Science.gov

Sample records for integrated control rooms

  1. Integrated intelligent systems in advanced reactor control rooms

    SciTech Connect

    Beckmeyer, R.R.

    1989-01-01

    An intelligent, reactor control room, information system is designed to be an integral part of an advanced control room and will assist the reactor operator's decision making process by continuously monitoring the current plant state and providing recommended operator actions to improve that state. This intelligent system is an integral part of, as well as an extension to, the plant protection and control systems. This paper describes the interaction of several functional components (intelligent information data display, technical specifications monitoring, and dynamic procedures) of the overall system and the artificial intelligence laboratory environment assembled for testing the prototype. 10 refs., 5 figs.

  2. Procedure and information displays in advanced nuclear control rooms: experimental evaluation of an integrated design.

    PubMed

    Chen, Yue; Gao, Qin; Song, Fei; Li, Zhizhong; Wang, Yufan

    2017-02-13

    In the main control rooms of nuclear power plants, operators frequently have to switch between procedure displays and system information displays. In this study, we proposed an operation-unit-based integrated design, which combines the two displays to facilitate the synthesis of information. We grouped actions that complete a single goal into operation units and showed these operation units on the displays of system states. In addition, we used different levels of visual salience to highlight the current unit and provided a list of execution history records. A laboratory experiment, with 42 students performing a simulated procedure to deal with unexpected high pressuriser level, was conducted to compare this design against an action-based integrated design and the existing separated-displays design. The results indicate that our operation-unit-based integrated design yields the best performance in terms of time and completion rate and helped more participants to detect unexpected system failures. Practitioner Summary: In current nuclear control rooms, operators frequently have to switch between procedure and system information displays. We developed an integrated design that incorporates procedure information into system displays. A laboratory study showed that the proposed design significantly improved participants' performance and increased the probability of detecting unexpected system failures.

  3. CEBAF Control Room Renovation

    SciTech Connect

    Michael Spata; Thomas Oren

    2005-05-01

    The Machine Control Center (MCC) at Jefferson Lab's Continuous Electron Beam Accelerator Facility (CEBAF) was initially constructed in the early 1990s and based on proven technology of that era. Through our experience over the last 15 years and in our planning for the facility's 12 GeV upgrade we reevaluated the control room environment to capitalize on emerging visualization and display technologies and improve workflow processes and ergonomic attributes. This effort also sets the foundation for the redevelopment of the accelerator's control system to deliver high reliability performance with improvements in beam specifications management and information flow. The complete renovation was performed over a three-week maintenance period with no interruption to beam operations. We present the results of this effort.

  4. CEBAF Control Room Renovation

    SciTech Connect

    Michael Spata; Thomas Oren

    2005-05-01

    The Machine Control Center at Jefferson Lab's Continuous Electron Beam Accelerator Facility was initially constructed in the early 1990s and based on proven technology of that era. Through our experience over the last 15 years and in our planning for the facilities 12 GeV upgrade we reevaluated the control room environment to capitalize on emerging visualization and display technologies and improve on workflow processes and ergonomic attributes. This effort also sets the foundation for the redevelopment of the accelerator's control system to deliver high reliability performance with improvements in beam specifications management and information flow. The complete renovation was performed over a three-week period with no interruption to beam operations. We present the results of this effort.

  5. CEBAF Control Room Renovation

    SciTech Connect

    Michael Spata; Anthony Cuffe; Thomas Oren

    2005-03-22

    The Machine Control Center (MCC) at Jefferson Lab's Continuous Electron Beam Accelerator Facility (CEBAF) was constructed in the early 1990s and based on proven technology of that era. Through our experience over the last 15 years and in our planning for the facilities 12 GeV upgrade we reevaluated the control room environment to capitalize on emerging visualization and display technologies and improve on work-flow processes and ergonomic attributes. The renovation was performed in two phases during the summer of 2004, with one phase occurring during machine operations and the latter, more extensive phase, occurring during our semi-annual shutdown period. The new facility takes advantage of advances in display technology, analog and video signal management, server technology, ergonomic workspace design, lighting engineering, acoustic ceilings and raised flooring solutions to provide a marked improvement in the overall environment of machine operations.

  6. BEYOND INTEGRATED SYSTEM VALIDATION: USE OF A CONTROL ROOM TRAINING SIMULATOR FOR PROOF-OF-CONCEPT INTERFACE DEVELOPMENT

    SciTech Connect

    Ronald Boring; Vivek Agarwal

    2012-07-01

    This paper provides background on a reconfigurable control room simulator for nuclear power plants. The main control rooms in current nuclear power plants feature analog technology that is growing obsolete. The need to upgrade control rooms serves the practical need of maintainability as well as the opportunity to implement newer digital technologies with added functionality. There currently exists no dedicated research simulator for use in human factors design and evaluation activities for nuclear power plants in the US. The new research simulator discussed in this paper provides a test bed in which operator performance on new control room concepts can be benchmarked against existing control rooms and in which new technologies can be validated for safety and usability prior to deployment.

  7. 10. CONTROL ROOM INTERIOR. Looking into southwest corner. CONTROL ROOM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. CONTROL ROOM INTERIOR. Looking into southwest corner. CONTROL ROOM INTERIOR, SHOWING ESCAPE HATCH. Looking north along east wall. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Instrumentation & Control Building, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  8. 8. CONTROL AND EQUIPMENT ROOM INTERIOR. MECHANICAL EQUIPMENT ROOM AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. CONTROL AND EQUIPMENT ROOM INTERIOR. MECHANICAL EQUIPMENT ROOM AT RIGHT AND ENTRANCE AT LEFT. Looking east. - Edwards Air Force Base, South Base Sled Track, Firing Control Blockhouse, South of Sled Track at east end, Lancaster, Los Angeles County, CA

  9. Nuclear reactor control room construction

    DOEpatents

    Lamuro, Robert C.; Orr, Richard

    1993-01-01

    A control room 10 for a nuclear plant is disclosed. In the control room, objects 12, 20, 22, 26, 30 are no less than four inches from walls 10.2. A ceiling 32 contains cooling fins 35 that extend downwards toward the floor from metal plates 34. A concrete slab 33 is poured over the plates. Studs 36 are welded to the plates and are encased in the concrete.

  10. Nuclear reactor control room construction

    DOEpatents

    Lamuro, R.C.; Orr, R.

    1993-11-16

    A control room for a nuclear plant is disclosed. In the control room, objects labelled 12, 20, 22, 26, 30 in the drawing are no less than four inches from walls labelled 10.2. A ceiling contains cooling fins that extend downwards toward the floor from metal plates. A concrete slab is poured over the plates. Studs are welded to the plates and are encased in the concrete. 6 figures.

  11. Russian Flight Control Room

    NASA Image and Video Library

    2004-04-20

    NASA Deputy Administrator Fred Gregory, left, joins Russian Federal Space Agency Deputy General-Director Nikolai Moiseev, Wednesday, April 21, 2004, at the Russian Mission Control Center outside Moscow to view the docking of the Expedition 9 crew to the International Space Station in a Russian Soyuz spacecraft. Photo Credit: (NASA/Bill Ingalls)

  12. Interior of Room 127, looking southsoutheast in Display Controller's Room ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior of Room 127, looking south-southeast in Display Controller's Room - Over-the-Horizon Backscatter Radar Network, Bangor Air National Guard Base Operations Building, At the end of Maine Road, Bangor, Penobscot County, ME

  13. 44. Launch Control Equipment Room, taken from rear of room. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    44. Launch Control Equipment Room, taken from rear of room. Lyon - Whiteman Air Force Base, Oscar O-1 Minuteman Missile Alert Facility, Southeast corner of Twelfth & Vendenberg Avenues, Knob Noster, Johnson County, MO

  14. 42. Launch Control Equipment Room, rear of room. Lyon ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    42. Launch Control Equipment Room, rear of room. Lyon - Whiteman Air Force Base, Oscar O-1 Minuteman Missile Alert Facility, Southeast corner of Twelfth & Vendenberg Avenues, Knob Noster, Johnson County, MO

  15. Human factors aspects of control room design

    NASA Technical Reports Server (NTRS)

    Jenkins, J. P.

    1983-01-01

    A plan for the design and analysis of a multistation control room is reviewed. It is found that acceptance of the computer based information system by the uses in the control room is mandatory for mission and system success. Criteria to improve computer/user interface include: match of system input/output with user; reliability, compatibility and maintainability; easy to learn and little training needed; self descriptive system; system under user control; transparent language, format and organization; corresponds to user expectations; adaptable to user experience level; fault tolerant; dialog capability user communications needs reflected in flexibility, complexity, power and information load; integrated system; and documentation.

  16. Advanced nuclear plant control room complex

    DOEpatents

    Scarola, Kenneth; Jamison, David S.; Manazir, Richard M.; Rescorl, Robert L.; Harmon, Daryl L.

    1993-01-01

    An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

  17. Altitude Wind Tunnel Control Room

    NASA Image and Video Library

    1945-05-21

    Researchers at the National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory monitor a ramjet's performance in the Altitude Wind Tunnel from the control room. The soundproof control room was just a few feet from the tunnel’s 20-foot-diameter test section. In the control room, the operators could control all aspects of the tunnel’s operation, including the air density, temperature, and speed. They also operated the engine or test article in the test section by controlling the angle-of-attack, speed, power, and other parameters. The men in this photograph are monitoring the engine’s thrust and lift. A NACA-designed 20-inch-diameter ramjet was installed in the tunnel in May 1945. Thrust figures from these runs were compared with drag data from tests of scale models in small supersonic tunnels to verify the ramjet’s feasibility. The tunnel was used to analyze the ramjet’s overall performance up to altitudes of 47,000 feet and speeds to Mach 1.84. The researchers found that an increase in altitude caused a reduction in the engine’s horsepower and identified optimal flameholder configurations.

  18. 10. Interior view of control room in Components Test Laboratory ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Interior view of control room in Components Test Laboratory (T-27), looking east. The control room is located in the center of the building and abuts the Test Cell 8, 9, and 10 and equipment room wings. Photograph shows upgraded instrumentation, piping, and technological modifications installed in 1997-99 to accommodate component testing requirements for the Atlas V missile. - Air Force Plant PJKS, Systems Integration Laboratory, Components Test Laboratory, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  19. 38. ENGINE ROOM, FROM STARBOARD SIDE OF CONTROL CONSOLE, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    38. ENGINE ROOM, FROM STARBOARD SIDE OF CONTROL CONSOLE, LOOKING TOWARDS PORT, DETAIL OF PORT ENGINE. - U.S. Coast Guard Cutter WHITE HEATH, USGS Integrated Support Command Boston, 427 Commercial Street, Boston, Suffolk County, MA

  20. Nuclear power station main control room habitability

    SciTech Connect

    Paschal, W.B.; Knous, W.S. )

    1989-01-01

    The main control room at a nuclear power station must remain habitable during a variety of plant conditions and postulated events. The control room habitability requirement and the function of the heating, ventilating, air-conditioning, and air treatment system are to control environmental factors, such as temperature, pressure, humidity, radiation, and toxic gas. Habitability requirements provide for the safety of personnel and enable operation of equipment required to function in the main control room. Habitability as an issue has been gaining prominence with the Advisor Committee of Reactor Safeguards and the Nuclear Regulatory Commission since the incident at Three Mile Island. Their concern is the ability of the presently installed habitability systems to control the main control room environment after an accident. This paper discusses main control room HVAC systems; the concern, requirements, and results of NRC surveys and notices; and an approach to control room habitability reviews.

  1. 37. ENGINE ROOM, FROM PORT SIDE OF CONTROL CONSOLE, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. ENGINE ROOM, FROM PORT SIDE OF CONTROL CONSOLE, LOOKING TOWARDS STERN, PORT ENGINE AT RIGHT, STARBOARD ENGINE AT LEFT, BOTH ARE DIESEL ENGINES, IN BACKGROUND IS STAIRS UP TO CREWS' BERTHING, BEYONE THE STAIRS IS THE DOOR TO AFT ENGINE ROOM & MACHINE SHOP. - U.S. Coast Guard Cutter WHITE HEATH, USGS Integrated Support Command Boston, 427 Commercial Street, Boston, Suffolk County, MA

  2. [Comprehensive system integration and networking in operating rooms].

    PubMed

    Feußner, H; Ostler, D; Kohn, N; Vogel, T; Wilhelm, D; Koller, S; Kranzfelder, M

    2016-12-01

    A comprehensive surveillance and control system integrating all devices and functions is a precondition for realization of the operating room of the future. Multiple proprietary integrated operation room systems are currently available with a central user interface; however, they only cover a relatively small part of all functionalities. Internationally, there are at least three different initiatives to promote a comprehensive systems integration and networking in the operating room: the Japanese smart cyber operating theater (SCOT), the American medical device plug-and-play interoperability program (MDPnP) and the German secure and dynamic networking in operating room and hospital (OR.NET) project supported by the Federal Ministry of Education and Research. Within the framework of the internationally advanced OR.NET project, prototype solution approaches were realized, which make short-term and mid-term comprehensive data retrieval systems probable. An active and even autonomous control of the medical devices by the surveillance and control system (closed loop) is expected only in the long run due to strict regulatory barriers.

  3. Testing Efficiency Improved by Addition of Remote Access Control Room

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The NASA Lewis Research Center's Remote Access Control Room (RACR) uses off-the-shelf video conferencing software integrated with existing facility data systems to provide access to the test data by networking from virtually anywhere in the country. The system allows research engineers in remote locations to participate in tests and monitor data in real time just as if they were present in the control room.

  4. Noise control considerations for patient rooms

    NASA Astrophysics Data System (ADS)

    Davenny, Benjamin

    2005-09-01

    The patient room envelope is a path between outside noise sources and the patient receiver. Within the patient room there are several sources including televisions, clinical monitor alarms, medical pumps, etc. Noise control in patient rooms relies on a combination of the sound transmission loss of the patient room envelope and the level of background sound at the patient's head. Guidelines published by the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), American Institute of Architects (AIA), and the U.S. Department of Defense for background noise and sound transmission loss in patient rooms will be discussed. Appropriate levels, spectra, and temporal characteristics of background sound at the patient head location may be helpful in raising the threshold of annoying sounds. Various means of personal hearing protection for patients will be discussed. Sound-pressure levels in patient rooms reported in previous literature will also be discussed.

  5. Designing an Alternate Mission Operations Control Room

    NASA Technical Reports Server (NTRS)

    Montgomery, Patty; Reeves, A. Scott

    2014-01-01

    The Huntsville Operations Support Center (HOSC) is a multi-project facility that is responsible for 24x7 real-time International Space Station (ISS) payload operations management, integration, and control and has the capability to support small satellite projects and will provide real-time support for SLS launches. The HOSC is a service-oriented/ highly available operations center for ISS payloads-directly supporting science teams across the world responsible for the payloads. The HOSC is required to endure an annual 2-day power outage event for facility preventive maintenance and safety inspection of the core electro-mechanical systems. While complete system shut-downs are against the grain of a highly available sub-system, the entire facility must be powered down for a weekend for environmental and safety purposes. The consequence of this ground system outage is far reaching: any science performed on ISS during this outage weekend is lost. Engineering efforts were focused to maximize the ISS investment by engineering a suitable solution capable of continuing HOSC services while supporting safety requirements. The HOSC Power Outage Contingency (HPOC) System is a physically diversified compliment of systems capable of providing identified real-time services for the duration of a planned power outage condition from an alternate control room. HPOC was designed to maintain ISS payload operations for approximately three continuous days during planned HOSC power outages and support a local Payload Operations Team, International Partners, as well as remote users from the alternate control room located in another building.

  6. 21. Interior view of citric acid air pollution control room ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. Interior view of citric acid air pollution control room (also known as scrubber room) in Components Test Laboratory (T-27), looking southeast. Photograph shows upgraded instrumentation, piping, tanks, and technological modifications installed in 1997-99 to accommodate component testing requirements for the Atlas V missile. - Air Force Plant PJKS, Systems Integration Laboratory, Components Test Laboratory, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  7. CONTROL ROOM WITH SPRINKLER SYSTEM CONTROLS, INCLUDING MANUAL CONTROL BOXES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONTROL ROOM WITH SPRINKLER SYSTEM CONTROLS, INCLUDING MANUAL CONTROL BOXES FOR THE VENTILATION SYSTEM AND A PLC SWITCH FOR AUTOMATIC CO (CARBON MONOXIDE) SYSTEM. THE AIR TESTING SYSTEM IS FREE STANDING AND THE FANS ARE COMPUTER-OPERATED. - Alaskan Way Viaduct and Battery Street Tunnel, Seattle, King County, WA

  8. Guidelines on ergonomic aspects of control rooms

    NASA Technical Reports Server (NTRS)

    Mitchell, C. M.; Bocast, A. K.; Stewart, L. J.

    1983-01-01

    The anthropometry, workstation design, and environmental design of control rooms are outlined. The automated interface and VDTs and displays and various modes of communication between the system and the human operator using VDTs are discussed. The man in the loop is examined, the single controller single task framework and multiple controller multiple tasks issues are considered.

  9. Advanced control room design review guidelines: Integration of the NUREG-0700 guidelines and development of new human-system interface guidelines

    SciTech Connect

    Carter, R.J.

    1997-07-01

    This report documents the work conducted in four tasks of the Nuclear Regulatory Commission (NRC) project entitled Review Criteria for Human Factors Aspects of Advanced Controls and Instrumentation. The purpose of the first task was to integrate the applicable sections of NUREG-0700 into the advanced control room design review (ACRDR) guidelines to ensure that all applicable guidelines are together in one document and conveniently accessible to users. The primary objective of the second task was to formulate a strategy for the development of new ACRDR guidelines that have not otherwise been identified. The main focus of the third task was to modify the individual ACRDR guidelines generated to date to ensure that they are suitable for the intended nuclear power plant (NPP) control station system application. The goal of the fourth task was to develop human factors guidelines for two human-system interface categories that are missing from the current ACRDR guidelines document. During the first task those areas in NUREG-0700 that are not addressed by the ACRDR guidelines document were identified, the areas were subsequently reviewed against six recent industry human factors engineering review guidelines, and the NUREG-0700 guidelines were updated as necessary. In the second task 13 general categories of human-system interface guidelines that are either missing from or not adequately addressed by the ACRDR document were discovered. An approach was derived for the development of new ACRDR guidelines, a preliminary assessment of the available sources that may be useful in the creation of new guidelines and their applicability to the identified human-system interface categories was performed, and an estimate was made of the amount of time and level of effort required to complete the development of needed new ACRDR guidelines. During the third task those NPP control station systems to which the NUREG-0700 and ACRDR guidelines apply were identified, matrices of such

  10. 75 FR 67450 - Pipeline Safety: Control Room Management Implementation Workshop

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-02

    ... Pipeline and Hazardous Materials Safety Administration Pipeline Safety: Control Room Management... of Pipeline Safety Representatives (NAPSR) on the implementation of pipeline control room management. The workshop is intended to foster an understanding of the Control Room Management Rule issued...

  11. A New Control Room for SLAC Accelerators

    SciTech Connect

    Erickson, Roger; Guerra, E.; Stanek, M.; Hoover, Z.Van; Warren, J.; /SLAC

    2012-06-04

    We are planning to construct a new control room at SLAC to unify and improve the operation of the LCLS, SPEAR3, and FACET accelerator facilities, and to provide the space and flexibility needed to support the LCLS-II and proposed new test beam facilities. The existing control rooms for the linac and SPEAR3 have been upgraded in various ways over the last decade, but their basic features have remained unchanged. We propose to build a larger modern Accelerator Control Room (ACR) in the new Research Support Building (RSB) which is currently under construction at SLAC. Shifting the center of control for the accelerator facilities entails both technical and administrative challenges. In this paper, we describe the history, concept, and status of this project.

  12. STS-109 Flight Control Room Photo

    NASA Image and Video Library

    2002-03-05

    JSC2002-00576 (5 March 2002) --- The members of the STS-109 Orbit 3 Team pose for a group portrait in the shuttle flight control room (WFCR) in Houston’s Mission Control Center (MCC). Flight director Jeff Hanley is visible in the center foreground.

  13. STS-109 Flight Control Room Photo

    NASA Image and Video Library

    2002-03-05

    JSC2002-00575 (5 March 2002) --- The members of the STS-109 Orbit 3 Team pose for a group portrait in the shuttle flight control room (WFCR) in Houston’s Mission Control Center (MCC). Flight director Jeff Hanley is visible in the center foreground.

  14. 11. Interior view of control room in Components Test Laboratory ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Interior view of control room in Components Test Laboratory (T-27), looking north. Photograph shows upgraded instrumentation, piping, and technological modifications installed in 1997-99 to accommodate component testing requirements for the Atlas V missile. - Air Force Plant PJKS, Systems Integration Laboratory, Components Test Laboratory, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  15. Transition flight control room automation

    NASA Technical Reports Server (NTRS)

    Welborn, Curtis Ray

    1990-01-01

    The Workstation Prototype Laboratory is currently working on a number of projects which can have a direct impact on ground operations automation. These projects include: (1) The fuel cell monitoring system (FCMS), which will monitor and detect problems with the fuel cells on the shuttle. FCMS will use a combination of rules (forward/backward) and multithreaded procedures, which run concurrently with the rules, to implement the malfunction algorithms of the EGIL flight controllers. The combination of rule-based reasoning and procedural reasoning allows us to more easily map the malfunction algorithms into a real-time system implementation. (2) A graphical computation language (AGCOMPL) is an experimental prototype to determine the benefits and drawbacks of using a graphical language to design computations (algorithms) to work on shuttle or space station telemetry and trajectory data. (3) The design of a system will allow a model of an electrical system, including telemetry sensors, to be configured on the screen graphically using previously defined electrical icons. This electrical model would then be used to generate rules and procedures for detecting malfunctions in the electrical components of the model. (4) A generic message management (GMM) system is being designed for real-time applications as a message management system which sends advisory messages to a user. The primary purpose of GMM is to reduce the risk of overloading a user with information when multiple failures occur and to assist the developer in the devising an explanation facility. The emphasis of our work is to develop practical tools and techniques, including identification of appropriate software tools to support research, application, and tool building activities, while determining the feasibility of a given approach.

  16. Transition Flight Control Room Automation

    NASA Technical Reports Server (NTRS)

    Welborn, Curtis Ray

    1990-01-01

    The Workstation Prototype Laboratory is currently working on a number of projects which we feel can have a direct impact on ground operations automation. These projects include: The Fuel Cell Monitoring System (FCMS), which will monitor and detect problems with the fuel cells on the Shuttle. FCMS will use a combination of rules (forward/backward) and multi-threaded procedures which run concurrently with the rules, to implement the malfunction algorithms of the EGIL flight controllers. The combination of rule based reasoning and procedural reasoning allows us to more easily map the malfunction algorithms into a real-time system implementation. A graphical computation language (AGCOMPL). AGCOMPL is an experimental prototype to determine the benefits and drawbacks of using a graphical language to design computations (algorithms) to work on Shuttle or Space Station telemetry and trajectory data. The design of a system which will allow a model of an electrical system, including telemetry sensors, to be configured on the screen graphically using previously defined electrical icons. This electrical model would then be used to generate rules and procedures for detecting malfunctions in the electrical components of the model. A generic message management (GMM) system. GMM is being designed as a message management system for real-time applications which send advisory messages to a user. The primary purpose of GMM is to reduce the risk of overloading a user with information when multiple failures occurs and in assisting the developer in devising an explanation facility. The emphasis of our work is to develop practical tools and techniques, while determining the feasibility of a given approach, including identification of appropriate software tools to support research, application and tool building activities.

  17. Control room habitability system review models

    SciTech Connect

    Gilpin, H. )

    1990-12-01

    This report provides a method of calculating control room operator doses from postulated reactor accidents and chemical spills as part of the resolution of TMI Action Plan III.D.3.4. The computer codes contained in this report use source concentrations calculated by either TACT5, FPFP, or EXTRAN, and transport them via user-defined flow rates to the control room envelope. The codes compute doses to six organs from up to 150 radionuclides (or 1 toxic chemical) for time steps as short as one second. Supporting codes written in Clipper assist in data entry and manipulation, and graphically display the results of the FORTRAN calculations. 7 refs., 22 figs.

  18. Electric control of magnetism at room temperature.

    PubMed

    Wang, Liaoyu; Wang, Dunhui; Cao, Qingqi; Zheng, Yuanxia; Xuan, Haicheng; Gao, Jinlong; Du, Youwei

    2012-01-01

    In the single-phase multiferroics, the coupling between electric polarization (P) and magnetization (M) would enable the magnetoelectric (ME) effect, namely M induced and modulated by E, and conversely P by H. Especially, the manipulation of magnetization by an electric field at room-temperature is of great importance in technological applications, such as new information storage technology, four-state logic device, magnetoelectric sensors, low-power magnetoelectric device and so on. Furthermore, it can reduce power consumption and realize device miniaturization, which is very useful for the practical applications. In an M-type hexaferrite SrCo(2)Ti(2)Fe(8)O(19), large magnetization and electric polarization were observed simultaneously at room-temperature. Moreover, large effect of electric field-controlled magnetization was observed even without magnetic bias field. These results illuminate a promising potential to apply in magnetoelectric devices at room temperature and imply plentiful physics behind them.

  19. Electric control of magnetism at room temperature

    PubMed Central

    Wang, Liaoyu; Wang, Dunhui; Cao, Qingqi; Zheng, Yuanxia; Xuan, Haicheng; Gao, Jinlong; Du, Youwei

    2012-01-01

    In the single-phase multiferroics, the coupling between electric polarization (P) and magnetization (M) would enable the magnetoelectric (ME) effect, namely M induced and modulated by E, and conversely P by H. Especially, the manipulation of magnetization by an electric field at room-temperature is of great importance in technological applications, such as new information storage technology, four-state logic device, magnetoelectric sensors, low-power magnetoelectric device and so on. Furthermore, it can reduce power consumption and realize device miniaturization, which is very useful for the practical applications. In an M-type hexaferrite SrCo2Ti2Fe8O19, large magnetization and electric polarization were observed simultaneously at room-temperature. Moreover, large effect of electric field-controlled magnetization was observed even without magnetic bias field. These results illuminate a promising potential to apply in magnetoelectric devices at room temperature and imply plentiful physics behind them. PMID:22355737

  20. White Paper for Virtual Control Room

    NASA Technical Reports Server (NTRS)

    Little, William; Tully-Hanson, Benjamin

    2015-01-01

    The Virtual Control Room (VCR) Proof of Concept (PoC) project is the result of an award given by the Fourth Annual NASA T&I Labs Challenge Project Call. This paper will outline the work done over the award period to build and enhance the capabilities of the Augmented/Virtual Reality (AVR) Lab at NASA's Kennedy Space Center (KSC) to create the VCR.

  1. Priority coding for control room alarms

    DOEpatents

    Scarola, Kenneth; Jamison, David S.; Manazir, Richard M.; Rescorl, Robert L.; Harmon, Daryl L.

    1994-01-01

    Indicating the priority of a spatially fixed, activated alarm tile on an alarm tile array by a shape coding at the tile, and preferably using the same shape coding wherever the same alarm condition is indicated elsewhere in the control room. The status of an alarm tile can change automatically or by operator acknowledgement, but tones and/or flashing cues continue to provide status information to the operator.

  2. Advanced interaction media in nuclear power plant control rooms.

    PubMed

    Stephane, Lucas

    2012-01-01

    The shift from analog to digital Instruments (related mainly to information visualization) and Controls in Nuclear Power Plant Main Control Rooms (NPP MCR) is a central current topic of investigation. In NPP MCR, digitalization was implemented gradually, analog and digital systems still coexisting for the two main systems related to safety--Safety Instruments and Control System (SICS) and Process Instruments and Controls System (PICS). My ongoing research focuses on the introduction of Advanced Interaction Media (AIM) such as stereoscopic 3D visualization and multi-touch surfaces in control rooms. This paper proposes a Safety-Centric approach for gathering the Design Rationale needed in the specification of such novel AIM concepts as well as their evaluation through user tests. Beyond methodological research, the final output of the current research is to build an experimental simulator aiming to enhance improvements in Human-Systems Integration (HSI). This paper provides an overview of the topics under consideration.

  3. 13. CONTROL ROOM OF GENE PUMPING STATION. CONTROL CUBICLES ARRAYED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. CONTROL ROOM OF GENE PUMPING STATION. CONTROL CUBICLES ARRAYED BEHIND MANAGER'S ART DECO-STYLE CONTROL DESK, WITH CONTROL CUBICLE 1 AT FAR RIGHT AND CONTROL CUBICLE 9 AT FAR LEFT. - Gene Pump Plant, South of Gene Wash Reservoir, 2 miles west of Whitsett Pump Plant, Parker Dam, San Bernardino County, CA

  4. Proteus DSA control room in Mojave, CA

    NASA Image and Video Library

    2003-04-03

    Proteus DSA control room in Mojave, CA (L to R) Jean-Pierre Soucy; Amphitech International Software engineer Craig Bomben; NASA Dryden Test Pilot Pete Siebold; (with headset, at computer controls) Scaled Composites pilot Bob Roehm; New Mexico State University (NMSU) UAV Technical Analysis Application Center (TAAC) Chuck Coleman; Scaled Composites Pilot Kari Sortland; NMSU TAAC Russell Wolfe; Modern Technology Solutions, Inc. Scaled Composites' unique tandem-wing Proteus was the testbed for a series of UAV collision-avoidance flight demonstrations. An Amphitech 35GHz radar unit installed below Proteus' nose was the primary sensor for the Detect, See and Avoid tests.

  5. Computer codes for evaluation of control room habitability (HABIT)

    SciTech Connect

    Stage, S.A.

    1996-06-01

    This report describes the Computer Codes for Evaluation of Control Room Habitability (HABIT). HABIT is a package of computer codes designed to be used for the evaluation of control room habitability in the event of an accidental release of toxic chemicals or radioactive materials. Given information about the design of a nuclear power plant, a scenario for the release of toxic chemicals or radionuclides, and information about the air flows and protection systems of the control room, HABIT can be used to estimate the chemical exposure or radiological dose to control room personnel. HABIT is an integrated package of several programs that previously needed to be run separately and required considerable user intervention. This report discusses the theoretical basis and physical assumptions made by each of the modules in HABIT and gives detailed information about the data entry windows. Sample runs are given for each of the modules. A brief section of programming notes is included. A set of computer disks will accompany this report if the report is ordered from the Energy Science and Technology Software Center. The disks contain the files needed to run HABIT on a personal computer running DOS. Source codes for the various HABIT routines are on the disks. Also included are input and output files for three demonstration runs.

  6. The evaluation of the advanced control room

    SciTech Connect

    Fu Li; Xiaoming Chen; Zhiwei Zhou; Wei Wu; Takashi Nakagawa; Naotaka Terashita

    2002-07-01

    The advanced control rooms (ACRs) of nuclear power plants (NPPs) are featured with visual display units (VDU) rather than the analog meters-and-panels in the conventional control rooms. Various studies have shown that human factor engineering characteristics would affect greatly the safety and reliability of an NPP. It is therefore necessary to evaluate such factors objectively and quantitatively. But it is difficult to do so due to the flexible and variable ways to implement VDU-based interfaces. In addition, the human factors issues are different from the ones in the conventional interface. The attentions were mainly paid on the rules concerning with the design and operation of a control room in NPP, in order to develop the evaluation methods and practical system for ACRs within the national and international rules and standards. The evaluation methods would focus on the dynamic performances of interactions between operators and ACR, which would be simulated by computers. The evaluation indices that would be implemented into the evaluation system have been discussed and summarized in a systematic manner. The evaluation indices for ACR proposed focus on the characteristics of mental and recognition processes, situation awareness of operators, safety and adaptability of the VDU-based monitoring and operating functions. The proposed indices were divided into two types: dynamic and static indices, corresponding respectively to the performance of dynamic operation in various scenarios and the accordance between the design of ACR and the human factor engineering principles. To be implemented as the computerized indices, the above results would be further discussed and extended with the introduction of the achievements in the field of the ergonomic, psychological, and physiological researches. (authors)

  7. Information presentation in power plant control rooms

    NASA Astrophysics Data System (ADS)

    Kautto, A.

    1984-11-01

    The organization and presentation of information in a pressurized water reactor control room is discussed. Design of the alert function so as to reduce the number of alarms during plant shutdown, e.g., during the refuelling or maintenance period and during a disturbance, is considered. Validation of the Critical Function Monitoring System on a training simulator is described. Functional decomposition of information is shown to be helpful in designing displays. Criteria for designing displays, the structure of the information presentation system, and the main interactions are presented.

  8. INFLIGHT (MISSION OPERATIONS CONTROL ROOM [MOCR]) - STS-7 - JSC

    NASA Image and Video Library

    1983-06-18

    S83-34270 (18 June 1983) --- Astronaut C. Gordon Fullerton supplies helpful consultation for Edward I. Fendell (seated) at the Integrated Communications System (INCO) console in the Mission Operations Control Room (MOCR) of the Johnson Space Center's (JSC) Mission Control Center (MCC). Fendell had control over the TV systems during a brief television transmission that featured the opening of the payload bay doors and the revealing of the cargo in the space shuttle Challenger's 18-meter (60-feet) long payload bay. The door-opening was the first of a series of many TV sessions planned for this six-day flight. Photo credit: NASA

  9. 17. CONTROL ROOM, NORTH SIDE, WITH BRIDGE SWING CONTROLS ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. CONTROL ROOM, NORTH SIDE, WITH BRIDGE SWING CONTROLS ON LEFT, SIGNAL CONTROLS ON RIGHT, WHISTLE PULL TOP. RADIO TELEPHONE IN CENTER BACK (Fred Small) - Burlington Northern Railroad Bridge, Spanning Willamette River at River Mile 6.9, Portland, Multnomah County, OR

  10. Nuclear power plant control room operator control and monitoring tasks

    SciTech Connect

    Bovell, C.R.; Beck, M.G.; Carter, R.J.

    1998-07-01

    Oak Ridge National Laboratory is conducting a research project the purpose of which is to develop the technical bases for regulatory review criteria for use in evaluating the safety implications of human factors associated with the use of artificial intelligence and expert systems, and with advanced instrumentation and control (I and C) systems in nuclear power plants (NPP). This report documents the results from Task 8 of that project. The primary objectives of the task was to identify the scope and type of control and monitoring tasks now performed by control-room operators. Another purpose was to address the types of controls and safety systems needed to operate the nuclear plant. The final objective of Task 8 was to identify and categorize the type of information and displays/indicators required to monitor the performance of the control and safety systems. This report also discusses state-of-the-art controls and advanced display devices which will be available for use in control-room retrofits and in control room of future plants. The fundamental types of control and monitoring tasks currently conducted by operators can be divided into four classifications: function monitoring tasks, control manipulation tasks, fault diagnostic tasks, and administrative tasks. There are three general types of controls used in today`s NPPs, switches, pushbuttons, and analog controllers. Plant I and C systems include components to achieve a number of safety-related functions: measuring critical plant parameters, controlling critical plant parameters within safety limits, and automatically actuating protective devices if safe limits are exceeded. The types of information monitored by the control-room operators consist of the following parameters: pressure, fluid flow and level, neutron flux, temperature, component status, water chemistry, electrical, and process and area radiation. The basic types of monitoring devices common to nearly all NPP control rooms include: analog meters

  11. [Controlling systems for operating room managers].

    PubMed

    Schüpfer, G; Bauer, M; Scherzinger, B; Schleppers, A

    2005-08-01

    Management means developing, shaping and controlling of complex, productive and social systems. Therefore, operating room managers also need to develop basic skills in financial and managerial accounting as a basis for operative and strategic controlling which is an essential part of their work. A good measurement system should include financial and strategic concepts for market position, innovation performance, productivity, attractiveness, liquidity/cash flow and profitability. Since hospitals need to implement a strategy to reach their business objectives, the performance measurement system has to be individually adapted to the strategy of the hospital. In this respect the navigation system developed by Gälweiler is compared to the "balanced score card" system of Kaplan and Norton.

  12. MTR CONTROL ROOM WITH CONTROL CONSOLE AND STATUS READOUTS ALONG ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MTR CONTROL ROOM WITH CONTROL CONSOLE AND STATUS READOUTS ALONG WALL. WORKERS MAKE ELECTRICAL AND OTHER CONNECTIONS. INL NEGATIVE NO. 4289. Unknown Photographer, 2/26/1952 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  13. Mission Operations Control Room (MOCR) activities during STS-6 mission

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Flight director Jay H. Greene (center) talks with Eugene F. Kranz, director of mission operations, in the mission operations control room (MOCR) of JSC's mission control center. Challenger was beginning to fly over Africa in Day 3 of this mission (30136); Flight director Brock R. (Randy) Stone, at the FD console in the MOCR studies the list of activities scheduled for the Challenger on that day (30137); Granvil A. (Al) Pennington waits for the launch of STS-6 as he begins his duties as ascent team integrated communication system officer (INCO) at the INCO console in the MOCR (30138).

  14. Mission Operations Control Room (MOCR) activities during STS-6 mission

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Flight director Jay H. Greene (center) talks with Eugene F. Kranz, director of mission operations, in the mission operations control room (MOCR) of JSC's mission control center. Challenger was beginning to fly over Africa in Day 3 of this mission (30136); Flight director Borck R. (Randy) Stone, at the FD console in the MOCR studies the list of activities scheduled for the Challenger on that day (30137); Granvil A. (Al) Pennington waits for the launch of STS-6 as he begins his duties as ascent team integrated communication system officer (INCO) at the INCO console in the MOCR (30138).

  15. Requirements for Control Room Computer-Based Procedures for use in Hybrid Control Rooms

    SciTech Connect

    Le Blanc, Katya Lee; Oxstrand, Johanna Helene; Joe, Jeffrey Clark

    2015-05-01

    Many plants in the U.S. are currently undergoing control room modernization. The main drivers for modernization are the aging and obsolescence of existing equipment, which typically results in a like-for-like replacement of analogue equipment with digital systems. However, the modernization efforts present an opportunity to employ advanced technology that would not only extend the life, but enhance the efficiency and cost competitiveness of nuclear power. Computer-based procedures (CBPs) are one example of near-term advanced technology that may provide enhanced efficiencies above and beyond like for like replacements of analog systems. Researchers in the LWRS program are investigating the benefits of advanced technologies such as CBPs, with the goal of assisting utilities in decision making during modernization projects. This report will describe the existing research on CBPs, discuss the unique issues related to using CBPs in hybrid control rooms (i.e., partially modernized analog control rooms), and define the requirements of CBPs for hybrid control rooms.

  16. 141. Detail of east control panel in control room, looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    141. Detail of east control panel in control room, looking east. This panel contains electrical switches that were used to control valves at circular forebay. It also contains voltage regulators, synchroscope adjust field breaker, ammeters, wattmeters, temperature indicator of generator windings, and butterfly valve and governor controls. Photo by Jet Lowe, HAER, 1989. - Puget Sound Power & Light Company, White River Hydroelectric Project, 600 North River Avenue, Dieringer, Pierce County, WA

  17. 3. GENERAL VIEW OF BOILER ROOM, LOOKING NORTH; CONTROL PANEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. GENERAL VIEW OF BOILER ROOM, LOOKING NORTH; CONTROL PANEL AT CENTER; BOXLIKE, RIVETED HOUSING AT TOP CENTER CONTAINED AUGER FOR COAL DISTRIBUTION SYSTEM - Rath Packing Company, Boiler Room, Sycamore Street between Elm & Eighteenth Streets, Waterloo, Black Hawk County, IA

  18. 5. INTERIOR VIEW, SHOWING A CONTROL ROOM INSIDE THE RADIOGRAPHY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. INTERIOR VIEW, SHOWING A CONTROL ROOM INSIDE THE RADIOGRAPHY ROOM; PASS-THROUGH FOR EXPOSED FILM ON RIGHT - Fort McCoy, Building No. T-1031, North side of South Tenth Avenue, Block 10, Sparta, Monroe County, WI

  19. 3. OBLIQUE VIEW OF THE PRESENT CONTROL ROOM (ORIGINALLY THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. OBLIQUE VIEW OF THE PRESENT CONTROL ROOM (ORIGINALLY THE TRANSFORMER ROOM). - Washington Water Power Company Post Falls Power Plant, Middle Channel Powerhouse & Dam, West of intersection of Spokane & Fourth Streets, Post Falls, Kootenai County, ID

  20. IET control building (TAN620). control room. facing east. windows on ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    IET control building (TAN-620). control room. facing east. windows on east end of control room with data room beyond. INEEL negative no. HD-21-3-4 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  1. Verification and Validation of Digitally Upgraded Control Rooms

    SciTech Connect

    Boring, Ronald; Lau, Nathan

    2015-09-01

    As nuclear power plants undertake main control room modernization, a challenge is the lack of a clearly defined human factors process to follow. Verification and validation (V&V) as applied in the nuclear power community has tended to involve efforts such as integrated system validation, which comes at the tail end of the design stage. To fill in guidance gaps and create a step-by-step process for control room modernization, we have developed the Guideline for Operational Nuclear Usability and Knowledge Elicitation (GONUKE). This approach builds on best practices in the software industry, which prescribe an iterative user-centered approach featuring multiple cycles of design and evaluation. Nuclear regulatory guidance for control room design emphasizes summative evaluation—which occurs after the design is complete. In the GONUKE approach, evaluation is also performed at the formative stage of design—early in the design cycle using mockups and prototypes for evaluation. The evaluation may involve expert review (e.g., software heuristic evaluation at the formative stage and design verification against human factors standards like NUREG-0700 at the summative stage). The evaluation may also involve user testing (e.g., usability testing at the formative stage and integrated system validation at the summative stage). An additional, often overlooked component of evaluation is knowledge elicitation, which captures operator insights into the system. In this report we outline these evaluation types across design phases that support the overall modernization process. The objective is to provide industry-suitable guidance for steps to be taken in support of the design and evaluation of a new human-machine interface (HMI) in the control room. We suggest the value of early-stage V&V and highlight how this early-stage V&V can help improve the design process for control room modernization. We argue that there is a need to overcome two shortcomings of V&V in current practice

  2. Controller's office (room 102), looking northeast into the display area ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Controller's office (room 102), looking northeast into the display area - March Air Force Base, Strategic Air Command, Combat Operations Center, 5220 Riverside Drive, Moreno Valley, Riverside County, CA

  3. 11. Credit BG. Interior of control and observation room at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Credit BG. Interior of control and observation room at Control and Recording Center, showing detail of switchboard and closed circuit television monitors. - Jet Propulsion Laboratory Edwards Facility, Control & Recording Center, Edwards Air Force Base, Boron, Kern County, CA

  4. 10. Credit BG. Interior of control and observation room at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Credit BG. Interior of control and observation room at Control and Recording Center Building 4221/E-22. - Jet Propulsion Laboratory Edwards Facility, Control & Recording Center, Edwards Air Force Base, Boron, Kern County, CA

  5. 5. INTERIOR VIEW OF UPPER LEVEL ROOM OF THE CONTROL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. INTERIOR VIEW OF UPPER LEVEL ROOM OF THE CONTROL HOUSE LOCATED ON THE SOUTH END OF BIG TUJUNGA DAM SHOWING THE CONTROL PANEL. - Big Tujunga Dam, Control House, 809 West Big Tujunga Road, Sunland, Los Angeles County, CA

  6. 11. Historic view of Building 100 control room, showing personnel ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Historic view of Building 100 control room, showing personnel operating rocket engine test controls and observer watching activity from observation room. May 27, 1957. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA photo number C-45020. - Rocket Engine Testing Facility, GRC Building No. 100, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  7. Main control room, showing original sixpane windows and doors to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Main control room, showing original six-pane windows and doors to pump motor room at left. The main control cabinets and switchgear, visible on right, were replaced in 2003. View to the south - Wellton-Mohawk Irrigation System, Pumping Plant No. 2, Bounded by Interstate 8 to south, Wellton, Yuma County, AZ

  8. Main Control Room, view to the east. The door to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Main Control Room, view to the east. The door to the motor room is to the right, and the main control cabinets are to the left - Wellton-Mohawk Irrigation System, Pumping Plant No. 1, Bounded by Gila River & Union Pacific Railroad, Wellton, Yuma County, AZ

  9. Assessment of control rooms of nuclear power plants

    NASA Astrophysics Data System (ADS)

    Norros, L.; Ranta, J.; Wahlstroem, B.

    1983-05-01

    The NUREG 0700 recommendations were assessed for implementation in the control rooms of Finnish nuclear power plants. Direct conclusions drawn from the American situation are misleading, because of differences in, for example, procurement of instruments or personnel training. If the review is limited to control room details, the NRC program (checklist) is successful. It can also be used during planning to observe small discrepancies.

  10. NFL Films music scoring stage and control room space

    NASA Astrophysics Data System (ADS)

    Berger, Russ; Schrag, Richard C.; Ridings, Jason J.

    2003-04-01

    NFL Films' new 200,000 sq. ft. corporate headquarters is home to an orchestral scoring stage used to record custom music scores to support and enhance their video productions. Part of the 90,000 sq. ft. of sound critical technical space, the music scoring stage and its associated control room are at the heart of the audio facilities. Driving the design were the owner's mandate for natural light, wood textures, and an acoustical environment that would support small rhythm sections, soloists, and a full orchestra. Being an industry leader in cutting-edge video and audio formats, the NFLF required that the technical spaces allow the latest in technology to be continually integrated into the infrastructure. Never was it more important for a project to hold true to the adage of ``designing from the inside out.'' Each audio and video space within the facility had to stand on its own with regard to user functionality, acoustical accuracy, sound isolation, noise control, and monitor presentation. A detailed look at the architectural and acoustical design challenges encountered and the solutions developed for the performance studio and the associated control room space will be discussed.

  11. A new main control room for the AGS complex

    SciTech Connect

    Ingrassia, P.F.; Zaharatos, R.M.; Dyling, O.H.

    1991-01-01

    A new Main Control Room (MCR) has been built to control the accelerators of the AGS Complex. A new physical environment was produced to better control light, sound, temperature, and traffic. New control consoles were built around the work-stations that make up the distributed control system. Equipment placement within consoles and console placement within the room reflect attention to the human factors'' needs of the operator. 1 ref., 2 figs.

  12. 2. CONTROL ROOM INTERIOR, CONSOLE AND MONITORS. Looking west. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. CONTROL ROOM INTERIOR, CONSOLE AND MONITORS. Looking west. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Control Center, Test Area 1-115, near Altair & Saturn Boulevards, Boron, Kern County, CA

  13. 12. LAUNCH CONTROL SUPPORT BUILDING. INTERIOR OF GENERATOR ROOM. VIEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. LAUNCH CONTROL SUPPORT BUILDING. INTERIOR OF GENERATOR ROOM. VIEW TO EAST. - Minuteman III ICBM Launch Control Facility November-1, 1.5 miles North of New Raymer & State Highway 14, New Raymer, Weld County, CO

  14. 11. LAUNCH CONTROL SUPPORT BUILDING. INTERIOR OF MECHANICAL ROOM. VIEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. LAUNCH CONTROL SUPPORT BUILDING. INTERIOR OF MECHANICAL ROOM. VIEW TO SOUTHEAST. - Minuteman III ICBM Launch Control Facility November-1, 1.5 miles North of New Raymer & State Highway 14, New Raymer, Weld County, CO

  15. PBF Control Building (PER619). Interior of control room. Control console ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Control Building (PER-619). Interior of control room. Control console in center of room. Indicator panels along walls. Window shown in ID-33-F-120 is between control panels at left. Camera facing northwest. Date: May 2004. INEEL negative no. HD-41-7-3 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  16. The Aircraft Simulation Role in Improving Flight Safety Through Control Room Training

    NASA Technical Reports Server (NTRS)

    Shy, Karla S.; Hageman, Jacob J.; Le, Jeanette H.; Sitz, Joel (Technical Monitor)

    2002-01-01

    NASA Dryden Flight Research Center uses its six-degrees-of-freedom (6-DOF) fixed-base simulations for mission control room training to improve flight safety and operations. This concept is applied to numerous flight projects such as the F-18 High Alpha Research Vehicle (HARV), the F-15 Intelligent Flight Control System (IFCS), the X-38 Actuator Control Test (XACT), and X-43A (Hyper-X). The Dryden 6-DOF simulations are typically used through various stages of a project, from design to ground tests. The roles of these simulations have expanded to support control room training, reinforcing flight safety by building control room staff proficiency. Real-time telemetry, radar, and video data are generated from flight vehicle simulation models. These data are used to drive the control room displays. Nominal static values are used to complete information where appropriate. Audio communication is also an integral part of training sessions. This simulation capability is used to train control room personnel and flight crew for nominal missions and emergency situations. Such training sessions are also opportunities to refine flight cards and control room display pages, exercise emergency procedures, and practice control room setup for the day of flight. This paper describes this technology as it is used in the X-43A and F-15 IFCS and XACT projects.

  17. PBF Control Building (PER619). Interior of control room shows control ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Control Building (PER-619). Interior of control room shows control console from direction facing visitors room and its observation window. Camera facing northeast. Date: May 2004. INEEL negative no. HD-41-7-1 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  18. Design of a multisystem remote maintenance control room

    SciTech Connect

    Draper, J.V.; Handel, S.J.; Kring, C.T.; Kawatsuma, S.

    1988-01-01

    The Remote Systems Development Section of the Consolidated Fuel Reprocessing Program at the Oak Ridge National Laboratory (ORNL) and Japan's Power Reactor and Nuclear Fuel Development Corporation (PNC) recently collaborated in the development of a control room concept for remote operations. This report describes design methods and the resulting control room concept. The design project included five stages. The first was compilation of a complete function list; functions are tasks performed by operators in the control room while operating equipment located in the remote area. The second step was organization of the function list into ''function groups;'' function groups are sets of functions that operate one piece of equipment. The third stage was determination of crew size and requirements for supervision. The fourth stage was development of conceptual designs of displays and controls. The fifth stage was development of plans for placement of crew stations within the control room. 5 figs., 1 tab.

  19. Using a Research Simulator for Validating Control Room Modernization Concepts

    SciTech Connect

    Ronald L. Boring; Vivek Agarwal; Julius J. Persensky; Jeffrey C. Joe

    2012-05-01

    The Light Water Reactor Sustainability Program is a research, development, and deployment program sponsored by the United States Department of Energy. The program is operated in close collaboration with industry research and development programs to provide the technical foundations for licensing and managing the long-term, safe, and economical operation of nuclear power plants that are currently in operation. Advanced instrumentation and control (I&C) technologies are needed to support the continued safe and reliable production of power from nuclear energy systems during sustained periods of operation up to and beyond their expected licensed lifetime. This requires that new capabilities to achieve process control be developed and eventually implemented in existing nuclear control rooms. It also requires that approaches be developed and proven to achieve sustainability of I&C systems throughout the period of extended operation. Idaho National Laboratory (INL) is working closely with nuclear utilities to develop technologies and solutions to help ensure the safe life extension of current reactors. One of the main areas of focus is control room modernization. Current analog control rooms are growing obsolete, and it is difficult for utilities to maintain them. Using its reconfigurable control room simulator adapted from a training simulator, INL serves as a neutral test bed for implementing new control room system technologies and assisting in control room modernization efforts across.

  20. 19. PANORAMIC VIEW OF RADAR SITE, CONTROL ROOM, AND HELIPORT, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. PANORAMIC VIEW OF RADAR SITE, CONTROL ROOM, AND HELIPORT, LOOKING WEST-SOUTHWEST Everett Weinreb, photographer, March 1988 - Los Pinetos Nike Missile Site, Santa Clara Road, Los Angeles National Forest, Sylmar, Los Angeles County, CA

  1. 133. NITROGEN SUPPLY PANEL ON SOUTH WALL OF CONTROL ROOM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    133. NITROGEN SUPPLY PANEL ON SOUTH WALL OF CONTROL ROOM (114), LSB (BLDG. 770) - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  2. 73. LOOKING EAST INSIDE THE BLOWERS CONTROL ROOM FOR DOROTHY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    73. LOOKING EAST INSIDE THE BLOWERS CONTROL ROOM FOR DOROTHY SIX BLAST FURNACE WITH SNORT WHEEL IN FOREGROUND ON RIGHT. (Jet Lowe) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  3. 4. INTERIOR VIEW, LOOKING EAST FROM THE CONTROL ROOM, TOWARD ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. INTERIOR VIEW, LOOKING EAST FROM THE CONTROL ROOM, TOWARD THE GREY IRON CUPOLA WITH CUPOLA TENDER (LEFT) MAKING CERTAIN MOLTEN IRON FLOWS UNIMPEDED. - Stockham Pipe & Fittings Company, Grey Iron Foundry, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  4. VIEW OF THE CONTROL ROOM FOR THE ALTITUDE CHAMBERS, FACING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF THE CONTROL ROOM FOR THE ALTITUDE CHAMBERS, FACING SOUTHWEST - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  5. 11. VIEW LOOKING EAST AT MODEL AIRCRAFT CONTROL ROOM; MODEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. VIEW LOOKING EAST AT MODEL AIRCRAFT CONTROL ROOM; MODEL OF BOEING 737 AT TOP OF PHOTOGRAPH IN FULL-SCALE WIND TUNNEL. - NASA Langley Research Center, Full-Scale Wind Tunnel, 224 Hunting Avenue, Hampton, Hampton, VA

  6. FRONTAL VIEW OF SLATE SWITCHBOARD IN THE CONTROL ROOM OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FRONTAL VIEW OF SLATE SWITCHBOARD IN THE CONTROL ROOM OF ELWHA POWERHOUSE. PHOTO BY JET LOWE, HAER, 1995 - Elwha River Hydroelectric System, Elwha Hydroelectric Dam & Plant, Port Angeles, Clallam County, WA

  7. VIEW OF DCEXCITER AND GENERATORFIELD SLATE SWITCHBOARD IN CONTROL ROOM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF DC-EXCITER AND GENERATOR-FIELD SLATE SWITCHBOARD IN CONTROL ROOM OF ELWHA POWERHOUSE. PHOTO BY JET LOWE, HAER, 1995. - Elwha River Hydroelectric System, Elwha Hydroelectric Dam & Plant, Port Angeles, Clallam County, WA

  8. 18. Historic plan of Building 100 control room. March 21, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. Historic plan of Building 100 control room. March 21, 1956. NASA GRC drawing number CE-101736. (On file at NASA Glenn Research Center). - Rocket Engine Testing Facility, GRC Building No. 100, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  9. 143. MOBILE HIGH PRESSURE NITROGEN CART STORED IN CONTROL ROOM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    143. MOBILE HIGH PRESSURE NITROGEN CART STORED IN CONTROL ROOM (214), LSB (BLDG. 751) - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  10. 137. VALVES ON SOUTH WALL OF LIQUID NITROGEN CONTROL ROOM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    137. VALVES ON SOUTH WALL OF LIQUID NITROGEN CONTROL ROOM (115), LSB (BLDG. 770) - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  11. 29. View below floor of control room, within turntable, showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. View below floor of control room, within turntable, showing electric power wiring to new collector rings. (Nov. 25, 1988) - University Heights Bridge, Spanning Harlem River at 207th Street & West Harlem Road, New York County, NY

  12. 8. INTERIOR, FIRE ALARM CONTROL ROOM (NORTH OF MAIN GARAGE), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. INTERIOR, FIRE ALARM CONTROL ROOM (NORTH OF MAIN GARAGE), FROM ENTRYWAY, LOOKING NORTH, SHOWING ADDITIONAL 'GAMEWELL' FIRE ALARM SYSTEMS. - Oakland Naval Supply Center, Firehouse, East of Fourth Street, between A & B Streets, Oakland, Alameda County, CA

  13. 11. ENGINE TEST CELL BUILDING INTERIOR. CONTROL ROOM FOR CELLS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. ENGINE TEST CELL BUILDING INTERIOR. CONTROL ROOM FOR CELLS 2 AND 4. LOOKING SOUTHEAST. - Fairchild Air Force Base, Engine Test Cell Building, Near intersection of Arnold Street & George Avenue, Spokane, Spokane County, WA

  14. 40. Launch Control Equipment Room, taken from entrance. Lyon ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    40. Launch Control Equipment Room, taken from entrance. Lyon - Whiteman Air Force Base, Oscar O-1 Minuteman Missile Alert Facility, Southeast corner of Twelfth & Vendenberg Avenues, Knob Noster, Johnson County, MO

  15. 43. Launch Control Equipment Room, generator and maintenance mannequin. Lyon ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    43. Launch Control Equipment Room, generator and maintenance mannequin. Lyon - Whiteman Air Force Base, Oscar O-1 Minuteman Missile Alert Facility, Southeast corner of Twelfth & Vendenberg Avenues, Knob Noster, Johnson County, MO

  16. 41. Launch Control Equipment Room, interior. Thalheimer Whiteman Air ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    41. Launch Control Equipment Room, interior. Thalheimer - Whiteman Air Force Base, Oscar O-1 Minuteman Missile Alert Facility, Southeast corner of Twelfth & Vendenberg Avenues, Knob Noster, Johnson County, MO

  17. 39. Launch Control Equipment Room, seen from tunnel junction. Lyon ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    39. Launch Control Equipment Room, seen from tunnel junction. Lyon - Whiteman Air Force Base, Oscar O-1 Minuteman Missile Alert Facility, Southeast corner of Twelfth & Vendenberg Avenues, Knob Noster, Johnson County, MO

  18. 68. TURBINE HALL, LOOKING DOWN FROM THE CONTROL ROOM INTO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    68. TURBINE HALL, LOOKING DOWN FROM THE CONTROL ROOM INTO TURBINE HALL AT UNITS 3, 5, AND 2) - Delaware County Electric Company, Chester Station, Delaware River at South end of Ward Street, Chester, Delaware County, PA

  19. 15. Interior view of unoccupied controlled computer room looking at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. Interior view of unoccupied controlled computer room looking at exit door and office; northwest corner of unoccupied portion; view to south. - Ellsworth Air Force Base, Mess & Administration Building, 2279 Risner Drive, Blackhawk, Meade County, SD

  20. 30. Perimeter acquisition radar building room #318, showing radar control. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. Perimeter acquisition radar building room #318, showing radar control. Console and line printers - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  1. 5. VIEW TO SOUTH IN CONTROL ROOM ABOVE PUMP CHAMBER, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW TO SOUTH IN CONTROL ROOM ABOVE PUMP CHAMBER, SHOWING PUMP MOTOR AND STEEL BULKHEADS IN FLOOR FOR ACCESS TO PUMPS - Providence Sewage Treatment System, Reservoir Avenue Pumping Station, Reservoir & Pontiac Avenues, Providence, Providence County, RI

  2. 134. THRUST SECTION HEATER IN SOUTHEAST CORNER OF CONTROL ROOM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    134. THRUST SECTION HEATER IN SOUTHEAST CORNER OF CONTROL ROOM (114), LSB (BLDG. 770) - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  3. 32. DIABLO POWERHOUSE: DETAIL CONTROL ROOM: DIFFERENTIAL OVERCURRENTS AND TRIPPING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. DIABLO POWERHOUSE: DETAIL CONTROL ROOM: DIFFERENTIAL OVERCURRENTS AND TRIPPING RELAYS FOR HOUSE UNITS, 1989. - Skagit Power Development, Diablo Powerhouse, On Skagit River, 6.1 miles upstream from Newhalem, Newhalem, Whatcom County, WA

  4. 5. INTERIOR VIEW, LOOKING EAST FROM THE CONTROL ROOM, TOWARD ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. INTERIOR VIEW, LOOKING EAST FROM THE CONTROL ROOM, TOWARD THE GREY IRON CUPOLA WITH CUPOLA TENDER CHECKING THE TUYERE. - Stockham Pipe & Fittings Company, Grey Iron Foundry, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  5. 140. HYDRAULIC PUMPING UNIT IN CENTER OF CONTROL ROOM (214), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    140. HYDRAULIC PUMPING UNIT IN CENTER OF CONTROL ROOM (214), LSB (BLDG. 751), FACING SOUTH - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  6. 15. Interior view, top floor (former control room), looking north. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. Interior view, top floor (former control room), looking north. - New York, New Haven, & Hartford Railroad, Shell Interlocking Tower, New Haven Milepost 16, approximately 100 feel east of New Rochelle Junction, New Rochelle, Westchester County, NY

  7. 16. View of Building 100 control room. 1987. On file ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. View of Building 100 control room. 1987. On file at NASA Glenn Research Center, Cleveland, Ohio. - Rocket Engine Testing Facility, GRC Building No. 100, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  8. 38. VAL, DETAIL OF PANEL AT SECONDARY CONTROL ROOM INSIDE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    38. VAL, DETAIL OF PANEL AT SECONDARY CONTROL ROOM INSIDE CONCRETE 'A' FRAME STRUCTURE. - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  9. DETAIL VIEW OF HYDRAULICS CONTROL PANEL IN ROOM 16B ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF HYDRAULICS CONTROL PANEL IN ROOM 16B - Cape Canaveral Air Force Station, Launch Complex 39, Mobile Launcher Platforms, Launcher Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  10. Control room concept for remote maintenance in high radiation areas

    SciTech Connect

    Clarke, M.M.; Kreifeldt, J.G.

    1984-01-01

    This paper summarizes the design of a control room concept for an operator interface with remote maintenance equipment consisting of force-reflecting manipulators, tools, hoists, cranes, cameras, and lights. The design development involved two major activities. First, detailed requirements were defined for foreseeable functions that will be performed by the control room operators. Second, concepts were developed, tested, and refined to meet these requirements. Each of these activities is summarized below. 6 references, 3 figures.

  11. Control room concept for remote maintenance in high radiation areas

    SciTech Connect

    Clarke, M.M.; Kreifeldt, J.G.

    1984-01-01

    This paper summarizes the design of a control room concept for an operator interface with remote maintenance equipment consisting of force-reflecting manipulators, tools, hoists, cranes, cameras, and lights. The design development involved two major activities. First, detailed requirements were defined for foreseeable functions that will be performed by the control room operators. Second, concepts were developed, tested, and refined to meet these requirements. 6 references, 3 figures.

  12. 143. ARAIII Control building (ARA607) Floor plan. Shows control room, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    143. ARA-III Control building (ARA-607) Floor plan. Shows control room, contaminated work area, counting and computer room, health physics room, instrument repair room, offices, and other rooms. Aerojet-general 880-area/GCRE-607-A-1. Date: February 1958. Ineel index code no. 063-0607-00-013-102546. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID

  13. 14. GENE PUMPING STATION CONTROL ROOM AS SEEN FROM MAIN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. GENE PUMPING STATION CONTROL ROOM AS SEEN FROM MAIN STATION MANAGER'S CONTROL DESK. ELECTRICAL CONTROL INDICATORS AND CONTROLS FOR REGULATING ELECTRICITY INTO PLANT AS WELL AS SYNCHRONIZING STARTUP OF PUMPS. - Gene Pump Plant, South of Gene Wash Reservoir, 2 miles west of Whitsett Pump Plant, Parker Dam, San Bernardino County, CA

  14. Control and Room Temperature Optimization of Energy Efficient Buildings

    SciTech Connect

    Djouadi, Seddik M; Kuruganti, Phani Teja

    2012-01-01

    The building sector consumes a large part of the energy used in the United States and is responsible for nearly 40% of greenhouse gas emissions. It is therefore economically and environmentally important to reduce the building energy consumption to realize massive energy savings. In this paper, a method to control room temperature in buildings is proposed. The approach is based on a distributed parameter model represented by a three dimensional (3D) heat equation in a room with heater/cooler located at ceiling. The latter is resolved using finite element methods, and results in a model for room temperature with thousands of states. The latter is not amenable to control design. A reduced order model of only few states is then derived using Proper Orthogonal Decomposition (POD). A Linear Quadratic Regulator (LQR) is computed based on the reduced model, and applied to the full order model to control room temperature.

  15. Control Room operations: an investigation of the task of the operator in a Colliery Control Room. Final report

    SciTech Connect

    Simpson, G.C.; Best, C.F.; Ferguson, C.A.; Graveling, R.A.; Nicholl, A.G.M.

    1982-09-01

    A detailed study of the ergonomics aspects of four representative Colliery Control Rooms was carried out. Numerous ergonomics limitations, many common to each of the control rooms studied, were identified particularly in relation to workspace dimensions, console layout and lighting. In order to overcome these limitations in future designs, a report detailing the Ergonomics Principles of Colliery Control Room design and Layout was prepared on the basis of the information obtained. Task analysis carried out during the studies revealed that control room operators could have a direct effect on production and that ergonomics aspects were involved in these situations. Indications of potential ergonomics problems in the wider sphere of job design were also identified particularly in relation to information handling.

  16. 49. Environmental equipment room, cbr filter at left, ventilation control ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    49. Environmental equipment room, cbr filter at left, ventilation control panel in center, brine chiller controls at right, looking southeast - Ellsworth Air Force Base, Delta Flight, Launch Control Facility, County Road CS23A, North of Exit 127, Interior, Jackson County, SD

  17. 17. DETAIL INTERIOR VIEW OF CONTROL ROOM ON LEVEL +77 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. DETAIL INTERIOR VIEW OF CONTROL ROOM ON LEVEL +77 OF POWERHOUSE #1; NOTEBOOKS IN FOREGROUND ARE ON TOP OF THE NEW SWITCH GEAR CONTROL CONSOLE; THE ORIGINAL OPERATOR DESK IS IN CENTER; THE ORIGINAL BENCH BOARD CONTROLS ARE IN BACKGROUND. - Bonneville Project, Powerhouse No.1, Spanning Bradford Slough, from Bradford Island, Bonneville, Multnomah County, OR

  18. Mission Operations Control Room (MOCR) activities during STS-6 mission

    NASA Image and Video Library

    1983-04-05

    Astronauts Roy D. Bridges (left) and RIchard O. Covey serve as spacecraft communicators (CAPCOM) for STS-6. They are seated at the CAPCOM console in the mission operations control room (MOCR) of JSC's mission control center (30119); Flight Director Jay H. Greene communicates with a nearby flight controller in the MOCR just after launch of the Challenger (30120).

  19. A Business Case for Nuclear Plant Control Room Modernization

    SciTech Connect

    Thomas, Ken; Lawrie, Sean; Niedermuller, Josef M.

    2016-06-01

    This paper presents a generic business case for implementation of technology that supports Control Room Modernization (CRM). The analysis presented in two forms; 1) a standalone technology upgrade, and 2) a technology upgrade that is built upon and incremental to a prior business case created for Mobile Work Packages (MWP). The business case contends that advanced communication and networking and analytical technologies will allow NPP to conduct control room operations with improved focus by reducing human factors and redundant manpower, and therefore operate with fewer errors. While some labor savings can be harvested in terms of overtime, the majority of savings are demonstrated as reduced time to take the plant off line and bring back on line in support of outages. The benefits are quantified to a rough order of magnitude that provides directional guidance to NPPs that are interested in developing a similar business case. This business case focuses on modernization of the operator control room and does not consider a complete overhaul and modernization of a plants instrument and control systems. While operators may be considering such an investment at their plants, the sizable capital investment required is not likely supported by a cost/benefit analysis alone. More likely, it is driven by obsolescence and reliability issues, and requires consideration of mechanical condition of plant systems, capital depreciation, financing, relicensing and overall viability of the plant asset over a 20-year horizon in a competitive market. Prior studies [REF] have indicated that such a modernization of plant I&C systems, alone or as part of a larger modernization effort, can yield very significant reductions in O&M costs. However, the depth of research and analysis required to develop a meaningful business case for a plant modernization effort is well beyond the scope of this study. While CRM as considered in this study can be easily integrated as part of grander plant

  20. Robust isothermal electric control of exchange bias at room temperature.

    PubMed

    He, Xi; Wang, Yi; Wu, Ning; Caruso, Anthony N; Vescovo, Elio; Belashchenko, Kirill D; Dowben, Peter A; Binek, Christian

    2010-07-01

    Voltage-controlled spin electronics is crucial for continued progress in information technology. It aims at reduced power consumption, increased integration density and enhanced functionality where non-volatile memory is combined with high-speed logical processing. Promising spintronic device concepts use the electric control of interface and surface magnetization. From the combination of magnetometry, spin-polarized photoemission spectroscopy, symmetry arguments and first-principles calculations, we show that the (0001) surface of magnetoelectric Cr(2)O(3) has a roughness-insensitive, electrically switchable magnetization. Using a ferromagnetic Pd/Co multilayer deposited on the (0001) surface of a Cr(2)O(3) single crystal, we achieve reversible, room-temperature isothermal switching of the exchange-bias field between positive and negative values by reversing the electric field while maintaining a permanent magnetic field. This effect reflects the switching of the bulk antiferromagnetic domain state and the interface magnetization coupled to it. The switchable exchange bias sets in exactly at the bulk Néel temperature.

  1. Robust isothermal electric control of exchange bias at room temperature

    NASA Astrophysics Data System (ADS)

    He, Xi; Wang, Yi; Wu, Ning; Caruso, Anthony N.; Vescovo, Elio; Belashchenko, Kirill D.; Dowben, Peter A.; Binek, Christian

    2010-07-01

    Voltage-controlled spin electronics is crucial for continued progress in information technology. It aims at reduced power consumption, increased integration density and enhanced functionality where non-volatile memory is combined with high-speed logical processing. Promising spintronic device concepts use the electric control of interface and surface magnetization. From the combination of magnetometry, spin-polarized photoemission spectroscopy, symmetry arguments and first-principles calculations, we show that the (0001) surface of magnetoelectric Cr2O3 has a roughness-insensitive, electrically switchable magnetization. Using a ferromagnetic Pd/Co multilayer deposited on the (0001) surface of a Cr2O3 single crystal, we achieve reversible, room-temperature isothermal switching of the exchange-bias field between positive and negative values by reversing the electric field while maintaining a permanent magnetic field. This effect reflects the switching of the bulk antiferromagnetic domain state and the interface magnetization coupled to it. The switchable exchange bias sets in exactly at the bulk Néel temperature.

  2. Robust isothermal electric control of exchange bias at room temperature

    SciTech Connect

    He, X.; Vescovo, E.; Wang, Y.; Caruso, A.N.; Belashchenko, K.D.; Dowben, P.A.; Binek, C.

    2010-06-20

    Voltage-controlled spin electronics is crucial for continued progress in information technology. It aims at reduced power consumption, increased integration density and enhanced functionality where non-volatile memory is combined with high-speed logical processing. Promising spintronic device concepts use the electric control of interface and surface magnetization. From the combination of magnetometry, spin-polarized photoemission spectroscopy, symmetry arguments and first-principles calculations, we show that the (0001) surface of magnetoelectric Cr{sub 2}O{sub 3} has a roughness-insensitive, electrically switchable magnetization. Using a ferromagnetic Pd/Co multilayer deposited on the (0001) surface of a Cr{sub 2}O{sub 3} single crystal, we achieve reversible, room-temperature isothermal switching of the exchange-bias field between positive and negative values by reversing the electric field while maintaining a permanent magnetic field. This effect reflects the switching of the bulk antiferromagnetic domain state and the interface magnetization coupled to it. The switchable exchange bias sets in exactly at the bulk Neel temperature.

  3. 20. VIEW OF WASTE TREATMENT CONTROL ROOM IN BUILDING 374. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. VIEW OF WASTE TREATMENT CONTROL ROOM IN BUILDING 374. THE BUILDING 371/374 COMPLEX WAS DESIGNED TO EMPHASIZE AUTOMATICALLY CONTROLLED, REMOTELY OPERATED PROCESSES. (1/80) - Rocky Flats Plant, Plutonium Recovery Facility, Northwest portion of Rocky Flats Plant, Golden, Jefferson County, CO

  4. 18. DETAIL INTERIOR VIEW OF CONTROL ROOM ON LEVEL +77 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. DETAIL INTERIOR VIEW OF CONTROL ROOM ON LEVEL +77 OF POWERHOUSE #1; ORIGINAL OPERATOR DESK IS IN CENTER FOREGROUND; NEW SWITCH GEAR CONTROL CONSOLE IS IN RIGHT BACKGROUND; GRAPHIC INSTRUMENT BOARD IS IN LEFT BACKGROUND. - Bonneville Project, Powerhouse No.1, Spanning Bradford Slough, from Bradford Island, Bonneville, Multnomah County, OR

  5. 12. Historic view of Building 100 control room, showing television ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Historic view of Building 100 control room, showing television monitoring of tests and personnel operating rocket engine test controls. May 27, 1957. On file at NASA Plumbrook Research Facility, Sandusky, Ohio. NASA photo number C-45021. - Rocket Engine Testing Facility, GRC Building No. 100, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  6. 6. UNDERGROUND FIRING CONTROL ROOM, INTERIOR. Looking southeast to escape ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. UNDERGROUND FIRING CONTROL ROOM, INTERIOR. Looking southeast to escape tunnel. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Firing Control Building, Test Area 1-100, northeast end of Test Area 1-100 Road, Boron, Kern County, CA

  7. 114. WEST SIDE OF LIQUID OXYGEN CONTROL ROOM (205). LIQUID ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    114. WEST SIDE OF LIQUID OXYGEN CONTROL ROOM (205). LIQUID NITROGEN (LN2) SUBCOOLER ON LEFT; SKID 8, LIQUID OXYGEN CONTROLLER FOR SWITCHING BETWEEN RAPID-LOAD AND TOPPING ON RIGHT. LIQUID OXYGEN LINE FROM SKID 9A AT RIGHT EDGE OF PHOTO. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  8. Clifford Charlesworth seated at his console in Mission Control Room

    NASA Image and Video Library

    1968-12-21

    S68-55742 (21 Dec. 1968) --- Clifford E. Charlesworth, Apollo 8 "Green Team" flight director, is seated at his console in the Mission Operations Control Room in the Mission Control Center, Building 30, during the launch of the Apollo 8 (Spacecraft 103/Saturn 503) manned lunar orbit space mission.

  9. 8. INTERIOR, CONTROL AND INSTRUMENTATION ROOM. Looking southwest toward entrance ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. INTERIOR, CONTROL AND INSTRUMENTATION ROOM. Looking southwest toward entrance and inner blast door. - Edwards Air Force Base, South Base Sled Track, Firing & Control Blockhouse for 10,000-foot Track, South of Sled Track at midpoint of 20,000-foot track, Lancaster, Los Angeles County, CA

  10. IET control building (TAN620). control room. facing north. control consoles ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    IET control building (TAN-620). control room. facing north. control consoles have been removed. Openings in floor were communication and control conduits. Periscope controls at center left (see also HAER No. ID-33-E-20). INEEL negative no. HD-21-3-1 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  11. Integration of room temperature single electron transistor with CMOS subsystem

    NASA Astrophysics Data System (ADS)

    Cheam, Daw Don

    The single electron transistor (SET) is a charge-based device that may complement the dominant metal-oxide-semiconductor field effect transistor (MOSFET) technology. As the cost of scaling MOSFET to smaller dimensions are rising and the the basic functionality of MOSFET is encountering numerous challenges at dimensions smaller than 10nm, the SET has shown the potential to become the next generation device which operates based on the tunneling of electrons. Since the electron transfer mechanism of a SET device is based on the non-dissipative electron tunneling effect, the power consumption of a SET device is extremely low, estimated to be on the order of 10--18 J. The objectives of this research are to demonstrate technologies that would enable the mass produce of SET devices that are operational at room temperature and to integrate these devices on top of an active complementary-MOSFET (CMOS) substrate. To achieve these goals, two fabrication techniques are considered in this work. The Focus Ion Beam (FIB) technique is used to fabricate the islands and the tunnel junctions of the SET device. A Ultra-Violet (UV) light based Nano-Imprint Lithography (NIL) call Step-and-Flash-Imprint Lithography (SFIL) is used to fabricate the interconnections of the SET devices. Combining these two techniques, a full array of SET devices are fabricated on a planar substrate. Test and characterization of the SET devices has shown consistent Coulomb blockade effect, an important single electron characteristic. To realize a room temperature operational SET device that function as a logic device to work along CMOS, it is important to know the device behavior at different temperatures. Based on the theory developed for a single island SET device, a thermal analysis is carried out on the multi-island SET device and the observation of changes in Coulomb blockade effect is presented. The results show that the multi-island SET device operation highly depends on temperature. The important

  12. Method of installing a control room console in a nuclear power plant

    DOEpatents

    Scarola, Kenneth; Jamison, David S.; Manazir, Richard M.; Rescorl, Robert L.; Harmon, Daryl L.

    1994-01-01

    An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

  13. Robust isothermal electric control of exchange bias at room temperature

    NASA Astrophysics Data System (ADS)

    Binek, Christian

    2011-03-01

    Voltage-controlled spintronics is of particular importance to continue progress in information technology through reduced power consumption, enhanced processing speed, integration density, and functionality in comparison with present day CMOS electronics. Almost all existing and prototypical solid-state spintronic devices rely on tailored interface magnetism, enabling spin-selective transmission or scattering of electrons. Controlling magnetism at thin-film interfaces, preferably by purely electrical means, is a key challenge to better spintronics. Currently, most attempts to electrically control magnetism focus on potentially large magnetoelectric effects of multiferroics. We report on our interest in magnetoelectric Cr 2 O3 (chromia). Robust isothermal electric control of exchange bias is achieved at room temperature in perpendicular anisotropic Cr 2 O3 (0001)/CoPd exchange bias heterostructures. This discovery promises significant implications for potential spintronics. From the perspective of basic science, our finding serves as macroscopic evidence for roughness-insensitive and electrically controllable equilibrium boundary magnetization in magnetoelectric antiferromagnets. The latter evolves at chromia (0001) surfaces and interfaces when chromia is in one of its two degenerate antiferromagnetic single domain states selected via magnetoelectric annealing. Theoretical insight into the boundary magnetization and its role in electrically controlled exchange bias is gained from first-principles calculations and general symmetry arguments. Measurements of spin-resolved ultraviolet photoemission, magnetometry at Cr 2 O3 (0001) surfaces, and detailed investigations of the unique exchange bias properties of Cr 2 O3 (0001)/CoPd including its electric controllability provide macroscopically averaged information about the boundary magnetization of chromia. Laterally resolved X-ray PEEM and temperature dependent MFM reveal detailed microscopic information of the chromia

  14. Control room crew operations research project. Final report

    SciTech Connect

    Parry, G.W.; Mosleh, A.

    1995-12-01

    This report presents an assessment of the current state of the art in human reliability analysis (HRA) and highlights the principal shortcomings of current approaches. Issues that should be addressed in an improved HRA approach as well as the constraints imposed by current methodologies used to perform Probabilistic Safety Assessment (PSAs) are identified. A generalized conceptual model for estimating the probabilities of the human failure events that are included in a PSA logic model is presented. The model is expressed as a sum over error modes and error causes. The report emphasizes the importance of understanding the causality of error and suggests one approach to the representation of error causes. An example approach to the qualitative screening of errors of commission is presented. The second part of the report describes an alternative approach to modeling accident scenarios that explicitly considers the dynamic interactions of the various elements and provides the needed environment for implementation of advanced human reliability models. This approach has been incorporated into the Accident Dynamic Simulator (ADS), a computer tool that removes the main roadblock to implementation of this methodology by handling the computational complexities of an integrated model of a large system, its physical processes, and the human behavior of the control room operators. ADS runs on a personal computer and is designed to facilitate the PSA of nuclear power plants. The application of the code to a SGTR initiating event at a Westinghouse PWR is presented.

  15. 149. SOUTHEAST CORNER OF FUEL CONTROL ROOM (215), LSB (BLDG. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    149. SOUTHEAST CORNER OF FUEL CONTROL ROOM (215), LSB (BLDG. 751), WITH SKID 2 IN FOREGROUND; FUEL LINE TO LAUNCH VEHICLE ENTERING WALL ON LEFT BEHIND SKID 2 - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  16. VIEW OF HISTORIC SLATE SWITCHBOARD IN THE CONTROL ROOM OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF HISTORIC SLATE SWITCHBOARD IN THE CONTROL ROOM OF THE ELWHA POWERHOUSE, INCLUDING: METERS, PROTECTIVE RELAYS, AND SWITCHES. NOTE ADDITION OF PERSONAL COMPUTERS FOR POWER METERING AND OPERATIONS. PHOTO BY JET LOWE, HAER, 1995. - Elwha River Hydroelectric System, Elwha Hydroelectric Dam & Plant, Port Angeles, Clallam County, WA

  17. 144. VIEW OF EAST WALL OF CONTROL ROOM (214), LSB ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    144. VIEW OF EAST WALL OF CONTROL ROOM (214), LSB (BLDG. 751). PNEUMATIC SUPPLY PANEL ON LEFT; NITROGEN AND HELIUM PIPING AT TOP; PURGE PANEL AT BOTTOM OF PHOTOGRAPH. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  18. MSFC Director James R. Thompson in Control Room

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Marshall's fifth Center Director, James R. Thompson (1986-1989), in the control room of the Solid Rocket Booster (SRB)automated thermal protection system (TPS) removal facility. Under Dr. Thompson's leadership, the shuttle program was rekindled after the Challenger explosion. Return to Flight kept NASA 's future programs alive.

  19. 36. ENGINE ROOM FROM STARBOARD SIDE OF CONTROL CONSOLE, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    36. ENGINE ROOM FROM STARBOARD SIDE OF CONTROL CONSOLE, LOOKING AT TWO DIESEL ENGINES, STAIRS LEAD UP TO CREW'S BERTHING. THIS IMAGE IS CLOSER TO THE STERN AND MORE ANGLED TOWARDS THE PORT THAN IMAGE 34. - U.S. Coast Guard Cutter WHITE LUPINE, U.S. Coast Guard Station Rockland, east end of Tillson Avenue, Rockland, Knox County, ME

  20. Control room envelope unfiltered air inleakage test protocols

    SciTech Connect

    Lagus, P.L.; Grot, R.A.

    1997-08-01

    In 1983, the Advisory Committee on Reactor Safeguards (ACRS) recommended that the US NRC develop a control room HVAC performance testing protocol. To date no such protocol has been forthcoming. Beginning in mid-1994, an effort was funded by NRC under a Small Business Innovation Research (SBIR) grant to develop several simplified test protocols based on the principles of tracer gas testing in order to measure the total unfiltered inleakage entering a CRE during emergency mode operation of the control room ventilation system. These would allow accurate assessment of unfiltered air inleakage as required in SRP 6.4. The continuing lack of a standard protocol is unfortunate since one of the significant parameters required to calculate operator dose is the amount of unfiltered air inleakage into the control room. Often it is assumed that, if the Control Room Envelope (CRE) is maintained at +1/8 in. w.g. differential pressure relative to the surroundings, no significant unfiltered inleakage can occur it is further assumed that inleakage due to door openings is the only source of unfiltered air. 23 refs., 13 figs., 2 tabs.

  1. 15. Historic view of engineer in Building 100 control room ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. Historic view of engineer in Building 100 control room examining data printout. August 28, 1962. On file at NASA Plumbrook Research Facility, Sandusky, Ohio. NASA photo number C-61500. - Rocket Engine Testing Facility, GRC Building No. 100, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  2. 14. Historic view of engineer in Building 100 control room ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. Historic view of engineer in Building 100 control room examining data printout. 1957. On file at NASA Plumbrook Research Facility, Sandusky, Ohio. NASA photo number C-46210. - Rocket Engine Testing Facility, GRC Building No. 100, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  3. 13. Historic view of Building 100 control room, showing personnel ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Historic view of Building 100 control room, showing personnel with data recording instrumentation. 1957. On file at NASA Plumbrook Research Facility, Sandusky, Ohio. NASA photo number C-46211. - Rocket Engine Testing Facility, GRC Building No. 100, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  4. Control room layout, 1941, drawn by Waddell and Hardesty, New ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Control room layout, 1941, drawn by Waddell and Hardesty, New York, New York. Drawing in collection of Caretaker Site Office, Philadelphia Naval Business Center, Philadelphia, Pennsylvania. - Naval Base Philadelphia-Philadelphia Naval Shipyard, Lift Bridge, Mouth of Reserve Basin, League Island, Philadelphia, Philadelphia County, PA

  5. INTERIOR OF SECOND FLOOR CONTROL ROOM OF FUEL STORAGE BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR OF SECOND FLOOR CONTROL ROOM OF FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING SOUTHWEST. INL PHOTO NUMBER HD-54-19-2. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  6. Engine Research Building’s Central Control Room

    NASA Image and Video Library

    1948-07-21

    Operators in the Engine Research Building’s Central Control Room at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. The massive 4.25-acre Engine Research Building contains dozens of test cells, test stands, and altitude chambers. A powerful collection of compressors and exhausters located in the central portion of the basement provided process air and exhaust for these test areas. This system is connected to similar process air systems in the laboratory’s other large test facilities. The Central Control Room coordinates this activity and communicates with the local utilities. This photograph was taken just after a major upgrade to the control room in 1948. The panels on the wall contain rudimentary floor plans of the different Engine Research Building sections with indicator lights and instrumentation for each test cell. The process air equipment included 12 exhausters, four compressors, a refrigeration system, cooling water, and an exhaust system. The operators in the control room kept in contact with engineers running the process air system and those conducting the tests in the test cells. The operators also coordinated with the local power companies to make sure enough electricity was available to operate the powerful compressors and exhausters.

  7. 16. NBS TOPSIDE CONTROL ROOM, THE NBS HYPERBARIC CHAMBER IS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. NBS TOPSIDE CONTROL ROOM, THE NBS HYPERBARIC CHAMBER IS VERY CLOSE TO THE WATER'S EDGE AND HERE FOR DIVER EMERGENCY SUPPORT. A MEDICAL STAFF IS LOCATED ON THE MARSHALL SPACE FLIGHT CENTER (MSFC) AND SUPPORTS THE NBS PERSONNEL WHEN HYPERBARIC CHAMBER OPERATION IS NECESSARY. - Marshall Space Flight Center, Neutral Buoyancy Simulator Facility, Rideout Road, Huntsville, Madison County, AL

  8. 103. LANDLINE INSTRUMENTATION ROOM (106), LSB (BLDG. 770): LOGIC CONTROL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    103. LANDLINE INSTRUMENTATION ROOM (106), LSB (BLDG. 770): LOGIC CONTROL AND MONITOR UNIT FOR BOOSTER AND FUEL SYSTEMS, INCLUDING MISSILE GROUND POWER, HYDRAULICS, PURGE, AND COMMIT - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  9. Information Foraging in Nuclear Power Plant Control Rooms

    SciTech Connect

    R.L. Boring

    2011-09-01

    nformation foraging theory articulates the role of the human as an 'informavore' that seeks information and follows optimal foraging strategies (i.e., the 'information scent') to find meaningful information. This paper briefly reviews the findings from information foraging theory outside the nuclear domain and then discusses the types of information foraging strategies operators employ for normal and off-normal operations in the control room. For example, operators may employ a predatory 'wolf' strategy of hunting for information in the face of a plant upset. However, during routine operations, the operators may employ a trapping 'spider' strategy of waiting for relevant indicators to appear. This delineation corresponds to information pull and push strategies, respectively. No studies have been conducted to determine explicitly the characteristics of a control room interface that is optimized for both push and pull information foraging strategies, nor has there been empirical work to validate operator performance when transitioning between push and pull strategies. This paper explores examples of control room operators as wolves vs. spiders and con- cludes by proposing a set of research questions to investigate information foraging in control room settings.

  10. 7. CONSTRUCTION PROGRESS VIEW (INTERIOR) OF CONTROL ROOM PANEL INSIDE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. CONSTRUCTION PROGRESS VIEW (INTERIOR) OF CONTROL ROOM PANEL INSIDE BUNKER. SHOWS OPENING TO CABLE CHASE, FOUR PULLEY DEVICES, POWER OUTLET, CONDUIT, AND EAST END WALL OF BUNKER. INEL PHOTO NUMBER 65-5441, TAKEN OCTOBER 20, 1965. - Idaho National Engineering Laboratory, Advanced Reentry Vehicle Fusing System, Scoville, Butte County, ID

  11. Motor Room, overall view to the west. The control cabinet ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Motor Room, overall view to the west. The control cabinet and cement pipes along the south wall are being temporarily stored in the Pumping Plant and are not part of the original equipment - Wellton-Mohawk Irrigation System, Pumping Plant No. 1, Bounded by Gila River & Union Pacific Railroad, Wellton, Yuma County, AZ

  12. CONTROL ROOM ON MARCH 31, 1952, AS THE MTR GOES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONTROL ROOM ON MARCH 31, 1952, AS THE MTR GOES CRITICAL FOR THE FIRST TIME. COMPARE CEILING FIXTURES IN THIS PHOTO AND PHOTO ID-33-G-212 FOR COMMON PERSPECTIVE. INL NEGATIVE NO. 4517. Unknown Photographer, 3/31/1952 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  13. 101. ARAIII. View of control room with operators during attempted ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    101. ARA-III. View of control room with operators during attempted 500-hour run of ML-1 reactor. April 21, 1964. Ineel photo no. 64-2185. Photographer: Benson. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID

  14. 3. INTERIOR VIEW, LOOKING EAST FROM THE CONTROL ROOM, TOWARD ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. INTERIOR VIEW, LOOKING EAST FROM THE CONTROL ROOM, TOWARD THE 82 INCH COKE-FIRED CUPOLA WHICH SMELTS THE ORE FOR FOUNDRY IRON. CUPOLA TENDER (LEFT) MAKES CERTAIN THE MOLTEN METAL FLOW REMAINS UNINTERRUPTED. - Stockham Pipe & Fittings Company, Grey Iron Foundry, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  15. 18. NORTH SIDE OF CONTROL ROOM SHOWING MAIN ELECTRIC PANEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. NORTH SIDE OF CONTROL ROOM SHOWING MAIN ELECTRIC PANEL ON LEFT, SIGNAL SWITCH BOX IN CENTER, AND SIGNAL RELAYS ON RIGHT. RESISTOR BANK BEHIND ON RIGHT. BRIDGE TENDER'S DESK BEHIND ON SOUTH SIDE. (Fred Small) - Burlington Northern Railroad Bridge, Spanning Willamette River at River Mile 6.9, Portland, Multnomah County, OR

  16. 130. VIEW OF CONTROL ROOM (114), LSB (BLDG. 770), FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    130. VIEW OF CONTROL ROOM (114), LSB (BLDG. 770), FROM WEST. HYDRAULIC PUMPING UNIT (HPU) IN CENTER OF PHOTO, FACING NORTH. NITROGEN SUPPLY PANEL ON SOUTH WALL (LEFT EDGE OF PHOTO); RELAY BOX FOR HPU ON SOUTH WALL BEHIND HPU. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  17. Feasibility of touch-less control of operating room lights.

    PubMed

    Hartmann, Florian; Schlaefer, Alexander

    2013-03-01

    Today's highly technical operating rooms lead to fairly complex surgical workflows where the surgeon has to interact with a number of devices, including the operating room light. Hence, ideally, the surgeon could direct the light without major disruption of his work. We studied whether a gesture tracking-based control of an automated operating room light is feasible. So far, there has been little research on control approaches for operating lights. We have implemented an exemplary setup to mimic an automated light controlled by a gesture tracking system. The setup includes a articulated arm to position the light source and an off-the-shelf RGBD camera to detect the user interaction. We assessed the tracking performance using a robot-mounted hand phantom and ran a number of tests with 18 volunteers to evaluate the potential of touch-less light control. All test persons were comfortable with using the gesture-based system and quickly learned how to move a light spot on flat surface. The hand tracking error is direction-dependent and in the range of several centimeters, with a standard deviation of less than 1 mm and up to 3.5 mm orthogonal and parallel to the finger orientation, respectively. However, the subjects had no problems following even more complex paths with a width of less than 10 cm. The average speed was 0.15 m/s, and even initially slow subjects improved over time. Gestures to initiate control can be performed in approximately 2 s. Two-thirds of the subjects considered gesture control to be simple, and a majority considered it to be rather efficient. Implementation of an automated operating room light and touch-less control using an RGBD camera for gesture tracking is feasible. The remaining tracking error does not affect smooth control, and the use of the system is intuitive even for inexperienced users.

  18. Mission Operations Control Room (MOCR) activities during STS-6 mission

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Vice President George Bush talks to the STS-6 astronauts from the spacecraft communicators (CAPCOM) console in the mission operations control room (MOCR) of JSC's mission control center. Astronauts Bryan D. O'Connor, second left and Roy D. Bridges, center, are the on-duty CAPCOMS. Standing near the console are (left) JSC Director Gerald D. Griffin and NASA Administrator James Beggs. Eugene F. Kranz, Director of Mission Operations, is at the back console near the glass.

  19. Control of Computer Room Air Conditioning using IT Equipment Sensors

    SciTech Connect

    Bell, Geoffrey C.; Storey, Bill; Patterson, Michael K.

    2009-09-30

    The goal of this demonstration was to show how sensors in IT equipment could be accessed and used to directly control computer room air conditioning. The data provided from the sensors is available on the IT network and the challenge for this project was to connect this information to the computer room air handler's control system. A control strategy was developed to enable separate control of the chilled water flow and the fans in the computer room air handlers. By using these existing sensors in the IT equipment, an additional control system is eliminated (or could be redundant) and optimal cooling can be provided saving significant energy. Using onboard server temperature sensors will yield significant energy reductions in data centers. Intel hosted the demonstration in its Santa Clara, CA data center. Intel collaborated with IBM, HP, Emerson, Wunderlich-Malec Engineers, FieldServer Technologies, and LBNL to install the necessary components and develop the new control scheme. LBNL also validated the results of the demonstration.

  20. STOVL Control Integration Program

    NASA Technical Reports Server (NTRS)

    Weiss, C.; Mcdowell, P.; Watts, S.

    1994-01-01

    An integrated flight/propulsion control for an advanced vector thrust supersonic STOVL aircraft, was developed by Pratt & Whitney and McDonnell Douglas Aerospace East. The IFPC design was based upon the partitioning of the global requirements into flight control and propulsion control requirements. To validate the design, aircraft and engine models were also developed for use on a NASA Ames piloted simulator. Different flight control implementations, evaluated for their handling qualities, are documented in the report along with the propulsion control, engine model, and aircraft model.

  1. A computerized main control room for NPP: Development and investigation

    SciTech Connect

    Anokhin, A. N.; Marshall, E. C.; Rakitin, I. D.; Slonimsky, V. M.

    2006-07-01

    An ergonomics assessment of the control room at Leningrad Nuclear Power Plant has been undertaken as part of an international project funded by the EU TACIS program. The project was focused on the upgrading of the existing control facilities and the installation of a validation facility to evaluate candidate refurbishment proposals before their implementation at the plant. The ergonomics methodology applied in the investigation was wide ranging and included an analysis of reported events, extensive task analysis (including novel techniques) and validation studies using experienced operators. The paper addresses the potential difficulties for the human operator associated with fully computerized interfaces and shows how the validation facility and the outcomes from ergonomics assessment will be used to minimise any adverse impact on performance that may be caused by proposed control room changes. (authors)

  2. 14. NBS REMOTE MANIPULATOR SIMULATOR (RMS) CONTROL ROOM. THE RMS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. NBS REMOTE MANIPULATOR SIMULATOR (RMS) CONTROL ROOM. THE RMS CONTROL PANEL IS IDENTICAL TO THE SHUTTLE ORBITER AFT FLIGHT DECK WITH ALL RMS SWITCHES AND CONTROL KNOBS FOR INVOKING ANY POSSIBLE FLIGHT OPERATIONAL MODE. THIS INCLUDES ALL COMPUTER AIDED OPERATIONAL MODES, AS WELL AS FULL MANUAL MODE. THE MONITORS IN THE AFT FLIGHT DECK WINDOWS AND THE GLASSES THE OPERATOR WEARS PROVIDE A 3-D VIDEO PICTURE TO AID THE OPERATOR WITH DEPTH PERCEPTION WHILE OPERATING THE ARM. THIS IS REQUIRED BECAUSE THE RMS OPERATOR CANNOT VIEW RMS MOVEMENTS IN THE WATER WHILE AT THE CONTROL PANEL. - Marshall Space Flight Center, Neutral Buoyancy Simulator Facility, Rideout Road, Huntsville, Madison County, AL

  3. Room Management in Mainstreamed/Integrated Classrooms. Item 5.

    ERIC Educational Resources Information Center

    Thomas, Gary

    1988-01-01

    (The paper reports on implications of classroom research for class management techniques especially in classes in which handicapped students are mainstreamed. Findings demonstrating a conflict between giving attention to individual children and keeping general engagement high are identified. Recommended room management (RM) procedures are reported…

  4. Western Aeronautical Test Range (WATR) mission control Blue room

    NASA Image and Video Library

    1994-12-05

    Mission control Blue Room, seen here, in building 4800 at NASA's Dryden Flight Research Center, is part of the Western Aeronautical Test Range (WATR). All aspects of a research mission are monitored from one of two of these control rooms at Dryden. The WATR consists of a highly automated complex of computer controlled tracking, telemetry, and communications systems and control room complexes that are capable of supporting any type of mission ranging from system and component testing, to sub-scale and full-scale flight tests of new aircraft and reentry systems. Designated areas are assigned for spin/dive tests, corridors are provided for low, medium, and high-altitude supersonic flight, and special STOL/VSTOL facilities are available at Ames Moffett and Crows Landing. Special use airspace, available at Edwards, covers approximately twelve thousand square miles of mostly desert area. The southern boundary lies to the south of Rogers Dry Lake, the western boundary lies midway between Mojave and Bakersfield, the northern boundary passes just south of Bishop, and the eastern boundary follows about 25 miles west of the Nevada border except in the northern areas where it crosses into Nevada.

  5. Western Aeronautical Test Range (WATR) mission control Blue room

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Mission control Blue Room, seen here, in building 4800 at NASA's Dryden Flight Research Center, is part of the Western Aeronautical Test Range (WATR). All aspects of a research mission are monitored from one of two of these control rooms at Dryden. The WATR consists of a highly automated complex of computer controlled tracking, telemetry, and communications systems and control room complexes that are capable of supporting any type of mission ranging from system and component testing, to sub-scale and full-scale flight tests of new aircraft and reentry systems. Designated areas are assigned for spin/dive tests, corridors are provided for low, medium, and high-altitude supersonic flight, and special STOL/VSTOL facilities are available at Ames Moffett and Crows Landing. Special use airspace, available at Edwards, covers approximately twelve thousand square miles of mostly desert area. The southern boundary lies to the south of Rogers Dry Lake, the western boundary lies midway between Mojave and Bakersfield, the northern boundary passes just south of Bishop, and the eastern boundary follows about 25 miles west of the Nevada border except in the northern areas where it crosses into Nevada.

  6. Western Aeronautical Test Range (WATR) mission control room monitors

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This photo shows monitors in a Dryden Flight Research Center mission control room of the Western Aeronautical Test Range (WATR). All aspects of a research mission are monitored from one of two of these control rooms at Dryden. The WATR consists of a highly automated complex of computer controlled tracking, telemetry, and communications systems and control room complexes that are capable of supporting any type of mission ranging from system and component testing, to sub-scale and full-scale flight tests of new aircraft and reentry systems. Designated areas are assigned for spin/dive tests, corridors are provided for low, medium, and high-altitude supersonic flight, and special STOL/VSTOL facilities are available at Ames Moffett and Crows Landing. Special use airspace, available at Edwards, covers approximately twelve thousand square miles of mostly desert area. The southern boundary lies to the south of Rogers Dry Lake, the western boundary lies midway between Mojave and Bakersfield, the northern boundary passes just south of Bishop, and the eastern boundary follows about 25 miles west of the Nevada border except in the northern areas where it crosses into Nevada.

  7. Western Aeronautical Test Range (WATR) mission control Gold room

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Mission control Gold room is seen here, located at the Dryden Flight Research Center of the Western Aeronautical Test Range (WATR). All aspects of a research mission are monitored from one of two of these control rooms at Dryden. The WATR consists of a highly automated complex of computer controlled tracking, telemetry, and communications systems and control room complexes that are capable of supporting any type of mission ranging from system and component testing, to sub-scale and full-scale flight tests of new aircraft and reentry systems. Designated areas are assigned for spin/dive tests, corridors are provided for low, medium, and high-altitude supersonic flight, and special STOL/VSTOL facilities are available at Ames Moffett and Crows Landing. Special use airspace, available at Edwards, covers approximately twelve thousand square miles of mostly desert area. The southern boundary lies to the south of Rogers Dry Lake, the western boundary lies midway between Mojave and Bakersfield, the northern boundary passes just south of Bishop, and the eastern boundary follows about 25 miles west of the Nevada border except in the northern areas where it crosses into Nevada.

  8. Closed-Loop Acoustic Control of Reverberant Room for Satellite Environmental Testing

    NASA Astrophysics Data System (ADS)

    Janssens, Karl; Bianciardi, Fabio; Sabbatini, Danilo; Debille, Jan; Carrella, Alex

    2012-07-01

    The full satellite acoustic test is an important milestone in a satellite launch survivability verification campaign. This test is required to verify the satellite’s mechanical design against the high-level acoustic loads induced by the launch vehicle during the atmospheric flight. During the test, the satellite is subjected to a broadband diffuse acoustic field, reproducing the pressure levels observed during launch. The excitation is in most cases provided by a combination of horns for the low frequencies and noise generators for the higher frequencies. Acoustic control tests are commonly performed in reverberant rooms, controlling the sound pressure levels in third octave bands over the specified target spectrum. This paper discusses an automatic feedback control system for acoustic control of large reverberation rooms for satellite environmental testing. The acoustic control system consists of parallel third octave PI (Proportional Integral) feedback controllers that take the reverberation characteristics of the room into consideration. The drive output of the control system is shaped at every control step based on the comparison of the average third octave noise spectrum, measured from a number of microphones in the test room, with the target spectrum. Cross-over filters split the output drive into band- limited signals to feed each of the horns. The control system is realized in several steps. In the first phase, a dynamic process model is developed, including the non-linear characteristics of the horns and the reverberant properties of the room. The model is identified from dynamic experiments using system identification techniques. In the next phase, an adequate control strategy is designed which is capable of reaching the target spectrum in the required time period without overshoots. This control strategy is obtained from model-in-the-loop (MIL) simulations, evaluating the performance of various potential strategies. Finally, the proposed strategy is

  9. Integrated mobile robot control

    NASA Technical Reports Server (NTRS)

    Amidi, Omead; Thorpe, Charles

    1991-01-01

    This paper describes the structure, implementation, and operation of a real-time mobile robot controller which integrates capabilities such as: position estimation, path specification and tracking, human interfaces, fast communication, and multiple client support. The benefits of such high-level capabilities in a low-level controller was shown by its implementation for the Navlab autonomous vehicle. In addition, performance results from positioning and tracking systems are reported and analyzed.

  10. Advanced control room evaluation: General approach and rationale

    SciTech Connect

    O'Hara, J.M. ); Wachtel, J. )

    1991-01-01

    Advanced control rooms (ACRs) for future nuclear power plants (NPPs) are being designed utilizing computer-based technologies. The US Nuclear Regulatory Commission reviews the human engineering aspects of such control rooms to ensure that they are designed to good human factors engineering principles and that operator performance and reliability are appropriately supported in order to protect public health and safety. This paper describes the rationale and general approach to the development of a human factors review guideline for ACRs. The factors influencing the guideline development are discussed, including the review environment, the types of advanced technologies being addressed, the human factors issues associated with advanced technology, and the current state-of-the-art of human factors guidelines for advanced human-system interfaces (HSIs). The proposed approach to ACR review would track the design and implementation process through the application of review guidelines reflecting four review modules: planning, design process analysis, human factors engineering review, and dynamic performance evaluation. 21 refs.

  11. Operator experiences on working in screen-based control rooms

    SciTech Connect

    Salo, L.; Laarni, J.; Savioja, P.

    2006-07-01

    This paper introduces the results of two interview studies carried out in Finland in four conventional power plants and one nuclear power plant. The aim of the studies was to gather data on user experiences on the effects of control room modernization and digital control room technology on operator work Since the number of completed digitalization projects in nuclear power plants is small supplementary information was gathered by interviewing operators in conventional power plants. Our results suggest that even though the modernization processes have been success stories, they have created new challenges for operator personnel. Examples of these challenges are increased requirements for competence and collaboration, problems in trust calibration and development of awareness of the process state. Some major differences in the digitalization of human-system interfaces between conventional and nuclear power plants were discussed. (authors)

  12. Integrated airframe propulsion control

    NASA Technical Reports Server (NTRS)

    Fennell, R. E.; Black, S. B.

    1982-01-01

    Perturbation equations which describe flight dynamics and engine operation about a given operating point are combined to form an integrated aircraft/propulsion system model. Included in the model are the dependence of aerodynamic coefficients upon atmospheric variables along with the dependence of engine variables upon flight condition and inlet performance. An off-design engine performance model is used to identify interaction parameters in the model. Inclusion of subsystem interaction effects introduces coupling between flight and propulsion variables. To analyze interaction effects on control, consideration is first given to control requirements for separate flight and engine models. For the separate airframe model, feedback control provides substantial improvement in short period damping. For the integrated system, feedback control compensates for the coupling present in the model and provides good overall system stability. However, this feedback control law involves many non-zero gains. Analysis of suboptimal control strategies indicates that performance of the closed loop integrated system can be maintained with a feedback matrix in which the number of non-zero gains is small relative to the number of components in the feedback matrix.

  13. 51. MAIN CONTROL ROOM LOOKING NORTHEAST. THE INSTRUMENT LOCATED AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    51. MAIN CONTROL ROOM LOOKING NORTHEAST. THE INSTRUMENT LOCATED AT THE TOP CENTER IS A SYNCHROSCOPE USED TO ASCERTAIN PHASE OF A GENERATOR PRIOR TO CONNECTING IT ON THE LINE. WHEN THE OPERATOR DETERMINED THAT THE GENERATOR WAS SYNCHRONIZED WITH OTHER GENERATORS ON LINE, IT WOULD BE CONNECTED TO THE SYSTEM. - New York, New Haven & Hartford Railroad, Cos Cob Power Plant, Sound Shore Drive, Greenwich, Fairfield County, CT

  14. 3. Credit BG. The interior of the control room appears ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Credit BG. The interior of the control room appears in this view, looking north (0°). The control console in the room center permitted remote control of various propellant grinders and mixers in surrounding buildings. Television monitors (absent from their mounts in this view) permitted direct viewing of operating machinery. From foreground to background: Panel (1) contains OGAR warning light switches for Curing Buildings E-39, E-40, E-41 and E-86; (O=off, G=green safe, A=amber caution, R=red danger) Panel (2) E-85 Oxidizer Dryer Building console: OGAR switch Panel (3) E-84 Oxidizer Grinder Building console: controls for vibrator, feed, and hammer; Panel (4) E-36 Oxidizer Grinder Building console: controls for vibrator, feed, hammer, attritor, and SWECO ("SWECO" undefined) Panels (5) & (6) blank Panel (7) E-38 Mixer & Casting Building console: vacuum pump, blender, heating and cooling controls Panel (8) E-37 Mixer & Casting Building console: motor controls for 1 pint, 1 gallon, 5 gallon and 30 gallon mixers; vacuum pump, deluge (fire suppression), pot up/down, vibrator, feed, and SWECO. - Jet Propulsion Laboratory Edwards Facility, Weigh & Control Building, Edwards Air Force Base, Boron, Kern County, CA

  15. First-of-A-Kind Control Room Modernization Project Plan

    SciTech Connect

    Thomas, Kenneth David

    2016-02-01

    This project plan describes a comprehensive approach to the design of an end-state concept for a modernized control room for Palo Verde. It describes the collaboration arrangement between the DOE LWRS Program Control Room Modernization Project and the APS Palo Verde Nuclear Generating Station. It further describes the role of other collaborators, including the Institute for Energy Technology (IFE) and the Electric Power Research Institute (EPRI). It combines advanced tools, methodologies, and facilities to enable a science-based approach to the validation of applicable engineering and human factors principles for nuclear plant control rooms. It addresses the required project results and documentation to demonstrate compliance with regulatory requirements. It describes the project tasks that will be conducted in the project, and the deliverable reports that will be developed through these tasks. This project plan will be updated as new tasks are added and as project milestones are completed. It will serve as an ongoing description on the project both for project participants and for industry stakeholders.

  16. Central Control Room in the Engine Research Building

    NASA Image and Video Library

    1968-11-21

    Operators in the Engine Research Building’s Central Control Room at the National Aeronautics and Space Administration (NASA) Lewis Research Center. The massive 4.25-acre Engine Research Building contains dozens of test cells, test stands, and altitude chambers. A powerful a collection of compressors and exhausters located in the central portion of the basement provides process air and exhaust for these test areas. This system is connected to similar process air systems in the laboratory’s other large test facilities. The Central Control Room coordinates this activity and communicates with the local utilities. The panels on the wall contain schematics with indicator lights and instrumentation for the atmospheric exhaust, altitude exhaust, refrigerated air, and process air systems. The process air equipment included twelve exhausters, four compressors, refrigeration system, cooling water, and an exhaust system. The operators in the control room kept in contact with engineers running the process air system and those conducting the tests in the test cells. The operators also coordinated with the local power companies to make sure enough electricity was available to operate the powerful compressors and exhausters.

  17. Remote control of magnetostriction-based nanocontacts at room temperature.

    PubMed

    Jammalamadaka, S Narayana; Kuntz, Sebastian; Berg, Oliver; Kittler, Wolfram; Kannan, U Mohanan; Chelvane, J Arout; Sürgers, Christoph

    2015-09-01

    The remote control of the electrical conductance through nanosized junctions at room temperature will play an important role in future nano-electromechanical systems and electronic devices. This can be achieved by exploiting the magnetostriction effects of ferromagnetic materials. Here we report on the electrical conductance of magnetic nanocontacts obtained from wires of the giant magnetostrictive compound Tb0.3Dy0.7Fe1.95 as an active element in a mechanically controlled break-junction device. The nanocontacts are reproducibly switched at room temperature between "open" (zero conductance) and "closed" (nonzero conductance) states by variation of a magnetic field applied perpendicularly to the long wire axis. Conductance measurements in a magnetic field oriented parallel to the long wire axis exhibit a different behaviour where the conductance switches between both states only in a limited field range close to the coercive field. Investigating the conductance in the regime of electron tunneling by mechanical or magnetostrictive control of the electrode separation enables an estimation of the magnetostriction. The present results pave the way to utilize the material in devices based on nano-electromechanical systems operating at room temperature.

  18. Centaur Launch Control Room at Lewis Research Center

    NASA Image and Video Library

    1974-12-21

    A Centaur rocket control room in the Development Engineering Building (DEB) at the National Aeronautics and Space Administration (NASA) Lewis Research Center in Cleveland, Ohio. The DEB, completed in the mid-1960s, provided office space for several hundred development engineers outside the center’s main gate. The location of the DEB emphasized the development staff’s separation from the research side of the laboratory. This control room at Lewis was directly linked to Cape Kennedy. The Lewis staff in Cleveland could monitor and back up the Lewis launch team in the actual control room at the Cape. This photograph was taken during the preparations for the Titan-Centaur-Helios launch on December 10, 1974. The panels to the left listed the countdown events for the Centaur rocket. The launch countdown clock can be seen above these panels. The two panels on the right listed events predicted to occur during the flight and the availability of the tracking stations. The clock above the panels indicated the time remaining before the launch window expired. The Launch Vehicles Division was created in 1969 to manage the launches of all Centaur and Agena rockets. The Launch Vehicles Division worked with the engineers to design the payload in a manner that ensured that its size and weight were within Centaur’s parameters. They also developed the proper trajectory analysis for the launch. These trajectories often had to be adjusted if the launch did not occur on the planned date.

  19. Remote control of magnetostriction-based nanocontacts at room temperature

    PubMed Central

    Jammalamadaka, S. Narayana; Kuntz, Sebastian; Berg, Oliver; Kittler, Wolfram; Kannan, U. Mohanan; Chelvane, J. Arout; Sürgers, Christoph

    2015-01-01

    The remote control of the electrical conductance through nanosized junctions at room temperature will play an important role in future nano-electromechanical systems and electronic devices. This can be achieved by exploiting the magnetostriction effects of ferromagnetic materials. Here we report on the electrical conductance of magnetic nanocontacts obtained from wires of the giant magnetostrictive compound Tb0.3Dy0.7Fe1.95 as an active element in a mechanically controlled break-junction device. The nanocontacts are reproducibly switched at room temperature between “open” (zero conductance) and “closed” (nonzero conductance) states by variation of a magnetic field applied perpendicularly to the long wire axis. Conductance measurements in a magnetic field oriented parallel to the long wire axis exhibit a different behaviour where the conductance switches between both states only in a limited field range close to the coercive field. Investigating the conductance in the regime of electron tunneling by mechanical or magnetostrictive control of the electrode separation enables an estimation of the magnetostriction. The present results pave the way to utilize the material in devices based on nano-electromechanical systems operating at room temperature. PMID:26323326

  20. Bridging the gap: adapting advanced display technologies for use in hybrid control rooms

    SciTech Connect

    Jokstad, Håkon; Boring, Ronald

    2015-02-01

    The Institute for Energy Technology (IFE), runs the OECD Halden Reactor Project (HRP), featuring a state-of-the-art research simulator facility in Halden, Norway, called HAMMLAB. HAMMLAB serves two main purposes: the study of human behaviour in interaction with complex process systems; and the development, test and evaluation of prototype control centres and their individual systems. By studying operator performance in HAMMLAB and integrating the knowledge gained into new designs, the HRP contributes to improving operational safety, reliability, efficiency and productivity. The U.S. Department of Energy’s (DOE) Light Water Reactor Sustainability (LWRS) Program has contracted IFE to assist DOE national laboratory staff at Idaho National Laboratory (INL) in adapting HAMMLAB design concepts for the purpose of control room modernization at nuclear power plants in the U.S. In support of this effort, the DOE has built a simulator research facility at INL called the Human Systems Simulation Laboratory (HSSL). The HSSL is centered on control room modernization, in which industry provided plant instrumentation and controls are modified for upgrade opportunities. The HSSL houses the LWRS simulator, which is a reconfigurable full-scale and full-scope control room simulator. Consisting of 45 large touchscreens on 15 panels, the LWRS simulator is currently using this glass top technology to digitally represent and replicate the functionality of the analog I&C systems in existing control rooms. The LWRS simulator is reconfigurable in that different plant training simulator models obtained from the utilities can be run on the panels, and the panels can be physically moved and arranged to mimic the layout of those control rooms. The glass top technology and reconfigurability capabilities allow the LWRS simulator to be the research platform that is necessary to design, prototype, and validate human-system interface (HSI) technologies that can replace existing analog I&C. IFE has

  1. GUIDANCE FOR NUCLEAR POWER PLANT CONTROL ROOM AND HUMAN-SYSTEM INTERFACE MODERNIZATION

    SciTech Connect

    Naser, J.; Morris, G.

    2004-10-06

    Several nuclear power plants in the United States are starting instrumentation and control (I&C) modernization programs using digital equipment to address obsolescence issues and the need to improve plant performance while maintaining high levels of safety. As an integral part of the I&C modernization program at a nuclear power plant, the control room and other human-system interfaces (HSIs) are also being modernized. To support safe and effective operation, it is critical to plan, design, implement, train for, operate, and maintain the control room and HSI changes to take advantage of human cognitive processing abilities. A project, jointly funded by the Electric Power Research Institute (EPRI) and the United States Department of Energy (DOE) under the Nuclear Energy Plant Optimization (NEPO) Program, is developing guidance for specifying and designing control rooms, remote shut-down panels, HSIs etc. The guidance is intended for application by utilities and suppliers of control room and HSI modernization. The guidance will facilitate specification, design, implementation, operations, maintenance, training, and licensing activities. This guidance will be used to reduce the likelihood of human errors and licensing risk, to gain maximum benefit of implemented technology, and to increase performance. The guidance is of five types. The first is planning guidance to help a utility develop its plant-specific control room operating concepts, its plant-specific endpoint vision for the control room, its migration path to achieve that endpoint vision, and its regulatory, licensing, and human factors program plans. The second is process guidance for general HSI design and integration, human factors engineering analyses, verification and validation, in-service monitoring processes, etc. The third is detailed human factors engineering guidance for control room and HSI technical areas. The fourth is guidance for licensing. The fifth is guidance for special topics related to

  2. A demonstrated method for upgrading existing control room interiors

    SciTech Connect

    Brice, R.M. ); Terrill, D. ); Brice, R.M.

    1991-01-01

    The main control room (MCR) of any nuclear power plant can justifiably be called the most important area staffed by personnel in the entire facility. The interior workstation configuration, equipment arrangement, and staff placement all affect the efficiency and habitability of the room. There are many guidelines available that describe various human factor principles to use when upgrading the environment of the MCR. These involve anthropometric standards and rules for placement of peripheral equipment. Due to the variations in plant design, however, hard-and-fast rules have not and cannot be standardized for retrofits in any significant way. How then does one develop criteria for the improvement of a MCR The purpose of this paper is to discuss, from the designer's point of view, a method for the collection of information, development of criteria, and creation of a final design for a MCR upgrade. This method is best understood by describing the successful implementation at Tennessee Valley Authority's Sequoyah nuclear plant.

  3. 83. DETAIL OF HONEYWELL AIRCONDITIONING CONTROLS IN SLC3E CONTROL ROOM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    83. DETAIL OF HONEYWELL AIR-CONDITIONING CONTROLS IN SLC-3E CONTROL ROOM - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  4. FRAMEWORK AND APPLICATION FOR MODELING CONTROL ROOM CREW PERFORMANCE AT NUCLEAR POWER PLANTS

    SciTech Connect

    Ronald L Boring; David I Gertman; Tuan Q Tran; Brian F Gore

    2008-09-01

    This paper summarizes an emerging project regarding the utilization of high-fidelity MIDAS simulations for visualizing and modeling control room crew performance at nuclear power plants. The key envisioned uses for MIDAS-based control room simulations are: (i) the estimation of human error associated with advanced control room equipment and configurations, (ii) the investigative determination of contributory cognitive factors for risk significant scenarios involving control room operating crews, and (iii) the certification of reduced staffing levels in advanced control rooms. It is proposed that MIDAS serves as a key component for the effective modeling of cognition, elements of situation awareness, and risk associated with human performance in next generation control rooms.

  5. SIG -- The Role of Human-Computer Interaction in Next-Generation Control Rooms

    SciTech Connect

    Ronald L. Boring; Jacques Hugo; Christian Richard; Donald D. Dudenhoeffer

    2005-04-01

    The purpose of this CHI Special Interest Group (SIG) is to facilitate the convergence between human-computer interaction (HCI) and control room design. HCI researchers and practitioners actively need to infuse state-of-the-art interface technology into control rooms to meet usability, safety, and regulatory requirements. This SIG outlines potential HCI contributions to instrumentation and control (I&C) and automation in control rooms as well as to general control room design.

  6. Human Computer Interaction in the ALMA Control Room

    NASA Astrophysics Data System (ADS)

    Schilling, M.; Primet, R.; Pietriga, E.; Schwarz, J.

    2012-09-01

    The article describes the ALMA Operations Monitoring and Control (OMC) software and its next generation user interfaces, used by operators and astronomers to monitor and control the observing facility. These user interfaces bring state-of-the-art Human Computer Interaction (HCI) techniques to the ALMA Control Room: map visualisation, semantic zooming, navigation gestures, multiple coordinated views, and decrease of time-to-point. They enable users to stay in control of dozens of antennas, hundreds of devices, and thousands of baselines. The Atacama Large Millimeter/submillimeter Array (ALMA), an international radio-astronomy facility, is a partnership of North America, Europe and East Asia in cooperation with the Republic of Chile. It is located at the Altiplano de Chajnantor and is being operated from the Operations Support Facilities (OSF) near San Pedro de Atacama.

  7. NASA researchers in gold control room during an F-15 HiDEC flight

    NASA Technical Reports Server (NTRS)

    1993-01-01

    NASA researchers monitor equipment in the mission control Gold room at the Dryden Flight Research Center, Edwards, California, during a flight of an F-15 Highly Integrated Digital Electronic Control (HIDEC) research aircraft. The system was developed on the F-15 to investigate and demonstrate methods of obtaining optimum aircraft performance. The major elements of HIDEC were a Digital Electronic Flight Control System (DEFCS), a Digital Electronic Engine Control (DEEC), an on-board general purpose computer, and an integrated architecture to allow all components to 'talk to each other.' Unlike standard F-15s, which have a mechanical and analog electronic flight control system, the HIDEC F-15 also had a dual-channel, fail-safe digital flight control system programmed in Pascal. It was linked to the Military Standard 1553B and a H009 data bus which tied all the other electronic systems together.

  8. NASA researchers in gold control room during an F-15 HiDEC flight

    NASA Technical Reports Server (NTRS)

    1993-01-01

    NASA researchers monitor equipment in the mission control Gold room at the Dryden Flight Research Center, Edwards, California, during a flight of an F-15 Highly Integrated Digital Electronic Control (HIDEC) research aircraft. The system was developed on the F-15 to investigate and demonstrate methods of obtaining optimum aircraft performance. The major elements of HIDEC were a Digital Electronic Flight Control System (DEFCS), a Digital Electronic Engine Control (DEEC), an on-board general purpose computer, and an integrated architecture to allow all components to 'talk to each other.' Unlike standard F-15s, which have a mechanical and analog electronic flight control system, the HIDEC F-15 also had a dual-channel, fail-safe digital flight control system programmed in Pascal. It was linked to the Military Standard 1553B and a H009 data bus which tied all the other electronic systems together.

  9. 1. VIEW OF THE CONTROL ROOM FOR THE XY RETRIEVER. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW OF THE CONTROL ROOM FOR THE X-Y RETRIEVER. USING THE X-Y RETRIEVER, OPERATORS RETRIEVED PLUTONIUM METAL FROM THE PLUTONIUM STORAGE VAULTS (IN MODULE K) AND CONVEYED IT TO THE X-Y SHUTTLE AREA WHERE IT WAS CUT AND WEIGHED. FROM THE SHUTTLE AREA THE PLUTONIUM WAS CONVEYED TO MODULES A, J OR K FOR CASTING, OR MODULE B FOR ROLLING AND FORMING. (5/17/71) - Rocky Flats Plant, Plutonium Manufacturing Facility, North-central section of Plant, just south of Building 776/777, Golden, Jefferson County, CO

  10. Capturing Control Room Simulator Data with the HERA Database

    SciTech Connect

    Ronald Boring; April Whaley; Bruce Hallbert; Karin Laumann; Per Oivind Braarud; Andreas Bye; Erasmia Lois; Yung Hsien James Chang

    2007-08-01

    The Human Event Repository and Analysis (HERA) system has been developed as a tool for classifying and recording human performance data extracted from primary data sources. This paper reviews the process of extracting data from simulator studies for use in HERA. Simulator studies pose unique data collection challenges, both in types and quality of data measures, but such studies are ideally suited to gather operator performance data, including the full spectrum of performance shaping factors used in a HERA analysis. This paper provides suggestions for obtaining relevant human performance data for a HERA analysis from a control room simulator study and for inputting those data in a format suitable for HERA.

  11. [Interface interconnection and data integration in implementing of digital operating room].

    PubMed

    Feng, Jingyi; Chen, Hua; Liu, Jiquan

    2011-10-01

    The digital operating-room, with highly integrated clinical information, is very important for rescuing lives of patients and improving quality of operations. Since equipments in domestic operating-rooms have diversified interface and nonstandard communication protocols, designing and implementing an integrated data sharing program for different kinds of diagnosing, monitoring, and treatment equipments become a key point in construction of digital operating room. This paper addresses interface interconnection and data integration for commonly used clinical equipments from aspects of hardware interface, interface connection and communication protocol, and offers a solution for interconnection and integration of clinical equipments in heterogeneous environment. Based on the solution, a case of an optimal digital operating-room is presented in this paper. Comparing with the international solution for digital operating-room, the solution proposed in this paper is more economical and effective. And finally, this paper provides a proposal for the platform construction of digital perating-room as well as a viewpoint for standardization of domestic clinical equipments.

  12. COMMERCIAL UTILITY PERSPECTIVES ON NUCLEAR POWER PLANT CONTROL ROOM MODERNIZATION

    SciTech Connect

    Jeffrey C. Joe; Ronald L. Boring; Julius J. Persensky

    2012-07-01

    Commercial nuclear power plants (NPPs) in the United States need to modernize their main control rooms (MCR). Many NPPs have done partial upgrades with some success and with some challenges. The Department of Energy’s (DOE) Light Water Reactor Sustainability (LWRS) Program, and in particular the Advanced Instrumentation and Controls (I&C) and Information Systems Technologies Research and Development (R&D) Pathway within LWRS, is designed to assist commercial nuclear power industry with their MCR modernization efforts. As part of this framework, a survey was issued to utility representatives of the LWRS Program Advanced Instrumentation, Information, and Control Systems/Technologies (II&C) Utility Working Group to obtain their views on a range of issues related to MCR modernization, including: drivers, barriers, and technology options, and the effects these aspects will have on concepts of operations, modernization strategies, and staffing. This paper summarizes the key survey results and discusses their implications.

  13. Baseline Study Methodology for Future Phases of Research on Nuclear Power Plant Control Room Technologies

    SciTech Connect

    Le Blanc, Katya Lee; Bower, Gordon Ross; Hill, Rachael Ann; Spielman, Zachary Alexander; Rice, Brandon Charles

    2016-07-01

    In order to provide a basis for industry adoption of advanced technologies, the Control Room Upgrades Benefits Research Project will investigate the benefits of including advanced technologies as part of control room modernization This report describes the background, methodology, and research plan for the first in a series of full-scale studies to test the effects of advanced technology in NPP control rooms. This study will test the effect of Advanced Overview Displays in the partner Utility’s control room simulator

  14. Making Room: Integrating Geo-Technologies into Teacher Education

    ERIC Educational Resources Information Center

    Gatrell, Jay D.

    2004-01-01

    Geo-educators focus on content standards, particularly the 1994 "Geography for Life" standards, as the primary rationale for integrating geo-spatial technologies into preservice teacher education programs. In this paper, an alternative framework is proposed to infuse GIS and GIScience into existing teacher education programs. Specifically, the…

  15. 75 FR 69912 - Pipeline Safety: Control Room Management/Human Factors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-16

    ... Safety: Control Room Management/Human Factors AGENCY: Pipeline and Hazardous Materials Safety..., 2010, PHMSA published a Control Room Management/Human Factors notice of proposed rulemaking (NPRM... to expedite the program implementation deadlines of the Control Room Management/Human Factors rule...

  16. 75 FR 5536 - Pipeline Safety: Control Room Management/Human Factors, Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-03

    ... Safety: Control Room Management/Human Factors, Correction AGENCY: Pipeline and Hazardous Materials Safety... Regulations to address human factors and other aspects of control room management for pipelines where... 63310) entitled ``Pipeline Safety: Control Room Management/Human Factors.'' This final rule...

  17. Plum Brook Reactor Facility Control Room during Facility Startup

    NASA Image and Video Library

    1961-02-21

    Operators test the National Aeronautics and Space Administration’s (NASA) Plum Brook Reactor Facility systems in the months leading up to its actual operation. The “Reactor On” signs are illuminated but the reactor core was not yet ready for chain reactions. Just a couple weeks after this photograph, Plum Brook Station held a media open house to unveil the 60-megawatt test reactor near Sandusky, Ohio. More than 60 members of the print media and radio and television news services met at the site to talk with community leaders and representatives from NASA and Atomic Energy Commission. The Plum Brook reactor went critical for the first time on the evening of June 14, 1961. It was not until April 1963 that the reactor reached its full potential of 60 megawatts. The reactor control room, located on the second floor of the facility, was run by licensed operators. The operators manually operated the shim rods which adjusted the chain reaction in the reactor core. The regulating rods could partially or completely shut down the reactor. The control room also housed remote area monitoring panels and other monitoring equipment that allowed operators to monitor radiation sensors located throughout the facility and to scram the reactor instantly if necessary. The color of the indicator lights corresponded with the elevation of the detectors in the various buildings. The reactor could also shut itself down automatically if the monitors detected any sudden irregularities.

  18. Biofied room integrated with sensor agent robots to interact with residents and acquire environmental information

    NASA Astrophysics Data System (ADS)

    Sakurai, Fumi; Mita, Akira

    2011-04-01

    Current smart buildings are based on scenarios, so they are not prepared for unexpected events. We focus our attention on high adaptability of living matters to environmental changes. "Biofication of Living Spaces" is the concept of creating pleasant living environments using this high adaptability. Biofied room is integrated with sensor agent robots to interact with residents and acquire environmental information. In this research, we propose a highly adaptive algorithm to control the devices automatically. Based on physiological adaption, we can make the algorithm very flexible. As the first step in this research, a prototype of the sensor agent robot is built. Camera, microphone, proximity sensor, laser range-finder are mounted on the robot. As a sensor agent robot follows the residents, it acquires environmental information, and records the interaction between the robot and human. In a suggested control model, a resident is built in the control loop and his/her uncomfortable feeling plays a role of control signal. Following its signal, devices are controlled. Results obtained from the computer simulation show that models are able to maintain the human comfort feeling adaptively. This research suggests an adaptive, fault-tolerant, and energy-saving control models for building spaces, using simple algorithms based on physiological adaption.

  19. Integrating medical devices in the operating room using service-oriented architectures.

    PubMed

    Ibach, Bastian; Benzko, Julia; Schlichting, Stefan; Zimolong, Andreas; Radermacher, Klaus

    2012-08-01

    Abstract With the increasing documentation requirements and communication capabilities of medical devices in the operating room, the integration and modular networking of these devices have become more and more important. Commercial integrated operating room systems are mainly proprietary developments using usually proprietary communication standards and interfaces, which reduce the possibility of integrating devices from different vendors. To overcome these limitations, there is a need for an open standardized architecture that is based on standard protocols and interfaces enabling the integration of devices from different vendors based on heterogeneous software and hardware components. Starting with an analysis of the requirements for device integration in the operating room and the techniques used for integrating devices in other industrial domains, a new concept for an integration architecture for the operating room based on the paradigm of a service-oriented architecture is developed. Standardized communication protocols and interface descriptions are used. As risk management is an important factor in the field of medical engineering, a risk analysis of the developed concept has been carried out and the first prototypes have been implemented.

  20. 15. NBS TOP SIDE CONTROL ROOM. THE SUIT SYSTEMS CONSOLE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. NBS TOP SIDE CONTROL ROOM. THE SUIT SYSTEMS CONSOLE IS USED TO CONTROL AIR FLOW AND WATER FLOW TO THE UNDERWATER SPACE SUIT DURING THE TEST. THE SUIT SYSTEMS ENGINEER MONITORS AIR FLOW ON THE PANEL TO THE LEFT, AND SUIT DATA ON THE COMPUTER MONITOR JUST SLIGHTLY TO HIS LEFT. WATER FLOW IS MONITORED ON THE PANEL JUST SLIGHTLY TO HIS RIGHT AND TEST VIDEO TO HIS FAR RIGHT. THE DECK CHIEF MONITORS THE DIVER'S DIVE TIMES ON THE COMPUTER IN THE UPPER RIGHT. THE DECK CHIEF LOGS THEM IN AS THEY ENTER THE WATER, AND LOGS THEM OUT AS THEY EXIT THE WATER. THE COMPUTER CALCULATES TOTAL DIVE TIME. - Marshall Space Flight Center, Neutral Buoyancy Simulator Facility, Rideout Road, Huntsville, Madison County, AL

  1. Mission Operations Control Room (MOCR) activities during STS-6 mission

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Vice president George Bush talks to the STS-6 astronauts from the spacecraft communicators (CAPCOM) console in the mission operations control room (MOCR) of JSC's mission control center. Astronaut Roy D. Bridges, left, is one of the CAPCOM personnel on duty (30190,30192); Vice president Bush recieves instructions from Bridges at the CAPCOM console prior to talking to the STS-6 crew. The two are flanked by JSC Director Gerald D. Griffin, left, and NASA Administrator James Beggs. Mission Operations Director Eugene F. Kranz is in center background (30191); Vice President Bush, left, is briefed by JSC Director Griffin, right, during a visit to the MOCR. NASA Administrator Beggs, center, accompanied the Vice President on his visit (30193).

  2. OR.NET: multi-perspective qualitative evaluation of an integrated operating room based on IEEE 11073 SDC.

    PubMed

    Rockstroh, M; Franke, S; Hofer, M; Will, A; Kasparick, M; Andersen, B; Neumuth, T

    2017-08-01

    Clinical working environments have become very complex imposing many different tasks in diagnosis, medical treatment, and care procedures. During the German flagship project OR.NET, more than 50 partners developed technologies for an open integration of medical devices and IT systems in the operating room. The aim of the present work was to evaluate a large set of the proposed concepts from the perspectives of various stakeholders. The demonstration OR is focused on interventions from the head and neck surgery and was developed in close cooperation with surgeons and numerous colleagues of the project partners. The demonstration OR was qualitatively evaluated including technical as well as clinical aspects. In the evaluation, a questionnaire was used to obtain feedback from hospital operators. The clinical implications were covered by structured interviews with surgeons, anesthesiologists and OR staff. In the present work, we qualitatively evaluate a subset of the proposed concepts from the perspectives of various stakeholders. The feedback of the clinicians indicates that there is a need for a flexible data and control integration. The hospital operators stress the need for tools to simplify risk management in openly integrated operating rooms. The implementation of openly integrated operating rooms will positively affect the surgeons, the anesthesiologists, the surgical nursing staff, as well as the technical personnel and the hospital operators. The evaluation demonstrated the need for OR integration technologies and identified the missing tools to support risk management and approval as the main barriers for future installments.

  3. Giant room temperature magnetoelectric response in strain controlled nanocomposites

    NASA Astrophysics Data System (ADS)

    Rafique, Mohsin; Herklotz, Andreas; Dörr, Kathrin; Manzoor, Sadia

    2017-05-01

    We report giant magnetoelectric coupling at room temperature in a self-assembled nanocomposite of BiFeO3-CoFe2O4 (BFO-CFO) grown on a BaTiO3 (BTO) crystal. The nanocomposite consisting of CFO nanopillars embedded in a BFO matrix exhibits weak perpendicular magnetic anisotropy due to a small out-of-plane compression (˜0.3%) of the magnetostrictive (CFO) phase, enabling magnetization rotation under moderate in-plane compression. Temperature dependent magnetization measurements demonstrate strong magnetoelastic coupling between the BaTiO3 substrate and the nanocomposite film, which has been exploited to produce a large magnetoelectric response in the sample. The reorientation of ferroelectric domains in the BTO crystal upon the application of an electric field (E) alters the strain state of the nanocomposite film, thus enabling control of its magnetic anisotropy. The strain mediated magnetoelectric coupling coefficient α = μ o d M / d E calculated from remnant magnetization at room temperature is 2.6 × 10-7 s m-1 and 1.5 × 10-7 s m-1 for the out-of-plane and in-plane orientations, respectively.

  4. Integrating preconcentrator heat controller

    DOEpatents

    Bouchier, Francis A.; Arakaki, Lester H.; Varley, Eric S.

    2007-10-16

    A method and apparatus for controlling the electric resistance heating of a metallic chemical preconcentrator screen, for example, used in portable trace explosives detectors. The length of the heating time-period is automatically adjusted to compensate for any changes in the voltage driving the heating current across the screen, for example, due to gradual discharge or aging of a battery. The total deposited energy in the screen is proportional to the integral over time of the square of the voltage drop across the screen. Since the net temperature rise, .DELTA.T.sub.s, of the screen, from beginning to end of the heating pulse, is proportional to the total amount of heat energy deposited in the screen during the heating pulse, then this integral can be calculated in real-time and used to terminate the heating current when a pre-set target value has been reached; thereby providing a consistent and reliable screen temperature rise, .DELTA.T.sub.s, from pulse-to-pulse.

  5. New thinking for the boiler room.

    PubMed

    Rose, Wayne

    2008-09-01

    Wayne Rose, marketing manager at integrated plant room manufacturer Armstrong Integrated Systems, explains how increasing use of off-site manufacture, the latest 3D modelling technology, and advances in control technology, are revolutionising boiler room design and construction.

  6. [The 'Surgical Deck': a new generation of integrated operational rooms for ENT].

    PubMed

    Strauss, G; Gollnick, I; Neumuth, T; Meixensberger, J; Lueth, T C

    2013-02-01

    Existing operating room concepts do not meet modern technological opportunities anymore. The "Surgical Deck" is supposed to represent a prototype for a new operating room generation. The objective of the project is to achieve a better integration of functions and to develop an innovative concept for a highly developed surgical workstation. 3 working areas are defined: Surgical, Airway and Technical Cockpit. The evaluation was conducted on 284 surgeries carried out from 01.08. 2011 to 31.01. 2012. The evaluation team consisted of 6 surgeons, 3 surgery nurses, 3 anesthesiologists and 4 anesthesia nurses. Within a detailed analysis, the data of 50 FESS surgeries were compared to those of a control group. Within the FESS group, the average slot time was reduced by 13%. 88.2% of those questioned assessed ergonomics as being better than in the conventional OR. 71.5% stated that the Surgical Deck provided an added value with regard to the surgical procedure. 91.3% confirmed that the system control required additional training. 79.3% described the cost-benefit-ratio as appropriate. For 96% of the surgeries, respondents said that they were feeling adequately supported by the technology. The results show a clear advantage of the system architecture. The Surgical Deck may present a solid foundation with regard to the transfer of the system into the clinical practice. This is relevant for new assistance functions such as process control software or navigation-based collision warning systems. It is to be expected that the project will significantly contribute to further develop the future surgical workstation and its standardization. © Georg Thieme Verlag KG Stuttgart · New York.

  7. Interior of Room T112, looking south at control and monitor ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior of Room T112, looking south at control and monitor room - Over-the-Horizon Backscatter Radar Network, Moscow Radar Site Transmit Sector One Transmitter Building, At the end of Steam Road, Moscow, Somerset County, ME

  8. HFE safety reviews of advanced nuclear power plant control rooms

    NASA Technical Reports Server (NTRS)

    Ohara, John

    1994-01-01

    Advanced control rooms (ACR's) will utilize human-system interface (HSI) technologies that may have significant implications for plant safety in that they will affect the operator's overall role and means of interacting with the system. The Nuclear Regulatory Commission (NRC) reviews the human factors engineering (HFE) aspects of HSI's to ensure that they are designed to good HFE principles and support performance and reliability in order to protect public health and safety. However, the only available NRC guidance was developed more than ten years ago, and does not adequately address the human performance issues and technology changes associated with ACR's. Accordingly, a new approach to ACR safety reviews was developed based upon the concept of 'convergent validity'. This approach to ACR safety reviews is described.

  9. Mission Operations Control Room Activities during STS-2 mission

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Mission Operations Control Room (MOCR) activities during STS-2 mission. President Ronald Reagan is briefed by Dr. Christopher C. Kraft, Jr., JSC Director, who points toward the orbiter spotter on the projection plotter at the front of the MOCR (39499); President Reagan joking with STS-2 astronauts during space to ground conversation (39500); Mission Specialist/Astronaut Sally K. Ride communicates with the STS-2 crew from the spacecraft communicator console (39501); Charles R. Lewis, bronze team Flight Director, monitors activity from the STS-2 crew. He is seated at the flight director console in MOCR (39502); Eugene F. Kranz, Deputy Director of Flight Operations at JSC answers a question during a press conference on Nov. 13, 1981. He is flanked by Glynn S. Lunney, Manager, Space Shuttle Program Office, JSC; and Dr. Christopher C. Kraft, Jr., Director of JSC (39503).

  10. LOFT. Interior, control room in control building (TAN630). Camera facing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LOFT. Interior, control room in control building (TAN-630). Camera facing north. Sign says "This control console is partially active. Do not operate any switch handle without authorization." Date: May 2004. INEEL negative no. HD-39-14-3 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  11. IET control building (TAN620). control room. facing east. instrument racks ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    IET control building (TAN-620). control room. facing east. instrument racks along north wall. glazing on east wall. Layout of control consoles evident by openings in floor. INEEL negative no. HD-21-4-2 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  12. Operators in the Plum Brook Reactor Facility Control Room

    NASA Image and Video Library

    1970-03-21

    Donald Rhodes, left, and Clyde Greer, right, monitor the operation of the National Aeronautics and Space Administration’s (NASA) Plum Brook Reactor Facility from the control room. The 60-megawatt test reactor, NASA’s only reactor, was the eighth largest test reactor in the world. The facility was built by the Lewis Research Center in the late 1950s to study the effects of radiation on different materials that could be used to construct nuclear propulsion systems for aircraft or rockets. The reactor went critical for the first time in 1961. For the next two years, two operators were on duty 24 hours per day working on the fission process until the reactor reached its full-power level in 1963. Reactor Operators were responsible for monitoring and controlling the reactor systems. Once the reactor was running under normal operating conditions, the work was relatively uneventful. Normally the reactor was kept at a designated power level within certain limits. Occasionally the operators had to increase the power for a certain test. The shift supervisor and several different people would get together and discuss the change before boosting the power. All operators were required to maintain a Reactor Operator License from the Atomic Energy Commission. The license included six months of training, an eight-hour written exam, a four-hour walkaround, and testing on the reactor controls.

  13. Mission Operations Control Room Activities during STS-2 mission

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Mission Operations Control Room (MOCR) activities during STS-2 mission. Overall view of the MOCR in the Johnson Space Center's Mission Control Center. At far right is Eugene F. Kranz, Deputy Director of Flight Operations. At the flight director console in front of Kranz's FOD console are Flight Directors M.P. Frank, Neil B. Hutchinson and Donald R. Puddy as well as others (39506); Wide-angle view of flight controllers in the MOCR. Clifford E. Charlesworth, JSC Deputy Director, huddles with several flight directors for STS-2 at the flight director console. Kranz, is at far right of frame (39507); Dr. Christopher C. Kraft, Jr., JSC Director, center, celebrates successful flight and landing of STS-2 with a cigar in the MOCR. He is flanked by Dr. Maxime A Faget, left, Director of Engineering and Development, and Thomas L. Moser, of the Structures and Mechanics Division (39508); Flight Director Donald R. Puddy, near right, holds replica of the STS-2 insignia. Insignias on the opposite wall

  14. Documentation of new mission control center White Flight Control Room (FLCR)

    NASA Image and Video Library

    1995-06-06

    Documentation of the new mission control center White Flight Control Room (FLCR). Excellent overall view of White FLCR with personnel manning console workstations (11221). Fisheye lens perspective from Flight Director station with Brian Austin (11222). Environmental (EECOM) workstation and personnel (11223).

  15. PBF Control Building (PER619). Interior detail of control room's severe ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Control Building (PER-619). Interior detail of control room's severe fuel damage instrument panel. Indicators provided real-time information about test underway in PBF reactor. Note audio speaker. Date: May 2004. INEEL negative no, HD-41-7-4 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  16. Wide angle view of the Flight control room of Mission control center

    NASA Image and Video Library

    1984-10-06

    Wide angle view of the flight control room (FCR) of the Mission Control Center (MCC). Some of the STS 41-G crew can be seen on a large screen at the front of the MCC along with a map tracking the progress of the orbiter.

  17. PBF Control Building (PER619), Interior detail of control room instrument ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Control Building (PER-619), Interior detail of control room instrument and readout panels. Camera facing northeast. Date: May 2004. INEEL negative no, HD-41-7-2 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  18. PBF Control Building (PER619). Inside control room facing west. Photographer ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Control Building (PER-619). Inside control room facing west. Photographer has closed venetian blinds at window to block bright sunlight from outside. Date: 1980. INEEL negative no. 80-2549 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  19. Human factor engineering based design and modernization of control rooms with new I and C systems

    SciTech Connect

    Larraz, J.; Rejas, L.; Ortega, F.

    2012-07-01

    Instrumentation and Control (I and C) systems of the latest nuclear power plants are based on the use of digital technology, distributed control systems and the integration of information in data networks (Distributed Control and Instrumentation Systems). This has a repercussion on Control Rooms (CRs), where the operations and monitoring interfaces correspond to these systems. These technologies are also used in modernizing I and C systems in currently operative nuclear power plants. The new interfaces provide additional capabilities for operation and supervision, as well as a high degree of flexibility, versatility and reliability. An example of this is the implementation of solutions such as compact stations, high level supervision screens, overview displays, computerized procedures, new operational support systems or intelligent alarms processing systems in the modernized Man-Machine Interface (MMI). These changes in the MMI are accompanied by newly added Software (SW) controls and new solutions in automation. Tecnatom has been leading various projects in this area for several years, both in Asian countries and in the United States, using in all cases international standards from which Tecnatom own methodologies have been developed and optimized. The experience acquired in applying this methodology to the design of new control rooms is to a large extent applicable also to the modernization of current control rooms. An adequate design of the interface between the operator and the systems will facilitate safe operation, contribute to the prompt identification of problems and help in the distribution of tasks and communications between the different members of the operating shift. Based on Tecnatom experience in the field, this article presents the methodological approach used as well as the most relevant aspects of this kind of project. (authors)

  20. The design of an embedded system for controlling humidity and temperature room

    NASA Astrophysics Data System (ADS)

    Dwi Teguh, R.; Didik Eko, S.; Laksono, Pringgo D.; Jamaluddin, Anif

    2016-11-01

    The aim of the system is to design an embedded system for maintenance confortable room. The confortable room was design by controlling temperature (on range 18 - 34 °C) and humidity (on range 40% - 70%.) of room condition. Temperature and humidity of room were maintained using four variable such as lamp for warm, water pump for distributing water vapour, a fan for air circullation and an exhaust-fan for air cleaner. The system was constucted both hardware (humidity sensor, microcontroller, pump, lamp, fan) and software (arduino IDE). The result shows that the system was perfectly performed to control room condition.

  1. Heterogeneously integrated 2.0 μm CW hybrid silicon lasers at room temperature.

    PubMed

    Spott, Alexander; Davenport, Michael; Peters, Jon; Bovington, Jock; Heck, Martijn J R; Stanton, Eric J; Vurgaftman, Igor; Meyer, Jerry; Bowers, John

    2015-04-01

    Here we experimentally demonstrate room temperature, continuous-wave (CW), 2.0 μm wavelength lasers heterogeneously integrated on silicon. Molecular wafer bonding of InP to Si is employed. These hybrid silicon lasers operate CW up to 35°C and emit up to 4.2 mW of single-facet CW power at room temperature. III-V tapers transfer light from a hybrid III-V/silicon optical mode into a Si waveguide mode. These lasers enable the realization of a number of sensing and detection applications in compact silicon photonic systems.

  2. Care of patients in emergency department waiting rooms--an integrative review.

    PubMed

    Innes, Kelli; Jackson, Debra; Plummer, Virginia; Elliott, Doug

    2015-12-01

    To conduct an integrative review of primary research examining patient care roles introduced into emergency department waiting rooms. Internationally, emergency departments are under pressure to meet increasing patient demand with limited resources. Several initiatives have been developed that incorporate a healthcare role in waiting rooms, to assess and initiate early interventions to decrease waiting times, detect patient deterioration and improve communication. The literature reporting these roles has not been systematically evaluated. Integrative review. Published English-language peer reviewed articles in CINAHL, Scopus, Medline and Web of Knowledge between 2003-2014. Identified literature was evaluated using an integrative review framework, incorporating methodological critique and narrative synthesis of findings. Six papers were included, with three waiting room roles identified internationally - clinical initiative nurse, Physician-Nurse Supplementary Assessment Team and clinical assistants. All roles varied in terms of definitions, scope, responsibilities and skill sets of individuals in the position. There was limited evidence that the roles decreased waiting times or improved patient care, especially during busy periods. Of note, staff members performing these roles require high-level therapeutic relationship and effective interpersonal skills with patients, family and staff. The role requires support from other staff, particularly during periods of high workload, for optimal functioning and effective patient care. Generalisations and practice recommendations are limited due to the lack of available literature. Further research is required to evaluate the impact emergency department waiting room roles have on patient outcomes and staff perspectives. © 2015 John Wiley & Sons Ltd.

  3. Integrated blending control system

    SciTech Connect

    Cogbill, R.B.; Dodd, T.J.; Heilman, P.W.; Heronemus, D.L.; Sears, L.R.; Berryman, L.N.; Baker, R.L.; Guffee, L.E.; Prucha, D.A.; Roberts, D.M.

    1989-07-25

    This patent describes a proppant control system. It comprises: storage bin means for storing particulate material; surge bin means for receiving a flow of the particulate material from the storage bin means; first conveyor means for providing a flow of particulate material to the surge bin means from the storage bin means; second conveyor means for transferring a controllable quantity of the particulate material from the surge bin means; and proppant control means. The control means include: first speed control means for remotely controlling the speed of the first conveyor means; and second speed control means for remotely controlling the speed of the second conveyor means.

  4. Human factors design review guidelines for advanced nuclear control room technologies

    SciTech Connect

    O'Hara, J.; Brown, W. ); Granda, T.; Baker, C. )

    1991-01-01

    Advanced control rooms (ACRs) for future nuclear power plants are being designed utilizing computer-based technologies. The US Nuclear Regulatory Commission reviews the human engineering aspects of such control rooms to ensure that they are designed to good human factors engineering principles and that operator performance and reliability are appropriately supported in order to protect public health and safety. This paper describes the rationale, general approach, and initial development of an NRC Advanced Control Room Design Review Guideline. 20 refs., 1 fig.

  5. Structure determination of an integral membrane protein at room temperature from crystals in situ.

    PubMed

    Axford, Danny; Foadi, James; Hu, Nien Jen; Choudhury, Hassanul Ghani; Iwata, So; Beis, Konstantinos; Evans, Gwyndaf; Alguel, Yilmaz

    2015-06-01

    The structure determination of an integral membrane protein using synchrotron X-ray diffraction data collected at room temperature directly in vapour-diffusion crystallization plates (in situ) is demonstrated. Exposing the crystals in situ eliminates manual sample handling and, since it is performed at room temperature, removes the complication of cryoprotection and potential structural anomalies induced by sample cryocooling. Essential to the method is the ability to limit radiation damage by recording a small amount of data per sample from many samples and subsequently assembling the resulting data sets using specialized software. The validity of this procedure is established by the structure determination of Haemophilus influenza TehA at 2.3 Å resolution. The method presented offers an effective protocol for the fast and efficient determination of membrane-protein structures at room temperature using third-generation synchrotron beamlines.

  6. Structure determination of an integral membrane protein at room temperature from crystals in situ

    PubMed Central

    Axford, Danny; Foadi, James; Hu, Nien-Jen; Choudhury, Hassanul Ghani; Iwata, So; Beis, Konstantinos; Evans, Gwyndaf; Alguel, Yilmaz

    2015-01-01

    The structure determination of an integral membrane protein using synchrotron X-ray diffraction data collected at room temperature directly in vapour-diffusion crystallization plates (in situ) is demonstrated. Exposing the crystals in situ eliminates manual sample handling and, since it is performed at room temperature, removes the complication of cryoprotection and potential structural anomalies induced by sample cryocooling. Essential to the method is the ability to limit radiation damage by recording a small amount of data per sample from many samples and subsequently assembling the resulting data sets using specialized software. The validity of this procedure is established by the structure determination of Haemophilus influenza TehA at 2.3 Å resolution. The method presented offers an effective protocol for the fast and efficient determination of membrane-protein structures at room temperature using third-generation synchrotron beamlines. PMID:26057664

  7. Integrated control-structure design

    NASA Technical Reports Server (NTRS)

    Hunziker, K. Scott; Kraft, Raymond H.; Bossi, Joseph A.

    1991-01-01

    A new approach for the design and control of flexible space structures is described. The approach integrates the structure and controller design processes thereby providing extra opportunities for avoiding some of the disastrous effects of control-structures interaction and for discovering new, unexpected avenues of future structural design. A control formulation based on Boyd's implementation of Youla parameterization is employed. Control design parameters are coupled with structural design variables to produce a set of integrated-design variables which are selected through optimization-based methodology. A performance index reflecting spacecraft mission goals and constraints is formulated and optimized with respect to the integrated design variables. Initial studies have been concerned with achieving mission requirements with a lighter, more flexible space structure. Details of the formulation of the integrated-design approach are presented and results are given from a study involving the integrated redesign of a flexible geostationary platform.

  8. Views of the Mission Operations Control room (MOCR) during STS-5

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Hans Mark, NASA Deputy Administrator, and Daniel M. Germany, Assistant Manager, Orbiter Project Office, monitor activity from STS-5 in the mission operations control room (MOCR) of JSC's mission control center. Arnold D. Aldrich, Manager of the Orbiter Project Office, can be seen at left background (27153); Gerald D. Griffin, JSC Director, stands near the flight director console in the MOCR. Astronaut Robert L. Stewart, STS-5 spacecraft communicator, mans the CAPCOM console at left. Others in the background include M.P. Frank, Chief of the Flight Operations Integration Office (back row); Eugene F. Kranz, Deputy Director of Flight Operations; Tommy W. Holloway, flight director (right of Griffin) (27154); Flight directors during STS-5 posed at the flight directors console are from left to right: Lawrence S. Bourgeois, Brock R. Stone, Jay H. Greene, Tommy W. Holloway, John T. Cox and Gary E. Coen. Other flight controllers are pictured in the background of the MOCR (27155).

  9. Human factors dimensions in the evolution of increasingly automated control rooms for near-earth satellites

    NASA Technical Reports Server (NTRS)

    Mitchell, C. M.

    1982-01-01

    The NASA-Goddard Space Flight Center is responsible for the control and ground support for all of NASA's unmanned near-earth satellites. Traditionally, each satellite had its own dedicated mission operations room. In the mid-seventies, an integration of some of these dedicated facilities was begun with the primary objective to reduce costs. In this connection, the Multi-Satellite Operations Control Center (MSOCC) was designed. MSOCC represents currently a labor intensive operation. Recently, Goddard has become increasingly aware of human factors and human-machine interface issues. A summary is provided of some of the attempts to apply human factors considerations in the design of command and control environments. Current and future activities with respect to human factors and systems design are discussed, giving attention to the allocation of tasks between human and computer, and the interface for the human-computer dialogue.

  10. Human factors dimensions in the evolution of increasingly automated control rooms for near-earth satellites

    NASA Technical Reports Server (NTRS)

    Mitchell, C. M.

    1982-01-01

    The NASA-Goddard Space Flight Center is responsible for the control and ground support for all of NASA's unmanned near-earth satellites. Traditionally, each satellite had its own dedicated mission operations room. In the mid-seventies, an integration of some of these dedicated facilities was begun with the primary objective to reduce costs. In this connection, the Multi-Satellite Operations Control Center (MSOCC) was designed. MSOCC represents currently a labor intensive operation. Recently, Goddard has become increasingly aware of human factors and human-machine interface issues. A summary is provided of some of the attempts to apply human factors considerations in the design of command and control environments. Current and future activities with respect to human factors and systems design are discussed, giving attention to the allocation of tasks between human and computer, and the interface for the human-computer dialogue.

  11. Structure determination of an integral membrane protein at room temperature from crystals in situ

    SciTech Connect

    Axford, Danny; Foadi, James; Hu, Nien-Jen; Choudhury, Hassanul Ghani; Iwata, So; Beis, Konstantinos; Evans, Gwyndaf; Alguel, Yilmaz

    2015-05-14

    The X-ray structure determination of an integral membrane protein using synchrotron diffraction data measured in situ at room temperature is demonstrated. The structure determination of an integral membrane protein using synchrotron X-ray diffraction data collected at room temperature directly in vapour-diffusion crystallization plates (in situ) is demonstrated. Exposing the crystals in situ eliminates manual sample handling and, since it is performed at room temperature, removes the complication of cryoprotection and potential structural anomalies induced by sample cryocooling. Essential to the method is the ability to limit radiation damage by recording a small amount of data per sample from many samples and subsequently assembling the resulting data sets using specialized software. The validity of this procedure is established by the structure determination of Haemophilus influenza TehA at 2.3 Å resolution. The method presented offers an effective protocol for the fast and efficient determination of membrane-protein structures at room temperature using third-generation synchrotron beamlines.

  12. Integrated Biological Control

    SciTech Connect

    JOHNSON, A.R.

    2002-09-01

    Biological control is any activity taken to prevent, limit, clean up, or remediate potential environmental, health and safety, or workplace quality impacts from plants, animals, or microorganisms. At Hanford the principal emphasis of biological control is to prevent the transport of radioactive contamination by biological vectors (plants, animals, or microorganisms), and where necessary, control and clean up resulting contamination. Other aspects of biological control at Hanford include industrial weed control (e.g.; tumbleweeds), noxious weed control (invasive, non-native plant species), and pest control (undesirable animals such as rodents and stinging insects; and microorganisms such as molds that adversely affect the quality of the workplace environment). Biological control activities may be either preventive (apriori) or in response to existing contamination spread (aposteriori). Surveillance activities, including ground, vegetation, flying insect, and other surveys, and apriori control actions, such as herbicide spraying and placing biological barriers, are important in preventing radioactive contamination spread. If surveillance discovers that biological vectors have spread radioactive contamination, aposteriori control measures, such as fixing contamination, followed by cleanup and removal of the contamination to an approved disposal location are typical response functions. In some cases remediation following the contamination cleanup and removal is necessary. Biological control activities for industrial weeds, noxious weeds and pests have similar modes of prevention and response.

  13. Integrated Biological Control

    SciTech Connect

    JOHNSON, A.R.

    2003-10-09

    Biological control is any activity taken to prevent, limit, clean up, or remediate potential environmental, health and safety, or workplace quality impacts from plants, animals, or microorganisms. At Hanford the principal emphasis of biological control is to prevent the transport of radioactive contamination by biological vectors (plants, animals, or microorganisms), and where necessary, control and clean up resulting contamination. Other aspects of biological control at Hanford include industrial weed control (e.g.; tumbleweeds), noxious weed control (invasive, non-native plant species), and pest control (undesirable animals such as rodents and stinging insects, and microorganisms such as molds that adversely affect the quality of the workplace environment). Biological control activities may be either preventive (a priori) or in response to existing contamination spread (a posteriori). Surveillance activities, including ground, vegetation, flying insect, and other surveys, and a priori control actions, such as herbicide spraying and placing biological barriers, are important in preventing radioactive contamination spread. If surveillance discovers that biological vectors have spread radioactive contamination, a posteriori control measures, such as fixing contamination, followed by cleanup and removal of the contamination to an approved disposal location are typical response functions. In some cases remediation following the contamination cleanup and removal is necessary. Biological control activities for industrial weeds, noxious weeds and pests have similar modes of prevention and response.

  14. A Research Framework for Demonstrating Benefits of Advanced Control Room Technologies

    SciTech Connect

    Le Blanc, Katya; Boring, Ronald; Joe, Jeffrey; Hallbert, Bruce; Thomas, Kenneth

    2014-12-01

    Control Room modernization is an important part of life extension for the existing light water reactor fleet. None of the 99 currently operating commercial nuclear power plants in the U.S. has completed a full-scale control room modernization to date. A full-scale modernization might, for example, entail replacement of all analog panels with digital workstations. Such modernizations have been undertaken successfully in upgrades in Europe and Asia, but the U.S. has yet to undertake a control room upgrade of this magnitude. Instead, nuclear power plant main control rooms for the existing commercial reactor fleet remain significantly analog, with only limited digital modernizations. Previous research under the U.S. Department of Energy’s Light Water Reactor Sustainability Program has helped establish a systematic process for control room upgrades that support the transition to a hybrid control. While the guidance developed to date helps streamline the process of modernization and reduce costs and uncertainty associated with introducing digital control technologies into an existing control room, these upgrades do not achieve the full potential of newer technologies that might otherwise enhance plant and operator performance. The aim of the control room benefits research presented here is to identify previously overlooked benefits of modernization, identify candidate technologies that may facilitate such benefits, and demonstrate these technologies through human factors research. This report serves as an outline for planned research on the benefits of greater modernization in the main control rooms of nuclear power plants.

  15. Human factors engineering control-room-design review/audit report: Palo Verde Nuclear Generating Station, Arizona Public Service Company

    SciTech Connect

    Savage, J.W.; Lappa, D.A.

    1981-10-09

    A human factors engineering design review of the Palo Verde control room simulator was performed at the site on September 15 through September 17, 1981. Observed human factors design discrepancies were given priority ratings. This report summarizes the team's observations of the control room design and layout and of the control room operators' interface with the control room environment. A list of the human factors strengths observed in the Palo Verde control room simulator is given.

  16. Integrated Control Using the SOFFT Control Structure

    NASA Technical Reports Server (NTRS)

    Halyo, Nesim

    1996-01-01

    The need for integrated/constrained control systems has become clearer as advanced aircraft introduced new coupled subsystems such as new propulsion subsystems with thrust vectoring and new aerodynamic designs. In this study, we develop an integrated control design methodology which accomodates constraints among subsystem variables while using the Stochastic Optimal Feedforward/Feedback Control Technique (SOFFT) thus maintaining all the advantages of the SOFFT approach. The Integrated SOFFT Control methodology uses a centralized feedforward control and a constrained feedback control law. The control thus takes advantage of the known coupling among the subsystems while maintaining the identity of subsystems for validation purposes and the simplicity of the feedback law to understand the system response in complicated nonlinear scenarios. The Variable-Gain Output Feedback Control methodology (including constant gain output feedback) is extended to accommodate equality constraints. A gain computation algorithm is developed. The designer can set the cross-gains between two variables or subsystems to zero or another value and optimize the remaining gains subject to the constraint. An integrated control law is designed for a modified F-15 SMTD aircraft model with coupled airframe and propulsion subsystems using the Integrated SOFFT Control methodology to produce a set of desired flying qualities.

  17. ETR CONTROL BUILDING, TRA647, INTERIOR. CONTROL ROOM, CONTEXTUAL VIEW. INSTRUMENT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ETR CONTROL BUILDING, TRA-647, INTERIOR. CONTROL ROOM, CONTEXTUAL VIEW. INSTRUMENT PANELS AT REAR OF OPERATOR'S CONSOLE GAVE OPERATOR STATUS OF REACTOR PERFORMANCE, COOLANT-WATER CHARACTERISTICS AND OTHER INDICATORS. WINDOWS AT RIGHT LOOKED INTO ETR BUILDING FIRST FLOOR. CAMERA FACING EAST. INL NEGATIVE NO. HD42-6. Mike Crane, Photographer, 3/2004 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  18. View of Medical Support Room in Mission Control Center during Apollo 16

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Dr. J.F. Zieglschmid, M.D., Mission Operations Control Room (MOCR) White Team Surgeon, is seated in the Medical Support Room in the Mission Control Center as he monitors crew biomedical data being received from the Apollo 16 spacecraft on the third day of the Apollo 16 lunar landing mission.

  19. VIEW OF PDP CONTROL ROOM PANELS, LEVEL 0’, LOOKING WEST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF PDP CONTROL ROOM PANELS, LEVEL 0’, LOOKING WEST. THESE PANELS WERE WHERE THE A-MOTOR TAPES WOULD HAVE BEEN VISIBLE IN THE CONTROL ROOM. MORE RECENT MONITOR IN UPPER CENTER FOR “LTR FLUX MONITORS” - Physics Assembly Laboratory, Area A/M, Savannah River Site, Aiken, Aiken County, SC

  20. OVERVIEW OF PDP CONTROL ROOM, LEVEL 0’, LOOKING SOUTH. CONSOLE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OVERVIEW OF PDP CONTROL ROOM, LEVEL 0’, LOOKING SOUTH. CONSOLE DESK IN CENTER FOREGROUND. PANELS AT RIGHT EDGE CONTAIN VERTICAL TAPES ENTERING THE CONTROL ROOM FROM LEVEL +15’ ABOVE - Physics Assembly Laboratory, Area A/M, Savannah River Site, Aiken, Aiken County, SC

  1. Implementation of human factors considerations in a coal fired generating station control room

    SciTech Connect

    Higginbotham, J.W.

    1985-04-01

    Fossil fueled generating station control room design has followed a basically classical approach until recent years. However, as technological advances occurred and were retrofitted into these control rooms, some clashes occurred between the environment and the equipment which negatively impacted the operator's effectiveness. One utility's approach toward implementing the incorporation of new technology devices and of solving the resulting human factors problems is discussed.

  2. Control of the Environment in the Operating Room.

    PubMed

    Katz, Jonathan D

    2017-10-01

    There is a direct relationship between the quality of the environment of a workplace and the productivity and efficiency of the work accomplished. Components such as temperature, humidity, ventilation, drafts, lighting, and noise each contribute to the quality of the overall environment and the sense of well-being of those who work there.The modern operating room is a unique workplace with specific, and frequently conflicting, environmental requirements for each of the inhabitants. Even minor disturbances in the internal environment of the operating room can have serious ramifications on the comfort, effectiveness, and safety of each of the inhabitants. A cool, well-ventilated, and dry climate is optimal for many members of the surgical team. Any significant deviation from these objectives raises the risk of decreased efficiency and productivity and adverse surgical outcomes. A warmer, more humid, and quieter environment is necessary for the patient. If these requirements are not met, the risk of surgical morbidity and mortality is increased. An important task for the surgical team is to find the correct balance between these 2 opposed requirements. Several of the components of the operating room environment, especially room temperature and airflow patterns, are easily manipulated by the members of the surgical team. In the following discussion, we will examine these elements to better understand the clinical ramifications of adjustments and accommodations that are frequently made to meet the requirements of both the surgical staff and the patient.

  3. OVERVIEW OF A RECONFIGURABLE SIMULATOR FOR MAIN CONTROL ROOM UPGRADES IN NUCLEAR POWER PLANTS

    SciTech Connect

    Ronald L. Boring

    2012-10-01

    This paper provides background on a reconfigurable control room simulator for nuclear power plants. The main control rooms in current nuclear power plants feature analog technology that is growing obsolete. The need to upgrade control rooms serves the practical need of maintainability as well as the opportunity to implement newer digital technologies with added functionality. There currently exists no dedicated research simulator for use in human factors design and evaluation activities for nuclear power plant modernization in the U.S. The new research simulator discussed in this paper provides a test bed in which operator performance on new control room concepts can be benchmarked against existing control rooms and in which new technologies can be validated for safety and usability prior to deployment.

  4. SUBSURFACE REPOSITORY INTEGRATED CONTROL SYSTEM DESIGN

    SciTech Connect

    D.C. Randle

    2000-01-07

    interfaced (Section 6.2). (3) Develop a preliminary design for the overall Subsurface Repository Integrated Control System functional architecture and graphically depict the operational features of this design through a series of control system functional block diagrams (Section 6.2). (4) Develop a physical architecture that presents a viable yet preliminary physical implementation for the Subsurface Repository Integrated Control System functional architecture (Section 6.3). (5) Develop an initial concept for an overall subsurface data communications network that can be used to integrate the various control systems comprising the Subsurface Repository Integrated Control System (Section 6.4). (6) Develop a preliminary central control room design for the Subsurface Repository Integrated Control System (Section 6.5). (7) Identify and discuss the general safety-related issues and design strategies with respect to development of the Subsurface Repository Integrated Control System (Section 6.6). (8) Discuss plans for the Subsurface Repository Integrated Control System's response to off-normal operations (Section 6.7). (9) Discuss plans and strategies for developing software for the Subsurface Repository Integrated Control System (Section 6.8).

  5. 8. LAUNCH CONTROL SUPPORT BUILDING. INTERIOR OF DINING/RECREATION ROOM. VIEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. LAUNCH CONTROL SUPPORT BUILDING. INTERIOR OF DINING/RECREATION ROOM. VIEW TO EAST. - Minuteman III ICBM Launch Control Facility November-1, 1.5 miles North of New Raymer & State Highway 14, New Raymer, Weld County, CO

  6. 27. Pump Room interiorDrainage pump motor control center with main ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. Pump Room interior-Drainage pump motor control center with main valve control panel at right. - Hunters Point Naval Shipyard, Drydock No. 4, East terminus of Palou Avenue, San Francisco, San Francisco County, CA

  7. A-15219. Balance House for the 40x80-foot Wind Tunnel Control Room.

    NASA Image and Video Library

    1950-06-06

    40x80 wind tunnel manometers control room at NACA's Ames Research Center. Control panel (called the bench board) showing five of the seven scale heads which measured the forces on the model (ie. Lift, drag, side force etc.)

  8. Future Integrated Fire Control

    DTIC Science & Technology

    2005-06-01

    this illustration, the remote unit provides fire control quality ( FCQ ) data of the threat to the firing unit throughout the engagement. The firing...interceptor; tasking sensors & communication resources; ensuring resources are committed; monitoring resource performance; ensuring FCQ data is...FC LoR EoR FP RF PSD Object Observ. R R R L or R R L or R Object Trking/ID L & R R R L or R R L or R FCQ Data Attain. L R& L R L or R

  9. 5. "UNDERGROUND CONTROL ROOM AT TEST STAND 1A, DIRECTORATE OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. "UNDERGROUND CONTROL ROOM AT TEST STAND 1-A, DIRECTORATE OF MISSILE CAPTIVE TEST, EDWARDS AFB, 15 JAN 58, 3097.58." Two men working in the control room. Photo no. "3097 58; G-AFFTC 15 JAN 58, T.S. 1-A Control". - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Control Center, Test Area 1-115, near Altair & Saturn Boulevards, Boron, Kern County, CA

  10. Study About Ceiling Design for Main Control Room of NPP with HFE

    NASA Astrophysics Data System (ADS)

    Gu, Pengfei; Ni, Ying; Chen, Weihua; Chen, Bo; Zhang, Jianbo; Liang, Huihui

    Recently since human factor engineering (HFE) has been used in control room design of nuclear power plant (NPP), the human-machine interface (HMI) has been gradual to develop harmoniously, especially the use of the digital technology. Comparing with the analog technology which was used to human-machine interface in the past, human-machine interaction has been more enhanced. HFE and the main control room (MCR) design engineering of NPP is a combination of multidisciplinary cross, mainly related to electrical and instrument control, reactor, machinery, systems engineering and management disciplines. However, MCR is not only equipped with HMI provided by the equipments, but also more important for the operator to provide a work environment, such as the main control room ceiling. The ceiling design of main control room related to HFE which influences the performance of staff should also be considered in the design of the environment and aesthetic factors, especially the introduction of professional design experience and evaluation method. Based on Ling Ao phase II and Hong Yanhe project implementation experience, the study analyzes lighting effect, space partition, vision load about the ceiling of main control room of NPP. Combining with the requirements of standards, the advantages and disadvantages of the main control room ceiling design has been discussed, and considering the requirements of lightweight, noise reduction, fire prevention, moisture protection, the ceiling design solution of the main control room also has been discussed.

  11. Integrated controls design optimization

    DOEpatents

    Lou, Xinsheng; Neuschaefer, Carl H.

    2015-09-01

    A control system (207) for optimizing a chemical looping process of a power plant includes an optimizer (420), an income algorithm (230) and a cost algorithm (225) and a chemical looping process models. The process models are used to predict the process outputs from process input variables. Some of the process in puts and output variables are related to the income of the plant; and some others are related to the cost of the plant operations. The income algorithm (230) provides an income input to the optimizer (420) based on a plurality of input parameters (215) of the power plant. The cost algorithm (225) provides a cost input to the optimizer (420) based on a plurality of output parameters (220) of the power plant. The optimizer (420) determines an optimized operating parameter solution based on at least one of the income input and the cost input, and supplies the optimized operating parameter solution to the power plant.

  12. Interior of Room R106, looking westsouthwest at Control and Monitor ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior of Room R106, looking west-southwest at Control and Monitor Room - Over-the-Horizon Backscatter Radar Network, Columbia Falls Radar Site Receive Sector Three Receiver Building, At the end of Shadagee Ridge Road, Columbia Falls, Washington County, ME

  13. Ergonomic evaluation of the environment: a case study in a control room of the hydroelectric sector.

    PubMed

    Falcão, Christianne Soares; Soares, Marcelo Marcio

    2012-01-01

    Representative systematic evaluation studies of the workspace and the extent to which that space is suitable for performing tasks have been developed by professionals engaged on finding evidence as to the importance of users and designers being joint participants in drawing up projects. In this context, this paper sets out to evaluate the environment of a control room in the hydroelectric sector, based on a multidisciplinary method which integrates ergonomics, architecture and environmental psychology so as to assess the influence of space on the user, and thus to identify the user's level of satisfaction with it. It was observed that some adaptation strategies of the space for activities were not implemented satisfactorily, resulting in the need for further studies on making workspaces suitable.

  14. Measuring Human Performance in Simulated Nuclear Power Plant Control Rooms Using Eye Tracking

    SciTech Connect

    Kovesdi, Casey Robert; Rice, Brandon Charles; Bower, Gordon Ross; Spielman, Zachary Alexander; Hill, Rachael Ann; LeBlanc, Katya Lee

    2015-11-01

    Control room modernization will be an important part of life extension for the existing light water reactor fleet. As part of modernization efforts, personnel will need to gain a full understanding of how control room technologies affect performance of human operators. Recent advances in technology enables the use of eye tracking technology to continuously measure an operator’s eye movement, which correlates with a variety of human performance constructs such as situation awareness and workload. This report describes eye tracking metrics in the context of how they will be used in nuclear power plant control room simulator studies.

  15. Integrated Aeropropulsion Control System Design

    NASA Technical Reports Server (NTRS)

    Lin, C. -F.; Hurley, Francis X.; Huang, Jie; Hadaegh, F. Y.

    1996-01-01

    %T Integrated Aeropropulsion Control System Design%A C-F. Lin%A Francis X. Hurley%A Jie Huang%A F. Y. Hadaegh%J International Conference on Control and Information(psi)995%C Hong Kong%D June 1995%K aeropropulsion, control, system%U http://jpltrs.jpl.nasa.gov/1995/95-0658.pdfAn integrated intelligent control approach is proposed to design a high performance control system for aeropropulsion systems based on advanced sensor processing, nonlinear control and neural fuzzy control integration. Our approach features the following innovations:??e complexity and uncertainty issues are addressed via the distributed parallel processing, learning, and online reoptimization properties of neural networks.??e nonlinear dynamics and the severe coupling can be naturally incorporated into the design framework.??e knowledge base and decision making logic furnished by fuzzy systems leads to a human intelligence enhanced control scheme.In addition, fault tolerance, health monitoring and reconfigurable control strategies will be accommodated by this approach to ensure stability, graceful degradation and reoptimization in the case of failures, malfunctions and damage.!.

  16. Integrated Aeropropulsion Control System Design

    NASA Technical Reports Server (NTRS)

    Lin, C. -F.; Hurley, Francis X.; Huang, Jie; Hadaegh, F. Y.

    1996-01-01

    %T Integrated Aeropropulsion Control System Design%A C-F. Lin%A Francis X. Hurley%A Jie Huang%A F. Y. Hadaegh%J International Conference on Control and Information(psi)995%C Hong Kong%D June 1995%K aeropropulsion, control, system%U http://jpltrs.jpl.nasa.gov/1995/95-0658.pdfAn integrated intelligent control approach is proposed to design a high performance control system for aeropropulsion systems based on advanced sensor processing, nonlinear control and neural fuzzy control integration. Our approach features the following innovations:??e complexity and uncertainty issues are addressed via the distributed parallel processing, learning, and online reoptimization properties of neural networks.??e nonlinear dynamics and the severe coupling can be naturally incorporated into the design framework.??e knowledge base and decision making logic furnished by fuzzy systems leads to a human intelligence enhanced control scheme.In addition, fault tolerance, health monitoring and reconfigurable control strategies will be accommodated by this approach to ensure stability, graceful degradation and reoptimization in the case of failures, malfunctions and damage.!.

  17. Comparison of an integral equation on energy and the ray-tracing technique in room acoustics.

    PubMed

    Le Bot, A; Bocquillet, A

    2000-10-01

    This paper deals with a comparison of two room acoustic models. The first one is an integral formulation stemming from power balance and the second is the ray-tracing technique with a perfectly diffuse reflection law. The common assumptions to both models are the uncorrelated wave hypothesis and the perfectly diffuse reflection law. The latter allows the use of these methods for nondiffuse fields beyond the validity domain of Sabine's formula. Comparisons of numerical simulations performed with the softwares RAYON and CeReS point out that these results are close to each other and finally, a formal proof is proposed showing that both methods are actually equivalent.

  18. Application of modified integration rule to time-domain finite-element acoustic simulation of rooms.

    PubMed

    Okuzono, Takeshi; Otsuru, Toru; Tomiku, Reiji; Okamoto, Noriko

    2012-08-01

    The applicability of the modified integration rule for time-domain finite-element analysis is tested in sound field analysis of rooms involving rectangular elements, distorted elements, and finite impedance boundary conditions. Dispersion error analysis in three dimensions is conducted to evaluate the dispersion error in time-domain finite-element analysis using eight-node hexahedral elements. The results of analysis confirmed that fourth-order accuracy with respect to dispersion error is obtainable using the Fox-Goodwin method (FG) with a modified integration rule, even for rectangular elements. The stability condition in three-dimensional analysis using the modified integration rule is also presented. Numerical experiments demonstrate that FG with a modified integration rule performs much better than FG with the conventional integration rule for problems with rectangular elements, distorted elements, and with finite impedance boundary conditions. Further, as another advantage, numerical results revealed that the use of modified integration rule engenders faster convergence of the iterative solver than a conventional rule for problems with the same degrees of freedom.

  19. Control Room Training for the Hyper-X Project Utilizing Aircraft Simulation

    NASA Technical Reports Server (NTRS)

    Lux-Baumann, Jesica; Dees, Ray; Fratello, David

    2006-01-01

    The NASA Dryden Flight Research Center flew two Hyper-X research vehicles and achieved hypersonic speeds over the Pacific Ocean in March and November 2004. To train the flight and mission control room crew, the NASA Dryden simulation capability was utilized to generate telemetry and radar data, which was used in nominal and emergency mission scenarios. During these control room training sessions personnel were able to evaluate and refine data displays, flight cards, mission parameter allowable limits, and emergency procedure checklists. Practice in the mission control room ensured that all primary and backup Hyper-X staff were familiar with the nominal mission and knew how to respond to anomalous conditions quickly and successfully. This report describes the technology in the simulation environment and the Mission Control Center, the need for and benefit of control room training, and the rationale and results of specific scenarios unique to the Hyper-X research missions.

  20. Control Room Training for the Hyper-X Program Utilizing Aircraft Simulation

    NASA Technical Reports Server (NTRS)

    Lux-Baumann, Jessica R.; Dees, Ray A.; Fratello, David J.

    2006-01-01

    The NASA Dryden Flight Research Center flew two Hyper-X Research Vehicles and achieved hypersonic speeds over the Pacific Ocean in March and November 2004. To train the flight and mission control room crew, the NASA Dryden simulation capability was utilized to generate telemetry and radar data, which was used in nominal and emergency mission scenarios. During these control room training sessions, personnel were able to evaluate and refine data displays, flight cards, mission parameter allowable limits, and emergency procedure checklists. Practice in the mission control room ensured that all primary and backup Hyper-X staff were familiar with the nominal mission and knew how to respond to anomalous conditions quickly and successfully. This paper describes the technology in the simulation environment and the mission control center, the need for and benefit of control room training, and the rationale and results of specific scenarios unique to the Hyper-X research missions.

  1. NASA researchers in gold control room during an F-15 HiDEC flight, John Orme and Gerard Schkolnik

    NASA Technical Reports Server (NTRS)

    1993-01-01

    NASA researchers Gerard Schkolnik (left) and John Orme monitor equipment in the control room at the Dryden Flight Research Center, Edwards, California, during a flight of an F-15 Highly Integrated Digital Electronic Control (HIDEC) research aircraft. The system was developed on the F-15 to investigate and demonstrate methods of obtaining optimum aircraft performance. The major elements of HIDEC were a Digital Electronic Flight Control System (DEFCS), a Digital Electronic Engine Control (DEEC), an on-board general purpose computer, and an integrated architecture to allow all components to 'talk to each other.' Unlike standard F-15s, which have a mechanical and analog electronic flight control system, the HIDEC F-15 also had a dual-channel, fail-safe digital flight control system programmed in Pascal. It was linked to the Military Standard 1553B and a H009 data bus which tied all the other electronic systems together.

  2. NASA researchers in gold control room during an F-15 HiDEC flight, John Orme and Gerard Schkolnik

    NASA Technical Reports Server (NTRS)

    1993-01-01

    NASA researchers Gerard Schkolnik (left) and John Orme monitor equipment in the control room at the Dryden Flight Research Center, Edwards, California, during a flight of an F-15 Highly Integrated Digital Electronic Control (HIDEC) research aircraft. The system was developed on the F-15 to investigate and demonstrate methods of obtaining optimum aircraft performance. The major elements of HIDEC were a Digital Electronic Flight Control System (DEFCS), a Digital Electronic Engine Control (DEEC), an on-board general purpose computer, and an integrated architecture to allow all components to 'talk to each other.' Unlike standard F-15s, which have a mechanical and analog electronic flight control system, the HIDEC F-15 also had a dual-channel, fail-safe digital flight control system programmed in Pascal. It was linked to the Military Standard 1553B and a H009 data bus which tied all the other electronic systems together.

  3. Human factors design, verification, and validation for two types of control room upgrades at a nuclear power plant

    SciTech Connect

    Boring, Laurids Ronald

    2014-10-01

    This paper describes the NUREG-0711 based human factors engineering (HFE) phases and associated elements required to support design, verification and validation (V&V), and implementation of a new plant process computer (PPC) and turbine control system (TCS) at a representative nuclear power plant. This paper reviews ways to take a human-system interface (HSI) specification and use it when migrating legacy PPC displays or designing displays with new functionality. These displays undergo iterative usability testing during the design phase and then undergo an integrated system validation (ISV) in a full scope control room training simulator. Following the successful demonstration of operator performance with the systems during the ISV, the new system is implemented at the plant, first in the training simulator and then in the main control room.

  4. Interior of Room T100, looking north at control entry post ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior of Room T100, looking north at control entry post - Over-the-Horizon Backscatter Radar Network, Moscow Radar Site Transmit Sector One Transmitter Building, At the end of Steam Road, Moscow, Somerset County, ME

  5. SPERTI Control Building (PER601) interior. Conference room. Camera facing north. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SPERT-I Control Building (PER-601) interior. Conference room. Camera facing north. Date: August 2003. INEEL negative no. HD-35-2-4 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  6. TRITIUM LABORATORY, TRA666, INTERIOR. MAIN INSTRUMENT PANEL INSIDE CONTROL ROOM. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    TRITIUM LABORATORY, TRA-666, INTERIOR. MAIN INSTRUMENT PANEL INSIDE CONTROL ROOM. INL NEGATIVE NO. HD30-2-4. Mike Crane, Photographer, 6/2001 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  7. IET control building (TAN620). interior room. sign says, "emergency equipment ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    IET control building (TAN-620). interior room. sign says, "emergency equipment for metal fires." INEEL negative no. HD-21-1-2 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  8. Human-factors engineering-control-room design review: Shoreham Nuclear Power Station. Draft audit report

    SciTech Connect

    Peterson, L.R.; Preston-Smith, J.; Savage, J.W.; Rousseau, W.F.

    1981-04-24

    A human factors engineering preliminary design review of the Shoreham control room was performed at the site on March 30 through April 3, 1981. This design review was carried out by a team from the Human Factors Engineering Branch, Division of Human Factors Safety. This report was prepared on the basis of the HFEB's review of the applicant's Preliminary Design Assessment and the human factors engineering design review/audit performed at the site. The presented sections are numbered to conform to the guidelines of the draft version of NUREG-0700. They summarize the teams's observations of the control room design and layout, and of the control room operators' interface with the control room environment.

  9. Review of Methods Related to Assessing Human Performance in Nuclear Power Plant Control Room Simulations

    SciTech Connect

    Katya L Le Blanc; Ronald L Boring; David I Gertman

    2001-11-01

    With the increased use of digital systems in Nuclear Power Plant (NPP) control rooms comes a need to thoroughly understand the human performance issues associated with digital systems. A common way to evaluate human performance is to test operators and crews in NPP control room simulators. However, it is often challenging to characterize human performance in meaningful ways when measuring performance in NPP control room simulations. A review of the literature in NPP simulator studies reveals a variety of ways to measure human performance in NPP control room simulations including direct observation, automated computer logging, recordings from physiological equipment, self-report techniques, protocol analysis and structured debriefs, and application of model-based evaluation. These methods and the particular measures used are summarized and evaluated.

  10. Near-term improvements for nuclear power plant control room annunciator systems. [PWR; BWR

    SciTech Connect

    Rankin, W.L.; Duvernoy, E.G.; Ames, K.R.; Morgenstern, M.H.; Eckenrode, R.J.

    1983-04-01

    This report sets forth a basic design philosophy with its associated functional criteria and design principles for present-day, hard-wired annunciator systems in the control rooms of nuclear power plants. It also presents a variety of annunciator design features that are either necessary for or useful to the implementation of the design philosophy. The information contained in this report is synthesized from an extensive literature review, from inspection and analysis of control room annunciator systems in the nuclear industry and in related industries, and from discussions with a variety of individuals who are knowledgeable about annunciator systems, nuclear plant control rooms, or both. This information should help licensees and license applicants in improving their hard-wired, control room annunciator systems as outlined by NUREG-0700.

  11. DETAIL VIEW OF A CONTROL PANEL IN ROOM 44B, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF A CONTROL PANEL IN ROOM 44B, LOOKING TOWARDS SIDE 1 OF THE MLP - Cape Canaveral Air Force Station, Launch Complex 39, Mobile Launcher Platforms, Launcher Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  12. Characteristics control of room-temperature operating single electron transistor with floating gate by charge pump circuit

    NASA Astrophysics Data System (ADS)

    Nozue, Motoki; Suzuki, Ryota; Nomura, Hirotoshi; Saraya, Takuya; Hiramoto, Toshiro

    2013-10-01

    A single electron transistor (SET) with floating gate, which has a non-volatile memory effect, is successfully integrated with a charge pump circuit that consists of conventional MOS circuits on the same chip. By applying high voltage generated by the charge pump circuit to SET with floating gate, characteristics control of the Coulomb blockade oscillation is demonstrated at room temperature for the first time. This attempt will open a new path of adding new functionality to conventional MOS circuits by integration with so-called "Beyond CMOS" devices.

  13. Monolithically integrated mid-IR interband cascade laser and photodetector operating at room temperature

    NASA Astrophysics Data System (ADS)

    Lotfi, Hossein; Li, Lu; Shazzad Rassel, S. M.; Yang, Rui Q.; Corrége, Cédric J.; Johnson, Matthew B.; Larson, Preston R.; Gupta, James A.

    2016-10-01

    We report on the demonstration of a monolithically integrated mid-IR interband cascade (IC) laser and photodetector operating at room temperature. The base structure for the integrated laser and detector is a six-stage type-I IC laser with GaInAsSb quantum well active regions. The laser/detector pair was defined using focused ion beam milling. The laser section lased in cw mode with an emission wavelength of ˜3.1 μm at 20 °C and top-illuminated photodetectors fabricated from the same wafer had Johnson-noise-limited detectivity of 1.05 × 109 cm Hz1/2/W at this wavelength and temperature. Under the same condition, the detectivity for the edge illumination configuration for the monolithically integrated laser/photodetector pairs is projected to be as high as 1.85 × 1010 cm Hz1/2/W, as supported by experimentally observed high photocurrent and open-circuit voltage. These high performance characteristics for monolithically integrated IC devices show great prospects for on-chip integration of mid-IR photonic devices for miniaturized sensors and on-chip optical communication systems.

  14. INTEGRATED WEED CONTROL IN MAIZE.

    PubMed

    Latré, J; Dewitte, K; Derycke, V; De Roo, B; Haesaert, G

    2015-01-01

    Integrated pest management has been implemented as a general practice by EU legislation. As weed control actually is the most important crop protection measure in maize for Western Europe, the new legislation will have its impact. The question is of course which systems can be successfully implemented in practice with respect to labour efficiency and economical parameters. During 3 successive growing seasons (2007, 2008, 2009) weed control in maize was evaluated, the main focus was put on different techniques of integrated weed control and was compared with chemical weed control. Additionally, during 4 successive growing seasons (2011, 2012, 2013 and 2014) two objects based on integrated weed control and two objects based on mechanical weed control were compared to about twenty different objects of conventional chemical weed control. One of the objects based on mechanical weed control consisted of treatment with the flex-tine harrow before and after emergence in combination with chemical weed control at a reduced rate in 3-4 leave stage. The second one consisted of broadcast mechanical treatments before and after emergence followed by a final in-row application of herbicides and an inter-row cultivation at 6-7(8) leave stage. All trials were conducted on the Experimental farm of Bottelare HoGent-UGent on a sandy loam soil. Maize was growing in 1/3 crop rotation. The effect on weed growth as well as the economic impact of the different applications was evaluated. Combining chemical and mechanical weed control is a possible option in conventional farming but the disadvantages must be taken into account. A better planned weed control based on the real present weed-population in combination with a carefully thought-out choice of herbicides should also be considered as an IPM--approach.

  15. TRITIUM LABORATORY, TRA666, INTERIOR. MAIN FLOOR. CONTROL ROOM ENCLOSURE AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    TRITIUM LABORATORY, TRA-666, INTERIOR. MAIN FLOOR. CONTROL ROOM ENCLOSURE AT CENTER OF VIEW. SIGN ABOVE DOOR SAYS "HYDRAULIC TEST FACILITY CONTROL ROOM." SIGN IN WINDOW SAYS "EATING AREA." "EVACUATION AND EMERGENCY INFORMATION" IS POSTED ON CABINET AT LEFT OF VIEW. INL NEGATIVE NO. HD30-2-3. Mike Crane, Photographer, 6/2001 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  16. Software Development for Remote Control and Firing Room Displays

    NASA Technical Reports Server (NTRS)

    Zambrano Pena, Jessica

    2014-01-01

    The Launch Control System (LCS) developed at NASA's Kennedy Space Center (KSC) will be used to launch future spacecraft. Two of the many components of this system are the Application Control Language (ACL) and remote displays. ACL is a high level domain specific language that is used to write remote control applications for LCS. Remote displays are graphical user interfaces (GUIs) developed to display vehicle and Ground Support Equipment (GSE) data, they also provide the ability to send commands to control GSE and the vehicle. The remote displays and the control applications have many facets and this internship experience dealt with several of them.

  17. Integrated control system and method

    DOEpatents

    Wang, Paul Sai Keat; Baldwin, Darryl; Kim, Myoungjin

    2013-10-29

    An integrated control system for use with an engine connected to a generator providing electrical power to a switchgear is disclosed. The engine receives gas produced by a gasifier. The control system includes an electronic controller associated with the gasifier, engine, generator, and switchgear. A gas flow sensor monitors a gas flow from the gasifier to the engine through an engine gas control valve and provides a gas flow signal to the electronic controller. A gas oversupply sensor monitors a gas oversupply from the gasifier and provides an oversupply signal indicative of gas not provided to the engine. A power output sensor monitors a power output of the switchgear and provide a power output signal. The electronic controller changes gas production of the gasifier and the power output rating of the switchgear based on the gas flow signal, the oversupply signal, and the power output signal.

  18. Effectiveness of in-room air filtration and dilution ventilation for tuberculosis infection control

    SciTech Connect

    Miller-Leiden, S.; Lobascio, C.; Nazaroff, W.W.; Macher, J.M.

    1996-09-01

    Tuberculosis (TB) is a public health problem that may pose substantial risks to health care workers and others. TB infection occurs by inhalation of airborne bacteria emitted by persons with active disease. We experimentally evaluated the effectiveness of in-room air filtration systems, specifically portable air filters (PAFs) and ceiling-mounted air filters (CMAFs), in conjunction with dilution ventilation, for controlling TB exposure in high-risk settings. For each experiment, a test aerosol was continuously generated and released into a full-sized room. With the in-room air filter and room ventilation system operating, time-averaged airborne particle concentrations were measured at several points. The effectiveness of in-room air filtration plus ventilation was determined by comparing particle concentrations with and without device operation. The four PAFs and three CMAFs we evaluated reduced room-average particle concentrations, typically by 30% to 90%, relative to a baseline scenario with two air-changes per hour of ventilation (outside air) only. Increasing the rate of air flow recirculating through the filter and/or air flow from the ventilation did not always increase effectiveness. Concentrations were generally higher near the emission source than elsewhere in the room. Both the air flow configuration of the filter and its placement within the room were important. 46 refs., 12 figs., 1 tab.

  19. Integrated approach for biofouling control.

    PubMed

    Vrouwenvelder, J S; Kruithof, J C; Van Loosdrecht, M C M

    2010-01-01

    Despite extensive research efforts, past and present strategies to control biofouling problems in spiral-wound nanofiltration and reverse osmosis membranes have not been successful under all circumstances. Gaining insight in the biofouling process is a first necessity. Based on recent insights, an overview is given of 12 potential complementary approaches to solve biofouling. Combinations of approaches may be more efficient in biofouling control than a single approach. A single approach must be 100% effective, while in combination each individual approach can be partially effective while the combination is still efficient. An integrated Approach for Biofouling Control (ABC) is proposed, based on three corner stones: (i) equipment design and operation, (ii) biomass growth conditions, and (iii) cleaning agents as a framework to control biofouling. While past and present strategies addressed mainly membranes and microorganisms, i.e. removal or inactivation of biomass, this ABC-approach addresses the total membrane filtration system. It is anticipated that this integral approach will enable a more rational and effective control of biofouling. Although in this stage chemical cleaning and biofouling inhibitor dosage seem unavoidable to control biofouling, it is expected that in future--because of sustainability and costs reasons--membrane systems will be developed without or with minimal need for chemical cleaning and dosing. Three potential scenarios for biofouling control are proposed based on (i) biofouling tolerant spiral wound membrane systems, (ii) capillary membranes, and (iii) phosphate limitation.

  20. Teleoperated control system for underground room and pillar mining

    DOEpatents

    Mayercheck, William D.; Kwitowski, August J.; Brautigam, Albert L.; Mueller, Brian K.

    1992-01-01

    A teleoperated mining system is provided for remotely controlling the various machines involved with thin seam mining. A thin seam continuous miner located at a mining face includes a camera mounted thereon and a slave computer for controlling the miner and the camera. A plurality of sensors for relaying information about the miner and the face to the slave computer. A slave computer controlled ventilation sub-system which removes combustible material from the mining face. A haulage sub-system removes material mined by the continuous miner from the mining face to a collection site and is also controlled by the slave computer. A base station, which controls the supply of power and water to the continuous miner, haulage system, and ventilation systems, includes cable/hose handling module for winding or unwinding cables/hoses connected to the miner, an operator control module, and a hydraulic power and air compressor module for supplying air to the miner. An operator controlled host computer housed in the operator control module is connected to the slave computer via a two wire communications line.

  1. Model predictive control of room temperature with disturbance compensation

    NASA Astrophysics Data System (ADS)

    Kurilla, Jozef; Hubinský, Peter

    2017-08-01

    This paper deals with temperature control of multivariable system of office building. The system is simplified to several single input-single output systems by decoupling their mutual linkages, which are separately controlled by regulator based on generalized model predictive control. Main part of this paper focuses on the accuracy of the office temperature with respect to occupancy profile and effect of disturbance. Shifting of desired temperature and changing of weighting coefficients are used to achieve the desired accuracy of regulation. The final structure of regulation joins advantages of distributed computing power and possibility to use network communication between individual controllers to consider the constraints. The advantage of using decoupled MPC controllers compared to conventional PID regulators is demonstrated in a simulation study.

  2. Integrated Transmission and Distribution Control

    SciTech Connect

    Kalsi, Karanjit; Fuller, Jason C.; Tuffner, Francis K.; Lian, Jianming; Zhang, Wei; Marinovici, Laurentiu D.; Fisher, Andrew R.; Chassin, Forrest S.; Hauer, Matthew L.

    2013-01-16

    Distributed, generation, demand response, distributed storage, smart appliances, electric vehicles and renewable energy resources are expected to play a key part in the transformation of the American power system. Control, coordination and compensation of these smart grid assets are inherently interlinked. Advanced control strategies to warrant large-scale penetration of distributed smart grid assets do not currently exist. While many of the smart grid technologies proposed involve assets being deployed at the distribution level, most of the significant benefits accrue at the transmission level. The development of advanced smart grid simulation tools, such as GridLAB-D, has led to a dramatic improvement in the models of smart grid assets available for design and evaluation of smart grid technology. However, one of the main challenges to quantifying the benefits of smart grid assets at the transmission level is the lack of tools and framework for integrating transmission and distribution technologies into a single simulation environment. Furthermore, given the size and complexity of the distribution system, it is crucial to be able to represent the behavior of distributed smart grid assets using reduced-order controllable models and to analyze their impacts on the bulk power system in terms of stability and reliability. The objectives of the project were to: • Develop a simulation environment for integrating transmission and distribution control, • Construct reduced-order controllable models for smart grid assets at the distribution level, • Design and validate closed-loop control strategies for distributed smart grid assets, and • Demonstrate impact of integrating thousands of smart grid assets under closed-loop control demand response strategies on the transmission system. More specifically, GridLAB-D, a distribution system tool, and PowerWorld, a transmission planning tool, are integrated into a single simulation environment. The integrated environment

  3. Computerized control of the procedure for detecting and removing airborne particles in operating rooms.

    PubMed

    Bay, Omer Faruk; Ergül, Nesip

    2004-04-01

    Surgical-site infections are still a major problem in modern medicine. Normal skin fora of patients or healthcare workers causes more than half of all infections following clean surgery, but the importance of airborne particles in this setting remains controversial. The use of ultraclean air in operating rooms has been shown to reduce infection rates significantly. High efficiency particlulate air (HEPA) filters are used in some modern operating rooms. Although the uses of HEPA filters, the air quality should be controlled by another device to make safe the air in operating rooms and intensive care units. In this study, a computerized system was established to control the cleanliness of the air by measuring the presence of airborne particles of varying sizes and numbers in operating rooms. When the maximum values are exceeded, the system warns the authorized people by phone, sound, or displays.

  4. Coherent control of single molecules at room temperature.

    PubMed

    Brinks, Daan; Hildner, Richard; Stefani, Fernando D; van Hulst, Niek F

    2011-01-01

    The detection of individual molecules allows to unwrap the inhomogeneously broadened ensemble and reveal the spatial disorder and temporal dynamics of single entities. During 20 years of increasing sophistication this approach has provided valuable insights into biomolecular interactions, cellular processes, polymer dynamics, etc. Unfortunately the detection of fluorescence, i.e. incoherent spontaneous emission, has essentially kept the time resolution of the single molecule approach out of the range of ultrafast coherent processes. In parallel coherent control of quantum interferences has developed as a powerful method to study and actively steer ultrafast molecular interactions and energy conversion processes. However the degree of coherent control that can be reached in ensembles is restricted, due to the intrinsic inhomogeneity of the synchronized subset. Clearly the only way to overcome spatio-temporal disorder and achieve key control is by addressing individual units: coherent control of single molecules. Here we report the observation and manipulation of vibrational wave-packet interference in individual molecules at ambient conditions. We show that adapting the time and phase distribution of the optical excitation field to the dynamics of each molecule results in a superior degree of control compared to the ensemble approach. Phase reversal does invert the molecular response, confirming the control of quantum coherence. Time-phase maps show a rich diversity in excited state dynamics between different, yet chemically identical, molecules. The presented approach is promising for single-unit coherent control in multichromophoric systems. Especially the role of coherence in the energy transfer of single antenna complexes under physiological conditions is subject of great attention. Now the role of energy disorder and variation in coupling strength can be explored, beyond the inhomogeneously broadened ensemble.

  5. MTR, TRA603. THIRD FLOOR PLAN AND ROOF PLAN. CONTROL ROOM, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MTR, TRA-603. THIRD FLOOR PLAN AND ROOF PLAN. CONTROL ROOM, OFFICES, CONFERENCE ROOM, BATHROOMS. HOOD VENT. BALCONY CONNECTS THIRD FLOOR TO AND SIDES OF MTR. STAIRWAYS TO BALCONY PLATFORMS AROUND REACTOR. CRANE ACCESS CATWALK. BLAW-KNOX 3150-803-4, 7/1950. INL INDEX NO. 531-0603-00-098-100563, REV. 10. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  6. Reviewing the impact of advanced control room technology

    SciTech Connect

    Wilhelmsen, C.A.; Gertman, D.I.; Ostrom, L.T.; Nelson, W.R.; Galyean, W.J.; Byers, J.C.

    1992-01-01

    Progress to date on assessing the nature of the expected changes in human performance and risk associated with the introduction of digital control, instrumentation, and display systems is presented. Expected changes include the shift toward more supervisory tasks, development of intervention strategies, and reallocation of function between human and machine. Results are reported in terms of the scope of new technology, human performance issues, and crews experience with digital control systems in a variety of industries petrochemical and aerospace. Plans to conduct a limited Probabilistic Risk Assessment/Human Reliability Assessment (PRA/HRA) comparison between a conventional NUREG-1150 series plant and that same plant retrofit with distributed control and advanced instrumentation and display are also presented. Changes needed to supplement existing HRA modeling methods and quantification techniques are discussed.

  7. Reviewing the impact of advanced control room technology

    SciTech Connect

    Wilhelmsen, C.A.; Gertman, D.I.; Ostrom, L.T.; Nelson, W.R.; Galyean, W.J.; Byers, J.C.

    1992-08-01

    Progress to date on assessing the nature of the expected changes in human performance and risk associated with the introduction of digital control, instrumentation, and display systems is presented. Expected changes include the shift toward more supervisory tasks, development of intervention strategies, and reallocation of function between human and machine. Results are reported in terms of the scope of new technology, human performance issues, and crews experience with digital control systems in a variety of industries petrochemical and aerospace. Plans to conduct a limited Probabilistic Risk Assessment/Human Reliability Assessment (PRA/HRA) comparison between a conventional NUREG-1150 series plant and that same plant retrofit with distributed control and advanced instrumentation and display are also presented. Changes needed to supplement existing HRA modeling methods and quantification techniques are discussed.

  8. Migration of Older to New Digital Control Systems in Nuclear Power Plant Main Control Rooms

    SciTech Connect

    Kovesdi, Casey Robert; Joe, Jeffrey Clark

    2016-04-01

    The United States (U.S.) Department of Energy (DOE) Office of Nuclear Energy (NE) has the primary mission to advance nuclear power by resolving socio-technical issues through research and development (R&D). One DOE-NE activity supporting this mission is the Light Water Reactor Sustainability (LWRS) program. LWRS has the overall objective to sustain the operation of existing commercial nuclear power plants (NPPs) through conducting R&D across multiple “pathways,” or R&D focus areas. The Advanced Instrumentation, Information, and Control (II&C) Systems Technologies pathway conducts targeted R&D to address aging and reliability concerns with the legacy instrumentation and control (I&C) and related information systems in operating U.S. NPPs. This work involves (1) ensuring that legacy analog II&C systems are not life-limiting issues for the LWR fleet, and (2) implementing digital II&C technology in a manner that enables broad innovation and business improvement in the NPP operating model. Under the LWRS Advanced II&C pathway, Human Factors experts at Idaho National Laboratory (INL) have been conducting R&D in support of NPP main control room (MCR) modernization activities. Work in prior years has focused on migrating analog I&C systems to new digital I&C systems (). In fiscal year 2016 (FY16), one new focus area for this research is migrating older digital I&C systems to new and advanced digital I&C systems. This report summarizes a plan for conducting a digital-to-digital migration of a legacy digital I&C system to a new digital I&C system in support of control room modernization activities.

  9. Addressing the human factors issues associated with control room modifications

    SciTech Connect

    O`Hara, J.; Stubler, W.; Kramer, J.

    1998-03-01

    Advanced human-system interface (HSI) technology is being integrated into existing nuclear plants as part of plant modifications and upgrades. The result of this trend is that hybrid HSIs are created, i.e., HSIs containing a mixture of conventional (analog) and advanced (digital) technology. The purpose of the present research is to define the potential effects of hybrid HSIs on personnel performance and plant safety and to develop human factors guidance for safety reviews of them where necessary. In support of this objective, human factors issues associated with hybrid HSIs were identified. The issues were evaluated for their potential significance to plant safety, i.e., their human performance concerns have the potential to compromise plant safety. The issues were then prioritized and a subset was selected for design review guidance development.

  10. Radiological controls integrated into design

    SciTech Connect

    Kindred, G.W.

    1995-03-01

    Radiological controls are required by law in the design of commercial nuclear power reactor facilities. These controls can be relatively minor or significant, relative to cost. To ensure that radiological controls are designed into a project, the health physicist (radiological engineer) must be involved from the beginning. This is especially true regarding keeping costs down. For every radiological engineer at a nuclear power plant there must be fifty engineers of other disciplines. The radiological engineer cannot be an expert on every discipline of engineering. However, he must be knowledgeable to the degree of how a design will impact the facility from a radiological perspective. This paper will address how to effectively perform radiological analyses with the goal of radiological controls integrated into the design package.

  11. 49 CFR 195.446 - Control room management.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... lessons learned from the operator's experience in the training program required by this section. (h) Training. Each operator must establish a controller training program and review the training program.... (g) Operating experience. Each operator must assure that lessons learned from its operating...

  12. 49 CFR 192.631 - Control room management.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... must assure that lessons learned from its operating experience are incorporated, as appropriate, into... (vi) SCADA system performance. (2) Include lessons learned from the operator's experience in the training program required by this section. (h) Training. Each operator must establish a controller training...

  13. 49 CFR 195.446 - Control room management.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... lessons learned from the operator's experience in the training program required by this section. (h) Training. Each operator must establish a controller training program and review the training program.... (g) Operating experience. Each operator must assure that lessons learned from its operating...

  14. 49 CFR 195.446 - Control room management.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... lessons learned from the operator's experience in the training program required by this section. (h) Training. Each operator must establish a controller training program and review the training program.... (g) Operating experience. Each operator must assure that lessons learned from its operating...

  15. 49 CFR 192.631 - Control room management.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... must assure that lessons learned from its operating experience are incorporated, as appropriate, into... (vi) SCADA system performance. (2) Include lessons learned from the operator's experience in the training program required by this section. (h) Training. Each operator must establish a controller training...

  16. 49 CFR 192.631 - Control room management.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... must assure that lessons learned from its operating experience are incorporated, as appropriate, into... (vi) SCADA system performance. (2) Include lessons learned from the operator's experience in the training program required by this section. (h) Training. Each operator must establish a controller training...

  17. 49 CFR 192.631 - Control room management.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... must assure that lessons learned from its operating experience are incorporated, as appropriate, into... (vi) SCADA system performance. (2) Include lessons learned from the operator's experience in the training program required by this section. (h) Training. Each operator must establish a controller training...

  18. 49 CFR 192.631 - Control room management.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... must assure that lessons learned from its operating experience are incorporated, as appropriate, into... (vi) SCADA system performance. (2) Include lessons learned from the operator's experience in the training program required by this section. (h) Training. Each operator must establish a controller training...

  19. 49 CFR 195.446 - Control room management.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... lessons learned from the operator's experience in the training program required by this section. (h) Training. Each operator must establish a controller training program and review the training program.... (g) Operating experience. Each operator must assure that lessons learned from its operating...

  20. 49 CFR 195.446 - Control room management.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... lessons learned from the operator's experience in the training program required by this section. (h) Training. Each operator must establish a controller training program and review the training program.... (g) Operating experience. Each operator must assure that lessons learned from its operating...

  1. THE XAL INFRASTRUCTURE FOR HIGH LEVEL CONTROL ROOM APPLICATIONS

    SciTech Connect

    Shishlo, Andrei P; Allen, Christopher K; Chu, Paul; Galambos, John D; Pelaia II, Tom

    2009-01-01

    XAL is a Java programming framework for building high-level control applications related to accelerator physics. The structure, details of implementation, and interaction between components, auxiliary XAL packages, and the latest modifications are discussed. A general overview of XAL applications created for the SNS project is presented.

  2. Control Room at the NACA’s Rocket Engine Test Facility

    NASA Image and Video Library

    1957-05-21

    Test engineers monitor an engine firing from the control room of the Rocket Engine Test Facility at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. The Rocket Engine Test Facility, built in the early 1950s, had a rocket stand designed to evaluate high-energy propellants and rocket engine designs. The facility was used to study numerous different types of rocket engines including the Pratt and Whitney RL-10 engine for the Centaur rocket and Rocketdyne’s F-1 and J-2 engines for the Saturn rockets. The Rocket Engine Test Facility was built in a ravine at the far end of the laboratory because of its use of the dangerous propellants such as liquid hydrogen and liquid fluorine. The control room was located in a building 1,600 feet north of the test stand to protect the engineers running the tests. The main control and instrument consoles were centrally located in the control room and surrounded by boards controlling and monitoring the major valves, pumps, motors, and actuators. A camera system at the test stand allowed the operators to view the tests, but the researchers were reliant on data recording equipment, sensors, and other devices to provide test data. The facility’s control room was upgraded several times over the years. Programmable logic controllers replaced the electro-mechanical control devices. The new controllers were programed to operate the valves and actuators controlling the fuel, oxidant, and ignition sequence according to a predetermined time schedule.

  3. HYBRID ALARM SYSTEMS: COMBINING SPATIAL ALARMS AND ALARM LISTS FOR OPTIMIZED CONTROL ROOM OPERATION

    SciTech Connect

    Ronald L. Boring; J.J. Persensky

    2012-07-01

    The US Department of Energy (DOE) is sponsoring research, development, and deployment on Light Water Reactor Sustainability (LWRS), in which the Idaho National Laboratory (INL) is working closely with nuclear utilities to develop technologies and solutions to help ensure the safe operational life extension of current nuclear power plants. One of the main areas of focus is control room modernization. Within control room modernization, alarm system upgrades present opportunities to meet the broader goals of the LWRS project in demonstrating the use and safety of the advanced instrumentation and control (I&C) technologies and the short-term and longer term objectives of the plant. In this paper, we review approaches for and human factors issues behind upgrading alarms in the main control room of nuclear power plants.

  4. Use of 2.5-D and 3-D technology to evaluate control room upgrades

    SciTech Connect

    Hanes, L. F.; Naser, J.

    2006-07-01

    This paper describes an Electric Power Research Inst. (EPRI) study in which 2.5-D and 3-D visualization technology was applied to evaluate the design of a nuclear power plant control room upgrade. The study involved converting 3-D CAD flies of a planned upgrade into a photo-realistic appearing virtual model, and evaluating the value and usefulness of the model. Nuclear utility and EPRI evaluators viewed and interacted with the control room virtual model with both 2.5-D and 3-D representations. They identified how control room and similar virtual models may be used by utilities for design and evaluation purposes; assessed potential economic and other benefits; and identified limitations, potential problems, and other issues regarding use of visualization technology for this and similar applications. In addition, the Halden CREATE (Control Room Engineering Advanced Tool-kit Environment) Verification Tool was applied to evaluate features of the virtual model against US NRC NUREG 0700 Revision 2 human factors engineering guidelines (NUREG 0700) [1]. The study results are very favorable for applying 2.5-D visualization technology to support upgrading nuclear power plant control rooms and other plant facilities. Results, however, show that today's 3-D immersive viewing systems are difficult to justify based on cost, availability and value of information provided for this application. (authors)

  5. Light Water Reactor Sustainability Program A Reference Plan for Control Room Modernization: Planning and Analysis Phase

    SciTech Connect

    Jacques Hugo; Ronald Boring; Lew Hanes; Kenneth Thomas

    2013-09-01

    The U.S. Department of Energy’s Light Water Reactor Sustainability (LWRS) program is collaborating with a U.S. nuclear utility to bring about a systematic fleet-wide control room modernization. To facilitate this upgrade, a new distributed control system (DCS) is being introduced into the control rooms of these plants. The DCS will upgrade the legacy plant process computer and emergency response facility information system. In addition, the DCS will replace an existing analog turbine control system with a display-based system. With technology upgrades comes the opportunity to improve the overall human-system interaction between the operators and the control room. To optimize operator performance, the LWRS Control Room Modernization research team followed a human-centered approach published by the U.S. Nuclear Regulatory Commission. NUREG-0711, Rev. 3, Human Factors Engineering Program Review Model (O’Hara et al., 2012), prescribes four phases for human factors engineering. This report provides examples of the first phase, Planning and Analysis. The three elements of Planning and Analysis in NUREG-0711 that are most crucial to initiating control room upgrades are: • Operating Experience Review: Identifies opportunities for improvement in the existing system and provides lessons learned from implemented systems. • Function Analysis and Allocation: Identifies which functions at the plant may be optimally handled by the DCS vs. the operators. • Task Analysis: Identifies how tasks might be optimized for the operators. Each of these elements is covered in a separate chapter. Examples are drawn from workshops with reactor operators that were conducted at the LWRS Human System Simulation Laboratory HSSL and at the respective plants. The findings in this report represent generalized accounts of more detailed proprietary reports produced for the utility for each plant. The goal of this LWRS report is to disseminate the technique and provide examples sufficient to

  6. Optically controlled integrated optical switch

    NASA Astrophysics Data System (ADS)

    Soref, R. A.

    1986-02-01

    This invention relates to an optically controlled integrated optical switch having a body made up of entirely crystalline silicon. More specifically, the body has a pair of channel waveguides intersecting at an X-like configuration forming therein an intersection crossover region. An electrically controlled optical source is positioned over the crossover region to shine intense, short-wave light on the crossover region in order to generate numerous electron-hole pairs in the waveguide material. These charge carriers alter the refractive index of the intersection region. A controllable current source is used to adjust the optical output power of the optical source. This, in turn, changes the amount of optical cross coupling of light between the intersecting waveguides.

  7. American ASTP crewmen briefed on operation of consoles in main control room

    NASA Image and Video Library

    1975-04-25

    S75-25619 (25 April 1975) --- A group of American ASTP crewmen is briefed on the operation of the consoles in the main control room at the ASTP flight control center at the Cosmonaut Training Center (Star City) near Moscow. The astronauts were in the Soviet Union for ASTP joint crew training with the Soviet ASTP crewmen. PHOTO COURTESY: USSR ACADEMY OF SCIENCES

  8. Fisheye view from the back of the Flight control room of the MCC

    NASA Image and Video Library

    1984-10-06

    Fisheye view from the back of the Flight Control Room (FCR) of the Mission Control Center (MCC). Visible are the Flight Directors console (left front), the CAPCOM console (right front) and the Payloads console. Some of the STS 41-G crew can be seen on a large screen at the front of the MCC along with a map tracking the progress of the orbiter.

  9. 28. SONAR CONTROL ROOM FORWARD LOOKING AFT SHOWING AN/SQS23G ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. SONAR CONTROL ROOM - FORWARD LOOKING AFT SHOWING AN/SQS-23G DETECTING-RANGING SET, MARK & CONTROL PANEL, CAN-55134 RECORDER, SPEED INDICATOR, VARIOUS ALARMS AND INTERNAL COMMUNICATION CIRCUITS. - U.S.S. HORNET, Puget Sound Naval Shipyard, Sinclair Inlet, Bremerton, Kitsap County, WA

  10. Spacelab Payload Operations Control Center (POCC) Control Room During STS-35 Mission

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The primary objective of the STS-35 mission was round the clock observation of the celestial sphere in ultraviolet and X-Ray astronomy with the Astro-1 observatory which consisted of four telescopes: the Hopkins Ultraviolet Telescope (HUT); the Wisconsin Ultraviolet Photo-Polarimeter Experiment (WUPPE); the Ultraviolet Imaging Telescope (UIT); and the Broad Band X-Ray Telescope (BBXRT). The Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at the Marshall Space Flight Center (MSFC) was the air/ground communication channel used between the astronauts and ground control teams during the Spacelab missions. Teams of controllers and researchers directed on-orbit science operations, sent commands to the spacecraft, received data from experiments aboard the Space Shuttle, adjusted mission schedules to take advantage of unexpected science opportunities or unexpected results, and worked with crew members to resolve problems with their experiments. Due to loss of data used for pointing and operating the ultraviolet telescopes, MSFC ground teams were forced to aim the telescopes with fine tuning by the flight crew. This photo is an overview of the MSFC Payload Control Room (PCR).

  11. Spacelab Payload Operations Control Center (POCC) Control Room During STS-35 Mission

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The primary objective of the STS-35 mission was round the clock observation of the celestial sphere in ultraviolet and X-Ray astronomy with the Astro-1 observatory which consisted of four telescopes: the Hopkins Ultraviolet Telescope (HUT); the Wisconsin Ultraviolet Photo-Polarimeter Experiment (WUPPE); the Ultraviolet Imaging Telescope (UIT); and the Broad Band X-Ray Telescope (BBXRT). The Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at the Marshall Space Flight Center (MSFC) was the air/ground communication channel used between the astronauts and ground control teams during the Spacelab missions. Teams of controllers and researchers directed on-orbit science operations, sent commands to the spacecraft, received data from experiments aboard the Space Shuttle, adjusted mission schedules to take advantage of unexpected science opportunities or unexpected results, and worked with crew members to resolve problems with their experiments. Due to loss of data used for pointing and operating the ultraviolet telescopes, MSFC ground teams were forced to aim the telescopes with fine tuning by the flight crew. This photo is an overview of the MSFC Payload Control Room (PCR).

  12. EARLY-STAGE DESIGN AND EVALUATION FOR NUCLEAR POWER PLANT CONTROL ROOM UPGRADES

    SciTech Connect

    Ronald L. Boring; Jeffrey C. Joe; Thomas A. Ulrich; Roger T. Lew

    2015-03-01

    As control rooms are modernized with new digital systems at nuclear power plants, it is necessary to evaluate operator performance with these systems as part of a verification and validation process. While there is regulatory and industry guidance for some modernization activities, there are no well defined standard processes or predefined metrics available for assessing what is satisfactory operator interaction with new systems, especially during the early design stages. This paper proposes a framework defining the design process and metrics for evaluating human system interfaces as part of control room modernization. The process and metrics are generalizable to other applications and serve as a guiding template for utilities undertaking their own control room modernization activities.

  13. Baseline Evaluations to Support Control Room Modernization at Nuclear Power Plants

    SciTech Connect

    Boring, Ronald L.; Joe, Jeffrey C.

    2015-02-01

    For any major control room modernization activity at a commercial nuclear power plant (NPP) in the U.S., a utility should carefully follow the four phases prescribed by the U.S. Nuclear Regulatory Commission in NUREG-0711, Human Factors Engineering Program Review Model. These four phases include Planning and Analysis, Design, Verification and Validation, and Implementation and Operation. While NUREG-0711 is a useful guideline, it is written primarily from the perspective of regulatory review, and it therefore does not provide a nuanced account of many of the steps the utility might undertake as part of control room modernization. The guideline is largely summative—intended to catalog final products—rather than formative—intended to guide the overall modernization process. In this paper, we highlight two crucial formative sub-elements of the Planning and Analysis phase specific to control room modernization that are not covered in NUREG-0711. These two sub-elements are the usability and ergonomics baseline evaluations. A baseline evaluation entails evaluating the system as-built and currently in use. The usability baseline evaluation provides key insights into operator performance using the control system currently in place. The ergonomics baseline evaluation identifies possible deficiencies in the physical configuration of the control system. Both baseline evaluations feed into the design of the replacement system and subsequent summative benchmarking activities that help ensure that control room modernization represents a successful evolution of the control system.

  14. Fiber optic control system integration

    NASA Technical Reports Server (NTRS)

    Poppel, G. L.; Glasheen, W. M.; Russell, J. C.

    1987-01-01

    A total fiber optic, integrated propulsion/flight control system concept for advanced fighter aircraft is presented. Fiber optic technology pertaining to this system is identified and evaluated for application readiness. A fiber optic sensor vendor survey was completed, and the results are reported. The advantages of centralized/direct architecture are reviewed, and the concept of the protocol branch is explained. Preliminary protocol branch selections are made based on the F-18/F404 application. Concepts for new optical tools are described. Development plans for the optical technology and the described system are included.

  15. The integrated environmental control model

    SciTech Connect

    Rubin, E.S.; Berkenpas, M.B.; Kalagnanam, J.R.

    1995-11-01

    The capability to estimate the performance and cost of emission control systems is critical to a variety of planning and analysis requirements faced by utilities, regulators, researchers and analysts in the public and private sectors. The computer model described in this paper has been developed for DOe to provide an up-to-date capability for analyzing a variety of pre-combustion, combustion, and post-combustion options in an integrated framework. A unique capability allows performance and costs to be modeled probabilistically, which allows explicit characterization of uncertainties and risks.

  16. STS-118 Ascent/Entry Flight Control Team in White Flight Control Room (WFCR) with Flight Director Steve Stitch

    NASA Image and Video Library

    2007-07-20

    JSC2007-E-41011 (20 July 2007) --- STS-118 Ascent/Entry flight control team pose for a group portrait in the space shuttle flight control room of Houston's Mission Control Center (MCC). Flight director Steve Stich (center right) and astronaut Tony Antonelli, spacecraft communicator (CAPCOM), hold the STS-118 mission logo.

  17. Waterford SES unit No. 3 control room design review/audit technical evaluation report

    SciTech Connect

    Smith, J.P.

    1981-06-01

    As part of the NRC staff actions following the TMI-2 accident (Item I.D.1, NUREG-0660, Vol. 1, May 1980), it is required that all licensees and applicants for operating licenses conduct a Detailed Control Room Design Review (DCRDR) to identify and correct human factors design deficiencies. Louisiana Power and Light Co. (LP and L) performed a preliminary assessment of the Waterford SES Unit No. 3 control room and submitted its findings to the NRC in a report dated April 15, 1981, for review and evaluation. The Human Factors Engineering Branch (HFEB) performed an interim review of the LP and L preliminary assessment report.

  18. Acceptability of Low Level White Lighting in the Control Room at Sea

    DTIC Science & Technology

    2014-08-05

    LIGHTING IN THE CONTROL ROOM AT SEA by S. M. Luria and D. A. Kobus Naval Medical Research and Development Command Research Work Unit M0100.001...release; distribution unlimited. ACCEPTABILITY OF LOW LEVEL WHITE LIGHTING " IN THE CONTROL ROOM AT SEA by S. M. Luria , Ph.D. David A. Kobus, LT...ltr 9330 Ser 51/434 to CO, NSMRL of 18 Nov 1984. 3 Luria , S. M. and David A. Kobus. The relative effectiveness of red and white light for

  19. A web-based noise control prediction model for rooms using the method of images

    NASA Astrophysics Data System (ADS)

    Dance, Stephen

    2002-11-01

    Previous simple models could only predict sound levels in untreated rooms. Now, using the method of images, it has become possible to accurately predict the sound level in fitted industrial rooms from any computer on the Internet. Thus, a powerful tool in an acoustician's armory is available to all, while requiring only the minimal amount of input data to construct the model. This is only achievable if the scope of the model is reduced to one or two acoustic parameters. Now, two common noise control techniques have been implemented into the image source model: acoustic barriers and absorptive patches. Predictions using the model with and without noise control techniques will be demonstrated, so the advantages can be clearly seen in typical industrial rooms. The models are now available on the web, running directly inside Netscape or Internet Explorer.

  20. Study of Room Temperature and Humidity Control Method on Dehumidification System Reheated by Refrigeration Cycle

    NASA Astrophysics Data System (ADS)

    Nakamura, Hiroo; Funakoshi, Sunao; Yokoyama, Hidenori; Morimoto, Motoo; Saito, Kiyoshi

    The new ways to control the humidity and the temperature of the room accurately during the dehumidification operation reheated by refrigeration cycle on room air conditioners using R 410A was investigated. The indoor heat exchanger is divided into a condensing part and an evaporating part by a dehumidification valve which is located between these two heat exchangers. The indoor air cooled and dehumidified by the evaporating part is heated by the condensing part. The dehumidification capacity increased according to increasing the compressor rotational speed. And the reheating capacity increased according to decreasing the outdoor fan rotational speed. So the humidity and the temperature of the room was controlled to the setting values exactly by regulating the compressor rotational speed and the outdoor fan rotational speed alternately.

  1. Integrated Approach to Malaria Control

    PubMed Central

    Shiff, Clive

    2002-01-01

    Malaria draws global attention in a cyclic manner, with interest and associated financing waxing and waning according to political and humanitarian concerns. Currently we are on an upswing, which should be carefully developed. Malaria parasites have been eliminated from Europe and North America through the use of residual insecticides and manipulation of environmental and ecological characteristics; however, in many tropical and some temperate areas the incidence of disease is increasing dramatically. Much of this increase results from a breakdown of effective control methods developed and implemented in the 1960s, but it has also occurred because of a lack of trained scientists and control specialists who live and work in the areas of endemic infection. Add to this the widespread resistance to the most effective antimalarial drug, chloroquine, developing resistance to other first-line drugs such as sulfadoxine-pyrimethamine, and resistance of certain vector species of mosquito to some of the previously effective insecticides and we have a crisis situation. Vaccine research has proceeded for over 30 years, but as yet there is no effective product, although research continues in many promising areas. A global strategy for malaria control has been accepted, but there are critics who suggest that the single strategy cannot confront the wide range of conditions in which malaria exists and that reliance on chemotherapy without proper control of drug usage and diagnosis will select for drug resistant parasites, thus exacerbating the problem. An integrated approach to control using vector control strategies based on the biology of the mosquito, the epidemiology of the parasite, and human behavior patterns is needed to prevent continued upsurge in malaria in the endemic areas. PMID:11932233

  2. PBF Control Building (PER619). Interior in data acquisition room showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Control Building (PER-619). Interior in data acquisition room showing data racks. The system recorded multiple channels of data during tests. INEEL negative no. HD-41-8-1 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  3. MTR, TRA603. CONTROL ROOM DETAILS. ACOUSTIC PLASTER CEILING, USHAPED CONSOLE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MTR, TRA-603. CONTROL ROOM DETAILS. ACOUSTIC PLASTER CEILING, U-SHAPED CONSOLE, INSTRUMENT PANELS, GLASS DOOR, ASPHALT TILE FLOOR AND COLORS. BLAW-KNOX 3150-803-11, 10/1950. INL INDEX NO. 531-0603-00-098-100570, REV. 3. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  4. Advanced control rooms and crew performance issues: Implications for human reliability

    SciTech Connect

    O'Hara, J.M.; Hall, R.E.

    1991-01-01

    Recent trends in advanced control room (ACR) design are considered with respect to their impact on human performance. It is concluded that potentially negative influences exist, however, a variety of factors make it difficult to model, analyze, and quantify these effects for human reliability analyses (HRAs).

  5. Advanced control rooms and crew performance issues: Implications for human reliability

    SciTech Connect

    O`Hara, J.M.; Hall, R.E.

    1991-12-31

    Recent trends in advanced control room (ACR) design are considered with respect to their impact on human performance. It is concluded that potentially negative influences exist, however, a variety of factors make it difficult to model, analyze, and quantify these effects for human reliability analyses (HRAs).

  6. 76 FR 35130 - Pipeline Safety: Control Room Management/Human Factors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-16

    ... Pipeline and Hazardous Materials Safety Administration 49 CFR Parts 192 and 195 RIN 2137-AE64 Pipeline Safety: Control Room Management/Human Factors AGENCY: Pipeline and Hazardous Materials Safety... no later than the deadline for that paragraph. * * * * * PART 195--TRANSPORTATION OF HAZARDOUS...

  7. PBF Control Building (PER619) floor plan and elevations. Room numbers ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Control Building (PER-619) floor plan and elevations. Room numbers and functions. Roof plans for "high" roof and rest of roof. Ebasco Services 1205-PER/PER 619-A-1. Date: July 1965. INEEL index no. 760-0619-00-205-123022 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  8. PBF Reactor Building (PER620) as seen from control room window ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Reactor Building (PER-620) as seen from control room window in PER-619. Photographer stood just outside window. Note exposed communication cables on desert surface. Date: July 2004. INEEL negative no. HD-41-9-3 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  9. IET control building (TAN620). probably facing west in equipment room. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    IET control building (TAN-620). probably facing west in equipment room. Name brand: P&H Heavi-lift. Note doorway and corridor at left of view. INEEL negative no. HD-21-5-3 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  10. LOFT. Interior of visitors' room in control building (TAN630), typically ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LOFT. Interior of visitors' room in control building (TAN-630), typically occupied during tests. Indicator display allowed observers to watch progress of experiment. Date: May 2004. INEEL negative no. HD-39-14-1 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  11. The Ground Control Room as an Enabling Technology in the Unmanned Aerial System

    NASA Technical Reports Server (NTRS)

    Gear, Gary; Mace, Thomas

    2007-01-01

    This viewgraph presentation reviews the development of the ground control room as an required technology for the use of an Unmanned Aerial system. The Unmanned Aerial system is a strategic component of the Global Observing System, which will serve global science needs. The unmanned aerial system will use the same airspace as manned aircraft, therefore there will be unique telemetry needs.

  12. IET. Control and equipment building (TAN620). Details and room finish ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    IET. Control and equipment building (TAN-620). Details and room finish schedule. Ralph M. Parsons 902-4-ANP-620-A 322. Approved by INEEL Classification Office for public release. INEEL index code no. 035-0629-00-693-106907 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  13. VIEW OF PDP CONTROL ROOM, LEVEL 0’, LOOKING NORTHWEST,WITH EDGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF PDP CONTROL ROOM, LEVEL 0’, LOOKING NORTHWEST,WITH EDGE OF CONSOLE DESK AT LOWER RIGHT. THE PANELS WITH THE A-MOTOR TAPES ARE LOCATED IN MIDDLE OF PICTURE - Physics Assembly Laboratory, Area A/M, Savannah River Site, Aiken, Aiken County, SC

  14. Integrated Practice Improvement Solutions-Practical Steps to Operating Room Management.

    PubMed

    Chernov, Mikhail; Pullockaran, Janet; Vick, Angela; Leyvi, Galina; Delphin, Ellise

    2016-10-01

    Perioperative productivity is a vital concern for surgeons, anesthesiologists, and administrators as the OR is a major source of hospital elective admissions and revenue. Based on elements of existing Practice Improvement Methodologies (PIMs), "Integrated Practice Improvement Solutions" (IPIS) is a practical and simple solution incorporating aspects of multiple management approaches into a single open source framework to increase OR efficiency and productivity by better utilization of existing resources. OR efficiency was measured both before and after IPIS implementation using the total number of cases versus room utilization, OR/anesthesia revenue and staff overtime (OT) costs. Other parameters of efficiency, such as the first case on-time start and the turnover time (TOT) were measured in parallel. IPIS implementation resulted in increased numbers of surgical procedures performed by an average of 10.7%, and OR and anesthesia revenue increases of 18.5% and 6.9%, respectively, with a simultaneous decrease in TOT (15%) and OT for anesthesia staff (26%). The number of perioperative adverse events was stable during the two-year study period which involved a total of 20,378 patients. IPIS, an effective and flexible practice improvement model, was designed to quickly, significantly, and sustainably improve OR efficiency by better utilization of existing resources. Success of its implementation directly correlates with the involvement of and acceptance by the entire OR team and hospital administration.

  15. Room temperature single photon source using fiber-integrated hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Vogl, Tobias; Lu, Yuerui; Lam, Ping Koy

    2017-07-01

    Single photons are a key resource for quantum optics and optical quantum information processing. The integration of scalable room temperature quantum emitters into photonic circuits remains to be a technical challenge. Here we utilize a defect center in hexagonal boron nitride (hBN) attached by Van der Waals force onto a multimode fiber as a single photon source. We perform an optical characterization of the source in terms of spectrum, state lifetime, power saturation and photostability. A special feature of our source is that it allows for easy switching between fiber-coupled and free space single photon generation modes. In order to prove the quantum nature of the emission we measure the second-order correlation function {{g}(2)}≤ft(τ \\right) . For both fiber-coupled and free space emission, the {{g}(2)}≤ft(τ \\right) dips below 0.5 indicating operation in the single photon regime. The results so far demonstrate the feasibility of 2D material single photon sources for scalable photonic quantum information processing.

  16. A Distributed Control System Prototyping Environment to Support Control Room Modernization

    SciTech Connect

    Lew, Roger Thomas; Boring, Ronald Laurids; Ulrich, Thomas Anthony

    2014-12-01

    Operators of critical processes, such as nuclear power production, must contend with highly complex systems, procedures, and regulations. Developing human-machine interfaces (HMIs) that better support operators is a high priority for ensuring the safe and reliable operation of critical processes. Human factors engineering (HFE) provides a rich and mature set of tools for evaluating the performance of HMIs, however the set of tools for developing and designing HMIs is still in its infancy. Here we propose a rapid prototyping approach for integrating proposed HMIs into their native environments before a design is finalized. This approach allows researchers and developers to test design ideas and eliminate design flaws prior to fully developing the new system. We illustrate this approach with four prototype designs developed using Microsoft’s Windows Presentation Foundation (WPF). One example is integrated into a microworld environment to test the functionality of the design and identify the optimal level of automation for a new system in a nuclear power plant. The other three examples are integrated into a full-scale, glasstop digital simulator of a nuclear power plant. One example demonstrates the capabilities of next generation control concepts; another aims to expand the current state of the art; lastly, an HMI prototype was developed as a test platform for a new control system currently in development at U.S. nuclear power plants. WPF possesses several characteristics that make it well suited to HMI design. It provides a tremendous amount of flexibility, agility, robustness, and extensibility. Distributed control system (DCS) specific environments tend to focus on the safety and reliability requirements for real-world interfaces and consequently have less emphasis on providing functionality to support novel interaction paradigms. Because of WPF’s large user-base, Microsoft can provide an extremely mature tool. Within process control applications,WPF is

  17. KSC Launch Control Center (LCC) Firing Room 1 during STS-32 launch

    NASA Image and Video Library

    1990-01-09

    S90-29047 99Jan 1990) --- At the conclusion of another successful countdown, members of the KSC launch team in Firing Room 1 rivet their eyes on the skies to the east of the Launch Control Center. Their reward was a glimpse of Columbia burning its way upward up from Complex 39's Pad A. The brilliant flame of the boosters hurled shadows and patches of light into the firing room's interior. Launch of the STS-32 mission at 7:35 a.m. EST today marked the beginning of a busy year which could see the launch of as many as 10 missions.

  18. MULTI - TRACER CONTROL ROOM AIR INLEAKAGE PROTOCOL AND SIMULATED PRIMARY AND EXTENDED MULTI - ZONE RESULTS.

    SciTech Connect

    DIETZ,R.N.

    2002-01-01

    The perfluorocarbon tracer (PFT) technology can be applied simultaneously to the wide range in zonal flowrates (from tens of cfms in some Control Rooms to almost 1,000,000 cfm in Turbine Buildings), to achieve the necessary uniform tagging for subsequent determination of the desired air inleakage and outleakage from all zones surrounding a plant's Control Room (CR). New types of PFT sources (Mega sources) were devised and tested to handle the unusually large flowrates in a number of HVAC zones in power stations. A review of the plans of a particular nuclear power plant and subsequent simulations of the tagging and sampling results confirm that the technology can provide the necessary concentration measurement data to allow the important ventilation pathways involving the Control Room and its air flow communications with all adjacent zones to be quantitatively determined with minimal uncertainty. Depending on need, a simple single or 3-zone scheme (involving the Control Room alone or along with the Aux. Bldg. and Turbine Bldg.) or a more complex test involving up to 7 zones simultaneously can be accommodated with the current revisions to the technology; to test all the possible flow pathways, several different combinations of up to 7 zones would need to be run. The potential exists that for an appropriate investment, in about 2 years, it would be possible to completely evaluate an entire power plant in a single extended multizone test with up to 12 to 13 separate HVAC zones. With multiple samplers in the Control Room near each of the contiguous zones, not only will the prevalent inleakage or outleakage zones be documented, but the particular location of the pathway's room of ingress can be identified. The suggested protocol is to perform a 3-zone test involving the Control Room, Aux. Bldg., and Turbine Bldg. to (1) verify CR total inleakage and (2) proportion that inleakage to distinguish that from the other 2 major buildings and any remaining untagged locations

  19. Altitude Wind Tunnel Control Room at the Aircraft Engine Research Laboratory

    NASA Image and Video Library

    1944-07-21

    Operators in the control room for the Altitude Wind Tunnel at the National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory remotely operate a Wright R–3350 engine in the tunnel’s test section. Four of the engines were used to power the B–29 Superfortress, a critical weapon in the Pacific theater during World War II. The wind tunnel, which had been in operation for approximately six months, was the nation’s only wind tunnel capable of testing full-scale engines in simulated altitude conditions. The soundproof control room was used to operate the wind tunnel and control the engine being run in the test section. The operators worked with assistants in the adjacent Exhauster Building and Refrigeration Building to manage the large altitude simulation systems. The operator at the center console controlled the tunnel’s drive fan and operated the engine in the test section. Two sets of pneumatic levers near his right forearm controlled engine fuel flow, speed, and cooling. Panels on the opposite wall, out of view to the left, were used to manage the combustion air, refrigeration, and exhauster systems. The control panel also displayed the master air speed, altitude, and temperature gauges, as well as a plethora of pressure, temperature, and airflow readings from different locations on the engine. The operator to the right monitored the manometer tubes to determine the pressure levels. Despite just being a few feet away from the roaring engine, the control room remained quiet during the tests.

  20. Developing an evidence base of best practices for integrating computerized systems into the exam room: a systematic review.

    PubMed

    Patel, Minal R; Vichich, Jennifer; Lang, Ian; Lin, Jessica; Zheng, Kai

    2017-04-01

    The introduction of health information technology systems, electronic health records in particular, is changing the nature of how clinicians interact with patients. Lack of knowledge remains on how best to integrate such systems in the exam room. The purpose of this systematic review was to (1) distill "best" behavioral and communication practices recommended in the literature for clinicians when interacting with patients in the presence of computerized systems during a clinical encounter, (2) weigh the evidence of each recommendation, and (3) rank evidence-based recommendations for electronic health record communication training initiatives for clinicians. We conducted a literature search of 6 databases, resulting in 52 articles included in the analysis. We extracted information such as study setting, research design, sample, findings, and implications. Recommendations were distilled based on consistent support for behavioral and communication practices across studies. Eight behavioral and communication practices received strong support of evidence in the literature and included specific aspects of using computerized systems to facilitate conversation and transparency in the exam room, such as spatial (re)organization of the exam room, maintaining nonverbal communication, and specific techniques that integrate the computerized system into the visit and engage the patient. Four practices, although patient-centered, have received insufficient evidence to date. We developed an evidence base of best practices for clinicians to maintain patient-centered communications in the presence of computerized systems in the exam room. Further work includes development and empirical evaluation of evidence-based guidelines to better integrate computerized systems into clinical care.

  1. Deployment of a Full-Scope Commercial Nuclear Power Plant Control Room Simulator at the Idaho National Laboratory

    SciTech Connect

    Ronald Boring; Julius Persensky; Kenneth Thomas

    2011-09-01

    The INL operates the HSSL to conduct research in the design and evaluation of advanced reactor control rooms, integration of intelligent support systems to assist operators, development and assessment of advanced human performance models, and visualizations to assess advanced operational concepts across various infrastructures. This advanced facility consists of a reconfigurable simulator and a virtual reality capability (known as the Computer-Aided Virtual Environment (CAVE)) (Figure 2). It supports human factors research, including human-in-the-loop performance, HSI, and analog and digital hybrid control displays. It can be applied to the development and evaluation of control systems and displays for complex systems such as existing and advanced NPP control rooms, command and control systems, and advance emergency operations centers. The HSSL incorporates a reconfigurable control room simulator, which is currently housed in the Center for Advanced Energy Studies (CAES), a joint venture of the DOE and the Idaho University System. The simulator is a platform- and plant-neutral environment intended for full-scope and part-task testing of operator performance in various control room configurations. The simulator is not limited to a particular plant or even simulator architecture. It can support engineering simulator platforms from multiple vendors using digital interfaces. Due to its ability to be reconfigured, it is possible to switch the HSI - not just to digital panels but also to different control modalities such as those using greater plant automation or intelligent alarm filtering. The simulator currently includes three operator workstations, each capable of driving up to eight 30-inch monitors. The size and number of monitors varies depending on the particular front-end simulator deployed for a simulator study. These operator workstations would typically be used for the shift supervisor or senior reactor operator, reactor operator, and assistant reactor

  2. Benefits of Advanced Control Room Technologies: Phase One Upgrades to the HSSL, Research Plan, and Performance Measures

    SciTech Connect

    Le Blanc, Katya; Joe, Jeffrey; Rice, Brandon; Ulrich, Thomas; Boring, Ronald

    2015-05-01

    Control Room modernization is an important part of life extension for the existing light water reactor fleet. None of the 99 currently operating commercial nuclear power plants in the U.S. has completed a full-scale control room modernization to date. A full-scale modernization might, for example, entail replacement of all analog panels with digital workstations. Such modernizations have been undertaken successfully in upgrades in Europe and Asia, but the U.S. has yet to undertake a control room upgrade of this magnitude. Instead, nuclear power plant main control rooms for the existing commercial reactor fleet remain significantly analog, with only limited digital modernizations. Previous research under the U.S. Department of Energy’s Light Water Reactor Sustainability Program has helped establish a systematic process for control room upgrades that support the transition to a hybrid control room. While the guidance developed to date helps streamline the process of modernization and reduce costs and uncertainty associated with introducing digital control technologies into an existing control room, these upgrades do not achieve the full potential of newer technologies that might otherwise enhance plant and operator performance. The aim of the control room benefits research is to identify previously overlooked benefits of modernization, identify candidate technologies that may facilitate such benefits, and demonstrate these technologies through human factors research. This report describes the initial upgrades to the HSSL and outlines the methodology for a pilot test of the HSSL configuration.

  3. Adoption of an integrated radiology reading room within a urologic oncology clinic: initial experience in facilitating clinician consultations.

    PubMed

    Rosenkrantz, Andrew B; Lepor, Herbert; Taneja, Samir S; Recht, Michael P

    2014-05-01

    The authors describe their initial experience in implementing an integrated radiology reading room within a urologic oncology clinic, including the frequency and nature of clinician consultations and the perceived impact on patient management by clinicians. A radiology reading room was established within an office-based urologic oncology clinic in proximity to the surgeon's work area. A radiologist was present in this reading room for a 3-hour shift each day. The frequency and nature of consultations during these shifts were recorded. Also, the clinic's staff completed a survey assessing perceptions of the impact of the integrated reading room on patient management. One hundred two consultations occurred during 57 included dates (average, 1.8 consultations per shift): 52% for review of external cases brought in by patients on discs, 43% for review of internal cases, and 5% for direct review by the radiologist of imaging with patients. The maximum number of consultations during a single shift was 8. All of the clinic's urologists indicated that >90% of consultations benefited patient care. The clinicians indicated tendencies to view consultations as affecting management in the majority of cases, to be more likely to seek consultation for outside imaging when the radiologist was on site, and to be less likely to repeat outside imaging when the radiologist was on site. The integrated reading room within the clinic has potential to improve the quality of care, for instance by facilitating increased review of outside imaging studies and thereby potentially reducing duplicate ordering and by enabling occasional direct image review with patients by radiologists. Copyright © 2014 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  4. Design and Validation of Control Room Upgrades Using a Research Simulator Facility

    SciTech Connect

    Ronald L. Boring; Vivek Agarwal; Jeffrey C. Joe; Julius J. Persensky

    2012-11-01

    Since 1981, the United States (U.S.) Nuclear Regulatory Commission (NRC) [1] requires a plant- specific simulator facility for use in training at U.S. nuclear power plants (NPPs). These training simulators are in near constant use for training and qualification of licensed NPP operators. In the early 1980s, the Halden Man-Machine Laboratory (HAMMLab) at the Halden Reactor Project (HRP) in Norway first built perhaps the most well known set of research simulators. The HRP offered a high- fidelity simulator facility in which the simulator is functionally linked to a specific plant but in which the human-machine interface (HMI) may differ from that found in the plant. As such, HAMMLab incorporated more advanced digital instrumentation and controls (I&C) than the plant, thereby giving it considerable interface flexibility that researchers took full advantage of when designing and validating different ways to upgrade NPP control rooms. Several U.S. partners—the U.S. NRC, the Electrical Power Research Institute (EPRI), Sandia National Laboratories, and Idaho National Laboratory (INL) – as well as international members of the HRP, have been working with HRP to run control room simulator studies. These studies, which use crews from Scandinavian plants, are used to determine crew behavior in a variety of normal and off-normal plant operations. The findings have ultimately been used to guide safety considerations at plants and to inform advanced HMI design—both for the regulator and in industry. Given the desire to use U.S. crews of licensed operators on a simulator of a U.S. NPP, there is a clear need for a research simulator facility in the U.S. There is no general-purpose reconfigurable research oriented control room simulator facility in the U.S. that can be used for a variety of studies, including the design and validation of control room upgrades.

  5. Workflows and individual differences during visually guided routine tasks in a road traffic management control room.

    PubMed

    Starke, Sandra D; Baber, Chris; Cooke, Neil J; Howes, Andrew

    2017-05-01

    Road traffic control rooms rely on human operators to monitor and interact with information presented on multiple displays. Past studies have found inconsistent use of available visual information sources in such settings across different domains. In this study, we aimed to broaden the understanding of observer behaviour in control rooms by analysing a case study in road traffic control. We conducted a field study in a live road traffic control room where five operators responded to incidents while wearing a mobile eye tracker. Using qualitative and quantitative approaches, we investigated the operators' workflow using ergonomics methods and quantified visual information sampling. We found that individuals showed differing preferences for viewing modalities and weighting of task components, with a strong coupling between eye and head movement. For the quantitative analysis of the eye tracking data, we propose a number of metrics which may prove useful to compare visual sampling behaviour across domains in future. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. EXTRAN: A computer code for estimating concentrations of toxic substances at control room air intakes

    SciTech Connect

    Ramsdell, J.V.

    1991-03-01

    This report presents the NRC staff with a tool for assessing the potential effects of accidental releases of radioactive materials and toxic substances on habitability of nuclear facility control rooms. The tool is a computer code that estimates concentrations at nuclear facility control room air intakes given information about the release and the environmental conditions. The name of the computer code is EXTRAN. EXTRAN combines procedures for estimating the amount of airborne material, a Gaussian puff dispersion model, and the most recent algorithms for estimating diffusion coefficients in building wakes. It is a modular computer code, written in FORTRAN-77, that runs on personal computers. It uses a math coprocessor, if present, but does not require one. Code output may be directed to a printer or disk files. 25 refs., 8 figs., 4 tabs.

  7. Strategies and Decision Support Systems for Integrating Variable Energy Resources in Control Centers for Reliable Grid Operations. Executive Summary

    SciTech Connect

    Jones, Lawrence E.

    2011-11-01

    This is the executive summary for a report that provides findings from the field regarding the best ways in which to guide operational strategies, business processes and control room tools to support the integration of renewable energy into electrical grids.

  8. Strategies and Decision Support Systems for Integrating Variable Energy Resources in Control Centers for Reliable Grid Operations

    SciTech Connect

    Jones, Lawrence E.

    2011-11-01

    This report provides findings from the field regarding the best ways in which to guide operational strategies, business processes and control room tools to support the integration of renewable energy into electrical grids.

  9. Seismometer reading viewed in ALSEP Room in Misson Control during Apollo 17

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The seismometer readings from the impact made by the Apollo 17 Saturn S-IVB stage when it struck the lunar surface are viewed in the ALSEP Room in the Misson Control Center at Houston by Dr. Maurice Ewing, professor of geophysics of the Universtiy of Texas at Galveston. The seismic tracings are from sensings made by seismometers of Apollo Lunar Surface Experiments Packages left on the Moon during earlier Apollo lunar landing missions.

  10. Report: EPA’s Radiation and Indoor Environments National Laboratory Should Improve Its Computer Room Security Controls

    EPA Pesticide Factsheets

    Report #12-P-0847, September 21, 2012.Our review of the security posture and in-place environmental controls of EPA’s Radiation and Indoor Environments National Laboratory computer room disclosed an array of security and environmental control deficiencies.

  11. Report: EPA’s Office of Environmental Information Should Improve Ariel Rios and Potomac Yard Computer Room Security Controls

    EPA Pesticide Factsheets

    Report #12-P-0879, September 26, 2012. The security posture and in-place environmental control review of the computer rooms in the Ariel Rios and Potomac Yard buildings revealed numerous security and environmental control deficiencies.

  12. Multilayer Control Hierarchy in an Integrated Hydrological Model

    NASA Astrophysics Data System (ADS)

    Park, J.; Obeysekera, J.; Vanzee, R.

    2005-05-01

    Considerable progress has been made in the functionality of integrated hydrological models which can provide evaluation of anthropogenic control and management policies of water resources. Nonetheless, there is still room for improvement in the coupling and expression of water control policies into hydrological models [1]. The Management Simulation Engine (MSE) component of the Regional Simulation Model (RSM) incorporates a multi-level hierarchical control architecture which emphasizes the decoupling of hydrological state information from the management information processing applied to the states. The MSE is intended to allow a flexible, extensible expression of a wide variety anthropogenic water resource control schemes integrated with the hydrological state evaluations of the RSM. Synergy between the multilayer control hierarchy and decoupled hydrologic state and management information facilitates a water resource management feature set not typical of integrated hydrological models. Some of these features include: interoperation and compatibility of diverse management algorithms such as PID, Fuzzy control, LP; and dynamic switching of control processors. This paper describes the MSE control hierarchy with a focus on the aforementioned features and their implementation. [1] Belaineh, G., Peralta, R. C., Hughes, T. C., Simulation/ Optimization Modeling for Water Resources Management, ASCE Journal Water Resources Planning Management, 125(3), p 154-61, 1999

  13. Integrated lift/drag controller for aircraft

    NASA Technical Reports Server (NTRS)

    Olcott, J. W.; Seckel, E.; Ellis, D. R. (Inventor)

    1974-01-01

    A system for altering the lift/drag characteristics of powered aircraft to provide a safe means of glide path control includes a control device integrated for coordination action with the aircraft throttle. Such lift/drag alteration devices as spoilers, dive brakes, and the like are actuated by manual operation of a single lever coupled with the throttle for integrating, blending or coordinating power control. Improper operation of the controller is inhibited by safety mechanisms.

  14. Quantum Process Tomography of a Room Temperature Optically-Controlled Phase Shift

    NASA Astrophysics Data System (ADS)

    Kupchak, Connor; Rind, Samuel; Figueroa, Eden; Stony Brook University Team

    2015-05-01

    We have developed a room temperature setup capable of optically controlled phase shifts on a weak probe field. Our system is realized in a vapor of 87Rb atoms under the conditions of electromagnetically induced transparency utilizing a N-type energy level scheme coupled by three optical fields. By varying the power of the signal field, we can control the size of an optical phase shift experienced by weak coherent state pulses of < n > ~ 1 , propagating through the vapor. We quantify the optical phase shift by measuring the process output via balanced homodyne tomography which provides us with the complete quadrature and phase information of the output states. Furthermore, we measure the output for a set of states over a subspace of the coherent state basis and gain the information to completely reconstruct our phase shift procedure by coherent state quantum process tomography. The reconstruction yields a rank-4 process superoperator which grants the ability to predict how our phase shift process will behave on an arbitrary quantum optical state in the mode of the reconstruction. Our results demonstrate progress towards room temperature systems for possible quantum gates; a key component of a future quantum processor designed to operate at room temperature. US-Navy Office of Naval Research N00141410801, National Science Foundation PHY-1404398, Natural Sciences and Engineering Research Council of Canada.

  15. Tilt/Integral/Derivative Compensators For Controllers

    NASA Technical Reports Server (NTRS)

    Lurie, Boris J.

    1995-01-01

    Tilt/integral/derivative (TID) compensators for tunable feedback control systems offer advantages over proportional/integral/derivative compensators. Designed and adjusted more easily, and made to reject disturbances more strongly and less sensitive to variations in parameters of controlled system.

  16. Light room therapy effective in mild forms of seasonal affective disorder--a randomised controlled study.

    PubMed

    Rastad, C; Ulfberg, J; Lindberg, P

    2008-06-01

    The most common way to provide bright light therapy to Swedish patients with Seasonal Affective Disorder (SAD), is treatment in a light therapy room. Since few studies have evaluated treatment provided in this setting and few have evaluated the effect of bright light in sub-clinical SAD (S-SAD), such a study including a one-month follow-up was designed. Fifty adults recruited from a previous prevalence study and clinically assessed as having SAD or S-SAD, were randomised to treatment in a light room or to a three-week waiting-list control group. The Hamilton Depression Rating Scale-Seasonal Affective Disorders Self-rating 29-items Version (SIGH-SAD/SR) was used to measure depressive mood at baseline, directly following treatment and at the one-month follow-up. ANCOVA with adjustment for baseline depression score, showed a significant main effect for the light room therapy group (p<0.001). Fifty-four percent (n=13/24) improved > or = 50% while no such improvement was seen in the control condition (n=0/24). After merging the two groups, repeated measures ANOVA confirmed the experimental analysis (p<0.001). At the one-month follow-up, 83.0% (n=39/47) had improved > or = 50% and 63.8% (n=30/47) had normal depression scores, i.e. < or = 8. Light room therapy was effective in reducing depressive symptoms in subjects with winter depressive mood. Results were maintained over a period of one month.

  17. System design description for the CPDF Cascade Control Room: SDD-7

    SciTech Connect

    Not Available

    1980-05-01

    The Cascade Control Room (CCR) is the nerve center of the Centrifuge Plant Demonstration Facility (CPDF). The components within the CCR monitor and control those variables necessary for the safe and efficient operation of the cascade during normal and emergency operation. The CCR interfaces with all the process systems and most of the support systems, receiving and transmitting data signals at frequent intervals during all phases of cascade operation. The main component in the CCR is the control room computer (CRC), which serves as the primary interface between the CCR and the process and support systems. The other components in the CCR are: (1) instrumentation cabinets; (2) operator control panel; (3) mass spectrometer - tails (MST); (4) mass spectrometer - product (MSP); (5) product light gas analyzer (PLGA); and (6) the operator. CCR instrumentation provides audible and visual alarms of abnormal events detected by process and utilities instrumentation or by the CRC. Records of alarms and process and utility variables are continuously generated in the CCR. Operator control functions are performed through the CRC or at the various instrument cabinets. Analysis of the current operating status of the plant is aided by the CRC and CCR instrumentation. 14 figs., 2 tabs.

  18. Utilization effect of integrating a chest radiography room into a thoracic surgery ward.

    PubMed

    Maehara, Cleo K; Jacobson, Francine; Andriole, Katherine P; Khorasani, Ramin

    2012-06-01

    Bedside chest radiography (CXR) represents a substantial fraction of the volume of medical imaging for inpatient health care facilities. However, its image quality is limited compared with posterior-anterior/lateral (PA/LAT) acquisitions taken in radiographic rooms. The aim of this study was to evaluate the utilization of bedside CXR and other chest imaging modalities before and after placing a radiography room within a thoracic surgical inpatient ward. All patient admissions (n = 3,852) to the thoracic surgical units between April 1, 2007, and December 31, 2010, were retrospectively identified. All chest imaging tests performed for these patients, including CT scans, MRI, ultrasound, and bedside and PA/LAT radiography, were counted. The primary outcome measure was chest imaging utilization, defined as the number of chest examinations per admission, before and after the establishment of the digital radiography room on January 10, 2010. Statistical analysis was performed using an independent-samples t test to evaluate changes in chest imaging utilization. A 2.61-fold increase in the number of PA/LAT CXR studies per admission (P < .01) and a 1.96-fold decrease in the number of bedside CXR studies per admission (P < .01) were observed after radiography room implementation. The number of chest CT, MRI, and ultrasound studies per admission did not change significantly. Establishing a radiography room physically within thoracic surgery units or in close proximity can significantly shift CXR utilization from bedside to PA/LAT acquisitions, which may enable opportunities for improvement in efficiency, quality, and safety in patient care. Copyright © 2012 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  19. Control room modernization at Finnish nuclear power plants - Two projects compared

    SciTech Connect

    Laarni, J.; Norros, L.

    2006-07-01

    The modernization of automation systems and human-machine interfaces is a current issue at both of the two nuclear power plants (i.e., Fortum's Loviisa plant and TVO's Olkiluoto plant) in Finland. Since the plants have been launched in the 1970's or 1980's, technology is in part old-fashioned and needs to be renewed. At Olkiluoto upgrades of the turbine operator systems have already been conducted; at Loviisa the first phase of the modernization project has just started. Basically, there is a question of the complete digitalization of the information streams at the two plants, and transition from a conventional hard-wired or hybrid control room to a screen-based one. The new human-machine interfaces will comprise new technology, such as PC workstations, soft control, touch screens and large-screen overall displays. The modernization of human-system interfaces is carried out in a stepwise manner at both plants. At both plants the main driver has not been the need to renew the user interfaces of the control room, but the need to upgrade the automation systems. In part because of this, there is a lack of a systematic top-down approach in which different aspects of human factors (HF) engineering are considered in relationship to higher level goals. Our aim here is to give an overview description of the control room modernization projects at the two plants and provide a preliminary evaluation of their progress to date. The projects are also compared, for example, in terms of duration, scope and phasing, and who is responsible for the realization of the project. In addition, we also compare experiences from the Finnish projects to experiences from similar projects abroad. The main part of the data used in this study is based on designers' and project members' interviews. (authors)

  20. Design and implementation of new control room system in Damavand tokamak

    NASA Astrophysics Data System (ADS)

    Rasouli, H.; Zamanian, H.; Gheidi, M.; Kheiri-Fard, M.; Kouhi, A.

    2017-07-01

    The aim of this paper is design and implementation of an up-to-date control room. The previous control room had a lot of constraints and it was not apposite to the sophisticated diagnostic systems as well as to the modern control and multivariable systems. Although it provided the best output for the considered experiments and implementing offline algorithms among all similar plants, it needed to be developed to provide more capability for complex algorithm mechanisms and this work introduces our efforts in this area. Accordingly, four leading systems were designed and implemented, including real-time control system, online Data Acquisition System (DAS), offline DAS, monitoring and data transmission system. In the control system, three real-time control modules were established based on Digital Signal Processor (DSP). Thanks to them, implementation of the classic and linear and nonlinear intelligent controllers was possible to control the plasma position and its elongation. Also, online DAS was constructed in two modules. Using them, voltages and currents of charge for the capacitor banks and pressure of different parts in vacuum vessel were measured and monitored. Likewise, by real-time processing of the online data, the safety protocol of plant performance was accomplished. In addition, the offline DAS was organized in 13 modules based on Field Programmable Gate Array (FPGA). This system can be used for gathering all diagnostic, control, and performance data in 156 channels. Data transmission system and storing mechanism in the server was provided by data transmitting network and MDSplus standard protocol. Moreover, monitoring software was designed so that it could display the required plots for physical analyses. Taking everything into account, this new platform can improve the quality and quantity of research activities in plasma physics for Damavand tokamak.

  1. Identification and control integration strategies

    NASA Technical Reports Server (NTRS)

    Milman, Mark; Mettler, Edward; Bayard, David

    1988-01-01

    This paper describes an autonomous control concept for pointing and articulation of science instruments on the Eos (Earth observing system) NASA/NOAA platforms intended to be operational by the late 1990s. Key features of this concept include advanced control adaptation and tuning strategies which provide performance robustness over a wide range of system uncertainties and mission time criticality. System identification-control modification paradigms are synthesized to form an adaptation continuum over this extended regime of autonomous operations.

  2. Identification and control integration strategies

    NASA Technical Reports Server (NTRS)

    Milman, Mark; Mettler, Edward; Bayard, David

    1988-01-01

    This paper describes an autonomous control concept for pointing and articulation of science instruments on the Eos (Earth observing system) NASA/NOAA platforms intended to be operational by the late 1990s. Key features of this concept include advanced control adaptation and tuning strategies which provide performance robustness over a wide range of system uncertainties and mission time criticality. System identification-control modification paradigms are synthesized to form an adaptation continuum over this extended regime of autonomous operations.

  3. Integrated Control System Engineering Support.

    DTIC Science & Technology

    1984-12-01

    corporation , or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto. "- This...Monitor Unit C Computers/COMMON Storage Location * CCB Configuration Control Board CCC Cruise Camber Control CDC Control Data Corporation CDR...the areas of support software (drivers, interfaces, corrections), flight processor development (in- corporation of new hardware), concept test support

  4. Adaptive Control of Event Integration

    ERIC Educational Resources Information Center

    Akyurek, Elkan G.; Toffanin, Paolo; Hommel, Bernhard

    2008-01-01

    Identifying 2 target stimuli in a rapid stream of visual symbols is much easier if the 2nd target appears immediately after the 1st target (i.e., at Lag 1) than if distractor stimuli intervene. As this phenomenon comes with a strong tendency to confuse the order of the targets, it seems to be due to the integration of both targets into the same…

  5. Adaptive Control of Event Integration

    ERIC Educational Resources Information Center

    Akyurek, Elkan G.; Toffanin, Paolo; Hommel, Bernhard

    2008-01-01

    Identifying 2 target stimuli in a rapid stream of visual symbols is much easier if the 2nd target appears immediately after the 1st target (i.e., at Lag 1) than if distractor stimuli intervene. As this phenomenon comes with a strong tendency to confuse the order of the targets, it seems to be due to the integration of both targets into the same…

  6. Demonstration of Intelligent Control and Fan Improvements in Computer Room Air Handlers

    SciTech Connect

    Coles, Henry; Greenberg, Steve; Vita, Corinne

    2012-11-30

    This report documents a demonstration of the energy-efficiency improvement provided by a new control system for computer room air handling devices. It also analyzes measured and reported air handling device fan power associated with changing the fan type. A 135,000 square foot commercial data center was used for the demonstration. All air handling units were upgraded with improved efficiency fans, and a control system that automatically adjusts the fan speed for the air handling units was added. Power measurements were collected for a baseline and for a period with the fan speed control system active. Changing the fan type resulted in a savings of 47 percent of energy used by the air handling equipment and associated chiller plant energy needed to cool the air handlers themselves. The addition of the fan speed control resulted in an additional 37 percent savings in the same two categories. The combined savings for the two improvements for the same categories was 66 percent compared to the data center fitted with the original fans without a control system. The energy use reduction provided by the complete air handling device improvement program for the whole data center site is estimated to be 2.9 million kilowatt hours per year—an overall data center site savings of 8.0 percent. The reduced electrical energy use at the site provides a 1.9 million pound yearly reduction of carbon dioxide emissions. This demonstration showed that fan upgrades and a control system addition provide cost-effective improvements for data centers, with a payback reported to be under two years without utility incentives. In addition to the control system providing energy savings, the data collection and visual analysis capabilities provided immediate and long-term benefits. It is recommended that data center operators consider investing in fan upgrades and/or adding fan speed control for computer room air handlers.

  7. Integrative Review of Instruments to Measure Team Performance During Neonatal Resuscitation Simulations in the Birthing Room.

    PubMed

    Clary-Muronda, Valerie; Pope, Charlene

    2016-01-01

    To identify instruments appropriate to measure interprofessional team performance in neonatal resuscitation (NR), describe the validity and reliability of extant NR instruments, and determine instruments for use in interprofessional birthing room NR simulations. The Cumulative Index to Nursing and Allied Health Literature, Ovid MEDLINE, Proquest, ScienceDirect, PubMed, and Scopus databases were searched. We used inclusion and exclusion criteria and screened 641 abstracts from January 2000 through December 2014 for relevance to the research question. We reviewed 78 full-text primary research publications in English and excluded 37 publications not specific to pediatrics or neonatology. After in-depth review of the 41 studies that remained, we excluded additional studies if they did not have an interprofessional focus, include psychometric information, or include a measurement instrument. Ten publications met the inclusion criteria. Studies were reviewed, categorized, and scored to identify instruments to measure interprofessional team performance in simulations of birthing room NR. A social ecological model was used as a guide framework to identify multiple influencing factors at various levels that affect team performance. Ten instruments with documentation of validity and reliability for technical competence and team processes in interprofessional birthing room NR teams were identified. Extant instruments rarely address the multiple factors that may impede interprofessional team performance in birthing room NR. It is necessary for researchers to engage in rigorous psychometric testing of measurement instruments to ensure their validity and reliability for interprofessional NR teams and consider tests or updates (if necessary) of extant instruments rather than the development of new instruments. Copyright © 2016 AWHONN, the Association of Women’s Health, Obstetric and Neonatal Nurses. Published by Elsevier Inc. All rights reserved.

  8. PID controller tuning for integrating processes.

    PubMed

    Ali, Ahmad; Majhi, Somanath

    2010-01-01

    Minimizing the integral squared error (ISE) criterion to get the optimal controller parameters results in a PD controller for integrating processes. The PD controller gives good servo response but fails to reject the load disturbances. In this paper, it is shown that satisfactory closed loop performances for a class of integrating processes are obtained if the ISE criterion is minimized with the constraint that the slope of the Nyquist curve has a specified value at the gain crossover frequency. Guidelines are provided for selecting the gain crossover frequency and the slope of the Nyquist curve. The proposed method is compared with some of the existing methods to control integrating plant transfer functions and in the examples taken it always gave better results for the load disturbance rejection whilst maintaining satisfactory setpoint response. For ease of use, analytical expressions correlating the controller parameters to plant model parameters are also given.

  9. Report for Task 8.4: Development of Control Room Layout Recommendations

    SciTech Connect

    McDonald, Robert

    2016-09-01

    Idaho National Laboratory (INL) has contracted Institutt for Energiteknikk (IFE) to support in the development of an end state vision for the US Nuclear industry and in particular for a utility that is currently moving forward with a control room modernization project. This support includes the development of an Overview display and technical support in conducting an operational study. Development of operational scenarios to be conducted using a full scope simulator at the INL HSSL. Additionally IFE will use the CREATE modelling tool to provide 3-D views of the potential and possible end state view after the completion of digital upgrade project.

  10. Controllable effects of quantum fluctuations on spin free-induction decay at room temperature.

    PubMed

    Liu, Gang-Qin; Pan, Xin-Yu; Jiang, Zhan-Feng; Zhao, Nan; Liu, Ren-Bao

    2012-01-01

    Fluctuations of local fields cause decoherence of quantum objects. Usually at high temperatures, thermal noises are much stronger than quantum fluctuations unless the thermal effects are suppressed by certain techniques such as spin echo. Here we report the discovery of strong quantum-fluctuation effects of nuclear spin baths on free-induction decay of single electron spins in solids at room temperature. We find that the competition between the quantum and thermal fluctuations is controllable by an external magnetic field. These findings are based on Ramsey interference measurement of single nitrogen-vacancy center spins in diamond and numerical simulation of the decoherence, which are in excellent agreement.

  11. Human Factors Guidance for Control Room and Digital Human-System Interface Design and Modification, Guidelines for Planning, Specification, Design, Licensing, Implementation, Training, Operation and Maintenance

    SciTech Connect

    R. Fink, D. Hill, J. O'Hara

    2004-11-30

    Nuclear plant operators face a significant challenge designing and modifying control rooms. This report provides guidance on planning, designing, implementing and operating modernized control rooms and digital human-system interfaces.

  12. Electrical gate control of spin current in van der Waals heterostructures at room temperature

    NASA Astrophysics Data System (ADS)

    Dankert, André; Dash, Saroj P.

    2017-07-01

    Two-dimensional (2D) crystals offer a unique platform due to their remarkable and contrasting spintronic properties, such as weak spin-orbit coupling (SOC) in graphene and strong SOC in molybdenum disulfide (MoS2). Here we combine graphene and MoS2 in a van der Waals heterostructure (vdWh) to demonstrate the electric gate control of the spin current and spin lifetime at room temperature. By performing non-local spin valve and Hanle measurements, we unambiguously prove the gate tunability of the spin current and spin lifetime in graphene/MoS2 vdWhs at 300 K. This unprecedented control over the spin parameters by orders of magnitude stems from the gate tuning of the Schottky barrier at the MoS2/graphene interface and MoS2 channel conductivity leading to spin dephasing in high-SOC material. Our findings demonstrate an all-electrical spintronic device at room temperature with the creation, transport and control of the spin in 2D materials heterostructures, which can be key building blocks in future device architectures.

  13. Electrical gate control of spin current in van der Waals heterostructures at room temperature

    PubMed Central

    Dankert, André; Dash, Saroj P.

    2017-01-01

    Two-dimensional (2D) crystals offer a unique platform due to their remarkable and contrasting spintronic properties, such as weak spin–orbit coupling (SOC) in graphene and strong SOC in molybdenum disulfide (MoS2). Here we combine graphene and MoS2 in a van der Waals heterostructure (vdWh) to demonstrate the electric gate control of the spin current and spin lifetime at room temperature. By performing non-local spin valve and Hanle measurements, we unambiguously prove the gate tunability of the spin current and spin lifetime in graphene/MoS2 vdWhs at 300 K. This unprecedented control over the spin parameters by orders of magnitude stems from the gate tuning of the Schottky barrier at the MoS2/graphene interface and MoS2 channel conductivity leading to spin dephasing in high-SOC material. Our findings demonstrate an all-electrical spintronic device at room temperature with the creation, transport and control of the spin in 2D materials heterostructures, which can be key building blocks in future device architectures. PMID:28677673

  14. Electrical gate control of spin current in van der Waals heterostructures at room temperature.

    PubMed

    Dankert, André; Dash, Saroj P

    2017-07-05

    Two-dimensional (2D) crystals offer a unique platform due to their remarkable and contrasting spintronic properties, such as weak spin-orbit coupling (SOC) in graphene and strong SOC in molybdenum disulfide (MoS2). Here we combine graphene and MoS2 in a van der Waals heterostructure (vdWh) to demonstrate the electric gate control of the spin current and spin lifetime at room temperature. By performing non-local spin valve and Hanle measurements, we unambiguously prove the gate tunability of the spin current and spin lifetime in graphene/MoS2 vdWhs at 300 K. This unprecedented control over the spin parameters by orders of magnitude stems from the gate tuning of the Schottky barrier at the MoS2/graphene interface and MoS2 channel conductivity leading to spin dephasing in high-SOC material. Our findings demonstrate an all-electrical spintronic device at room temperature with the creation, transport and control of the spin in 2D materials heterostructures, which can be key building blocks in future device architectures.

  15. Readily integrated, electrically controlled microvalves

    NASA Astrophysics Data System (ADS)

    Song, W. H.; Kwan, J.; Kaigala, G. V.; Hoang, V. N.; Backhouse, C. J.

    2008-04-01

    We present a simple method for fabricating and operating normally open, electrothermally actuated microvalves. These valves are fabricated by placing a gas-permeable elastomeric membrane between two etched glass plates. The reservoirs and channels on one layer are filled with a low melting point polymer (polyethylene glycol, PEG) that exhibits a large volumetric change (of up to 30%) upon phase transition (melting). This volume expansion is used to actuate the membrane and seal the microfluidic channels located in the second etched glass plate. The PEG in the reservoir is heated with integrated patterned platinum-resistive elements. The valve reliably seals the microfluidic channel against external fluid pressures of 10 psi. This valve can be readily integrated with one of the standard technologies for lab-on-a-chip (LOC) fabrication and is suitable for use with the polymerase chain reaction. The novelty of this microvalve lies in the ability to fill dead-end microchannels with a polymer, its self-sealing ability, the ability to remotely actuate the valve by transferring pressure via a microchannel and the compatibility of this microvalve with standard LOC technologies.

  16. A Pilot Study Investigating the Effects of Advanced Nuclear Power Plant Control Room Technologies: Methods and Qualitative Results

    SciTech Connect

    BLanc, Katya Le; Powers, David; Joe, Jeffrey; Spielman, Zachary; Rice, Brandon; Fitzgerald, Kirk

    2015-08-01

    Control room modernization is an important part of life extension for the existing light water reactor fleet. None of the 99 currently operating commercial nuclear power plants in the U.S. has completed a full-scale control room modernization to date. Nuclear power plant main control rooms for the existing commercial reactor fleet remain significantly analog, with only limited digital modernizations. Upgrades in the U.S. do not achieve the full potential of newer technologies that might otherwise enhance plant and operator performance. The goal of the control room upgrade benefits research is to identify previously overlooked benefits of modernization, identify candidate technologies that may facilitate such benefits, and demonstrate these technologies through human factors research. This report describes a pilot study to test upgrades to the Human Systems Simulation Laboratory at INL.

  17. Integrating planning and reactive control

    NASA Technical Reports Server (NTRS)

    Rosenschein, Stanley J.; Kaelbling, Leslie Pack

    1989-01-01

    Artificial intelligence research on planning is concerned with designing control systems that choose actions by manipulating explicit descriptions of the world state, the goal to be achieved, and the effects of elementary operations available to the system. Because planning shifts much of the burden of reasoning to the machine, it holds great appeal as a high-level programming method. Experience shows, however, that it cannot be used indiscriminately because even moderately rich languages for describing goals, states, and the elementary operators lead to computational inefficiencies that render the approach unsuitable for realistic applications. This inadequacy has spawned a recent wave of research on reactive control or situated activity in which control systems are modeled as reacting directly to the current situation rather than as reasoning about the future effects of alternative action sequences. While this research has confronted the issue of run-time tractability head on, in many cases it has done so by sacrificing the advantages of declarative planning techniques. Ways in which the two approaches can be unified are discussed. The authors begin by modeling reactive control systems as state machines that map a stream of sensory inputs to a stream of control outputs. These machines can be decomposed into two continuously active subsystems: the planner and the execution module. The planner computes a plan, which can be seen as a set of bits that control the behavior of the execution module. An important element of this work is the formulation of a precise semantic interpretation for the inputs and outputs of the planning system. They show that the distinction between planned and reactive behavior is largely in the eye of the beholder: systems that seem to compute explicit plans can be redescribed in situation-action terms and vice versa. They also discuss practical programming techniques that allow the advantages of declarative programming and guaranteed

  18. A charge-density-wave oscillator based on an integrated tantalum disulfide-boron nitride-graphene device operating at room temperature.

    PubMed

    Liu, Guanxiong; Debnath, Bishwajit; Pope, Timothy R; Salguero, Tina T; Lake, Roger K; Balandin, Alexander A

    2016-10-01

    The charge-density-wave (CDW) phase is a macroscopic quantum state consisting of a periodic modulation of the electronic charge density accompanied by a periodic distortion of the atomic lattice in quasi-1D or layered 2D metallic crystals. Several layered transition metal dichalcogenides, including 1T-TaSe2, 1T-TaS2 and 1T-TiSe2 exhibit unusually high transition temperatures to different CDW symmetry-reducing phases. These transitions can be affected by the environmental conditions, film thickness and applied electric bias. However, device applications of these intriguing systems at room temperature or their integration with other 2D materials have not been explored. Here, we demonstrate room-temperature current switching driven by a voltage-controlled phase transition between CDW states in films of 1T-TaS2 less than 10 nm thick. We exploit the transition between the nearly commensurate and the incommensurate CDW phases, which has a transition temperature of 350 K and gives an abrupt change in current accompanied by hysteresis. An integrated graphene transistor provides a voltage-tunable, matched, low-resistance load enabling precise voltage control of the circuit. The 1T-TaS2 film is capped with hexagonal boron nitride to provide protection from oxidation. The integration of these three disparate 2D materials in a way that exploits the unique properties of each yields a simple, miniaturized, voltage-controlled oscillator suitable for a variety of practical applications.

  19. A charge-density-wave oscillator based on an integrated tantalum disulfide-boron nitride-graphene device operating at room temperature

    NASA Astrophysics Data System (ADS)

    Liu, Guanxiong; Debnath, Bishwajit; Pope, Timothy R.; Salguero, Tina T.; Lake, Roger K.; Balandin, Alexander A.

    2016-10-01

    The charge-density-wave (CDW) phase is a macroscopic quantum state consisting of a periodic modulation of the electronic charge density accompanied by a periodic distortion of the atomic lattice in quasi-1D or layered 2D metallic crystals. Several layered transition metal dichalcogenides, including 1T-TaSe2, 1T-TaS2 and 1T-TiSe2 exhibit unusually high transition temperatures to different CDW symmetry-reducing phases. These transitions can be affected by the environmental conditions, film thickness and applied electric bias. However, device applications of these intriguing systems at room temperature or their integration with other 2D materials have not been explored. Here, we demonstrate room-temperature current switching driven by a voltage-controlled phase transition between CDW states in films of 1T-TaS2 less than 10 nm thick. We exploit the transition between the nearly commensurate and the incommensurate CDW phases, which has a transition temperature of 350 K and gives an abrupt change in current accompanied by hysteresis. An integrated graphene transistor provides a voltage-tunable, matched, low-resistance load enabling precise voltage control of the circuit. The 1T-TaS2 film is capped with hexagonal boron nitride to provide protection from oxidation. The integration of these three disparate 2D materials in a way that exploits the unique properties of each yields a simple, miniaturized, voltage-controlled oscillator suitable for a variety of practical applications.

  20. Integrating chemical and biological control

    Treesearch

    Scott Salom; Albert Mayfield; Tom McAvoy

    2011-01-01

    Research and management efforts to establish an effective biological control program against HWA has received significant support by the U.S. Forest Service over the past 17 years. Other federal and state agencies, universities, and private entities have also contributed to this overall research and management effort. Although a number of HWA-specific predator species...

  1. ATLAS Virtual Visits: Bringing the World into the ATLAS Control Room

    NASA Astrophysics Data System (ADS)

    Goldfarb, S.

    2012-12-01

    The newfound ability of Social Media to transform public communication back to a conversational nature provides HEP with a powerful tool for Outreach and Communication. By far, the most effective component of nearly any visit or public event is that fact that the students, teachers, media, and members of the public have a chance to meet and converse with real scientists. While more than 30,000 visitors passed through the ATLAS Visitor Centre in 2011, nearly 7 billion did not have a chance to make the trip. Clearly this is not for lack of interest. Rather, the costs of travel, in terms of time and money, and limited parking, put that number somewhat out of reach. On the other hand, during the LHC “First Physics” event of 2010, more than 2 million visitors joined the experiment control rooms via webcast for the celebration. This document presents a project developed for the ATLAS Experiment's Outreach and Education program that complements the webcast infrastructure with video conferencing and wireless sound systems, allowing the public to interact with hosts in the control room with minimal disturbance to the shifters. These “Virtual Visits” have included high school classes, LHC Masterclasses, conferences, expositions and other events in Europe, USA, Japan and Australia, to name a few. We discuss the technology used, potential pitfalls (and ways to avoid them), and our plans for the future.

  2. Advantages and Disadvantages of Physiological Assessment For Next Generation Control Room Design

    SciTech Connect

    Tuan Q. Tran; Ronald L. Boring; Donald D. Dudenhoeffer; Bruce P Hallbert; M. David Keller; Tessa M. Anderson

    2007-08-01

    Abstract - We propose using non-obtrusive physiological assessment (e.g., eye tracking,) to assess human information processing errors (e.g., loss of vigilance) and limitations (e.g., workload) for advanced energy systems early in the design process. This physiological approach for assessing risk will circumvent many limitations of current risk methodologies such as subjective rating (e.g., rater’s biases) and performance modeling (e.g., risk assessment is scripted and is based upon the individual modeler’s judgment). Key uses will be to evaluate (early in the design process) novel control room equipment and configurations as well as newly developed automated systems that will inevitably place a high information load on operators. The physiological risk assessment tool will allow better precision in pinpointing problematic design issues and will provide a “real-time” assessment of risk. Furthermore, this physiological approach would extend the state-of-the-art of human reliability methods from a “static” measure to more “dynamic.” This paper will discuss a broad range of the current popular online performance gauges as well as its advantages and disadvantages for use in next generation control room.

  3. Control-room operator alertness and performance in nuclear power plants

    SciTech Connect

    Baker, T.l.; Campbell, S.C.; Linder, K.D.; Moore-Ede, M.C . )

    1990-02-01

    All industries requiring round-the-clock operation must deal with the potential problem of impaired alertness, especially among those who work night shifts. In the nuclear power industry, maintaining optimal alertness and performance of control room operators at all times of day is critical. Many of the toot causes of reduced alertness are straightforward and can be easily remedied with tangible solutions; this manual both discusses the reasons for the problem and suggests solutions. The manual surveys factors that influence operator alertness and performance, including shift schedules, caffeine and alcohol use, diet and family lifestyle factors, the control room enviornment, staffing and overtime practices, and work task design. Specific recommendations are made in each of these areas. The project team, consisting of experts on managing round-the-clock operations and scientists who study human alertness and performance, prepared this manual using the latest scientific research and direct input from shift supervisors and operators via interviews, on-site observation, and questionnaires distributed to every nuclear power station. The material contained within is relevant to shiftwork managers, shift supervisors, and operators, each of whom plays a vital role in maintaining optimal alertness and performance on the job. 90 refs., 35 figs.

  4. Metal-Controlled Magnetoresistance at Room Temperature in Single-Molecule Devices.

    PubMed

    Aragonès, Albert C; Aravena, Daniel; Valverde-Muñoz, Francisco J; Real, José Antonio; Sanz, Fausto; Díez-Pérez, Ismael; Ruiz, Eliseo

    2017-03-03

    The appropriate choice of the transition metal complex and metal surface electronic structure opens the possibility to control the spin of the charge carriers through the resulting hybrid molecule/metal spinterface in a single-molecule electrical contact at room temperature. The single-molecule conductance of a Au/molecule/Ni junction can be switched by flipping the magnetization direction of the ferromagnetic electrode. The requirements of the molecule include not just the presence of unpaired electrons: the electronic configuration of the metal center has to provide occupied or empty orbitals that strongly interact with the junction metal electrodes and that are close in energy to their Fermi levels for one of the electronic spins only. The key ingredient for the metal surface is to provide an efficient spin texture induced by the spin-orbit coupling in the topological surface states that results in an efficient spin-dependent interaction with the orbitals of the molecule. The strong magnetoresistance effect found in this kind of single-molecule wire opens a new approach for the design of room-temperature nanoscale devices based on spin-polarized currents controlled at molecular level.

  5. Integrating planning and reactive control

    NASA Technical Reports Server (NTRS)

    Wilkins, David E.; Myers, Karen L.

    1994-01-01

    Our research is developing persistent agents that can achieve complex tasks in dynamic and uncertain environments. We refer to such agents as taskable, reactive agents. An agent of this type requires a number of capabilities. The ability to execute complex tasks necessitates the use of strategic plans for accomplishing tasks; hence, the agent must be able to synthesize new plans at run time. The dynamic nature of the environment requires that the agent be able to deal with unpredictable changes in its world. As such, agents must be able to react to unanticipated events by taking appropriate actions in a timely manner, while continuing activities that support current goals. The unpredictability of the world could lead to failure of plans generated for individual tasks. Agents must have the ability to recover from failures by adapting their activities to the new situation, or replanning if the world changes sufficiently. Finally, the agent should be able to perform in the face of uncertainty. The Cypress system, described here, provides a framework for creating taskable, reactive agents. Several features distinguish our approach: (1) the generation and execution of complex plans with parallel actions; (2) the integration of goal-driven and event driven activities during execution; (3) the use of evidential reasoning for dealing with uncertainty; and (4) the use of replanning to handle run-time execution problems. Our model for a taskable, reactive agent has two main intelligent components, an executor and a planner. The two components share a library of possible actions that the system can take. The library encompasses a full range of action representations, including plans, planning operators, and executable procedures such as predefined standard operating procedures (SOP's). These three classes of actions span multiple levels of abstraction.

  6. Review of advanced control rooms: Methodological considerations for the use of HFE guidelines

    SciTech Connect

    O`Hara, J.M.

    1994-03-01

    Control rooms for advanced nuclear power plants use advanced human-system interface (HSI) technologies that may have significant implications for plant safety in that they will affect the operator`s overall role in the system and the ways in which operators interact with the system. The US Nuclear Regulatory Commission (NRC) reviews HSIs to ensure that they are designed to accepted human factors engineering (HFE) principles. The principal review guidance, however, is more than ten-years old (US NRC, 1981). Accordingly, an Advanced HSI Design Review Guideline (DRG) was developed to provide criteria for these reviews. The DRG contains seven major sections: Information Display, User-System Interaction, Process Control and Input Devices, Alarms, Analysis and Decision Aids, Inter-Personnel Communication, and Workplace Design (see O`Hara & Brown, 1993). The purpose of this paper is to describe the methodology for DRG use.

  7. THE DEVELOPMENT OF DETAILED HUMAN FACTORS ENGINEERING GUIDELINES FOR DIGITAL CONTROL ROOM UPGRADES.

    SciTech Connect

    BROWN,W.; O'HARA,J.M.

    2004-09-19

    As part of the Department of Energy and Electric Power Research Institute's hybrid control room project, detailed human factors engineering guidance was developed for designing human-system interfaces that may be affected by introduction of additional digital technology during modernization of nuclear power plants. The guidance addresses several aspects of human-system interaction: information display, interface management, soft controls, alarms, computer-based procedures, computerized operator support systems, communications, and workstation/workplace design. In this paper, the ways in which digital upgrades might affect users' interaction with systems in each of these contexts are briefly described, and the contents of the guidance developed for each of the topics is also described.

  8. DHM simulation in virtual environments: a case-study on control room design.

    PubMed

    Zamberlan, M; Santos, V; Streit, P; Oliveira, J; Cury, R; Negri, T; Pastura, F; Guimarães, C; Cid, G

    2012-01-01

    This paper will present the workflow developed for the application of serious games in the design of complex cooperative work settings. The project was based on ergonomic studies and development of a control room among participative design process. Our main concerns were the 3D human virtual representation acquired from 3D scanning, human interaction, workspace layout and equipment designed considering ergonomics standards. Using Unity3D platform to design the virtual environment, the virtual human model can be controlled by users on dynamic scenario in order to evaluate the new work settings and simulate work activities. The results obtained showed that this virtual technology can drastically change the design process by improving the level of interaction between final users and, managers and human factors team.

  9. Light Control of Ferromagnetism in ZnO Films on Pt Substrate at Room Temperature

    PubMed Central

    Xie, Jihao; Qin, Hongwei; Hao, Yanming; Cheng, Bin; Liu, Weikang; Liu, Liang; Ren, Shaoqing; Zhou, Guangjun; Ji, Ziwu; Hu, Jifan

    2017-01-01

    The control of ferromagnetism by light at room temperature is essential for the development of some optical-magnetic coupling devices, data storage and quantum computation techniques. In the present work, we demonstrate that the ferromagnetism of a semiconducting ZnO film on Pt substrate can be controlled by nonpolarized ultraviolet or violet light. The illumination of light with sufficiently high frequency photons could excite photogenerated electron-hole pairs in the semiconducting ZnO film. The amount of oxygen vacancies in the ZnO film and the appearance of built-in electric field due to the heterostructured ZnO/Pt may play important roles in the light-induced changes in the ferromagnetism of the ZnO film. PMID:28393834

  10. Bay integrated power system control and diagnostics

    SciTech Connect

    Beierl, O.

    1996-03-01

    The paper presents new concepts for control and diagnostic systems for high voltage switchgear (123-kV and above). Air insulated and gas insulated (SF6) switchgear is considered. The new aspect is the integration of monitoring and diagnostic concepts in digital control and protection systems. Communication concepts for sensors and actuators with digital process busses at bay level are discussed. The paper covers integration concepts for circuit breaker monitoring (AIS, GIS) and for GIS the integration of on-line partial discharge measurement, on-line arc detection and on-line monitoring of the gas conditions. Finally, the advantages, disadvantages and the applicability of integrated diagnostic and control concepts are discussed by means of technical and commercial aspects.

  11. [Third level centers in Integrated Health Care: no room, no interest, no needs?].

    PubMed

    Strehl, R

    2006-01-01

    Third level health care providers are often highly integrated in the sense that they provide a broad variety of medical specialties. They mostly lack cooperative structures with physicians who are running private practices. By this "isolation", they realize disadvantages in the race for more patients. This is one reason why more university teaching hospitals are growingly interested in contracts for Integrated Health Care. Another field of growing needs for cooperative structures is rehabilitation to ensure achieved therapeutic success especially in highly specialized centers. The paper outlines these growing interests but also formulates preconditions for contracts which should be regarded if university hospitals are to become involved in Integrated Health Care.

  12. Control theory and psychopathology: an integrative approach.

    PubMed

    Mansell, Warren

    2005-06-01

    Perceptual control theory (PCT; Powers, 1973) is presented and adapted as a framework to understand the causes, maintenance, and treatment of psychological disorders. PCT provides dynamic, working models based on the principle that goal-directed activity arises from a hierarchy of negative feedback loops that control perception through control of the environment. The theory proposes that psychological distress arises from the unresolved conflict between goals. The present paper integrates PCT, control theory, and self-regulatory approaches to psychopathology and psychotherapy and recent empirical findings, particularly in the field of cognitive therapy. The approach aims to offer fresh insights into the role of goal conflict, automatic processes, imagery, perceptual distortion, and loss of control in psychological disorders. Implications for psychological therapy are discussed, including an integration of the existing work on the assessment of control profiles and the use of assertive versus yielding modes of control.

  13. Perceived Parental Care and Control among Israeli Female Adolescents Presenting to Emergency Rooms after Self-Poisoning

    ERIC Educational Resources Information Center

    Diamond, Gary M.; Didner, Hila; Waniel, Ariela; Priel, Beatriz; Asherov, Jack; Arbel, Shosh

    2005-01-01

    Levels of perceived parental care and control among 24 female Israeli adolescents presenting at emergency rooms after a self-poisoning act of low lethality were compared to those found among 23 non-self-harming, community controls. Adolescents' perceived levels of parental care and control were measured via both adolescents' self-report and…

  14. Design methods to control violent pillar failures in room-and-pillar mines

    SciTech Connect

    Zipf, R.K. Jr.; Mark, C.

    1996-12-01

    The sudden, violent collapse of large areas of room-and-pillar mines poses a special hazard to miners and mine operators. This type of failure, termed a {open_quotes}Cascading Pillar Failure{close_quotes} (CPF), occurs when one pillar in a mine layout fails transfering its load to neighboring pillars causing them to fail, and so forth. Recent examples of this kind of failure in coal, metal and nonmetal mines in the U.S. are documented. Mining engineers can limit the danger posed by these failures through improved mine design practices. Whether failure occurs in a slow, nonviolent manner or in a rapid, violent manner is governed by the local mine stiffness stability criterion. This stability criterion is used as the basis for three design approaches to control cascading pillar failure in room-and-pillar mines, namely, the containment approach, the prevention approach, and the full extraction mining approach. These design approaches are illustrated with practical examples for coal mining.

  15. Single molecule dynamics at a mechanically controllable break junction in solution at room temperature.

    PubMed

    Konishi, Tatsuya; Kiguchi, Manabu; Takase, Mai; Nagasawa, Fumika; Nabika, Hideki; Ikeda, Katsuyoshi; Uosaki, Kohei; Ueno, Kosei; Misawa, Hiroaki; Murakoshi, Kei

    2013-01-23

    The in situ observation of geometrical and electronic structural dynamics of a single molecule junction is critically important in order to further progress in molecular electronics. Observations of single molecular junctions are difficult, however, because of sensitivity limits. Here, we report surface-enhanced Raman scattering (SERS) of a single 4,4'-bipyridine molecule under conditions of in situ current flow in a nanogap, by using nano-fabricated, mechanically controllable break junction (MCBJ) electrodes. When adsorbed at room temperature on metal nanoelectrodes in solution to form a single molecule junction, statistical analysis showed that nontotally symmetric b(1) and b(2) modes of 4,4'-bipyridine were strongly enhanced relative to observations of the same modes in solid or aqueous solutions. Significant changes in SERS intensity, energy (wavenumber), and selectivity of Raman vibrational bands that are coincident with current fluctuations provide information on distinct states of electronic and geometrical structure of the single molecule junction, even under large thermal fluctuations occurring at room temperature. We observed the dynamics of 4,4'-bipyridine motion between vertical and tilting configurations in the Au nanogap via b(1) and b(2) mode switching. A slight increase in the tilting angle of the molecule was also observed by noting the increase in the energies of Raman modes and the decrease in conductance of the molecular junction.

  16. Rotorcraft flight-propulsion control integration

    NASA Technical Reports Server (NTRS)

    Mihaloew, James R.; Ballin, Mark G.; Ruttledge, D. G. C.

    1988-01-01

    The NASA Ames and Lewis Research Centers, in conjunction with the Army Research and Technology Laboratories have initiated and completed, in part, a joint research program focused on improving the performance, maneuverability, and operating characteristics of rotorcraft by integrating the flight and propulsion controls. The background of the program, its supporting programs, its goals and objectives, and an approach to accomplish them are discussed. Results of the modern control governor design of the T700 and the Rotorcraft Integrated Flight-Propulsion Control Study, which were key elements of the program, are also presented.

  17. Western Aeronautical Test Range (WATR) Mission Control Gold Room During X-29 Flight

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The mission control Gold room is seen here during a research flight of the X-29 at the Dryden Flight Research Center, Edwards, California. All aspects of a research mission are monitored from one of two of these control rooms at Dryden. Dryden and its control rooms are part of the Western Aeronautical Test Range (WATR). The WATR consists of a highly automated complex of computer controlled tracking, telemetry, and communications systems and control room complexes that are capable of supporting any type of mission ranging from system and component testing, to sub-scale and full-scale flight tests of new aircraft and reentry systems. Designated areas are assigned for spin/dive tests; corridors are provided for low, medium, and high-altitude supersonic flight; and special STOL/VSTOL facilities are available at Ames Moffett and Crows Landing. Special use airspace, available at Edwards, covers approximately twelve thousand square miles of mostly desert area. The southern boundary lies to the south of Rogers Dry Lake, the western boundary lies midway between Mojave and Bakersfield, the northern boundary passes just south of Bishop, and the eastern boundary follows about 25 miles west of the Nevada border except in the northern areas where it crosses into Nevada. Two X-29 aircraft, featuring one of the most unusual designs in aviation history, flew at the Ames-Dryden Flight Research Facility (now the Dryden Flight Research Center, Edwards, California) from 1984 to 1992. The fighter-sized X-29 technology demonstrators explored several concepts and technologies including: the use of advanced composites in aircraft construction; variable-camber wing surfaces; a unique forward- swept wing and its thin supercritical airfoil; strakes; close-coupled canards; and a computerized fly-by-wire flight control system used to maintain control of the otherwise unstable aircraft. Research results showed that the configuration of forward-swept wings, coupled with movable canards, gave

  18. Status of the National Ignition Facility Integrated Computer Control System

    SciTech Connect

    Lagin, L; Bryant, R; Carey, R; Casavant, D; Edwards, O; Ferguson, W; Krammen, J; Larson, D; Lee, A; Ludwigsen, P; Miller, M; Moses, E; Nyholm, R; Reed, R; Shelton, R; Van Arsdall, P J; Wuest, C

    2003-10-13

    The National Ignition Facility (NIF), currently under construction at the Lawrence Livermore National Laboratory, is a stadium-sized facility containing a 192-beam, 1.8-Megajoule, 500-Terawatt, ultraviolet laser system together with a 10-meter diameter target chamber with room for nearly 100 experimental diagnostics. When completed, NIF will be the world's largest and most energetic laser experimental system, providing an international center to study inertial confinement fusion and the physics of matter at extreme energy densities and pressures. NIF's 192 energetic laser beams will compress fusion targets to conditions required for thermonuclear burn, liberating more energy than required to initiate the fusion reactions. Laser hardware is modularized into line replaceable units such as deformable mirrors, amplifiers, and multi-function sensor packages that are operated by the Integrated Computer Control System (ICCS). ICCS is a layered architecture of 300 front-end processors attached to nearly 60,000 control points and coordinated by supervisor subsystems in the main control room. The functional subsystems--beam control including automatic beam alignment and wavefront correction, laser pulse generation and pre-amplification, diagnostics, pulse power, and timing--implement automated shot control, archive data, and support the actions of fourteen operators at graphic consoles. Object-oriented software development uses a mixed language environment of Ada (for functional controls) and Java (for user interface and database backend). The ICCS distributed software framework uses CORBA to communicate between languages and processors. ICCS software is approximately 3/4 complete with over 750 thousand source lines of code having undergone off-line verification tests and deployed to the facility. NIF has entered the first phases of its laser commissioning program. NIF has now demonstrated the highest energy 1{omega}, 2{omega}, and 3{omega} beamlines in the world. NIF

  19. Integrated restructurable flight control system demonstration results

    NASA Technical Reports Server (NTRS)

    Weiss, Jerold L.; Hsu, John Y.

    1987-01-01

    The purpose of this study was to examine the complementary capabilities of several restructurable flight control system (RFCS) concepts through the integration of these technologies into a complete system. Performance issues were addressed through a re-examination of RFCS functional requirements, and through a qualitative analysis of the design issues that, if properly addressed during integration, will lead to the highest possible degree of fault-tolerant performance. Software developed under previous phases of this contract and under NAS1-18004 was modified and integrated into a complete RFCS subroutine for NASA's B-737 simulation. The integration of these modules involved the development of methods for dealing with the mismatch between the outputs of the failure detection module and the input requirements of the automatic control system redesign module. The performance of this demonstration system was examined through extensive simulation trials.

  20. Using micro saint to predict performance in a nuclear power plant control room

    SciTech Connect

    Lawless, M.T.; Laughery, K.R.; Persenky, J.J.

    1995-09-01

    The United States Nuclear Regulatory Commission (NRC) requires a technical basis for regulatory actions. In the area of human factors, one possible technical basis is human performance modeling technology including task network modeling. This study assessed the feasibility and validity of task network modeling to predict the performance of control room crews. Task network models were built that matched the experimental conditions of a study on computerized procedures that was conducted at North Carolina State University. The data from the {open_quotes}paper procedures{close_quotes} conditions were used to calibrate the task network models. Then, the models were manipulated to reflect expected changes when computerized procedures were used. These models` predictions were then compared to the experimental data from the {open_quotes}computerized conditions{close_quotes} of the North Carolina State University study. Analyses indicated that the models predicted some subsets of the data well, but not all. Implications for the use of task network modeling are discussed.

  1. Copper Selenide Nanosnakes: Bovine Serum Albumin-Assisted Room Temperature Controllable Synthesis and Characterization

    NASA Astrophysics Data System (ADS)

    Huang, Peng; Kong, Yifei; Li, Zhiming; Gao, Feng; Cui, Daxiang

    2010-06-01

    Herein we firstly reported a simple, environment-friendly, controllable synthetic method of CuSe nanosnakes at room temperature using copper salts and sodium selenosulfate as the reactants, and bovine serum albumin (BSA) as foaming agent. As the amounts of selenide ions (Se2-) released from Na2SeSO3 in the solution increased, the cubic and snake-like CuSe nanostructures were formed gradually, the cubic nanostructures were captured by the CuSe nanosnakes, the CuSe nanosnakes grew wider and longer as the reaction time increased. Finally, the cubic CuSe nanostructures were completely replaced by BSA-CuSe nanosnakes. The prepared BSA-CuSe nanosnakes exhibited enhanced biocompatibility than the CuSe nanocrystals, which highly suggest that as-prepared BSA-CuSe nanosnakes have great potentials in applications such as biomedical engineering.

  2. Copper selenide nanosnakes: bovine serum albumin-assisted room temperature controllable synthesis and characterization.

    PubMed

    Huang, Peng; Kong, Yifei; Li, Zhiming; Gao, Feng; Cui, Daxiang

    2010-04-03

    Herein we firstly reported a simple, environment-friendly, controllable synthetic method of CuSe nanosnakes at room temperature using copper salts and sodium selenosulfate as the reactants, and bovine serum albumin (BSA) as foaming agent. As the amounts of selenide ions (Se2-) released from Na2SeSO3 in the solution increased, the cubic and snake-like CuSe nanostructures were formed gradually, the cubic nanostructures were captured by the CuSe nanosnakes, the CuSe nanosnakes grew wider and longer as the reaction time increased. Finally, the cubic CuSe nanostructures were completely replaced by BSA-CuSe nanosnakes. The prepared BSA-CuSe nanosnakes exhibited enhanced biocompatibility than the CuSe nanocrystals, which highly suggest that as-prepared BSA-CuSe nanosnakes have great potentials in applications such as biomedical engineering.

  3. Copper Selenide Nanosnakes: Bovine Serum Albumin-Assisted Room Temperature Controllable Synthesis and Characterization

    PubMed Central

    2010-01-01

    Herein we firstly reported a simple, environment-friendly, controllable synthetic method of CuSe nanosnakes at room temperature using copper salts and sodium selenosulfate as the reactants, and bovine serum albumin (BSA) as foaming agent. As the amounts of selenide ions (Se2−) released from Na2SeSO3 in the solution increased, the cubic and snake-like CuSe nanostructures were formed gradually, the cubic nanostructures were captured by the CuSe nanosnakes, the CuSe nanosnakes grew wider and longer as the reaction time increased. Finally, the cubic CuSe nanostructures were completely replaced by BSA–CuSe nanosnakes. The prepared BSA–CuSe nanosnakes exhibited enhanced biocompatibility than the CuSe nanocrystals, which highly suggest that as-prepared BSA–CuSe nanosnakes have great potentials in applications such as biomedical engineering. PMID:20672034

  4. Coherent control of single spins in silicon carbide at room temperature

    NASA Astrophysics Data System (ADS)

    Widmann, Matthias; Lee, Sang-Yun; Rendler, Torsten; Son, Nguyen Tien; Fedder, Helmut; Paik, Seoyoung; Yang, Li-Ping; Zhao, Nan; Yang, Sen; Booker, Ian; Denisenko, Andrej; Jamali, Mohammad; Momenzadeh, S. Ali; Gerhardt, Ilja; Ohshima, Takeshi; Gali, Adam; Janzén, Erik; Wrachtrup, Jörg

    2015-02-01

    Spins in solids are cornerstone elements of quantum spintronics. Leading contenders such as defects in diamond or individual phosphorus dopants in silicon have shown spectacular progress, but either lack established nanotechnology or an efficient spin/photon interface. Silicon carbide (SiC) combines the strength of both systems: it has a large bandgap with deep defects and benefits from mature fabrication techniques. Here, we report the characterization of photoluminescence and optical spin polarization from single silicon vacancies in SiC, and demonstrate that single spins can be addressed at room temperature. We show coherent control of a single defect spin and find long spin coherence times under ambient conditions. Our study provides evidence that SiC is a promising system for atomic-scale spintronics and quantum technology.

  5. Implementation of Software Tools for Hybrid Control Rooms in the Human Systems Simulation Laboratory

    SciTech Connect

    Jokstad, Håkon; Berntsson, Olof; McDonald, Robert; Boring, Ronald; Hallbert, Bruce; Fitzgerald, Kirk

    2014-11-01

    The Institute for Energy Technology (IFE) and Idaho National Laboratory have designed, implemented, tested and installed a functioning prototype of a set of large screen overview and procedure support displays for the Generic Pressurized Water Reactor (GPWR) simulator in the U.S. Department of Energy’s Human Systems Simulation Laboratory. The overview display is based on IFE’s extensive experiences with large screen overview displays in the Halden Man-Machine Laboratory (HAMMLAB), and presents the main control room indicators on a combined three-screen display. The procedure support displays are designed and implemented to provide a compact but still comprehensive overview of the relevant process measurements and indicators to support operators' good situational awareness during the performance of various types of procedures and plant conditions.

  6. Near-room-temperature refrigeration through voltage-controlled entropy change in multiferroics

    NASA Astrophysics Data System (ADS)

    Binek, Ch.; Burobina, V.

    2013-01-01

    Composite materials with large magnetoelectric effect are proposed for application in advanced near-room-temperature refrigeration. The key innovation rests on utilizing the magnetocaloric effect in zero applied magnetic fields. This approach promises sizable isothermal entropy change and virtually temperature-independent refrigerant capacity through pure voltage-control. It is in sharp contrast with the conventional method of exploiting the magnetocaloric effect through applied magnetic fields. We outline the thermodynamics and estimate an isothermal entropy change specifically for the La0.7Sr0.3MnO3/Pb(Mg1/3Nb2/3)O3-PbTiO3(001) two-phase composite material. Finally, we propose structural variations of two-phase composites, which help in overcoming the challenging task of producing nanostructured material in macroscopic quantities.

  7. Team interaction skills evaluation criteria for nuclear power plant control room operators

    SciTech Connect

    Montgomery, J.C.; Toquam, J.; Gaddy, C.

    1991-09-01

    Previous research has shown the value of good team interaction skills to group performance, yet little progress has been made on in terms of how such skills can be measured. In this study rating scales developed previously (Montgomery, et al., 1990) were extensively revised and cast into a Behaviorally Anchored Rating Scale (BARS) and a Behavioral Frequency format. Rating data were collected using 13 training instructors at the Diablo Canyon Nuclear Plant, who rated three videotapes of simulator scenario performance during a day-long training session and later evaluated control room crews during requalification training. High levels of interrater agreement on both rating scales were found. However, the factor structure of the ratings was generally inconsistent with that hypothesized. Analysis of training ratings using Cronbach`s components of accuracy (Cronbach, 1955) indicated that BARS ratings generally exhibited less error than did the Behavioral Frequency ratings. The results are discussed in terms of both field and research implications.

  8. Infection Control Practice in the Operating Room: Staff Adherence to Existing Policies in a Developing Country

    PubMed Central

    Cawich, Shamir O; Tennant, Ingrid A; McGaw, Clarence D; Harding, Hyacinth; Walters, Christine A; Crandon, Ivor W

    2013-01-01

    Context: Infection control interventions are important for containing surgery-related infections. For this reason, the modern operating room (OR) should have well-developed infection control policies. The efficacy of these policies depends on how well the OR staff adhere to them. There is a lack of available data documenting adherence to infection control policies. Objective: To evaluate OR staff adherence to existing infection control policies in Jamaica. Methods: We administered a questionnaire to all OR staff to assess their training, knowledge of local infection control protocols, and practice with regard to 8 randomly selected guidelines. Adherence to each guideline was rated with fixed-choice items on a 4-point Likert scale. The sum of points determined the adherence score. Two respondent groups were defined: adherent (score > 26) and nonadherent (score ≤ 26). We evaluated the relationship between respondent group and age, sex, occupational rank, and time since completion of basic medical training. We used χ2 and Fisher exact tests to assess associations and t tests to compare means between variables of interest. Results: The sample comprised 132 participants (90 physicians and 42 nurses) with a mean age of 36 (standard deviation ± 9.5) years. Overall, 40.1% were adherent to existing protocols. There was no significant association between the distribution of adherence scores and sex (p = 0.319), time since completion of basic training (p = 0.595), occupational rank (p = 0.461), or age (p = 0.949). Overall, 19% felt their knowledge of infection control practices was inadequate. Those with working knowledge of infection control practices attained it mostly through informal communication (80.4%) and self-directed research (62.6%). Conclusion: New approaches to the problem of nonadherence to infection control guidelines are needed in the Caribbean. Several unique cultural, financial, and environmental factors influence adherence in this region, in contrast to

  9. Integrating Software Modules For Robot Control

    NASA Technical Reports Server (NTRS)

    Volpe, Richard A.; Khosla, Pradeep; Stewart, David B.

    1993-01-01

    Reconfigurable, sensor-based control system uses state variables in systematic integration of reusable control modules. Designed for open-architecture hardware including many general-purpose microprocessors, each having own local memory plus access to global shared memory. Implemented in software as extension of Chimera II real-time operating system. Provides transparent computing mechanism for intertask communication between control modules and generic process-module architecture for multiprocessor realtime computation. Used to control robot arm. Proves useful in variety of other control and robotic applications.

  10. Integrating Software Modules For Robot Control

    NASA Technical Reports Server (NTRS)

    Volpe, Richard A.; Khosla, Pradeep; Stewart, David B.

    1993-01-01

    Reconfigurable, sensor-based control system uses state variables in systematic integration of reusable control modules. Designed for open-architecture hardware including many general-purpose microprocessors, each having own local memory plus access to global shared memory. Implemented in software as extension of Chimera II real-time operating system. Provides transparent computing mechanism for intertask communication between control modules and generic process-module architecture for multiprocessor realtime computation. Used to control robot arm. Proves useful in variety of other control and robotic applications.

  11. Interim results of the study of control room crew staffing for advanced passive reactor plants

    SciTech Connect

    Hallbert, B.P.; Sebok, A.; Haugset, K.

    1996-03-01

    Differences in the ways in which vendors expect the operations staff to interact with advanced passive plants by vendors have led to a need for reconsideration of the minimum shift staffing requirements of licensed Reactor Operators and Senior Reactor Operators contained in current federal regulations (i.e., 10 CFR 50.54(m)). A research project is being carried out to evaluate the impact(s) of advanced passive plant design and staffing of control room crews on operator and team performance. The purpose of the project is to contribute to the understanding of potential safety issues and provide data to support the development of design review guidance. Two factors are being evaluated across a range of plant operating conditions: control room crew staffing; and characteristics of the operating facility itself, whether it employs conventional or advanced, passive features. This paper presents the results of the first phase of the study conducted at the Loviisa nuclear power station earlier this year. Loviisa served as the conventional plant in this study. Data collection from four crews were collected from a series of design basis scenarios, each crew serving in either a normal or minimum staffing configuration. Results of data analyses show that crews participating in the minimum shift staffing configuration experienced significantly higher workload, had lower situation awareness, demonstrated significantly less effective team performance, and performed more poorly as a crew than the crews participating in the normal shift staffing configuration. The baseline data on crew configurations from the conventional plant setting will be compared with similar data to be collected from the advanced plant setting, and a report prepared providing the results of the entire study.

  12. Beyond the Reading Room: Integrating Primary and Secondary Sources in the Library Classroom

    ERIC Educational Resources Information Center

    Sutton, Shan; Knight, Lorrie

    2006-01-01

    Information-literate students should understand the relationships between primary and secondary sources. This article presents a new model for integrating primary and secondary sources into general library instruction. The model is based on collaboration between a Special Collections librarian and an instruction librarian. It emphasizes the use of…

  13. Beyond the Reading Room: Integrating Primary and Secondary Sources in the Library Classroom

    ERIC Educational Resources Information Center

    Sutton, Shan; Knight, Lorrie

    2006-01-01

    Information-literate students should understand the relationships between primary and secondary sources. This article presents a new model for integrating primary and secondary sources into general library instruction. The model is based on collaboration between a Special Collections librarian and an instruction librarian. It emphasizes the use of…

  14. Integrating Behavioral Health Support into a Pediatric Setting: What Happens in the Exam Room?

    ERIC Educational Resources Information Center

    Cuno, Kate; Krug, Laura M.; Umylny, Polina

    2015-01-01

    This article presents an overview of the Healthy Steps for Young Children (Healthy Steps) program at Montefiore Medical Center, in the Bronx, NY. The authors review the theoretical underpinnings of this national program for the promotion of early childhood mental health. The Healthy Steps program at Montefiore is integrated into outpatient…

  15. Integrating Behavioral Health Support into a Pediatric Setting: What Happens in the Exam Room?

    ERIC Educational Resources Information Center

    Cuno, Kate; Krug, Laura M.; Umylny, Polina

    2015-01-01

    This article presents an overview of the Healthy Steps for Young Children (Healthy Steps) program at Montefiore Medical Center, in the Bronx, NY. The authors review the theoretical underpinnings of this national program for the promotion of early childhood mental health. The Healthy Steps program at Montefiore is integrated into outpatient…

  16. Light Water Reactor Sustainability Program Operator Performance Metrics for Control Room Modernization: A Practical Guide for Early Design Evaluation

    SciTech Connect

    Ronald Boring; Roger Lew; Thomas Ulrich; Jeffrey Joe

    2014-03-01

    As control rooms are modernized with new digital systems at nuclear power plants, it is necessary to evaluate the operator performance using these systems as part of a verification and validation process. There are no standard, predefined metrics available for assessing what is satisfactory operator interaction with new systems, especially during the early design stages of a new system. This report identifies the process and metrics for evaluating human system interfaces as part of control room modernization. The report includes background information on design and evaluation, a thorough discussion of human performance measures, and a practical example of how the process and metrics have been used as part of a turbine control system upgrade during the formative stages of design. The process and metrics are geared toward generalizability to other applications and serve as a template for utilities undertaking their own control room modernization activities.

  17. Dimensionality aspects of nano micro integrated metal oxide based early stage leak detection room temperature hydrogen sensor

    NASA Astrophysics Data System (ADS)

    Deshpande, Sameer Arun

    Detection of explosive gas leaks such as hydrogen (H2) becomes key element in the wake of counter-terrorism threats, introduction of hydrogen powered vehicles and use of hydrogen as a fuel for space explorations. In recent years, a significant interest has developed on metal oxide nanostructured sensors for the detection of hydrogen gas. Gas sensors properties such as sensitivity, selectivity and response time can be enhanced by tailoring the size, the shape, the structure and the surface of the nanostructures. Sensor properties (sensitivity, selectivity and response time) are largely modulated by operating temperature of the device. Issues like instability of nanostructures at high temperature, risk of hydrogen explosion and high energy consumption are driving the research towards detection of hydrogen at low temperatures. At low temperatures adsorption of O2- species on the sensor surface instead of O- (since O- species reacts easily with hydrogen) result in need of higher activation energy for hydrogen and adsorbed species interaction. This makes hydrogen detection at room temperature a challenging task. Higher surface area to volume ratio (resulting higher reaction sites), enhanced electronic properties by varying size, shape and doping foreign impurities (by modulating space charge region) makes nanocrystalline materials ideal candidate for room temperature gas sensing applications. In the present work various morphologies of nanostructured tin oxide (SnO 2) and indium (In) doped SnO2 and titanium oxide (titania, TiO2) were synthesized using sol-gel, hydrothermal, thermal evaporation techniques and successfully integrated with the micro-electromechanical devices H2 at ppm-level (as low as 100ppm) has been successfully detected at room temperature using the SnO2 nanoparticles, SnO2 (nanowires) and TiO2 (nanotubes) based MEMS sensors. While sensor based on indium doped tin oxide showed the highest sensitivity (S =Ra/Rg= 80000) and minimal response time (10sec

  18. Selective growth and integration of silver nanoparticles on silver nanowires at room conditions for transparent nano-network electrode.

    PubMed

    Lu, Haifei; Zhang, Di; Ren, Xingang; Liu, Jian; Choy, Wallace C H

    2014-10-28

    Recently, metal nanowires have received great research interests due to their potential as next-generation flexible transparent electrodes. While great efforts have been devoted to develop enabling nanowire electrodes, reduced contact resistance of the metal nanowires and improved electrical stability under continuous bias operation are key issues for practical applications. Here, we propose and demonstrate an approach through a low-cost, robust, room temperature and room atmosphere process to fabricate a conductive silver nano-network comprising silver nanowires and silver nanoparticles. To be more specific, silver nanoparticles are selectively grown and chemically integrated in situ at the junction where silver nanowires meet. The site-selective growth of silver nanoparticles is achieved by a plasmon-induced chemical reaction using a simple light source at very low optical power density. Compared to silver nanowire electrodes without chemical treatment, we observe tremendous conductivity improvement in our silver nano-networks, while the loss in optical transmission is negligible. Furthermore, the silver nano-networks exhibit superior electrical stability under continuous bias operation compared to silver nanowire electrodes formed by thermal annealing. Interestingly, our silver nano-network is readily peeled off in water, which can be easily transferred to other substrates and devices for versatile applications. We demonstrate the feasibly transferrable silver conductive nano-network as the top electrode in organic solar cells. Consequently, the transparent and conductive silver nano-networks formed by our approach would be an excellent candidate for various applications in optoelectronics and electronics.

  19. Western Aeronautical Test Range (WATR) Mission Control Gold Room During X-29 Flight

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The mission control Gold room is seen here during a research flight of the X-29 at the Dryden Flight Research Center, Edwards, California. All aspects of a research mission are monitored from one of two of these control rooms at Dryden. Dryden and its control rooms are part of the Western Aeronautical Test Range (WATR). The WATR consists of a highly automated complex of computer controlled tracking, telemetry, and communications systems and control room complexes that are capable of supporting any type of mission ranging from system and component testing, to sub-scale and full-scale flight tests of new aircraft and reentry systems. Designated areas are assigned for spin/dive tests; corridors are provided for low, medium, and high-altitude supersonic flight; and special STOL/VSTOL facilities are available at Ames Moffett and Crows Landing. Special use airspace, available at Edwards, covers approximately twelve thousand square miles of mostly desert area. The southern boundary lies to the south of Rogers Dry Lake, the western boundary lies midway between Mojave and Bakersfield, the northern boundary passes just south of Bishop, and the eastern boundary follows about 25 miles west of the Nevada border except in the northern areas where it crosses into Nevada. Two X-29 aircraft, featuring one of the most unusual designs in aviation history, flew at the Ames-Dryden Flight Research Facility (now the Dryden Flight Research Center, Edwards, California) from 1984 to 1992. The fighter-sized X-29 technology demonstrators explored several concepts and technologies including: the use of advanced composites in aircraft construction; variable-camber wing surfaces; a unique forward- swept wing and its thin supercritical airfoil; strakes; close-coupled canards; and a computerized fly-by-wire flight control system used to maintain control of the otherwise unstable aircraft. Research results showed that the configuration of forward-swept wings, coupled with movable canards, gave

  20. Wafer scale integration of reduced graphene oxide by novel laser processing at room temperature in air

    NASA Astrophysics Data System (ADS)

    Bhaumik, Anagh; Narayan, Jagdish

    2016-09-01

    Physical properties of reduced graphene oxide (rGO) strongly depend on the ratio of sp2 to sp3 hybridized carbon atoms, the presence of different functional groups, and the characteristics of the substrates. This research for the very first time illustrates successful wafer scale integration of 2D rGO with Cu/TiN/Si, employing pulsed laser deposition followed by laser annealing of carbon-doped copper layers using nanosecond excimer lasers. The XRD, SEM, and Raman spectroscopy measurements indicate the presence of large area rGO onto Si having Raman active vibrational modes: D, G, and 2D. A high resolution SEM depicts the morphology and formation of rGO from zone-refined carbon formed after nanosecond laser annealing. Temperature-dependent resistance data of rGO thin films follow the Efros-Shklovskii variable range hopping (VRH) model in the low-temperature region and Arrhenius conduction in the high-temperature regime. The photoluminescence spectra also reveal a less intense and broader blue fluorescence spectra, indicating the presence of miniature sized sp2 domains in the near vicinity of π* electronic states which favor the VRH transport phenomena. This wafer scale integration of rGO with Si employing a laser annealing technique will be useful for multifunctional integrated electronic devices and will open a new frontier for further extensive research in these functionalized 2D materials.

  1. View from the back of the Flight control room of Mission control center

    NASA Image and Video Library

    1984-10-06

    View from the back of the Mission Control Center (MCC). Visible are the Flight Directors console (left front), the CAPCOM console (right front) and the Payloads console. Some of the STS 41-G crew can be seen on a large screen at the front of the MCC along with a map tracking the progress of the orbiter.

  2. INTEGRATED PLASMA CONTROL FOR ADVANCED TOKAMAKS

    SciTech Connect

    HUMPHREYS,D.A; FERRON,J.R; JOHNSON,R.D; LEUER,J.A; PENAFLOR,B.G; WALKER,M.L; WELANDER,A.S; KHAYRUTDINOV,R.R; DOKOUKA,V; EDGELL,D.H; FRANSSON,C.M

    2003-10-01

    OAK-B135 Advanced tokamaks (AT) are distinguished from conventional tokamaks by their high degree of shaping, achievement of profiles optimized for high confinement and stability characteristics, and active stabilization of MHD instabilities to attain high values of normalized beta and confinement. These high performance fusion devices thus require accurate regulation of the plasma boundary, internal profiles, pumping, fueling, and heating, as well as simultaneous and well-coordinated MHD control action to stabilize such instabilities as tearing modes and resistive wall modes. Satisfying the simultaneous demands on control accuracy, reliability, and performance for all of these subsystems requires a high degree of integration in both design and operation of the plasma control system in an advanced tokamak. The present work describes the approach, benefits, and progress made in integrated plasma control with application examples drawn from the DIII-D tokamak. The approach includes construction of plasma and system response models, validation of models against operating experiments, design of integrated controllers which operate in concert with one another as well as with supervisory modules, simulation of control action against off-line and actual machine control platforms, and iteration of the design-test loop to optimize performance.

  3. Device- and system-independent personal touchless user interface for operating rooms : One personal UI to control all displays in an operating room.

    PubMed

    Ma, Meng; Fallavollita, Pascal; Habert, Séverine; Weidert, Simon; Navab, Nassir

    2016-06-01

    In the modern day operating room, the surgeon performs surgeries with the support of different medical systems that showcase patient information, physiological data, and medical images. It is generally accepted that numerous interactions must be performed by the surgical team to control the corresponding medical system to retrieve the desired information. Joysticks and physical keys are still present in the operating room due to the disadvantages of mouses, and surgeons often communicate instructions to the surgical team when requiring information from a specific medical system. In this paper, a novel user interface is developed that allows the surgeon to personally perform touchless interaction with the various medical systems, switch effortlessly among them, all of this without modifying the systems' software and hardware. To achieve this, a wearable RGB-D sensor is mounted on the surgeon's head for inside-out tracking of his/her finger with any of the medical systems' displays. Android devices with a special application are connected to the computers on which the medical systems are running, simulating a normal USB mouse and keyboard. When the surgeon performs interaction using pointing gestures, the desired cursor position in the targeted medical system display, and gestures, are transformed into general events and then sent to the corresponding Android device. Finally, the application running on the Android devices generates the corresponding mouse or keyboard events according to the targeted medical system. To simulate an operating room setting, our unique user interface was tested by seven medical participants who performed several interactions with the visualization of CT, MRI, and fluoroscopy images at varying distances from them. Results from the system usability scale and NASA-TLX workload index indicated a strong acceptance of our proposed user interface.

  4. Room-temperature chemical integration of ZnO nanoarchitectures on plastic substrates for flexible dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Chang, Geng-Jia; Lin, Shou-Yen; Wu, Jih-Jen

    2014-01-01

    ZnO nanoarchitectured anodes composed of the ZnO nanocactus array and the top ZnO particle layer are chemically integrated on ITO-PET substrates using a facile room-temperature chemical bath deposition method for dye-sensitized solar cells (DSSCs). In the absence of high-temperature post-treatment and mechanical compression, a notable efficiency of 5.24% is simply achieved in the flexible ZnO DSSC.ZnO nanoarchitectured anodes composed of the ZnO nanocactus array and the top ZnO particle layer are chemically integrated on ITO-PET substrates using a facile room-temperature chemical bath deposition method for dye-sensitized solar cells (DSSCs). In the absence of high-temperature post-treatment and mechanical compression, a notable efficiency of 5.24% is simply achieved in the flexible ZnO DSSC. Electronic supplementary information (ESI) available: Experimental details, SEM and TEM images of ZnO NP seed layer, XRD pattern of ZnO TP film, photographs of the flexible ZnO NC-TP anode and the corresponding DSSC, influences of array length on density of primary NW array as well as Jsc and efficiency of the ZnO NC DSSCs, photovoltaic performances of flexible D149-sensitized ZnO NC-TP DSSCs fabricated using 10 μm thick ZnO NC arrays and ZnO TP films with various thicknesses, J-V curve of ZnO NC-TP-g DSSC, transmittance spectra of ITO-PET and ITO-glass substrates, and bending test results of the unsealed ZnO NC-TP DSSC cells. See DOI: 10.1039/c3nr05267b

  5. Integrated Neural Flight and Propulsion Control System

    NASA Technical Reports Server (NTRS)

    Kaneshige, John; Gundy-Burlet, Karen; Norvig, Peter (Technical Monitor)

    2001-01-01

    This paper describes an integrated neural flight and propulsion control system. which uses a neural network based approach for applying alternate sources of control power in the presence of damage or failures. Under normal operating conditions, the system utilizes conventional flight control surfaces. Neural networks are used to provide consistent handling qualities across flight conditions and for different aircraft configurations. Under damage or failure conditions, the system may utilize unconventional flight control surface allocations, along with integrated propulsion control, when additional control power is necessary for achieving desired flight control performance. In this case, neural networks are used to adapt to changes in aircraft dynamics and control allocation schemes. Of significant importance here is the fact that this system can operate without emergency or backup flight control mode operations. An additional advantage is that this system can utilize, but does not require, fault detection and isolation information or explicit parameter identification. Piloted simulation studies were performed on a commercial transport aircraft simulator. Subjects included both NASA test pilots and commercial airline crews. Results demonstrate the potential for improving handing qualities and significantly increasing survivability rates under various simulated failure conditions.

  6. An Integrated Theory of Complement Control.

    ERIC Educational Resources Information Center

    Sag, Ivan A.; Pollard, Carl

    1991-01-01

    Presents an integrated theory of the syntactic and semantic representation of complements where the unexpressed subjects of the embedded verb-phrase complement are subject to certain interpretation restrictions. It is argued that the grammar of English controlled complements can be derived from the interaction of semantically based principles of…

  7. An Integrated Theory of Complement Control.

    ERIC Educational Resources Information Center

    Sag, Ivan A.; Pollard, Carl

    1991-01-01

    Presents an integrated theory of the syntactic and semantic representation of complements where the unexpressed subjects of the embedded verb-phrase complement are subject to certain interpretation restrictions. It is argued that the grammar of English controlled complements can be derived from the interaction of semantically based principles of…

  8. Integrated computer control system architectural overview

    SciTech Connect

    Van Arsdall, P.

    1997-06-18

    This overview introduces the NIF Integrated Control System (ICCS) architecture. The design is abstract to allow the construction of many similar applications from a common framework. This summary lays the essential foundation for understanding the model-based engineering approach used to execute the design.

  9. Using virtual reality to support multi-participant human-centered design processes for control room design

    SciTech Connect

    Louka, M. N.; Gustavsen, M. A.; Edvardsen, S. T.

    2006-07-01

    We present an overview of a method of applying interactive 3D visualization techniques to support control room design activities, and summarize studies that supports it. In particular, we describe the software tools that we have developed and how these support a human-centered design (HCD) work-flow. We present some lessons learnt from using our tools in control room design projects, and outline our plans for extending the scope of our approach to support concurrent design and later phases of a plant's life-cycle. (authors)

  10. [Operation room management in quality control certification of a mainstream hospital].

    PubMed

    Leidinger, W; Meierhofer, J N; Schüpfer, G

    2006-11-01

    We report the results of our study concerning the organisation of operating room (OR) capacity planned 1 year in advance. The use of OR is controlled using 2 global controlling numbers: a) the actual time difference between the expected optimal and previously calculated OR running time and b) the punctuality of starting the first operation in each OR. The focal point of the presented OR management concept is a consensus-oriented decision-making and steering process led by a coordinator who achieves a high degree of acceptance by means of comprehensive transparency. Based on the accepted running time, the optimal productivity of OR's (OP_A(%) can be calculated. In this way an increase of the overall capacity (actual running time) of ORs was from 40% to over 55% was achieved. Nevertheless, enthusiasm and teamwork from all persons involved in the system are vital for success as well as a completely independent operating theatre manager. Using this concept over 90% of the requirements for the new certification catalogue for hospitals in Germany was achieved.

  11. Room temperature alcohol sensing by oxygen vacancy controlled TiO{sub 2} nanotube array

    SciTech Connect

    Hazra, A.; Dutta, K.; Bhowmik, B.; Bhattacharyya, P.; Chattopadhyay, P. P.

    2014-08-25

    Oxygen vacancy (OV) controlled TiO{sub 2} nanotubes, having diameters of 50–70 nm and lengths of 200–250 nm, were synthesized by electrochemical anodization in the mixed electrolyte comprising NH{sub 4}F and ethylene glycol with selective H{sub 2}O content. The structural evolution of TiO{sub 2} nanoforms has been studied by field emission scanning electron microscopy. Variation in the formation of OVs with the variation of the structure of TiO{sub 2} nanoforms has been evaluated by photoluminescence and X-ray photoelectron spectroscopy. The sensor characteristics were correlated to the variation of the amount of induced OVs in the nanotubes. The efficient room temperature sensing achieved by the control of OVs of TiO{sub 2} nanotube array has paved the way for developing fast responding alcohol sensor with corresponding response magnitude of 60.2%, 45.3%, and 36.5% towards methanol, ethanol, and 2-propanol, respectively.

  12. Local electrical control of magnetic order and orientation by ferroelastic domain arrangements just above room temperature

    PubMed Central

    Phillips, L. C.; Cherifi, R. O.; Ivanovskaya, V.; Zobelli, A.; Infante, I. C.; Jacquet, E.; Guiblin, N.; Ünal, A. A.; Kronast, F.; Dkhil, B.; Barthélémy, A.; Bibes, M.; Valencia, S.

    2015-01-01

    Ferroic materials (ferromagnetic, ferroelectric, ferroelastic) usually divide into domains with different orientations of their order parameter. Coupling between different ferroic systems creates new functionalities, for instance the electrical control of macroscopic magnetic properties including magnetization and coercive field. Here we show that ferroelastic domains can be used to control both magnetic order and magnetization direction at the nanoscale with a voltage. We use element-specific X-ray imaging to map the magnetic domains as a function of temperature and voltage in epitaxial FeRh on ferroelastic BaTiO3. Exploiting the nanoscale phase-separation of FeRh, we locally interconvert between ferromagnetic and antiferromagnetic states with a small electric field just above room temperature. Imaging and ab initio calculations show the antiferromagnetic phase of FeRh is favoured by compressive strain on c-oriented BaTiO3 domains, and the resultant magnetoelectric coupling is larger and more reversible than previously reported from macroscopic measurements. Our results emphasize the importance of nanoscale ferroic domain structure and the promise of first-order transition materials to achieve enhanced coupling in artificial multiferroics. PMID:25969926

  13. Integrated identification, modeling and control with applications

    NASA Astrophysics Data System (ADS)

    Shi, Guojun

    This thesis deals with the integration of system design, identification, modeling and control. In particular, six interdisciplinary engineering problems are addressed and investigated. Theoretical results are established and applied to structural vibration reduction and engine control problems. First, the data-based LQG control problem is formulated and solved. It is shown that a state space model is not necessary to solve this problem; rather a finite sequence from the impulse response is the only model data required to synthesize an optimal controller. The new theory avoids unnecessary reliance on a model, required in the conventional design procedure. The infinite horizon model predictive control problem is addressed for multivariable systems. The basic properties of the receding horizon implementation strategy is investigated and the complete framework for solving the problem is established. The new theory allows the accommodation of hard input constraints and time delays. The developed control algorithms guarantee the closed loop stability. A closed loop identification and infinite horizon model predictive control design procedure is established for engine speed regulation. The developed algorithms are tested on the Cummins Engine Simulator and desired results are obtained. A finite signal-to-noise ratio model is considered for noise signals. An information quality index is introduced which measures the essential information precision required for stabilization. The problems of minimum variance control and covariance control are formulated and investigated. Convergent algorithms are developed for solving the problems of interest. The problem of the integrated passive and active control design is addressed in order to improve the overall system performance. A design algorithm is developed, which simultaneously finds: (i) the optimal values of the stiffness and damping ratios for the structure, and (ii) an optimal output variance constrained stabilizing

  14. Controllable Growth of Perovskite Films by Room-Temperature Air Exposure for Efficient Planar Heterojunction Photovoltaic Cells

    SciTech Connect

    Yang, Bin; Dyck, Ondrej; Poplawsky, Jonathan; Keum, Jong; Das, Sanjib; Puretzky, Alexander; Aytug, Tolga; Joshi, Pooran C.; Rouleau, Christopher M.; Duscher, Gerd; Geohegan, David B.; Xiao, Kai

    2015-12-01

    A two-step-solution-processing approach has been established to grow void-free perovskite films for low-cost and high-performance planar heterojunction photovoltaic devices. We generally applied a high-temperature thermal annealing treatment in order to drive the diffusion of CH3NH3I precursor molecules into the compact PbI2 layer to form perovskite films. But, thermal annealing for extended periods would lead to degraded device performance due to the defects generated by decomposition of perovskite into PbI2. In this work, we explored a controllable layer-by-layer spin-coating method to grow bilayer CH3NH3I/PbI2 films, and then drive the interdiffusion between PbI2 and CH3NH3I layers by a simple room-temperature-air-exposure for making well-oriented, highly-crystalline perovskite films without thermal annealing. This high degree of crystallinity resulted in a carrier diffusion length of ~ 800 nm and high device efficiency of 15.6%, which is comparable to the reported values from thermally-annealed perovskite films based counterparts. Finally, the simplicity and high device performance of this processing approach is highly promising for direct integration into industrial-scale device manufacture.

  15. Controllable Growth of Perovskite Films by Room-Temperature Air Exposure for Efficient Planar Heterojunction Photovoltaic Cells

    DOE PAGES

    Yang, Bin; Dyck, Ondrej; Poplawsky, Jonathan; ...

    2015-12-01

    A two-step-solution-processing approach has been established to grow void-free perovskite films for low-cost and high-performance planar heterojunction photovoltaic devices. We generally applied a high-temperature thermal annealing treatment in order to drive the diffusion of CH3NH3I precursor molecules into the compact PbI2 layer to form perovskite films. But, thermal annealing for extended periods would lead to degraded device performance due to the defects generated by decomposition of perovskite into PbI2. In this work, we explored a controllable layer-by-layer spin-coating method to grow bilayer CH3NH3I/PbI2 films, and then drive the interdiffusion between PbI2 and CH3NH3I layers by a simple room-temperature-air-exposure for makingmore » well-oriented, highly-crystalline perovskite films without thermal annealing. This high degree of crystallinity resulted in a carrier diffusion length of ~ 800 nm and high device efficiency of 15.6%, which is comparable to the reported values from thermally-annealed perovskite films based counterparts. Finally, the simplicity and high device performance of this processing approach is highly promising for direct integration into industrial-scale device manufacture.« less

  16. Integrated microsystems for controlled drug delivery.

    PubMed

    Razzacki, S Zafar; Thwar, Prasanna K; Yang, Ming; Ugaz, Victor M; Burns, Mark A

    2004-02-10

    Efficient drug delivery and administration are needed to realize the full potential of molecular therapeutics. Integrated microsystems that incorporate extremely fast sensory and actuation capabilities can fulfill this need for efficient drug delivery tools. Photolithographic technologies borrowed from the semiconductor industry enable mass production of such microsystems. Rapid prototyping allows for the quick development of customized devices that would accommodate for diverse therapeutic requirements. This paper reviews the capabilities of existing microfabrication and their applications in controlled drug delivery microsystems. The next generation of drug delivery systems--fully integrated and self-regulating--would not only improve drug administration, but also revolutionize the health-care industry.

  17. Room-temperature triggered single photon emission from a III-nitride site-controlled nanowire quantum dot.

    PubMed

    Holmes, Mark J; Choi, Kihyun; Kako, Satoshi; Arita, Munetaka; Arakawa, Yasuhiko

    2014-02-12

    We demonstrate triggered single photon emission at room temperature from a site-controlled III-nitride quantum dot embedded in a nanowire. Moreover, we reveal a remarkable temperature insensitivity of the single photon statistics, and a g((2))[0] value at 300 K of just 0.13. The combination of using high-quality, small, site-controlled quantum dots with a wide-bandgap material system is crucial for providing both sufficient exciton confinement and an emission spectrum with minimal contamination in order to enable room temperature operation. Arrays of such single photon emitters will be useful for room-temperature quantum information processing applications such as on-chip quantum communication.

  18. Tensile Properties and Integrity of Clean Room and Low-Modulus Disposable Nitrile Gloves: A Comparison of Two Dissimilar Glove Types

    PubMed Central

    Phalen, Robert N.; Wong, Weng kee

    2012-01-01

    Background: The selection of disposable nitrile exam gloves is complicated by (i) the availability of several types or formulations, (ii) product variability, and (iii) an inability of common quality control tests to detect small holes in the fingers. Differences in polymer formulation (e.g. filler and plasticizer/oil content) and tensile properties are expected to account for much of the observed variability in performance. Objectives: This study evaluated the tensile properties and integrity (leak failure rates) of two glove choices assumed to contain different amounts of plasticizers/oils. The primary aims were to determine if the tensile properties and integrity differed and if associations existed among these factors. Additional physical and chemical properties were evaluated. Methods: Six clean room and five low-modulus products were evaluated using the American Society for Testing and Materials Method D412 and a modified water-leak test to detect holes capable of passing a virus or chemical agent. Results: Significant differences in the leak failure rates and tensile properties existed between the two glove types (P ≤ 0.05). The clean room gloves were about three times more likely to have leak failures (chi-square; P = 0.001). No correlation was observed between leak failures and tensile properties. Solvent extract, an indication of added plasticizer/oil, was not associated with leak failures. However, gloves with a maximum modulus <4 MPa or area density (AD) <11 g cm−2 were about four times less likely to leak. Conclusions: On average, the low-modulus gloves were a better choice for protection against aqueous chemical or biological penetration. The observed variability between glove products indicated that glove selection cannot rely solely on glove type or manufacturer labeling. Measures of modulus and AD may aid in the selection process, in contrast with common measures of tensile strength and elongation at break. PMID:22201179

  19. Room transfers and the risk of delirium incidence amongst hospitalized elderly medical patients: a case-control study.

    PubMed

    Goldberg, Amanda; Straus, Sharon E; Hamid, Jemila S; Wong, Camilla L

    2015-06-25

    Room transfers are suspected to promote the development of delirium in hospitalized elderly patients, but no studies have systematically examined the relationship between room transfers and delirium incidence. We used a case-control study to determine if the number of room transfers per patient days is associated with an increased incidence of delirium amongst hospitalized elderly medical patients, controlling for baseline risk factors. We included patients 70 years of age or older who were admitted to the internal medicine or geriatric medicine services at St. Michael's Hospital between October 2009 and September 2010 for more than 24 h. The cases consisted of patients who developed delirium during the first week of hospital stay. The controls consisted of patients who did not develop delirium during the first week of hospital stay. Patients with evidence of delirium at admission were excluded from the analysis. A multivariable logistic regression model was used to determine the relationship between room transfers and delirium development within the first week of hospital stay. 994 patients were included in the study, of which 126 developed delirium during the first week of hospital stay. Using a multivariable logistic regression model which controlled for age, gender, cognitive impairment, vision impairment, dehydration, and severe illness, room transfers per patient days were associated with delirium incidence (OR: 9.69, 95 % CI (6.20 to15.16), P < 0.0001). An increased number of room transfers per patient days is associated with an increased incidence of delirium amongst hospitalized elderly medical patients. This is an exploratory analysis and needs confirmation with larger studies.

  20. An integrated multivariable artificial pancreas control system.

    PubMed

    Turksoy, Kamuran; Quinn, Lauretta T; Littlejohn, Elizabeth; Cinar, Ali

    2014-05-01

    The objective was to develop a closed-loop (CL) artificial pancreas (AP) control system that uses continuous measurements of glucose concentration and physiological variables, integrated with a hypoglycemia early alarm module to regulate glucose concentration and prevent hypoglycemia. Eleven open-loop (OL) and 9 CL experiments were performed. A multivariable adaptive artificial pancreas (MAAP) system was used for the first 6 CL experiments. An integrated multivariable adaptive artificial pancreas (IMAAP) system consisting of MAAP augmented with a hypoglycemia early alarm system was used during the last 3 CL experiments. Glucose values and physical activity information were measured and transferred to the controller every 10 minutes and insulin suggestions were entered to the pump manually. All experiments were designed to be close to real-life conditions. Severe hypoglycemic episodes were seen several times during the OL experiments. With the MAAP system, the occurrence of severe hypoglycemia was decreased significantly (P < .01). No hypoglycemia was seen with the IMAAP system. There was also a significant difference (P < .01) between OL and CL experiments with regard to percentage of glucose concentration (54% vs 58%) that remained within target range (70-180 mg/dl). Integration of an adaptive control and hypoglycemia early alarm system was able to keep glucose concentration values in target range in patients with type 1 diabetes. Postprandial hypoglycemia and exercise-induced hypoglycemia did not occur when this system was used. Physical activity information improved estimation of the blood glucose concentration and effectiveness of the control system.

  1. High-voltage field-controlled integrated thyristor

    NASA Astrophysics Data System (ADS)

    Grekhov, I. V.; Rozhkov, A. V.; Kostina, L. S.; Konovalov, A. V.; Fomenko, Yu. L.

    2013-01-01

    The design and technology of powerful field-controlled integrated thyristors, new energy-saving devices intended for converter equipment, are considered. The turn-on and turn-off current and voltage waveforms of the n+ p' N- n' p + microthyristor chip are presented, and turn-on and turn-off mechanisms are discussed. The development of local dynamic breakdown at turn-off is experimentally studied. The respective waveforms for this process are given, and the type of breakdown at a current density of about 150 A/cm2 is demonstrated. The current-voltage characteristics in the on state at room temperature and at 125°C indicate the temperature dependence changes sign at a current density above 60 A/cm2, becoming positive. This is significant for parallel operation of microthyristor chips in a module. It is shown that the static and dynamic characteristics of simple-in-design field-controlled integrated thyristors are highly competitive with those of insulated-gate bipolar transistors-basic devices of advanced high-power converter equipment.

  2. A virtual control room with an embedded, interactive nuclear reactor simulator

    SciTech Connect

    Markidis, S.; Rizwan, U.

    2006-07-01

    The use of virtual nuclear control room can be an effective and powerful tool for training personnel working in the nuclear power plants. Operators could experience and simulate the functioning of the plant, even in critical situations, without being in a real power plant or running any risk. 3D models can be exported to Virtual Reality formats and then displayed in the Virtual Reality environment providing an immersive 3D experience. However, two major limitations of this approach are that 3D models exhibit static textures, and they are not fully interactive and therefore cannot be used effectively in training personnel. In this paper we first describe a possible solution for embedding the output of a computer application in a 3D virtual scene, coupling real-world applications and VR systems. The VR system reported here grabs the output of an application running on an X server; creates a texture with the output and then displays it on a screen or a wall in the virtual reality environment. We then propose a simple model for providing interaction between the user in the VR system and the running simulator. This approach is based on the use of internet-based application that can be commanded by a laptop or tablet-pc added to the virtual environment. (authors)

  3. REVIEW Of COMPUTERIZED PROCEDURE GUIDELINES FOR NUCLEAR POWER PLANT CONTROL ROOMS

    SciTech Connect

    David I Gertman; Katya Le Blanc; Ronald L Boring

    2011-09-01

    Computerized procedures (CPs) are recognized as an emerging alternative to paper-based procedures for supporting control room operators in nuclear power plants undergoing life extension and in the concept of operations for advanced reactor designs. CPs potentially reduce operator workload, yield increases in efficiency, and provide for greater resilience. Yet, CPs may also adversely impact human and plant performance if not designed and implemented properly. Therefore, it is important to ensure that existing guidance is sufficient to provide for proper implementation and monitoring of CPs. In this paper, human performance issues were identified based on a review of the behavioral science literature, research on computerized procedures in nuclear and other industries, and a review of industry experience with CPs. The review of human performance issues led to the identification of a number of technical gaps in available guidance sources. To address some of the gaps, we developed 13 supplemental guidelines to support design and safety. This paper presents these guidelines and the case for further research.

  4. Gold nanoparticle assemblies of controllable size obtained by hydroxylamine reduction at room temperature

    NASA Astrophysics Data System (ADS)

    Tódor, István Sz.; Szabó, László; Marişca, Oana T.; Chiş, Vasile; Leopold, Nicolae

    2014-12-01

    Colloidal nanoparticle assemblies (NPAs) were obtained in a one-step procedure, by reduction of HAuCl4 by hydroxylamine hydrochloride, at room temperature, without the use of any additional nucleating agent. By changing the order of the reactants, NPAs with mean size of 20 and 120 nm were obtained. Because of their size and irregular popcorn like shape, the larger size NPAs show absorption in the NIR spectral region. The building blocks of the resulted nanoassemblies are spherical nanoparticles with diameters of 4-8 and 10-30 nm, respectively. Moreover, by stabilizing the colloid with bovine serum albumin at different time moments after synthesis, NPAs of controlled size between 20 and 120 nm, could be obtained. The NPAs were characterized using UV-Vis spectroscopy, TEM and SEM electron microscopies. In addition, the possibility of using the here proposed NPAs as surface-enhanced Raman scattering (SERS) substrate was assessed and found to provide a higher enhancement compared to conventional citrate-reduced nanoparticles.

  5. Integrated network control and performance monitoring

    NASA Astrophysics Data System (ADS)

    Schaefer, D. J.

    A brief description is given of an integrated satellite system monitor utilizing remote control operation from a centralized satellite network operations center. This monitoring facility can measure selected Time Division Multiple Access (TDMA) transmission parameters in real time and report the measurement results to the central satellite operations center having responsibility for overall system operation. The monitor system, while similar to other existing TDMA monitors, is unique in that it features dual rate and frequency band operation in a frequency-hopped environment.

  6. Operating Room Time Savings with the Use of Splint Packs: A Randomized Controlled Trial

    PubMed Central

    Gonzalez, Tyler A.; Bluman, Eric M.; Palms, David; Smith, Jeremy T.; Chiodo, Christopher P.

    2016-01-01

    Background: The most expensive variable in the operating room (OR) is time. Lean Process Management is being used in the medical field to improve efficiency in the OR. Streamlining individual processes within the OR is crucial to a comprehensive time saving and cost-cutting health care strategy. At our institution, one hour of OR time costs approximately $500, exclusive of supply and personnel costs. Commercially prepared splint packs (SP) contain all components necessary for plaster-of-Paris short-leg splint application and have the potential to decrease splint application time and overall costs by making it a more lean process. We conducted a randomized controlled trial comparing OR time savings between SP use and bulk supply (BS) splint application. Methods: Fifty consecutive adult operative patients on whom post-operative short-leg splint immobilization was indicated were randomized to either a control group using BS or an experimental group using SP. One orthopaedic surgeon (EMB) prepared and applied all of the splints in a standardized fashion. Retrieval time, preparation time, splint application time, and total splinting time for both groups were measured and statistically analyzed. Results: The retrieval time, preparation time and total splinting time were significantly less (p<0.001) in the SP group compared with the BS group. There was no significant difference in application time between the SP group and BS group. Conclusion: The use of SP made the process of splinting more lean. This has resulted in an average of 2 minutes 52 seconds saved in total splinting time compared to BS, making it an effective cost-cutting and time saving technique. For high volume ORs, use of splint packs may contribute to substantial time and cost savings without impacting patient safety. PMID:26894212

  7. Human factors aspects of control room design: Guidelines and annotated bibliography

    NASA Technical Reports Server (NTRS)

    Mitchell, C. M.; Stewart, L. J.; Bocast, A. K.; Murphy, E. D.

    1982-01-01

    A human factors analysis of the workstation design for the Earth Radiation Budget Satellite mission operation room is discussed. The relevance of anthropometry, design rules, environmental design goals, and the social-psychological environment are discussed.

  8. Integrated communication and control systems. I - Analysis

    NASA Technical Reports Server (NTRS)

    Halevi, Yoram; Ray, Asok

    1988-01-01

    The paper presents the results of an ICCS analysis focusing on discrete-time control systems subject to time-varying delays. The present analytical technique is applicable to integrated dynamic systems such as those encountered in advanced aircraft, spacecraft, and the real-time control of robots and machine tools via a high-speed network within an autonomous manufacturing environment. The significance of data latency and missynchronization between individual system components in ICCS networks is discussed in view of the time-varying delays.

  9. Orbiter integrated active thermal control subsystem test

    NASA Technical Reports Server (NTRS)

    Jaax, J. R.

    1980-01-01

    Integrated subsystem level testing of the systems within the orbiter active thermal chamber capable of simulating ground, orbital, and entry temperature and pressure profiles. The test article was in a closed loop configuration that included flight type and functionally simulated protions of all ATCS components for collecting, transporting, and rejecting orbiter waste heat. Specially designed independently operating equipment simulated the transient thermal input from the cabin, payload, fuel cells, freon cold plates, hydraulic system, and space environment. Test team members using data, controls, and procedures available to a flight crew controlled the operation of the ATCS. The ATCS performance met or exceeded all thermal and operational requirements for planned and contingency mission support.

  10. Vector ecology and integrated control procedures

    PubMed Central

    Laird, Marshall

    1963-01-01

    The elucidation of population regulatory mechanisms calls for exhaustive biological and ecological studies of whole ecosystems. Until lately, little effort was made to relate insect control activities to such a background, and the use of non-selective pesticides has often resulted in biotic equilibria being disrupted to the ultimate advantage of the organism under attack or of some other undesirable species. However, there is a growing realization in the field of economic entomology at large that biotic control agents usually constitute the major portion of the environmental resistance to increases in pest numbers and that insecticides should be fitted into the ecosystem, and not imposed upon it—in fact, that integrated control procedures are called for. The author considers such integrated procedures from the standpoint of vector control. His paper points out their potentialities in helping to solve resistance problems and in increasing the selectivity of control operations. It further suggests that they offer the means of achieving economical and lasting reductions of vector populations to levels at which human disease transmission is interrupted and pest problems lose much of their importance. PMID:20604165

  11. NASA personnel in a control room during the successful second flight of the X-43A aircraft

    NASA Image and Video Library

    2004-03-27

    NASA personnel in a control room during the successful second flight of the X-43A aircraft. front row, left to right: Randy Voland, LaRC Propulsion; Craig Christy, Boeing Systems; Dave Reubush, NASA Hyper-X Deputy Program Manager; and Vince Rausch, NASA Hyper-X Program Manager. back row, left to right: Bill Talley, DCI/consultant; Pat Stoliker, DFRC Director (Acting) of Research Engineering; John Martin, LaRC G&C; and Dave Bose, AMA/Controls.

  12. Integrated Bulding Heating, Cooling and Ventilation Control

    NASA Astrophysics Data System (ADS)

    Dong, Bing

    Current research studies show that building heating, cooling and ventilation energy consumption account for nearly 40% of the total building energy use in the U.S. The potential for saving energy through building control systems varies from 5% to 20% based on recent market surveys. In addition, building control affects environmental performances such as thermal, visual, air quality, etc., and occupancy such as working productivity and comfort. Building control has been proven to be important both in design and operation stages. Building control design and operation need consistent and reliable static and dynamic information from multiple resources. Static information includes building geometry, construction and HVAC equipment. Dynamic information includes zone environmental performance, occupancy and outside weather information during operation. At the same time, model-based predicted control can help to optimize energy use while maintaining indoor set-point temperature when occupied. Unfortunately, several issues in the current approach of building control design and operation impede achieving this goal. These issues include: a) dynamic information data such as real-time on-site weather (e.g., temperature, wind speed and solar radiation) and occupancy (number of occupants and occupancy duration in the space) are not readily available; b) a comprehensive building energy model is not fully integrated into advanced control for accuracy and robustness; c) real-time implementation of indoor air temperature control are rare. This dissertation aims to investigate and solve these issues based on an integrated building control approach. This dissertation introduces and illustrates a method for integrated building heating, cooling and ventilation control to reduce energy consumption and maintain indoor temperature set-point, based on the prediction of occupant behavior patterns and weather conditions. Advanced machine learning methods including Adaptive Gaussian Process

  13. Evaluation of exposure limits to toxic gases for nuclear reactor control room operators

    SciTech Connect

    Mahlum, D.D.; Sasser, L.B. )

    1991-07-01

    We have evaluated ammonia, chlorine, Halon (actually a generic name for several halogenated hydro-carbons), and sulfur dioxide for their possible effects during an acute two-minute exposure in order to derive recommendations for maximum exposure levels. To perform this evaluation, we conducted a search to find the most pertinent literature regarding toxicity in humans and in experimental animals. Much of the literature is at least a decade old, not an unexpected finding since acute exposures are less often performed now than they were a few years ago. In most cases, the studies did not specifically examine the effects of two-minute exposures; thus, extrapolations had to be made from studies of longer-exposure periods. Whenever possible, we gave the greatest weight to human data, with experimental animal data serving to strengthen the conclusion arrived at from consideration of the human data. Although certain individuals show hypersensitivity to materials like sulfur dioxide, we have not attempted to factor this information into the recommendations. After our evaluation of the data in the literature, we held a small workshop. Major participants in this workshop were three consultants, all of whom were Diplomates of the American Board of Toxicology, and staff from the Nuclear Regulatory Commission. Our preliminary recommendations for two-minute exposure limits and the rationale for them were discussed and consensus reached on final recommendations. These recommendations are: (1) ammonia-300 to 400-ppm; (2) chlorine-30 ppm; (3) Halon 1301-5%; Halon 1211-2%; and (4) sulfur dioxide-100 ppm. Control room operators should be able to tolerate two-minute exposures to these levels, don fresh-air masks, and continue to operate the reactor if the toxic material is eliminated, or safely shut down the reactor if the toxic gas remains. 96 refs., 9 tabs.

  14. Effects of Shift Work on Cognitive Performance, Sleep Quality, and Sleepiness among Petrochemical Control Room Operators

    PubMed Central

    Kazemi, Reza; Haidarimoghadam, Rashid; Golmohamadi, Rostam; Soltanian, Alireza; Zoghipaydar, Mohamad Reza

    2016-01-01

    Shift work is associated with both sleepiness and reduced performance. The aim of this study was to examine cognitive performance, sleepiness, and sleep quality among petrochemical control room shift workers. Sixty shift workers participated in this study. Cognitive performance was evaluated using a number of objective tests, including continuous performance test, n-back test, and simple reaction time test; sleepiness was measured using the subjective Karolinska Sleepiness Scale (KSS); and sleep quality was assessed using the Pittsburgh Sleep Quality Index (PSQI) questionnaire. ANCOVA, t-test, and repeated-measures ANOVA were applied for statistical analyses, and the significance level was set at p < 0.05. All variables related to cognitive performance, except for omission error, significantly decreased at the end of both day and night shifts (p < 0.0001). There were also significant differences between the day and night shifts in terms of the variables of omission error (p < 0.027) and commission error (p < 0.036). A significant difference was also observed between daily and nightly trends of sleepiness (p < 0.0001) so that sleepiness was higher for the night shift. Participants had low sleep quality on both day and night shifts, and there were significant differences between the day and night shifts in terms of subjective sleep quality and quantity (p < 0.01). Long working hours per shift result in fatigue, irregularities in the circadian rhythm and the cycle of sleep, induced cognitive performance decline at the end of both day and night shifts, and increased sleepiness in night shift. It, thus, seems necessary to take ergonomic measures such as planning for more appropriate shift work and reducing working hours. PMID:27103934

  15. Cooperative control theory and integrated flight and propulsion control

    NASA Technical Reports Server (NTRS)

    Schmidt, David K.; Schierman, John D.

    1994-01-01

    This report documents the activities and research results obtained under a grant (NAG3-998) from the NASA Lewis Research Center. The focus of the research was the investigation of dynamic interactions between airframe and engines for advanced ASTOVL aircraft configurations, and the analysis of the implications of these interactions on the stability and performance of the airframe and engine control systems. In addition, the need for integrated flight and propulsion control for such aircraft was addressed. The major contribution of this research was the exposition of the fact that airframe and engine interactions could be present, and their effects could include loss of stability and performance of the control systems. Also, the significance of two directional, as opposed to one-directional, coupling was identified and explained. A multi variable stability and performance analysis methodology was developed, and applied to several candidate aircraft configurations. Also exposed was the fact that with interactions present along with some integrated control approaches, the engine command/limiting logic (which represents an important non-linear component of the engine control system) can impact closed-loop airframe/engine system stability. Finally, a brief investigation of control-law synthesis techniques appropriate for the class of systems was pursued, and it was determined that multi variable techniques, included model-following formulations of LQG and/or H (infinity) methods showed promise. However, for practical reasons, decentralized control architectures are preferred, which is an architecture incompatible with these synthesis methods.

  16. Integrated Attitude Control Based on Momentum Management for Space Station

    NASA Astrophysics Data System (ADS)

    Zhou, Li-Ni

    An integrated attitude control for attitude control, momentum management and power storage is proposed as a momentum-management-based IPACS. The integrated attitude control combines ACMM and IPACS to guarantees the momentum of CMGs and flywheels within acceptable limits as well as satisfying the requirements of attitude control and power storage. The later objective is to testify the foundation of the integrated attitude control by the fact that the momentum management of the integrated attitude control is able to keep the momentum exchange actuators including flywheels and VSCMG out of singularity. Finally, the space station attitude control task during assembly process is illustrated to testify the effectiveness of the integrated attitude control.

  17. IMPROVING CONTROL ROOM DESIGN AND OPERATIONS BASED ON HUMAN FACTORS ANALYSES OR HOW MUCH HUMAN FACTORS UPGRADE IS ENOUGH ?

    SciTech Connect

    HIGGINS,J.C.; OHARA,J.M.; ALMEIDA,P.

    2002-09-19

    THE JOSE CABRERA NUCLEAR POWER PLANT IS A ONE LOOP WESTINGHOUSE PRESSURIZED WATER REACTOR. IN THE CONTROL ROOM, THE DISPLAYS AND CONTROLS USED BY OPERATORS FOR THE EMERGENCY OPERATING PROCEDURES ARE DISTRIBUTED ON FRONT AND BACK PANELS. THIS CONFIGURATION CONTRIBUTED TO RISK IN THE PROBABILISTIC SAFETY ASSESSMENT WHERE IMPORTANT OPERATOR ACTIONS ARE REQUIRED. THIS STUDY WAS UNDERTAKEN TO EVALUATE THE IMPACT OF THE DESIGN ON CREW PERFORMANCE AND PLANT SAFETY AND TO DEVELOP DESIGN IMPROVEMENTS.FIVE POTENTIAL EFFECTS WERE IDENTIFIED. THEN NUREG-0711 [1], PROGRAMMATIC, HUMAN FACTORS, ANALYSES WERE CONDUCTED TO SYSTEMATICALLY EVALUATE THE CR-LA YOUT TO DETERMINE IF THERE WAS EVIDENCE OF THE POTENTIAL EFFECTS. THESE ANALYSES INCLUDED OPERATING EXPERIENCE REVIEW, PSA REVIEW, TASK ANALYSES, AND WALKTHROUGH SIMULATIONS. BASED ON THE RESULTS OF THESE ANALYSES, A VARIETY OF CONTROL ROOM MODIFICATIONS WERE IDENTIFIED. FROM THE ALTERNATIVES, A SELECTION WAS MADE THAT PROVIDED A REASONABLEBALANCE BE TWEEN PERFORMANCE, RISK AND ECONOMICS, AND MODIFICATIONS WERE MADE TO THE PLANT.

  18. Development of a Residential Integrated Ventilation Controller

    SciTech Connect

    Staff Scientist; Walker, Iain; Sherman, Max; Dickerhoff, Darryl

    2011-12-01

    The goal of this study was to develop a Residential Integrated Ventilation Controller (RIVEC) to reduce the energy impact of required mechanical ventilation by 20percent, maintain or improve indoor air quality and provide demand response benefits. This represents potential energy savings of about 140 GWh of electricity and 83 million therms of natural gas as well as proportional peak savings in California. The RIVEC controller is intended to meet the 2008 Title 24 requirements for residential ventilation as well as taking into account the issues of outdoor conditions, other ventilation devices (including economizers), peak demand concerns and occupant preferences. The controller is designed to manage all the residential ventilation systems that are currently available. A key innovation in this controller is the ability to implement the concept of efficacy and intermittent ventilation which allows time shifting of ventilation. Using this approach ventilation can be shifted away from times of high cost or high outdoor pollution towards times when it is cheaper and more effective. Simulations, based on the ones used to develop the new residential ventilation requirements for the California Buildings Energy code, were used to further define the specific criteria and strategies needed for the controller. These simulations provide estimates of the energy, peak power and contaminant improvement possible for different California climates for the various ventilation systems. Results from a field test of the prototype controller corroborate the predicted performance.

  19. Designing an Easy-to-use Executive Conference Room Control System

    NASA Astrophysics Data System (ADS)

    Back, Maribeth; Golovchinsky, Gene; Qvarfordt, Pernilla; van Melle, William; Boreczky, John; Dunnigan, Tony; Carter, Scott

    The Usable Smart Environment project (USE) aims at designing easy-to-use, highly functional, next-generation conference rooms. Our first design prototype focuses on creating a “no wizards” room for an American executive; that is, a room the executive could walk into and use by himself, without help from a technologist. A key idea in the USE framework is that customization is one of the best ways to create a smooth user experience. As the system needs to fit both with the personal leadership style of the executive and the corporation’s meeting culture, we began the design process by exploring the work flow in and around meetings attended by the executive.

  20. Institutional Tuberculosis Transmission. Controlled Trial of Upper Room Ultraviolet Air Disinfection: A Basis for New Dosing Guidelines.

    PubMed

    Mphaphlele, Matsie; Dharmadhikari, Ashwin S; Jensen, Paul A; Rudnick, Stephen N; van Reenen, Tobias H; Pagano, Marcello A; Leuschner, Wilhelm; Sears, Tim A; Milonova, Sonya P; van der Walt, Martie; Stoltz, Anton C; Weyer, Karin; Nardell, Edward A

    2015-08-15

    Transmission is driving the global tuberculosis epidemic, especially in congregate settings. Worldwide, natural ventilation is the most common means of air disinfection, but it is inherently unreliable and of limited use in cold climates. Upper room germicidal ultraviolet (UV) air disinfection with air mixing has been shown to be highly effective, but improved evidence-based dosing guidelines are needed. To test the efficacy of upper room germicidal air disinfection with air mixing to reduce tuberculosis transmission under real hospital conditions, and to define the application parameters responsible as a basis for proposed new dosing guidelines. Over an exposure period of 7 months, 90 guinea pigs breathed only untreated exhaust ward air, and another 90 guinea pigs breathed only air from the same six-bed tuberculosis ward on alternate days when upper room germicidal air disinfection was turned on throughout the ward. The tuberculin skin test conversion rates (>6 mm) of the two chambers were compared. The hazard ratio for guinea pigs in the control chamber converting their skin test to positive was 4.9 (95% confidence interval, 2.8-8.6), with an efficacy of approximately 80%. Upper room germicidal UV air disinfection with air mixing was highly effective in reducing tuberculosis transmission under hospital conditions. These data support using either a total fixture output (rather than electrical or UV lamp wattage) of 15-20 mW/m(3) total room volume, or an average whole-room UV irradiance (fluence rate) of 5-7 μW/cm(2), calculated by a lighting computer-assisted design program modified for UV use.

  1. Institutional Tuberculosis Transmission. Controlled Trial of Upper Room Ultraviolet Air Disinfection: A Basis for New Dosing Guidelines

    PubMed Central

    Mphaphlele, Matsie; Dharmadhikari, Ashwin S.; Jensen, Paul A.; Rudnick, Stephen N.; van Reenen, Tobias H.; Pagano, Marcello A.; Leuschner, Wilhelm; Sears, Tim A.; Milonova, Sonya P.; van der Walt, Martie; Stoltz, Anton C.; Weyer, Karin

    2015-01-01

    Rationale: Transmission is driving the global tuberculosis epidemic, especially in congregate settings. Worldwide, natural ventilation is the most common means of air disinfection, but it is inherently unreliable and of limited use in cold climates. Upper room germicidal ultraviolet (UV) air disinfection with air mixing has been shown to be highly effective, but improved evidence-based dosing guidelines are needed. Objectives: To test the efficacy of upper room germicidal air disinfection with air mixing to reduce tuberculosis transmission under real hospital conditions, and to define the application parameters responsible as a basis for proposed new dosing guidelines. Methods: Over an exposure period of 7 months, 90 guinea pigs breathed only untreated exhaust ward air, and another 90 guinea pigs breathed only air from the same six-bed tuberculosis ward on alternate days when upper room germicidal air disinfection was turned on throughout the ward. Measurements and Main Results: The tuberculin skin test conversion rates (>6 mm) of the two chambers were compared. The hazard ratio for guinea pigs in the control chamber converting their skin test to positive was 4.9 (95% confidence interval, 2.8–8.6), with an efficacy of approximately 80%. Conclusions: Upper room germicidal UV air disinfection with air mixing was highly effective in reducing tuberculosis transmission under hospital conditions. These data support using either a total fixture output (rather than electrical or UV lamp wattage) of 15–20 mW/m3 total room volume, or an average whole-room UV irradiance (fluence rate) of 5–7 μW/cm2, calculated by a lighting computer-assisted design program modified for UV use. PMID:25928547

  2. Monolithic integration of room-temperature multifunctional BaTiO3-CoFe2O4 epitaxial heterostructures on Si(001)

    NASA Astrophysics Data System (ADS)

    Scigaj, Mateusz; Dix, Nico; Gázquez, Jaume; Varela, María; Fina, Ignasi; Domingo, Neus; Herranz, Gervasi; Skumryev, Vassil; Fontcuberta, Josep; Sánchez, Florencio

    2016-08-01

    The multifunctional (ferromagnetic and ferroelectric) response at room temperature that is elusive in single phase multiferroic materials can be achieved in a proper combination of ferroelectric perovskites and ferrimagnetic spinel oxides in horizontal heterostructures. In this work, lead-free CoFe2O4/BaTiO3 bilayers are integrated with Si(001) using LaNiO3/CeO2/YSZ as a tri-layer buffer. They present structural and functional properties close to those achieved on perovskite substrates: the bilayers are fully epitaxial with extremely flat surface, and exhibit robust ferromagnetism and ferroelectricity at room temperature.

  3. Monolithic integration of room-temperature multifunctional BaTiO3-CoFe2O4 epitaxial heterostructures on Si(001)

    PubMed Central

    Scigaj, Mateusz; Dix, Nico; Gázquez, Jaume; Varela, María; Fina, Ignasi; Domingo, Neus; Herranz, Gervasi; Skumryev, Vassil; Fontcuberta, Josep; Sánchez, Florencio

    2016-01-01

    The multifunctional (ferromagnetic and ferroelectric) response at room temperature that is elusive in single phase multiferroic materials can be achieved in a proper combination of ferroelectric perovskites and ferrimagnetic spinel oxides in horizontal heterostructures. In this work, lead-free CoFe2O4/BaTiO3 bilayers are integrated with Si(001) using LaNiO3/CeO2/YSZ as a tri-layer buffer. They present structural and functional properties close to those achieved on perovskite substrates: the bilayers are fully epitaxial with extremely flat surface, and exhibit robust ferromagnetism and ferroelectricity at room temperature. PMID:27550543

  4. Integrated aeroservoelastic synthesis for roll control

    NASA Technical Reports Server (NTRS)

    Nam, Chang-Ho; Weisshaar, Terrence A.

    1990-01-01

    The objective of this study is to illustrate an integrated, parallel design procedure for optimal structural, aerodynamic, and aileron synthesis of an aircraft wing. The effects of combining weight minimization with structural tailoring (ply orientation and thickness) of a lifting surface, together with the wing geometry (sweep angle and taper ratio), and the aileron geometry (spanwise location and chordwise size) upon the lateral control effectiveness are discussed. Several optimization studies for the minimization of aileron hinge moment and wing weight, subject to a specified constant aircraft roll rate at a design airspeed (roll effectiveness), are performed.

  5. Integrated aeroservoelastic synthesis for roll control

    NASA Technical Reports Server (NTRS)

    Nam, Chang-Ho; Weisshaar, Terrence A.

    1990-01-01

    The objective of this study is to illustrate an integrated, parallel design procedure for optimal structural, aerodynamic, and aileron synthesis of an aircraft wing. The effects of combining weight minimization with structural tailoring (ply orientation and thickness) of a lifting surface, together with the wing geometry (sweep angle and taper ratio), and the aileron geometry (spanwise location and chordwise size) upon the lateral control effectiveness are discussed. Several optimization studies for the minimization of aileron hinge moment and wing weight, subject to a specified constant aircraft roll rate at a design airspeed (roll effectiveness), are performed.

  6. The Chat Room as an Integral Part of the Virtual Classroom in Distance Learning Program Design for Adult Learners.

    ERIC Educational Resources Information Center

    Williams, John W.

    The chat room is currently the most likely candidate to replace the interactivity of the traditional classroom. A study explored the experiences and opinions of adult learners and their instructors on how well the chat room substituted for the traditional classroom, their comfort level with the technology, and whether or not it enhanced the…

  7. National Ignition Facility integrated computer control system

    NASA Astrophysics Data System (ADS)

    Van Arsdall, Paul J.; Bettenhausen, R. C.; Holloway, Frederick W.; Saroyan, R. A.; Woodruff, J. P.

    1999-07-01

    The NIF design team is developing the Integrated Computer Control System (ICCS), which is based on an object-oriented software framework applicable to event-driven control system. The framework provides an open, extensive architecture that is sufficiently abstract to construct future mission-critical control systems. The ICCS will become operational when the first 8 out of 192 beams are activated in mid 2000. THe ICCS consists of 300 front-end processors attached to 60,000 control points coordinated by a supervisory system. Computers running either Solaris or VxWorks are networked over a hybrid configuration of switched fast Ethernet and asynchronous transfer mode (ATM). ATM carries digital motion video from sensor to operator consoles. Supervisory software is constructed by extending the reusable framework components for each specific application. The framework incorporates services for database persistence, system configuration, graphical user interface, status monitoring, event logging, scripting language, alert management, and access control. More than twenty collaborating software applications are derived from the common framework. The framework is interoperable among different kinds of computers and functions as a plug-in software bus by leveraging a common object request brokering architecture (CORBA). CORBA transparently distributes the software objects across the network. Because of the pivotal role played, CORBA was tested to ensure adequate performance.

  8. National Ignition Facility integrated computer control system

    SciTech Connect

    Van Arsdall, P.J., LLNL

    1998-06-01

    The NIF design team is developing the Integrated Computer Control System (ICCS), which is based on an object-oriented software framework applicable to event-driven control systems. The framework provides an open, extensible architecture that is sufficiently abstract to construct future mission-critical control systems. The ICCS will become operational when the first 8 out of 192 beams are activated in mid 2000. The ICCS consists of 300 front-end processors attached to 60,000 control points coordinated by a supervisory system. Computers running either Solaris or VxWorks are networked over a hybrid configuration of switched fast Ethernet and asynchronous transfer mode (ATM). ATM carries digital motion video from sensors to operator consoles. Supervisory software is constructed by extending the reusable framework components for each specific application. The framework incorporates services for database persistence, system configuration, graphical user interface, status monitoring, event logging, scripting language, alert management, and access control. More than twenty collaborating software applications are derived from the common framework. The framework is interoperable among different kinds of computers and functions as a plug-in software bus by leveraging a common object request brokering architecture (CORBA). CORBA transparently distributes the software objects across the network. Because of the pivotal role played, CORBA was tested to ensure adequate performance.

  9. Integrated soft sensor model for flow control.

    PubMed

    Aijälä, G; Lumley, D

    2006-01-01

    Tighter discharge permits often require wastewater treatment plants to maximize utilization of available facilities in order to cost-effectively reach these goals. Important aspects are minimizing internal disturbances and using available information in a smart way to improve plant performance. In this study, flow control throughout a large highly automated wastewater treatment plant (WWTP) was implemented in order to reduce internal disturbances and to provide a firm foundation for more advanced process control. A modular flow control system was constructed based on existing instrumentation and soft sensor flow models. Modules were constructed for every unit process in water treatment and integrated into a plant-wide model. The flow control system is used to automatically control recirculation flows and bypass flows at the plant. The system was also successful in making accurate flow estimations at points in the plant where it is not possible to have conventional flow meter instrumentation. The system provides fault detection for physical flow measuring devices. The module construction allows easy adaptation for new unit processes added to the treatment plant.

  10. PHYSICAL FIDELITY CONSIDERATIONS FOR NRC ADVANCED REACTOR CONTROL ROOM TRAINING SIMULATORS USED FOR INSPECTOR/EXAMINER TRAINING

    SciTech Connect

    Branch, Kristi M.; Mitchell, Mark R.; Miller, Mark; Cochrum, Steven

    2010-11-07

    This paper describes research into the physical fidelity requirements of control room simulators to train U.S. Nuclear Regulatory Commission (NRC) staff for their duties as inspectors and license examiners for next-generation nuclear power plants. The control rooms of these power plants are expected to utilize digital instrumentation and controls to a much greater extent than do current plants. The NRC is assessing training facility needs, particularly for control room simulators, which play a central role in NRC training. Simulator fidelity affects both training effectiveness and cost. Research has shown high simulation fidelity sometimes positively affects transfer to the operational environment but sometimes makes no significant difference or actually impedes learning. The conditions in which these different effects occur are often unclear, especially for regulators (as opposed to operators) about whom research is particularly sparse. This project developed an inventory of the tasks and knowledges, skills, and abilities that NRC regulators need to fulfill job duties and used expert panels to characterize the inventory items by type and level of cognitive/behavioral capability needed, difficulty to perform, importance to safety, frequency of performance, and the importance of simulator training for learning these capabilities. A survey of current NRC staff provides information about the physical fidelity of the simulator on which the student trained to the control room to which the student was assigned and the effect lack of fidelity had on learning and job performance. The study concludes that a high level of physical fidelity is not required for effective training of NRC staff.

  11. Integrated tools for control-system analysis

    NASA Technical Reports Server (NTRS)

    Ostroff, Aaron J.; Proffitt, Melissa S.; Clark, David R.

    1989-01-01

    The basic functions embedded within a user friendly software package (MATRIXx) are used to provide a high level systems approach to the analysis of linear control systems. Various control system analysis configurations are assembled automatically to minimize the amount of work by the user. Interactive decision making is incorporated via menu options and at selected points, such as in the plotting section, by inputting data. There are five evaluations such as the singular value robustness test, singular value loop transfer frequency response, Bode frequency response, steady-state covariance analysis, and closed-loop eigenvalues. Another section describes time response simulations. A time response for random white noise disturbance is available. The configurations and key equations used for each type of analysis, the restrictions that apply, the type of data required, and an example problem are described. One approach for integrating the design and analysis tools is also presented.

  12. Integrated Control of Axonemal Dynein AAA+ Motors

    PubMed Central

    King, Stephen M.

    2012-01-01

    Axonemal dyneins are AAA+ enzymes that convert ATP hydrolysis to mechanical work. This leads to the sliding of doublet microtubules with respect to each other and ultimately the generation of ciliary/flagellar beating. However, in order for useful work to be generated, the action of individual dynein motors must be precisely controlled. In addition, cells modulate the motility of these organelles through a variety of second messenger systems and these signals too must be integrated by the dynein motors to yield an appropriate output. This review describes the current status of efforts to understand dynein control mechanisms and their connectivity focusing mainly on studies of the outer dynein arm from axonemes of the unicellular biflagellate green alga Chlamydomonas. PMID:22406539

  13. Integrated control of axonemal dynein AAA(+) motors.

    PubMed

    King, Stephen M

    2012-08-01

    Axonemal dyneins are AAA(+) enzymes that convert ATP hydrolysis to mechanical work. This leads to the sliding of doublet microtubules with respect to each other and ultimately the generation of ciliary/flagellar beating. However, in order for useful work to be generated, the action of individual dynein motors must be precisely controlled. In addition, cells modulate the motility of these organelles through a variety of second messenger systems and these signals too must be integrated by the dynein motors to yield an appropriate output. This review describes the current status of efforts to understand dynein control mechanisms and their connectivity focusing mainly on studies of the outer dynein arm from axonemes of the unicellular biflagellate green alga Chlamydomonas.

  14. Evaluation of disinfectants to control contamination of citrus degreening rooms with conidia, 2008

    USDA-ARS?s Scientific Manuscript database

    Early season oranges are harvested and treated with ethylene gas for two or more days in humidified ‘degreening’ rooms at 20C to accelerate the degradation of chlorophyll to enhance the orange color of the fruit rind. Decay of the fruit during this process by P. digitatum is common and between cycle...

  15. Highly integrated digital electronic control: Digital flight control, aircraft model identification, and adaptive engine control

    NASA Technical Reports Server (NTRS)

    Baer-Riedhart, Jennifer L.; Landy, Robert J.

    1987-01-01

    The highly integrated digital electronic control (HIDEC) program at NASA Ames Research Center, Dryden Flight Research Facility is a multiphase flight research program to quantify the benefits of promising integrated control systems. McDonnell Aircraft Company is the prime contractor, with United Technologies Pratt and Whitney Aircraft, and Lear Siegler Incorporated as major subcontractors. The NASA F-15A testbed aircraft was modified by the HIDEC program by installing a digital electronic flight control system (DEFCS) and replacing the standard F100 (Arab 3) engines with F100 engine model derivative (EMD) engines equipped with digital electronic engine controls (DEEC), and integrating the DEEC's and DEFCS. The modified aircraft provides the capability for testing many integrated control modes involving the flight controls, engine controls, and inlet controls. This paper focuses on the first two phases of the HIDEC program, which are the digital flight control system/aircraft model identification (DEFCS/AMI) phase and the adaptive engine control system (ADECS) phase.

  16. Human-factors engineering control-room design review/audit report: Byron Generating Station, Commonwealth Edison Company

    SciTech Connect

    Savage, J.W.

    1983-03-10

    A human factors engineering design review/audit of the Byron Unit 1 control room was performed at the site on November 17 through November 19, 1981. This review was accomplished using the Unit 2 control room appropriately mocked-up to reflect design changes already committed to be incorporated in Unit 1. The report was prepared on the basis of the HFEB's audit of the applicant's Preliminary Design Assessment report and the human factors engineering design review performed at the site. This design review was carried out by a team from the Human Factors Engineering Branch, Division of Human Factors Safety. The review team was assisted by consultants from BioTechnology, Inc. (Falls Church, Virginia), and from Lawrence Livermore National Laboratory (University of California), Livermore, California.

  17. Occupational hazards control of hazardous substances in clean room of semiconductor manufacturing plant using CFD analysis.

    PubMed

    Li, Jianfeng; Zhou, Ya-Fei

    2015-02-01

    The manufacturing processes in chip industries are complex, and many kinds of raw materials and solvents of different nature are used, most of which are highly toxic and dangerous. During the machine preventive maintenance period, these toxic and harmful substances will escape from the sealed reaction chamber to the clean workshop environment and endanger the health of the workers on-site, resulting in occupational diseases. From the perspective of prevention, the spread and prediction of hydrochloric acid (HCl) that escaped from the metal-etching chamber during maintenance were studied in this article. The computational fluid dynamics technology was used for a three-dimensional numerical simulation of the indoor air velocity field and the HCl concentration field, and the simulation results were then compared with the on-site monitoring data to verify the correctness and feasibility. The occupational hazards and control measures were analyzed based on the numerical simulation, and the optimal control measure was obtained. In this article, using the method of ambient air to analyze the occupational exposure can provide a new idea to the field of occupational health research in the integrated circuit industry and had theoretical and practical significance.

  18. Application of the revised DBA source term to a non-charcoal-filtered control room ventilation system

    SciTech Connect

    Radvansky, M.S.; Metcalf, J.E.

    1997-12-01

    An outstanding licensing issue at GPU Nuclear`s Oyster Creek plant had been the question of thyroid dose to a control room operator following the Title 10, Code of Federal Regulations, Part 100 (10 CFR 100) design basis accident (DBA). Oyster Creek is a 620-MW boiling water reactor (BWR), located in New Jersey, that began commercial operation in December 1969. The calculational problem was complicated by the fact that the 28-yr-old unit was one of the few plants that did not incorporate charcoal filtration into the control room ventilation system. The main contributor to the thyroid dose in a control room habitability calculation for a BWR is main steam isolation valve (MSIV) leakage. The technical specification limit for MSIV leakage at Oyster Creek is 15.9 SCFH (maximum) for each isolation valve. The work ongoing in the development of NUREG-1465, the revised DBA source term document, provided a potential method to calculate a more realistic dose compared with the current TID-14844 source term and Regulatory Guide 1.3 input data and accident propagation assumptions. Preliminary calculations using TID-14844 suggested that expensive modifications be made to the plant. Such modifications could have economically challenged the plant`s viability.

  19. Economic analysis of linking operating room scheduling and hospital material management information systems for just-in-time inventory control.

    PubMed

    Epstein, R H; Dexter, F

    2000-08-01

    Operating room (OR) scheduling information systems can decrease perioperative labor costs. Material management information systems can decrease perioperative inventory costs. We used computer simulation to investigate whether using the OR schedule to trigger purchasing of perioperative supplies is likely to further decrease perioperative inventory costs, as compared with using sophisticated, stand-alone material management inventory control. Although we designed the simulations to favor financially linking the information systems, we found that this strategy would be expected to decrease inventory costs substantively only for items of high price ($1000 each) and volume (>1000 used each year). Because expensive items typically have different models and sizes, each of which is used by a hospital less often than this, for almost all items there will be no benefit to making daily adjustments to the order volume based on booked cases. We conclude that, in a hospital with a sophisticated material management information system, OR managers will probably achieve greater cost reductions from focusing on negotiating less expensive purchase prices for items than on trying to link the OR information system with the hospital's material management information system to achieve just-in-time inventory control. In a hospital with a sophisticated material management information system, operating room managers will probably achieve greater cost reductions from focusing on negotiating less expensive purchase prices for items than on trying to link the operating room information system with the hospital's material management information system to achieve just-in-time inventory control.

  20. AN INTEGRATED BIOLOGICAL CONTROL SYSTEM AT HANFORD

    SciTech Connect

    JOHNSON AR; CAUDILL JG; GIDDINGS RF; RODRIGUEZ JM; ROOS RC; WILDE JW

    2010-02-11

    In 1999 an integrated biological control system was instituted at the U.S. Department of Energy's Hanford Site. Successes and changes to the program needed to be communicated to a large and diverse mix of organizations and individuals. Efforts at communication are directed toward the following: Hanford Contractors (Liquid or Tank Waste, Solid Waste, Environmental Restoration, Science and Technology, Site Infrastructure), General Hanford Employees, and Hanford Advisory Board (Native American Tribes, Environmental Groups, Local Citizens, Washington State and Oregon State regulatory agencies). Communication was done through direct interface meetings, individual communication, where appropriate, and broadly sharing program reports. The objectives of the communication efforts was to have the program well coordinated with Hanford contractors, and to have the program understood well enough that all stakeholders would have confidence in the work performed by the program to reduce or elimated spread of radioactive contamination by biotic vectors. Communication of successes and changes to an integrated biological control system instituted in 1999 at the Department of Energy's Hanford Site have required regular interfaces with not only a diverse group of Hanford contractors (i.e., those responsible for liquid or tank waste, solid wastes, environmental restoration, science and technology, and site infrastructure), and general Hanford employees, but also with a consortium of designated stake holders organized as the Hanford Advisory Board (i.e., Native American tribes, various environmental groups, local citizens, Washington state and Oregon regulatory agencies, etc.). Direct interface meetings, individual communication where appropriate, and transparency of the biological control program were the methods and outcome of this effort.

  1. Integrated Flight and Propulsion Controls for Advanced Aircraft Configurations

    NASA Technical Reports Server (NTRS)

    Merrill, Walter; Garg, Sanjay

    1995-01-01

    The research vision of the NASA Lewis Research Center in the area of integrated flight and propulsion controls technologies is described. In particular the Integrated Method for Propulsion and Airframe Controls developed at the Lewis Research Center is described including its application to an advanced aircraft configuration. Additionally, future research directions in integrated controls are described.

  2. Spraying spin coating silanization at room temperature of a SiO2 surface for silicon-based integrated light emitters.

    PubMed

    Cherkouk, C; Rebohle, L; Skorupa, W; Strache, T; Reuther, H; Helm, M

    2009-09-15

    A new silanization method for SiO(2) surfaces has been developed for Si-based light emitters which are intended to serve as light sources in smart biosensors relying on fluorescence analysis. This method uses a special silanization chamber and is based on spraying and spin coating (SSC) in nitrogen atmosphere at room temperature for 10 min. It avoids processes like sonication and the use of certain chemicals being harmful to integrated light emitters. The surface of a SiO(2) layer serving as a passivation layer for the light emitters was hydrolyzed to silanols using an in situ-hybridization chamber and catalyzed with MES (2-(N-morpholino)ethanesulfone acid hydrate) buffer solution. Subsequently, the substrates were silanized with the SSC method using two coupling agents as (3-Aminopropyl)trimethoxysilane (APMS), and N'-(3-(trimethoxysilyl)-propyl)-diethylenetriamine (triamino-APMS). The structure of the SiO(2) surface, the APMS and the triamino-APMS layers was controlled and characterized by Infrared spectroscopy, Raman spectroscopy and X-ray photoelectron spectroscopy. The results show a covalent binding of the silane coupling agents on the surface. Atomic force microscopy was used to investigate the roughness of the surface. The silanized samples exhibit smooth and densely covered surfaces. Finally, the suitability of the SSC method was verified on real light emitters.

  3. Instituting a filtration/pressurization system to reduce dust concentrations in a control room at a mineral processing plant.

    PubMed

    Noll, J; Cecala, A; Hummer, J

    2015-12-01

    The National Institute for Occupational Safety and Health has observed that many control rooms and operator compartments in the U.S. mining industry do not have filtration systems capable of maintaining low dust concentrations in these areas. In this study at a mineral processing plant, to reduce respirable dust concentrations in a control room that had no cleaning system for intake air, a filtration and pressurization system originally designed for enclosed cabs was modified and installed. This system was composed of two filtering units: one to filter outside air and one to filter and recirculate the air inside the control room. Eighty-seven percent of submicrometer particles were reduced by the system under static conditions. This means that greater than 87 percent of respirable dust particles should be reduced as the particle-size distribution of respirable dust particles is greater than that of submicrometer particles, and filtration systems usually are more efficient in capturing the larger particles. A positive pressure near 0.02 inches of water gauge was produced, which is an important component of an effective system and minimizes the entry of particles, such as dust, into the room. The intake airflow was around 118 cfm, greater than the airflow suggested by the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) for acceptable indoor air quality. After one year, the loading of the filter caused the airflow to decrease to 80 cfm, which still produces acceptable indoor air quality. Due to the loading of the filters, the reduction efficiency for submicrometer particles under static conditions increased to 94 percent from 87 percent.

  4. Instituting a filtration/pressurization system to reduce dust concentrations in a control room at a mineral processing plant

    PubMed Central

    Noll, J.; Cecala, A.; Hummer, J.

    2016-01-01

    The National Institute for Occupational Safety and Health has observed that many control rooms and operator compartments in the U.S. mining industry do not have filtration systems capable of maintaining low dust concentrations in these areas. In this study at a mineral processing plant, to reduce respirable dust concentrations in a control room that had no cleaning system for intake air, a filtration and pressurization system originally designed for enclosed cabs was modified and installed. This system was composed of two filtering units: one to filter outside air and one to filter and recirculate the air inside the control room. Eighty-seven percent of submicrometer particles were reduced by the system under static conditions. This means that greater than 87 percent of respirable dust particles should be reduced as the particle-size distribution of respirable dust particles is greater than that of submicrometer particles, and filtration systems usually are more efficient in capturing the larger particles. A positive pressure near 0.02 inches of water gauge was produced, which is an important component of an effective system and minimizes the entry of particles, such as dust, into the room. The intake airflow was around 118 cfm, greater than the airflow suggested by the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) for acceptable indoor air quality. After one year, the loading of the filter caused the airflow to decrease to 80 cfm, which still produces acceptable indoor air quality. Due to the loading of the filters, the reduction efficiency for submicrometer particles under static conditions increased to 94 percent from 87 percent. PMID:26834293

  5. The 'Room within a Room' Concept for Monitored Warhead Dismantlement

    SciTech Connect

    Tanner, Jennifer E.; Benz, Jacob M.; White, Helen; McOmish, Sarah; Allen, Keir; Tolk, Keith; Weeks, George E.

    2014-12-01

    Over the past 10 years, US and UK experts have engaged in a technical collaboration with the aim of improving scientific and technological abilities in support of potential future nuclear arms control and non-proliferation agreements. In 2011 a monitored dismantlement exercise provided an opportunity to develop and test potential monitoring technologies and approaches. The exercise followed a simulated nuclear object through a dismantlement process and looked to explore, with a level of realism, issues surrounding device and material monitoring, chain of custody, authentication and certification of equipment, data management and managed access. This paper focuses on the development and deployment of the ‘room-within-a-room’ system, which was designed to maintain chain of custody during disassembly operations. A key challenge for any verification regime operating within a nuclear weapon complex is to provide the monitoring party with the opportunity to gather sufficient evidence, whilst protecting sensitive or proliferative information held by the host. The requirement to address both monitoring and host party concerns led to a dual function design which: • Created a controlled boundary around the disassembly process area which could provide evidence of unauthorised diversion activities. • Shielded sensitive disassembly operations from monitoring party observation. The deployed room-within-a-room was an integrated system which combined a number of chain of custody technologies (i.e. cameras, tamper indicating panels and enclosures, seals, unique identifiers and radiation portals) and supporting deployment procedures. This paper discusses the bounding aims and constraints identified by the monitoring and host parties with respect to the disassembly phase, the design of the room-within-a-room system, lessons learned during deployment, conclusions and potential areas of future work. Overall it was agreed that the room-within-a-room approach was effective but

  6. Using Pseudomonas spp. for Integrated Biological Control.

    PubMed

    Stockwell, Virginia O; Stack, James P

    2007-02-01

    ABSTRACT Pseudomonas spp. have been studied for decades as model organisms for biological control of plant disease. Currently, there are three commercial formulations of pseudomonads registered with the U.S. Environmental Protection Agency for plant disease suppression, Bio-Save 10 LP, Bio-Save 11 LP, and BlightBan A506. Bio-Save 10 LP and Bio-Save 11 LP, products of Jet Harvest Solutions, Longwood, FL, contain Pseudomonas syringae strains ESC-10 and ESC-11, respectively. These products are applied in packinghouses to prevent postharvest fungal diseases during storage of citrus, pome, stone fruits, and potatoes. BlightBan A506, produced by NuFarm Americas, Burr Ridge, IL, contains P. fluorescens strain A506. BlightBan A506 is applied primarily to pear and apple trees during bloom to suppress the bacterial disease fire blight. Combining BlightBan A506 with the antibiotic streptomycin improves control of fire blight, even in areas with streptomycin-resistant populations of the pathogen. BlightBan A506 also may reduce fruit russet and mild frost injury. These biocontrol products consisting of Pseudomonas spp. provide moderate to excellent efficacy against multiple production constraints, are relatively easy to apply, and they can be integrated with conventional products for disease control. These characteristics will contribute to the adoption of these products by growers and packinghouses.

  7. Cliffside 6 integrated emissions control system

    SciTech Connect

    McGinnis, D.G.; Rader, P.C.; Gansley, R.R.; Wang, W.

    2009-04-15

    The article takes an inside look into the environmental hardware going into one of the highest profile coal-fired power plants projects in the US, a new 800 MW supercritical coal-fired facility at Cliffside, NC, Unit C6. This is currently under construction and scheduled to be in commercial service in 2012. To evaluate the alternative air quality control system (AQCS) options, Duke Energy established a cross-functional team and used a decision analysis process to select the 'best balanced choice'. Alstom's integrated AQCS which combines dry and wet flue gas desulfurization systems was the best balanced choice. Replacing an ESP with a spray dryer absorber achieved major cost savings and eliminated the need for wastewater treatment. 1 ref., 2 photos.

  8. Stratum corneum barrier integrity controls skin homeostasis.

    PubMed

    Smith, W

    1999-04-01

    The stratum corneum water barrier controls structural and functional properties of both the epidermis and the dermis. Treatments which chronically disrupt the stratum corneum water barrier can induce changes similar to those seen with 'anti-aging' treatments such as (-Hydroxy acids (AHAs) and Retin Atrade mark. Barrier disruption via daily tape stripping increases epidermal and dermal thickness, superficial and integral skin firmness, and improves skin surface texture. Modest or transitory disruption did not produce such effects. Similar results were observed with topical application of AHAs, retinoids or mild irritants after about 4-6 weeks provided such treatments resulted in prolonged elevation in TEWL (trans-epidermal water loss). Treatments that did not chronically elevate TEWL could also produce positive cosmetic effects, but such effects were in general restricted to the skin surface or epidermis. Irritation, which was observed with some treatments, was not solely responsible for the positive effects observed.

  9. Digital Full-Scope Simulation of a Conventional Nuclear Power Plant Control Room, Phase 2: Installation of a Reconfigurable Simulator to Support Nuclear Plant Sustainability

    SciTech Connect

    Ronald L. Boring; Vivek Agarwal; Kirk Fitzgerald; Jacques Hugo; Bruce Hallbert

    2013-03-01

    The U.S. Department of Energy’s Light Water Reactor Sustainability program has developed a control room simulator in support of control room modernization at nuclear power plants in the U.S. This report highlights the recent completion of this reconfigurable, full-scale, full-scope control room simulator buildout at the Idaho National Laboratory. The simulator is fully reconfigurable, meaning it supports multiple plant models developed by different simulator vendors. The simulator is full-scale, using glasstop virtual panels to display the analog control boards found at current plants. The present installation features 15 glasstop panels, uniquely achieving a complete control room representation. The simulator is also full-scope, meaning it uses the same plant models used for training simulators at actual plants. Unlike in the plant training simulators, the deployment on glasstop panels allows a high degree of customization of the panels, allowing the simulator to be used for research on the design of new digital control systems for control room modernization. This report includes separate sections discussing the glasstop panels, their layout to mimic control rooms at actual plants, technical details on creating a multi-plant and multi-vendor reconfigurable simulator, and current efforts to support control room modernization at U.S. utilities. The glasstop simulator provides an ideal testbed for prototyping and validating new control room concepts. Equally importantly, it is helping create a standardized and vetted human factors engineering process that can be used across the nuclear industry to ensure control room upgrades maintain and even improve current reliability and safety.

  10. Radiation design and control features of a hospital room for a low dose rate remote afterloading unit

    SciTech Connect

    Glasgow, G.P.; Corrigan, K.W.

    1995-09-01

    We have renovated, and used for four years, a small 3.4 m x 4.3 m conventional patient second floor hospital room to accommodate a low dose rate remote afterloading unit containing 13 GBq (0.35 Ci) of {sup 137}Cs. Supplemental room shielding consists of a power assisted door (536 kg, 1.7 cm thickness of lead), 1.3 cm lead wall shielding at selected wall locations and on a projector shield beneath the bed, and 0.6 cm of lead over the floor above. Radiation control features consisted of a room interior radiation detector independent of the remote afterloading unit, a redundant patient/nurse communication system, a remote control system, a door interlock system to insert and retract the radioactive pellets, and a visible and audible status indictator system located at a nearby nurses` work station. Renovation costs (in 1990 dollars) were $383 per square foot; total project costs were $187,000. Nursing personnel radiation exposure was reduced from about 6 {mu}Sv (mg Ra eq){sup -1} (0.6 mrem (mg Ra eq){sup -1}) to about 0.7 {mu}Sv (mg Ra eq){sup -1} (0.07 mrem (mg Ra eq){sup -1}), almost a tenfold reduction. 6 refs., 2 figs., 1 tab.

  11. Ultrafast optical control of terahertz surface plasmons in subwavelength hole-arrays at room temperature

    SciTech Connect

    Azad, Abul Kalam; Chen, Hou - Tong; Taylor, Antoinette; O' Hara, John

    2010-12-10

    Extraordinary optical transmission through subwavelength metallic hole-arrays has been an active research area since its first demonstration. The frequency selective resonance properties of subwavelength metallic hole arrays, generally known as surface plasmon polaritons, have potential use in functional plasmonic devices such as filters, modulators, switches, etc. Such plasmonic devices are also very promising for future terahertz applications. Ultrafast switching or modulation of the resonant behavior of the 2-D metallic arrays in terahertz frequencies is of particular interest for high speed communication and sensing applications. In this paper, we demonstrate optical control of surface plasmon enhanced resonant terahertz transmission in two-dimensional subwavelength metallic hole arrays fabricated on gallium arsenide based substrates. Optically pumping the arrays creates a conductive layer in the substrate reducing the terahertz transmission amplitude of both the resonant mode and the direct transmission. Under low optical fluence, the terahertz transmission is more greatly affected by resonance damping than by propagation loss in the substrate. An ErAs:GaAs nanoisland superlattice substrate is shown to allow ultrafast control with a switching recovery time of {approx}10 ps. We also present resonant terahertz transmission in a hybrid plasmonic film comprised of an integrated array of subwavelength metallic islands and semiconductor holes. A large dynamic transition between a dipolar localized surface plasmon mode and a surface plasmon resonance near 0.8 THz is observed under near infrared optical excitation. The reversal in transmission amplitude from a stopband to a passband and up to {pi}/2 phase shift achieved in the hybrid plasmonic film make it promising in large dynamic phase modulation, optical changeover switching, and active terahertz plasmonics.

  12. Safety and human factors considerations in control rooms of oil and gas pipeline systems: conceptual issues and practical observations.

    PubMed

    Meshkati, Najmedin

    2006-01-01

    All oil and gas pipeline systems are run by human operators (called controllers) who use computer-based workstations in control rooms to "control" pipelines. Several human factor elements could contribute to the lack of controller success in preventing or mitigating pipeline accidents/incidents. These elements exist in both the work environment and also in the computer system design/operation (such as data presentation and alarm configuration). Some work environment examples include shift hours, shift length, circadian rhythms, shift change-over processes, fatigue countermeasures, ergonomics factors, workplace distractions, and physical interaction with control system computers. The major objective of this paper is to demonstrate the critical effects of human and organizational factors and also to highlight the role of their interactions with automation (and automated devices) in the safe operation of complex, large-scale pipeline systems. A case study to demonstrate the critical role of human organizational factors in the control room of an oil and gas pipeline system is also presented.

  13. Simulation and experimental studies of operators` decision styles and crew composition while using an ecological and traditional user interface for the control room of a nuclear power plant

    SciTech Connect

    Meshkati, N.; Buller, B.J.; Azadeh, M.A.

    1995-04-01

    The goal of this research is threefold: (1) use of the Skill-, Rule-, and Knowledge-based levels of cognitive control -- the SRK framework -- to develop an integrated information processing conceptual framework (for integration of workstation, job, and team design); (2) to evaluate the user interface component of this framework -- the Ecological display; and (3) to analyze the effect of operators` individual information processing behavior and decision styles on handling plant disturbances plus their performance on, and preference for, Traditional and Ecological user interfaces. A series of studies were conducted. In Part I, a computer simulation model and a mathematical model were developed. In Part II, an experiment was designed and conducted at the EBR-II plant of the Argonne National Laboratory-West in Idaho Falls, Idaho. It is concluded that: the integrated SRK-based information processing model for control room operations is superior to the conventional rule-based model; operators` individual decision styles and the combination of their styles play a significant role in effective handling of nuclear power plant disturbances; use of the Ecological interface results in significantly more accurate event diagnosis and recall of various plant parameters, faster response to plant transients, and higher ratings of subject preference; and operators` decision styles affect on both their performance and preference for the Ecological interface.

  14. Cooperative control theory and integrated flight and propulsion control

    NASA Technical Reports Server (NTRS)

    Schmidt, David K.; Schierman, John D.

    1995-01-01

    The major contribution of this research was the exposition of the fact that airframe and engine interactions could be present, and their effects could include loss of stability and performance of the control systems. Also, the significance of two directional, as opposed to one-directional, coupling was identified and explained. A multivariable stability and performance analysis methodology was developed, and applied to several candidate aircraft configurations. In these example evaluations, the significance of these interactions was underscored. Also exposed was the fact that with interactions present along with some integrated control approaches, the engine command/limiting logic (which represents an important nonlinear component of the engine control system) can impact closed-loop airframe/engine system stability. Finally, a brief investigation of control-law synthesis techniques appropriate for the class of systems was pursued, and it was determined that multivariable techniques, including model-following formulations of LQG and/or H infinity methods, showed promise. However, for practical reasons, decentralized control architectures are preferred, which is an architecture incompatible with these synthesis methods. The major contributions of the second phase of the grant was the development of conditions under which no decentralized controller could achieve closed loop system requirements on stability and/or performance. Sought were conditions that depended only on properties of the plant and the requirement, and independent of any particular control law or synthesis approach. Therefore, they could be applied a priori, before synthesis of a candidate control law. Under this grant, such conditions were found regarding stability, and encouraging initial results were obtained regarding performance.

  15. The CALIPSO Integrated Thermal Control Subsystem

    NASA Technical Reports Server (NTRS)

    Gasbarre, Joseph F.; Ousley, Wes; Valentini, Marc; Thomas, Jason; Dejoie, Joel

    2007-01-01

    The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) is a joint NASA-CNES mission to study the Earth's cloud and aerosol layers. The satellite is composed of a primary payload (built by Ball Aerospace) and a spacecraft platform bus (PROTEUS, built by Alcatel Alenia Space). The thermal control subsystem (TCS) for the CALIPSO satellite is a passive design utilizing radiators, multi-layer insulation (MLI) blankets, and both operational and survival surface heaters. The most temperature sensitive component within the satellite is the laser system. During thermal vacuum testing of the integrated satellite, the laser system's operational heaters were found to be inadequate in maintaining the lasers required set point. In response, a solution utilizing the laser system's survival heaters to augment the operational heaters was developed with collaboration between NASA, CNES, Ball Aerospace, and Alcatel-Alenia. The CALIPSO satellite launched from Vandenberg Air Force Base in California on April 26th, 2006. Evaluation of both the platform and payload thermal control systems show they are performing as expected and maintaining the critical elements of the satellite within acceptable limits.

  16. Use of face masks by non-scrubbed operating room staff: a randomized controlled trial.

    PubMed

    Webster, Joan; Croger, Sarah; Lister, Carolyn; Doidge, Michelle; Terry, Michael J; Jones, Ian

    2010-03-01

    Ambiguity remains about the effectiveness of wearing surgical face masks. The purpose of this study was to assess the impact on surgical site infections (SSIs) when non-scrubbed operating room staff did not wear surgical face masks. Eight hundred twenty-seven participants undergoing elective or emergency obstetric, gynecological, general, orthopaedic, breast or urological surgery in an Australian tertiary hospital were enrolled. Complete follow-up data were available for 811 patients (98.1%). Operating room lists were randomly allocated to a 'Mask group' (all non-scrubbed staff wore a mask) or 'No Mask group' (none of the non-scrubbed staff wore masks). The primary end point, SSI was identified using in-patient surveillance; post discharge follow-up and chart reviews. The patient was followed for up to six weeks. Overall, 83 (10.2%) surgical site infections were recorded; 46/401 (11.5%) in the Masked group and 37/410 (9.0%) in the No Mask group; odds ratio (OR) 0.77 (95% confidence interval (CI) 0.49 to 1.21), p = 0.151. Independent risk factors for surgical site infection included: any pre-operative stay (adjusted odds ratio [aOR], 0.43 (95% CI, 0.20; 0.95), high BMI aOR, 0.38 (95% CI, 0.17; 0.87), and any previous surgical site infection aOR, 0.40 (95% CI, 0.17; 0.89). Surgical site infection rates did not increase when non-scrubbed operating room personnel did not wear a face mask.

  17. Implementation of integral feedback control in biological systems.

    PubMed

    Somvanshi, Pramod R; Patel, Anilkumar K; Bhartiya, Sharad; Venkatesh, K V

    2015-01-01

    Integral control design ensures that a key variable in a system is tightly maintained within acceptable levels. This approach has been widely used in engineering systems to ensure offset free operation in the presence of perturbations. Several biological systems employ such an integral control design to regulate cellular processes. An integral control design motif requires a negative feedback and an integrating process in the network loop. This review describes several biological systems, ranging from bacteria to higher organisms in which the presence of integral control principle has been hypothesized. The review highlights that in addition to the negative feedback, occurrence of zero-order kinetics in the process is a key element to realize the integral control strategy. Although the integral control motif is common to these systems, the mechanisms involved in achieving it are highly specific and can be incorporated at the level of signaling, metabolism, or at the phenotypic levels.

  18. Room temperature formation of Hf-silicate layer by pulsed laser deposition with Hf-Si-O ternary reaction control

    NASA Astrophysics Data System (ADS)

    Hotta, Yasushi; Ueoka, Satoshi; Yoshida, Haruhiko; Arafune, Koji; Ogura, Atsushi; Satoh, Shin-ichi

    2016-10-01

    We investigated the room temperature growth of HfO2 layers on Si substrates by pulsed laser deposition under ultra-high vacuum conditions. The laser fluence (LF) during HfO2 layer growth was varied as a growth parameter in the experiments. X-ray photoemission spectroscopy (XPS) was used to observe the interface chemical states of the HfO2/Si samples produced by various LFs. The XPS results indicated that an interface Hf-silicate layer formed, even at room temperature, and that the thickness of this layer increased with increasing pulsed LF. Additionally, Hf-Si bonds were increasingly formed at the interface when the LF was more than 2 J/cm2. This bond formation process was related to decomposition of HfO2 to its atomic states of Hf and O by multiphoton photochemical processes for bandgap excitation of the HfO2 polycrystalline target. However, the Hf-Si bond content of the interface Hf-silicate layer is controllable under high LF conditions. The results presented here represent a practical contribution to the development of room temperature processing of Hf-compound based devices.

  19. Sensorimotor integration in human postural control

    NASA Technical Reports Server (NTRS)

    Peterka, R. J.

    2002-01-01

    It is generally accepted that human bipedal upright stance is achieved by feedback mechanisms that generate an appropriate corrective torque based on body-sway motion detected primarily by visual, vestibular, and proprioceptive sensory systems. Because orientation information from the various senses is not always available (eyes closed) or accurate (compliant support surface), the postural control system must somehow adjust to maintain stance in a wide variety of environmental conditions. This is the sensorimotor integration problem that we investigated by evoking anterior-posterior (AP) body sway using pseudorandom rotation of the visual surround and/or support surface (amplitudes 0.5-8 degrees ) in both normal subjects and subjects with severe bilateral vestibular loss (VL). AP rotation of body center-of-mass (COM) was measured in response to six conditions offering different combinations of available sensory information. Stimulus-response data were analyzed using spectral analysis to compute transfer functions and coherence functions over a frequency range from 0.017 to 2.23 Hz. Stimulus-response data were quite linear for any given condition and amplitude. However, overall behavior in normal subjects was nonlinear because gain decreased and phase functions sometimes changed with increasing stimulus amplitude. "Sensory channel reweighting" could account for this nonlinear behavior with subjects showing increasing reliance on vestibular cues as stimulus amplitudes increased. VL subjects could not perform this reweighting, and their stimulus-response behavior remained quite linear. Transfer function curve fits based on a simple feedback control model provided estimates of postural stiffness, damping, and feedback time delay. There were only small changes in these parameters with increasing visual stimulus amplitude. However, stiffness increased as much as 60% with increasing support surface amplitude. To maintain postural stability and avoid resonant behavior, an

  20. Sensorimotor integration in human postural control.

    PubMed

    Peterka, R J

    2002-09-01

    It is generally accepted that human bipedal upright stance is achieved by feedback mechanisms that generate an appropriate corrective torque based on body-sway motion detected primarily by visual, vestibular, and proprioceptive sensory systems. Because orientation information from the various senses is not always available (eyes closed) or accurate (compliant support surface), the postural control system must somehow adjust to maintain stance in a wide variety of environmental conditions. This is the sensorimotor integration problem that we investigated by evoking anterior-posterior (AP) body sway using pseudorandom rotation of the visual surround and/or support surface (amplitudes 0.5-8 degrees ) in both normal subjects and subjects with severe bilateral vestibular loss (VL). AP rotation of body center-of-mass (COM) was measured in response to six conditions offering different combinations of available sensory information. Stimulus-response data were analyzed using spectral analysis to compute transfer functions and coherence functions over a frequency range from 0.017 to 2.23 Hz. Stimulus-response data were quite linear for any given condition and amplitude. However, overall behavior in normal subjects was nonlinear because gain decreased and phase functions sometimes changed with increasing stimulus amplitude. "Sensory channel reweighting" could account for this nonlinear behavior with subjects showing increasing reliance on vestibular cues as stimulus amplitudes increased. VL subjects could not perform this reweighting, and their stimulus-response behavior remained quite linear. Transfer function curve fits based on a simple feedback control model provided estimates of postural stiffness, damping, and feedback time delay. There were only small changes in these parameters with increasing visual stimulus amplitude. However, stiffness increased as much as 60% with increasing support surface amplitude. To maintain postural stability and avoid resonant behavior, an