for nuclear power plants were made using analogic systems and relays, since this was the only technology available by the time these systems were designed. This fact impacts on the operational and maintenance capabilities required to these systems. For this reason, nuclear power plants are facing nowadays two challenges: on one hand, the obsolescence of these systems contributes to the increase in the operation and maintenance costs - due to the difficulties for getting spare parts and support from the system vendors -. On the other hand, there has been an increase in the utilities competitiveness due to the electric power market liberalization. All this, of course, along with the commitment to maintain the current safety levels and meet the new requirements and standards that may arise in the near future. The application of current technologies, especially digital technology, solves the obsolescence problems and allows for a more functional and updated human-machine interface. Nevertheless, the cost associated to these modifications makes it necessary to develop strategies to determine which systems need to be modified and how to implement modifications effectively, so that these systems can work jointly with others using different technologies. Other issues inherent to digital technology must be considered, such as verification and validation of the software and of the human-machine interface, which are required for its licensing. This presentation describes the current approaches for I and C modernization, the main reasons, technologies and implementation plans, focusing on the control room and on the impact on operations. The main issues to be considered for developing a specific modernization plan are analysed. The goals and status of the 'Feasibility Study of the Control Room I and C Modernization' are described. This study is currently being developed by Endesa, Iberdrola and Tecnatom, and is included

  16. IET control building (TAN620). control room. facing east. instrument racks ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    IET control building (TAN-620). control room. facing east. instrument racks along north wall. glazing on east wall. Layout of control consoles evident by openings in floor. INEEL negative no. HD-21-4-2 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  17. LOFT. Interior, control room in control building (TAN630). Camera facing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LOFT. Interior, control room in control building (TAN-630). Camera facing north. Sign says "This control console is partially active. Do not operate any switch handle without authorization." Date: May 2004. INEEL negative no. HD-39-14-3 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  18. Integrating medical devices in the operating room using service-oriented architectures.

    PubMed

    Ibach, Bastian; Benzko, Julia; Schlichting, Stefan; Zimolong, Andreas; Radermacher, Klaus

    2012-08-01

    Abstract With the increasing documentation requirements and communication capabilities of medical devices in the operating room, the integration and modular networking of these devices have become more and more important. Commercial integrated operating room systems are mainly proprietary developments using usually proprietary communication standards and interfaces, which reduce the possibility of integrating devices from different vendors. To overcome these limitations, there is a need for an open standardized architecture that is based on standard protocols and interfaces enabling the integration of devices from different vendors based on heterogeneous software and hardware components. Starting with an analysis of the requirements for device integration in the operating room and the techniques used for integrating devices in other industrial domains, a new concept for an integration architecture for the operating room based on the paradigm of a service-oriented architecture is developed. Standardized communication protocols and interface descriptions are used. As risk management is an important factor in the field of medical engineering, a risk analysis of the developed concept has been carried out and the first prototypes have been implemented.

  19. HFE safety reviews of advanced nuclear power plant control rooms

    NASA Technical Reports Server (NTRS)

    Ohara, John

    1994-01-01

    Advanced control rooms (ACR's) will utilize human-system interface (HSI) technologies that may have significant implications for plant safety in that they will affect the operator's overall role and means of interacting with the system. The Nuclear Regulatory Commission (NRC) reviews the human factors engineering (HFE) aspects of HSI's to ensure that they are designed to good HFE principles and support performance and reliability in order to protect public health and safety. However, the only available NRC guidance was developed more than ten years ago, and does not adequately address the human performance issues and technology changes associated with ACR's. Accordingly, a new approach to ACR safety reviews was developed based upon the concept of 'convergent validity'. This approach to ACR safety reviews is described.

  20. Guidelines for the modernization of nuclear power plant control room and human-system interfaces

    SciTech Connect

    Naser, J.; Fink, B.; O'Hara, J.; Hill, D.

    2006-07-01

    Several nuclear power plants are implementing instrumentation and control (I and C) modernization programs using digital equipment to address obsolescence issues and the need to improve plant performance, while maintaining high levels of safety. As an integral part of the I and C modernization program, the control room and other human-system interfaces (HSIs) are also being modernized. Utilities identified the need for guidance for control rooms and HSIs to support and improve personnel performance, reduce the likelihood of human errors, increase the productivity of the plant, and take effective advantage of the benefits that can be achieved with the new technology being implemented. A project, initially jointly funded by the Electric Power Research Inst. (EPRI) and the U.S. Dept. of Energy (US DOE) and later by EPRI alone, has developed guidance that will facilitate planning, specification, design, implementation, operations, maintenance, training, and licensing activities for control rooms and HSIs. Although this guidance was developed for modernization of operating plants, most of the guidelines apply to new plants as well. (authors)

  1. Human factors engineering verification and validation for APR1400 computerized control room

    SciTech Connect

    Shin, Y. C.; Moon, H. K.; Kim, J. H.

    2006-07-01

    This paper introduces the Advanced Power Reactor 1400 (APR1400) HFE V and V activities the Korea Hydro Nuclear Plant Co. LTD. (KHNP) has performed for the last 10 years and some of the lessons learned through these activities. The features of APR1400 main control room include large display panel, redundant compact workstations, computer-based procedure, and safety console. Several iterations of human factors evaluations have been performed from small scale proof of concept tests to large scale integrated system tests for identifying human engineering deficiencies in the human system interface design. Evaluations in the proof of concept test were focused on checking the presence of any show stopper problems in the design concept. Later evaluations were mostly for finding design problems and for assuring the resolution of human factors issues of advanced control room. The results of design evaluations were useful not only for refining the control room design, but also for licensing the standard design. Several versions of APR1400 mock-ups with dynamic simulation models of currently operating Korea Standard Nuclear Plant (KSNP) have been used for the evaluations with the participation of operators from KSNP plants. (authors)

  2. PBF Control Building (PER619). Interior detail of control room's severe ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Control Building (PER-619). Interior detail of control room's severe fuel damage instrument panel. Indicators provided real-time information about test underway in PBF reactor. Note audio speaker. Date: May 2004. INEEL negative no, HD-41-7-4 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  3. PBF Control Building (PER619). Inside control room facing west. Photographer ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Control Building (PER-619). Inside control room facing west. Photographer has closed venetian blinds at window to block bright sunlight from outside. Date: 1980. INEEL negative no. 80-2549 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  4. Human factor engineering based design and modernization of control rooms with new I and C systems

    SciTech Connect

    Larraz, J.; Rejas, L.; Ortega, F.

    2012-07-01

    Instrumentation and Control (I and C) systems of the latest nuclear power plants are based on the use of digital technology, distributed control systems and the integration of information in data networks (Distributed Control and Instrumentation Systems). This has a repercussion on Control Rooms (CRs), where the operations and monitoring interfaces correspond to these systems. These technologies are also used in modernizing I and C systems in currently operative nuclear power plants. The new interfaces provide additional capabilities for operation and supervision, as well as a high degree of flexibility, versatility and reliability. An example of this is the implementation of solutions such as compact stations, high level supervision screens, overview displays, computerized procedures, new operational support systems or intelligent alarms processing systems in the modernized Man-Machine Interface (MMI). These changes in the MMI are accompanied by newly added Software (SW) controls and new solutions in automation. Tecnatom has been leading various projects in this area for several years, both in Asian countries and in the United States, using in all cases international standards from which Tecnatom own methodologies have been developed and optimized. The experience acquired in applying this methodology to the design of new control rooms is to a large extent applicable also to the modernization of current control rooms. An adequate design of the interface between the operator and the systems will facilitate safe operation, contribute to the prompt identification of problems and help in the distribution of tasks and communications between the different members of the operating shift. Based on Tecnatom experience in the field, this article presents the methodological approach used as well as the most relevant aspects of this kind of project. (authors)

  5. Wavelet analysis application for remote control room operation

    NASA Astrophysics Data System (ADS)

    Semenov, Oleg I.; Semenov, Igor B.

    2003-03-01

    Compression algorithm for data transfer from tokamak installation to remote control room was developed on the basis of wavelet analyses. The algorithm is useful in the case of low speed Internet channel (˜20 kbytes/s) for real time express analysis of row noisy data between shots (i.e., ˜5-10 times compression of the initial row data array (˜50-100 Mbytes), transmission, restoration, and analysis in time interval ˜15 min). The developed algorithm is based on some amount of data losses so that the amplitude and phase difference between the initial and restored data were less then 5% to signal amplitude. The algorithm was tested for Mirnov signal transmission in the case of disruption instability. It was shown that the error of restoration does not depend on form of the signal, i.e., applied method has good characteristics both in the case of the spikes and smooth functions. Experiments show that the coefficient of compression 5-15 could be achieved if the errors are in 0.5%-5%.

  6. Controlled synthesis of pentagonal gold nanotubes at room temperature.

    PubMed

    Bi, Yingpu; Lu, Gongxuan

    2008-07-01

    Large quantities of pentagonal gold nanotubes have been synthesized by reducing chloroauric acid with silver nanowires in an aqueous solution of hexadecyltrimethylammonium bromide (CTAB) at room temperature. These gold nanotubes possess perfect structures, smooth surfaces, highly crystalline walls, and similar cross-sections to that of the silver template. In this process, the CTAB participation was found to be crucial for shape-controlled synthesis of pentagonal gold nanotubes. In the absence of CTAB, loose and hollow gold structures were routinely generated, while bundled gold nanotubes with rough surfaces were obtained by replacing the CTAB with poly(vinyl pyrrolidone) (PVP). The possible formation mechanism of pentagonal gold nanotubes has also been discussed on the basis of various growth stages studied by field-emission scanning electron microscopy (FE-SEM) images. In addition, the catalytic properties of these hollow nanostructures for hydrogen generation reaction from HCHO solution have also been investigated. They showed higher activity than that of spherical gold nanoparticles. PMID:21828702

  7. Integrated control-structure design

    NASA Technical Reports Server (NTRS)

    Hunziker, K. Scott; Kraft, Raymond H.; Bossi, Joseph A.

    1991-01-01

    A new approach for the design and control of flexible space structures is described. The approach integrates the structure and controller design processes thereby providing extra opportunities for avoiding some of the disastrous effects of control-structures interaction and for discovering new, unexpected avenues of future structural design. A control formulation based on Boyd's implementation of Youla parameterization is employed. Control design parameters are coupled with structural design variables to produce a set of integrated-design variables which are selected through optimization-based methodology. A performance index reflecting spacecraft mission goals and constraints is formulated and optimized with respect to the integrated design variables. Initial studies have been concerned with achieving mission requirements with a lighter, more flexible space structure. Details of the formulation of the integrated-design approach are presented and results are given from a study involving the integrated redesign of a flexible geostationary platform.

  8. Integrated Biological Control

    SciTech Connect

    JOHNSON, A.R.

    2003-10-09

    Biological control is any activity taken to prevent, limit, clean up, or remediate potential environmental, health and safety, or workplace quality impacts from plants, animals, or microorganisms. At Hanford the principal emphasis of biological control is to prevent the transport of radioactive contamination by biological vectors (plants, animals, or microorganisms), and where necessary, control and clean up resulting contamination. Other aspects of biological control at Hanford include industrial weed control (e.g.; tumbleweeds), noxious weed control (invasive, non-native plant species), and pest control (undesirable animals such as rodents and stinging insects, and microorganisms such as molds that adversely affect the quality of the workplace environment). Biological control activities may be either preventive (a priori) or in response to existing contamination spread (a posteriori). Surveillance activities, including ground, vegetation, flying insect, and other surveys, and a priori control actions, such as herbicide spraying and placing biological barriers, are important in preventing radioactive contamination spread. If surveillance discovers that biological vectors have spread radioactive contamination, a posteriori control measures, such as fixing contamination, followed by cleanup and removal of the contamination to an approved disposal location are typical response functions. In some cases remediation following the contamination cleanup and removal is necessary. Biological control activities for industrial weeds, noxious weeds and pests have similar modes of prevention and response.

  9. Integrated Biological Control

    SciTech Connect

    JOHNSON, A.R.

    2002-09-01

    Biological control is any activity taken to prevent, limit, clean up, or remediate potential environmental, health and safety, or workplace quality impacts from plants, animals, or microorganisms. At Hanford the principal emphasis of biological control is to prevent the transport of radioactive contamination by biological vectors (plants, animals, or microorganisms), and where necessary, control and clean up resulting contamination. Other aspects of biological control at Hanford include industrial weed control (e.g.; tumbleweeds), noxious weed control (invasive, non-native plant species), and pest control (undesirable animals such as rodents and stinging insects; and microorganisms such as molds that adversely affect the quality of the workplace environment). Biological control activities may be either preventive (apriori) or in response to existing contamination spread (aposteriori). Surveillance activities, including ground, vegetation, flying insect, and other surveys, and apriori control actions, such as herbicide spraying and placing biological barriers, are important in preventing radioactive contamination spread. If surveillance discovers that biological vectors have spread radioactive contamination, aposteriori control measures, such as fixing contamination, followed by cleanup and removal of the contamination to an approved disposal location are typical response functions. In some cases remediation following the contamination cleanup and removal is necessary. Biological control activities for industrial weeds, noxious weeds and pests have similar modes of prevention and response.

  10. Integrated Control Using the SOFFT Control Structure

    NASA Technical Reports Server (NTRS)

    Halyo, Nesim

    1996-01-01

    The need for integrated/constrained control systems has become clearer as advanced aircraft introduced new coupled subsystems such as new propulsion subsystems with thrust vectoring and new aerodynamic designs. In this study, we develop an integrated control design methodology which accomodates constraints among subsystem variables while using the Stochastic Optimal Feedforward/Feedback Control Technique (SOFFT) thus maintaining all the advantages of the SOFFT approach. The Integrated SOFFT Control methodology uses a centralized feedforward control and a constrained feedback control law. The control thus takes advantage of the known coupling among the subsystems while maintaining the identity of subsystems for validation purposes and the simplicity of the feedback law to understand the system response in complicated nonlinear scenarios. The Variable-Gain Output Feedback Control methodology (including constant gain output feedback) is extended to accommodate equality constraints. A gain computation algorithm is developed. The designer can set the cross-gains between two variables or subsystems to zero or another value and optimize the remaining gains subject to the constraint. An integrated control law is designed for a modified F-15 SMTD aircraft model with coupled airframe and propulsion subsystems using the Integrated SOFFT Control methodology to produce a set of desired flying qualities.

  11. Human factors dimensions in the evolution of increasingly automated control rooms for near-earth satellites

    NASA Technical Reports Server (NTRS)

    Mitchell, C. M.

    1982-01-01

    The NASA-Goddard Space Flight Center is responsible for the control and ground support for all of NASA's unmanned near-earth satellites. Traditionally, each satellite had its own dedicated mission operations room. In the mid-seventies, an integration of some of these dedicated facilities was begun with the primary objective to reduce costs. In this connection, the Multi-Satellite Operations Control Center (MSOCC) was designed. MSOCC represents currently a labor intensive operation. Recently, Goddard has become increasingly aware of human factors and human-machine interface issues. A summary is provided of some of the attempts to apply human factors considerations in the design of command and control environments. Current and future activities with respect to human factors and systems design are discussed, giving attention to the allocation of tasks between human and computer, and the interface for the human-computer dialogue.

  12. A Research Framework for Demonstrating Benefits of Advanced Control Room Technologies

    SciTech Connect

    Le Blanc, Katya; Boring, Ronald; Joe, Jeffrey; Hallbert, Bruce; Thomas, Kenneth

    2014-12-01

    Control Room modernization is an important part of life extension for the existing light water reactor fleet. None of the 99 currently operating commercial nuclear power plants in the U.S. has completed a full-scale control room modernization to date. A full-scale modernization might, for example, entail replacement of all analog panels with digital workstations. Such modernizations have been undertaken successfully in upgrades in Europe and Asia, but the U.S. has yet to undertake a control room upgrade of this magnitude. Instead, nuclear power plant main control rooms for the existing commercial reactor fleet remain significantly analog, with only limited digital modernizations. Previous research under the U.S. Department of Energy’s Light Water Reactor Sustainability Program has helped establish a systematic process for control room upgrades that support the transition to a hybrid control. While the guidance developed to date helps streamline the process of modernization and reduce costs and uncertainty associated with introducing digital control technologies into an existing control room, these upgrades do not achieve the full potential of newer technologies that might otherwise enhance plant and operator performance. The aim of the control room benefits research presented here is to identify previously overlooked benefits of modernization, identify candidate technologies that may facilitate such benefits, and demonstrate these technologies through human factors research. This report serves as an outline for planned research on the benefits of greater modernization in the main control rooms of nuclear power plants.

  13. Human factors engineering control-room-design review/audit report: Palo Verde Nuclear Generating Station, Arizona Public Service Company

    SciTech Connect

    Savage, J.W.; Lappa, D.A.

    1981-10-09

    A human factors engineering design review of the Palo Verde control room simulator was performed at the site on September 15 through September 17, 1981. Observed human factors design discrepancies were given priority ratings. This report summarizes the team's observations of the control room design and layout and of the control room operators' interface with the control room environment. A list of the human factors strengths observed in the Palo Verde control room simulator is given.

  14. ETR CONTROL BUILDING, TRA647, INTERIOR. CONTROL ROOM, CONTEXTUAL VIEW. INSTRUMENT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ETR CONTROL BUILDING, TRA-647, INTERIOR. CONTROL ROOM, CONTEXTUAL VIEW. INSTRUMENT PANELS AT REAR OF OPERATOR'S CONSOLE GAVE OPERATOR STATUS OF REACTOR PERFORMANCE, COOLANT-WATER CHARACTERISTICS AND OTHER INDICATORS. WINDOWS AT RIGHT LOOKED INTO ETR BUILDING FIRST FLOOR. CAMERA FACING EAST. INL NEGATIVE NO. HD42-6. Mike Crane, Photographer, 3/2004 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  15. Intelligent control: integrating AI and control theory

    SciTech Connect

    De Jong, K.

    1983-01-01

    The increasing complexity of the requirements placed upon computer-controlled systems is forcing a departure from rigid, predetermined control sequences toward more flexible, intelligent control regimes. The basic premise of this research is that such systems can be developed by exploiting the strengths of both standard control theory and recent developments in artificial intelligence. A framework is described for integrating artificial intelligence (AI) techniques with more traditional control theory approaches both at the design stages as well as online control. Its potential is then discussed in the context of several complex navy control problems including automatic tracking systems, autonomous vehicles, and large-scale, flexible space structures. 8 references.

  16. Structure determination of an integral membrane protein at room temperature from crystals in situ

    SciTech Connect

    Axford, Danny; Foadi, James; Hu, Nien-Jen; Choudhury, Hassanul Ghani; Iwata, So; Beis, Konstantinos; Evans, Gwyndaf; Alguel, Yilmaz

    2015-05-14

    The X-ray structure determination of an integral membrane protein using synchrotron diffraction data measured in situ at room temperature is demonstrated. The structure determination of an integral membrane protein using synchrotron X-ray diffraction data collected at room temperature directly in vapour-diffusion crystallization plates (in situ) is demonstrated. Exposing the crystals in situ eliminates manual sample handling and, since it is performed at room temperature, removes the complication of cryoprotection and potential structural anomalies induced by sample cryocooling. Essential to the method is the ability to limit radiation damage by recording a small amount of data per sample from many samples and subsequently assembling the resulting data sets using specialized software. The validity of this procedure is established by the structure determination of Haemophilus influenza TehA at 2.3 Å resolution. The method presented offers an effective protocol for the fast and efficient determination of membrane-protein structures at room temperature using third-generation synchrotron beamlines.

  17. View of Medical Support Room in Mission Control Center during Apollo 16

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Dr. J.F. Zieglschmid, M.D., Mission Operations Control Room (MOCR) White Team Surgeon, is seated in the Medical Support Room in the Mission Control Center as he monitors crew biomedical data being received from the Apollo 16 spacecraft on the third day of the Apollo 16 lunar landing mission.

  18. OVERVIEW OF A RECONFIGURABLE SIMULATOR FOR MAIN CONTROL ROOM UPGRADES IN NUCLEAR POWER PLANTS

    SciTech Connect

    Ronald L. Boring

    2012-10-01

    This paper provides background on a reconfigurable control room simulator for nuclear power plants. The main control rooms in current nuclear power plants feature analog technology that is growing obsolete. The need to upgrade control rooms serves the practical need of maintainability as well as the opportunity to implement newer digital technologies with added functionality. There currently exists no dedicated research simulator for use in human factors design and evaluation activities for nuclear power plant modernization in the U.S. The new research simulator discussed in this paper provides a test bed in which operator performance on new control room concepts can be benchmarked against existing control rooms and in which new technologies can be validated for safety and usability prior to deployment.

  19. SUBSURFACE REPOSITORY INTEGRATED CONTROL SYSTEM DESIGN

    SciTech Connect

    D.C. Randle

    2000-01-07

    interfaced (Section 6.2). (3) Develop a preliminary design for the overall Subsurface Repository Integrated Control System functional architecture and graphically depict the operational features of this design through a series of control system functional block diagrams (Section 6.2). (4) Develop a physical architecture that presents a viable yet preliminary physical implementation for the Subsurface Repository Integrated Control System functional architecture (Section 6.3). (5) Develop an initial concept for an overall subsurface data communications network that can be used to integrate the various control systems comprising the Subsurface Repository Integrated Control System (Section 6.4). (6) Develop a preliminary central control room design for the Subsurface Repository Integrated Control System (Section 6.5). (7) Identify and discuss the general safety-related issues and design strategies with respect to development of the Subsurface Repository Integrated Control System (Section 6.6). (8) Discuss plans for the Subsurface Repository Integrated Control System's response to off-normal operations (Section 6.7). (9) Discuss plans and strategies for developing software for the Subsurface Repository Integrated Control System (Section 6.8).

  20. Integrated controls design optimization

    DOEpatents

    Lou, Xinsheng; Neuschaefer, Carl H.

    2015-09-01

    A control system (207) for optimizing a chemical looping process of a power plant includes an optimizer (420), an income algorithm (230) and a cost algorithm (225) and a chemical looping process models. The process models are used to predict the process outputs from process input variables. Some of the process in puts and output variables are related to the income of the plant; and some others are related to the cost of the plant operations. The income algorithm (230) provides an income input to the optimizer (420) based on a plurality of input parameters (215) of the power plant. The cost algorithm (225) provides a cost input to the optimizer (420) based on a plurality of output parameters (220) of the power plant. The optimizer (420) determines an optimized operating parameter solution based on at least one of the income input and the cost input, and supplies the optimized operating parameter solution to the power plant.

  1. 8. LAUNCH CONTROL SUPPORT BUILDING. INTERIOR OF DINING/RECREATION ROOM. VIEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. LAUNCH CONTROL SUPPORT BUILDING. INTERIOR OF DINING/RECREATION ROOM. VIEW TO EAST. - Minuteman III ICBM Launch Control Facility November-1, 1.5 miles North of New Raymer & State Highway 14, New Raymer, Weld County, CO

  2. 5. "UNDERGROUND CONTROL ROOM AT TEST STAND 1A, DIRECTORATE OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. "UNDERGROUND CONTROL ROOM AT TEST STAND 1-A, DIRECTORATE OF MISSILE CAPTIVE TEST, EDWARDS AFB, 15 JAN 58, 3097.58." Two men working in the control room. Photo no. "3097 58; G-AFFTC 15 JAN 58, T.S. 1-A Control". - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Control Center, Test Area 1-115, near Altair & Saturn Boulevards, Boron, Kern County, CA

  3. Integrated Aeropropulsion Control System Design

    NASA Technical Reports Server (NTRS)

    Lin, C. -F.; Hurley, Francis X.; Huang, Jie; Hadaegh, F. Y.

    1996-01-01

    %T Integrated Aeropropulsion Control System Design%A C-F. Lin%A Francis X. Hurley%A Jie Huang%A F. Y. Hadaegh%J International Conference on Control and Information(psi)995%C Hong Kong%D June 1995%K aeropropulsion, control, system%U http://jpltrs.jpl.nasa.gov/1995/95-0658.pdfAn integrated intelligent control approach is proposed to design a high performance control system for aeropropulsion systems based on advanced sensor processing, nonlinear control and neural fuzzy control integration. Our approach features the following innovations:??e complexity and uncertainty issues are addressed via the distributed parallel processing, learning, and online reoptimization properties of neural networks.??e nonlinear dynamics and the severe coupling can be naturally incorporated into the design framework.??e knowledge base and decision making logic furnished by fuzzy systems leads to a human intelligence enhanced control scheme.In addition, fault tolerance, health monitoring and reconfigurable control strategies will be accommodated by this approach to ensure stability, graceful degradation and reoptimization in the case of failures, malfunctions and damage.!.

  4. Measuring Human Performance in Simulated Nuclear Power Plant Control Rooms Using Eye Tracking

    SciTech Connect

    Kovesdi, Casey Robert; Rice, Brandon Charles; Bower, Gordon Ross; Spielman, Zachary Alexander; Hill, Rachael Ann; LeBlanc, Katya Lee

    2015-11-01

    Control room modernization will be an important part of life extension for the existing light water reactor fleet. As part of modernization efforts, personnel will need to gain a full understanding of how control room technologies affect performance of human operators. Recent advances in technology enables the use of eye tracking technology to continuously measure an operator’s eye movement, which correlates with a variety of human performance constructs such as situation awareness and workload. This report describes eye tracking metrics in the context of how they will be used in nuclear power plant control room simulator studies.

  5. Control Room Training for the Hyper-X Program Utilizing Aircraft Simulation

    NASA Technical Reports Server (NTRS)

    Lux-Baumann, Jessica R.; Dees, Ray A.; Fratello, David J.

    2006-01-01

    The NASA Dryden Flight Research Center flew two Hyper-X Research Vehicles and achieved hypersonic speeds over the Pacific Ocean in March and November 2004. To train the flight and mission control room crew, the NASA Dryden simulation capability was utilized to generate telemetry and radar data, which was used in nominal and emergency mission scenarios. During these control room training sessions, personnel were able to evaluate and refine data displays, flight cards, mission parameter allowable limits, and emergency procedure checklists. Practice in the mission control room ensured that all primary and backup Hyper-X staff were familiar with the nominal mission and knew how to respond to anomalous conditions quickly and successfully. This paper describes the technology in the simulation environment and the mission control center, the need for and benefit of control room training, and the rationale and results of specific scenarios unique to the Hyper-X research missions.

  6. Control Room Training for the Hyper-X Project Utilizing Aircraft Simulation

    NASA Technical Reports Server (NTRS)

    Lux-Baumann, Jesica; Dees, Ray; Fratello, David

    2006-01-01

    The NASA Dryden Flight Research Center flew two Hyper-X research vehicles and achieved hypersonic speeds over the Pacific Ocean in March and November 2004. To train the flight and mission control room crew, the NASA Dryden simulation capability was utilized to generate telemetry and radar data, which was used in nominal and emergency mission scenarios. During these control room training sessions personnel were able to evaluate and refine data displays, flight cards, mission parameter allowable limits, and emergency procedure checklists. Practice in the mission control room ensured that all primary and backup Hyper-X staff were familiar with the nominal mission and knew how to respond to anomalous conditions quickly and successfully. This report describes the technology in the simulation environment and the Mission Control Center, the need for and benefit of control room training, and the rationale and results of specific scenarios unique to the Hyper-X research missions.

  7. INTEGRATED WEED CONTROL IN MAIZE.

    PubMed

    Latré, J; Dewitte, K; Derycke, V; De Roo, B; Haesaert, G

    2015-01-01

    Integrated pest management has been implemented as a general practice by EU legislation. As weed control actually is the most important crop protection measure in maize for Western Europe, the new legislation will have its impact. The question is of course which systems can be successfully implemented in practice with respect to labour efficiency and economical parameters. During 3 successive growing seasons (2007, 2008, 2009) weed control in maize was evaluated, the main focus was put on different techniques of integrated weed control and was compared with chemical weed control. Additionally, during 4 successive growing seasons (2011, 2012, 2013 and 2014) two objects based on integrated weed control and two objects based on mechanical weed control were compared to about twenty different objects of conventional chemical weed control. One of the objects based on mechanical weed control consisted of treatment with the flex-tine harrow before and after emergence in combination with chemical weed control at a reduced rate in 3-4 leave stage. The second one consisted of broadcast mechanical treatments before and after emergence followed by a final in-row application of herbicides and an inter-row cultivation at 6-7(8) leave stage. All trials were conducted on the Experimental farm of Bottelare HoGent-UGent on a sandy loam soil. Maize was growing in 1/3 crop rotation. The effect on weed growth as well as the economic impact of the different applications was evaluated. Combining chemical and mechanical weed control is a possible option in conventional farming but the disadvantages must be taken into account. A better planned weed control based on the real present weed-population in combination with a carefully thought-out choice of herbicides should also be considered as an IPM--approach.

  8. INTEGRATED WEED CONTROL IN MAIZE.

    PubMed

    Latré, J; Dewitte, K; Derycke, V; De Roo, B; Haesaert, G

    2015-01-01

    Integrated pest management has been implemented as a general practice by EU legislation. As weed control actually is the most important crop protection measure in maize for Western Europe, the new legislation will have its impact. The question is of course which systems can be successfully implemented in practice with respect to labour efficiency and economical parameters. During 3 successive growing seasons (2007, 2008, 2009) weed control in maize was evaluated, the main focus was put on different techniques of integrated weed control and was compared with chemical weed control. Additionally, during 4 successive growing seasons (2011, 2012, 2013 and 2014) two objects based on integrated weed control and two objects based on mechanical weed control were compared to about twenty different objects of conventional chemical weed control. One of the objects based on mechanical weed control consisted of treatment with the flex-tine harrow before and after emergence in combination with chemical weed control at a reduced rate in 3-4 leave stage. The second one consisted of broadcast mechanical treatments before and after emergence followed by a final in-row application of herbicides and an inter-row cultivation at 6-7(8) leave stage. All trials were conducted on the Experimental farm of Bottelare HoGent-UGent on a sandy loam soil. Maize was growing in 1/3 crop rotation. The effect on weed growth as well as the economic impact of the different applications was evaluated. Combining chemical and mechanical weed control is a possible option in conventional farming but the disadvantages must be taken into account. A better planned weed control based on the real present weed-population in combination with a carefully thought-out choice of herbicides should also be considered as an IPM--approach. PMID:27145588

  9. NASA researchers in gold control room during an F-15 HiDEC flight, John Orme and Gerard Schkolnik

    NASA Technical Reports Server (NTRS)

    1993-01-01

    NASA researchers Gerard Schkolnik (left) and John Orme monitor equipment in the control room at the Dryden Flight Research Center, Edwards, California, during a flight of an F-15 Highly Integrated Digital Electronic Control (HIDEC) research aircraft. The system was developed on the F-15 to investigate and demonstrate methods of obtaining optimum aircraft performance. The major elements of HIDEC were a Digital Electronic Flight Control System (DEFCS), a Digital Electronic Engine Control (DEEC), an on-board general purpose computer, and an integrated architecture to allow all components to 'talk to each other.' Unlike standard F-15s, which have a mechanical and analog electronic flight control system, the HIDEC F-15 also had a dual-channel, fail-safe digital flight control system programmed in Pascal. It was linked to the Military Standard 1553B and a H009 data bus which tied all the other electronic systems together.

  10. Intensity control in experimental rooms of the GANIL accelerator

    NASA Astrophysics Data System (ADS)

    Courtois, C.; Jamet, C.; Le Coz, W.; Ledu, G.

    2014-12-01

    The safety re-examination of existing GANIL (the French national heavy-ion accelerator facility) installations requires the implementation of a safety system which makes possible the monitoring of beam intensities sent in the experimental rooms. The aim is to demonstrate that beam intensities stay below the authorized limits. The required characteristics should enable the measurement, by a non-interceptive method, of beam intensities from 5 nA to 5 μA with a maximum uncertainty of ±5%, independently of the frequency and the beam energy. After a comparative study, two high frequency diagnostics were selected: the capacitive Pick-Up (PU) and the Fast Current Transformer (FCT). Based on results of simulation, laboratory tests and machine studies, this paper discusses all the considerations required to deliver accurate results from PU and FCT measurement of ion beams.

  11. Human factors design, verification, and validation for two types of control room upgrades at a nuclear power plant

    SciTech Connect

    Boring, Laurids Ronald

    2014-10-01

    This paper describes the NUREG-0711 based human factors engineering (HFE) phases and associated elements required to support design, verification and validation (V&V), and implementation of a new plant process computer (PPC) and turbine control system (TCS) at a representative nuclear power plant. This paper reviews ways to take a human-system interface (HSI) specification and use it when migrating legacy PPC displays or designing displays with new functionality. These displays undergo iterative usability testing during the design phase and then undergo an integrated system validation (ISV) in a full scope control room training simulator. Following the successful demonstration of operator performance with the systems during the ISV, the new system is implemented at the plant, first in the training simulator and then in the main control room.

  12. 28. Pump Room interiorMain valve control panel with status indicators ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. Pump Room interior-Main valve control panel with status indicators for main flooding/dewatering valves and gates. - Hunters Point Naval Shipyard, Drydock No. 4, East terminus of Palou Avenue, San Francisco, San Francisco County, CA

  13. 14. INTERIOR VIEW OF PROPELLER STAND CONTROL ROOM. WrightPatterson ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. INTERIOR VIEW OF PROPELLER STAND CONTROL ROOM. - Wright-Patterson Air Force Base, Area B, Building No. 20A, Propeller Test Complex, Seventh Street, from E to G Streets, Dayton, Montgomery County, OH

  14. Review of Methods Related to Assessing Human Performance in Nuclear Power Plant Control Room Simulations

    SciTech Connect

    Katya L Le Blanc; Ronald L Boring; David I Gertman

    2001-11-01

    With the increased use of digital systems in Nuclear Power Plant (NPP) control rooms comes a need to thoroughly understand the human performance issues associated with digital systems. A common way to evaluate human performance is to test operators and crews in NPP control room simulators. However, it is often challenging to characterize human performance in meaningful ways when measuring performance in NPP control room simulations. A review of the literature in NPP simulator studies reveals a variety of ways to measure human performance in NPP control room simulations including direct observation, automated computer logging, recordings from physiological equipment, self-report techniques, protocol analysis and structured debriefs, and application of model-based evaluation. These methods and the particular measures used are summarized and evaluated.

  15. Integrated control system and method

    SciTech Connect

    Wang, Paul Sai Keat; Baldwin, Darryl; Kim, Myoungjin

    2013-10-29

    An integrated control system for use with an engine connected to a generator providing electrical power to a switchgear is disclosed. The engine receives gas produced by a gasifier. The control system includes an electronic controller associated with the gasifier, engine, generator, and switchgear. A gas flow sensor monitors a gas flow from the gasifier to the engine through an engine gas control valve and provides a gas flow signal to the electronic controller. A gas oversupply sensor monitors a gas oversupply from the gasifier and provides an oversupply signal indicative of gas not provided to the engine. A power output sensor monitors a power output of the switchgear and provide a power output signal. The electronic controller changes gas production of the gasifier and the power output rating of the switchgear based on the gas flow signal, the oversupply signal, and the power output signal.

  16. TRITIUM LABORATORY, TRA666, INTERIOR. MAIN FLOOR. CONTROL ROOM ENCLOSURE AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    TRITIUM LABORATORY, TRA-666, INTERIOR. MAIN FLOOR. CONTROL ROOM ENCLOSURE AT CENTER OF VIEW. SIGN ABOVE DOOR SAYS "HYDRAULIC TEST FACILITY CONTROL ROOM." SIGN IN WINDOW SAYS "EATING AREA." "EVACUATION AND EMERGENCY INFORMATION" IS POSTED ON CABINET AT LEFT OF VIEW. INL NEGATIVE NO. HD30-2-3. Mike Crane, Photographer, 6/2001 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  17. Integrated Transmission and Distribution Control

    SciTech Connect

    Kalsi, Karanjit; Fuller, Jason C.; Tuffner, Francis K.; Lian, Jianming; Zhang, Wei; Marinovici, Laurentiu D.; Fisher, Andrew R.; Chassin, Forrest S.; Hauer, Matthew L.

    2013-01-16

    Distributed, generation, demand response, distributed storage, smart appliances, electric vehicles and renewable energy resources are expected to play a key part in the transformation of the American power system. Control, coordination and compensation of these smart grid assets are inherently interlinked. Advanced control strategies to warrant large-scale penetration of distributed smart grid assets do not currently exist. While many of the smart grid technologies proposed involve assets being deployed at the distribution level, most of the significant benefits accrue at the transmission level. The development of advanced smart grid simulation tools, such as GridLAB-D, has led to a dramatic improvement in the models of smart grid assets available for design and evaluation of smart grid technology. However, one of the main challenges to quantifying the benefits of smart grid assets at the transmission level is the lack of tools and framework for integrating transmission and distribution technologies into a single simulation environment. Furthermore, given the size and complexity of the distribution system, it is crucial to be able to represent the behavior of distributed smart grid assets using reduced-order controllable models and to analyze their impacts on the bulk power system in terms of stability and reliability. The objectives of the project were to: • Develop a simulation environment for integrating transmission and distribution control, • Construct reduced-order controllable models for smart grid assets at the distribution level, • Design and validate closed-loop control strategies for distributed smart grid assets, and • Demonstrate impact of integrating thousands of smart grid assets under closed-loop control demand response strategies on the transmission system. More specifically, GridLAB-D, a distribution system tool, and PowerWorld, a transmission planning tool, are integrated into a single simulation environment. The integrated environment

  18. Monolithically integrated mid-IR interband cascade laser and photodetector operating at room temperature

    NASA Astrophysics Data System (ADS)

    Lotfi, Hossein; Li, Lu; Shazzad Rassel, S. M.; Yang, Rui Q.; Corrége, Cédric J.; Johnson, Matthew B.; Larson, Preston R.; Gupta, James A.

    2016-10-01

    We report on the demonstration of a monolithically integrated mid-IR interband cascade (IC) laser and photodetector operating at room temperature. The base structure for the integrated laser and detector is a six-stage type-I IC laser with GaInAsSb quantum well active regions. The laser/detector pair was defined using focused ion beam milling. The laser section lased in cw mode with an emission wavelength of ˜3.1 μm at 20 °C and top-illuminated photodetectors fabricated from the same wafer had Johnson-noise-limited detectivity of 1.05 × 109 cm Hz1/2/W at this wavelength and temperature. Under the same condition, the detectivity for the edge illumination configuration for the monolithically integrated laser/photodetector pairs is projected to be as high as 1.85 × 1010 cm Hz1/2/W, as supported by experimentally observed high photocurrent and open-circuit voltage. These high performance characteristics for monolithically integrated IC devices show great prospects for on-chip integration of mid-IR photonic devices for miniaturized sensors and on-chip optical communication systems.

  19. 49 CFR 195.446 - Control room management.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... method of recording controller shift-changes and any hand-over of responsibility between controllers. (c... added or moved and when other changes that affect pipeline safety are made to field equipment or SCADA... calibrated or changed and at least once each calendar year, but at intervals not to exceed 15 months;...

  20. 49 CFR 195.446 - Control room management.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... method of recording controller shift-changes and any hand-over of responsibility between controllers. (c... added or moved and when other changes that affect pipeline safety are made to field equipment or SCADA... calibrated or changed and at least once each calendar year, but at intervals not to exceed 15 months;...

  1. 49 CFR 195.446 - Control room management.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... method of recording controller shift-changes and any hand-over of responsibility between controllers. (c... added or moved and when other changes that affect pipeline safety are made to field equipment or SCADA... calibrated or changed and at least once each calendar year, but at intervals not to exceed 15 months;...

  2. 49 CFR 195.446 - Control room management.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... method of recording controller shift-changes and any hand-over of responsibility between controllers. (c... added or moved and when other changes that affect pipeline safety are made to field equipment or SCADA... calibrated or changed and at least once each calendar year, but at intervals not to exceed 15 months;...

  3. Teleoperated control system for underground room and pillar mining

    SciTech Connect

    Mayercheck, William D.; Kwitowski, August J.; Brautigam, Albert L.; Mueller, Brian K.

    1992-01-01

    A teleoperated mining system is provided for remotely controlling the various machines involved with thin seam mining. A thin seam continuous miner located at a mining face includes a camera mounted thereon and a slave computer for controlling the miner and the camera. A plurality of sensors for relaying information about the miner and the face to the slave computer. A slave computer controlled ventilation sub-system which removes combustible material from the mining face. A haulage sub-system removes material mined by the continuous miner from the mining face to a collection site and is also controlled by the slave computer. A base station, which controls the supply of power and water to the continuous miner, haulage system, and ventilation systems, includes cable/hose handling module for winding or unwinding cables/hoses connected to the miner, an operator control module, and a hydraulic power and air compressor module for supplying air to the miner. An operator controlled host computer housed in the operator control module is connected to the slave computer via a two wire communications line.

  4. Reviewing the impact of advanced control room technology

    SciTech Connect

    Wilhelmsen, C.A.; Gertman, D.I.; Ostrom, L.T.; Nelson, W.R.; Galyean, W.J.; Byers, J.C.

    1992-01-01

    Progress to date on assessing the nature of the expected changes in human performance and risk associated with the introduction of digital control, instrumentation, and display systems is presented. Expected changes include the shift toward more supervisory tasks, development of intervention strategies, and reallocation of function between human and machine. Results are reported in terms of the scope of new technology, human performance issues, and crews experience with digital control systems in a variety of industries petrochemical and aerospace. Plans to conduct a limited Probabilistic Risk Assessment/Human Reliability Assessment (PRA/HRA) comparison between a conventional NUREG-1150 series plant and that same plant retrofit with distributed control and advanced instrumentation and display are also presented. Changes needed to supplement existing HRA modeling methods and quantification techniques are discussed.

  5. Reviewing the impact of advanced control room technology

    SciTech Connect

    Wilhelmsen, C.A.; Gertman, D.I.; Ostrom, L.T.; Nelson, W.R.; Galyean, W.J.; Byers, J.C.

    1992-08-01

    Progress to date on assessing the nature of the expected changes in human performance and risk associated with the introduction of digital control, instrumentation, and display systems is presented. Expected changes include the shift toward more supervisory tasks, development of intervention strategies, and reallocation of function between human and machine. Results are reported in terms of the scope of new technology, human performance issues, and crews experience with digital control systems in a variety of industries petrochemical and aerospace. Plans to conduct a limited Probabilistic Risk Assessment/Human Reliability Assessment (PRA/HRA) comparison between a conventional NUREG-1150 series plant and that same plant retrofit with distributed control and advanced instrumentation and display are also presented. Changes needed to supplement existing HRA modeling methods and quantification techniques are discussed.

  6. Addressing the human factors issues associated with control room modifications

    SciTech Connect

    O`Hara, J.; Stubler, W.; Kramer, J.

    1998-03-01

    Advanced human-system interface (HSI) technology is being integrated into existing nuclear plants as part of plant modifications and upgrades. The result of this trend is that hybrid HSIs are created, i.e., HSIs containing a mixture of conventional (analog) and advanced (digital) technology. The purpose of the present research is to define the potential effects of hybrid HSIs on personnel performance and plant safety and to develop human factors guidance for safety reviews of them where necessary. In support of this objective, human factors issues associated with hybrid HSIs were identified. The issues were evaluated for their potential significance to plant safety, i.e., their human performance concerns have the potential to compromise plant safety. The issues were then prioritized and a subset was selected for design review guidance development.

  7. THE XAL INFRASTRUCTURE FOR HIGH LEVEL CONTROL ROOM APPLICATIONS

    SciTech Connect

    Shishlo, Andrei P; Allen, Christopher K; Chu, Paul; Galambos, John D; Pelaia II, Tom

    2009-01-01

    XAL is a Java programming framework for building high-level control applications related to accelerator physics. The structure, details of implementation, and interaction between components, auxiliary XAL packages, and the latest modifications are discussed. A general overview of XAL applications created for the SNS project is presented.

  8. Preventing Integrator Windup In A Control System

    NASA Technical Reports Server (NTRS)

    Kaminer, Isaac

    1992-01-01

    Design concept for control system addresses how to prevent control inputs to plant from exceeding electrical limits imposed by mechanical limits of control actuators in plant, and prevent windup in integrators in control system. Concept consists of two parts. First, to rearrange terms of control equation to move integrators into output path of control system. Second, involves limiting inputs to integrators when one control input of plant reaches its limit. Concept applicable to control systems typical of aircraft autopilot systems.

  9. Maximum performance synergy: A new approach to recording studio control room design

    NASA Astrophysics Data System (ADS)

    Szymanski, Jeff D.

    2003-10-01

    Popular recording studio control room designs include LEDE(tm), RFZ(tm), and nonenvironment rooms. The common goal of all of these is to create an accurate acoustical environment that does not distort or otherwise color audio reproduction. Also common to these designs is the frequent need to have multiple ancillary recording rooms, often adjacent to the main control room, where group members perform. This approach, where group members are physically separated from one another, can lead to lack of ensemble in the finished recordings. New twists on old acoustical treatment techniques have been implemented at a studio in Nashville, Tennessee, which minimize the need for multiple ancillary recording rooms, thus creating an environment where talent, producer and recording professionals can all occupy the same space for maximum performance synergy. Semi-separated performance areas are designed around a central, critical listening area. The techniques and equipment required to achieve this separation are reviewed, as are advantages and disadvantages to this new control room design approach.

  10. Use of 2.5-D and 3-D technology to evaluate control room upgrades

    SciTech Connect

    Hanes, L. F.; Naser, J.

    2006-07-01

    This paper describes an Electric Power Research Inst. (EPRI) study in which 2.5-D and 3-D visualization technology was applied to evaluate the design of a nuclear power plant control room upgrade. The study involved converting 3-D CAD flies of a planned upgrade into a photo-realistic appearing virtual model, and evaluating the value and usefulness of the model. Nuclear utility and EPRI evaluators viewed and interacted with the control room virtual model with both 2.5-D and 3-D representations. They identified how control room and similar virtual models may be used by utilities for design and evaluation purposes; assessed potential economic and other benefits; and identified limitations, potential problems, and other issues regarding use of visualization technology for this and similar applications. In addition, the Halden CREATE (Control Room Engineering Advanced Tool-kit Environment) Verification Tool was applied to evaluate features of the virtual model against US NRC NUREG 0700 Revision 2 human factors engineering guidelines (NUREG 0700) [1]. The study results are very favorable for applying 2.5-D visualization technology to support upgrading nuclear power plant control rooms and other plant facilities. Results, however, show that today's 3-D immersive viewing systems are difficult to justify based on cost, availability and value of information provided for this application. (authors)

  11. Light Water Reactor Sustainability Program A Reference Plan for Control Room Modernization: Planning and Analysis Phase

    SciTech Connect

    Jacques Hugo; Ronald Boring; Lew Hanes; Kenneth Thomas

    2013-09-01

    The U.S. Department of Energy’s Light Water Reactor Sustainability (LWRS) program is collaborating with a U.S. nuclear utility to bring about a systematic fleet-wide control room modernization. To facilitate this upgrade, a new distributed control system (DCS) is being introduced into the control rooms of these plants. The DCS will upgrade the legacy plant process computer and emergency response facility information system. In addition, the DCS will replace an existing analog turbine control system with a display-based system. With technology upgrades comes the opportunity to improve the overall human-system interaction between the operators and the control room. To optimize operator performance, the LWRS Control Room Modernization research team followed a human-centered approach published by the U.S. Nuclear Regulatory Commission. NUREG-0711, Rev. 3, Human Factors Engineering Program Review Model (O’Hara et al., 2012), prescribes four phases for human factors engineering. This report provides examples of the first phase, Planning and Analysis. The three elements of Planning and Analysis in NUREG-0711 that are most crucial to initiating control room upgrades are: • Operating Experience Review: Identifies opportunities for improvement in the existing system and provides lessons learned from implemented systems. • Function Analysis and Allocation: Identifies which functions at the plant may be optimally handled by the DCS vs. the operators. • Task Analysis: Identifies how tasks might be optimized for the operators. Each of these elements is covered in a separate chapter. Examples are drawn from workshops with reactor operators that were conducted at the LWRS Human System Simulation Laboratory HSSL and at the respective plants. The findings in this report represent generalized accounts of more detailed proprietary reports produced for the utility for each plant. The goal of this LWRS report is to disseminate the technique and provide examples sufficient to

  12. 28. SONAR CONTROL ROOM FORWARD LOOKING AFT SHOWING AN/SQS23G ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. SONAR CONTROL ROOM - FORWARD LOOKING AFT SHOWING AN/SQS-23G DETECTING-RANGING SET, MARK & CONTROL PANEL, CAN-55134 RECORDER, SPEED INDICATOR, VARIOUS ALARMS AND INTERNAL COMMUNICATION CIRCUITS. - U.S.S. HORNET, Puget Sound Naval Shipyard, Sinclair Inlet, Bremerton, Kitsap County, WA

  13. Fiber optic control system integration

    NASA Technical Reports Server (NTRS)

    Poppel, G. L.; Glasheen, W. M.; Russell, J. C.

    1987-01-01

    A total fiber optic, integrated propulsion/flight control system concept for advanced fighter aircraft is presented. Fiber optic technology pertaining to this system is identified and evaluated for application readiness. A fiber optic sensor vendor survey was completed, and the results are reported. The advantages of centralized/direct architecture are reviewed, and the concept of the protocol branch is explained. Preliminary protocol branch selections are made based on the F-18/F404 application. Concepts for new optical tools are described. Development plans for the optical technology and the described system are included.

  14. The integrated environmental control model

    SciTech Connect

    Rubin, E.S.; Berkenpas, M.B.; Kalagnanam, J.R.

    1995-11-01

    The capability to estimate the performance and cost of emission control systems is critical to a variety of planning and analysis requirements faced by utilities, regulators, researchers and analysts in the public and private sectors. The computer model described in this paper has been developed for DOe to provide an up-to-date capability for analyzing a variety of pre-combustion, combustion, and post-combustion options in an integrated framework. A unique capability allows performance and costs to be modeled probabilistically, which allows explicit characterization of uncertainties and risks.

  15. Is function-based control room design human-centered?

    SciTech Connect

    Norros, L.; Savioja, P.

    2006-07-01

    Function-based approaches to system interface design appears an appealing possibility in helping designers and operators to cope with the vast amount of information needed to control complex processes. In this paper we provide evidence of operator performance analyses showing that outcome-centered performance measures may not be sufficiently informative for design. We need analyses indicating habitual patterns of using information, operator practices. We argue that practices that portray functional orienting to the task support mastery of the process. They also create potential to make use of function-based information presentation. We see that functional design is not an absolute value. Instead, such design should support communication of the functional significance of the process information to the operators in variable situations. Hence, it should facilitate development of practices that focus to interpreting this message. Successful function-based design facilitates putting operations into their contexts and is human-centered in an extended sense: It aids making sense in the complex, dynamic and uncertain environment. (authors)

  16. EARLY-STAGE DESIGN AND EVALUATION FOR NUCLEAR POWER PLANT CONTROL ROOM UPGRADES

    SciTech Connect

    Ronald L. Boring; Jeffrey C. Joe; Thomas A. Ulrich; Roger T. Lew

    2015-03-01

    As control rooms are modernized with new digital systems at nuclear power plants, it is necessary to evaluate operator performance with these systems as part of a verification and validation process. While there is regulatory and industry guidance for some modernization activities, there are no well defined standard processes or predefined metrics available for assessing what is satisfactory operator interaction with new systems, especially during the early design stages. This paper proposes a framework defining the design process and metrics for evaluating human system interfaces as part of control room modernization. The process and metrics are generalizable to other applications and serve as a guiding template for utilities undertaking their own control room modernization activities.

  17. Baseline Evaluations to Support Control Room Modernization at Nuclear Power Plants

    SciTech Connect

    Boring, Ronald L.; Joe, Jeffrey C.

    2015-02-01

    For any major control room modernization activity at a commercial nuclear power plant (NPP) in the U.S., a utility should carefully follow the four phases prescribed by the U.S. Nuclear Regulatory Commission in NUREG-0711, Human Factors Engineering Program Review Model. These four phases include Planning and Analysis, Design, Verification and Validation, and Implementation and Operation. While NUREG-0711 is a useful guideline, it is written primarily from the perspective of regulatory review, and it therefore does not provide a nuanced account of many of the steps the utility might undertake as part of control room modernization. The guideline is largely summative—intended to catalog final products—rather than formative—intended to guide the overall modernization process. In this paper, we highlight two crucial formative sub-elements of the Planning and Analysis phase specific to control room modernization that are not covered in NUREG-0711. These two sub-elements are the usability and ergonomics baseline evaluations. A baseline evaluation entails evaluating the system as-built and currently in use. The usability baseline evaluation provides key insights into operator performance using the control system currently in place. The ergonomics baseline evaluation identifies possible deficiencies in the physical configuration of the control system. Both baseline evaluations feed into the design of the replacement system and subsequent summative benchmarking activities that help ensure that control room modernization represents a successful evolution of the control system.

  18. Waterford SES unit No. 3 control room design review/audit technical evaluation report

    SciTech Connect

    Smith, J.P.

    1981-06-01

    As part of the NRC staff actions following the TMI-2 accident (Item I.D.1, NUREG-0660, Vol. 1, May 1980), it is required that all licensees and applicants for operating licenses conduct a Detailed Control Room Design Review (DCRDR) to identify and correct human factors design deficiencies. Louisiana Power and Light Co. (LP and L) performed a preliminary assessment of the Waterford SES Unit No. 3 control room and submitted its findings to the NRC in a report dated April 15, 1981, for review and evaluation. The Human Factors Engineering Branch (HFEB) performed an interim review of the LP and L preliminary assessment report.

  19. Integrated Approach to Malaria Control

    PubMed Central

    Shiff, Clive

    2002-01-01

    Malaria draws global attention in a cyclic manner, with interest and associated financing waxing and waning according to political and humanitarian concerns. Currently we are on an upswing, which should be carefully developed. Malaria parasites have been eliminated from Europe and North America through the use of residual insecticides and manipulation of environmental and ecological characteristics; however, in many tropical and some temperate areas the incidence of disease is increasing dramatically. Much of this increase results from a breakdown of effective control methods developed and implemented in the 1960s, but it has also occurred because of a lack of trained scientists and control specialists who live and work in the areas of endemic infection. Add to this the widespread resistance to the most effective antimalarial drug, chloroquine, developing resistance to other first-line drugs such as sulfadoxine-pyrimethamine, and resistance of certain vector species of mosquito to some of the previously effective insecticides and we have a crisis situation. Vaccine research has proceeded for over 30 years, but as yet there is no effective product, although research continues in many promising areas. A global strategy for malaria control has been accepted, but there are critics who suggest that the single strategy cannot confront the wide range of conditions in which malaria exists and that reliance on chemotherapy without proper control of drug usage and diagnosis will select for drug resistant parasites, thus exacerbating the problem. An integrated approach to control using vector control strategies based on the biology of the mosquito, the epidemiology of the parasite, and human behavior patterns is needed to prevent continued upsurge in malaria in the endemic areas. PMID:11932233

  20. IET. Control and equipment building (TAN620). Details and room finish ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    IET. Control and equipment building (TAN-620). Details and room finish schedule. Ralph M. Parsons 902-4-ANP-620-A 322. Approved by INEEL Classification Office for public release. INEEL index code no. 035-0629-00-693-106907 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  1. MTR, TRA603. CONTROL ROOM DETAILS. ACOUSTIC PLASTER CEILING, USHAPED CONSOLE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MTR, TRA-603. CONTROL ROOM DETAILS. ACOUSTIC PLASTER CEILING, U-SHAPED CONSOLE, INSTRUMENT PANELS, GLASS DOOR, ASPHALT TILE FLOOR AND COLORS. BLAW-KNOX 3150-803-11, 10/1950. INL INDEX NO. 531-0603-00-098-100570, REV. 3. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  2. 76 FR 35130 - Pipeline Safety: Control Room Management/Human Factors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-16

    ... on December 3, 2009, in 49 CFR 192.631 and 195.446 (74 FR 63310), as corrected February 3, 2010 (75 FR 5536). By this amendment to the Control Room Management/Human Factors (CRM) rule, an operator must....631 and 195.446 (75 FR 56972). The NPRM proposed to expedite the deadline for implementing all...

  3. PBF Reactor Building (PER620) as seen from control room window ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Reactor Building (PER-620) as seen from control room window in PER-619. Photographer stood just outside window. Note exposed communication cables on desert surface. Date: July 2004. INEEL negative no. HD-41-9-3 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  4. LOFT. Interior of visitors' room in control building (TAN630), typically ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LOFT. Interior of visitors' room in control building (TAN-630), typically occupied during tests. Indicator display allowed observers to watch progress of experiment. Date: May 2004. INEEL negative no. HD-39-14-1 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  5. Advanced control rooms and crew performance issues: Implications for human reliability

    SciTech Connect

    O`Hara, J.M.; Hall, R.E.

    1991-12-31

    Recent trends in advanced control room (ACR) design are considered with respect to their impact on human performance. It is concluded that potentially negative influences exist, however, a variety of factors make it difficult to model, analyze, and quantify these effects for human reliability analyses (HRAs).

  6. PBF Control Building (PER619). Interior in data acquisition room showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Control Building (PER-619). Interior in data acquisition room showing data racks. The system recorded multiple channels of data during tests. INEEL negative no. HD-41-8-1 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  7. The Ground Control Room as an Enabling Technology in the Unmanned Aerial System

    NASA Technical Reports Server (NTRS)

    Gear, Gary; Mace, Thomas

    2007-01-01

    This viewgraph presentation reviews the development of the ground control room as an required technology for the use of an Unmanned Aerial system. The Unmanned Aerial system is a strategic component of the Global Observing System, which will serve global science needs. The unmanned aerial system will use the same airspace as manned aircraft, therefore there will be unique telemetry needs.

  8. IET control building (TAN620). interior personnel service room. sign next ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    IET control building (TAN-620). interior personnel service room. sign next to shower stall says, "fight athlete's foot with sani-mist." INEEL negative no. HD-21-1-1 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  9. Multisensory integration in balance control.

    PubMed

    Bronstein, A M

    2016-01-01

    This chapter provides an introduction to the topic of multisensory integration in balance control in, both, health and disease. One of the best-studied examples is that of visuo-vestibular interaction, which is the ability of the visual system to enhance or suppress the vestibulo-ocular reflex (VOR suppression). Of clinical relevance, examination of VOR suppression is clinically useful because only central, not peripheral, lesions impair VOR suppression. Visual, somatosensory (proprioceptive), and vestibular inputs interact strongly and continuously in the control of upright balance. Experiments with visual motion stimuli show that the visual system generates visually-evoked postural responses that, at least initially, can override vestibular and proprioceptive signals. This paradigm has been useful for the study of the syndrome of visual vertigo or vision-induced dizziness, which can appear after vestibular disease. These patients typically report dizziness when exposed to optokinetic stimuli or visually charged environments, such as supermarkets. The principles of the rehabilitation treatment of these patients, which use repeated exposure to visual motion, are presented. Finally, we offer a diagnostic algorithm in approaching the patient reporting oscillopsia - the illusion of oscillation of the visual environment, which should not be confused with the syndrome mentioned earlier of visual vertigo. PMID:27638062

  10. Room-Temperature Ferromagnetism in TiO2 Nanocrystals Synthesized by the Controlled Hydrolysis Procedure.

    PubMed

    Gu, Deen; Sun, Zhanhong; Zhou, Lv; Hu, Yongda; Jiang, Yadong

    2016-03-01

    TiO2 nanocrystals were prepared by a controlled hydrolysis procedure at room temperature. The effect of V-doping, N-doping and V/N codoping on the lattice parameters and magnetic properties of TiO2 nanocrystals was investigated by means of X-ray diffraction, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy and vibration sample magnetometry. Doping performed at room temperature causes the expansion of lattice parameters. Undoped and doped TiO2 nanocrystals show room-temperature ferromagnetism. A monotonic correlation between saturation magnetization and the ratio of the lattice parameter c to a (c/a) was observed. Saturation magnetization of TiO2 nanocrystals increases with the value of c/a.

  11. Technical and regulatory challenges for digital instrumentation and control and control room systems in nuclear plants

    SciTech Connect

    Torok, R.; Naser, J.; Harris, T.; Keithline, K.

    2006-07-01

    There are several unsettled technical and licensing issues in the areas of instrumentation and control (I and C), human factors, and updated control room designs that need coordinated, proactive industry attention. Some of these issues are already causing protracted regulatory reviews for existing plants, and left untreated, may cause substantial delays and increased costs for new plant combined construction and operating license approvals. Both industry and the NRC will have roles in resolving the key issues and addressing them in future design efforts and regulatory reviews. Where action is needed, the industry will want to minimize costs and risks by defining industry consensus solutions with corresponding technical bases. NEI has formed a working group to coordinate industry efforts and communications with NRC staff. The working group will also help determine priorities and coordinate both new and existing plant resources. EPRI will provide technical input and guidance for the working group. In order to be able to conduct reviews in a timely fashion, the NRC will likely need to enhance and expand staff resources as existing plants are upgraded and new plant reviews become more active. The industry initiative began with a workshop sponsored by EPRI and NEI on March 28-29, 2006, which led to the creation of the NEI working group. The working group has now identified and prioritized important generic issues, established resolution paths and schedules, and identified the roles of various stakeholders including utility companies, EPRI, NEI, vendors and the NRC. Through the course of this initiative I and C issues for both existing and new plants are being addressed. This paper describes the key I and C related technical and regulatory issues and their implications for new and operating plants, and provides a status report on the efforts to resolve them. (authors)

  12. Deployment of a Full-Scope Commercial Nuclear Power Plant Control Room Simulator at the Idaho National Laboratory

    SciTech Connect

    Ronald Boring; Julius Persensky; Kenneth Thomas

    2011-09-01

    The INL operates the HSSL to conduct research in the design and evaluation of advanced reactor control rooms, integration of intelligent support systems to assist operators, development and assessment of advanced human performance models, and visualizations to assess advanced operational concepts across various infrastructures. This advanced facility consists of a reconfigurable simulator and a virtual reality capability (known as the Computer-Aided Virtual Environment (CAVE)) (Figure 2). It supports human factors research, including human-in-the-loop performance, HSI, and analog and digital hybrid control displays. It can be applied to the development and evaluation of control systems and displays for complex systems such as existing and advanced NPP control rooms, command and control systems, and advance emergency operations centers. The HSSL incorporates a reconfigurable control room simulator, which is currently housed in the Center for Advanced Energy Studies (CAES), a joint venture of the DOE and the Idaho University System. The simulator is a platform- and plant-neutral environment intended for full-scope and part-task testing of operator performance in various control room configurations. The simulator is not limited to a particular plant or even simulator architecture. It can support engineering simulator platforms from multiple vendors using digital interfaces. Due to its ability to be reconfigured, it is possible to switch the HSI - not just to digital panels but also to different control modalities such as those using greater plant automation or intelligent alarm filtering. The simulator currently includes three operator workstations, each capable of driving up to eight 30-inch monitors. The size and number of monitors varies depending on the particular front-end simulator deployed for a simulator study. These operator workstations would typically be used for the shift supervisor or senior reactor operator, reactor operator, and assistant reactor

  13. Benefits of Advanced Control Room Technologies: Phase One Upgrades to the HSSL, Research Plan, and Performance Measures

    SciTech Connect

    Le Blanc, Katya; Joe, Jeffrey; Rice, Brandon; Ulrich, Thomas; Boring, Ronald

    2015-05-01

    Control Room modernization is an important part of life extension for the existing light water reactor fleet. None of the 99 currently operating commercial nuclear power plants in the U.S. has completed a full-scale control room modernization to date. A full-scale modernization might, for example, entail replacement of all analog panels with digital workstations. Such modernizations have been undertaken successfully in upgrades in Europe and Asia, but the U.S. has yet to undertake a control room upgrade of this magnitude. Instead, nuclear power plant main control rooms for the existing commercial reactor fleet remain significantly analog, with only limited digital modernizations. Previous research under the U.S. Department of Energy’s Light Water Reactor Sustainability Program has helped establish a systematic process for control room upgrades that support the transition to a hybrid control room. While the guidance developed to date helps streamline the process of modernization and reduce costs and uncertainty associated with introducing digital control technologies into an existing control room, these upgrades do not achieve the full potential of newer technologies that might otherwise enhance plant and operator performance. The aim of the control room benefits research is to identify previously overlooked benefits of modernization, identify candidate technologies that may facilitate such benefits, and demonstrate these technologies through human factors research. This report describes the initial upgrades to the HSSL and outlines the methodology for a pilot test of the HSSL configuration.

  14. New thinking for the boiler room.

    PubMed

    Rose, Wayne

    2008-09-01

    Wayne Rose, marketing manager at integrated plant room manufacturer Armstrong Integrated Systems, explains how increasing use of off-site manufacture, the latest 3D modelling technology, and advances in control technology, are revolutionising boiler room design and construction. PMID:18822819

  15. Design and Validation of Control Room Upgrades Using a Research Simulator Facility

    SciTech Connect

    Ronald L. Boring; Vivek Agarwal; Jeffrey C. Joe; Julius J. Persensky

    2012-11-01

    Since 1981, the United States (U.S.) Nuclear Regulatory Commission (NRC) [1] requires a plant- specific simulator facility for use in training at U.S. nuclear power plants (NPPs). These training simulators are in near constant use for training and qualification of licensed NPP operators. In the early 1980s, the Halden Man-Machine Laboratory (HAMMLab) at the Halden Reactor Project (HRP) in Norway first built perhaps the most well known set of research simulators. The HRP offered a high- fidelity simulator facility in which the simulator is functionally linked to a specific plant but in which the human-machine interface (HMI) may differ from that found in the plant. As such, HAMMLab incorporated more advanced digital instrumentation and controls (I&C) than the plant, thereby giving it considerable interface flexibility that researchers took full advantage of when designing and validating different ways to upgrade NPP control rooms. Several U.S. partners—the U.S. NRC, the Electrical Power Research Institute (EPRI), Sandia National Laboratories, and Idaho National Laboratory (INL) – as well as international members of the HRP, have been working with HRP to run control room simulator studies. These studies, which use crews from Scandinavian plants, are used to determine crew behavior in a variety of normal and off-normal plant operations. The findings have ultimately been used to guide safety considerations at plants and to inform advanced HMI design—both for the regulator and in industry. Given the desire to use U.S. crews of licensed operators on a simulator of a U.S. NPP, there is a clear need for a research simulator facility in the U.S. There is no general-purpose reconfigurable research oriented control room simulator facility in the U.S. that can be used for a variety of studies, including the design and validation of control room upgrades.

  16. Seismometer reading viewed in ALSEP Room in Misson Control during Apollo 17

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The seismometer readings from the impact made by the Apollo 17 Saturn S-IVB stage when it struck the lunar surface are viewed in the ALSEP Room in the Misson Control Center at Houston by Dr. Maurice Ewing, professor of geophysics of the Universtiy of Texas at Galveston. The seismic tracings are from sensings made by seismometers of Apollo Lunar Surface Experiments Packages left on the Moon during earlier Apollo lunar landing missions.

  17. Fire environment determination in the LaSalle NPP control room

    SciTech Connect

    Usher, J.L.; Boccio, J.L.; Singhal, A.K.; Tam, L.T.

    1986-01-01

    One objective of NRC's Fire Protection Research Program (FPRP) is to improve the modeling of environments caused by fires in typical nuclear power plant enclosures. A three-dimensional fluid dynamics computer code (PHOENICS) has been adapted as a field-model fire code (SAFFIRE) for this purpose. The model has been applied to simulate two distinct fires in the control room of the LaSalle County power plant. The environments determined illustrate hazardous potential for both personnel and equipment.

  18. Strategies and Decision Support Systems for Integrating Variable Energy Resources in Control Centers for Reliable Grid Operations. Executive Summary

    SciTech Connect

    Jones, Lawrence E.

    2011-11-01

    This is the executive summary for a report that provides findings from the field regarding the best ways in which to guide operational strategies, business processes and control room tools to support the integration of renewable energy into electrical grids.

  19. Strategies and Decision Support Systems for Integrating Variable Energy Resources in Control Centers for Reliable Grid Operations

    SciTech Connect

    Jones, Lawrence E.

    2011-11-01

    This report provides findings from the field regarding the best ways in which to guide operational strategies, business processes and control room tools to support the integration of renewable energy into electrical grids.

  20. Multilayer Control Hierarchy in an Integrated Hydrological Model

    NASA Astrophysics Data System (ADS)

    Park, J.; Obeysekera, J.; Vanzee, R.

    2005-05-01

    Considerable progress has been made in the functionality of integrated hydrological models which can provide evaluation of anthropogenic control and management policies of water resources. Nonetheless, there is still room for improvement in the coupling and expression of water control policies into hydrological models [1]. The Management Simulation Engine (MSE) component of the Regional Simulation Model (RSM) incorporates a multi-level hierarchical control architecture which emphasizes the decoupling of hydrological state information from the management information processing applied to the states. The MSE is intended to allow a flexible, extensible expression of a wide variety anthropogenic water resource control schemes integrated with the hydrological state evaluations of the RSM. Synergy between the multilayer control hierarchy and decoupled hydrologic state and management information facilitates a water resource management feature set not typical of integrated hydrological models. Some of these features include: interoperation and compatibility of diverse management algorithms such as PID, Fuzzy control, LP; and dynamic switching of control processors. This paper describes the MSE control hierarchy with a focus on the aforementioned features and their implementation. [1] Belaineh, G., Peralta, R. C., Hughes, T. C., Simulation/ Optimization Modeling for Water Resources Management, ASCE Journal Water Resources Planning Management, 125(3), p 154-61, 1999

  1. Quantum Process Tomography of a Room Temperature Optically-Controlled Phase Shift

    NASA Astrophysics Data System (ADS)

    Kupchak, Connor; Rind, Samuel; Figueroa, Eden; Stony Brook University Team

    2015-05-01

    We have developed a room temperature setup capable of optically controlled phase shifts on a weak probe field. Our system is realized in a vapor of 87Rb atoms under the conditions of electromagnetically induced transparency utilizing a N-type energy level scheme coupled by three optical fields. By varying the power of the signal field, we can control the size of an optical phase shift experienced by weak coherent state pulses of < n > ~ 1 , propagating through the vapor. We quantify the optical phase shift by measuring the process output via balanced homodyne tomography which provides us with the complete quadrature and phase information of the output states. Furthermore, we measure the output for a set of states over a subspace of the coherent state basis and gain the information to completely reconstruct our phase shift procedure by coherent state quantum process tomography. The reconstruction yields a rank-4 process superoperator which grants the ability to predict how our phase shift process will behave on an arbitrary quantum optical state in the mode of the reconstruction. Our results demonstrate progress towards room temperature systems for possible quantum gates; a key component of a future quantum processor designed to operate at room temperature. US-Navy Office of Naval Research N00141410801, National Science Foundation PHY-1404398, Natural Sciences and Engineering Research Council of Canada.

  2. Demonstration of Intelligent Control and Fan Improvements in Computer Room Air Handlers

    SciTech Connect

    Coles, Henry; Greenberg, Steve; Vita, Corinne

    2012-11-30

    This report documents a demonstration of the energy-efficiency improvement provided by a new control system for computer room air handling devices. It also analyzes measured and reported air handling device fan power associated with changing the fan type. A 135,000 square foot commercial data center was used for the demonstration. All air handling units were upgraded with improved efficiency fans, and a control system that automatically adjusts the fan speed for the air handling units was added. Power measurements were collected for a baseline and for a period with the fan speed control system active. Changing the fan type resulted in a savings of 47 percent of energy used by the air handling equipment and associated chiller plant energy needed to cool the air handlers themselves. The addition of the fan speed control resulted in an additional 37 percent savings in the same two categories. The combined savings for the two improvements for the same categories was 66 percent compared to the data center fitted with the original fans without a control system. The energy use reduction provided by the complete air handling device improvement program for the whole data center site is estimated to be 2.9 million kilowatt hours per year—an overall data center site savings of 8.0 percent. The reduced electrical energy use at the site provides a 1.9 million pound yearly reduction of carbon dioxide emissions. This demonstration showed that fan upgrades and a control system addition provide cost-effective improvements for data centers, with a payback reported to be under two years without utility incentives. In addition to the control system providing energy savings, the data collection and visual analysis capabilities provided immediate and long-term benefits. It is recommended that data center operators consider investing in fan upgrades and/or adding fan speed control for computer room air handlers.

  3. Integrating planning and reactive control

    NASA Technical Reports Server (NTRS)

    Rosenschein, Stanley J.; Kaelbling, Leslie Pack

    1989-01-01

    Artificial intelligence research on planning is concerned with designing control systems that choose actions by manipulating explicit descriptions of the world state, the goal to be achieved, and the effects of elementary operations available to the system. Because planning shifts much of the burden of reasoning to the machine, it holds great appeal as a high-level programming method. Experience shows, however, that it cannot be used indiscriminately because even moderately rich languages for describing goals, states, and the elementary operators lead to computational inefficiencies that render the approach unsuitable for realistic applications. This inadequacy has spawned a recent wave of research on reactive control or situated activity in which control systems are modeled as reacting directly to the current situation rather than as reasoning about the future effects of alternative action sequences. While this research has confronted the issue of run-time tractability head on, in many cases it has done so by sacrificing the advantages of declarative planning techniques. Ways in which the two approaches can be unified are discussed. The authors begin by modeling reactive control systems as state machines that map a stream of sensory inputs to a stream of control outputs. These machines can be decomposed into two continuously active subsystems: the planner and the execution module. The planner computes a plan, which can be seen as a set of bits that control the behavior of the execution module. An important element of this work is the formulation of a precise semantic interpretation for the inputs and outputs of the planning system. They show that the distinction between planned and reactive behavior is largely in the eye of the beholder: systems that seem to compute explicit plans can be redescribed in situation-action terms and vice versa. They also discuss practical programming techniques that allow the advantages of declarative programming and guaranteed

  4. Passive interventions in primary healthcare waiting rooms are effective in promoting healthy lifestyle behaviours: an integrative review.

    PubMed

    Cass, Sarah J; Ball, Lauren E; Leveritt, Michael D

    2016-01-01

    Primary healthcare waiting rooms have the potential to provide health-promoting environments to support healthy lifestyle behaviours such as smoking cessation, weight management and safe contraception. Passive interventions are cost-effective and continually available within an environment or setting, allowing individuals to interact, engage and learn about topics. The aim of this study was to undertake an integrative review to investigate the effectiveness of passive health-related waiting room interventions in improving healthy lifestyle behaviours, as well as precursors to behaviour change. The integrative review encompassed five phases: problem identification, literature search, data evaluation, data analysis and presentation of results. Quantitative, qualitative and mixed methods studies were included. Of the 9205 studies originally identified, 33 publications were included and grouped under four areas: knowledge about a health condition or behaviour, attitudes and intentions towards a health condition or behaviour, healthcare use and interactions, and health-related behaviours. Overall, the passive interventions had a general positive influence on knowledge, intentions, healthcare use and behaviours. Variable outcomes were reported regarding attitude towards a health topic. Few studies were assessed as both high quality and the highest suitability to assess effectiveness of interventions. Consideration of the clinical significance of improvements is warranted before implementation of future interventions. Overall, passive waiting room interventions appear to be effective in promoting healthy lifestyle behaviours. PMID:27117952

  5. Utilization Effect of Integrating a Chest Radiography Room into a Thoracic Surgery Ward

    PubMed Central

    Maehara, Cleo; Jacobson, Francine; Andriole, Katherine P.; Khorasani, Ramin

    2012-01-01

    PURPOSE Bedside chest radiography (bCXR) represents a substantial fraction of the volume of medical imaging for inpatient healthcare facilities. However, its image quality is limited compared to posterior-anterior/lateral (PA/LAT) acquisitions taken radiographic rooms. We evaluated utilization of bCXR and other chest imaging modalities before and after placing a radiography room within our thoracic surgical inpatient ward. METHODS Institutional review board approval was obtained for this HIPAA-compliant. We retrospectively identified all patient admissions (3,852) to the thoracic surgical units between April 1, 2007 and December 31, 2010. All chest imaging tests performed for these patients including computed tomography (CT) scans, magnetic resonance imaging (MRI), ultrasound (US), bedside and PA/LAT radiographs were counted. Our primary outcome measure was chest imaging utilization, defined as the number of chest examinations per admission, pre- and post-establishment of the digital radiography room on January, 10th 2010. Statistical analysis was performed using an independent-samples t-test to evaluate changes in chest imaging utilization. RESULTS We observed a 2.61 fold increase in the number of PA/LAT CXR per admission (p<0.01) and a 1.96 fold decrease in the number of bCXR per admission (p<0.01) post radiography room implementation. The number of chest CT, MRI and US per admission did not change significantly. CONCLUSION Establishing a radiography room physically within thoracic surgery units or in close proximity can significantly shift CXR utilization from bedside to PA/LAT acquisitions, which may enable opportunities for improvement in efficiency, quality, and safety in patient care. PMID:22632669

  6. Human Factors Guidance for Control Room and Digital Human-System Interface Design and Modification, Guidelines for Planning, Specification, Design, Licensing, Implementation, Training, Operation and Maintenance

    SciTech Connect

    R. Fink, D. Hill, J. O'Hara

    2004-11-30

    Nuclear plant operators face a significant challenge designing and modifying control rooms. This report provides guidance on planning, designing, implementing and operating modernized control rooms and digital human-system interfaces.

  7. A Pilot Study Investigating the Effects of Advanced Nuclear Power Plant Control Room Technologies: Methods and Qualitative Results

    SciTech Connect

    BLanc, Katya Le; Powers, David; Joe, Jeffrey; Spielman, Zachary; Rice, Brandon; Fitzgerald, Kirk

    2015-08-01

    Control room modernization is an important part of life extension for the existing light water reactor fleet. None of the 99 currently operating commercial nuclear power plants in the U.S. has completed a full-scale control room modernization to date. Nuclear power plant main control rooms for the existing commercial reactor fleet remain significantly analog, with only limited digital modernizations. Upgrades in the U.S. do not achieve the full potential of newer technologies that might otherwise enhance plant and operator performance. The goal of the control room upgrade benefits research is to identify previously overlooked benefits of modernization, identify candidate technologies that may facilitate such benefits, and demonstrate these technologies through human factors research. This report describes a pilot study to test upgrades to the Human Systems Simulation Laboratory at INL.

  8. Room-temperature quantum cloning machine with full coherent phase control in nanodiamond.

    PubMed

    Chang, Yan-Chun; Liu, Gang-Qin; Liu, Dong-Qi; Fan, Heng; Pan, Xin-Yu

    2013-01-01

    In contrast to the classical world, an unknown quantum state cannot be cloned ideally, as stated by the no-cloning theorem. However, it is expected that approximate or probabilistic quantum cloning will be necessary for different applications, and thus various quantum cloning machines have been designed. Phase quantum cloning is of particular interest because it can be used to attack the Bennett-Brassard 1984 (BB84) states used in quantum key distribution for secure communications. Here, we report the first room-temperature implementation of quantum phase cloning with a controllable phase in a solid-state system: the nitrogen-vacancy centre of a nanodiamond. The phase cloner works well for all qubits located on the equator of the Bloch sphere. The phase is controlled and can be measured with high accuracy, and the experimental results are consistent with theoretical expectations. This experiment provides a basis for phase-controllable quantum information devices. PMID:23511233

  9. Room-Temperature Quantum Cloning Machine with Full Coherent Phase Control in Nanodiamond

    PubMed Central

    Chang, Yan-Chun; Liu, Gang-Qin; Liu, Dong-Qi; Fan, Heng; Pan, Xin-Yu

    2013-01-01

    In contrast to the classical world, an unknown quantum state cannot be cloned ideally, as stated by the no-cloning theorem. However, it is expected that approximate or probabilistic quantum cloning will be necessary for different applications, and thus various quantum cloning machines have been designed. Phase quantum cloning is of particular interest because it can be used to attack the Bennett-Brassard 1984 (BB84) states used in quantum key distribution for secure communications. Here, we report the first room-temperature implementation of quantum phase cloning with a controllable phase in a solid-state system: the nitrogen-vacancy centre of a nanodiamond. The phase cloner works well for all qubits located on the equator of the Bloch sphere. The phase is controlled and can be measured with high accuracy, and the experimental results are consistent with theoretical expectations. This experiment provides a basis for phase-controllable quantum information devices. PMID:23511233

  10. Integrating planning and reactive control

    NASA Technical Reports Server (NTRS)

    Wilkins, David E.; Myers, Karen L.

    1994-01-01

    Our research is developing persistent agents that can achieve complex tasks in dynamic and uncertain environments. We refer to such agents as taskable, reactive agents. An agent of this type requires a number of capabilities. The ability to execute complex tasks necessitates the use of strategic plans for accomplishing tasks; hence, the agent must be able to synthesize new plans at run time. The dynamic nature of the environment requires that the agent be able to deal with unpredictable changes in its world. As such, agents must be able to react to unanticipated events by taking appropriate actions in a timely manner, while continuing activities that support current goals. The unpredictability of the world could lead to failure of plans generated for individual tasks. Agents must have the ability to recover from failures by adapting their activities to the new situation, or replanning if the world changes sufficiently. Finally, the agent should be able to perform in the face of uncertainty. The Cypress system, described here, provides a framework for creating taskable, reactive agents. Several features distinguish our approach: (1) the generation and execution of complex plans with parallel actions; (2) the integration of goal-driven and event driven activities during execution; (3) the use of evidential reasoning for dealing with uncertainty; and (4) the use of replanning to handle run-time execution problems. Our model for a taskable, reactive agent has two main intelligent components, an executor and a planner. The two components share a library of possible actions that the system can take. The library encompasses a full range of action representations, including plans, planning operators, and executable procedures such as predefined standard operating procedures (SOP's). These three classes of actions span multiple levels of abstraction.

  11. ATLAS Virtual Visits: Bringing the World into the ATLAS Control Room

    NASA Astrophysics Data System (ADS)

    Goldfarb, S.

    2012-12-01

    The newfound ability of Social Media to transform public communication back to a conversational nature provides HEP with a powerful tool for Outreach and Communication. By far, the most effective component of nearly any visit or public event is that fact that the students, teachers, media, and members of the public have a chance to meet and converse with real scientists. While more than 30,000 visitors passed through the ATLAS Visitor Centre in 2011, nearly 7 billion did not have a chance to make the trip. Clearly this is not for lack of interest. Rather, the costs of travel, in terms of time and money, and limited parking, put that number somewhat out of reach. On the other hand, during the LHC “First Physics” event of 2010, more than 2 million visitors joined the experiment control rooms via webcast for the celebration. This document presents a project developed for the ATLAS Experiment's Outreach and Education program that complements the webcast infrastructure with video conferencing and wireless sound systems, allowing the public to interact with hosts in the control room with minimal disturbance to the shifters. These “Virtual Visits” have included high school classes, LHC Masterclasses, conferences, expositions and other events in Europe, USA, Japan and Australia, to name a few. We discuss the technology used, potential pitfalls (and ways to avoid them), and our plans for the future.

  12. Advantages and Disadvantages of Physiological Assessment For Next Generation Control Room Design

    SciTech Connect

    Tuan Q. Tran; Ronald L. Boring; Donald D. Dudenhoeffer; Bruce P Hallbert; M. David Keller; Tessa M. Anderson

    2007-08-01

    Abstract - We propose using non-obtrusive physiological assessment (e.g., eye tracking,) to assess human information processing errors (e.g., loss of vigilance) and limitations (e.g., workload) for advanced energy systems early in the design process. This physiological approach for assessing risk will circumvent many limitations of current risk methodologies such as subjective rating (e.g., rater’s biases) and performance modeling (e.g., risk assessment is scripted and is based upon the individual modeler’s judgment). Key uses will be to evaluate (early in the design process) novel control room equipment and configurations as well as newly developed automated systems that will inevitably place a high information load on operators. The physiological risk assessment tool will allow better precision in pinpointing problematic design issues and will provide a “real-time” assessment of risk. Furthermore, this physiological approach would extend the state-of-the-art of human reliability methods from a “static” measure to more “dynamic.” This paper will discuss a broad range of the current popular online performance gauges as well as its advantages and disadvantages for use in next generation control room.

  13. Bay integrated power system control and diagnostics

    SciTech Connect

    Beierl, O.

    1996-03-01

    The paper presents new concepts for control and diagnostic systems for high voltage switchgear (123-kV and above). Air insulated and gas insulated (SF6) switchgear is considered. The new aspect is the integration of monitoring and diagnostic concepts in digital control and protection systems. Communication concepts for sensors and actuators with digital process busses at bay level are discussed. The paper covers integration concepts for circuit breaker monitoring (AIS, GIS) and for GIS the integration of on-line partial discharge measurement, on-line arc detection and on-line monitoring of the gas conditions. Finally, the advantages, disadvantages and the applicability of integrated diagnostic and control concepts are discussed by means of technical and commercial aspects.

  14. Leprosy control: the rationale of integration.

    PubMed

    Loretti, A

    1989-12-01

    After considering the situation and the perspectives of integration and the drawbacks that a vertical approach can represent for leprosy control, the author proposes the framework of control programmes as a systemic model for comprehensive health care. The structure that health services in developing countries are adopting in order to implement PHC allows for an horizontal integration of specific activities; conversely, activities which have already proved their value for leprosy control can easily enlarge their scope and include other prevalent conditions. Integration leads to an improvement in patients' and health workers' attitudes; provided that the necessary supervision is guaranteed, integration is feasible and warrants more effective patients' care and a better exploitation of resources in order to reduce the specific risk in the community.

  15. Subnatural linewidth in room-temperature Rb vapor using a control laser

    NASA Astrophysics Data System (ADS)

    Rapol, Umakant D.; Wasan, Ajay; Natarajan, Vasant

    2003-05-01

    We demonstrate two ways of obtaining subnatural linewidth for probe absorption through room-temperature Rb vapor. Both techniques use a control laser that drives the transition from a different ground state. The coherent drive splits the excited state into two dressed states (Autler-Townes doublet), which have asymmetric linewidths when the control laser is detuned from resonance. In the first technique, the laser has a large detuning of 1.18 GHz to reduce the linewidth to 5.1 MHz from the Doppler width of 560 MHz. In the second technique, we use a counterpropagating pump beam to eliminate the first-order Doppler effect. The unperturbed probe linewidth is about 13 MHz, which is reduced below 3 MHz (0.5Γ) at a detuning of 11.5 MHz.

  16. DHM simulation in virtual environments: a case-study on control room design.

    PubMed

    Zamberlan, M; Santos, V; Streit, P; Oliveira, J; Cury, R; Negri, T; Pastura, F; Guimarães, C; Cid, G

    2012-01-01

    This paper will present the workflow developed for the application of serious games in the design of complex cooperative work settings. The project was based on ergonomic studies and development of a control room among participative design process. Our main concerns were the 3D human virtual representation acquired from 3D scanning, human interaction, workspace layout and equipment designed considering ergonomics standards. Using Unity3D platform to design the virtual environment, the virtual human model can be controlled by users on dynamic scenario in order to evaluate the new work settings and simulate work activities. The results obtained showed that this virtual technology can drastically change the design process by improving the level of interaction between final users and, managers and human factors team. PMID:22317048

  17. Room temperature alcohol sensing by oxygen vacancy controlled TiO2 nanotube array

    NASA Astrophysics Data System (ADS)

    Hazra, A.; Dutta, K.; Bhowmik, B.; Chattopadhyay, P. P.; Bhattacharyya, P.

    2014-08-01

    Oxygen vacancy (OV) controlled TiO2 nanotubes, having diameters of 50-70 nm and lengths of 200-250 nm, were synthesized by electrochemical anodization in the mixed electrolyte comprising NH4F and ethylene glycol with selective H2O content. The structural evolution of TiO2 nanoforms has been studied by field emission scanning electron microscopy. Variation in the formation of OVs with the variation of the structure of TiO2 nanoforms has been evaluated by photoluminescence and X-ray photoelectron spectroscopy. The sensor characteristics were correlated to the variation of the amount of induced OVs in the nanotubes. The efficient room temperature sensing achieved by the control of OVs of TiO2 nanotube array has paved the way for developing fast responding alcohol sensor with corresponding response magnitude of 60.2%, 45.3%, and 36.5% towards methanol, ethanol, and 2-propanol, respectively.

  18. THE DEVELOPMENT OF DETAILED HUMAN FACTORS ENGINEERING GUIDELINES FOR DIGITAL CONTROL ROOM UPGRADES.

    SciTech Connect

    BROWN,W.; O'HARA,J.M.

    2004-09-19

    As part of the Department of Energy and Electric Power Research Institute's hybrid control room project, detailed human factors engineering guidance was developed for designing human-system interfaces that may be affected by introduction of additional digital technology during modernization of nuclear power plants. The guidance addresses several aspects of human-system interaction: information display, interface management, soft controls, alarms, computer-based procedures, computerized operator support systems, communications, and workstation/workplace design. In this paper, the ways in which digital upgrades might affect users' interaction with systems in each of these contexts are briefly described, and the contents of the guidance developed for each of the topics is also described.

  19. DHM simulation in virtual environments: a case-study on control room design.

    PubMed

    Zamberlan, M; Santos, V; Streit, P; Oliveira, J; Cury, R; Negri, T; Pastura, F; Guimarães, C; Cid, G

    2012-01-01

    This paper will present the workflow developed for the application of serious games in the design of complex cooperative work settings. The project was based on ergonomic studies and development of a control room among participative design process. Our main concerns were the 3D human virtual representation acquired from 3D scanning, human interaction, workspace layout and equipment designed considering ergonomics standards. Using Unity3D platform to design the virtual environment, the virtual human model can be controlled by users on dynamic scenario in order to evaluate the new work settings and simulate work activities. The results obtained showed that this virtual technology can drastically change the design process by improving the level of interaction between final users and, managers and human factors team.

  20. A charge-density-wave oscillator based on an integrated tantalum disulfide–boron nitride–graphene device operating at room temperature

    NASA Astrophysics Data System (ADS)

    Liu, Guanxiong; Debnath, Bishwajit; Pope, Timothy R.; Salguero, Tina T.; Lake, Roger K.; Balandin, Alexander A.

    2016-10-01

    The charge-density-wave (CDW) phase is a macroscopic quantum state consisting of a periodic modulation of the electronic charge density accompanied by a periodic distortion of the atomic lattice in quasi-1D or layered 2D metallic crystals. Several layered transition metal dichalcogenides, including 1T-TaSe2, 1T-TaS2 and 1T-TiSe2 exhibit unusually high transition temperatures to different CDW symmetry-reducing phases. These transitions can be affected by the environmental conditions, film thickness and applied electric bias. However, device applications of these intriguing systems at room temperature or their integration with other 2D materials have not been explored. Here, we demonstrate room-temperature current switching driven by a voltage-controlled phase transition between CDW states in films of 1T-TaS2 less than 10 nm thick. We exploit the transition between the nearly commensurate and the incommensurate CDW phases, which has a transition temperature of 350 K and gives an abrupt change in current accompanied by hysteresis. An integrated graphene transistor provides a voltage-tunable, matched, low-resistance load enabling precise voltage control of the circuit. The 1T-TaS2 film is capped with hexagonal boron nitride to provide protection from oxidation. The integration of these three disparate 2D materials in a way that exploits the unique properties of each yields a simple, miniaturized, voltage-controlled oscillator suitable for a variety of practical applications.

  1. SUBSURFACE REPOSITORY INTEGRATED CONTROL SYSTEM DESIGN

    SciTech Connect

    C.J. Fernado

    1998-09-17

    The purpose of this document is to develop preliminary high-level functional and physical control system architectures for the proposed subsurface repository at Yucca Mountain. This document outlines overall control system concepts that encompass and integrate the many diverse systems being considered for use within the subsurface repository. This document presents integrated design concepts for monitoring and controlling the diverse set of subsurface operations. The subsurface repository design will be composed of a series of diverse systems that will be integrated to accomplish a set of overall functions and objectives. The subsurface repository contains several Instrumentation and Control (I&C) related systems including: waste emplacement systems, ventilation systems, communication systems, radiation monitoring systems, rail transportation systems, ground control monitoring systems, utility monitoring systems (electrical, lighting, water, compressed air, etc.), fire detection and protection systems, retrieval systems, and performance confirmation systems. Each of these systems involve some level of I&C and will typically be integrated over a data communication network. The subsurface I&C systems will also integrate with multiple surface-based site-wide systems such as emergency response, health physics, security and safeguards, communications, utilities and others. The scope and primary objectives of this analysis are to: (1) Identify preliminary system level functions and interface needs (Presented in the functional diagrams in Section 7.2). (2) Examine the overall system complexity and determine how and on what levels these control systems will be controlled and integrated (Presented in Section 7.2). (3) Develop a preliminary subsurface facility-wide design for an overall control system architecture, and depict this design by a series of control system functional block diagrams (Presented in Section 7.2). (4) Develop a series of physical architectures that

  2. Perceived Parental Care and Control among Israeli Female Adolescents Presenting to Emergency Rooms after Self-Poisoning

    ERIC Educational Resources Information Center

    Diamond, Gary M.; Didner, Hila; Waniel, Ariela; Priel, Beatriz; Asherov, Jack; Arbel, Shosh

    2005-01-01

    Levels of perceived parental care and control among 24 female Israeli adolescents presenting at emergency rooms after a self-poisoning act of low lethality were compared to those found among 23 non-self-harming, community controls. Adolescents' perceived levels of parental care and control were measured via both adolescents' self-report and…

  3. Status of the National Ignition Facility Integrated Computer Control System

    SciTech Connect

    Lagin, L; Bryant, R; Carey, R; Casavant, D; Edwards, O; Ferguson, W; Krammen, J; Larson, D; Lee, A; Ludwigsen, P; Miller, M; Moses, E; Nyholm, R; Reed, R; Shelton, R; Van Arsdall, P J; Wuest, C

    2003-10-13

    The National Ignition Facility (NIF), currently under construction at the Lawrence Livermore National Laboratory, is a stadium-sized facility containing a 192-beam, 1.8-Megajoule, 500-Terawatt, ultraviolet laser system together with a 10-meter diameter target chamber with room for nearly 100 experimental diagnostics. When completed, NIF will be the world's largest and most energetic laser experimental system, providing an international center to study inertial confinement fusion and the physics of matter at extreme energy densities and pressures. NIF's 192 energetic laser beams will compress fusion targets to conditions required for thermonuclear burn, liberating more energy than required to initiate the fusion reactions. Laser hardware is modularized into line replaceable units such as deformable mirrors, amplifiers, and multi-function sensor packages that are operated by the Integrated Computer Control System (ICCS). ICCS is a layered architecture of 300 front-end processors attached to nearly 60,000 control points and coordinated by supervisor subsystems in the main control room. The functional subsystems--beam control including automatic beam alignment and wavefront correction, laser pulse generation and pre-amplification, diagnostics, pulse power, and timing--implement automated shot control, archive data, and support the actions of fourteen operators at graphic consoles. Object-oriented software development uses a mixed language environment of Ada (for functional controls) and Java (for user interface and database backend). The ICCS distributed software framework uses CORBA to communicate between languages and processors. ICCS software is approximately 3/4 complete with over 750 thousand source lines of code having undergone off-line verification tests and deployed to the facility. NIF has entered the first phases of its laser commissioning program. NIF has now demonstrated the highest energy 1{omega}, 2{omega}, and 3{omega} beamlines in the world. NIF

  4. Integrated restructurable flight control system demonstration results

    NASA Technical Reports Server (NTRS)

    Weiss, Jerold L.; Hsu, John Y.

    1987-01-01

    The purpose of this study was to examine the complementary capabilities of several restructurable flight control system (RFCS) concepts through the integration of these technologies into a complete system. Performance issues were addressed through a re-examination of RFCS functional requirements, and through a qualitative analysis of the design issues that, if properly addressed during integration, will lead to the highest possible degree of fault-tolerant performance. Software developed under previous phases of this contract and under NAS1-18004 was modified and integrated into a complete RFCS subroutine for NASA's B-737 simulation. The integration of these modules involved the development of methods for dealing with the mismatch between the outputs of the failure detection module and the input requirements of the automatic control system redesign module. The performance of this demonstration system was examined through extensive simulation trials.

  5. Integrating Software Modules For Robot Control

    NASA Technical Reports Server (NTRS)

    Volpe, Richard A.; Khosla, Pradeep; Stewart, David B.

    1993-01-01

    Reconfigurable, sensor-based control system uses state variables in systematic integration of reusable control modules. Designed for open-architecture hardware including many general-purpose microprocessors, each having own local memory plus access to global shared memory. Implemented in software as extension of Chimera II real-time operating system. Provides transparent computing mechanism for intertask communication between control modules and generic process-module architecture for multiprocessor realtime computation. Used to control robot arm. Proves useful in variety of other control and robotic applications.

  6. NIF Integrated Computer Controls System Description

    SciTech Connect

    VanArsdall, P.

    1998-01-26

    This System Description introduces the NIF Integrated Computer Control System (ICCS). The architecture is sufficiently abstract to allow the construction of many similar applications from a common framework. As discussed below, over twenty software applications derived from the framework comprise the NIF control system. This document lays the essential foundation for understanding the ICCS architecture. The NIF design effort is motivated by the magnitude of the task. Figure 1 shows a cut-away rendition of the coliseum-sized facility. The NIF requires integration of about 40,000 atypical control points, must be highly automated and robust, and will operate continuously around the clock. The control system coordinates several experimental cycles concurrently, each at different stages of completion. Furthermore, facilities such as the NIF represent major capital investments that will be operated, maintained, and upgraded for decades. The computers, control subsystems, and functionality must be relatively easy to extend or replace periodically with newer technology.

  7. Coherent control of single spins in silicon carbide at room temperature.

    PubMed

    Widmann, Matthias; Lee, Sang-Yun; Rendler, Torsten; Son, Nguyen Tien; Fedder, Helmut; Paik, Seoyoung; Yang, Li-Ping; Zhao, Nan; Yang, Sen; Booker, Ian; Denisenko, Andrej; Jamali, Mohammad; Momenzadeh, S Ali; Gerhardt, Ilja; Ohshima, Takeshi; Gali, Adam; Janzén, Erik; Wrachtrup, Jörg

    2015-02-01

    Spins in solids are cornerstone elements of quantum spintronics. Leading contenders such as defects in diamond or individual phosphorus dopants in silicon have shown spectacular progress, but either lack established nanotechnology or an efficient spin/photon interface. Silicon carbide (SiC) combines the strength of both systems: it has a large bandgap with deep defects and benefits from mature fabrication techniques. Here, we report the characterization of photoluminescence and optical spin polarization from single silicon vacancies in SiC, and demonstrate that single spins can be addressed at room temperature. We show coherent control of a single defect spin and find long spin coherence times under ambient conditions. Our study provides evidence that SiC is a promising system for atomic-scale spintronics and quantum technology. PMID:25437256

  8. Team interaction skills evaluation criteria for nuclear power plant control room operators

    SciTech Connect

    Montgomery, J.C.; Toquam, J.; Gaddy, C.

    1991-09-01

    Previous research has shown the value of good team interaction skills to group performance, yet little progress has been made on in terms of how such skills can be measured. In this study rating scales developed previously (Montgomery, et al., 1990) were extensively revised and cast into a Behaviorally Anchored Rating Scale (BARS) and a Behavioral Frequency format. Rating data were collected using 13 training instructors at the Diablo Canyon Nuclear Plant, who rated three videotapes of simulator scenario performance during a day-long training session and later evaluated control room crews during requalification training. High levels of interrater agreement on both rating scales were found. However, the factor structure of the ratings was generally inconsistent with that hypothesized. Analysis of training ratings using Cronbach`s components of accuracy (Cronbach, 1955) indicated that BARS ratings generally exhibited less error than did the Behavioral Frequency ratings. The results are discussed in terms of both field and research implications.

  9. Using micro saint to predict performance in a nuclear power plant control room

    SciTech Connect

    Lawless, M.T.; Laughery, K.R.; Persenky, J.J.

    1995-09-01

    The United States Nuclear Regulatory Commission (NRC) requires a technical basis for regulatory actions. In the area of human factors, one possible technical basis is human performance modeling technology including task network modeling. This study assessed the feasibility and validity of task network modeling to predict the performance of control room crews. Task network models were built that matched the experimental conditions of a study on computerized procedures that was conducted at North Carolina State University. The data from the {open_quotes}paper procedures{close_quotes} conditions were used to calibrate the task network models. Then, the models were manipulated to reflect expected changes when computerized procedures were used. These models` predictions were then compared to the experimental data from the {open_quotes}computerized conditions{close_quotes} of the North Carolina State University study. Analyses indicated that the models predicted some subsets of the data well, but not all. Implications for the use of task network modeling are discussed.

  10. Electrical control of antiferromagnetic domains in multiferroicBiFeO3 film at room temperature

    SciTech Connect

    Zhao, T.; Scholl, A.; Zavaliche, F.; Lee, K.; Barry, M.; Doran,A.; Cruz, M.P.; Chu, Y.H.; Ederer, C.; Spaldin, N.A.; Das, R.R.; Kim,D.M.; Baek, S.H.; Eom, C.B.; Ramesh, R.

    2006-09-11

    Multiferroic materials, which offer the possibility ofmanipulating the magnetic state by an electric field or vice versa, areof great current interest. In this work, we demonstrate the firstobservation of electrical control of antiferromagnetic domain structurein a single-phase multiferroic material at room temperature.High-resolution images of both antiferromagnetic and ferroelectric domainstructures of (001)-oriented multiferroic BiFeO3 filmsrevealed a cleardomain correlation, indicating a strong coupling between the two types oforder. The ferroelectric structure was measured using piezo forcemicroscopy, whereas X-ray photoemission electron microscopy as well asits temperature dependence was used to detect the antiferromagneticconfiguration. Antiferromagnetic domainswitching induced by ferroelectricpolarization switching was observed, in agreement with theoreticalpredictions.

  11. Interim results of the study of control room crew staffing for advanced passive reactor plants

    SciTech Connect

    Hallbert, B.P.; Sebok, A.; Haugset, K.

    1996-03-01

    Differences in the ways in which vendors expect the operations staff to interact with advanced passive plants by vendors have led to a need for reconsideration of the minimum shift staffing requirements of licensed Reactor Operators and Senior Reactor Operators contained in current federal regulations (i.e., 10 CFR 50.54(m)). A research project is being carried out to evaluate the impact(s) of advanced passive plant design and staffing of control room crews on operator and team performance. The purpose of the project is to contribute to the understanding of potential safety issues and provide data to support the development of design review guidance. Two factors are being evaluated across a range of plant operating conditions: control room crew staffing; and characteristics of the operating facility itself, whether it employs conventional or advanced, passive features. This paper presents the results of the first phase of the study conducted at the Loviisa nuclear power station earlier this year. Loviisa served as the conventional plant in this study. Data collection from four crews were collected from a series of design basis scenarios, each crew serving in either a normal or minimum staffing configuration. Results of data analyses show that crews participating in the minimum shift staffing configuration experienced significantly higher workload, had lower situation awareness, demonstrated significantly less effective team performance, and performed more poorly as a crew than the crews participating in the normal shift staffing configuration. The baseline data on crew configurations from the conventional plant setting will be compared with similar data to be collected from the advanced plant setting, and a report prepared providing the results of the entire study.

  12. Integrated description of protein dynamics from room-temperature X-ray crystallography and NMR

    PubMed Central

    Fenwick, R. Bryn; van den Bedem, Henry; Fraser, James S.; Wright, Peter E.

    2014-01-01

    Detailed descriptions of atomic coordinates and motions are required for an understanding of protein dynamics and their relation to molecular recognition, catalytic function, and allostery. Historically, NMR relaxation measurements have played a dominant role in the determination of the amplitudes and timescales (picosecond–nanosecond) of bond vector fluctuations, whereas high-resolution X-ray diffraction experiments can reveal the presence of and provide atomic coordinates for multiple, weakly populated substates in the protein conformational ensemble. Here we report a hybrid NMR and X-ray crystallography analysis that provides a more complete dynamic picture and a more quantitative description of the timescale and amplitude of fluctuations in atomic coordinates than is obtainable from the individual methods alone. Order parameters (S2) were calculated from single-conformer and multiconformer models fitted to room temperature and cryogenic X-ray diffraction data for dihydrofolate reductase. Backbone and side-chain order parameters derived from NMR relaxation experiments are in excellent agreement with those calculated from the room-temperature single-conformer and multiconformer models, showing that the picosecond timescale motions observed in solution occur also in the crystalline state. These motions are quenched in the crystal at cryogenic temperatures. The combination of NMR and X-ray crystallography in iterative refinement promises to provide an atomic resolution description of the alternate conformational substates that are sampled through picosecond to nanosecond timescale fluctuations of the protein structure. The method also provides insights into the structural heterogeneity of nonmethyl side chains, aromatic residues, and ligands, which are less commonly analyzed by NMR relaxation measurements. PMID:24474795

  13. Light Water Reactor Sustainability Program Operator Performance Metrics for Control Room Modernization: A Practical Guide for Early Design Evaluation

    SciTech Connect

    Ronald Boring; Roger Lew; Thomas Ulrich; Jeffrey Joe

    2014-03-01

    As control rooms are modernized with new digital systems at nuclear power plants, it is necessary to evaluate the operator performance using these systems as part of a verification and validation process. There are no standard, predefined metrics available for assessing what is satisfactory operator interaction with new systems, especially during the early design stages of a new system. This report identifies the process and metrics for evaluating human system interfaces as part of control room modernization. The report includes background information on design and evaluation, a thorough discussion of human performance measures, and a practical example of how the process and metrics have been used as part of a turbine control system upgrade during the formative stages of design. The process and metrics are geared toward generalizability to other applications and serve as a template for utilities undertaking their own control room modernization activities.

  14. Western Aeronautical Test Range (WATR) Mission Control Gold Room During X-29 Flight

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The mission control Gold room is seen here during a research flight of the X-29 at the Dryden Flight Research Center, Edwards, California. All aspects of a research mission are monitored from one of two of these control rooms at Dryden. Dryden and its control rooms are part of the Western Aeronautical Test Range (WATR). The WATR consists of a highly automated complex of computer controlled tracking, telemetry, and communications systems and control room complexes that are capable of supporting any type of mission ranging from system and component testing, to sub-scale and full-scale flight tests of new aircraft and reentry systems. Designated areas are assigned for spin/dive tests; corridors are provided for low, medium, and high-altitude supersonic flight; and special STOL/VSTOL facilities are available at Ames Moffett and Crows Landing. Special use airspace, available at Edwards, covers approximately twelve thousand square miles of mostly desert area. The southern boundary lies to the south of Rogers Dry Lake, the western boundary lies midway between Mojave and Bakersfield, the northern boundary passes just south of Bishop, and the eastern boundary follows about 25 miles west of the Nevada border except in the northern areas where it crosses into Nevada. Two X-29 aircraft, featuring one of the most unusual designs in aviation history, flew at the Ames-Dryden Flight Research Facility (now the Dryden Flight Research Center, Edwards, California) from 1984 to 1992. The fighter-sized X-29 technology demonstrators explored several concepts and technologies including: the use of advanced composites in aircraft construction; variable-camber wing surfaces; a unique forward- swept wing and its thin supercritical airfoil; strakes; close-coupled canards; and a computerized fly-by-wire flight control system used to maintain control of the otherwise unstable aircraft. Research results showed that the configuration of forward-swept wings, coupled with movable canards, gave

  15. Coherent control of single spins in a silicon carbide pn junction device at room temperature

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Yun; Widmann, Matthias; Booker, Ian; Niethammer, Matthias; Ohshima, Takeshi; Gali, Adam; Son, Nguyen T.; Janzén, Erik; Wrachtrup, Joerg

    Spins in single defects have been studied for quantum information science and quantum metrology. It has been proven that spins of the single nitrogen-vacancy (NV) centers in diamond can be used as a quantum bit, and a single spin sensor operating at ambient conditions. Recently, there has been a growing interest in a new material in which color centers similar to NV centers can be created and whose electrical properties can also be well controlled, thus existing electronic devices can easily be adapted as a platform for quantum applications. We recently reported that single spins of negatively charged silicon vacancies in SiC can be coherently controlled and long-lived at room temperature. As a next step, we isolated single silicon vacancies in a SiC pn junction device and investigated how the change in Fermi level, induced by applying bias, alters the charge state of silicon vacancies, thus affects the spin state control. This study will allow us to envision quantum applications based on single defects incorporated in modern electronic devices.

  16. Integrated Neural Flight and Propulsion Control System

    NASA Technical Reports Server (NTRS)

    Kaneshige, John; Gundy-Burlet, Karen; Norvig, Peter (Technical Monitor)

    2001-01-01

    This paper describes an integrated neural flight and propulsion control system. which uses a neural network based approach for applying alternate sources of control power in the presence of damage or failures. Under normal operating conditions, the system utilizes conventional flight control surfaces. Neural networks are used to provide consistent handling qualities across flight conditions and for different aircraft configurations. Under damage or failure conditions, the system may utilize unconventional flight control surface allocations, along with integrated propulsion control, when additional control power is necessary for achieving desired flight control performance. In this case, neural networks are used to adapt to changes in aircraft dynamics and control allocation schemes. Of significant importance here is the fact that this system can operate without emergency or backup flight control mode operations. An additional advantage is that this system can utilize, but does not require, fault detection and isolation information or explicit parameter identification. Piloted simulation studies were performed on a commercial transport aircraft simulator. Subjects included both NASA test pilots and commercial airline crews. Results demonstrate the potential for improving handing qualities and significantly increasing survivability rates under various simulated failure conditions.

  17. Beyond the Reading Room: Integrating Primary and Secondary Sources in the Library Classroom

    ERIC Educational Resources Information Center

    Sutton, Shan; Knight, Lorrie

    2006-01-01

    Information-literate students should understand the relationships between primary and secondary sources. This article presents a new model for integrating primary and secondary sources into general library instruction. The model is based on collaboration between a Special Collections librarian and an instruction librarian. It emphasizes the use of…

  18. Dimensionality aspects of nano micro integrated metal oxide based early stage leak detection room temperature hydrogen sensor

    NASA Astrophysics Data System (ADS)

    Deshpande, Sameer Arun

    Detection of explosive gas leaks such as hydrogen (H2) becomes key element in the wake of counter-terrorism threats, introduction of hydrogen powered vehicles and use of hydrogen as a fuel for space explorations. In recent years, a significant interest has developed on metal oxide nanostructured sensors for the detection of hydrogen gas. Gas sensors properties such as sensitivity, selectivity and response time can be enhanced by tailoring the size, the shape, the structure and the surface of the nanostructures. Sensor properties (sensitivity, selectivity and response time) are largely modulated by operating temperature of the device. Issues like instability of nanostructures at high temperature, risk of hydrogen explosion and high energy consumption are driving the research towards detection of hydrogen at low temperatures. At low temperatures adsorption of O2- species on the sensor surface instead of O- (since O- species reacts easily with hydrogen) result in need of higher activation energy for hydrogen and adsorbed species interaction. This makes hydrogen detection at room temperature a challenging task. Higher surface area to volume ratio (resulting higher reaction sites), enhanced electronic properties by varying size, shape and doping foreign impurities (by modulating space charge region) makes nanocrystalline materials ideal candidate for room temperature gas sensing applications. In the present work various morphologies of nanostructured tin oxide (SnO 2) and indium (In) doped SnO2 and titanium oxide (titania, TiO2) were synthesized using sol-gel, hydrothermal, thermal evaporation techniques and successfully integrated with the micro-electromechanical devices H2 at ppm-level (as low as 100ppm) has been successfully detected at room temperature using the SnO2 nanoparticles, SnO2 (nanowires) and TiO2 (nanotubes) based MEMS sensors. While sensor based on indium doped tin oxide showed the highest sensitivity (S =Ra/Rg= 80000) and minimal response time (10sec

  19. Selective growth and integration of silver nanoparticles on silver nanowires at room conditions for transparent nano-network electrode.

    PubMed

    Lu, Haifei; Zhang, Di; Ren, Xingang; Liu, Jian; Choy, Wallace C H

    2014-10-28

    Recently, metal nanowires have received great research interests due to their potential as next-generation flexible transparent electrodes. While great efforts have been devoted to develop enabling nanowire electrodes, reduced contact resistance of the metal nanowires and improved electrical stability under continuous bias operation are key issues for practical applications. Here, we propose and demonstrate an approach through a low-cost, robust, room temperature and room atmosphere process to fabricate a conductive silver nano-network comprising silver nanowires and silver nanoparticles. To be more specific, silver nanoparticles are selectively grown and chemically integrated in situ at the junction where silver nanowires meet. The site-selective growth of silver nanoparticles is achieved by a plasmon-induced chemical reaction using a simple light source at very low optical power density. Compared to silver nanowire electrodes without chemical treatment, we observe tremendous conductivity improvement in our silver nano-networks, while the loss in optical transmission is negligible. Furthermore, the silver nano-networks exhibit superior electrical stability under continuous bias operation compared to silver nanowire electrodes formed by thermal annealing. Interestingly, our silver nano-network is readily peeled off in water, which can be easily transferred to other substrates and devices for versatile applications. We demonstrate the feasibly transferrable silver conductive nano-network as the top electrode in organic solar cells. Consequently, the transparent and conductive silver nano-networks formed by our approach would be an excellent candidate for various applications in optoelectronics and electronics.

  20. Wafer scale integration of reduced graphene oxide by novel laser processing at room temperature in air

    NASA Astrophysics Data System (ADS)

    Bhaumik, Anagh; Narayan, Jagdish

    2016-09-01

    Physical properties of reduced graphene oxide (rGO) strongly depend on the ratio of sp2 to sp3 hybridized carbon atoms, the presence of different functional groups, and the characteristics of the substrates. This research for the very first time illustrates successful wafer scale integration of 2D rGO with Cu/TiN/Si, employing pulsed laser deposition followed by laser annealing of carbon-doped copper layers using nanosecond excimer lasers. The XRD, SEM, and Raman spectroscopy measurements indicate the presence of large area rGO onto Si having Raman active vibrational modes: D, G, and 2D. A high resolution SEM depicts the morphology and formation of rGO from zone-refined carbon formed after nanosecond laser annealing. Temperature-dependent resistance data of rGO thin films follow the Efros-Shklovskii variable range hopping (VRH) model in the low-temperature region and Arrhenius conduction in the high-temperature regime. The photoluminescence spectra also reveal a less intense and broader blue fluorescence spectra, indicating the presence of miniature sized sp2 domains in the near vicinity of π* electronic states which favor the VRH transport phenomena. This wafer scale integration of rGO with Si employing a laser annealing technique will be useful for multifunctional integrated electronic devices and will open a new frontier for further extensive research in these functionalized 2D materials.

  1. Room temperature alcohol sensing by oxygen vacancy controlled TiO{sub 2} nanotube array

    SciTech Connect

    Hazra, A.; Dutta, K.; Bhowmik, B.; Bhattacharyya, P.; Chattopadhyay, P. P.

    2014-08-25

    Oxygen vacancy (OV) controlled TiO{sub 2} nanotubes, having diameters of 50–70 nm and lengths of 200–250 nm, were synthesized by electrochemical anodization in the mixed electrolyte comprising NH{sub 4}F and ethylene glycol with selective H{sub 2}O content. The structural evolution of TiO{sub 2} nanoforms has been studied by field emission scanning electron microscopy. Variation in the formation of OVs with the variation of the structure of TiO{sub 2} nanoforms has been evaluated by photoluminescence and X-ray photoelectron spectroscopy. The sensor characteristics were correlated to the variation of the amount of induced OVs in the nanotubes. The efficient room temperature sensing achieved by the control of OVs of TiO{sub 2} nanotube array has paved the way for developing fast responding alcohol sensor with corresponding response magnitude of 60.2%, 45.3%, and 36.5% towards methanol, ethanol, and 2-propanol, respectively.

  2. Using virtual reality to support multi-participant human-centered design processes for control room design

    SciTech Connect

    Louka, M. N.; Gustavsen, M. A.; Edvardsen, S. T.

    2006-07-01

    We present an overview of a method of applying interactive 3D visualization techniques to support control room design activities, and summarize studies that supports it. In particular, we describe the software tools that we have developed and how these support a human-centered design (HCD) work-flow. We present some lessons learnt from using our tools in control room design projects, and outline our plans for extending the scope of our approach to support concurrent design and later phases of a plant's life-cycle. (authors)

  3. The integration of two control systems

    SciTech Connect

    Bickley, M.; White, K.

    1995-12-31

    During the past year the Continuous Electron Beam Accelerator Facility (CEBAF) has installed a new machine control system, based on the Experimental Physics and Industrial Control System (EPICS). The migration from CEBAF`s old control system, Thaumaturgic Automated Control Logic (TACL), had to be done concurrently with commissioning of the CEBAF accelerator. The smooth transition to EPICS was made possible by the similarity of the control systems` topological design and network communication protocol. Both systems have operator display computer nodes which are decoupled from the data acquisition and control nodes. The communication between display and control nodes of both control systems is based on making named requests for data, with data being passed on change of value. Due to TACL`s use of a central communications process, it was possible to integrate both control systems` network communications in that process. This in turn meant that CEBAF did not require changes to any other software in order to support network communication between TACL and EPICS. CEBAF implemented the machine`s control under EPICS in an evolutionary, controlled manner. 4 refs., 3 figs.

  4. The integration of two control systems

    SciTech Connect

    Bickley, M; White, K

    1995-01-01

    During the past year the Continuous Electron Beam Accelerator Facility (CEBAF) has installed a new machine control system, based on the Experimental Physics and Industrial Control System (EPICS). The migration from CEBAF`s old control system, Thaumaturgic Automated Control Logic (TACL), had to be done concurrently with commissioning of the CEBAF accelerator. The smooth transition to EPICS was made possible by the similarity of the control systems` topological design and network communication protocol. Both systems have operator display computer nodes which are decoupled from the data acquisition and control nodes. The communication between display and control nodes of both control systems is based on making named requests for data, with data being passed on change of value. Due to TACL`s use of a central communications process, it was possible to integrate both control systems` network communications in that process. This in turn meant that CEBAF did not require changes to any other software in order to support network communication between TACL and EPICS. CEBAF implemented the machine`s control under EPICS in an evolutionary, controlled manner. 4 refs., 3 figs.

  5. An Integrated Multivariable Artificial Pancreas Control System

    PubMed Central

    Turksoy, Kamuran; Quinn, Lauretta T.; Littlejohn, Elizabeth

    2014-01-01

    The objective was to develop a closed-loop (CL) artificial pancreas (AP) control system that uses continuous measurements of glucose concentration and physiological variables, integrated with a hypoglycemia early alarm module to regulate glucose concentration and prevent hypoglycemia. Eleven open-loop (OL) and 9 CL experiments were performed. A multivariable adaptive artificial pancreas (MAAP) system was used for the first 6 CL experiments. An integrated multivariable adaptive artificial pancreas (IMAAP) system consisting of MAAP augmented with a hypoglycemia early alarm system was used during the last 3 CL experiments. Glucose values and physical activity information were measured and transferred to the controller every 10 minutes and insulin suggestions were entered to the pump manually. All experiments were designed to be close to real-life conditions. Severe hypoglycemic episodes were seen several times during the OL experiments. With the MAAP system, the occurrence of severe hypoglycemia was decreased significantly (P < .01). No hypoglycemia was seen with the IMAAP system. There was also a significant difference (P < .01) between OL and CL experiments with regard to percentage of glucose concentration (54% vs 58%) that remained within target range (70-180 mg/dl). Integration of an adaptive control and hypoglycemia early alarm system was able to keep glucose concentration values in target range in patients with type 1 diabetes. Postprandial hypoglycemia and exercise-induced hypoglycemia did not occur when this system was used. Physical activity information improved estimation of the blood glucose concentration and effectiveness of the control system. PMID:24876613

  6. An integrated multivariable artificial pancreas control system.

    PubMed

    Turksoy, Kamuran; Quinn, Lauretta T; Littlejohn, Elizabeth; Cinar, Ali

    2014-05-01

    The objective was to develop a closed-loop (CL) artificial pancreas (AP) control system that uses continuous measurements of glucose concentration and physiological variables, integrated with a hypoglycemia early alarm module to regulate glucose concentration and prevent hypoglycemia. Eleven open-loop (OL) and 9 CL experiments were performed. A multivariable adaptive artificial pancreas (MAAP) system was used for the first 6 CL experiments. An integrated multivariable adaptive artificial pancreas (IMAAP) system consisting of MAAP augmented with a hypoglycemia early alarm system was used during the last 3 CL experiments. Glucose values and physical activity information were measured and transferred to the controller every 10 minutes and insulin suggestions were entered to the pump manually. All experiments were designed to be close to real-life conditions. Severe hypoglycemic episodes were seen several times during the OL experiments. With the MAAP system, the occurrence of severe hypoglycemia was decreased significantly (P < .01). No hypoglycemia was seen with the IMAAP system. There was also a significant difference (P < .01) between OL and CL experiments with regard to percentage of glucose concentration (54% vs 58%) that remained within target range (70-180 mg/dl). Integration of an adaptive control and hypoglycemia early alarm system was able to keep glucose concentration values in target range in patients with type 1 diabetes. Postprandial hypoglycemia and exercise-induced hypoglycemia did not occur when this system was used. Physical activity information improved estimation of the blood glucose concentration and effectiveness of the control system.

  7. Controllable Growth of Perovskite Films by Room-Temperature Air Exposure for Efficient Planar Heterojunction Photovoltaic Cells

    SciTech Connect

    Yang, Bin; Dyck, Ondrej; Poplawsky, Jonathan; Keum, Jong; Das, Sanjib; Puretzky, Alexander; Aytug, Tolga; Joshi, Pooran C.; Rouleau, Christopher M.; Duscher, Gerd; Geohegan, David B.; Xiao, Kai

    2015-12-01

    A two-step-solution-processing approach has been established to grow void-free perovskite films for low-cost and high-performance planar heterojunction photovoltaic devices. We generally applied a high-temperature thermal annealing treatment in order to drive the diffusion of CH3NH3I precursor molecules into the compact PbI2 layer to form perovskite films. But, thermal annealing for extended periods would lead to degraded device performance due to the defects generated by decomposition of perovskite into PbI2. In this work, we explored a controllable layer-by-layer spin-coating method to grow bilayer CH3NH3I/PbI2 films, and then drive the interdiffusion between PbI2 and CH3NH3I layers by a simple room-temperature-air-exposure for making well-oriented, highly-crystalline perovskite films without thermal annealing. This high degree of crystallinity resulted in a carrier diffusion length of ~ 800 nm and high device efficiency of 15.6%, which is comparable to the reported values from thermally-annealed perovskite films based counterparts. Finally, the simplicity and high device performance of this processing approach is highly promising for direct integration into industrial-scale device manufacture.

  8. Controllable Growth of Perovskite Films by Room-Temperature Air Exposure for Efficient Planar Heterojunction Photovoltaic Cells

    DOE PAGES

    Yang, Bin; Dyck, Ondrej; Poplawsky, Jonathan; Keum, Jong; Das, Sanjib; Puretzky, Alexander; Aytug, Tolga; Joshi, Pooran C.; Rouleau, Christopher M.; Duscher, Gerd; et al

    2015-12-01

    A two-step-solution-processing approach has been established to grow void-free perovskite films for low-cost and high-performance planar heterojunction photovoltaic devices. We generally applied a high-temperature thermal annealing treatment in order to drive the diffusion of CH3NH3I precursor molecules into the compact PbI2 layer to form perovskite films. But, thermal annealing for extended periods would lead to degraded device performance due to the defects generated by decomposition of perovskite into PbI2. In this work, we explored a controllable layer-by-layer spin-coating method to grow bilayer CH3NH3I/PbI2 films, and then drive the interdiffusion between PbI2 and CH3NH3I layers by a simple room-temperature-air-exposure for makingmore » well-oriented, highly-crystalline perovskite films without thermal annealing. This high degree of crystallinity resulted in a carrier diffusion length of ~ 800 nm and high device efficiency of 15.6%, which is comparable to the reported values from thermally-annealed perovskite films based counterparts. Finally, the simplicity and high device performance of this processing approach is highly promising for direct integration into industrial-scale device manufacture.« less

  9. High-voltage field-controlled integrated thyristor

    NASA Astrophysics Data System (ADS)

    Grekhov, I. V.; Rozhkov, A. V.; Kostina, L. S.; Konovalov, A. V.; Fomenko, Yu. L.

    2013-01-01

    The design and technology of powerful field-controlled integrated thyristors, new energy-saving devices intended for converter equipment, are considered. The turn-on and turn-off current and voltage waveforms of the n+ p' N- n' p + microthyristor chip are presented, and turn-on and turn-off mechanisms are discussed. The development of local dynamic breakdown at turn-off is experimentally studied. The respective waveforms for this process are given, and the type of breakdown at a current density of about 150 A/cm2 is demonstrated. The current-voltage characteristics in the on state at room temperature and at 125°C indicate the temperature dependence changes sign at a current density above 60 A/cm2, becoming positive. This is significant for parallel operation of microthyristor chips in a module. It is shown that the static and dynamic characteristics of simple-in-design field-controlled integrated thyristors are highly competitive with those of insulated-gate bipolar transistors-basic devices of advanced high-power converter equipment.

  10. A virtual control room with an embedded, interactive nuclear reactor simulator

    SciTech Connect

    Markidis, S.; Rizwan, U.

    2006-07-01

    The use of virtual nuclear control room can be an effective and powerful tool for training personnel working in the nuclear power plants. Operators could experience and simulate the functioning of the plant, even in critical situations, without being in a real power plant or running any risk. 3D models can be exported to Virtual Reality formats and then displayed in the Virtual Reality environment providing an immersive 3D experience. However, two major limitations of this approach are that 3D models exhibit static textures, and they are not fully interactive and therefore cannot be used effectively in training personnel. In this paper we first describe a possible solution for embedding the output of a computer application in a 3D virtual scene, coupling real-world applications and VR systems. The VR system reported here grabs the output of an application running on an X server; creates a texture with the output and then displays it on a screen or a wall in the virtual reality environment. We then propose a simple model for providing interaction between the user in the VR system and the running simulator. This approach is based on the use of internet-based application that can be commanded by a laptop or tablet-pc added to the virtual environment. (authors)

  11. REVIEW Of COMPUTERIZED PROCEDURE GUIDELINES FOR NUCLEAR POWER PLANT CONTROL ROOMS

    SciTech Connect

    David I Gertman; Katya Le Blanc; Ronald L Boring

    2011-09-01

    Computerized procedures (CPs) are recognized as an emerging alternative to paper-based procedures for supporting control room operators in nuclear power plants undergoing life extension and in the concept of operations for advanced reactor designs. CPs potentially reduce operator workload, yield increases in efficiency, and provide for greater resilience. Yet, CPs may also adversely impact human and plant performance if not designed and implemented properly. Therefore, it is important to ensure that existing guidance is sufficient to provide for proper implementation and monitoring of CPs. In this paper, human performance issues were identified based on a review of the behavioral science literature, research on computerized procedures in nuclear and other industries, and a review of industry experience with CPs. The review of human performance issues led to the identification of a number of technical gaps in available guidance sources. To address some of the gaps, we developed 13 supplemental guidelines to support design and safety. This paper presents these guidelines and the case for further research.

  12. Integrated Instrumentation and Control Upgrade Plan

    SciTech Connect

    Wilkinson, D.; Sun, B.; Wray, L.; Smith, J.

    1992-02-01

    This document presents the first industry-wide integrated research and development plan to support upgrading instrumentation and control (I C) systems in nuclear power plants in the United States. The plan encompasses both solving obsolescence problems and introducing modern I C technology into the industry. Accomplishing this plan will provide the technological base to modernize existing plants, as well as bridge the gap to meet Advanced Light Water Reactor (ALWR) requirements for modern I C systems. This plan defines Research and Development tasks to meet the identified needs for the following technical elements: Instrumentation, Control and Protection, Man-Machine Support Systems, Maintenance, Communications, Verification and Validation, and Specifications and Standards.

  13. IEC: streamlining the environmental control package. [Integrated emission controls

    SciTech Connect

    Nesbit, W.; Giovanni, D.

    1980-12-01

    Integrated emission control (IEC) systems should lower the capital and operating costs of power-plant pollution-control equipment from its present level of 40% of total plant cost. The new IEC systems are no longer considered as plant additions, but are an integral design component. A pilot-plant test facility operated by the Electric Power Research Institute (EPRI) uses coal, which will continue to increase its position as the major fuel for power generation. The IEC approach offers advantages in siting, plant flexibility and reliability, and lower costs for environmental control. The EPRI test facility is comparing five basic equipment configurations: baghouse and wet scrubber, precipitator with a wet scrubber, a baghouse or precipitator with a spray dryer, a baghouse or precipitator with dry sorbent injection upstream of the baghouse, and a hot electrostatic precipitator with a wet scrubber. (DCK)

  14. Room temperature coherent control of defect spin qubits in silicon carbide.

    PubMed

    Koehl, William F; Buckley, Bob B; Heremans, F Joseph; Calusine, Greg; Awschalom, David D

    2011-11-01

    Electronic spins in semiconductors have been used extensively to explore the limits of external control over quantum mechanical phenomena. A long-standing goal of this research has been to identify or develop robust quantum systems that can be easily manipulated, for future use in advanced information and communication technologies. Recently, a point defect in diamond known as the nitrogen-vacancy centre has attracted a great deal of interest because it possesses an atomic-scale electronic spin state that can be used as an individually addressable, solid-state quantum bit (qubit), even at room temperature. These exceptional quantum properties have motivated efforts to identify similar defects in other semiconductors, as they may offer an expanded range of functionality not available to the diamond nitrogen-vacancy centre. Notably, several defects in silicon carbide (SiC) have been suggested as good candidates for exploration, owing to a combination of computational predictions and magnetic resonance data. Here we demonstrate that several defect spin states in the 4H polytype of SiC (4H-SiC) can be optically addressed and coherently controlled in the time domain at temperatures ranging from 20 to 300 kelvin. Using optical and microwave techniques similar to those used with diamond nitrogen-vacancy qubits, we study the spin-1 ground state of each of four inequivalent forms of the neutral carbon-silicon divacancy, as well as a pair of defect spin states of unidentified origin. These defects are optically active near telecommunication wavelengths, and are found in a host material for which there already exist industrial-scale crystal growth and advanced microfabrication techniques. In addition, they possess desirable spin coherence properties that are comparable to those of the diamond nitrogen-vacancy centre. This makes them promising candidates for various photonic, spintronic and quantum information applications that merge quantum degrees of freedom with classical

  15. Operating Room Time Savings with the Use of Splint Packs: A Randomized Controlled Trial

    PubMed Central

    Gonzalez, Tyler A.; Bluman, Eric M.; Palms, David; Smith, Jeremy T.; Chiodo, Christopher P.

    2016-01-01

    Background: The most expensive variable in the operating room (OR) is time. Lean Process Management is being used in the medical field to improve efficiency in the OR. Streamlining individual processes within the OR is crucial to a comprehensive time saving and cost-cutting health care strategy. At our institution, one hour of OR time costs approximately $500, exclusive of supply and personnel costs. Commercially prepared splint packs (SP) contain all components necessary for plaster-of-Paris short-leg splint application and have the potential to decrease splint application time and overall costs by making it a more lean process. We conducted a randomized controlled trial comparing OR time savings between SP use and bulk supply (BS) splint application. Methods: Fifty consecutive adult operative patients on whom post-operative short-leg splint immobilization was indicated were randomized to either a control group using BS or an experimental group using SP. One orthopaedic surgeon (EMB) prepared and applied all of the splints in a standardized fashion. Retrieval time, preparation time, splint application time, and total splinting time for both groups were measured and statistically analyzed. Results: The retrieval time, preparation time and total splinting time were significantly less (p<0.001) in the SP group compared with the BS group. There was no significant difference in application time between the SP group and BS group. Conclusion: The use of SP made the process of splinting more lean. This has resulted in an average of 2 minutes 52 seconds saved in total splinting time compared to BS, making it an effective cost-cutting and time saving technique. For high volume ORs, use of splint packs may contribute to substantial time and cost savings without impacting patient safety. PMID:26894212

  16. Rapid and controllable covalent functionalization of single-walled carbon nanotubes at room temperature.

    PubMed

    Martínez-Rubí, Yadienka; Guan, Jingwen; Lin, Shuqiong; Scriver, Christine; Sturgeon, Ralph E; Simard, Benoit

    2007-12-28

    We report a rapid and efficient procedure to functionalize SWNT where free radicals generated at room temperature by a redox reaction between reduced SWNT and diacyl peroxide derivatives were covalently attached to the SWNT wall. PMID:18060123

  17. Human factors aspects of control room design: Guidelines and annotated bibliography

    NASA Technical Reports Server (NTRS)

    Mitchell, C. M.; Stewart, L. J.; Bocast, A. K.; Murphy, E. D.

    1982-01-01

    A human factors analysis of the workstation design for the Earth Radiation Budget Satellite mission operation room is discussed. The relevance of anthropometry, design rules, environmental design goals, and the social-psychological environment are discussed.

  18. Cooperative control theory and integrated flight and propulsion control

    NASA Technical Reports Server (NTRS)

    Schmidt, David K.; Schierman, John D.

    1994-01-01

    This report documents the activities and research results obtained under a grant (NAG3-998) from the NASA Lewis Research Center. The focus of the research was the investigation of dynamic interactions between airframe and engines for advanced ASTOVL aircraft configurations, and the analysis of the implications of these interactions on the stability and performance of the airframe and engine control systems. In addition, the need for integrated flight and propulsion control for such aircraft was addressed. The major contribution of this research was the exposition of the fact that airframe and engine interactions could be present, and their effects could include loss of stability and performance of the control systems. Also, the significance of two directional, as opposed to one-directional, coupling was identified and explained. A multi variable stability and performance analysis methodology was developed, and applied to several candidate aircraft configurations. Also exposed was the fact that with interactions present along with some integrated control approaches, the engine command/limiting logic (which represents an important non-linear component of the engine control system) can impact closed-loop airframe/engine system stability. Finally, a brief investigation of control-law synthesis techniques appropriate for the class of systems was pursued, and it was determined that multi variable techniques, included model-following formulations of LQG and/or H (infinity) methods showed promise. However, for practical reasons, decentralized control architectures are preferred, which is an architecture incompatible with these synthesis methods.

  19. Development of the Integrated Environmental Control Model

    SciTech Connect

    Rubin, E.S.; Berkenpas, M.B.; Kalagnanam, J.

    1993-04-01

    The purpose of this contract is to develop and refine the Integrated Environmental Control Model (IECM) created and enhanced by Carnegie Mellon University (CMU) for the US Department of Energy's Pittsburgh Energy Technology Center (DOE/PETC) under contract Numbers FG22-83PC60271 and AC22-87PC79864. In its current configuration, the IECM provides a capability to model various conventional and advanced processes for controlling air pollutant emissions from coal-fired power plants before, during, or after combustion. The principal purpose of the model is to calculate the performance, emissions, and cost of power plant configurations employing alternative environmental control methods. The model consists of various control technology modules, which may be integrated into a complete utility plant in any desired combination. In contrast to conventional deterministic models, the IECM offers the unique capability to assign probabilistic values to all model input parameters, and to obtain probabilistic outputs in the form of cumulative distribution functions indicating the likelihood of different costs and performance results. The work in this contract is divided into two phases. Phase I deals with further developing the existing version of the IECM and training PETC personnel on the effective use of the model. Phase II deals with creating new technology modules, linking the IECM with PETC databases, and training PETC personnel on the effective use of the updated model.

  20. Integrated Bulding Heating, Cooling and Ventilation Control

    NASA Astrophysics Data System (ADS)

    Dong, Bing

    Current research studies show that building heating, cooling and ventilation energy consumption account for nearly 40% of the total building energy use in the U.S. The potential for saving energy through building control systems varies from 5% to 20% based on recent market surveys. In addition, building control affects environmental performances such as thermal, visual, air quality, etc., and occupancy such as working productivity and comfort. Building control has been proven to be important both in design and operation stages. Building control design and operation need consistent and reliable static and dynamic information from multiple resources. Static information includes building geometry, construction and HVAC equipment. Dynamic information includes zone environmental performance, occupancy and outside weather information during operation. At the same time, model-based predicted control can help to optimize energy use while maintaining indoor set-point temperature when occupied. Unfortunately, several issues in the current approach of building control design and operation impede achieving this goal. These issues include: a) dynamic information data such as real-time on-site weather (e.g., temperature, wind speed and solar radiation) and occupancy (number of occupants and occupancy duration in the space) are not readily available; b) a comprehensive building energy model is not fully integrated into advanced control for accuracy and robustness; c) real-time implementation of indoor air temperature control are rare. This dissertation aims to investigate and solve these issues based on an integrated building control approach. This dissertation introduces and illustrates a method for integrated building heating, cooling and ventilation control to reduce energy consumption and maintain indoor temperature set-point, based on the prediction of occupant behavior patterns and weather conditions. Advanced machine learning methods including Adaptive Gaussian Process

  1. Operating room practices for the control of infection in U. S. hospitals, October 1976 to July 1977.

    PubMed

    Garner, J S; Emori, T G; Haley, R W

    1982-12-01

    We estimated the frequency of selected infection control practices in the operating room from a nationwide survey of hospitals. Our survey confirmed that, in many hospitals, practices which have not received scientific or budgetary scrutiny have become part of the perioperative routine. Almost half of the hospitals reported using nonrecommended tacky, or disinfectant, mats at the entrance to operating rooms, and more than three-fourths were performing nonrecommended environmental cultures in the operating room at a cost ranging from $2,000 to $20,000 per year. When routine nose and throat cultures were taken of operating room personnel, we found an obvious pecking order, rather than a scientific rationale for culturing. In almost all instances, we found wide variations in practice among hospitals. This nonuniformity may be due to such factors as lack of a convincing scientific basis for evaluating the relative efficacy of alternative practices, the strong influence of industry marketing, the individual preferences of surgeons and operating room supervisors and the lack of completeness and agreement of statements from various scientific and professional organizations.

  2. Development of the integrated environmental control model

    SciTech Connect

    Rubin, E.S.

    1993-01-01

    In its current configuration, the IECM provides a capability to model various conventional and advanced processes for controlling air pollutant emissions from coalfired power plants before, during, or after combustion. The principal purpose of the model is to calculate the performance, emissions, and cost of power Plant configurations employing alternative environmental control methods. The model consists of various control technology modules, which may be integrated into a complete utility plant in any desired combination. in conuwt to conventional deterministic models, the IECM offers the unique capability to assign probabilistic values to all model input parameters, and to obtain probabilistic outputs in the form of cumulative distribution functions indicating the likelihood of different costs and performance results. The most recent version of the IECM, implemented on a Macintosh II computer and containing a number of software and model enhancements, was delivered to DOE/PETC at the end of the last contract in May 1991. The current contract will continue the model development effort to provide DOE/PETC with improved model capabilities, including new software developments tO facilitate model use and new technical capabilities for analysis of environmental control technologies and integrated environmental control systr,ms involving precombustion, combustion, and Post-combustion control methods. The work in this contract is divided into two phases. Phase I deals with further developing the existing version of the IECM and training PETC personnel on the effective use of the model. Phase H deals with creating new technology modules, linking the IECM with PETC databases, and training PETC personnel on the effective use of the updated model.

  3. Design of dilute magnetic semiconductors with room temperature ferromagnetism by controlling spinodal decompostion

    NASA Astrophysics Data System (ADS)

    Sato, Kazunori

    2008-03-01

    Owing to the recent development of the first-principles method for calculating magnetic properties of dilute magnetic semiconductors (DMS), it has been recognized that the magnetic percolation effect is disastrous to the high temperature ferromagnetism in DMS in particular for low concentrations [1]. The exchange interactions calculated from first-principles are strong for nearest neighbors, but those interactions are short ranged and can not play an important role for realizing high- TC because the solubility of magnetic impurities into DMS is too low to achieve magnetic percolation. To overcome this difficulty and realize room temperature ferromagnetism, we focus on the spinodal decomposition in DMS, and suggest that by controlling the spinodal decomposition high blocking temperature can be realized leading to ferromagnetic behaviour at high temperature [2]. We calculate electronic structure of DMS from first-principles by using the Korringa- Kohn-Rostoker coherent potential approximation (KKR-CPA) method. Then, chemical pair interactions and magnetic exchange interactions between magnetic are calculated. We use the Monte Carlo techniques to simulate spinodal decomposition of DMS and to estimate the magnetic properties of them [3]. The computer simulations for the magnetization process of the decomposition phases indicate that we can control super-paramagnetic blocking temperature by optimizing the size of the clusters by changing the crystal growth condition. This simulation suggests the material design of high blocking temperature DMS by controlling the spinodal decomposition [2].As another approach for realizing high-Tc DMS we propose co-doping method to increase solubility limit of transition metal impurities in DMS [4]. This work is based on the collaboration with H. Katayama-Yoshida and T. Fukushima. [1] L. Bergqvist et al, Phys. Rev. Lett. 93, 137202 (2004), K. Sato et al., Phys. Rev. B 70, 201202 (2004) [2] K. Sato et al., Jpn. J. Appl. Phys. 46, L682

  4. Development of a Residential Integrated Ventilation Controller

    SciTech Connect

    Staff Scientist; Walker, Iain; Sherman, Max; Dickerhoff, Darryl

    2011-12-01

    The goal of this study was to develop a Residential Integrated Ventilation Controller (RIVEC) to reduce the energy impact of required mechanical ventilation by 20percent, maintain or improve indoor air quality and provide demand response benefits. This represents potential energy savings of about 140 GWh of electricity and 83 million therms of natural gas as well as proportional peak savings in California. The RIVEC controller is intended to meet the 2008 Title 24 requirements for residential ventilation as well as taking into account the issues of outdoor conditions, other ventilation devices (including economizers), peak demand concerns and occupant preferences. The controller is designed to manage all the residential ventilation systems that are currently available. A key innovation in this controller is the ability to implement the concept of efficacy and intermittent ventilation which allows time shifting of ventilation. Using this approach ventilation can be shifted away from times of high cost or high outdoor pollution towards times when it is cheaper and more effective. Simulations, based on the ones used to develop the new residential ventilation requirements for the California Buildings Energy code, were used to further define the specific criteria and strategies needed for the controller. These simulations provide estimates of the energy, peak power and contaminant improvement possible for different California climates for the various ventilation systems. Results from a field test of the prototype controller corroborate the predicted performance.

  5. Integrated Attitude Control Based on Momentum Management for Space Station

    NASA Astrophysics Data System (ADS)

    Zhou, Li-Ni

    An integrated attitude control for attitude control, momentum management and power storage is proposed as a momentum-management-based IPACS. The integrated attitude control combines ACMM and IPACS to guarantees the momentum of CMGs and flywheels within acceptable limits as well as satisfying the requirements of attitude control and power storage. The later objective is to testify the foundation of the integrated attitude control by the fact that the momentum management of the integrated attitude control is able to keep the momentum exchange actuators including flywheels and VSCMG out of singularity. Finally, the space station attitude control task during assembly process is illustrated to testify the effectiveness of the integrated attitude control.

  6. Effects of Shift Work on Cognitive Performance, Sleep Quality, and Sleepiness among Petrochemical Control Room Operators

    PubMed Central

    Kazemi, Reza; Haidarimoghadam, Rashid; Golmohamadi, Rostam; Soltanian, Alireza; Zoghipaydar, Mohamad Reza

    2016-01-01

    Shift work is associated with both sleepiness and reduced performance. The aim of this study was to examine cognitive performance, sleepiness, and sleep quality among petrochemical control room shift workers. Sixty shift workers participated in this study. Cognitive performance was evaluated using a number of objective tests, including continuous performance test, n-back test, and simple reaction time test; sleepiness was measured using the subjective Karolinska Sleepiness Scale (KSS); and sleep quality was assessed using the Pittsburgh Sleep Quality Index (PSQI) questionnaire. ANCOVA, t-test, and repeated-measures ANOVA were applied for statistical analyses, and the significance level was set at p < 0.05. All variables related to cognitive performance, except for omission error, significantly decreased at the end of both day and night shifts (p < 0.0001). There were also significant differences between the day and night shifts in terms of the variables of omission error (p < 0.027) and commission error (p < 0.036). A significant difference was also observed between daily and nightly trends of sleepiness (p < 0.0001) so that sleepiness was higher for the night shift. Participants had low sleep quality on both day and night shifts, and there were significant differences between the day and night shifts in terms of subjective sleep quality and quantity (p < 0.01). Long working hours per shift result in fatigue, irregularities in the circadian rhythm and the cycle of sleep, induced cognitive performance decline at the end of both day and night shifts, and increased sleepiness in night shift. It, thus, seems necessary to take ergonomic measures such as planning for more appropriate shift work and reducing working hours. PMID:27103934

  7. Effects of Shift Work on Cognitive Performance, Sleep Quality, and Sleepiness among Petrochemical Control Room Operators.

    PubMed

    Kazemi, Reza; Haidarimoghadam, Rashid; Motamedzadeh, Majid; Golmohamadi, Rostam; Soltanian, Alireza; Zoghipaydar, Mohamad Reza

    2016-01-01

    Shift work is associated with both sleepiness and reduced performance. The aim of this study was to examine cognitive performance, sleepiness, and sleep quality among petrochemical control room shift workers. Sixty shift workers participated in this study. Cognitive performance was evaluated using a number of objective tests, including continuous performance test, n-back test, and simple reaction time test; sleepiness was measured using the subjective Karolinska Sleepiness Scale (KSS); and sleep quality was assessed using the Pittsburgh Sleep Quality Index (PSQI) questionnaire. ANCOVA, t-test, and repeated-measures ANOVA were applied for statistical analyses, and the significance level was set at p < 0.05. All variables related to cognitive performance, except for omission error, significantly decreased at the end of both day and night shifts (p < 0.0001). There were also significant differences between the day and night shifts in terms of the variables of omission error (p < 0.027) and commission error (p < 0.036). A significant difference was also observed between daily and nightly trends of sleepiness (p < 0.0001) so that sleepiness was higher for the night shift. Participants had low sleep quality on both day and night shifts, and there were significant differences between the day and night shifts in terms of subjective sleep quality and quantity (p < 0.01). Long working hours per shift result in fatigue, irregularities in the circadian rhythm and the cycle of sleep, induced cognitive performance decline at the end of both day and night shifts, and increased sleepiness in night shift. It, thus, seems necessary to take ergonomic measures such as planning for more appropriate shift work and reducing working hours. PMID:27103934

  8. Effects of Shift Work on Cognitive Performance, Sleep Quality, and Sleepiness among Petrochemical Control Room Operators.

    PubMed

    Kazemi, Reza; Haidarimoghadam, Rashid; Motamedzadeh, Majid; Golmohamadi, Rostam; Soltanian, Alireza; Zoghipaydar, Mohamad Reza

    2016-02-03

    Shift work is associated with both sleepiness and reduced performance. The aim of this study was to examine cognitive performance, sleepiness, and sleep quality among petrochemical control room shift workers. Sixty shift workers participated in this study. Cognitive performance was evaluated using a number of objective tests, including continuous performance test, n-back test, and simple reaction time test; sleepiness was measured using the subjective Karolinska Sleepiness Scale (KSS); and sleep quality was assessed using the Pittsburgh Sleep Quality Index (PSQI) questionnaire. ANCOVA, t-test, and repeated-measures ANOVA were applied for statistical analyses, and the significance level was set at p < 0.05. All variables related to cognitive performance, except for omission error, significantly decreased at the end of both day and night shifts (p < 0.0001). There were also significant differences between the day and night shifts in terms of the variables of omission error (p < 0.027) and commission error (p < 0.036). A significant difference was also observed between daily and nightly trends of sleepiness (p < 0.0001) so that sleepiness was higher for the night shift. Participants had low sleep quality on both day and night shifts, and there were significant differences between the day and night shifts in terms of subjective sleep quality and quantity (p < 0.01). Long working hours per shift result in fatigue, irregularities in the circadian rhythm and the cycle of sleep, induced cognitive performance decline at the end of both day and night shifts, and increased sleepiness in night shift. It, thus, seems necessary to take ergonomic measures such as planning for more appropriate shift work and reducing working hours.

  9. IMPAC. Integrated Management Planning and Control

    SciTech Connect

    Summers, P.L.; Gould, T.M.

    1987-01-01

    IMPAC is an interactive computer information system which integrates a program-project planning system, a cost accounting system, an internal time system, and a progress reporting system. It was developed to provide a network of related data bases acclimated to centralized administrative control while allowing for widespread interactive access to the information within the network. Capability exists for daily, weekly, and monthly input of time, detailed reports by task, person, and organizational units. Direct effort and indirect and burden effort are recorded making accounting for total labor possible.

  10. IMPROVING CONTROL ROOM DESIGN AND OPERATIONS BASED ON HUMAN FACTORS ANALYSES OR HOW MUCH HUMAN FACTORS UPGRADE IS ENOUGH ?

    SciTech Connect

    HIGGINS,J.C.; OHARA,J.M.; ALMEIDA,P.

    2002-09-19

    THE JOSE CABRERA NUCLEAR POWER PLANT IS A ONE LOOP WESTINGHOUSE PRESSURIZED WATER REACTOR. IN THE CONTROL ROOM, THE DISPLAYS AND CONTROLS USED BY OPERATORS FOR THE EMERGENCY OPERATING PROCEDURES ARE DISTRIBUTED ON FRONT AND BACK PANELS. THIS CONFIGURATION CONTRIBUTED TO RISK IN THE PROBABILISTIC SAFETY ASSESSMENT WHERE IMPORTANT OPERATOR ACTIONS ARE REQUIRED. THIS STUDY WAS UNDERTAKEN TO EVALUATE THE IMPACT OF THE DESIGN ON CREW PERFORMANCE AND PLANT SAFETY AND TO DEVELOP DESIGN IMPROVEMENTS.FIVE POTENTIAL EFFECTS WERE IDENTIFIED. THEN NUREG-0711 [1], PROGRAMMATIC, HUMAN FACTORS, ANALYSES WERE CONDUCTED TO SYSTEMATICALLY EVALUATE THE CR-LA YOUT TO DETERMINE IF THERE WAS EVIDENCE OF THE POTENTIAL EFFECTS. THESE ANALYSES INCLUDED OPERATING EXPERIENCE REVIEW, PSA REVIEW, TASK ANALYSES, AND WALKTHROUGH SIMULATIONS. BASED ON THE RESULTS OF THESE ANALYSES, A VARIETY OF CONTROL ROOM MODIFICATIONS WERE IDENTIFIED. FROM THE ALTERNATIVES, A SELECTION WAS MADE THAT PROVIDED A REASONABLEBALANCE BE TWEEN PERFORMANCE, RISK AND ECONOMICS, AND MODIFICATIONS WERE MADE TO THE PLANT.

  11. National Ignition Facility integrated computer control system

    SciTech Connect

    Van Arsdall, P.J., LLNL

    1998-06-01

    The NIF design team is developing the Integrated Computer Control System (ICCS), which is based on an object-oriented software framework applicable to event-driven control systems. The framework provides an open, extensible architecture that is sufficiently abstract to construct future mission-critical control systems. The ICCS will become operational when the first 8 out of 192 beams are activated in mid 2000. The ICCS consists of 300 front-end processors attached to 60,000 control points coordinated by a supervisory system. Computers running either Solaris or VxWorks are networked over a hybrid configuration of switched fast Ethernet and asynchronous transfer mode (ATM). ATM carries digital motion video from sensors to operator consoles. Supervisory software is constructed by extending the reusable framework components for each specific application. The framework incorporates services for database persistence, system configuration, graphical user interface, status monitoring, event logging, scripting language, alert management, and access control. More than twenty collaborating software applications are derived from the common framework. The framework is interoperable among different kinds of computers and functions as a plug-in software bus by leveraging a common object request brokering architecture (CORBA). CORBA transparently distributes the software objects across the network. Because of the pivotal role played, CORBA was tested to ensure adequate performance.

  12. Highly integrated digital electronic control: Digital flight control, aircraft model identification, and adaptive engine control

    NASA Technical Reports Server (NTRS)

    Baer-Riedhart, Jennifer L.; Landy, Robert J.

    1987-01-01

    The highly integrated digital electronic control (HIDEC) program at NASA Ames Research Center, Dryden Flight Research Facility is a multiphase flight research program to quantify the benefits of promising integrated control systems. McDonnell Aircraft Company is the prime contractor, with United Technologies Pratt and Whitney Aircraft, and Lear Siegler Incorporated as major subcontractors. The NASA F-15A testbed aircraft was modified by the HIDEC program by installing a digital electronic flight control system (DEFCS) and replacing the standard F100 (Arab 3) engines with F100 engine model derivative (EMD) engines equipped with digital electronic engine controls (DEEC), and integrating the DEEC's and DEFCS. The modified aircraft provides the capability for testing many integrated control modes involving the flight controls, engine controls, and inlet controls. This paper focuses on the first two phases of the HIDEC program, which are the digital flight control system/aircraft model identification (DEFCS/AMI) phase and the adaptive engine control system (ADECS) phase.

  13. Designing an Easy-to-use Executive Conference Room Control System

    NASA Astrophysics Data System (ADS)

    Back, Maribeth; Golovchinsky, Gene; Qvarfordt, Pernilla; van Melle, William; Boreczky, John; Dunnigan, Tony; Carter, Scott

    The Usable Smart Environment project (USE) aims at designing easy-to-use, highly functional, next-generation conference rooms. Our first design prototype focuses on creating a “no wizards” room for an American executive; that is, a room the executive could walk into and use by himself, without help from a technologist. A key idea in the USE framework is that customization is one of the best ways to create a smooth user experience. As the system needs to fit both with the personal leadership style of the executive and the corporation’s meeting culture, we began the design process by exploring the work flow in and around meetings attended by the executive.

  14. Integrated tools for control-system analysis

    NASA Technical Reports Server (NTRS)

    Ostroff, Aaron J.; Proffitt, Melissa S.; Clark, David R.

    1989-01-01

    The basic functions embedded within a user friendly software package (MATRIXx) are used to provide a high level systems approach to the analysis of linear control systems. Various control system analysis configurations are assembled automatically to minimize the amount of work by the user. Interactive decision making is incorporated via menu options and at selected points, such as in the plotting section, by inputting data. There are five evaluations such as the singular value robustness test, singular value loop transfer frequency response, Bode frequency response, steady-state covariance analysis, and closed-loop eigenvalues. Another section describes time response simulations. A time response for random white noise disturbance is available. The configurations and key equations used for each type of analysis, the restrictions that apply, the type of data required, and an example problem are described. One approach for integrating the design and analysis tools is also presented.

  15. Integrated Instrumentation and Control Upgrade Plan

    SciTech Connect

    Wilkinson, D.; Sun, B.; Wray, L.; Smith, J.

    1992-02-01

    This document presents the first industry-wide integrated research and development plan to support upgrading instrumentation and control (I&C) systems in nuclear power plants in the United States. The plan encompasses both solving obsolescence problems and introducing modern I&C technology into the industry. Accomplishing this plan will provide the technological base to modernize existing plants, as well as bridge the gap to meet Advanced Light Water Reactor (ALWR) requirements for modern I&C systems. This plan defines Research and Development tasks to meet the identified needs for the following technical elements: Instrumentation, Control and Protection, Man-Machine Support Systems, Maintenance, Communications, Verification and Validation, and Specifications and Standards.

  16. Integrated Control of Axonemal Dynein AAA+ Motors

    PubMed Central

    King, Stephen M.

    2012-01-01

    Axonemal dyneins are AAA+ enzymes that convert ATP hydrolysis to mechanical work. This leads to the sliding of doublet microtubules with respect to each other and ultimately the generation of ciliary/flagellar beating. However, in order for useful work to be generated, the action of individual dynein motors must be precisely controlled. In addition, cells modulate the motility of these organelles through a variety of second messenger systems and these signals too must be integrated by the dynein motors to yield an appropriate output. This review describes the current status of efforts to understand dynein control mechanisms and their connectivity focusing mainly on studies of the outer dynein arm from axonemes of the unicellular biflagellate green alga Chlamydomonas. PMID:22406539

  17. Institutional Tuberculosis Transmission. Controlled Trial of Upper Room Ultraviolet Air Disinfection: A Basis for New Dosing Guidelines

    PubMed Central

    Mphaphlele, Matsie; Dharmadhikari, Ashwin S.; Jensen, Paul A.; Rudnick, Stephen N.; van Reenen, Tobias H.; Pagano, Marcello A.; Leuschner, Wilhelm; Sears, Tim A.; Milonova, Sonya P.; van der Walt, Martie; Stoltz, Anton C.; Weyer, Karin

    2015-01-01

    Rationale: Transmission is driving the global tuberculosis epidemic, especially in congregate settings. Worldwide, natural ventilation is the most common means of air disinfection, but it is inherently unreliable and of limited use in cold climates. Upper room germicidal ultraviolet (UV) air disinfection with air mixing has been shown to be highly effective, but improved evidence-based dosing guidelines are needed. Objectives: To test the efficacy of upper room germicidal air disinfection with air mixing to reduce tuberculosis transmission under real hospital conditions, and to define the application parameters responsible as a basis for proposed new dosing guidelines. Methods: Over an exposure period of 7 months, 90 guinea pigs breathed only untreated exhaust ward air, and another 90 guinea pigs breathed only air from the same six-bed tuberculosis ward on alternate days when upper room germicidal air disinfection was turned on throughout the ward. Measurements and Main Results: The tuberculin skin test conversion rates (>6 mm) of the two chambers were compared. The hazard ratio for guinea pigs in the control chamber converting their skin test to positive was 4.9 (95% confidence interval, 2.8–8.6), with an efficacy of approximately 80%. Conclusions: Upper room germicidal UV air disinfection with air mixing was highly effective in reducing tuberculosis transmission under hospital conditions. These data support using either a total fixture output (rather than electrical or UV lamp wattage) of 15–20 mW/m3 total room volume, or an average whole-room UV irradiance (fluence rate) of 5–7 μW/cm2, calculated by a lighting computer-assisted design program modified for UV use. PMID:25928547

  18. PHYSICAL FIDELITY CONSIDERATIONS FOR NRC ADVANCED REACTOR CONTROL ROOM TRAINING SIMULATORS USED FOR INSPECTOR/EXAMINER TRAINING

    SciTech Connect

    Branch, Kristi M.; Mitchell, Mark R.; Miller, Mark; Cochrum, Steven

    2010-11-07

    This paper describes research into the physical fidelity requirements of control room simulators to train U.S. Nuclear Regulatory Commission (NRC) staff for their duties as inspectors and license examiners for next-generation nuclear power plants. The control rooms of these power plants are expected to utilize digital instrumentation and controls to a much greater extent than do current plants. The NRC is assessing training facility needs, particularly for control room simulators, which play a central role in NRC training. Simulator fidelity affects both training effectiveness and cost. Research has shown high simulation fidelity sometimes positively affects transfer to the operational environment but sometimes makes no significant difference or actually impedes learning. The conditions in which these different effects occur are often unclear, especially for regulators (as opposed to operators) about whom research is particularly sparse. This project developed an inventory of the tasks and knowledges, skills, and abilities that NRC regulators need to fulfill job duties and used expert panels to characterize the inventory items by type and level of cognitive/behavioral capability needed, difficulty to perform, importance to safety, frequency of performance, and the importance of simulator training for learning these capabilities. A survey of current NRC staff provides information about the physical fidelity of the simulator on which the student trained to the control room to which the student was assigned and the effect lack of fidelity had on learning and job performance. The study concludes that a high level of physical fidelity is not required for effective training of NRC staff.

  19. AN INTEGRATED BIOLOGICAL CONTROL SYSTEM AT HANFORD

    SciTech Connect

    JOHNSON AR; CAUDILL JG; GIDDINGS RF; RODRIGUEZ JM; ROOS RC; WILDE JW

    2010-02-11

    In 1999 an integrated biological control system was instituted at the U.S. Department of Energy's Hanford Site. Successes and changes to the program needed to be communicated to a large and diverse mix of organizations and individuals. Efforts at communication are directed toward the following: Hanford Contractors (Liquid or Tank Waste, Solid Waste, Environmental Restoration, Science and Technology, Site Infrastructure), General Hanford Employees, and Hanford Advisory Board (Native American Tribes, Environmental Groups, Local Citizens, Washington State and Oregon State regulatory agencies). Communication was done through direct interface meetings, individual communication, where appropriate, and broadly sharing program reports. The objectives of the communication efforts was to have the program well coordinated with Hanford contractors, and to have the program understood well enough that all stakeholders would have confidence in the work performed by the program to reduce or elimated spread of radioactive contamination by biotic vectors. Communication of successes and changes to an integrated biological control system instituted in 1999 at the Department of Energy's Hanford Site have required regular interfaces with not only a diverse group of Hanford contractors (i.e., those responsible for liquid or tank waste, solid wastes, environmental restoration, science and technology, and site infrastructure), and general Hanford employees, but also with a consortium of designated stake holders organized as the Hanford Advisory Board (i.e., Native American tribes, various environmental groups, local citizens, Washington state and Oregon regulatory agencies, etc.). Direct interface meetings, individual communication where appropriate, and transparency of the biological control program were the methods and outcome of this effort.

  20. Occupational hazards control of hazardous substances in clean room of semiconductor manufacturing plant using CFD analysis.

    PubMed

    Li, Jianfeng; Zhou, Ya-Fei

    2015-02-01

    The manufacturing processes in chip industries are complex, and many kinds of raw materials and solvents of different nature are used, most of which are highly toxic and dangerous. During the machine preventive maintenance period, these toxic and harmful substances will escape from the sealed reaction chamber to the clean workshop environment and endanger the health of the workers on-site, resulting in occupational diseases. From the perspective of prevention, the spread and prediction of hydrochloric acid (HCl) that escaped from the metal-etching chamber during maintenance were studied in this article. The computational fluid dynamics technology was used for a three-dimensional numerical simulation of the indoor air velocity field and the HCl concentration field, and the simulation results were then compared with the on-site monitoring data to verify the correctness and feasibility. The occupational hazards and control measures were analyzed based on the numerical simulation, and the optimal control measure was obtained. In this article, using the method of ambient air to analyze the occupational exposure can provide a new idea to the field of occupational health research in the integrated circuit industry and had theoretical and practical significance.

  1. Monolithic integration of room-temperature multifunctional BaTiO3-CoFe2O4 epitaxial heterostructures on Si(001).

    PubMed

    Scigaj, Mateusz; Dix, Nico; Gázquez, Jaume; Varela, María; Fina, Ignasi; Domingo, Neus; Herranz, Gervasi; Skumryev, Vassil; Fontcuberta, Josep; Sánchez, Florencio

    2016-01-01

    The multifunctional (ferromagnetic and ferroelectric) response at room temperature that is elusive in single phase multiferroic materials can be achieved in a proper combination of ferroelectric perovskites and ferrimagnetic spinel oxides in horizontal heterostructures. In this work, lead-free CoFe2O4/BaTiO3 bilayers are integrated with Si(001) using LaNiO3/CeO2/YSZ as a tri-layer buffer. They present structural and functional properties close to those achieved on perovskite substrates: the bilayers are fully epitaxial with extremely flat surface, and exhibit robust ferromagnetism and ferroelectricity at room temperature. PMID:27550543

  2. Monolithic integration of room-temperature multifunctional BaTiO3-CoFe2O4 epitaxial heterostructures on Si(001)

    PubMed Central

    Scigaj, Mateusz; Dix, Nico; Gázquez, Jaume; Varela, María; Fina, Ignasi; Domingo, Neus; Herranz, Gervasi; Skumryev, Vassil; Fontcuberta, Josep; Sánchez, Florencio

    2016-01-01

    The multifunctional (ferromagnetic and ferroelectric) response at room temperature that is elusive in single phase multiferroic materials can be achieved in a proper combination of ferroelectric perovskites and ferrimagnetic spinel oxides in horizontal heterostructures. In this work, lead-free CoFe2O4/BaTiO3 bilayers are integrated with Si(001) using LaNiO3/CeO2/YSZ as a tri-layer buffer. They present structural and functional properties close to those achieved on perovskite substrates: the bilayers are fully epitaxial with extremely flat surface, and exhibit robust ferromagnetism and ferroelectricity at room temperature. PMID:27550543

  3. Monolithic integration of room-temperature multifunctional BaTiO3-CoFe2O4 epitaxial heterostructures on Si(001)

    NASA Astrophysics Data System (ADS)

    Scigaj, Mateusz; Dix, Nico; Gázquez, Jaume; Varela, María; Fina, Ignasi; Domingo, Neus; Herranz, Gervasi; Skumryev, Vassil; Fontcuberta, Josep; Sánchez, Florencio

    2016-08-01

    The multifunctional (ferromagnetic and ferroelectric) response at room temperature that is elusive in single phase multiferroic materials can be achieved in a proper combination of ferroelectric perovskites and ferrimagnetic spinel oxides in horizontal heterostructures. In this work, lead-free CoFe2O4/BaTiO3 bilayers are integrated with Si(001) using LaNiO3/CeO2/YSZ as a tri-layer buffer. They present structural and functional properties close to those achieved on perovskite substrates: the bilayers are fully epitaxial with extremely flat surface, and exhibit robust ferromagnetism and ferroelectricity at room temperature.

  4. Using Pseudomonas spp. for Integrated Biological Control.

    PubMed

    Stockwell, Virginia O; Stack, James P

    2007-02-01

    ABSTRACT Pseudomonas spp. have been studied for decades as model organisms for biological control of plant disease. Currently, there are three commercial formulations of pseudomonads registered with the U.S. Environmental Protection Agency for plant disease suppression, Bio-Save 10 LP, Bio-Save 11 LP, and BlightBan A506. Bio-Save 10 LP and Bio-Save 11 LP, products of Jet Harvest Solutions, Longwood, FL, contain Pseudomonas syringae strains ESC-10 and ESC-11, respectively. These products are applied in packinghouses to prevent postharvest fungal diseases during storage of citrus, pome, stone fruits, and potatoes. BlightBan A506, produced by NuFarm Americas, Burr Ridge, IL, contains P. fluorescens strain A506. BlightBan A506 is applied primarily to pear and apple trees during bloom to suppress the bacterial disease fire blight. Combining BlightBan A506 with the antibiotic streptomycin improves control of fire blight, even in areas with streptomycin-resistant populations of the pathogen. BlightBan A506 also may reduce fruit russet and mild frost injury. These biocontrol products consisting of Pseudomonas spp. provide moderate to excellent efficacy against multiple production constraints, are relatively easy to apply, and they can be integrated with conventional products for disease control. These characteristics will contribute to the adoption of these products by growers and packinghouses.

  5. Using Pseudomonas spp. for Integrated Biological Control.

    PubMed

    Stockwell, Virginia O; Stack, James P

    2007-02-01

    ABSTRACT Pseudomonas spp. have been studied for decades as model organisms for biological control of plant disease. Currently, there are three commercial formulations of pseudomonads registered with the U.S. Environmental Protection Agency for plant disease suppression, Bio-Save 10 LP, Bio-Save 11 LP, and BlightBan A506. Bio-Save 10 LP and Bio-Save 11 LP, products of Jet Harvest Solutions, Longwood, FL, contain Pseudomonas syringae strains ESC-10 and ESC-11, respectively. These products are applied in packinghouses to prevent postharvest fungal diseases during storage of citrus, pome, stone fruits, and potatoes. BlightBan A506, produced by NuFarm Americas, Burr Ridge, IL, contains P. fluorescens strain A506. BlightBan A506 is applied primarily to pear and apple trees during bloom to suppress the bacterial disease fire blight. Combining BlightBan A506 with the antibiotic streptomycin improves control of fire blight, even in areas with streptomycin-resistant populations of the pathogen. BlightBan A506 also may reduce fruit russet and mild frost injury. These biocontrol products consisting of Pseudomonas spp. provide moderate to excellent efficacy against multiple production constraints, are relatively easy to apply, and they can be integrated with conventional products for disease control. These characteristics will contribute to the adoption of these products by growers and packinghouses. PMID:18944382

  6. Application of the revised DBA source term to a non-charcoal-filtered control room ventilation system

    SciTech Connect

    Radvansky, M.S.; Metcalf, J.E.

    1997-12-01

    An outstanding licensing issue at GPU Nuclear`s Oyster Creek plant had been the question of thyroid dose to a control room operator following the Title 10, Code of Federal Regulations, Part 100 (10 CFR 100) design basis accident (DBA). Oyster Creek is a 620-MW boiling water reactor (BWR), located in New Jersey, that began commercial operation in December 1969. The calculational problem was complicated by the fact that the 28-yr-old unit was one of the few plants that did not incorporate charcoal filtration into the control room ventilation system. The main contributor to the thyroid dose in a control room habitability calculation for a BWR is main steam isolation valve (MSIV) leakage. The technical specification limit for MSIV leakage at Oyster Creek is 15.9 SCFH (maximum) for each isolation valve. The work ongoing in the development of NUREG-1465, the revised DBA source term document, provided a potential method to calculate a more realistic dose compared with the current TID-14844 source term and Regulatory Guide 1.3 input data and accident propagation assumptions. Preliminary calculations using TID-14844 suggested that expensive modifications be made to the plant. Such modifications could have economically challenged the plant`s viability.

  7. Cooperative control theory and integrated flight and propulsion control

    NASA Technical Reports Server (NTRS)

    Schmidt, David K.; Schierman, John D.

    1995-01-01

    The major contribution of this research was the exposition of the fact that airframe and engine interactions could be present, and their effects could include loss of stability and performance of the control systems. Also, the significance of two directional, as opposed to one-directional, coupling was identified and explained. A multivariable stability and performance analysis methodology was developed, and applied to several candidate aircraft configurations. In these example evaluations, the significance of these interactions was underscored. Also exposed was the fact that with interactions present along with some integrated control approaches, the engine command/limiting logic (which represents an important nonlinear component of the engine control system) can impact closed-loop airframe/engine system stability. Finally, a brief investigation of control-law synthesis techniques appropriate for the class of systems was pursued, and it was determined that multivariable techniques, including model-following formulations of LQG and/or H infinity methods, showed promise. However, for practical reasons, decentralized control architectures are preferred, which is an architecture incompatible with these synthesis methods. The major contributions of the second phase of the grant was the development of conditions under which no decentralized controller could achieve closed loop system requirements on stability and/or performance. Sought were conditions that depended only on properties of the plant and the requirement, and independent of any particular control law or synthesis approach. Therefore, they could be applied a priori, before synthesis of a candidate control law. Under this grant, such conditions were found regarding stability, and encouraging initial results were obtained regarding performance.

  8. Cliffside 6 integrated emissions control system

    SciTech Connect

    McGinnis, D.G.; Rader, P.C.; Gansley, R.R.; Wang, W.

    2009-04-15

    The article takes an inside look into the environmental hardware going into one of the highest profile coal-fired power plants projects in the US, a new 800 MW supercritical coal-fired facility at Cliffside, NC, Unit C6. This is currently under construction and scheduled to be in commercial service in 2012. To evaluate the alternative air quality control system (AQCS) options, Duke Energy established a cross-functional team and used a decision analysis process to select the 'best balanced choice'. Alstom's integrated AQCS which combines dry and wet flue gas desulfurization systems was the best balanced choice. Replacing an ESP with a spray dryer absorber achieved major cost savings and eliminated the need for wastewater treatment. 1 ref., 2 photos.

  9. Instituting a filtration/pressurization system to reduce dust concentrations in a control room at a mineral processing plant

    PubMed Central

    Noll, J.; Cecala, A.; Hummer, J.

    2016-01-01

    The National Institute for Occupational Safety and Health has observed that many control rooms and operator compartments in the U.S. mining industry do not have filtration systems capable of maintaining low dust concentrations in these areas. In this study at a mineral processing plant, to reduce respirable dust concentrations in a control room that had no cleaning system for intake air, a filtration and pressurization system originally designed for enclosed cabs was modified and installed. This system was composed of two filtering units: one to filter outside air and one to filter and recirculate the air inside the control room. Eighty-seven percent of submicrometer particles were reduced by the system under static conditions. This means that greater than 87 percent of respirable dust particles should be reduced as the particle-size distribution of respirable dust particles is greater than that of submicrometer particles, and filtration systems usually are more efficient in capturing the larger particles. A positive pressure near 0.02 inches of water gauge was produced, which is an important component of an effective system and minimizes the entry of particles, such as dust, into the room. The intake airflow was around 118 cfm, greater than the airflow suggested by the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) for acceptable indoor air quality. After one year, the loading of the filter caused the airflow to decrease to 80 cfm, which still produces acceptable indoor air quality. Due to the loading of the filters, the reduction efficiency for submicrometer particles under static conditions increased to 94 percent from 87 percent. PMID:26834293

  10. Digital Full-Scope Simulation of a Conventional Nuclear Power Plant Control Room, Phase 2: Installation of a Reconfigurable Simulator to Support Nuclear Plant Sustainability

    SciTech Connect

    Ronald L. Boring; Vivek Agarwal; Kirk Fitzgerald; Jacques Hugo; Bruce Hallbert

    2013-03-01

    The U.S. Department of Energy’s Light Water Reactor Sustainability program has developed a control room simulator in support of control room modernization at nuclear power plants in the U.S. This report highlights the recent completion of this reconfigurable, full-scale, full-scope control room simulator buildout at the Idaho National Laboratory. The simulator is fully reconfigurable, meaning it supports multiple plant models developed by different simulator vendors. The simulator is full-scale, using glasstop virtual panels to display the analog control boards found at current plants. The present installation features 15 glasstop panels, uniquely achieving a complete control room representation. The simulator is also full-scope, meaning it uses the same plant models used for training simulators at actual plants. Unlike in the plant training simulators, the deployment on glasstop panels allows a high degree of customization of the panels, allowing the simulator to be used for research on the design of new digital control systems for control room modernization. This report includes separate sections discussing the glasstop panels, their layout to mimic control rooms at actual plants, technical details on creating a multi-plant and multi-vendor reconfigurable simulator, and current efforts to support control room modernization at U.S. utilities. The glasstop simulator provides an ideal testbed for prototyping and validating new control room concepts. Equally importantly, it is helping create a standardized and vetted human factors engineering process that can be used across the nuclear industry to ensure control room upgrades maintain and even improve current reliability and safety.

  11. Ultrafast optical control of terahertz surface plasmons in subwavelength hole-arrays at room temperature

    NASA Astrophysics Data System (ADS)

    Azad, Abul K.; Chen, Hou-Tong; Taylor, Antoinette J.; Zhang, Weili; O'Hara, John F.

    2011-02-01

    Extraordinary optical transmission through subwavelength metallic hole-arrays has been an active research area since its first demonstration. The frequency selective resonance properties of subwavelength metallic hole arrays, generally known as surface plasmon polaritons, have potential use in functional plasmonic devices such as filters, modulators, switches, etc. Such plasmonic devices are also very promising for future terahertz applications. Ultrafast switching or modulation of the resonant behavior of the 2-D metallic arrays in terahertz frequencies is of particular interest for high speed communication and sensing applications. In this paper, we demonstrate ultrafast optical control of surface plasmon enhanced resonant terahertz transmission in two-dimensional subwavelength metallic hole arrays fabricated on gallium arsenide based substrates. Optically pumping the arrays creates a thin conductive layer in the substrate reducing the terahertz transmission amplitude of both the resonant mode and the direct transmission. Under low optical fluence, the terahertz transmission is more greatly affected by resonance damping than by propagation loss in the substrate. An ErAs:GaAs nanoisland superlattice substrate is shown to allow ultrafast control with a switching recovery time of ~10 ps. We also present resonant terahertz transmission in a hybrid plasmonic film comprised of an integrated array of subwavelength metallic islands and semiconductor hole arrays. Optically pumping the semiconductor hole arrays favors excitation of surface plasmon resonance. A large dynamic transition between a dipolar localized surface plasmon mode and a surface plasmon resonance near 0.8 THz is observed under near infrared optical excitation. The reversal in transmission amplitude from a stop-band to a pass-band and up to π/ 2 phase shift achieved in the hybrid plasmonic film make it promising in large dynamic phase modulation, optical changeover switching, and active terahertz

  12. Ultrafast optical control of terahertz surface plasmons in subwavelength hole-arrays at room temperature

    SciTech Connect

    Azad, Abul Kalam; Chen, Hou - Tong; Taylor, Antoinette; O' Hara, John

    2010-12-10

    Extraordinary optical transmission through subwavelength metallic hole-arrays has been an active research area since its first demonstration. The frequency selective resonance properties of subwavelength metallic hole arrays, generally known as surface plasmon polaritons, have potential use in functional plasmonic devices such as filters, modulators, switches, etc. Such plasmonic devices are also very promising for future terahertz applications. Ultrafast switching or modulation of the resonant behavior of the 2-D metallic arrays in terahertz frequencies is of particular interest for high speed communication and sensing applications. In this paper, we demonstrate optical control of surface plasmon enhanced resonant terahertz transmission in two-dimensional subwavelength metallic hole arrays fabricated on gallium arsenide based substrates. Optically pumping the arrays creates a conductive layer in the substrate reducing the terahertz transmission amplitude of both the resonant mode and the direct transmission. Under low optical fluence, the terahertz transmission is more greatly affected by resonance damping than by propagation loss in the substrate. An ErAs:GaAs nanoisland superlattice substrate is shown to allow ultrafast control with a switching recovery time of {approx}10 ps. We also present resonant terahertz transmission in a hybrid plasmonic film comprised of an integrated array of subwavelength metallic islands and semiconductor holes. A large dynamic transition between a dipolar localized surface plasmon mode and a surface plasmon resonance near 0.8 THz is observed under near infrared optical excitation. The reversal in transmission amplitude from a stopband to a passband and up to {pi}/2 phase shift achieved in the hybrid plasmonic film make it promising in large dynamic phase modulation, optical changeover switching, and active terahertz plasmonics.

  13. Safety and human factors considerations in control rooms of oil and gas pipeline systems: conceptual issues and practical observations.

    PubMed

    Meshkati, Najmedin

    2006-01-01

    All oil and gas pipeline systems are run by human operators (called controllers) who use computer-based workstations in control rooms to "control" pipelines. Several human factor elements could contribute to the lack of controller success in preventing or mitigating pipeline accidents/incidents. These elements exist in both the work environment and also in the computer system design/operation (such as data presentation and alarm configuration). Some work environment examples include shift hours, shift length, circadian rhythms, shift change-over processes, fatigue countermeasures, ergonomics factors, workplace distractions, and physical interaction with control system computers. The major objective of this paper is to demonstrate the critical effects of human and organizational factors and also to highlight the role of their interactions with automation (and automated devices) in the safe operation of complex, large-scale pipeline systems. A case study to demonstrate the critical role of human organizational factors in the control room of an oil and gas pipeline system is also presented.

  14. Simulation and experimental studies of operators` decision styles and crew composition while using an ecological and traditional user interface for the control room of a nuclear power plant

    SciTech Connect

    Meshkati, N.; Buller, B.J.; Azadeh, M.A.

    1995-04-01

    The goal of this research is threefold: (1) use of the Skill-, Rule-, and Knowledge-based levels of cognitive control -- the SRK framework -- to develop an integrated information processing conceptual framework (for integration of workstation, job, and team design); (2) to evaluate the user interface component of this framework -- the Ecological display; and (3) to analyze the effect of operators` individual information processing behavior and decision styles on handling plant disturbances plus their performance on, and preference for, Traditional and Ecological user interfaces. A series of studies were conducted. In Part I, a computer simulation model and a mathematical model were developed. In Part II, an experiment was designed and conducted at the EBR-II plant of the Argonne National Laboratory-West in Idaho Falls, Idaho. It is concluded that: the integrated SRK-based information processing model for control room operations is superior to the conventional rule-based model; operators` individual decision styles and the combination of their styles play a significant role in effective handling of nuclear power plant disturbances; use of the Ecological interface results in significantly more accurate event diagnosis and recall of various plant parameters, faster response to plant transients, and higher ratings of subject preference; and operators` decision styles affect on both their performance and preference for the Ecological interface.

  15. The 'Room within a Room' Concept for Monitored Warhead Dismantlement

    SciTech Connect

    Tanner, Jennifer E.; Benz, Jacob M.; White, Helen; McOmish, Sarah; Allen, Keir; Tolk, Keith; Weeks, George E.

    2014-12-01

    Over the past 10 years, US and UK experts have engaged in a technical collaboration with the aim of improving scientific and technological abilities in support of potential future nuclear arms control and non-proliferation agreements. In 2011 a monitored dismantlement exercise provided an opportunity to develop and test potential monitoring technologies and approaches. The exercise followed a simulated nuclear object through a dismantlement process and looked to explore, with a level of realism, issues surrounding device and material monitoring, chain of custody, authentication and certification of equipment, data management and managed access. This paper focuses on the development and deployment of the ‘room-within-a-room’ system, which was designed to maintain chain of custody during disassembly operations. A key challenge for any verification regime operating within a nuclear weapon complex is to provide the monitoring party with the opportunity to gather sufficient evidence, whilst protecting sensitive or proliferative information held by the host. The requirement to address both monitoring and host party concerns led to a dual function design which: • Created a controlled boundary around the disassembly process area which could provide evidence of unauthorised diversion activities. • Shielded sensitive disassembly operations from monitoring party observation. The deployed room-within-a-room was an integrated system which combined a number of chain of custody technologies (i.e. cameras, tamper indicating panels and enclosures, seals, unique identifiers and radiation portals) and supporting deployment procedures. This paper discusses the bounding aims and constraints identified by the monitoring and host parties with respect to the disassembly phase, the design of the room-within-a-room system, lessons learned during deployment, conclusions and potential areas of future work. Overall it was agreed that the room-within-a-room approach was effective but

  16. Sensorimotor integration in human postural control

    NASA Technical Reports Server (NTRS)

    Peterka, R. J.

    2002-01-01

    It is generally accepted that human bipedal upright stance is achieved by feedback mechanisms that generate an appropriate corrective torque based on body-sway motion detected primarily by visual, vestibular, and proprioceptive sensory systems. Because orientation information from the various senses is not always available (eyes closed) or accurate (compliant support surface), the postural control system must somehow adjust to maintain stance in a wide variety of environmental conditions. This is the sensorimotor integration problem that we investigated by evoking anterior-posterior (AP) body sway using pseudorandom rotation of the visual surround and/or support surface (amplitudes 0.5-8 degrees ) in both normal subjects and subjects with severe bilateral vestibular loss (VL). AP rotation of body center-of-mass (COM) was measured in response to six conditions offering different combinations of available sensory information. Stimulus-response data were analyzed using spectral analysis to compute transfer functions and coherence functions over a frequency range from 0.017 to 2.23 Hz. Stimulus-response data were quite linear for any given condition and amplitude. However, overall behavior in normal subjects was nonlinear because gain decreased and phase functions sometimes changed with increasing stimulus amplitude. "Sensory channel reweighting" could account for this nonlinear behavior with subjects showing increasing reliance on vestibular cues as stimulus amplitudes increased. VL subjects could not perform this reweighting, and their stimulus-response behavior remained quite linear. Transfer function curve fits based on a simple feedback control model provided estimates of postural stiffness, damping, and feedback time delay. There were only small changes in these parameters with increasing visual stimulus amplitude. However, stiffness increased as much as 60% with increasing support surface amplitude. To maintain postural stability and avoid resonant behavior, an

  17. Integrated design of structures, controls, and materials

    NASA Technical Reports Server (NTRS)

    Blankenship, G. L.

    1994-01-01

    In this talk we shall discuss algorithms and CAD tools for the design and analysis of structures for high performance applications using advanced composite materials. An extensive mathematical theory for optimal structural (e.g., shape) design was developed over the past thirty years. Aspects of this theory have been used in the design of components for hypersonic vehicles and thermal diffusion systems based on homogeneous materials. Enhancement of the design methods to include optimization of the microstructure of the component is a significant innovation which can lead to major enhancements in component performance. Our work is focused on the adaptation of existing theories of optimal structural design (e.g., optimal shape design) to treat the design of structures using advanced composite materials (e.g., fiber reinforced, resin matrix materials). In this talk we shall discuss models and algorithms for the design of simple structures from composite materials, focussing on a problem in thermal management. We shall also discuss methods for the integration of active structural controls into the design process.

  18. Room temperature formation of Hf-silicate layer by pulsed laser deposition with Hf-Si-O ternary reaction control

    NASA Astrophysics Data System (ADS)

    Hotta, Yasushi; Ueoka, Satoshi; Yoshida, Haruhiko; Arafune, Koji; Ogura, Atsushi; Satoh, Shin-ichi

    2016-10-01

    We investigated the room temperature growth of HfO2 layers on Si substrates by pulsed laser deposition under ultra-high vacuum conditions. The laser fluence (LF) during HfO2 layer growth was varied as a growth parameter in the experiments. X-ray photoemission spectroscopy (XPS) was used to observe the interface chemical states of the HfO2/Si samples produced by various LFs. The XPS results indicated that an interface Hf-silicate layer formed, even at room temperature, and that the thickness of this layer increased with increasing pulsed LF. Additionally, Hf-Si bonds were increasingly formed at the interface when the LF was more than 2 J/cm2. This bond formation process was related to decomposition of HfO2 to its atomic states of Hf and O by multiphoton photochemical processes for bandgap excitation of the HfO2 polycrystalline target. However, the Hf-Si bond content of the interface Hf-silicate layer is controllable under high LF conditions. The results presented here represent a practical contribution to the development of room temperature processing of Hf-compound based devices.

  19. Draft audit report, human factors engineering control room design review: Saint Lucie Nuclear Power Plant, Unit No. 2

    SciTech Connect

    Peterson, L.R.; Lappa, D.A.; Moore, J.W.

    1981-09-03

    A human factors engineering preliminary design review of the Saint Lucie Unit 2 control room was performed at the site on August 3 through August 7, 1981. This design review was carried out by a team from the Human Factors Engineering Branch, Division of Human Factors Safety. This report was prepared on the basis of the HFEB's review of the applicant's Preliminary Design Assessment and the human factors engineering design review/audit performed at the site. The review team included human factors consultants from BioTechnology, Inc., Falls Church, Virginia, and from Lawrence Livermore National Laboratory (University of California), Livermore, California.

  20. Coexistence of electric field controlled ferromagnetism and resistive switching for TiO{sub 2} film at room temperature

    SciTech Connect

    Ren, Shaoqing; Qin, Hongwei; Bu, Jianpei; Zhu, Gengchang; Xie, Jihao; Hu, Jifan E-mail: hu-jf@vip.163.com

    2015-08-10

    The Ag/TiO{sub 2}/Nb:SrTiO{sub 3}/Ag device exhibits the coexistence of electric field controlled ferromagnetism and resistive switching at room temperature. The bipolar resistive switching in Ag/TiO{sub 2}/Nb:SrTiO{sub 3}/Ag device may be dominated by the modulation of Schottky-like barrier with the electron injection-trapped/detrapped process at the interface of TiO{sub 2}/Nb:SrTiO{sub 3}. We suggest that the electric field-induced magnetization modulation originates mainly from the creation/annihilation of lots of oxygen vacancies in TiO{sub 2}.

  1. Gesture-Controlled Interface for Contactless Control of Various Computer Programs with a Hooking-Based Keyboard and Mouse-Mapping Technique in the Operating Room

    PubMed Central

    Park, Ben Joonyeon; Jang, Taekjin; Choi, Jong Woo; Kim, Namkug

    2016-01-01

    We developed a contactless interface that exploits hand gestures to effectively control medical images in the operating room. We developed an in-house program called GestureHook that exploits message hooking techniques to convert gestures into specific functions. For quantitative evaluation of this program, we used gestures to control images of a dynamic biliary CT study and compared the results with those of a mouse (8.54 ± 1.77 s to 5.29 ± 1.00 s; p < 0.001) and measured the recognition rates of specific gestures and the success rates of tasks based on clinical scenarios. For clinical applications, this program was set up in the operating room to browse images for plastic surgery. A surgeon browsed images from three different programs: CT images from a PACS program, volume-rendered images from a 3D PACS program, and surgical planning photographs from a basic image viewing program. All programs could be seamlessly controlled by gestures and motions. This approach can control all operating room programs without source code modification and provide surgeons with a new way to safely browse through images and easily switch applications during surgical procedures. PMID:26981146

  2. [Domestic and family violence against women: a case-control study with victims treated in emergency rooms].

    PubMed

    Garcia, Leila Posenato; Duarte, Elisabeth Carmen; Freitas, Lúcia Rolim Santana de; Silva, Gabriela Drummond Marques da

    2016-01-01

    This study aimed to identify factors associated with treatment of victims of domestic and family violence in emergency rooms in Brazil. This is a case-control study based on the Surveillance System for Violence and Accidents (VIVA), 2011. Women ≥ 18 years who were victims of family and domestic violence were selected as cases and compared to accident victims (controls). Adjusted odds ratios were estimated by unconditional logistic regression. 623 cases and 10,120 controls were included. Risk factors according to the adjusted analysis were younger age (18-29 years), low schooling, lack of paid work, alcohol consumption, having sought treatment in a different health service, and violence on weekends or at night or in the early morning hours. The study concludes that domestic and family violence shows alcohol consumption as a strongly associated factor. Days and hours with the highest ocurrence reveal the need to adjust emergency services to treat victims. PMID:27096297

  3. Fast, all-optical logic gates and transistor functionalities using a room-temperature atomic controlled Kerr gate

    NASA Astrophysics Data System (ADS)

    Li, R. B.; Deng, L.; Hagley, E. W.

    2014-12-01

    We demonstrate all-optical multilogic gate operations and transistor functionalities using a Kerr phase gate method in a room-temperature 85Rb vapor. Two symmetric Mach-Zehnder interferometers are constructed in the same vapor cell in which a Raman gain medium is established. We show three basic logic gates (and, or, and not) by controlling the output combinations from the two interferometers. With one weakly driven interferometer acting as the phase control light for a strongly driven interferometer, we further demonstrate optical field-effect transistor functionalities. More complex combinations of this Kerr phase gate method and scheme allow all eight basic logic gate operations including the controlled-not gate to be constructed and implemented.

  4. Experimental Validation of an Integrated Controls-Structures Design Methodology

    NASA Technical Reports Server (NTRS)

    Maghami, Peiman G.; Gupta, Sandeep; Elliot, Kenny B.; Walz, Joseph E.

    1996-01-01

    The first experimental validation of an integrated controls-structures design methodology for a class of large order, flexible space structures is described. Integrated redesign of the controls-structures-interaction evolutionary model, a laboratory testbed at NASA Langley, was described earlier. The redesigned structure was fabricated, assembled in the laboratory, and experimentally tested against the original structure. Experimental results indicate that the structure redesigned using the integrated design methodology requires significantly less average control power than the nominal structure with control-optimized designs, while maintaining the required line-of-sight pointing performance. Thus, the superiority of the integrated design methodology over the conventional design approach is experimentally demonstrated. Furthermore, amenability of the integrated design structure to other control strategies is evaluated, both analytically and experimentally. Using Linear-Quadratic-Guassian optimal dissipative controllers, it is observed that the redesigned structure leads to significantly improved performance with alternate controllers as well.

  5. Understanding the effects of nurses, patients' hospital rooms, and patients' perception of control on the perceived quality of a hospital.

    PubMed

    Gotlieb, J B

    2000-01-01

    Service marketing researchers suggest that the physical environment, the people, and the process strongly affect consumers' judgements when they evaluate services. Previous research has rarely applied this general framework to help identify specific hospital variables that affect the perceived quality of a hospital. This article presents a proposed model and empirical evidence that is based upon this general framework. That is, this article reports the results of a study which found that the physical environment (i.e., patients' perception of their hospital rooms) and people (i.e., patients' perception of nurses) affected patients' perception of hospital quality. The process (i.e., patients' perception of control over the process) did not directly affect their perception of hospital quality. However, patients' perception of control over the process and their perception of their hospital rooms affected their perception of their nurses. Consequently, this research suggests that the general framework identified by service marketing researchers can be applied to help understand how patients develop their perception of hospital quality. PMID:11184431

  6. Understanding the effects of nurses, patients' hospital rooms, and patients' perception of control on the perceived quality of a hospital.

    PubMed

    Gotlieb, J B

    2000-01-01

    Service marketing researchers suggest that the physical environment, the people, and the process strongly affect consumers' judgements when they evaluate services. Previous research has rarely applied this general framework to help identify specific hospital variables that affect the perceived quality of a hospital. This article presents a proposed model and empirical evidence that is based upon this general framework. That is, this article reports the results of a study which found that the physical environment (i.e., patients' perception of their hospital rooms) and people (i.e., patients' perception of nurses) affected patients' perception of hospital quality. The process (i.e., patients' perception of control over the process) did not directly affect their perception of hospital quality. However, patients' perception of control over the process and their perception of their hospital rooms affected their perception of their nurses. Consequently, this research suggests that the general framework identified by service marketing researchers can be applied to help understand how patients develop their perception of hospital quality.

  7. Parent misperception of control in childhood/adolescent asthma: the Room to Breathe survey.

    PubMed

    Carroll, W D; Wildhaber, J; Brand, P L P

    2012-01-01

    The aim of our study was to determine how often asthma control is achieved in children and adolescents, and how asthma affects parents' and children's daily lives. Interviews, including the childhood asthma control test (C-ACT), were conducted with 1,284 parents of asthmatic children (aged 4-15 yrs), as well as with the children themselves (aged 8-15 yrs; n=943), in Canada, Greece, Hungary, the Netherlands, South Africa and the UK. Parents reported mild asthma attacks at least weekly in 11% of children, and serious attacks (requiring oral corticosteroids or hospitalisation) at least annually in 35%. Although 73% of parents described their child's asthma as mild or intermittent, 40% of children/adolescents had C-ACT scores ≤ 19, indicating inadequate control, and only 14.7% achieved complete Global Initiative for Asthma (GINA)-defined control and just 9.2% achieved Scottish Intercollegiate Guidelines Network (SIGN)/British Thoracic Society (BTS)-defined control. Guideline-defined asthma control was significantly less common than well-controlled asthma using the C-ACT (p<0.001). Asthma restricted the child's activities in 39% of families and caused lifestyle changes in 70%. Complete asthma control is uncommon in children worldwide. Guideline-defined control measures appear to be more stringent than those defined by C-ACT or families. Overall, parents underestimate their child's asthma severity and overestimate asthma control. This is a major potential barrier to successful asthma treatment in children.

  8. Advanced visualization platform for surgical operating room coordination: distributed video board system.

    PubMed

    Hu, Peter F; Xiao, Yan; Ho, Danny; Mackenzie, Colin F; Hu, Hao; Voigt, Roger; Martz, Douglas

    2006-06-01

    One of the major challenges for day-of-surgery operating room coordination is accurate and timely situation awareness. Distributed and secure real-time status information is key to addressing these challenges. This article reports on the design and implementation of a passive status monitoring system in a 19-room surgical suite of a major academic medical center. Key design requirements considered included integrated real-time operating room status display, access control, security, and network impact. The system used live operating room video images and patient vital signs obtained through monitors to automatically update events and operating room status. Images were presented on a "need-to-know" basis, and access was controlled by identification badge authorization. The system delivered reliable real-time operating room images and status with acceptable network impact. Operating room status was visualized at 4 separate locations and was used continuously by clinicians and operating room service providers to coordinate operating room activities. PMID:17012154

  9. Flight propulsion control integration for V/STOL aircraft

    NASA Technical Reports Server (NTRS)

    Mihaloew, James R.

    1987-01-01

    The goal of the propulsion community is to have the enabling propulsion technologies in place to permit a low risk decision regarding the initiation of a research STOVL supersonic attack fighter aircraft in the mid-1990's. This technology will effectively integrate, enhance, and extend the supersonic cruise, STOVL, and fighter/attack programs to enable U.S. industry to develop a revolutionary supersonic short takeoff vertical landing fighter/attack aircraft in the post-ATF period. The rationale, methods, and criteria used in developing a joint NASA Lewis and NASA Ames research program to develop the technology element for integrated flight propulsion control through integrated methodologies is presented. This program, the Supersonic STOVL Integrated Flight Propulsion Controls Program, is part of the overall NASA Lewis Supersonic STOVL integrated approach to an integrated program to achieve integrated flight propulsion control technology.

  10. Is single room hospital accommodation associated with differences in healthcare-associated infection, falls, pressure ulcers or medication errors? A natural experiment with non-equivalent controls

    PubMed Central

    Maben, Jill; Murrells, Trevor; Griffiths, Peter

    2016-01-01

    Objectives A wide range of patient benefits have been attributed to single room hospital accommodation including a reduction in adverse patient safety events. However, studies have been limited to the US with limited evidence from elsewhere. The aim of this study was to assess the impact on safety outcomes of the move to a newly built all single room acute hospital. Methods A natural experiment investigating the move to 100% single room accommodation in acute assessment, surgical and older people’s wards. Move to 100% single room accommodation compared to ‘steady state’ and ‘new build’ control hospitals. Falls, pressure ulcer, medication error, meticillin-resistant Staphylococcus aureus and Clostridium difficile rates from routine data sources were measured over 36 months. Results Five of 15 time series in the wards that moved to single room accommodation revealed changes that coincided with the move to the new all single room hospital: specifically, increased fall, pressure ulcer and Clostridium difficile rates in the older people’s ward, and temporary increases in falls and medication errors in the acute assessment unit. However, because the case mix of the older people’s ward changed, and because the increase in falls and medication errors on the acute assessment ward did not last longer than six months, no clear effect of single rooms on the safety outcomes was demonstrated. There were no changes to safety events coinciding with the move at the new build control site. Conclusion For all changes in patient safety events that coincided with the move to single rooms, we found plausible alternative explanations such as case-mix change or disruption as a result of the re-organization of services after the move. The results provide no evidence of either benefit or harm from all single room accommodation in terms of safety-related outcomes, although there may be short-term risks associated with a move to single rooms. PMID:26811373

  11. The entropy reduction engine: Integrating planning, scheduling, and control

    NASA Technical Reports Server (NTRS)

    Drummond, Mark; Bresina, John L.; Kedar, Smadar T.

    1991-01-01

    The Entropy Reduction Engine, an architecture for the integration of planning, scheduling, and control, is described. The architecture is motivated, presented, and analyzed in terms of its different components; namely, problem reduction, temporal projection, and situated control rule execution. Experience with this architecture has motivated the recent integration of learning. The learning methods are described along with their impact on architecture performance.

  12. Integrated digital control and man-machine interface for complex remote handling systems

    SciTech Connect

    Rowe, J.C.; Spille, R.F.; Zimmermann, S.D.

    1986-12-01

    The Advanced Integrated Maintenance System (AIMS) is part of a continuing effort within the Consolidated Fuel Reprocessing Program at Oak Ridge National Laboratory to develop and extend the capabilities of remote manipulation and maintenance technology. The AIMS is a totally integrated approach to remote handling in hazardous environments. State-of-the-art computer systems connected through a high-speed communication network provide a real-time distributed control system that supports the flexibility and expandability needed for large integrated maintenance applications. A Man-Machine Interface provides high-level human interaction through a powerful color graphics menu-controlled operator console. An auxiliary control system handles the real-time processing needs for a variety of support hardware. A pair of dedicated fiber-optic-linked master/slave computer system control the Advanced Servomanipulator master/slave arms using powerful distributed digital processing methods. The FORTH language was used as a real-time operating and development environment for the entire system, and all of these components are integrated into a control room concept that represents the latest advancements in the development of remote maintenance facilities for hazardous environments.

  13. Room Acoustics

    NASA Astrophysics Data System (ADS)

    Kuttruff, Heinrich; Mommertz, Eckard

    The traditional task of room acoustics is to create or formulate conditions which ensure the best possible propagation of sound in a room from a sound source to a listener. Thus, objects of room acoustics are in particular assembly halls of all kinds, such as auditoria and lecture halls, conference rooms, theaters, concert halls or churches. Already at this point, it has to be pointed out that these conditions essentially depend on the question if speech or music should be transmitted; in the first case, the criterion for transmission quality is good speech intelligibility, in the other case, however, the success of room-acoustical efforts depends on other factors that cannot be quantified that easily, not least it also depends on the hearing habits of the listeners. In any case, absolutely "good acoustics" of a room do not exist.

  14. TREC-Rio trial: a randomised controlled trial for rapid tranquillisation for agitated patients in emergency psychiatric rooms [ISRCTN44153243

    PubMed Central

    Huf, Gisele; Coutinho, Evandro SF; Adams, Clive E

    2002-01-01

    Background Agitated or violent patients constitute 10% of all emergency psychiatric treatment. Management guidelines, the preferred treatment of clinicians and clinical practice all differ. Systematic reviews show that all relevant studies are small and none are likely to have adequate power to show true differences between treatments. Worldwide, current treatment is not based on evidence from randomised trials. In Brazil, the combination haloperidol-promethazine is frequently used, but no studies involving this mix exist. Methods TREC-Rio (Tranquilização Rápida-Ensaio Clínico [Translation: Rapid Tranquillisation-Clinical Trial]) will compare midazolam with haloperidol-promethazine mix for treatment of agitated patients in emergency psychiatric rooms of Rio de Janeiro, Brazil. TREC-Rio is a randomised, controlled, pragmatic and open study. Primary measure of outcome is tranquillisation at 20 minutes but effects on other measures of morbidity will also be assessed. TREC-Rio will involve the collaboration of as many health care professionals based in four psychiatric emergency rooms of Rio as possible. Because the design of this trial does not substantially complicate clinical management, and in several aspects simplifies it, the study can be large, and treatments used in everyday practice can be evaluated. PMID:12383353

  15. IMPAC - An integrated methodology for propulsion and airframe control

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay; Ouzts, Peter J.; Lorenzo, Carl F.; Mattern, Duane L.

    1991-01-01

    The NASA Lewis Research Center approach to developing integrated flight propulsion control (IFPC) technologies is an in-house research program referred to as IMPAC-Integrated Methodology for Propulsion and Airframe Control. The goals of IMPAC are to develop a viable alternative to the existing integrated control design methodologies that will allow for improved system performance and simplicity of control law synthesis and implementation, and to demonstrate the applicability of the methodology to a supersonic STOVL fighter aircraft. An overview of IMPAC is presented, including a detailed discussion of the various important design and evaluation steps in the methodology.

  16. DETAIL VIEW OF OPERATIONS MANAGEMENT ROOM, FIRING ROOM NO. 3, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF OPERATIONS MANAGEMENT ROOM, FIRING ROOM NO. 3, FACING SOUTHEAST - Cape Canaveral Air Force Station, Launch Complex 39, Launch Control Center, LCC Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  17. DETAIL VIEW OF OPERATIONS MANAGEMENT ROOM, FIRING ROOM NO. 3, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF OPERATIONS MANAGEMENT ROOM, FIRING ROOM NO. 3, FACING EAST - Cape Canaveral Air Force Station, Launch Complex 39, Launch Control Center, LCC Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  18. DETAIL VIEW OF OPERATIONS MANAGEMENT ROOM, FIRING ROOM NO. 3, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF OPERATIONS MANAGEMENT ROOM, FIRING ROOM NO. 3, FACING NORTH - Cape Canaveral Air Force Station, Launch Complex 39, Launch Control Center, LCC Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  19. DETAIL VIEW OF OPERATIONS MANAGEMENT ROOM, FIRING ROOM NO. 4, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF OPERATIONS MANAGEMENT ROOM, FIRING ROOM NO. 4, FACING WEST - Cape Canaveral Air Force Station, Launch Complex 39, Launch Control Center, LCC Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  20. DEMONSTRATION OF AN ADVANCED INTEGRATED CONTROL SYSTEM FOR SIMULTANEOUS EMISSIONS REDUCTION

    SciTech Connect

    Suzanne Shea; Randhir Sehgal; Ilga Celmins; Andrew Maxson

    2002-02-01

    The primary objective of the project titled ''Demonstration of an Advanced Integrated Control System for Simultaneous Emissions Reduction'' was to demonstrate at proof-of-concept scale the use of an online software package, the ''Plant Environmental and Cost Optimization System'' (PECOS), to optimize the operation of coal-fired power plants by economically controlling all emissions simultaneously. It combines physical models, neural networks, and fuzzy logic control to provide both optimal least-cost boiler setpoints to the boiler operators in the control room, as well as optimal coal blending recommendations designed to reduce fuel costs and fuel-related derates. The goal of the project was to demonstrate that use of PECOS would enable coal-fired power plants to make more economic use of U.S. coals while reducing emissions.

  1. Elements of an advanced integrated operator control station

    SciTech Connect

    Clarke, M.M.; Kreifeldt, J.G.

    1984-01-01

    One of the critical determinants of peformance for any remotely operated maintenance system is the compatibility achieved between elements of the man/machine interface (e.g., master manipulator controller, controls, displays, etc.) and the human operator. In the Remote Control Engineering task of the Consolidated Fuel Reprocessing Program, considerable attention has been devoted to optimizing the man/machine interface of the operator control station. This system must be considered an integral element of the overall maintenance work system which includes transporters, manipulators, remote viewing, and other parts. The control station must reflect the integration of the operator team, control/display panels, manipulator master controllers, and remote viewing monitors. Human factors principles and experimentation have been used in the development of an advanced integrated operator control station designed for the advance servomanipulator. Key features of this next-generation design are summarized in this presentation. 7 references, 4 figures.

  2. Elements of an advanced integrated operator control station

    SciTech Connect

    Clarke, M.M.; Kreifeldt, J.G.

    1984-01-01

    One of the critical determinants of performance for any remotely operated maintenance system is the compatibility achieved between elements of the man/machine interface (e.g., master manipulator controller, controls, displays) and the human operator. In the remote control engineering task of the Consolidated Fuel Reprocessing Program, considerable attention has been devoted to optimizing the man/machine interface of the operator control station. This system must be considered an integral element of the overall maintenance work system which includes transporters, manipulators, remote viewing, and other parts. The control station must reflect the integration of the operator team, control/display panels, manipulator master controllers, and remote viewing monitors. Human factors principles and experimentation have been used in the development of an advanced integrated operator control station designed for the advance servomanipulator. Key features of this next-generation design are summarized in this presentation. 7 references, 4 figures.

  3. Integrated structure/control law design by multilevel optimization

    NASA Technical Reports Server (NTRS)

    Gilbert, Michael G.; Schmidt, David K.

    1989-01-01

    A new approach to integrated structure/control law design based on multilevel optimization is presented. This new approach is applicable to aircraft and spacecraft and allows for the independent design of the structure and control law. Integration of the designs is achieved through use of an upper level coordination problem formulation within the multilevel optimization framework. The method requires the use of structure and control law design sensitivity information. A general multilevel structure/control law design problem formulation is given, and the use of Linear Quadratic Gaussian (LQG) control law design and design sensitivity methods within the formulation is illustrated. Results of three simple integrated structure/control law design examples are presented. These results show the capability of structure and control law design tradeoffs to improve controlled system performance within the multilevel approach.

  4. ADVANCED COMPRESSOR ENGINE CONTROLS TO ENHANCE OPERATION, RELIABILITY AND INTEGRITY

    SciTech Connect

    Gary D. Bourn; Jess W. Gingrich; Jack A. Smith

    2004-03-01

    This document is the final report for the ''Advanced Compressor Engine Controls to Enhance Operation, Reliability, and Integrity'' project. SwRI conducted this project for DOE in conjunction with Cooper Compression, under DOE contract number DE-FC26-03NT41859. This report addresses an investigation of engine controls for integral compressor engines and the development of control strategies that implement closed-loop NOX emissions feedback.

  5. Variable Structure PID Control to Prevent Integrator Windup

    NASA Technical Reports Server (NTRS)

    Hall, C. E.; Hodel, A. S.; Hung, J. Y.

    1999-01-01

    PID controllers are frequently used to control systems requiring zero steady-state error while maintaining requirements for settling time and robustness (gain/phase margins). PID controllers suffer significant loss of performance due to short-term integrator wind-up when used in systems with actuator saturation. We examine several existing and proposed methods for the prevention of integrator wind-up in both continuous and discrete time implementations.

  6. Integrated Thermal Control for Mars Rover

    NASA Technical Reports Server (NTRS)

    Hickey, Gregory S.; Braun, David; Wen, Liang-Chi; Eisen, Howard J.

    1996-01-01

    The Mars Rover has been built, environmentally tested and qualified for the 1996 launch of the Pathfinder mission to Mars. The basic structure for the thermal control for the Mars Rover is the Warm Electronics Box (WEB). This consists of a thermal isolating composite structure with co-cured thermal control surfaces and an ultralightweight hydrophobic solid silica aerogel which minimizes conduction and radiation.

  7. Room temperature freezing and orientational control of surface-immobilized peptides in air.

    PubMed

    Li, Yaoxin; Zhang, Xiaoxian; Myers, John; Abbott, Nicholas L; Chen, Zhan

    2015-07-14

    Sugar coatings can stabilize the "native" structure and control the orientation of surface-immobilized peptides in air, providing a potential approach to retain biological functions of surface-immobilized biomolecules in air. This method is general and applicable to complex enzymes. PMID:26068205

  8. Fast, high-fidelity, all-optical and dynamically-controlled polarization gate using room-temperature atomic vapor

    SciTech Connect

    Li, Runbing; Zhu, Chengjie; Deng, L.; Hagley, E. W.

    2014-10-20

    We demonstrate a fast, all-optical polarization gate in a room-temperature atomic medium. Using a Polarization-Selective-Kerr-Phase-Shift (PSKPS) technique, we selectively write a π phase shift to one circularly-polarized component of a linearly-polarized input signal field. The output signal field maintains its original strength but acquires a 90° linear polarization rotation, demonstrating fast, high-fidelity, dynamically-controlled polarization gate operation. The intensity of the polarization-switching field used in this PKSPK-based polarization gate operation is only 2 mW/cm{sup 2}, which would be equivalent to 0.5 nW of light power (λ = 800 nm) confined in a typical commercial photonic hollow-core fiber. This development opens a realm of possibilities for potential future extremely low light level telecommunication and information processing systems.

  9. Investigation of the impact of main control room digitalization on operators cognitive reliability in nuclear power plants.

    PubMed

    Zhou, Yong; Mu, Haiying; Jiang, Jianjun; Zhang, Li

    2012-01-01

    Currently, there is a trend in nuclear power plants (NPPs) toward introducing digital and computer technologies into main control rooms (MCRs). Safe generation of electric power in NPPs requires reliable performance of cognitive tasks such as fault detection, diagnosis, and response planning. The digitalization of MCRs has dramatically changed the whole operating environment, and the ways operators interact with the plant systems. If the design and implementation of the digital technology is incompatible with operators' cognitive characteristics, it may have negative effects on operators' cognitive reliability. Firstly, on the basis of three essential prerequisites for successful cognitive tasks, a causal model is constructed to reveal the typical human performance issues arising from digitalization. The cognitive mechanisms which they impact cognitive reliability are analyzed in detail. Then, Bayesian inference is used to quantify and prioritize the influences of these factors. It suggests that interface management and unbalanced workload distribution have more significant impacts on operators' cognitive reliability.

  10. Nonlinear robust control of integrated vehicle dynamics

    NASA Astrophysics Data System (ADS)

    He, Zhengyi; Ji, Xuewu

    2012-02-01

    A new methodology to design the vehicle GCC (global chassis control) nonlinear controller is developed in this paper. Firstly, to handle the nonlinear coupling between sprung and unsprung masses, the vehicle is treated as a mechanical system of two-rigid-bodies which has 6 DOF (degree of freedom), including longitudinal, lateral, yaw, vertical, roll and pitch dynamics. The system equation is built in the yaw frame based on Lagrange's method, and it has been proved that the derived system remains the important physical properties of the general mechanical system. Then the GCC design problem is formulated as the trajectory tracking problem for a cascade system, with a Lagrange's system interconnecting with a linear system. The nonlinear robust control design problem of this cascade interconnected system is divided into two H ∞ control problems with respect to the two sub-systems. The parameter uncertainties in the system are tackled by adaptive theory, while the external uncertainties and disturbances are dealt with the H ∞ control theory. And the passivity of the mechanical system is applied to construct the solution of nonlinear H ∞ control problem. Finally, the effectiveness of the proposed controller is validated by simulation results even during the emergency manoeuvre.

  11. Development and Integration of Control System Models

    NASA Technical Reports Server (NTRS)

    Kim, Young K.

    1998-01-01

    The computer simulation tool, TREETOPS, has been upgraded and used at NASA/MSFC to model various complicated mechanical systems and to perform their dynamics and control analysis with pointing control systems. A TREETOPS model of Advanced X-ray Astrophysics Facility - Imaging (AXAF-1) dynamics and control system was developed to evaluate the AXAF-I pointing performance for Normal Pointing Mode. An optical model of Shooting Star Experiment (SSE) was also developed and its optical performance analysis was done using the MACOS software.

  12. Communications dashboard (control rooms, take a cue from Facebook® !) Chapter 1

    NASA Astrophysics Data System (ADS)

    Scott, David W.

    Papers published via IEEE and AIAA conferences have presented an overview of how social media could benefit NASA working environments in general [1] and proposed three specific social applications to benefit space flight control operations [2]. One of them, Communications Dashboard, would help a real time flight controller keep up with both the “ big picture” and significant details of operations via a cohesive interface similar to those of social networking services (SNS). Instead of recreational social features, “ CommDash” would support functions like console logging, categorized and threaded text chat streams with enhanced accountability and graphics display features, high-level status displays driven by telemetry or other events, and an on-screen hailing function for requesting voice or text stream conversation. Moving certain voice conversations to text streams would reduce confusion and stress in two ways. Within text conversations, there would be far less repetition of content since text conversations have visual persistence and are reviewable instantly, e.g., there's no need to brief new participants to a discussion - they just read what's already there. Remaining voice traffic would stand out more clearly, and quieter voice loops means fewer “ say again” calls and less distraction from visual and mental tasks, thus less stress. (Most flight controllers monitor 4 or 5 voice loops at once.) Links could be created from console log entries to chat selections so that underlying details are readily available yet unobtrusive. This would reduce the confusion that rises from having multiple and sometimes divergent copies of the same information due to cut/copy and paste operations, attachments, and asynchronous editing. This concept could apply to a plethora of real time control environments and to other settings with lots of information juggling. This paper explores the dashboard concept in further detail and chronic- es the first phase of a NASA IT

  13. Communications Dashboard (Control Rooms Take a Cue from Facebook), Chapter 1

    NASA Technical Reports Server (NTRS)

    Scott, David w.

    2013-01-01

    Papers published via IEEE and AIAA conferences have presented an overview of how social media could benefit NASA working environments in general and proposed three specific social applications to benefit space flight control operations. One of them, Communications Dashboard, would help a real time flight controller keep up with both the "big picture" and significant details of operations via a cohesive interface similar to those of social networking services (SNS). Instead of recreational social features, "CommDash" would support functions like console logging, categorized and threaded text chat streams with enhanced accountability and graphics display features, high-level status displays driven by telemetry or other events, and an on-screen hailing function for requesting voice or text stream conversation. Moving certain voice conversations to text streams would reduce confusion and stress in two ways. Within text conversations, there would be far less repetition of content since text conversations have visual persistence and are reviewable instantly, e.g., there s no need to brief new participants to a discussion -- they just read what s already there. Remaining voice traffic would stand out more clearly, and quieter voice loops means fewer "say again" calls and less distraction from visual and mental tasks, thus less stress. (Most flight controllers monitor 4 or 5 voice loops at once.) Links could be created from console log entries to chat selections so that underlying details are readily available yet unobtrusive. This would reduce the confusion that rises from having multiple and sometimes divergent copies of the same information due to cut/copy and paste operations, attachments, and asynchronous editing. This concept could apply to a plethora of real time control environments and to other settings with lots of information juggling. This paper explores the dashboard concept in further detail and chronicles the first phase of a NASA IT Labs (Information

  14. Integrated low power digital gyro control electronics

    NASA Technical Reports Server (NTRS)

    M'Closkey, Robert (Inventor); Challoner, A. Dorian (Inventor); Grayver, Eugene (Inventor); Hayworth, Ken J. (Inventor)

    2005-01-01

    Embodiments of the invention generally encompass a digital, application specific integrated circuit (ASIC) has been designed to perform excitation of a selected mode within a vibratory rate gyroscope, damping, or force-rebalance, of other modes within the sensor, and signal demodulation of the in-phase and quadrature components of the signal containing the angular rate information. The ASIC filters dedicated to each channel may be individually programmed to accommodate different rate sensor designs/technology or variations within the same class of sensors. The ASIC architecture employs a low-power design, making the ASIC, particularly suitable for use in power-sensitive applications.

  15. Integrated Flight-propulsion Control Concepts for Supersonic Transport Airplanes

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Gilyard, Glenn B.; Gelhausen, Paul A.

    1990-01-01

    Integration of propulsion and flight control systems will provide significant performance improvements for supersonic transport airplanes. Increased engine thrust and reduced fuel consumption can be obtained by controlling engine stall margin as a function of flight and engine operating conditions. Improved inlet pressure recovery and decreased inlet drag can result from inlet control system integration. Using propulsion system forces and moments to augment the flight control system and airplane stability can reduce the flight control surface and tail size, weight, and drag. Special control modes may also be desirable for minimizing community noise and for emergency procedures. The overall impact of integrated controls on the takeoff gross weight for a generic high speed civil transport is presented.

  16. Integrated environmental control in the electric utility industry

    SciTech Connect

    Carr, R.C.

    1986-05-01

    An overview of integrated environmental control research and development efforts at the Electric Power Research Institute (EPRI) is provided. EPRI studies show that as much as a 50 percent reduction in total environmental control system costs for coal-fired power plants may be achievable by utilities using systematically integrated environmental control design methods. The bulk of these savings can be achieved through consolidation of several functions into one device. The remainder can come from improved plant heat rates, resulting in less fuel consumption and, thus, less flue gas to process and less emissions to control, and from eliminating unnecessary redundant control systems.

  17. IMPAC: An Integrated Methodology for Propulsion and Airframe Control

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay; Ouzts, Peter J.; Lorenzo, Carl F.; Mattern, Duane L.

    1991-01-01

    The National Aeronautics and Space Administration is actively involved in the development of enabling technologies that will lead towards aircraft with new/enhanced maneuver capabilities such as Short Take-Off Vertical Landing (STOVL) and high angle of attack performance. Because of the high degree of dynamic coupling between the airframe and propulsion systems of these types of aircraft, one key technology is the integration of the flight and propulsion control. The NASA Lewis Research Center approach to developing Integrated Flight Propulsion Control (IFPC) technologies is an in-house research program referred to as IMPAC (Integrated Methodology for Propulsion and Airframe Control). The goals of IMPAC are to develop a viable alternative to the existing integrated control design methodologies that will allow for improved system performance and simplicity of control law synthesis and implementation, and to demonstrate the applicability of the methodology to a supersonic STOVL fighter aircraft. Based on some preliminary control design studies that included evaluation of the existing methodologies, the IFPC design methodology that is emerging at the Lewis Research Center consists of considering the airframe and propulsion system as one integrated system for an initial centralized controller design and then partitioning the centralized controller into separate airframe and propulsion system subcontrollers to ease implementation and to set meaningful design requirements for detailed subsystem control design and evaluation. An overview of IMPAC is provided and detailed discussion of the various important design and evaluation steps in the methodology are included.

  18. Elements for successful sensor-based process control {Integrated Metrology}

    NASA Astrophysics Data System (ADS)

    Butler, Stephanie Watts

    1998-11-01

    Current productivity needs have stimulated development of alternative metrology, control, and equipment maintenance methods. Specifically, sensor applications provide the opportunity to increase productivity, tighten control, reduce scrap, and improve maintenance schedules and procedures. Past experience indicates a complete integrated solution must be provided for sensor-based control to be used successfully in production. In this paper, Integrated Metrology is proposed as the term for an integrated solution that will result in a successful application of sensors for process control. This paper defines and explores the perceived four elements of successful sensor applications: business needs, integration, components, and form. Based upon analysis of existing successful commercially available controllers, the necessary business factors have been determined to be strong, measurable industry-wide business needs whose solution is profitable and feasible. This paper examines why the key aspect of integration is the decision making process. A detailed discussion is provided of the components of most importance to sensor based control: decision-making methods, the 3R's of sensors, and connectivity. A metric for one of the R's (resolution) is proposed to allow focus on this important aspect of measurement. A form for these integrated components which synergistically partitions various aspects of control at the equipment and MES levels to efficiently achieve desired benefits is recommended.

  19. Long Duration Balloon Charge Controller Stack Integration

    NASA Astrophysics Data System (ADS)

    Clifford, Kyle

    NASA and the Columbia Scientific Balloon Facility are interested in updating the design of the charge controller on their long duration balloon (LDB) in order to enable the charge controllers to be directly interfaced via RS232 serial communication by a ground testing computers and the balloon's flight computer without the need to have an external electronics stack. The design involves creating a board that will interface with the existing boards in the charge controller in order to receive telemetry from and send commands to those boards, and interface with a computer through serial communication. The inputs to the board are digital status inputs indicating things like whether the photovoltaic panels are connected or disconnected; and analog inputs with information such as the battery voltage and temperature. The outputs of the board are 100ms duration command pulses that will switch relays that do things like connect the photovoltaic panels. The main component of this design is a PIC microcontroller which translates the outputs of the existing charge controller into serial data when interrogated by a ground testing or flight computer. Other components involved in the design are an AD7888 12-bit analog to digital converter, a MAX3232 serial transceiver, various other ICs, capacitors, resistors, and connectors.

  20. The first stage of BFS integrated system for nuclear materials control and accounting. Final report

    SciTech Connect

    1996-09-01

    The BFS computerized accounting system is a network-based one. It runs in a client/server mode. The equipment used in the system includes a computer network consisting of: One server computer system, including peripheral hardware and three client computer systems. The server is located near the control room of the BFS-2 facility outside of the `stone sack` to ensure access during operation of the critical assemblies. Two of the client computer systems are located near the assembly tables of the BFS-1 and BFS-2 facilities while the third one being the Fissile Material Storage. This final report details the following topics: Computerized nuclear material accounting methods; The portal monitoring system; Test and evaluation of item control technology; Test and evaluation of radiation based nuclear material measurement equipment; and The integrated demonstration of nuclear material control and accounting methods.

  1. Integrated alarm annunciation and entry control systems -- Survey results

    SciTech Connect

    Clever, J.J.; Arakaki, L.H.; Monaco, F.M.; Juarros, L.E.; Quintana, G.R.

    1993-10-01

    This report provides the results and analyses of a detailed survey undertaken in Summer 1993 to address integrated intrusion detection alarm annunciation and entry control system issues. This survey was undertaken as a first attempt toward beginning to answer questions about integrated systems and commercial capabilities to meet or partially meet US Department of Energy (DOE) site needs.

  2. Integrated Insect Control May Alter Pesticide Use Pattern

    ERIC Educational Resources Information Center

    Worthy, Ward

    1973-01-01

    Discusses the use of predators, parasites, bacteria, viruses, hormones, pheromones, and sterile-male release and insect-resistance imparting techniques in pest control. Concludes with comments from chemical pesticide companies as popular attitudes toward the integrated pest management. (CC)

  3. A Facile pH Controlled Citrate-Based Reduction Method for Gold Nanoparticle Synthesis at Room Temperature.

    PubMed

    Tyagi, Himanshu; Kushwaha, Ajay; Kumar, Anshuman; Aslam, Mohammed

    2016-12-01

    The synthesis of gold nanoparticles using citrate reduction process has been revisited. A simplified room temperature approach to standard Turkevich synthesis is employed to obtain fairly monodisperse gold nanoparticles. The role of initial pH alongside the concentration ratio of reactants is explored for the size control of Au nanoparticles. The particle size distribution has been investigated using UV-vis spectroscopy and transmission electron microscope (TEM). At optimal pH of 5, gold nanoparticles obtained are highly monodisperse and spherical in shape and have narrower size distribution (sharp surface plasmon at 520 nm). For other pH conditions, particles are non-uniform and polydisperse, showing a red-shift in plasmon peak due to aggregation and large particle size distribution. The room temperature approach results in highly stable "colloidal" suspension of gold nanoparticles. The stability test through absorption spectroscopy indicates no sign of aggregation for a month. The rate of reduction of auric ionic species by citrate ions is determined via UV absorbance studies. The size of nanoparticles under various conditions is thus predicted using a theoretical model that incorporates nucleation, growth, and aggregation processes. The faster rate of reduction yields better size distribution for optimized pH and reactant concentrations. The model involves solving population balance equation for continuously evolving particle size distribution by discretization techniques. The particle sizes estimated from the simulations (13 to 25 nm) are close to the experimental ones (10 to 32 nm) and corroborate the similarity of reaction processes at 300 and 373 K (classical Turkevich reaction). Thus, substitution of experimentally measured rate of disappearance of auric ionic species into theoretical model enables us to capture the unusual experimental observations. PMID:27526178

  4. A Facile pH Controlled Citrate-Based Reduction Method for Gold Nanoparticle Synthesis at Room Temperature.

    PubMed

    Tyagi, Himanshu; Kushwaha, Ajay; Kumar, Anshuman; Aslam, Mohammed

    2016-12-01

    The synthesis of gold nanoparticles using citrate reduction process has been revisited. A simplified room temperature approach to standard Turkevich synthesis is employed to obtain fairly monodisperse gold nanoparticles. The role of initial pH alongside the concentration ratio of reactants is explored for the size control of Au nanoparticles. The particle size distribution has been investigated using UV-vis spectroscopy and transmission electron microscope (TEM). At optimal pH of 5, gold nanoparticles obtained are highly monodisperse and spherical in shape and have narrower size distribution (sharp surface plasmon at 520 nm). For other pH conditions, particles are non-uniform and polydisperse, showing a red-shift in plasmon peak due to aggregation and large particle size distribution. The room temperature approach results in highly stable "colloidal" suspension of gold nanoparticles. The stability test through absorption spectroscopy indicates no sign of aggregation for a month. The rate of reduction of auric ionic species by citrate ions is determined via UV absorbance studies. The size of nanoparticles under various conditions is thus predicted using a theoretical model that incorporates nucleation, growth, and aggregation processes. The faster rate of reduction yields better size distribution for optimized pH and reactant concentrations. The model involves solving population balance equation for continuously evolving particle size distribution by discretization techniques. The particle sizes estimated from the simulations (13 to 25 nm) are close to the experimental ones (10 to 32 nm) and corroborate the similarity of reaction processes at 300 and 373 K (classical Turkevich reaction). Thus, substitution of experimentally measured rate of disappearance of auric ionic species into theoretical model enables us to capture the unusual experimental observations.

  5. A Facile pH Controlled Citrate-Based Reduction Method for Gold Nanoparticle Synthesis at Room Temperature

    NASA Astrophysics Data System (ADS)

    Tyagi, Himanshu; Kushwaha, Ajay; Kumar, Anshuman; Aslam, Mohammed

    2016-08-01

    The synthesis of gold nanoparticles using citrate reduction process has been revisited. A simplified room temperature approach to standard Turkevich synthesis is employed to obtain fairly monodisperse gold nanoparticles. The role of initial pH alongside the concentration ratio of reactants is explored for the size control of Au nanoparticles. The particle size distribution has been investigated using UV-vis spectroscopy and transmission electron microscope (TEM). At optimal pH of 5, gold nanoparticles obtained are highly monodisperse and spherical in shape and have narrower size distribution (sharp surface plasmon at 520 nm). For other pH conditions, particles are non-uniform and polydisperse, showing a red-shift in plasmon peak due to aggregation and large particle size distribution. The room temperature approach results in highly stable "colloidal" suspension of gold nanoparticles. The stability test through absorption spectroscopy indicates no sign of aggregation for a month. The rate of reduction of auric ionic species by citrate ions is determined via UV absorbance studies. The size of nanoparticles under various conditions is thus predicted using a theoretical model that incorporates nucleation, growth, and aggregation processes. The faster rate of reduction yields better size distribution for optimized pH and reactant concentrations. The model involves solving population balance equation for continuously evolving particle size distribution by discretization techniques. The particle sizes estimated from the simulations (13 to 25 nm) are close to the experimental ones (10 to 32 nm) and corroborate the similarity of reaction processes at 300 and 373 K (classical Turkevich reaction). Thus, substitution of experimentally measured rate of disappearance of auric ionic species into theoretical model enables us to capture the unusual experimental observations.

  6. Microorganisms in Confined Habitats: Microbial Monitoring and Control of Intensive Care Units, Operating Rooms, Cleanrooms and the International Space Station

    PubMed Central

    Mora, Maximilian; Mahnert, Alexander; Koskinen, Kaisa; Pausan, Manuela R.; Oberauner-Wappis, Lisa; Krause, Robert; Perras, Alexandra K.; Gorkiewicz, Gregor; Berg, Gabriele; Moissl-Eichinger, Christine

    2016-01-01

    Indoor environments, where people spend most of their time, are characterized by a specific microbial community, the indoor microbiome. Most indoor environments are connected to the natural environment by high ventilation, but some habitats are more confined: intensive care units, operating rooms, cleanrooms and the international space station (ISS) are extraordinary living and working areas for humans, with a limited exchange with the environment. The purposes for confinement are different: a patient has to be protected from infections (intensive care unit, operating room), product quality has to be assured (cleanrooms), or confinement is necessary due to extreme, health-threatening outer conditions, as on the ISS. The ISS represents the most secluded man-made habitat, constantly inhabited by humans since November 2000 – and, inevitably, also by microorganisms. All of these man-made confined habitats need to be microbiologically monitored and controlled, by e.g., microbial cleaning and disinfection. However, these measures apply constant selective pressures, which support microbes with resistance capacities against antibiotics or chemical and physical stresses and thus facilitate the rise of survival specialists and multi-resistant strains. In this article, we summarize the available data on the microbiome of aforementioned confined habitats. By comparing the different operating, maintenance and monitoring procedures as well as microbial communities therein, we emphasize the importance to properly understand the effects of confinement on the microbial diversity, the possible risks represented by some of these microorganisms and by the evolution of (antibiotic) resistances in such environments – and the need to reassess the current hygiene standards. PMID:27790191

  7. Electric field control of magnetization in Cu2O/porous anodic alumina hybrid structures at room temperature

    NASA Astrophysics Data System (ADS)

    Qi, L. Q.; Liu, H. Y.; Sun, H. Y.; Liu, L. H.; Han, R. S.

    2016-04-01

    Cu2O nanoporous films are deposited on porous anodic alumina (PAA) substrates by DC-reactive magnetron sputtering. This paper focuses on voltage driven magnetization switching in Cu2O/PAA (CP) composite films prepared by DC-reactive magnetron sputtering. By applying a dc electric field, the magnetization of the CP composite films can be controlled in a reversible and reproducible way and shows an analogous on-off behavior. The magnitude of the change in the magnetization was about 75 emu/cm3 as the electric field was switched on and off. Resistive switching behavior was also observed in as-prepared CP composite films. Further analysis indicated that the formation/rupture of conducting filaments composed of oxygen vacancies is likely responsible for the changes in the magnetization as well as in the resistivity. Such reversible change of magnetization controlled by an electric field at room temperature may have applications in spintronics and power efficient data storage technologies.

  8. STOVL aircraft simulation for integrated flight and propulsion control research

    NASA Technical Reports Server (NTRS)

    Mihaloew, James R.; Drummond, Colin K.

    1989-01-01

    The United States is in the initial stages of committing to a national program to develop a supersonic short takeoff and vertical landing (STOVL) aircraft. The goal of the propulsion community in this effort is to have the enabling propulsion technologies for this type aircraft in place to permit a low risk decision regarding the initiation of a research STOVL supersonic attack/fighter aircraft in the late mid-90's. This technology will effectively integrate, enhance, and extend the supersonic cruise, STOVL and fighter/attack programs to enable U.S. industry to develop a revolutionary supersonic short takeoff and vertical landing fighter/attack aircraft in the post-ATF period. A joint NASA Lewis and NASA Ames research program, with the objective of developing and validating technology for integrated-flight propulsion control design methodologies for short takeoff and vertical landing (STOVL) aircraft, was planned and is underway. This program, the NASA Supersonic STOVL Integrated Flight-Propulsion Controls Program, is a major element of the overall NASA-Lewis Supersonic STOVL Propulsion Technology Program. It uses an integrated approach to develop an integrated program to achieve integrated flight-propulsion control technology. Essential elements of the integrated controls research program are realtime simulations of the integrated aircraft and propulsion systems which will be used in integrated control concept development and evaluations. This paper describes pertinent parts of the research program leading up to the related realtime simulation development and remarks on the simulation structure to accommodate propulsion system hardware drop-in for real system evaluation.

  9. System Engineering and Integration of Controls for Advanced Life Support

    NASA Technical Reports Server (NTRS)

    Overland, David; Hoo, Karlene; Ciskowski, Marvin

    2006-01-01

    The Advanced Integration Matrix (AIM) project at the Johnson Space Center (JSC) was chartered to study and solve systems-level integration issues for exploration missions. One of the first issues identified was an inability to conduct trade studies on control system architectures due to the absence of mature evaluation criteria. Such architectures are necessary to enable integration of regenerative life support systems. A team was formed to address issues concerning software and hardware architectures and system controls.. The team has investigated what is required to integrate controls for the types of non-linear dynamic systems encountered in advanced life support. To this end, a water processing bioreactor testbed is being developed which will enable prototyping and testing of integration strategies and technologies. Although systems such as the water bioreactors exhibit the complexities of interactions between control schemes most vividly, it is apparent that this behavior and its attendant risks will manifest itself among any set of interdependent autonomous control systems. A methodology for developing integration requirements for interdependent and autonomous systems is a goal of this team and this testbed. This paper is a high-level summary of the current status of the investigation, the issues encountered, some tentative conclusions, and the direction expected for further research.

  10. On Integrating the Components of Self-Control.

    PubMed

    Kotabe, Hiroki P; Hofmann, Wilhelm

    2015-09-01

    As the science of self-control matures, the organization and integration of its key concepts becomes increasingly important. In response, we identified seven major components or "nodes" in current theories and research bearing on self-control: desire, higher order goal, desire-goal conflict, control motivation, control capacity, control effort, and enactment constraints. To unify these diverse and interdisciplinary areas of research, we formulated the interplay of these components in an integrative model of self-control. In this model, desire and an at least partly incompatible higher order goal generate desire-goal conflict, which activates control motivation. Control motivation and control capacity interactively determine potential control effort. The actual control effort invested is determined by several moderators, including desire strength, perceived skill, and competing goals. Actual control effort and desire strength compete to determine a prevailing force, which ultimately determines behavior, provided that enactment constraints do not impede it. The proposed theoretical framework is useful for highlighting several new directions for research on self-control and for classifying self-control failures and self-control interventions.

  11. Development of the HIDEC inlet integration mode. [Highly Integrated Digital Electronic Control

    NASA Technical Reports Server (NTRS)

    Chisholm, J. D.; Nobbs, S. G.; Stewart, J. F.

    1990-01-01

    The Highly Integrated Digital Electronic Control (HIDEC) development program conducted at NASA-Ames/Dryden will use an F-15 test aircraft for flight demonstration. An account is presently given of the HIDEC Inlet Integration mode's design concept, control law, and test aircraft implementation, with a view to its performance benefits. The enhancement of performance is a function of the use of Digital Electronic Engine Control corrected engine airflow computations to improve the scheduling of inlet ramp positions in real time; excess thrust can thereby be increased by 13 percent at Mach 2.3 and 40,000 ft. Aircraft supportability is also improved through the obviation of inlet controllers.

  12. Integration of access control and ancillary information systems

    SciTech Connect

    Rodriguez, J.R.; Ahrens, J.S.

    1995-07-01

    The DOE has identified the Lawrence Livermore National Laboratory ARGUS system as the standard entry control system for the DOE Complex. ARGUS integrates several key functions, specifically, badging, entry control, and verification of clearance status. Not all sites need or can afford an ARGUS system. Such sites are therefore limited to commercial equipment which provide ARGUS like features. In this project an alternative way to integrate commercial equipment into an integrated system to include badging, access control, property control, and automated verification of clearance status has been investigated. Such a system would provide smaller sites the same functionality as is provided by ARGUS. Further, it would allow sites to fully participate in the DOE`s concept of Complex wide access control. This multi-year task is comprised of three phases. Phase 1, system requirements and definitions, and phase 2, software and hardware development, were completed during fiscal year 1994. This report covers these two phases and the demonstration system which resulted. Phase three would employ the demonstration system to evaluate system performance, identify operational limits and to integrate additional features. The demonstration system includes a badging station, a database server, a managers workstation, an entry control system, and a property protection system. The functions have been integrated through the use of custom interfaces and operator screens which greatly increase ease of use.

  13. Integrated management of Scotch broom (Cytisus scoparius) using biological control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Integrated weed management (IWM) strategies are being advocated and employed to control invasive plants species. In this study, we compared the impact of three management strategies [biological control alone (BC), BC with fire (BC + F), and BC with mowing (BC + M)] to determine if combining fire or...

  14. Attachment-Focused Integrative Reminiscence with Older African-Americans: A Randomized Controlled Intervention Study

    PubMed Central

    Henderson, Charles R.; Kang, Suk-Young; Pillemer, Karl

    2015-01-01

    Objectives Prior integrative reminiscence interventions have had a limited focus on attachment themes. The Attachment-Focused Integrative Reminiscence (AFIR) intervention differs from these in its central emphasis on attachment themes. The wide range of health benefits resulting from integrative reminiscence may be due in part to reminiscing about, mourning, and integrating unresolved attachment experiences. Method Participants were randomized into treatment and wait-list control conditions; completed a pre-test; met for 8 consecutive weekly 2-hour sessions of largely attachment-focused reminiscence; then completed post-tests immediately following the intervention and again 6 months later. Results Results show treatment effects for depression (p = .01 and .05 at 8 weeks and 6 months), perceived stress (p = .01 and .04), and emergency room (ER) visits at 6 months (p = .04), with the intervention group showing lower depression and stress and fewer ER visits. Conclusion Integrative reminiscence interventions are cost-effective, have rapid impact, and carry a certain appeal to older adults. Augmenting such interventions with a focus on attachment experiences may reduce perceived stress, an important health risk factor. Wider application of AFIRs may further reduce health disparities among U.S. older adults. PMID:25812080

  15. Impact of active controls technology on structural integrity

    NASA Technical Reports Server (NTRS)

    Noll, Thomas; Austin, Edward; Donley, Shawn; Graham, George; Harris, Terry

    1991-01-01

    This paper summarizes the findings of The Technical Cooperation Program to assess the impact of active controls technology on the structural integrity of aeronautical vehicles and to evaluate the present state-of-the-art for predicting the loads caused by a flight-control system modification and the resulting change in the fatigue life of the flight vehicle. The potential for active controls to adversely affect structural integrity is described, and load predictions obtained using two state-of-the-art analytical methods are given.

  16. Rotorcraft flight-propulsion control integration: An eclectic design concept

    NASA Technical Reports Server (NTRS)

    Mihaloew, James R.; Ballin, Mark G.; Ruttledge, D. C. G.

    1988-01-01

    The NASA Ames and Lewis Research Centers, in conjunction with the Army Research and Technology Laboratories, have initiated and partially completed a joint research program focused on improving the performance, maneuverability, and operating characteristics of rotorcraft by integrating the flight and propulsion controls. The background of the program, its supporting programs, its goals and objectives, and an approach to accomplish them are discussed. Results of the modern control governor design of the General Electric T700 engine and the Rotorcraft Integrated Flight-Propulsion Control Study, which were key elements of the program, are also presented.

  17. Propulsion/flight control integration technology (PROFIT) software system definition

    NASA Technical Reports Server (NTRS)

    Carlin, C. M.; Hastings, W. J.

    1978-01-01

    The Propulsion Flight Control Integration Technology (PROFIT) program is designed to develop a flying testbed dedicated to controls research. The control software for PROFIT is defined. Maximum flexibility, needed for long term use of the flight facility, is achieved through a modular design. The Host program, processes inputs from the telemetry uplink, aircraft central computer, cockpit computer control and plant sensors to form an input data base for use by the control algorithms. The control algorithms, programmed as application modules, process the input data to generate an output data base. The Host program formats the data for output to the telemetry downlink, the cockpit computer control, and the control effectors. Two applications modules are defined - the bill of materials F-100 engine control and the bill of materials F-15 inlet control.

  18. NASA Integrated Network Monitor and Control Software Architecture

    NASA Technical Reports Server (NTRS)

    Shames, Peter; Anderson, Michael; Kowal, Steve; Levesque, Michael; Sindiy, Oleg; Donahue, Kenneth; Barnes, Patrick

    2012-01-01

    The National Aeronautics and Space Administration (NASA) Space Communications and Navigation office (SCaN) has commissioned a series of trade studies to define a new architecture intended to integrate the three existing networks that it operates, the Deep Space Network (DSN), Space Network (SN), and Near Earth Network (NEN), into one integrated network that offers users a set of common, standardized, services and interfaces. The integrated monitor and control architecture utilizes common software and common operator interfaces that can be deployed at all three network elements. This software uses state-of-the-art concepts such as a pool of re-programmable equipment that acts like a configurable software radio, distributed hierarchical control, and centralized management of the whole SCaN integrated network. For this trade space study a model-based approach using SysML was adopted to describe and analyze several possible options for the integrated network monitor and control architecture. This model was used to refine the design and to drive the costing of the four different software options. This trade study modeled the three existing self standing network elements at point of departure, and then described how to integrate them using variations of new and existing monitor and control system components for the different proposed deployments under consideration. This paper will describe the trade space explored, the selected system architecture, the modeling and trade study methods, and some observations on useful approaches to implementing such model based trade space representation and analysis.

  19. Rooms with a View

    ERIC Educational Resources Information Center

    Hourihan, Peter; Berry, Millard, III

    2006-01-01

    When well-designed and integrated into a campus living or learning space, an atrium can function as the heart and spirit of a building, connecting interior rooms and public spaces with the outside environment. However, schools and universities should seek technological and HVAC solutions that maximize energy efficiency. This article discusses how…

  20. Controllable Growth of Perovskite Films by Room-Temperature Air Exposure for Efficient Planar Heterojunction Photovoltaic Cells.

    PubMed

    Yang, Bin; Dyck, Ondrej; Poplawsky, Jonathan; Keum, Jong; Das, Sanjib; Puretzky, Alexander; Aytug, Tolga; Joshi, Pooran C; Rouleau, Christopher M; Duscher, Gerd; Geohegan, David B; Xiao, Kai

    2015-12-01

    A two-step solution processing approach has been established to grow void-free perovskite films for low-cost high-performance planar heterojunction photovoltaic devices. A high-temperature thermal annealing treatment was applied to drive the diffusion of CH3NH3I precursor molecules into a compact PbI2 layer to form perovskite films. However, thermal annealing for extended periods led to degraded device performance owing to the defects generated by decomposition of perovskite into PbI2. A controllable layer-by-layer spin-coating method was used to grow "bilayer" CH3NH3I/PbI2 films, and then drive the interdiffusion between PbI2 and CH3NH3I layers by a simple air exposure at room temperature for making well-oriented, highly crystalline perovskite films without thermal annealing. This high degree of crystallinity resulted in a carrier diffusion length of ca. 800 nm and a high device efficiency of 15.6%, which is comparable to values reported for thermally annealed perovskite films.

  1. Controllable Growth of Perovskite Films by Room-Temperature Air Exposure for Efficient Planar Heterojunction Photovoltaic Cells.

    PubMed

    Yang, Bin; Dyck, Ondrej; Poplawsky, Jonathan; Keum, Jong; Das, Sanjib; Puretzky, Alexander; Aytug, Tolga; Joshi, Pooran C; Rouleau, Christopher M; Duscher, Gerd; Geohegan, David B; Xiao, Kai

    2015-12-01

    A two-step solution processing approach has been established to grow void-free perovskite films for low-cost high-performance planar heterojunction photovoltaic devices. A high-temperature thermal annealing treatment was applied to drive the diffusion of CH3NH3I precursor molecules into a compact PbI2 layer to form perovskite films. However, thermal annealing for extended periods led to degraded device performance owing to the defects generated by decomposition of perovskite into PbI2. A controllable layer-by-layer spin-coating method was used to grow "bilayer" CH3NH3I/PbI2 films, and then drive the interdiffusion between PbI2 and CH3NH3I layers by a simple air exposure at room temperature for making well-oriented, highly crystalline perovskite films without thermal annealing. This high degree of crystallinity resulted in a carrier diffusion length of ca. 800 nm and a high device efficiency of 15.6%, which is comparable to values reported for thermally annealed perovskite films. PMID:26486584

  2. Integrated control/structure optimization by multilevel decomposition

    NASA Technical Reports Server (NTRS)

    Zeiler, Thomas A.; Gilbert, Michael G.

    1990-01-01

    A method for integrated control/structure optimization by multilevel decomposition is presented. It is shown that several previously reported methods were actually partial decompositions wherein only the control was decomposed into a subsystem design. One of these partially decomposed problems was selected as a benchmark example for comparison. The present paper fully decomposes the system into structural and control subsystem designs and produces an improved design. Theory, implementation, and results for the method are presented and compared with the benchmark example.

  3. Integrated control/structure optimization by multilevel decomposition

    NASA Technical Reports Server (NTRS)

    Zeiler, Thomas A.; Gilbert, Michael G.

    1990-01-01

    A method for integrated control/structure optimization by multilevel decomposition is presented. It is shown that several previously reported methods were actually partial decompositions wherein only the control was decomposed into a subsystem design. One of these partially decomposed problems was selected as a benchmark example for comparison. The system is fully decomposed into structural and control subsystem designs and an improved design is produced. Theory, implementation, and results for the method are presented and compared with the benchmark example.

  4. Integration scheme of nanoscale resistive switching memory using bottom-up processes at room temperature for high-density memory applications

    PubMed Central

    Han, Un-Bin; Lee, Jang-Sik

    2016-01-01

    A facile and versatile scheme is demonstrated to fabricate nanoscale resistive switching memory devices that exhibit reliable bipolar switching behavior. A solution process is used to synthesize the copper oxide layer into 250-nm via-holes that had been patterned in Si wafers. Direct bottom-up filling of copper oxide can facilitate fabrication of nanoscale memory devices without using vacuum deposition and etching processes. In addition, all materials and processes are CMOS compatible, and especially, the devices can be fabricated at room temperature. Nanoscale memory devices synthesized on wafers having 250-nm via-holes showed reproducible resistive switching programmable memory characteristics with reasonable endurance and data retention properties. This integration strategy provides a solution to overcome the scaling limit of current memory device fabrication methods. PMID:27364856

  5. Integration scheme of nanoscale resistive switching memory using bottom-up processes at room temperature for high-density memory applications

    NASA Astrophysics Data System (ADS)

    Han, Un-Bin; Lee, Jang-Sik

    2016-07-01

    A facile and versatile scheme is demonstrated to fabricate nanoscale resistive switching memory devices that exhibit reliable bipolar switching behavior. A solution process is used to synthesize the copper oxide layer into 250-nm via-holes that had been patterned in Si wafers. Direct bottom-up filling of copper oxide can facilitate fabrication of nanoscale memory devices without using vacuum deposition and etching processes. In addition, all materials and processes are CMOS compatible, and especially, the devices can be fabricated at room temperature. Nanoscale memory devices synthesized on wafers having 250-nm via-holes showed reproducible resistive switching programmable memory characteristics with reasonable endurance and data retention properties. This integration strategy provides a solution to overcome the scaling limit of current memory device fabrication methods.

  6. Human-factors control-room-design review draft audit report: Detroit Edison Company, Enrico Fermi Atomic Power Plant--Unit 2

    SciTech Connect

    Savage, J.W.

    1981-08-12

    A human factors audit of the Fermi-2 control room was conducted April 27 through May 1, 1981. This report contains the audit team findings, organized according to the draft NUREG-0700 guidelines sections. The discrepancies identified during the audit are categorized according to their severity and the required schedule for their resolution.

  7. High-pressure testing of heterogeneous charge transfer in a room-temperature ionic liquid: evidence for solvent dynamic control.

    PubMed

    Dolidze, Tina D; Khoshtariya, Dimitri E; Illner, Peter; Kulisiewicz, Leszek; Delgado, Antonio; van Eldik, Rudi

    2008-03-13

    We report the first application of a high-pressure electrochemical strategy to study heterogeneous charge transfer (CT) in a room-temperature ionic liquid, [BMIM][BTA]. High-pressure kinetic studies on electron exchange for two redox couples of different charge type, viz. [Fe(bipy)3]3+/2+ and [Fe(cp)2]+/0, at bare Au electrodes within the range of 0.1-150 MPa, revealed large positive volumes of activation that were found to be virtually the same for the two redox couples in terms of the CT rate constants and diffusion coefficients, despite the reactant's charge type. Independent viscosity (fluidity) studies at elevated pressure (up to 175 MPa), were also performed and revealed a pressure coefficient closely resembling the former ones. Complementary temperature-dependent kinetic studies within the range of 298-358 K also revealed the virtual similarity in activation enthalpies for the same kinetic and diffusion processes, as well as the viscosity of [BMIM][BTA]. A rigorous analysis of the complete variety of obtained results strongly indicates that dynamic (frictional) control of CT is operative by way of the full adiabatic mechanism. The contribution of the Franck-Condon term to the activation free energy of the kinetic process seems almost diminished because of the high value of electronic coupling and freezing out of the outer-sphere reorganization energy. Further analyses indicate that frictional control most probably takes place through slow translational modes (implying "minimal volume" cooperative dislocations) of constituent ions. This kind of motion seems further slowed down within the vicinity of the active site presumably located within the diffusive-like zone situated next to the compact (first) part of the metal/ionic liquid junction. PMID:18278899

  8. Leap Motion Gesture Control With Carestream Software in the Operating Room to Control Imaging: Installation Guide and Discussion.

    PubMed

    Pauchot, Julien; Di Tommaso, Laetitia; Lounis, Ahmed; Benassarou, Mourad; Mathieu, Pierre; Bernot, Dominique; Aubry, Sébastien

    2015-12-01

    Nowadays, routine cross-sectional imaging viewing during a surgical procedure requires physical contact with an interface (mouse or touch-sensitive screen). Such contact risks exposure to aseptic conditions and causes loss of time. Devices such as the recently introduced Leap Motion (Leap Motion Society, San Francisco, CA), which enables interaction with the computer without any physical contact, are of wide interest in the field of surgery, but configuration and ergonomics are key challenges for the practitioner, imaging software, and surgical environment. This article aims to suggest an easy configuration of Leap Motion on a PC for optimized use with Carestream Vue PACS v11.3.4 (Carestream Health, Inc, Rochester, NY) using a plug-in (to download at https://drive.google.com/open?id=0B_F4eBeBQc3yNENvTXlnY09qS00&authuser=0) and a video tutorial (https://www.youtube.com/watch?v=yVPTgxg-SIk). Videos of surgical procedure and discussion about innovative gesture control technology and its various configurations are provided in this article.

  9. Leap Motion Gesture Control With Carestream Software in the Operating Room to Control Imaging: Installation Guide and Discussion.

    PubMed

    Pauchot, Julien; Di Tommaso, Laetitia; Lounis, Ahmed; Benassarou, Mourad; Mathieu, Pierre; Bernot, Dominique; Aubry, Sébastien

    2015-12-01

    Nowadays, routine cross-sectional imaging viewing during a surgical procedure requires physical contact with an interface (mouse or touch-sensitive screen). Such contact risks exposure to aseptic conditions and causes loss of time. Devices such as the recently introduced Leap Motion (Leap Motion Society, San Francisco, CA), which enables interaction with the computer without any physical contact, are of wide interest in the field of surgery, but configuration and ergonomics are key challenges for the practitioner, imaging software, and surgical environment. This article aims to suggest an easy configuration of Leap Motion on a PC for optimized use with Carestream Vue PACS v11.3.4 (Carestream Health, Inc, Rochester, NY) using a plug-in (to download at https://drive.google.com/open?id=0B_F4eBeBQc3yNENvTXlnY09qS00&authuser=0) and a video tutorial (https://www.youtube.com/watch?v=yVPTgxg-SIk). Videos of surgical procedure and discussion about innovative gesture control technology and its various configurations are provided in this article. PMID:26002115

  10. INCORPORATION OF HUMAN FACTORS ENGINEERING ANALYSES AND TOOLS INTO THE DESIGN PROCESS FOR DIGITAL CONTROL ROOM UPGRADES.

    SciTech Connect

    O'HARA,J.M.; BROWN,W.

    2004-09-19

    Many nuclear power plants are modernizing with digital instrumentation and control systems and computer-based human-system interfaces (HSIs). The purpose of this paper is to summarize the human factors engineering (HFE) activities that can help to ensure that the design meets personnel needs. HFE activities should be integrated into the design process as a regular part of the engineering effort of a plant modification. The HFE activities will help ensure that human performance issues are addressed, that new technology supports task performance, and that the HSIs are designed in a manner that is compatible with human physiological, cognitive and social characteristics.

  11. A rotorcraft flight/propulsion control integration study

    NASA Technical Reports Server (NTRS)

    Ruttledge, D. G. C.

    1986-01-01

    An eclectic approach was taken to a study of the integration of digital flight and propulsion controls for helicopters. The basis of the evaluation was the current Gen Hel simulation of the UH-60A Black Hawk helicopter with a model of the GE T700 engine. A list of flight maneuver segments to be used in evaluating the effectiveness of such an integrated control system was composed, based on past experience and an extensive survey of the U.S. Army Air-to-Air Combat Test data. A number of possible features of an integrated system were examined and screened. Those that survived the screening were combined into a design that replaced the T700 fuel control and part of the control system in the UH-60A Gen Hel simulation. This design included portions of an existing pragmatic adaptive fuel control designed by the Chandler-Evans Company and an linear quadratic regulator (LQR) based N(p) governor designed by the GE company, combined with changes in the basic Sikorsky Aircraft designed control system. The integrated system exhibited improved total performance in many areas of the flight envelope.

  12. Integrated Controls-Structures Design Methodology for Flexible Spacecraft

    NASA Technical Reports Server (NTRS)

    Maghami, P. G.; Joshi, S. M.; Price, D. B.

    1995-01-01

    This paper proposes an approach for the design of flexible spacecraft, wherein the structural design and the control system design are performed simultaneously. The integrated design problem is posed as an optimization problem in which both the structural parameters and the control system parameters constitute the design variables, which are used to optimize a common objective function, thereby resulting in an optimal overall design. The approach is demonstrated by application to the integrated design of a geostationary platform, and to a ground-based flexible structure experiment. The numerical results obtained indicate that the integrated design approach generally yields spacecraft designs that are substantially superior to the conventional approach, wherein the structural design and control design are performed sequentially.

  13. Integration of multiple sensor fusion in controller design.

    PubMed

    Abdelrahman, Mohamed; Kandasamy, Parameshwaran

    2003-04-01

    The main focus of this research is to reduce the risk of a catastrophic response of a feedback control system when some of the feedback data from the system sensors are not reliable, while maintaining a reasonable performance of the control system. In this paper a methodology for integrating multiple sensor fusion into the controller design is presented. The multiple sensor fusion algorithm produces, in addition to the estimate of the measurand, a parameter that measures the confidence in the estimated value. This confidence is integrated as a parameter into the controller to produce fast system response when the confidence in the estimate is high, and a slow response when the confidence in the estimate is low. Conditions for the stability of the system with the developed controller are discussed. This methodology is demonstrated on a cupola furnace model. The simulations illustrate the advantages of the new methodology.

  14. Memory's Room.

    ERIC Educational Resources Information Center

    Carruthers, Mary

    1999-01-01

    Describes the Liberal Arts Studiolo from the Ducal Palace at Guibbio, Italy. Discusses how the room's design and decoration mirrors its educational uses. Notes that the object of education was to provide the young person with a kind of mental library of materials that could be drawn upon quickly. (RS)

  15. Smooth integral sliding mode controller for the position control of Stewart platform.

    PubMed

    Kumar P, Ramesh; Chalanga, Asif; Bandyopadhyay, B

    2015-09-01

    This paper proposes the application of a new algorithm for the position control of a Stewart platform. The conventional integral sliding mode controller is a combination of nominal control and discontinuous feedback control hence the overall control is discontinuous in nature. The discontinuity in the feedback control is undesirable for practical applications due to chattering which causes the wear and tear of the mechanical actuators. In this paper the existing integral sliding mode control law for systems with matched disturbances is modified by replacing the discontinuous part by a continuous modified twisting control. This proposed controller is continuous in nature due to the combinations of two continuous controls. The desired position of the platform has been achieved using the proposed controller even in the presence of matched disturbances. The effectiveness of the proposed controller has been proved with the simulation results.

  16. Electron tunneling infrared sensor module with integrated control circuitry

    NASA Technical Reports Server (NTRS)

    Boyadzhyan-Sevak, Vardkes V. (Inventor)

    2001-01-01

    In an integrated electron tunneling sensor, an automatic tunneling control circuit varies a high voltage bias applied to the sensor deflection electrode in response to changes in sensor output to maintain the proper gap between the sensor tip and membrane. The control circuit ensures stable tunneling activity in the presence of large signals and other disturbances to the sensor. Output signals from the module may be derived from the amplified sensor output. The integrated sensor module is particularly well adapted for use in blood glucose measurement and monitoring system.

  17. Buried waste integrated demonstration human engineered control station. Final report

    SciTech Connect

    Not Available

    1994-09-01

    This document describes the Human Engineered Control Station (HECS) project activities including the conceptual designs. The purpose of the HECS is to enhance the effectiveness and efficiency of remote retrieval by providing an integrated remote control station. The HECS integrates human capabilities, limitations, and expectations into the design to reduce the potential for human error, provides an easy system to learn and operate, provides an increased productivity, and reduces the ultimate investment in training. The overall HECS consists of the technology interface stations, supporting engineering aids, platform (trailer), communications network (broadband system), and collision avoidance system.

  18. Construction CAE; Integration of CAD, simulation, planning and cost control

    SciTech Connect

    Wickard, D.A. ); Bill, R.D.; Gates, K.H.; Yoshinaga, T.; Ohcoshi, S. )

    1989-01-01

    Construction CAE is a simulation, planning, scheduling, and cost control tool that is integrated with a computer aided design (CAD) system. The system uses a CAD model and allows the user to perform construction simulation on objects defined within the model. Initial cost/schedule reports as well as those required for project chronicling are supported through an interface to a work breakdown structure (WBS) and a client's existing schedule reporting system. By integrating currently available project control tools with a simulation system, Construction CAE is more effective than its individual components.

  19. Adaptive robust controller based on integral sliding mode concept

    NASA Astrophysics Data System (ADS)

    Taleb, M.; Plestan, F.

    2016-09-01

    This paper proposes, for a class of uncertain nonlinear systems, an adaptive controller based on adaptive second-order sliding mode control and integral sliding mode control concepts. The adaptation strategy solves the problem of gain tuning and has the advantage of chattering reduction. Moreover, limited information about perturbation and uncertainties has to be known. The control is composed of two parts: an adaptive one whose objective is to reject the perturbation and system uncertainties, whereas the second one is chosen such as the nominal part of the system is stabilised in zero. To illustrate the effectiveness of the proposed approach, an application on an academic example is shown with simulation results.

  20. Integrated, proportionally controlled, and naturally compliant universal joint actuator with controllable stiffness

    DOEpatents

    Borenstein, Johann; Granosik, Grzegorz

    2005-03-22

    An apparatus for traversing obstacles having an elongated, round, flexible body that includes a plurality of segments interconnected by an integrated joint actuator assembly. The integrated joint actuator assembly includes a plurality of bellows-type actuators individually coupling adjacent segments to permit pivotal actuation of the apparatus therebetween. A controller is employed to maintain proper positional control and stiffness control while minimize air flow.

  1. Size-controlled stabilization of the superionic phase to room temperature in polymer-coated AgI nanoparticles.

    PubMed

    Makiura, Rie; Yonemura, Takayuki; Yamada, Teppei; Yamauchi, Miho; Ikeda, Ryuichi; Kitagawa, Hiroshi; Kato, Kenichi; Takata, Masaki

    2009-06-01

    Solid-state ionic conductors are actively studied for their large application potential in batteries and sensors. From the view of future nanodevices, nanoscaled ionic conductors are attracting much interest. Silver iodide (AgI) is a well-known ionic conductor for which the high-temperature alpha-phase shows a superionic conductivity greater than 1 Omega(-1) cm(-1). Below 147 degrees C, alpha-AgI undergoes a phase transition into the poorly conducting beta- and gamma-polymorphs, thereby limiting its applications. Here, we report the facile synthesis of variable-size AgI nanoparticles coated with poly-N-vinyl-2-pyrrolidone (PVP) and the controllable tuning of the alpha- to beta-/gamma-phase transition temperature (Tc). Tc shifts considerably to lower temperatures with decreasing nanoparticle size, leading to a progressively enlarged thermal hysteresis. Specifically, when the size approaches 10-11 nm, the alpha-phase survives down to 30 degrees C--the lowest temperature for any AgI family material. We attribute the suppression of the phase transition not only to the increase of the surface energy, but also to the presence of defects and the accompanying charge imbalance induced by PVP. Moreover, the conductivity of as-prepared 11 nm beta-/gamma-AgI nanoparticles at 24 degrees C is approximately 1.5 x 10(-2) Omega(-1) cm(-1)--the highest ionic conductivity for a binary solid at room temperature. The stabilized superionic phase and the remarkable transport properties at a practical temperature reported here suggest promising applications in silver-ion-based electrochemical devices.

  2. Size-controlled stabilization of the superionic phase to room temperature in polymer-coated AgI nanoparticles

    NASA Astrophysics Data System (ADS)

    Makiura, Rie; Yonemura, Takayuki; Yamada, Teppei; Yamauchi, Miho; Ikeda, Ryuichi; Kitagawa, Hiroshi; Kato, Kenichi; Takata, Masaki

    2009-06-01

    Solid-state ionic conductors are actively studied for their large application potential in batteries and sensors. From the view of future nanodevices, nanoscaled ionic conductors are attracting much interest. Silver iodide (AgI) is a well-known ionic conductor for which the high-temperature α-phase shows a superionic conductivity greater than 1Ω-1cm-1 (ref. 6). Below 147∘C, α-AgI undergoes a phase transition into the poorly conducting β- and γ-polymorphs, thereby limiting its applications. Here, we report the facile synthesis of variable-size AgI nanoparticles coated with poly-N-vinyl-2-pyrrolidone (PVP) and the controllable tuning of the α- to β-/γ-phase transition temperature (Tc↓). Tc↓ shifts considerably to lower temperatures with decreasing nanoparticle size, leading to a progressively enlarged thermal hysteresis. Specifically, when the size approaches 10-11nm, the α-phase survives down to 30∘C-the lowest temperature for any AgI family material. We attribute the suppression of the phase transition not only to the increase of the surface energy, but also to the presence of defects and the accompanying charge imbalance induced by PVP. Moreover, the conductivity of as-prepared 11nm β-/γ-AgI nanoparticles at 24∘C is ~1.5×10-2Ω-1cm-1-the highest ionic conductivity for a binary solid at room temperature. The stabilized superionic phase and the remarkable transport properties at a practical temperature reported here suggest promising applications in silver-ion-based electrochemical devices.

  3. TICS-24 --- an Integrated Telescope Control System Using Hypercard

    NASA Astrophysics Data System (ADS)

    Hawkins, R. L.; Ratcliff, S. J.

    1993-12-01

    Starting from scripts generously provided by Ratcliff, the author has developed an integrated telescope and instrumentation control system for Hypercard on the Macintosh. The Telescope Integrated Control System (TICS-24) uses Hypercard scripts, HyperBASIC XFCN's, and APDA serial port XFCN's to control a telescope and another instrument over the built-in serial ports on a Macintosh. Additionally, TICS-24 has the ability to act as an object database with finder charts for frequently observed targets. The system is expandable, since new functions simply become new scripts and/or ``cards''. The system is also easily adaptable to other telescopes and instrumentation, since controlling a different telescope or instrument only requires rewriting the actual serial commands to match those expected by the new instrument.

  4. The reading room: Exploring the use of literature as a strategy for integrating threshold concepts into nursing curricula.

    PubMed

    McAllister, Margaret; Lasater, Kathie; Stone, Teresa Elizabeth; Levett-Jones, Tracy

    2015-11-01

    In addition to acquiring a solid foundation of clinical knowledge and skills, nursing students making the transition from lay person to health professional must adopt new conceptual understandings and values, while at the same time reflecting on and relinquishing ill-fitting attitudes and biases. This paper presents creative teaching ideas that utilise published narratives and explores the place of these narratives in teaching threshold concepts to nursing students. Appreciating nuance, symbolism and deeper layers of meaning in a well-drawn story can promote emotional engagement and cause learners to care deeply about an issue. Moreover, aesthetic learning, through the use of novels, memoirs and picture books, invites learners to enter into imagined worlds and can stimulate creative and critical thinking. This approach can also be a vehicle for transformative learning and for enhancing students' understanding and internalisation of threshold concepts that are integral to nursing. Guided engagement with the story by an effective educator can help learners to examine taken-for-granted assumptions, differentiate personal from professional values, remember the link between the story and the threshold concept and re-examine their own perspectives; this can result in transformative learning. In this paper, we show how threshold concepts can be introduced and discussed with nursing students via guided engagement with specific literature, so as to prompt meaningful internalised learning. PMID:26310934

  5. The reading room: Exploring the use of literature as a strategy for integrating threshold concepts into nursing curricula.

    PubMed

    McAllister, Margaret; Lasater, Kathie; Stone, Teresa Elizabeth; Levett-Jones, Tracy

    2015-11-01

    In addition to acquiring a solid foundation of clinical knowledge and skills, nursing students making the transition from lay person to health professional must adopt new conceptual understandings and values, while at the same time reflecting on and relinquishing ill-fitting attitudes and biases. This paper presents creative teaching ideas that utilise published narratives and explores the place of these narratives in teaching threshold concepts to nursing students. Appreciating nuance, symbolism and deeper layers of meaning in a well-drawn story can promote emotional engagement and cause learners to care deeply about an issue. Moreover, aesthetic learning, through the use of novels, memoirs and picture books, invites learners to enter into imagined worlds and can stimulate creative and critical thinking. This approach can also be a vehicle for transformative learning and for enhancing students' understanding and internalisation of threshold concepts that are integral to nursing. Guided engagement with the story by an effective educator can help learners to examine taken-for-granted assumptions, differentiate personal from professional values, remember the link between the story and the threshold concept and re-examine their own perspectives; this can result in transformative learning. In this paper, we show how threshold concepts can be introduced and discussed with nursing students via guided engagement with specific literature, so as to prompt meaningful internalised learning.

  6. Propulsion control experience used in the Highly Integrated Digital Electronic Control (HIDEC) program

    NASA Technical Reports Server (NTRS)

    Myers, L. P.; Burcham, F. W., Jr.

    1984-01-01

    The highly integrated digital electronic control (HIDEC) program will integrate the propulsion and flight control systems on an F-15 airplane at NASA Ames Research Center's Dryden Flight Research Facility. Ames-Dryden has conducted several propulsion control programs that have contributed to the HIDEC program. The digital electronic engine control (DEEC) flight evaluation investigated the performance and operability of the F100 engine equipped with a full-authority digital electronic control system. Investigations of nozzle instability, fault detection and accommodation, and augmentor transient capability provided important information for the HIDEC program. The F100 engine model derivative (EMD) was also flown in the F-15 airplane, and airplane performance was significantly improved. A throttle response problem was found and solved with a software fix to the control logic. For the HIDEC program, the F100 EMD engines equipped with DEEC controls will be integrated with the digital flight control system. The control modes to be implemented are an integrated flightpath management mode and an integrated adaptive engine control system mode. The engine control experience that will be used in the HIDEC program is discussed.

  7. Integrated identification and robust control tuning for large space structures

    NASA Technical Reports Server (NTRS)

    Yam, Y.; Bayard, D. S.; Scheid, R. E.

    1990-01-01

    System identification is studied for the explicit purpose of supporting modern H-infinity robust control design objectives. In the analysis, the true plant is not assumed to be in the identification model set. An integrated identification/robust control problem is posed in which the optimal solution guarantees the best robust performance relative to the system information contained in a given experimental data set. A numerical example demonstrating an approximate solution to the problem indicates the usefulness of the approach.

  8. Performance analysis of Integrated Communication and Control System networks

    NASA Technical Reports Server (NTRS)

    Halevi, Y.; Ray, A.

    1990-01-01

    This paper presents statistical analysis of delays in Integrated Communication and Control System (ICCS) networks that are based on asynchronous time-division multiplexing. The models are obtained in closed form for analyzing control systems with randomly varying delays. The results of this research are applicable to ICCS design for complex dynamical processes like advanced aircraft and spacecraft, autonomous manufacturing plants, and chemical and processing plants.

  9. Design and Integration of an Actuated Nose Strake Control System

    NASA Technical Reports Server (NTRS)

    Flick, Bradley C.; Thomson, Michael P.; Regenie, Victoria A.; Wichman, Keith D.; Pahle, Joseph W.; Earls, Michael R.

    1996-01-01

    Aircraft flight characteristics at high angles of attack can be improved by controlling vortices shed from the nose. These characteristics have been investigated with the integration of the actuated nose strakes for enhanced rolling (ANSER) control system into the NASA F-18 High Alpha Research Vehicle. Several hardware and software systems were developed to enable performance of the research goals. A strake interface box was developed to perform actuator control and failure detection outside the flight control computer. A three-mode ANSER control law was developed and installed in the Research Flight Control System. The thrust-vectoring mode does not command the strakes. The strakes and thrust-vectoring mode uses a combination of thrust vectoring and strakes for lateral- directional control, and strake mode uses strakes only for lateral-directional control. The system was integrated and tested in the Dryden Flight Research Center (DFRC) simulation for testing before installation in the aircraft. Performance of the ANSER system was monitored in real time during the 89-flight ANSER flight test program in the DFRC Mission Control Center. One discrepancy resulted in a set of research data not being obtained. The experiment was otherwise considered a success with the majority of the research objectives being met.

  10. Development of an integrated control and measurement system

    SciTech Connect

    Manges, W.W.

    1984-03-01

    This thesis presents a tutorial on the issues involved in the development of a minicomputer-based, distributed intelligence data acquisition and process control system to support complex experimental facilities. The particular system discussed in this thesis is under development for the Atomic Vapor Laser Isotope Separation (AVLIS) Program at the Oak Ridge Gaseous Diffusion Plant (ORGDP). In the AVLIS program, we were careful to integrate the computer sections of the implementation into the instrumentation system rather than adding them as an appendage. We then addressed the reliability and availability of the system as a separate concern. Thus, our concept of an integrated control and measurement (ICAM) system forms the basis for this thesis. This thesis details the logic and philosophy that went into the development of this system and explains why the commercially available turn-key systems generally are not suitable. Also, the issues involved in the specification of the components for such an integrated system are emphasized.

  11. Accelerometer Method and Apparatus for Integral Display and Control Functions

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr. (Inventor)

    1996-01-01

    Method and apparatus for detecting mechanical vibrations and outputting a signal in response thereto. Art accelerometer package having integral display and control functions is suitable for mounting upon the machinery to be monitored. Display circuitry provides signals to a bar graph display which may be used to monitor machine conditions over a period of time. Control switches may be set which correspond to elements in the bar graph to provide an alert if vibration signals increase in amplitude over a selected trip point. The circuitry is shock mounted within the accelerometer housing. The method provides for outputting a broadband analog accelerometer signal, integrating this signal to produce a velocity signal, integrating and calibrating the velocity signal before application to a display driver, and selecting a trip point at which a digitally compatible output signal is generated.

  12. Accelerometer Method and Apparatus for Integral Display and Control Functions

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr. (Inventor)

    1998-01-01

    Method and apparatus for detecting mechanical vibrations and outputting a signal in response thereto is discussed. An accelerometer package having integral display and control functions is suitable for mounting upon the machinery to be monitored. Display circuitry provides signals to a bar graph display which may be used to monitor machine conditions over a period of time. Control switches may be set which correspond to elements in the bar graph to provide an alert if vibration signals increase in amplitude over a selected trip point. The circuitry is shock mounted within the accelerometer housing. The method provides for outputting a broadband analog accelerometer signal, integrating this signal to produce a velocity signal, integrating and calibrating the velocity signal before application to a display driver, and selecting a trip point at which a digitally compatible output signal is generated.

  13. Specification for integrated controls and monitoring for fossil power plants

    SciTech Connect

    McKinley, J.H.; Papilla, R.P.; Shendrikar, U.D. )

    1991-06-01

    This specification was prepared by Southern California Edison Co. and used to bid the contract for a state-of-the-art integrated control and monitoring system for the El Segundo control system retrofit project. The system will be installed on Units 3 and 4 during a 12 week scheduled outage beginning in January, 1991. Since early 1989, EPRI has been cost sharing this project with SCE under research project RP2922-2. This specification is one of seven supplemental EPRI reports that will be generated from the project besides interim and final guidelines for integrated controls and monitoring for fossil power plants. The specification is a first-of-a-kind, requiring bidders to apply enhanced control logic and advanced control algorithms, and integrate various diagnostic, expert systems, performance monitoring, and other condition monitoring applications with a DCS. The proof of the quality and comprehensiveness of this specification is apparent as the project moves forward with only a few months before system delivery: There are few issues that have had to be addressed separately from the specification. The information contained in this report should be useful for any utility launching a control system upgrade project.

  14. Developing an Integration Infrastructure for Distributed Engine Control Technologies

    NASA Technical Reports Server (NTRS)

    Culley, Dennis; Zinnecker, Alicia; Aretskin-Hariton, Eliot; Kratz, Jonathan

    2014-01-01

    Turbine engine control technology is poised to make the first revolutionary leap forward since the advent of full authority digital engine control in the mid-1980s. This change aims squarely at overcoming the physical constraints that have historically limited control system hardware on aero-engines to a federated architecture. Distributed control architecture allows complex analog interfaces existing between system elements and the control unit to be replaced by standardized digital interfaces. Embedded processing, enabled by high temperature electronics, provides for digitization of signals at the source and network communications resulting in a modular system at the hardware level. While this scheme simplifies the physical integration of the system, its complexity appears in other ways. In fact, integration now becomes a shared responsibility among suppliers and system integrators. While these are the most obvious changes, there are additional concerns about performance, reliability, and failure modes due to distributed architecture that warrant detailed study. This paper describes the development of a new facility intended to address the many challenges of the underlying technologies of distributed control. The facility is capable of performing both simulation and hardware studies ranging from component to system level complexity. Its modular and hierarchical structure allows the user to focus their interaction on specific areas of interest.

  15. Silicon-on-insulator integrated tunable polarization controller (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Sarmiento-Merenguel, Jose-Dario; Alonso-Ramos, Carlos; Halir, Robert; Le Roux, Xavier; Vivien, Laurent; Cheben, Pavel; Durán-Valdeiglesias, Elena; Molina-Fernández, Iñigo; Marris-Morini, Delphine; Xu, Danxia; Schmid, Jens H.; Janz, Siegfried; Ortega-Moñux, Alejandro

    2016-05-01

    Polarization management is a key functionality in many photonic applications, including optical communications, imaging or quantum information. Developing integrated devices capable of reliably controlling polarization state would result in compact and low cost circuits with improved stability compared with fiber or bulk optics solutions. However, stringent fabrication tolerances make the integration of polarization managing elements highly challenging. The main challenge in polarization controllers, composed by polarization rotators and polarization phase shifters, is to precisely control rotation angle in integrated polarization rotators. Proposed solutions typically require sophisticated fabrication processes or extremely tight fabrication tolerances, seriously hindering their practical application. Here we present a technology independent polarization controller scheme that relies on phase shifters to largely relax fabrication tolerances of polarization rotators. In addition, these phase shifters enable dynamic wavelength tuning. In our scheme, three polarization rotation elements are interconnected with two tunable phase shifters to adjust the polarization extinction ratio, while an output polarization phase shifter is used to select the relative phase. This way we can achieve any desired output state of polarization. We have implemented this scheme in the silicon-on-insulator platform, experimentally demonstrating a record polarization extinction range of 40 dB (± 20 dB) with a 98% coverage of the Poincaré sphere. Furthermore, the device is tunable in the complete C-band. These results constitute, to the best of our knowledge, the highest polarization extinction range achieved in a fully integrated device.

  16. Design of an integrated airframe/propulsion control system architecture

    NASA Technical Reports Server (NTRS)

    Cohen, Gerald C.; Lee, C. William; Strickland, Michael J.; Torkelson, Thomas C.

    1990-01-01

    The design of an integrated airframe/propulsion control system architecture is described. The design is based on a prevalidation methodology that uses both reliability and performance. A detailed account is given for the testing associated with a subset of the architecture and concludes with general observations of applying the methodology to the architecture.

  17. Integrated assurance assessment of a reconfigurable digital flight control system

    NASA Technical Reports Server (NTRS)

    Ness, W. G.; Davis, R. M.; Benson, J. W.; Smith, M. K.; Eldredge, D.

    1983-01-01

    The integrated application of reliability, failure effects and system simulator methods in establishing the airworthiness of a flight critical digital flight control system (DFCS) is demonstrated. The emphasis was on the mutual reinforcement of the methods in demonstrating the system safety.

  18. Work plan for SY Farm Integrated Data Acquisition and Control System (DACS-2a)

    SciTech Connect

    Conner, R.P.; Katz, R.S.

    1994-10-17

    The SY Farm currently has a temporary Data Acquisition & Control System (DACS) housed in a mobile trailer. The system is currently referred to as DACS-1. It was designed and configured to support engineers and scientists conducting the special performance evaluation and testing program for the safety mitigation test equipment located in waste tank 241-SY-101 (101-SY). It is currently being maintained and utilized by engineering personnel to monitor and control the 101-SY mitigation pump activities. Based upon the results of the mitigation testing program, some of the temporary test mitigation equipment (such as mixing pump) will be replaced with longer-term ``operational`` mitigation equipment. This is resulting in new requirements for the Data Acquisition and Control System which will be full-filled by a newer control facility referred to as the DACS-2. A teaming between Westinghouse Hanford Company (WHC) and Los Alamos National Laboratory (LANL) has been established for the SY farm mitigation program in order to develop and implement the ``next generation`` of the data acquisition and control system for the mitigation pump operations. The new system will be configured for use by the tank farm operational personnel. It will support the routine operations necessary for safety mitigation and the future waste retrieval of Project W-211. It is intended to replace the existing DACS-1 and provide the necessary control room space for future integration of W-211.

  19. A Study on Aircraft Engine Control Systems for Integrated Flight and Propulsion Control

    NASA Astrophysics Data System (ADS)

    Yamane, Hideaki; Matsunaga, Yasushi; Kusakawa, Takeshi

    A flyable FADEC system engineering model incorporating Integrated Flight and Propulsion Control (IFPC) concept is developed for a highly maneuverable aircraft and a fighter-class engine. An overview of the FADEC system and functional assignments for its components such as the Engine Control Unit (ECU) and the Integrated Control Unit (ICU) are described. Overall system reliability analysis, convex analysis and multivariable controller design for the engine, fault detection/redundancy management, and response characteristics of a fuel system are addressed. The engine control performance of the FADEC is demonstrated by hardware-in-the-loop simulation for fast acceleration and thrust transient characteristics.

  20. Tensor Product Model Transformation Based Adaptive Integral-Sliding Mode Controller: Equivalent Control Method

    PubMed Central

    Zhao, Guoliang; Li, Hongxing

    2013-01-01

    This paper proposes new methodologies for the design of adaptive integral-sliding mode control. A tensor product model transformation based adaptive integral-sliding mode control law with respect to uncertainties and perturbations is studied, while upper bounds on the perturbations and uncertainties are assumed to be unknown. The advantage of proposed controllers consists in having a dynamical adaptive control gain to establish a sliding mode right at the beginning of the process. Gain dynamics ensure a reasonable adaptive gain with respect to the uncertainties. Finally, efficacy of the proposed controller is verified by simulations on an uncertain nonlinear system model. PMID:24453897

  1. Tensor product model transformation based adaptive integral-sliding mode controller: equivalent control method.

    PubMed

    Zhao, Guoliang; Sun, Kaibiao; Li, Hongxing

    2013-01-01

    This paper proposes new methodologies for the design of adaptive integral-sliding mode control. A tensor product model transformation based adaptive integral-sliding mode control law with respect to uncertainties and perturbations is studied, while upper bounds on the perturbations and uncertainties are assumed to be unknown. The advantage of proposed controllers consists in having a dynamical adaptive control gain to establish a sliding mode right at the beginning of the process. Gain dynamics ensure a reasonable adaptive gain with respect to the uncertainties. Finally, efficacy of the proposed controller is verified by simulations on an uncertain nonlinear system model.

  2. Strong Facet-Induced and Light-Controlled Room-Temperature Ferromagnetism in Semiconducting β-FeSi2 Nanocubes.

    PubMed

    He, Zhiqiang; Xiong, Shijie; Wu, Shuyi; Zhu, Xiaobin; Meng, Ming; Wu, Xinglong

    2015-09-01

    Crystalline β-FeSi2 nanocubes with two {100} facets and four {011} lateral facets synthesized by spontaneous one-step chemical vapor deposition exhibit strong room-temperature ferromagnetism with saturation magnetization of 15 emu/g. The room-temperature ferromagnetism is observed from the β-FeSi2 nanocubes larger than 150 nm with both the {100} and {011} facets. The ferromagnetism is tentatively explained with a simplified model including both the itinerant electrons in surface states and the local moments on Fe atoms near the surfaces. The work demonstrates the transformation from a nonmagnetic semiconductor to a magnetic one by exposing specific facets and the room-temperature ferromagnetism can be manipulated under light irradiation. The semiconducting β-FeSi2 nanocubes may have large potential in silicon-based spintronic applications. PMID:26302086

  3. CONDUIT: A New Multidisciplinary Integration Environment for Flight Control Development

    NASA Technical Reports Server (NTRS)

    Tischler, Mark B.; Colbourne, Jason D.; Morel, Mark R.; Biezad, Daniel J.; Levine, William S.; Moldoveanu, Veronica

    1997-01-01

    A state-of-the-art computational facility for aircraft flight control design, evaluation, and integration called CONDUIT (Control Designer's Unified Interface) has been developed. This paper describes the CONDUIT tool and case study applications to complex rotary- and fixed-wing fly-by-wire flight control problems. Control system analysis and design optimization methods are presented, including definition of design specifications and system models within CONDUIT, and the multi-objective function optimization (CONSOL-OPTCAD) used to tune the selected design parameters. Design examples are based on flight test programs for which extensive data are available for validation. CONDUIT is used to analyze baseline control laws against pertinent military handling qualities and control system specifications. In both case studies, CONDUIT successfully exploits trade-offs between forward loop and feedback dynamics to significantly improve the expected handling, qualities and minimize the required actuator authority. The CONDUIT system provides a new environment for integrated control system analysis and design, and has potential for significantly reducing the time and cost of control system flight test optimization.

  4. An integrated control of Pythium root rot of greenhouse tomato.

    PubMed

    Tu, J C

    2002-01-01

    Pythium root rot caused by Pythium aphanidermatum is one of the most important diseases of greenhouse tomatoes. Hydroponic culture exacerbates the problem. Both nutrient film technique (NFT) and recirculating growing systems pose a challenge in the control of this disease, because the pathogen, especially the zoospores, can spread easily in the recirculating solution to the whole growing system. Fortunately, hydroponically grown plants are easier to manipulate than soil grown plants, proper manipulation of root environments can lead to excellent disease control. This paper reports the development of an effective integrated control measure for pythium root rot of tomato by integrating pH, bioagent, and ultra-violet irradiation in a specific manner. This integrated control consists of three operations: a) before transplanting, the UV system is connected to sterilize the recirculating solution using 100 mJcm-2; b) after transplanting, the nutrient solution is delivered at pH 5.0 regime for five weeks followed by adjusting pH to 5.8 to 6.2 regime for one week; and c) bacterial bioagent, such as Pseudomonas is introduced into the root zone at 100 mL per plant at 10(8) bacteria mL-1 or added to the nutrient solution to arrive at 10(6) bacteria mL-1 in the solution. This report also discusses the advantages and limitations of this measure in the control of pythium root rot. PMID:12701425

  5. Integrated instrumentation and control digital upgrades for cost reduction

    SciTech Connect

    Naser, J.

    1995-03-01

    Most nuclear power plants continue to operate with analog instrumentation and control technology designed 20 to 40 years ago. This equipment is approaching or exceeding its life expectancy, resulting in increasing maintenance efforts to sustain system performance. Decreasing availability of replacement parts and the accelerating deterioration of the infrastructure of manufacturers that support analog technology exacerbate obsolescence problems and resultant operation and maintenance cost increases. Modern digital technology holds a significant potential to improve the safety, cost-effectiveness, productivity, and; therefore, competitiveness of nuclear power plants. Reliable, integrated information is a critical element for protecting the utility`s capital investment and increasing availability, reliability, and productivity. Integrated systems with integrated information can perform more effectively to increase productivity, to enhance safety, and to reduce operation and maintenance costs. The plant communications and computing architecture is the infrastructure needed to allow the implementation of instrumentation and control systems in an integrated manner. Modern technology for distributed digital systems, plant process computers, and plant networks support the integration of systems and information.

  6. Electronically Tunable Differential Integrator: Linear Voltage Controlled Quadrature Oscillator.

    PubMed

    Nandi, Rabindranath; Pattanayak, Sandhya; Venkateswaran, Palaniandavar; Das, Sagarika

    2015-01-01

    A new electronically tunable differential integrator (ETDI) and its extension to voltage controlled quadrature oscillator (VCQO) design with linear tuning law are proposed; the active building block is a composite current feedback amplifier with recent multiplication mode current conveyor (MMCC) element. Recently utilization of two different kinds of active devices to form a composite building block is being considered since it yields a superior functional element suitable for improved quality circuit design. The integrator time constant (τ) and the oscillation frequency (ω o ) are tunable by the control voltage (V) of the MMCC block. Analysis indicates negligible phase error (θ e ) for the integrator and low active ω o -sensitivity relative to the device parasitic capacitances. Satisfactory experimental verifications on electronic tunability of some wave shaping applications by the integrator and a double-integrator feedback loop (DIFL) based sinusoid oscillator with linear f o variation range of 60 KHz~1.8 MHz at low THD of 2.1% are verified by both simulation and hardware tests. PMID:27347537

  7. Integrated controls and health monitoring for chemical transfer propulsion

    NASA Technical Reports Server (NTRS)

    Millis, Marc G.; Binder, Michael P.

    1990-01-01

    NASA is reviewing various propulsion technologies for exploring space. The requirements are examined for one enabling propulsion technology: Integrated Controls and Health Monitoring (ICHM) for Chemical Transfer Propulsion (CTP). Functional requirements for a CTP-ICHM system are proposed from tentative mission scenarios, vehicle configurations, CTP specifications, and technical feasibility. These CTP-ICHM requirements go beyond traditional reliable operation and emergency shutoff control to include: (1) enhanced mission flexibility; (2) continuously variable throttling; (3) tank-head start control; (4) automated prestart and post-shutoff engine check; (5) monitoring of space exposure degradation; and (6) product evolution flexibility. Technology development plans are also discussed.

  8. Integration of OLE into the TACL control system

    NASA Astrophysics Data System (ADS)

    Bowling, B.; Douglas, D.; Kewisch, J.; Kloeppel, P.; Kraft, G. A.

    1993-12-01

    OLE, the On-Line Envelope program, is a first-order optics code which was designed to provide fast lattice transfer functions from actual accelerator magnet and cavity control values. This paper addresses the results of a successful integration of OLE into the CEBAF control system, TACL. This marriage provides the user with the ability for obtaining real-time Twiss parameters and transfer functions which reflect the current operational state of the machine. The resultant OLE calculation provides the analytical core for many control and diagnostic functions used at CEBAF, including focusing corrections, orbit corrections, emittance measurements, and beamline analysis.

  9. Adaptive Transmission Control Method for Communication-Broadcasting Integrated Services

    NASA Astrophysics Data System (ADS)

    Koto, Hideyuki; Furuya, Hiroki; Nakamura, Hajime

    This paper proposes an adaptive transmission control method for massive and intensive telecommunication traffic generated by communication-broadcasting integrated services. The proposed method adaptively controls data transmissions from viewers depending on the congestion states, so that severe congestion can be effectively avoided. Furthermore, it utilizes the broadcasting channel which is not only scalable, but also reliable for controlling the responses from vast numbers of viewers. The performance of the proposed method is evaluated through experiments on a test bed where approximately one million viewers are emulated. The obtained results quantitatively demonstrate the performance of the proposed method and its effectiveness under massive and intensive traffic conditions.

  10. Integration of OLE into the TACL control system

    SciTech Connect

    Bowling, B.; Douglas, D.; Kewisch, J.; Kloeppel, P.; Kraft, G.A. )

    1993-12-25

    OLE, the On-Line Envelope program, is a first-order optics code which was designed to provide fast lattice transfer functions from actual accelerator magnet and cavity control values. This paper addresses the results of a successful integration of OLE into the CEBAF control system, TACL. This marriage provides the user with the ability for obtaining real-time Twiss parameters and transfer functions which reflect the current operational state of the machine. The resultant OLE calculation provides the analytical core for many control and diagnostic functions used at CEBAF, including focusing corrections, orbit corrections, emittance measurements, and beamline analysis.

  11. Equilibrium control of nonlinear verticum-type systems, applied to integrated pest control.

    PubMed

    Molnár, S; Gámez, M; López, I; Cabello, T

    2013-08-01

    Linear verticum-type control and observation systems have been introduced for modelling certain industrial systems, consisting of subsystems, vertically connected by certain state variables. Recently the concept of verticum-type observation systems and the corresponding observability condition have been extended by the authors to the nonlinear case. In the present paper the general concept of a nonlinear verticum-type control system is introduced, and a sufficient condition for local controllability to equilibrium is obtained. In addition to a usual linearization, the basic idea is a decomposition of the control of the whole system into the control of the subsystems. Starting from the integrated pest control model of Rafikov and Limeira (2012) and Rafikov et al. (2012), a nonlinear verticum-type model has been set up an equilibrium control is obtained. Furthermore, a corresponding bioeconomical problem is solved minimizing the total cost of integrated pest control (combining chemical control with a biological one).

  12. A Study on Aircraft Engine Control Systems for Integrated Flight and Propulsion Control

    NASA Astrophysics Data System (ADS)

    Yamane, Hideaki; Matsunaga, Yasushi; Kusakawa, Takeshi; Yasui, Hisako

    The Integrated Flight and Propulsion Control (IFPC) for a highly maneuverable aircraft and a fighter-class engine with pitch/yaw thrust vectoring is described. Of the two IFPC functions the aircraft maneuver control utilizes the thrust vectoring based on aerodynamic control surfaces/thrust vectoring control allocation specified by the Integrated Control Unit (ICU) of a FADEC (Full Authority Digital Electronic Control) system. On the other hand in the Performance Seeking Control (PSC) the ICU identifies engine's various characteristic changes, optimizes manipulated variables and finally adjusts engine control parameters in cooperation with the Engine Control Unit (ECU). It is shown by hardware-in-the-loop simulation that the thrust vectoring can enhance aircraft maneuverability/agility and that the PSC can improve engine performance parameters such as SFC (specific fuel consumption), thrust and gas temperature.

  13. Integrated Digital Flight Control System for the Space Shuttle Orbiter

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The objectives of the integrated digital flight control system (DFCS) is to provide rotational and translational control of the space shuttle orbiter in all phases of flight: from launch ascent through orbit to entry and touchdown, and during powered horizontal flights. The program provides a versatile control system structure while maintaining uniform communications with other programs, sensors, and control effectors by using an executive routine/functional subroutine format. The program reads all external variables at a single point, copies them into its dedicated storage, and then calls the required subroutines in the proper sequence. As a result, the flight control program is largely independent of other programs in the computer complex and is equally insensitive to characteristics of the processor configuration. The integrated structure is described of the control system and the DFCS executive routine which embodies that structure. The input and output, including jet selection are included. Specific estimation and control algorithm are shown for the various mission phases: cruise (including horizontal powered flight), entry, on-orbit, and boost. Attitude maneuver routines that interface with the DFCS are included.

  14. Integrated multi-sensory control of space robot hand

    NASA Technical Reports Server (NTRS)

    Bejczy, A. K.; Kan, E. P.; Killion, R. R.

    1985-01-01

    Dexterous manipulation of a robot hand requires the use of multiple sensors integrated into the mechanical hand under distributed microcomputer control. Where space applications such as construction, assembly, servicing and repair tasks are desired of smart robot arms and robot hands, several critical drives influence the design, engineering and integration of such an electromechanical hand. This paper describes a smart robot hand developed at the Jet Propulsion Laboratory for experimental use and evaluation with the Protoflight Manipulator Arm (PFMA) at the Marshall Space Flight Center (MSFC).

  15. Human factors issues and approaches in the spatial layout of a space station control room, including the use of virtual reality as a design analysis tool

    NASA Technical Reports Server (NTRS)

    Hale, Joseph P., II

    1994-01-01

    Human Factors Engineering support was provided for the 30% design review of the late Space Station Freedom Payload Control Area (PCA). The PCA was to be the payload operations control room, analogous to the Spacelab Payload Operations Control Center (POCC). This effort began with a systematic collection and refinement of the relevant requirements driving the spatial layout of the consoles and PCA. This information was used as input for specialized human factors analytical tools and techniques in the design and design analysis activities. Design concepts and configuration options were developed and reviewed using sketches, 2-D Computer-Aided Design (CAD) drawings, and immersive Virtual Reality (VR) mockups.

  16. Sensitivity method for integrated structure/active control law design

    NASA Technical Reports Server (NTRS)

    Gilbert, Michael G.

    1987-01-01

    The development is described of an integrated structure/active control law design methodology for aeroelastic aircraft applications. A short motivating introduction to aeroservoelasticity is given along with the need for integrated structures/controls design algorithms. Three alternative approaches to development of an integrated design method are briefly discussed with regards to complexity, coordination and tradeoff strategies, and the nature of the resulting solutions. This leads to the formulation of the proposed approach which is based on the concepts of sensitivity of optimum solutions and multi-level decompositions. The concept of sensitivity of optimum is explained in more detail and compared with traditional sensitivity concepts of classical control theory. The analytical sensitivity expressions for the solution of the linear, quadratic cost, Gaussian (LQG) control problem are summarized in terms of the linear regulator solution and the Kalman Filter solution. Numerical results for a state space aeroelastic model of the DAST ARW-II vehicle are given, showing the changes in aircraft responses to variations of a structural parameter, in this case first wing bending natural frequency.

  17. Proportional-plus-integral semiactive control using magnetorheological dampers

    NASA Astrophysics Data System (ADS)

    Aguirre, N.; Ikhouane, F.; Rodellar, J.

    2011-05-01

    Magnetorheological (MR) dampers are a promising alternative to structural active actuators as they provide adjustable damping over a wide range of frequencies without large power requirements. However, the complex dynamics that characterizes these devices makes it difficult to formulate control laws based on the MR damper model. Instead, many semiactive control strategies proposed in the literature have been based on the idea of "clipping" the voltage signal so that the MR damper force "tracks" a desired active control force which is computed on-line. With this idea many algorithms have been proposed using, among others, techniques such as optimal control, H∞ control, sliding mode control, backstepping and QFT. This work presents a semiactive control strategy based on the same idea of "clipping" the voltage signal but using a simpler PI design. The proportional and integral gains of the controller are calculated so that the controller guarantees stability, minimization of the closed loop response and robustness against modeling errors. Effectiveness of the control strategy is compared to some others techniques and passive cases as well. Simulation results shows that this simple strategy can effectively improve the structural responses and achieve performance index comparable to that of more complex algorithms.

  18. Integrated environmental control: Volume 1, Sample design strategy: Final report

    SciTech Connect

    Nold, D.G.; Baus, T.R.; Robie, C.P.

    1987-07-01

    The Volume 1 report for this study proposes an integrated design approach for coal-fired power plant environmental controls. Two characteristics distinguish the integrated environmental control (IEC) approach as defined in this study from historical design approaches. First, all major environmental control subsystems are considered to equally influence costs and overall plant performance until preliminary analysis indicates otherwise. This assures benefits derived for one subsystem (e.g., solid waste disposal) do not increase complexity for other subsystems (e.g., water management) to the level where total plant costs are higher. Second, the IEC approach maximizes compatibility between equipment, fuel properties, and site characteristics. This allows the least complex environmental control system (ECS), lowering cost and minimizing potential operating problems. The IEC design strategy, described in detail in Section 2 and Appendices A-D, can reduce ECS costs in two ways. First, the IEC approach helps insure cost savings derived for one subsystem are not offset by other increases, raising total ECS costs. Second, reliability can be increased and potential operating problems reduced if equipment and control strategies selected are most compatible with the site and fuel characteristics, and thus most simple. Selection of the best control strategy for given site and fuel characteristics is aided by a technical/economic analysis, described in Section 3, that allows ECS costs and technical features to be analyzed. 17 figs., 14 tabs.

  19. Modeling of Depth Cue Integration in Manual Control Tasks

    NASA Technical Reports Server (NTRS)

    Sweet, Barbara T.; Kaiser, Mary K.; Davis, Wendy

    2003-01-01

    Psychophysical research has demonstrated that human observers utilize a variety of visual cues to form a perception of three-dimensional depth. However, most of these studies have utilized a passive judgement paradigm, and failed to consider depth-cue integration as a dynamic and task-specific process. In the current study, we developed and experimentally validated a model of manual control of depth that examines how two potential cues (stereo disparity and relative size) are utilized in both first- and second-order active depth control tasks. We found that stereo disparity plays the dominate role for determining depth position, while relative size dominates perception of depth velocity. Stereo disparity also plays a reduced role when made less salient (i.e., when viewing distance is increased). Manual control models predict that position information is sufficient for first-order control tasks, while velocity information is required to perform a second-order control task. Thus, the rules for depth-cue integration in active control tasks are dependent on both task demands and cue quality.

  20. Basement utility room (room 24; air handling room), near the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Basement utility room (room 24; air handling room), near the west end of the combat operations center, looking southwest towards fan system one, air ducts, and walk-in filter rooms. The exterior equipment well is visible at the left - March Air Force Base, Strategic Air Command, Combat Operations Center, 5220 Riverside Drive, Moreno Valley, Riverside County, CA

  1. Ground Operations Autonomous Control and Integrated Health Management

    NASA Technical Reports Server (NTRS)

    Daniels, James

    2014-01-01

    The Ground Operations Autonomous Control and Integrated Health Management plays a key role for future ground operations at NASA. The software that is integrated into this system is called G2 2011 Gensym. The purpose of this report is to describe the Ground Operations Autonomous Control and Integrated Health Management with the use of the G2 Gensym software and the G2 NASA toolkit for Integrated System Health Management (ISHM) which is a Computer Software Configuration Item (CSCI). The decision rationale for the use of the G2 platform is to develop a modular capability for ISHM and AC. Toolkit modules include knowledge bases that are generic and can be applied in any application domain module. That way, there's a maximization of reusability, maintainability, and systematic evolution, portability, and scalability. Engine modules are generic, while application modules represent the domain model of a specific application. Furthermore, the NASA toolkit, developed since 2006 (a set of modules), makes it possible to create application domain models quickly, using pre-defined objects that include sensors and components libraries for typical fluid, electrical, and mechanical systems.

  2. Communication and control in an integrated manufacturing system

    NASA Technical Reports Server (NTRS)

    Shin, Kang G.; Throne, Robert D.; Muthuswamy, Yogesh K.

    1987-01-01

    Typically, components in a manufacturing system are all centrally controlled. Due to possible communication bottlenecking, unreliability, and inflexibility caused by using a centralized controller, a new concept of system integration called an Integrated Multi-Robot System (IMRS) was developed. The IMRS can be viewed as a distributed real time system. Some of the current research issues being examined to extend the framework of the IMRS to meet its performance goals are presented. These issues include the use of communication coprocessors to enhance performance, the distribution of tasks and the methods of providing fault tolerance in the IMRS. An application example of real time collision detection, as it relates to the IMRS concept, is also presented and discussed.

  3. Integrated control algorithms for plant environment in greenhouse

    NASA Astrophysics Data System (ADS)

    Zhang, Kanyu; Deng, Lujuan; Gong, Youmin; Wang, Shengxue

    2003-09-01

    In this paper a survey of plant environment control in artificial greenhouse was put forward for discussing the future development. Firstly, plant environment control started with the closed loop control of air temperature in greenhouse. With the emergence of higher property computer, the adaptive control algorithm and system identification were integrated into the control system. As adaptation control is more depending on observation of variables by sensors and yet many variables are unobservable or difficult to observe, especially for observation of crop growth status, so model-based control algorithm were developed. In order to evade modeling difficulty, one method is predigesting the models and the other method is utilizing fuzzy logic and neural network technology that realize the models by the black box and gray box theory. Studies on control method of plant environment in greenhouse by means of expert system (ES) and artificial intelligence (AI) have been initiated and developed. Nowadays, the research of greenhouse environment control focus on energy saving, optimal economic profit, enviornment protection and continualy develop.

  4. Project Orion, Environmental Control and Life Support System Integrated Studies

    NASA Technical Reports Server (NTRS)

    Russell, James F.; Lewis, John F.

    2008-01-01

    Orion is the next vehicle for human space travel. Humans will be sustained in space by the Orion subystem, environmental control and life support (ECLS). The ECLS concept at the subsystem level is outlined by function and technology. In the past two years, the interface definition with other subsystems has increased through different integrated studies. The paper presents the key requirements and discusses three recent studies (e.g., unpressurized cargo) along with the respective impacts on the ECLS design moving forward.

  5. Orion Integrated Guidance, Navigation, and Control [GN and C

    NASA Technical Reports Server (NTRS)

    Chevray, Kay

    2009-01-01

    This slide presentation reviews the integrated Guidance, Navigation and Control (iGN&C) system in the design for the Orion spacecraft. Included in the review are the plans for the design and development of the external interfaces, the functional architecture, the iGN&C software, the development and validation process, and the key challenges that are involved in the development of the iGN&C system

  6. Design of an integrated airframe/propulsion control system architecture

    NASA Technical Reports Server (NTRS)

    Cohen, Gerald C.; Lee, C. William; Strickland, Michael J.

    1990-01-01

    The design of an integrated airframe/propulsion control system architecture is described. The design is based on a prevalidation methodology that used both reliability and performance tools. An account is given of the motivation for the final design and problems associated with both reliability and performance modeling. The appendices contain a listing of the code for both the reliability and performance model used in the design.

  7. Using EDF-IAE to integrate scheduling and control for networked control systems

    NASA Astrophysics Data System (ADS)

    Shen, Yan; Guo, Bing; Li, Xunbo

    2007-12-01

    Networked control systems are one type of distributed real-time control systems where sensors, actuator and controllers are interconnected by communication networks. The insertion of the communication network makes the analysis and design of a networked control system complex. So the performance of the control loops not only depends on the design of the control algorithms, but also on the scheduling of the shared network resource. A co-design method based on the integrated Earliest Deadline First (EDF) scheduling algorithm and the Integral of the Absolute Error (IAE) is proposed in order that the communication medium is more efficiently used and control performance is improved. The presented method can adjust the sampling period, handle three types of message and guarantees real-time transmission of periodic and aperiodic message, and non-real time message. The simulation results show that the proposed co-design method is available and improve the system resources efficiency.

  8. Secure, Autonomous, Intelligent Controller for Integrating Distributed Sensor Webs

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.

    2007-01-01

    This paper describes the infrastructure and protocols necessary to enable near-real-time commanding, access to space-based assets, and the secure interoperation between sensor webs owned and controlled by various entities. Select terrestrial and aeronautics-base sensor webs will be used to demonstrate time-critical interoperability between integrated, intelligent sensor webs both terrestrial and between terrestrial and space-based assets. For this work, a Secure, Autonomous, Intelligent Controller and knowledge generation unit is implemented using Virtual Mission Operation Center technology.

  9. Status Of The National Ignition Campaign And National Ignition Facility Integrated Computer Control System

    SciTech Connect

    Lagin, L; Brunton, G; Carey, R; Demaret, R; Fisher, J; Fishler, B; Ludwigsen, P; Marshall, C; Reed, R; Shelton, R; Townsend, S

    2011-03-18

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a stadium-sized facility that will contains a 192-beam, 1.8-Megajoule, 500-Terawatt, ultraviolet laser system together with a 10-meter diameter target chamber with room for multiple experimental diagnostics. NIF is the world's largest and most energetic laser experimental system, providing a scientific center to study inertial confinement fusion (ICF) and matter at extreme energy densities and pressures. NIF's laser beams are designed to compress fusion targets to conditions required for thermonuclear burn. NIF is operated by the Integrated Computer Control System (ICCS) in an object-oriented, CORBA-based system distributed among over 1800 frontend processors, embedded controllers and supervisory servers. In the fall of 2010, a set of experiments began with deuterium and tritium filled targets as part of the National Ignition Campaign (NIC). At present, all 192 laser beams routinely fire to target chamber center to conduct fusion and high energy density experiments. During the past year, the control system was expanded to include automation of cryogenic target system and over 20 diagnostic systems to support fusion experiments were deployed and utilized in experiments in the past year. This talk discusses the current status of the NIC and the plan for controls and information systems to support these experiments on the path to ignition.

  10. Automated Air Traffic Control Operations with Weather and Time-Constraints: A First Look at (Simulated) Far-Term Control Room Operations

    NASA Technical Reports Server (NTRS)

    Prevot, Thomas; Homola, Jeffrey R.; Martin, Lynne H.; Mercer, Joey S.; Cabrall, Christopher C.

    2011-01-01

    In this paper we discuss results from a recent high fidelity simulation of air traffic control operations with automated separation assurance in the presence of weather and time-constraints. We report findings from a human-in-the-loop study conducted in the Airspace Operations Laboratory (AOL) at the NASA Ames Research Center. During four afternoons in early 2010, fifteen active and recently retired air traffic controllers and supervisors controlled high levels of traffic in a highly automated environment during three-hour long scenarios, For each scenario, twelve air traffic controllers operated eight sector positions in two air traffic control areas and were supervised by three front line managers, Controllers worked one-hour shifts, were relieved by other controllers, took a 3D-minute break, and worked another one-hour shift. On average, twice today's traffic density was simulated with more than 2200 aircraft per traffic scenario. The scenarios were designed to create peaks and valleys in traffic density, growing and decaying convective weather areas, and expose controllers to heavy and light metering conditions. This design enabled an initial look at a broad spectrum of workload, challenge, boredom, and fatigue in an otherwise uncharted territory of future operations. In this paper we report human/system integration aspects, safety and efficiency results as well as airspace throughput, workload, and operational acceptability. We conclude that, with further refinements. air traffic control operations with ground-based automated separation assurance can be an effective and acceptable means to routinely provide very high traffic throughput in the en route airspace.

  11. Generalized access control strategies for integrated services token passing systems

    NASA Astrophysics Data System (ADS)

    Pang, Joseph W. M.; Tobagi, Fouad A.; Boyd, Stephen

    1994-08-01

    The demand for integrated services local area networks is increasing at a rapid pace with the advent of many new and exciting applications: office and factory automation, distributed computing, and multimedia communications. To support these new applications, it is imperative to integrate traffic with diverse statistical characteristics and differing delay requirements on the same network. An attractive approach for integrating traffic has been adopted in two token passing local area network standards, the IEEE 802.4 token bus standard and FDDI. The idea is to control the transmissions of each station based on a distributed timing algorithm, so as to achieve the following goals: (1) to limit the token cycles so that time-critical traffic can be accommodated, and (2) to allocate pre-specified bandwidths to different stations when the network is overloaded. We have investigated the analysis and design of this protocol. In this paper, we generalize the transmission control algorithm used previously. The major advantages of the generalization over the original protocol are: (1) it provides a much expanded design space, (2) it guarantees convergent behavior, and (3) it gives meaningful insights into the dynamics of the basic control algorithm.

  12. Advanced Integrated Power and Attitude Control System (IPACS) study

    NASA Technical Reports Server (NTRS)

    Oglevie, R. E.; Eisenhaure, D. B.

    1985-01-01

    Integrated Power and Attitude Control System (IPACS) studies performed over a decade ago established the feasibility of simultaneously satisfying the demands of energy storage and attitude control through the use of rotating flywheels. It was demonstrated that, for a wide spectrum of applications, such a system possessed many advantages over contemporary energy storage and attitude control approaches. More recent technology advances in composite material rotors, magnetic suspension systems, and power control electronics have triggered new optimism regarding the applicability and merits of this concept. This study is undertaken to define an advanced IPACS and to evaluate its merits for a space station application. System and component designs are developed to establish the performance of this concept and system trade studies conducted to examine the viability of this approach relative to conventional candidate systems. It is clearly demonstrated that an advanced IPACS concept is not only feasible, but also offers substantial savings in mass and life-cycle cost for the space station mission.

  13. Integrated metrology: an enabler for advanced process control (APC)

    NASA Astrophysics Data System (ADS)

    Schneider, Claus; Pfitzner, Lothar; Ryssel, Heiner

    2001-04-01

    Advanced process control (APC) techniques become more and more important as short innovation cycles in microelectronics and a highly competitive market requires cost-effective solutions in semiconductor manufacturing. APC marks a paradigm shift from statistically based techniques (SPC) using monitor wafers for sampling measurement data towards product wafer control. The APC functionalities including run-to-run control, fault detection, and fault analysis allow to detect process drifts and excursions at an early stage and to minimize the number of misprocessed wafers. APC is being established as part of factory control systems through the definition of an APC framework. A precondition for APC is the availability of sensors and measurement methods providing the necessary wafer data. This paper discusses integrated metrology as an enabler for APC and demonstrates practical implementations in semiconductor manufacturing.

  14. Integrated evolutionary computation neural network quality controller for automated systems

    SciTech Connect

    Patro, S.; Kolarik, W.J.

    1999-06-01

    With increasing competition in the global market, more and more stringent quality standards and specifications are being demands at lower costs. Manufacturing applications of computing power are becoming more common. The application of neural networks to identification and control of dynamic processes has been discussed. The limitations of using neural networks for control purposes has been pointed out and a different technique, evolutionary computation, has been discussed. The results of identifying and controlling an unstable, dynamic process using evolutionary computation methods has been presented. A framework for an integrated system, using both neural networks and evolutionary computation, has been proposed to identify the process and then control the product quality, in a dynamic, multivariable system, in real-time.

  15. Size-controllable APTS stabilized ruthenium(0) nanoparticles catalyst for the dehydrogenation of dimethylamine-borane at room temperature.

    PubMed

    Zahmakıran, Mehmet; Philippot, Karine; Özkar, Saim; Chaudret, Bruno

    2012-01-14

    Dimethylamine-borane, (CH(3))(2)NHBH(3), has been considered as one of the attractive materials for the efficient storage of hydrogen, which is still one of the key issues in the "Hydrogen Economy". In a recent communication we have reported the synthesis and characterization of 3-aminopropyltriethoxysilane stabilized ruthenium(0) nanoparticles with the preliminary results for their catalytic performance in the dehydrogenation of dimethylamine-borane at room temperature. Herein, we report a complete work including (i) effect of initial [APTS]/[Ru] molar ratio on both the size and the catalytic activity of ruthenium(0) nanoparticles, (ii) collection of extensive kinetic data under non-MTL conditions depending on the substrate and catalyst concentrations to define the rate law of Ru(0)/APTS-catalyzed dehydrogenation of dimethylamine-borane at room temperature, (iii) determination of activation parameters (E(a), ΔH(#) and ΔS(#)) for Ru(0)/APTS-catalyzed dehydrogenation of dimethylamine-borane; (iv) demonstration of the catalytic lifetime of Ru(0)/APTS nanoparticles in the dehydrogenation of dimethylamine-borane at room temperature, (v) testing the bottlability and reusability of Ru(0)/APTS nanocatalyst in the room-temperature dehydrogenation of dimethylamine-borane, (vi) quantitative carbon disulfide (CS(2)) poisoning experiments to find a corrected TTO and TOF values on a per-active-ruthenium-atom basis, (vii) a summary of extensive literature review for the catalysts tested in the catalytic dehydrogenation of dimethylamine-borane as part of the results and discussions. PMID:22052298

  16. Linear Time Invariant Models for Integrated Flight and Rotor Control

    NASA Astrophysics Data System (ADS)

    Olcer, Fahri Ersel

    2011-12-01

    Recent developments on individual blade control (IBC) and physics based reduced order models of various on-blade control (OBC) actuation concepts are opening up opportunities to explore innovative rotor control strategies for improved rotor aerodynamic performance, reduced vibration and BVI noise, and improved rotor stability, etc. Further, recent developments in computationally efficient algorithms for the extraction of Linear Time Invariant (LTI) models are providing a convenient framework for exploring integrated flight and rotor control, while accounting for the important couplings that exist between body and low frequency rotor response and high frequency rotor response. Formulation of linear time invariant (LTI) models of a nonlinear system about a periodic equilibrium using the harmonic domain representation of LTI model states has been studied in the literature. This thesis presents an alternative method and a computationally efficient scheme for implementation of the developed method for extraction of linear time invariant (LTI) models from a helicopter nonlinear model in forward flight. The fidelity of the extracted LTI models is evaluated using response comparisons between the extracted LTI models and the nonlinear model in both time and frequency domains. Moreover, the fidelity of stability properties is studied through the eigenvalue and eigenvector comparisons between LTI and LTP models by making use of the Floquet Transition Matrix. For time domain evaluations, individual blade control (IBC) and On-Blade Control (OBC) inputs that have been tried in the literature for vibration and noise control studies are used. For frequency domain evaluations, frequency sweep inputs are used to obtain frequency responses of fixed system hub loads to a single blade IBC input. The evaluation results demonstrate the fidelity of the extracted LTI models, and thus, establish the validity of the LTI model extraction process for use in integrated flight and rotor control

  17. 49. Machinery rooms on north tower. Facing north. Machinery rooms ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    49. Machinery rooms on north tower. Facing north. Machinery rooms contain all motors, motor controllers, and gears for operating one span, in this case, the north span. Note bell with continuous operating clapper for use as fog signals. - Henry Ford Bridge, Spanning Cerritos Channel, Los Angeles-Long Beach Harbor, Los Angeles, Los Angeles County, CA

  18. 17. Perimeter acquisition radar building room #105, mechanical equipment room ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. Perimeter acquisition radar building room #105, mechanical equipment room no. 1; sign reads: Heat exchangers (shell and tube type). Provide precise temperature control of water for cooling critical electronic equipment - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  19. INTEGRATED ROBOT-HUMAN CONTROL IN MINING OPERATIONS

    SciTech Connect

    George Danko

    2005-04-01

    This report contains a detailed description of the work conducted in the first year of the project on Integrated Robot-Human Control in Mining Operations at University of Nevada, Reno. This project combines human operator control with robotic control concepts to create a hybrid control architecture, in which the strengths of each control method are combined to increase machine efficiency and reduce operator fatigue. The kinematics reconfiguration type differential control of the excavator implemented with a variety of ''software machine kinematics'' is the key feature of the project. This software re-configured excavator is more desirable to execute a given digging task. The human operator retains the master control of the main motion parameters, while the computer coordinates the repetitive movement patterns of the machine links. These repetitive movements may be selected from a pre-defined family of trajectories with different transformations. The operator can make adjustments to this pattern in real time, as needed, to accommodate rapidly-changing environmental conditions. A Bobcat{reg_sign} 435 excavator was retrofitted with electro-hydraulic control valve elements. The modular electronic control was tested and the basic valve characteristics were measured for each valve at the Robotics Laboratory at UNR. Position sensors were added to the individual joint control actuators, and the sensors were calibrated. An electronic central control system consisting of a portable computer, converters and electronic driver components was interfaced to the electro-hydraulic valves and position sensors. The machine is operational with or without the computer control system depending on whether the computer interface is on or off. In preparation for emulated mining tasks tests, typical, repetitive tool trajectories during surface mining operations were recorded at the Newmont Mining Corporation's ''Lone Tree'' mine in Nevada.

  20. Integration of advanced teleoperation technologies for control of space robots

    NASA Technical Reports Server (NTRS)

    Stagnaro, Michael J.

    1993-01-01

    Teleoperated robots require one or more humans to control actuators, mechanisms, and other robot equipment given feedback from onboard sensors. To accomplish this task, the human or humans require some form of control station. Desirable features of such a control station include operation by a single human, comfort, and natural human interfaces (visual, audio, motion, tactile, etc.). These interfaces should work to maximize performance of the human/robot system by streamlining the link between human brain and robot equipment. This paper describes development of a control station testbed with the characteristics described above. Initially, this testbed will be used to control two teleoperated robots. Features of the robots include anthropomorphic mechanisms, slaving to the testbed, and delivery of sensory feedback to the testbed. The testbed will make use of technologies such as helmet mounted displays, voice recognition, and exoskeleton masters. It will allow tor integration and testing of emerging telepresence technologies along with techniques for coping with control link time delays. Systems developed from this testbed could be applied to ground control of space based robots. During man-tended operations, the Space Station Freedom may benefit from ground control of IVA or EVA robots with science or maintenance tasks. Planetary exploration may also find advanced teleoperation systems to be very useful.

  1. [Controllability pyramid: an integrated control system of quality for traditional Chinese medicines].

    PubMed

    Xiao, Xiao-He; Zhang, Ding-Kun; Wang, Jia-Bo; Yang, Ming; Peng, Cheng

    2015-01-01

    Quality control is one of the key scientific tissues in the modernization of traditional Chinese medicines (TCM). In order to overcome the deficiencies of assessment indexes, including little systematization and quantification, as well as loose association with clinical efficacy and dosage, a new integrated method named controllability pyramid ( CP) is first proposed in this paper. In addition, some study cases are used to explain how this model is constructed. We hope the establishment of CP could promote the clinical-orien- ted integrated innovation research of TCM, and provide control strategy and technology examples for improving the quality of Chinese medicines and clinical efficacy.

  2. Accelerometer method and apparatus for integral display and control functions

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr. (Inventor)

    1992-01-01

    Vibration analysis has been used for years to provide a determination of the proper functioning of different types of machinery, including rotating machinery and rocket engines. A determination of a malfunction, if detected at a relatively early stage in its development, will allow changes in operating mode or a sequenced shutdown of the machinery prior to a total failure. Such preventative measures result in less extensive and/or less expensive repairs, and can also prevent a sometimes catastrophic failure of equipment. Standard vibration analyzers are generally rather complex, expensive, and of limited portability. They also usually result in displays and controls being located remotely from the machinery being monitored. Consequently, a need exists for improvements in accelerometer electronic display and control functions which are more suitable for operation directly on machines and which are not so expensive and complex. The invention includes methods and apparatus for detecting mechanical vibrations and outputting a signal in response thereto. The apparatus includes an accelerometer package having integral display and control functions. The accelerometer package is suitable for mounting upon the machinery to be monitored. Display circuitry provides signals to a bar graph display which may be used to monitor machine condition over a period of time. Control switches may be set which correspond to elements in the bar graph to provide an alert if vibration signals increase over the selected trip point. The circuitry is shock mounted within the accelerometer housing. The method provides for outputting a broadband analog accelerometer signal, integrating this signal to produce a velocity signal, integrating and calibrating the velocity signal before application to a display driver, and selecting a trip point at which a digitally compatible output signal is generated. The benefits of a vibration recording and monitoring system with controls and displays readily

  3. Electronic integrated disease surveillance system and pathogen asset control system.

    PubMed

    Wahl, Tom G; Burdakov, Aleksey V; Oukharov, Andrey O; Zhilokov, Azamat K

    2012-01-01

    Electronic Integrated Disease Surveillance System (EIDSS) has been used to strengthen and support monitoring and prevention of dangerous diseases within One Health concept by integrating veterinary and human surveillance, passive and active approaches, case-based records including disease-specific clinical data based on standardised case definitions and aggregated data, laboratory data including sample tracking linked to each case and event with test results and epidemiological investigations. Information was collected and shared in secure way by different means: through the distributed nodes which are continuously synchronised amongst each other, through the web service, through the handheld devices. Electronic Integrated Disease Surveillance System provided near real time information flow that has been then disseminated to the appropriate organisations in a timely manner. It has been used for comprehensive analysis and visualisation capabilities including real time mapping of case events as these unfold enhancing decision making. Electronic Integrated Disease Surveillance System facilitated countries to comply with the IHR 2005 requirements through a data transfer module reporting diseases electronically to the World Health Organisation (WHO) data center as well as establish authorised data exchange with other electronic system using Open Architecture approach. Pathogen Asset Control System (PACS) has been used for accounting, management and control of biological agent stocks. Information on samples and strains of any kind throughout their entire lifecycle has been tracked in a comprehensive and flexible solution PACS.Both systems have been used in a combination and individually. Electronic Integrated Disease Surveillance System and PACS are currently deployed in the Republics of Kazakhstan, Georgia and Azerbaijan as a part of the Cooperative Biological Engagement Program (CBEP) sponsored by the US Defense Threat Reduction Agency (DTRA).

  4. Electronic integrated disease surveillance system and pathogen asset control system.

    PubMed

    Wahl, Tom G; Burdakov, Aleksey V; Oukharov, Andrey O; Zhilokov, Azamat K

    2012-01-01

    Electronic Integrated Disease Surveillance System (EIDSS) has been used to strengthen and support monitoring and prevention of dangerous diseases within One Health concept by integrating veterinary and human surveillance, passive and active approaches, case-based records including disease-specific clinical data based on standardised case definitions and aggregated data, laboratory data including sample tracking linked to each case and event with test results and epidemiological investigations. Information was collected and shared in secure way by different means: through the distributed nodes which are continuously synchronised amongst each other, through the web service, through the handheld devices. Electronic Integrated Disease Surveillance System provided near real time information flow that has been then disseminated to the appropriate organisations in a timely manner. It has been used for comprehensive analysis and visualisation capabilities including real time mapping of case events as these unfold enhancing decision making. Electronic Integrated Disease Surveillance System facilitated countries to comply with the IHR 2005 requirements through a data transfer module reporting diseases electronically to the World Health Organisation (WHO) data center as well as establish authorised data exchange with other electronic system using Open Architecture approach. Pathogen Asset Control System (PACS) has been used for accounting, management and control of biological agent stocks. Information on samples and strains of any kind throughout their entire lifecycle has been tracked in a comprehensive and flexible solution PACS.Both systems have been used in a combination and individually. Electronic Integrated Disease Surveillance System and PACS are currently deployed in the Republics of Kazakhstan, Georgia and Azerbaijan as a part of the Cooperative Biological Engagement Program (CBEP) sponsored by the US Defense Threat Reduction Agency (DTRA). PMID:23327375

  5. Integrated Attitude Control Strategy for the Asteroid Redirect Mission

    NASA Technical Reports Server (NTRS)

    Lopez, Pedro, Jr.; Price, Hoppy; San Martin, Miguel

    2014-01-01

    A deep-space mission has been proposed to redirect an asteroid to a distant retrograde orbit around the moon using a robotic vehicle, the Asteroid Redirect Vehicle (ARV). In this orbit, astronauts will rendezvous with the ARV using the Orion spacecraft. The integrated attitude control concept that Orion will use for approach and docking and for mated operations will be described. Details of the ARV's attitude control system and its associated constraints for redirecting the asteroid to the distant retrograde orbit around the moon will be provided. Once Orion is docked to the ARV, an overall description of the mated stack attitude during all phases of the mission will be presented using a coordinate system that was developed for this mission. Next, the thermal and power constraints of both the ARV and Orion will be discussed as well as how they are used to define the optimal integrated stack attitude. Lastly, the lighting and communications constraints necessary for the crew's extravehicular activity planned to retrieve samples from the asteroid will be examined. Similarly, the joint attitude control strategy that employs both the Orion and the ARV attitude control assets prior, during, and after each extravehicular activity will also be thoroughly discussed.

  6. Development of the Integrated Environmental Control Model. Quarterly progress report

    SciTech Connect

    Rubin, E.S.; Berkenpas, M.B.; Kalagnanam, J.

    1993-04-01

    The purpose of this contract is to develop and refine the Integrated Environmental Control Model (IECM) created and enhanced by Carnegie Mellon University (CMU) for the US Department of Energy`s Pittsburgh Energy Technology Center (DOE/PETC) under contract Numbers FG22-83PC60271 and AC22-87PC79864. In its current configuration, the IECM provides a capability to model various conventional and advanced processes for controlling air pollutant emissions from coal-fired power plants before, during, or after combustion. The principal purpose of the model is to calculate the performance, emissions, and cost of power plant configurations employing alternative environmental control methods. The model consists of various control technology modules, which may be integrated into a complete utility plant in any desired combination. In contrast to conventional deterministic models, the IECM offers the unique capability to assign probabilistic values to all model input parameters, and to obtain probabilistic outputs in the form of cumulative distribution functions indicating the likelihood of different costs and performance results. The work in this contract is divided into two phases. Phase I deals with further developing the existing version of the IECM and training PETC personnel on the effective use of the model. Phase II deals with creating new technology modules, linking the IECM with PETC databases, and training PETC personnel on the effective use of the updated model.

  7. Integrated trajectory and control analysis for generic hypersonic vehicles

    NASA Technical Reports Server (NTRS)

    Hattis, Philip D.; Malchow, Harvey L.; Shaughnessy, John; Chowdhry, Rajiv S.

    1991-01-01

    A tool which supports integrated assessment of air-breathing hypersonic vehicle trajectory management and control strategy has been developed by Hattis and Malchow (1991). Using a two-point boundary value problem solution technique, the tool can construct an entire near-minimum-fuel trajectory and desired control strategy from takeoff to orbit, while satisfying physically derived inequality constraints and while achieving efficient propulsive mode phasing. A strategy is also formulated to construct preliminary trajectory and control history representations with less computational burden than required for the overall flight profile assessment. A tabulated example hypersonic vehicle model has been used to demonstrate the integrated analysis methodology. To assure good numerical behavior when the algorithm uses tabulated model data, a multidimensional cubic spline curve smoothing routine has been developed. A dynamic-pressure-constrained, near-fuel-optimal trajectory was computed to provide examples of information that the methodology can provide. Previously unspecified propulsive discontinuities were located, flight regimes demanding rapid attitude changes were identified, available and closed-loop controller authority was ascertained, and inadequacies in vehicle and specific subsystem model representations were determined.

  8. Integrated trajectory and control analysis for generic hypersonic vehicles

    NASA Astrophysics Data System (ADS)

    Hattis, Philip D.; Malchow, Harvey L.; Shaughnessy, John; Chowdhry, Rajiv S.

    1991-12-01

    A tool which supports integrated assessment of air-breathing hypersonic vehicle trajectory management and control strategy has been developed by Hattis and Malchow (1991). Using a two-point boundary value problem solution technique, the tool can construct an entire near-minimum-fuel trajectory and desired control strategy from takeoff to orbit, while satisfying physically derived inequality constraints and while achieving efficient propulsive mode phasing. A strategy is also formulated to construct preliminary trajectory and control history representations with less computational burden than required for the overall flight profile assessment. A tabulated example hypersonic vehicle model has been used to demonstrate the integrated analysis methodology. To assure good numerical behavior when the algorithm uses tabulated model data, a multidimensional cubic spline curve smoothing routine has been developed. A dynamic-pressure-constrained, near-fuel-optimal trajectory was computed to provide examples of information that the methodology can provide. Previously unspecified propulsive discontinuities were located, flight regimes demanding rapid attitude changes were identified, available and closed-loop controller authority was ascertained, and inadequacies in vehicle and specific subsystem model representations were determined.

  9. Integrated Tools for Future Distributed Engine Control Technologies

    NASA Technical Reports Server (NTRS)

    Culley, Dennis; Thomas, Randy; Saus, Joseph

    2013-01-01

    Turbine engines are highly complex mechanical systems that are becoming increasingly dependent on control technologies to achieve system performance and safety metrics. However, the contribution of controls to these measurable system objectives is difficult to quantify due to a lack of tools capable of informing the decision makers. This shortcoming hinders technology insertion in the engine design process. NASA Glenn Research Center is developing a Hardware-inthe- Loop (HIL) platform and analysis tool set that will serve as a focal point for new control technologies, especially those related to the hardware development and integration of distributed engine control. The HIL platform is intended to enable rapid and detailed evaluation of new engine control applications, from conceptual design through hardware development, in order to quantify their impact on engine systems. This paper discusses the complex interactions of the control system, within the context of the larger engine system, and how new control technologies are changing that paradigm. The conceptual design of the new HIL platform is then described as a primary tool to address those interactions and how it will help feed the insertion of new technologies into future engine systems.

  10. Integrated Design and Implementation of Embedded Control Systems with Scilab

    PubMed Central

    Ma, Longhua; Xia, Feng; Peng, Zhe

    2008-01-01

    Embedded systems are playing an increasingly important role in control engineering. Despite their popularity, embedded systems are generally subject to resource constraints and it is therefore difficult to build complex control systems on embedded platforms. Traditionally, the design and implementation of control systems are often separated, which causes the development of embedded control systems to be highly time-consuming and costly. To address these problems, this paper presents a low-cost, reusable, reconfigurable platform that enables integrated design and implementation of embedded control systems. To minimize the cost, free and open source software packages such as Linux and Scilab are used. Scilab is ported to the embedded ARM-Linux system. The drivers for interfacing Scilab with several communication protocols including serial, Ethernet, and Modbus are developed. Experiments are conducted to test the developed embedded platform. The use of Scilab enables implementation of complex control algorithms on embedded platforms. With the developed platform, it is possible to perform all phases of the development cycle of embedded control systems in a unified environment, thus facilitating the reduction of development time and cost.

  11. Structural integrated sensor and actuator systems for active flow control

    NASA Astrophysics Data System (ADS)

    Behr, Christian; Schwerter, Martin; Leester-Schädel, Monika; Wierach, Peter; Dietzel, Andreas; Sinapius, Michael

    2016-04-01

    An adaptive flow separation control system is designed and implemented as an essential part of a novel high-lift device for future aircraft. The system consists of MEMS pressure sensors to determine the flow conditions and adaptive lips to regulate the mass flow and the velocity of a wall near stream over the internally blown Coanda flap. By the oscillating lip the mass flow in the blowing slot changes dynamically, consequently the momentum exchange of the boundary layer over a high lift flap required mass flow can be reduced. These new compact and highly integrated systems provide a real-time monitoring and manipulation of the flow conditions. In this context the integration of pressure sensors into flow sensing airfoils of composite material is investigated. Mechanical and electrical properties of the integrated sensors are investigated under mechanical loads during tensile tests. The sensors contain a reference pressure chamber isolated to the ambient by a deformable membrane with integrated piezoresistors connected as a Wheatstone bridge, which outputs voltage signals depending on the ambient pressure. The composite material in which the sensors are embedded consists of 22 individual layers of unidirectional glass fiber reinforced plastic (GFRP) prepreg. The results of the experiments are used for adapting the design of the sensors and the layout of the laminate to ensure an optimized flux of force in highly loaded structures primarily for future aeronautical applications. It can be shown that the pressure sensor withstands the embedding process into fiber composites with full functional capability and predictable behavior under stress.

  12. Protein kinase C controls activation of the DNA integrity checkpoint

    PubMed Central

    Soriano-Carot, María; Quilis, Inma; Bañó, M. Carmen; Igual, J. Carlos

    2014-01-01

    The protein kinase C (PKC) superfamily plays key regulatory roles in numerous cellular processes. Saccharomyces cerevisiae contains a single PKC, Pkc1, whose main function is cell wall integrity maintenance. In this work, we connect the Pkc1 protein to the maintenance of genome integrity in response to genotoxic stresses. Pkc1 and its kinase activity are necessary for the phosphorylation of checkpoint kinase Rad53, histone H2A and Xrs2 protein after deoxyribonucleic acid (DNA) damage, indicating that Pkc1 is required for activation of checkpoint kinases Mec1 and Tel1. Furthermore, Pkc1 electrophoretic mobility is delayed after inducing DNA damage, which reflects that Pkc1 is post-translationally modified. This modification is a phosphorylation event mediated by Tel1. The expression of different mammalian PKC isoforms at the endogenous level in yeast pkc1 mutant cells revealed that PKCδ is able to activate the DNA integrity checkpoint. Finally, downregulation of PKCδ activity in HeLa cells caused a defective activation of checkpoint kinase Chk2 when DNA damage was induced. Our results indicate that the control of the DNA integrity checkpoint by PKC is a mechanism conserved from yeast to humans. PMID:24792164

  13. Oxy-fuel combustion with integrated pollution control

    DOEpatents

    Patrick, Brian R.; Ochs, Thomas Lilburn; Summers, Cathy Ann; Oryshchyn, Danylo B.; Turner, Paul Chandler

    2012-01-03

    An oxygen fueled integrated pollutant removal and combustion system includes a combustion system and an integrated pollutant removal system. The combustion system includes a furnace having at least one burner that is configured to substantially prevent the introduction of air. An oxygen supply supplies oxygen at a predetermine purity greater than 21 percent and a carbon based fuel supply supplies a carbon based fuel. Oxygen and fuel are fed into the furnace in controlled proportion to each other and combustion is controlled to produce a flame temperature in excess of 3000 degrees F. and a flue gas stream containing CO2 and other gases. The flue gas stream is substantially void of non-fuel borne nitrogen containing combustion produced gaseous compounds. The integrated pollutant removal system includes at least one direct contact heat exchanger for bringing the flue gas into intimated contact with a cooling liquid to produce a pollutant-laden liquid stream and a stripped flue gas stream and at least one compressor for receiving and compressing the stripped flue gas stream.

  14. Integrated command, control, communications and computation system functional architecture

    NASA Technical Reports Server (NTRS)

    Cooley, C. G.; Gilbert, L. E.

    1981-01-01

    The functional architecture for an integrated command, control, communications, and computation system applicable to the command and control portion of the NASA End-to-End Data. System is described including the downlink data processing and analysis functions required to support the uplink processes. The functional architecture is composed of four elements: (1) the functional hierarchy which provides the decomposition and allocation of the command and control functions to the system elements; (2) the key system features which summarize the major system capabilities; (3) the operational activity threads which illustrate the interrelationahip between the system elements; and (4) the interfaces which illustrate those elements that originate or generate data and those elements that use the data. The interfaces also provide a description of the data and the data utilization and access techniques.

  15. Velocity control of servo systems using an integral retarded algorithm.

    PubMed

    Ramírez, Adrián; Garrido, Rubén; Mondié, Sabine

    2015-09-01

    This paper presents a design technique for the delay-based controller called Integral Retarded (IR), and its applications to velocity control of servo systems. Using spectral analysis, the technique yields a tuning strategy for the IR by assigning a triple real dominant root for the closed-loop system. This result ultimately guarantees a desired exponential decay rate σ(d) while achieving the IR tuning as explicit function of σ(d) and system parameters. The intentional introduction of delay allows using noisy velocity measurements without additional filtering. The structure of the controller is also able to avoid velocity measurements by using instead position information. The IR is compared to a classical PI, both tested in a laboratory prototype.

  16. Adaptive integral dynamic surface control of a hypersonic flight vehicle

    NASA Astrophysics Data System (ADS)

    Aslam Butt, Waseem; Yan, Lin; Amezquita S., Kendrick

    2015-07-01

    In this article, non-linear adaptive dynamic surface air speed and flight path angle control designs are presented for the longitudinal dynamics of a flexible hypersonic flight vehicle. The tracking performance of the control design is enhanced by introducing a novel integral term that caters to avoiding a large initial control signal. To ensure feasibility, the design scheme incorporates magnitude and rate constraints on the actuator commands. The uncertain non-linear functions are approximated by an efficient use of the neural networks to reduce the computational load. A detailed stability analysis shows that all closed-loop signals are uniformly ultimately bounded and the ? tracking performance is guaranteed. The robustness of the design scheme is verified through numerical simulations of the flexible flight vehicle model.

  17. Integrated windows-based control system for an electron microscope

    NASA Astrophysics Data System (ADS)

    Ruan, Shengyang; Kapp, Oscar H.

    1994-12-01

    A Windows application has been developed for management and operation of beam instruments such as electron or ion microscopes. It provides a facility that allows an operator to manage a complicated instrument with minimal effort, primarily under mouse control. The hardware control components used on similar instruments (e.g., the scanning transmission electron microscopes in our lab), such as toggles, buttons, and potentiometers for adjustments on various scales, are all replaced by the controls of the Windows application and are addressable on a single screen. The new controls in this program (via adjustable software settings) offer speed of response and smooth operation providing tailored control of various instrument parameters. Along with the controls offering single parameter adjustment, a two-dimensional control was developed that allows two parameters to be coupled and addressed simultaneously. This capability provides convenience for such tasks as ``finding the beam'' and directing it to a location of interest on the specimen. Using an icon-based display, this Windows application provides better integrated and more robust information for monitoring instrument status than the indicators and meters of the traditional instrument controls. As a Windows application, this program is naturally able to share the resources of the Windows system and is thus able to link to many other applications such as our image acquisition and processing programs. Computer control provides automatic protection and instant diagnostics for the experimental instrument. This Windows application is fully functional and is in daily use to control a new type of electron microscope developed in our lab.

  18. Somatosensory integration controlled by dynamic thalamocortical feed-forward inhibition.

    PubMed

    Gabernet, Laetitia; Jadhav, Shantanu P; Feldman, Daniel E; Carandini, Matteo; Scanziani, Massimo

    2005-10-20

    The temporal features of tactile stimuli are faithfully represented by the activity of neurons in the somatosensory cortex. However, the cellular mechanisms that enable cortical neurons to report accurate temporal information are not known. Here, we show that in the rodent barrel cortex, the temporal window for integration of thalamic inputs is under the control of thalamocortical feed-forward inhibition and can vary from 1 to 10 ms. A single thalamic fiber can trigger feed-forward inhibition and contacts both excitatory and inhibitory cortical neurons. The dynamics of feed-forward inhibition exceed those of each individual synapse in the circuit and are captured by a simple disynaptic model of the thalamocortical projection. The variations in the integration window produce changes in the temporal precision of cortical responses to whisker stimulation. Hence, feed-forward inhibitory circuits, classically known to sharpen spatial contrast of tactile inputs, also increase the temporal resolution in the somatosensory cortex.

  19. Integrated safeguards & security for material protection, accounting, and control.

    SciTech Connect

    Duran, Felicia Angelica; Cipiti, Benjamin B.

    2009-10-01

    Traditional safeguards and security design for fuel cycle facilities is done separately and after the facility design is near completion. This can result in higher costs due to retrofits and redundant use of data. Future facilities will incorporate safeguards and security early in the design process and integrate the systems to make better use of plant data and strengthen both systems. The purpose of this project was to evaluate the integration of materials control and accounting (MC&A) measurements with physical security design for a nuclear reprocessing plant. Locations throughout the plant where data overlap occurs or where MC&A data could be a benefit were identified. This mapping is presented along with the methodology for including the additional data in existing probabilistic assessments to evaluate safeguards and security systems designs.

  20. Functional Integration of mRNA Translational Control Programs.

    PubMed

    MacNicol, Melanie C; Cragle, Chad E; Arumugam, Karthik; Fosso, Bruno; Pesole, Graziano; MacNicol, Angus M

    2015-01-01

    Regulated mRNA translation plays a key role in control of cell cycle progression in a variety of physiological and pathological processes, including in the self-renewal and survival of stem cells and cancer stem cells. While targeting mRNA translation presents an attractive strategy for control of aberrant cell cycle progression, mRNA translation is an underdeveloped therapeutic target. Regulated mRNAs are typically controlled through interaction with multiple RNA binding proteins (RBPs) but the mechanisms by which the functions of distinct RBPs bound to a common target mRNA are coordinated are poorly understood. The challenge now is to gain insight into these mechanisms of coordination and to identify the molecular mediators that integrate multiple, often conflicting, inputs. A first step includes the identification of altered mRNA ribonucleoprotein complex components that assemble on mRNAs bound by multiple, distinct RBPs compared to those recruited by individual RBPs. This review builds upon our knowledge of combinatorial control of mRNA translation during the maturation of oocytes from Xenopus laevis, to address molecular strategies that may mediate RBP diplomacy and conflict resolution for coordinated control of mRNA translational output. Continued study of regulated ribonucleoprotein complex dynamics promises valuable new insights into mRNA translational control and may suggest novel therapeutic strategies for the treatment of disease. PMID:26197342