Sample records for integrated electro-absorption modulated

  1. Vertical electro-absorption modulator design and its integration in a VCSEL

    NASA Astrophysics Data System (ADS)

    Marigo-Lombart, L.; Calvez, S.; Arnoult, A.; Thienpont, H.; Almuneau, G.; Panajotov, K.

    2018-04-01

    Electro-absorption modulators, either embedded in CMOS technology or integrated with a semiconductor laser, are of high interest for many applications such as optical communications, signal processing and 3D imaging. Recently, the integration of a surface-normal electro-absorption modulator into a vertical-cavity surface-emitting laser has been considered. In this paper we implement a simple quantum well electro-absorption model and design and optimize an asymmetric Fabry-Pérot semiconductor modulator while considering all physical properties within figures of merit. We also extend this model to account for the impact of temperature on the different parameters involved in the calculation of the absorption, such as refractive indices and exciton transition broadening. Two types of vertical modulator structures have been fabricated and experimentally characterized by reflectivity and photocurrent measurements demonstrating a very good agreement with our model. Finally, preliminary results of an electro-absorption modulator vertically integrated with a vertical-cavity surface-emitting laser device are presented, showing good modulation performances required for high speed communications.

  2. Enhancement of the static extinction ratio by using a dual-section distributed feedback laser integrated with an electro-absorption modulator

    NASA Astrophysics Data System (ADS)

    Cho, Chun-Hyung; Kim, Jongseong; Sung, Hyuk-Kee

    2016-09-01

    We report on the enhancement of the static extinction ratio by using a dual-section distributed feedback laser diode integrated with an electro-absorption modulator. A directly- modulated dual-section laser can provide improved modulation performance under a low bias level ( i.e., below the threshold level) compared with a standard directly-modulated laser. By combining the extinction ratio from a dual-section laser with that from an electro-absorption modulator section, a total extinction ratio of 49.6. dB are successfully achieved.

  3. High-speed Si/GeSi hetero-structure Electro Absorption Modulator.

    PubMed

    Mastronardi, L; Banakar, M; Khokhar, A Z; Hattasan, N; Rutirawut, T; Bucio, T Domínguez; Grabska, K M; Littlejohns, C; Bazin, A; Mashanovich, G; Gardes, F Y

    2018-03-19

    The ever-increasing demand for integrated, low power interconnect systems is pushing the bandwidth density of CMOS photonic devices. Taking advantage of the strong Franz-Keldysh effect in the C and L communication bands, electro-absorption modulators in Ge and GeSi are setting a new standard in terms of device footprint and power consumption for next generation photonics interconnect arrays. In this paper, we present a compact, low power electro-absorption modulator (EAM) Si/GeSi hetero-structure based on an 800 nm SOI overlayer with a modulation bandwidth of 56 GHz. The device design and fabrication tolerant process are presented, followed by the measurement analysis. Eye diagram measurements show a dynamic ER of 5.2 dB at a data rate of 56 Gb/s at 1566 nm, and calculated modulator power is 44 fJ/bit.

  4. Microwave generation in an electro-absorption modulator integrated with a DFB laser subject to optical injection.

    PubMed

    Zhu, Ning Hua; Zhang, Hong Guang; Man, Jiang Wei; Zhu, Hong Liang; Ke, Jian Hong; Liu, Yu; Wang, Xin; Yuan, Hai Qing; Xie, Liang; Wang, Wei

    2009-11-23

    This paper presents a new technique to generate microwave signal using an electro-absorption modulator (EAM) integrated with a distributed feedback (DFB) laser subject to optical injection. Experiments show that the frequency of the generated microwave can be tuned by changing the wavelength of the external laser or adjusting the bias voltage of the EAM. The frequency response of the EAM is studied and found to be unsmooth due to packaging parasitic effects and four-wave mixing effect occurring in the active layer of the DFB laser. It is also demonstrated that an EA modulator integrated in between two DFB lasers can be used instead of the EML under optical injection. This integrated chip can be used to realize a monolithically integrated tunable microwave source.

  5. A deterministic guide for material and mode dependence of on-chip electro-optic modulator performance

    NASA Astrophysics Data System (ADS)

    Amin, Rubab; Suer, Can; Ma, Zhizhen; Sarpkaya, Ibrahim; Khurgin, Jacob B.; Agarwal, Ritesh; Sorger, Volker J.

    2017-10-01

    Electro-optic modulation is a key function in optical data communication and possible future optical computing engines. The performance of modulators intricately depends on the interaction between the actively modulated material and the propagating waveguide mode. While high-performing modulators were demonstrated before, the approaches were taken as ad-hoc. Here we show the first systematic investigation to incorporate a holistic analysis for high-performance and ultra-compact electro-optic modulators on-chip. We show that intricate interplay between active modulation material and optical mode plays a key role in the device operation. Based on physical tradeoffs such as index modulation, loss, optical confinement factors and slow-light effects, we find that bias-material-mode regions exist where high phase modulation and high loss (absorption) modulation is found. This work paves the way for a holistic design rule of electro-optic modulators for on-chip integration.

  6. 30GHz Ge electro-absorption modulator integrated with 3 μm silicon-on-insulator waveguide.

    PubMed

    Feng, Ning-Ning; Feng, Dazeng; Liao, Shirong; Wang, Xin; Dong, Po; Liang, Hong; Kung, Cheng-Chih; Qian, Wei; Fong, Joan; Shafiiha, Roshanak; Luo, Ying; Cunningham, Jack; Krishnamoorthy, Ashok V; Asghari, Mehdi

    2011-04-11

    We demonstrate a compact waveguide-based high-speed Ge electro-absorption (EA) modulator integrated with a single mode 3 µm silicon-on-isolator (SOI) waveguide. The Ge EA modulator is based on a horizontally-oriented p-i-n structure butt-coupled with a deep-etched silicon waveguide, which transitions adiabatically to a shallow-etched single mode large core SOI waveguide. The demonstrated device has a compact active region of 1.0 × 45 µm(2), a total insertion loss of 2.5-5 dB and an extinction ratio of 4-7.5 dB over a wavelength range of 1610-1640 nm with -4V(pp) bias. The estimated Δα/α value is in the range of 2-3.3. The 3 dB bandwidth measurements show that the device is capable of operating at more than 30 GHz. Clear eye-diagram openings at 12.5 Gbps demonstrates large signal modulation at high transmission rate. © 2011 Optical Society of America

  7. Gbit/s-operation of graphene electro-absorption modulators in a passive polymer waveguide platform for data and telecommunications

    NASA Astrophysics Data System (ADS)

    Kleinert, M.; Reinke, P.; Bach, H.-G.; Brinker, W.; Zawadzki, C.; Dietrich, A.; de Felipe, D.; Keil, N.; Schell, M.

    2017-02-01

    Graphene with its high carrier mobility as well as its tunable light absorption is an attractive active material for highspeed electro-absorption modulators (EAMs). Large-area CVD-grown graphene monolayers can be transferred onto arbitrary substrates to add active optoelectronic properties to intrinsically passive photonic integration platforms. In this work, we present graphene-based EAMs integrated in passive polymer waveguides. To facilitate modulation frequencies in the GHz range, a 50 Ω termination resistor as well as a DC blocking capacitor are integrated with graphene EAMs for the first time. Large signal data transmission experiments were carried out across the O, C and L optical communications bands. The fastest devices exhibit a 3-dB bandwidth of more than 4 GHz. Our analytical model of the modulation response for the graphene-based EAMs is in good agreement with the measurement results. It predicts that bandwidths greater than 50 GHz are possible with future device iterations. Owing to the absorption properties of the graphene layers, the devices are expected to be functional at smaller wavelengths of interest for optical interconnects and data-communications as well, offering a novel flexibility for the integration of high-speed functionalities in optoelectronic integrated circuits. Our work is the first step towards an Active Optical Printed Circuit Board, hiding the optics completely inside the board and thus removing entry barriers in manufacturing. We believe this will lead to the same success as observed in Active Optical Cables for short range optically wired connections.

  8. Integration of electro-absorption modulator in a vertical-cavity surface-emitting laser

    NASA Astrophysics Data System (ADS)

    Marigo-Lombart, L.; Calvez, S.; Arnoult, A.; Rumeau, A.; Viallon, C.; Thienpont, H.; Panajotov, K.; Almuneau, G.

    2018-02-01

    VCSELs became dominant laser sources in many short optical link applications such as datacenter, active cables, etc. Actual standards and commercialized VCSEL are providing 25 Gb/s data rates, but new solutions are expected to settle the next device generation enabling 100 Gb/s. Directly modulated VCSEL have been extensively studied and improved to reach bandwidths in the range of 26-32 GHz [Chalmers, TU Berlin], however at the price of increased applied current and thus reduced device lifetime. Furthermore, the relaxation oscillation limit still subsists with this solution. Thus, splitting the emission and the modulation functions as done with DFB lasers is a very promising alternative [TI-Tech, TU Berlin]. Here, we study the vertical integration of an ElectroAbsorption Modulator (EAM) within a VCSEL, where the output light of the VCSEL is modulated through the EAM section. In our original design, we finely optimized the EAM design to maximize the modulation depth by implementing perturbative Quantum Confined Stark Effect (QCSE) calculations, while designing the vertical integration of the EAM without penalty on the VCSEL static performances. We will present the different fabricated vertical structures, as well as the experimental electrical and optical static measurements for those configurations demonstrating a very good agreement with the reflectivity and absorption simulations obtained for both the VCSEL and the EAM-VCSEL structures. Finally, to reach very high frequency modulation we studied the BCB electrical properties up to 110 GHz and investigated coplanar and microstrip lines access to decrease both the parasitic capacitance and the influence of the substrate.

  9. Graphene-silicon phase modulators with gigahertz bandwidth

    NASA Astrophysics Data System (ADS)

    Sorianello, V.; Midrio, M.; Contestabile, G.; Asselberghs, I.; Van Campenhout, J.; Huyghebaert, C.; Goykhman, I.; Ott, A. K.; Ferrari, A. C.; Romagnoli, M.

    2018-01-01

    The modulator is a key component in optical communications. Several graphene-based amplitude modulators have been reported based on electro-absorption. However, graphene phase modulators (GPMs) are necessary for functions such as applying complex modulation formats or making switches or phased arrays. Here, we present a 10 Gb s-1 GPM integrated in a Mach-Zehnder interferometer configuration. This is a compact device based on a graphene-insulator-silicon capacitor, with a phase-shifter length of 300 μm and extinction ratio of 35 dB. The GPM has a modulation efficiency of 0.28 V cm at 1,550 nm. It has 5 GHz electro-optical bandwidth and operates at 10 Gb s-1 with 2 V peak-to-peak driving voltage in a push-pull configuration for binary transmission of a non-return-to-zero data stream over 50 km of single-mode fibre. This device is the key building block for graphene-based integrated photonics, enabling compact and energy-efficient hybrid graphene-silicon modulators for telecom, datacom and other applications.

  10. InGaAlAs RW-based electro-absorption-modulated DFB-lasers for high-speed applications

    NASA Astrophysics Data System (ADS)

    Moehrle, Martin; Klein, Holger; Bornholdt, Carsten; Przyrembel, Georges; Sigmund, Ariane; Molzow, Wolf-Dietrich; Troppenz, Ute; Bach, Heinz-Gunter

    2014-05-01

    Electro-absorption modulated 10G and 25G DFB lasers (EML) are key components in transmission systems for long reach (up to 10 km) and extended reach (up to 80 km) applications. The next generation Ethernet will most likely be 400 Gb/s which will require components with even higher bandwidth. Commercially available EMLs are regarded as high-cost components due to their separate epitaxial butt-coupling growth process to separately optimize the DFB laser and the electro-absorption modulator (EAM). Alternatively the selective area growth (SAG) technique is used to achieve different MQW bandgaps in the DFB and EAM section of an EML. However for a lot of applications an emission wavelength within a narrow wavelength window is required enforcing a temperature controlled operation. All these applications can be covered with the developed EML devices that use a single InGaAlAs MQW waveguide for both the DFB and the EAM enabling a low-cost fabrication process similar to a conventional DFB laser diode. It will be shown that such devices can be used for 25Gb/s and 40Gb/s applications with excellent performance. By an additional monolithic integration of an impedance matching circuit the module fabrication costs can be reduced but also the modulation bandwidth of the devices can be further enhanced. Up to 70Gb/s modulation with excellent eye openings can be achieved. This novel approach opens the possibility for 100Gb/s NRZ EMLs and thus 4x100Gb/s NRZ EML-based transmitters in future. Also even higher bitrates seem feasible using more complex modulation formats such as e.g. DMT and PAM.

  11. Micro-electro-mechanically switchable near infrared complementary metamaterial absorber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pitchappa, Prakash; Pei Ho, Chong; Institute of Microelectronics

    2014-05-19

    We experimentally demonstrate a micro-electro-mechanically switchable near infrared complementary metamaterial absorber by integrating the metamaterial layer to be the out of plane movable microactuator. The metamaterial layer is electrostatically actuated by applying voltage across the suspended complementary metamaterial layer and the stationary bottom metallic reflector. Thus, the effective spacing between the metamaterial layer and bottom metal reflector is varied as a function of applied voltage. With the reduction of effective spacing between the metamaterial and reflector layers, a strong spectral blue shift in the peak absorption wavelength can be achieved. With spacing change of 300 nm, the spectral shift of 0.7 μmmore » in peak absorption wavelength was obtained for near infrared spectral region. The electro-optic switching performance of the device was characterized, and a striking switching contrast of 1500% was achieved at 2.1 μm. The reported micro-electro-mechanically tunable complementary metamaterial absorber device can potentially enable a wide range of high performance electro-optical devices, such as continuously tunable filters, modulators, and electro-optic switches that form the key components to facilitate future photonic circuit applications.« less

  12. Polarization-Insensitive Surface Plasmon Polarization Electro-Absorption Modulator Based on Epsilon-Near-Zero Indium Tin Oxide.

    PubMed

    Jin, Lin; Wen, Long; Liang, Li; Chen, Qin; Sun, Yunfei

    2018-02-03

    CMOS-compatible plasmonic modulators operating at the telecom wavelength are significant for a variety of on-chip applications. Relying on the manipulation of the transverse magnetic (TM) mode excited on the metal-dielectric interface, most of the previous demonstrations are designed to response only for specific polarization state. In this case, it will lead to a high polarization dependent loss, when the polarization-sensitive modulator integrates to a fiber with random polarization state. Herein, we propose a plasmonic modulator utilizing a metal-oxide indium tin oxide (ITO) wrapped around the silicon waveguide and investigate its optical modulation ability for both the vertical and horizontal polarized guiding light by tuning electro-absorption of ITO with the field-induced carrier injection. The electrically biased modulator with electron accumulated at the ITO/oxide interface allows for epsilon-near-zero (ENZ) mode to be excited at the top or lateral portion of the interface depending on the polarization state of the guiding light. Because of the high localized feature of ENZ mode, efficient electro-absorption can be achieved under the "OFF" state of the device, thus leading to large extinction ratio (ER) for both polarizations in our proposed modulator. Further, the polarization-insensitive modulation is realized by properly tailoring the thickness of oxide in two different stacking directions and therefore matching the ER values for device operating at vertical and horizontal polarized modes. For the optimized geometry configuration, the difference between the ER values of two polarization modes, i.e., the ΔER, as small as 0.01 dB/μm is demonstrated and, simultaneously with coupling efficiency above 74%, is obtained for both polarizations at a wavelength of 1.55 μm. The proposed plasmonic-combined modulator has a potential application in guiding and processing of light from a fiber with a random polarization state.

  13. Polarization-Insensitive Surface Plasmon Polarization Electro-Absorption Modulator Based on Epsilon-Near-Zero Indium Tin Oxide

    NASA Astrophysics Data System (ADS)

    Jin, Lin; Wen, Long; Liang, Li; Chen, Qin; Sun, Yunfei

    2018-02-01

    CMOS-compatible plasmonic modulators operating at the telecom wavelength are significant for a variety of on-chip applications. Relying on the manipulation of the transverse magnetic (TM) mode excited on the metal-dielectric interface, most of the previous demonstrations are designed to response only for specific polarization state. In this case, it will lead to a high polarization dependent loss, when the polarization-sensitive modulator integrates to a fiber with random polarization state. Herein, we propose a plasmonic modulator utilizing a metal-oxide indium tin oxide (ITO) wrapped around the silicon waveguide and investigate its optical modulation ability for both the vertical and horizontal polarized guiding light by tuning electro-absorption of ITO with the field-induced carrier injection. The electrically biased modulator with electron accumulated at the ITO/oxide interface allows for epsilon-near-zero (ENZ) mode to be excited at the top or lateral portion of the interface depending on the polarization state of the guiding light. Because of the high localized feature of ENZ mode, efficient electro-absorption can be achieved under the "OFF" state of the device, thus leading to large extinction ratio (ER) for both polarizations in our proposed modulator. Further, the polarization-insensitive modulation is realized by properly tailoring the thickness of oxide in two different stacking directions and therefore matching the ER values for device operating at vertical and horizontal polarized modes. For the optimized geometry configuration, the difference between the ER values of two polarization modes, i.e., the ΔER, as small as 0.01 dB/μm is demonstrated and, simultaneously with coupling efficiency above 74%, is obtained for both polarizations at a wavelength of 1.55 μm. The proposed plasmonic-combined modulator has a potential application in guiding and processing of light from a fiber with a random polarization state.

  14. Short optical pulse generation at 40 GHz with a bulk electro-absorption modulator packaged device

    NASA Astrophysics Data System (ADS)

    Langlois, Patrick; Moore, Ronald; Prosyk, Kelvin; O'Keefe, Sean; Oosterom, Jill A.; Betty, Ian; Foster, Robert; Greenspan, Jonathan; Singh, Priti

    2003-12-01

    Short optical pulse generation at 40GHz and 1540nm wavelength is achieved using fully packaged bulk quaternary electro-absorption modulator modules. Experimental results obtained with broadband and narrowband optimized packaged modules are presented and compared against empirical model predictions. Pulse duty cycle, extinction ratio and chirp are studied as a function of sinusoidal drive voltage and detuning between operating wavelength and modulator absorption band edge. Design rules and performance trade-offs are discussed. Low-chirp pulses with a FWHM of ~12ps and sub-4ps at a rate of 40GHz are demonstrated. Optical time-domain demultiplexing of a 40GHz to a 10GHz pulse train is also demonstrated with better than 20dB extinction ratio.

  15. Emerging technologies in Si active photonics

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoxin; Liu, Jifeng

    2018-06-01

    Silicon photonics for synergistic electronic–photonic integration has achieved remarkable progress in the past two decades. Active photonic devices, including lasers, modulators, and photodetectors, are the key challenges for Si photonics to meet the requirement of high bandwidth and low power consumption in photonic datalinks. Here we review recent efforts and progress in high-performance active photonic devices on Si, focusing on emerging technologies beyond conventional foundry-ready Si photonics devices. For emerging laser sources, we will discuss recent progress towards efficient monolithic Ge lasers, mid-infrared GeSn lasers, and high-performance InAs quantum dot lasers on Si for data center applications in the near future. We will then review novel modulator materials and devices beyond the free carrier plasma dispersion effect in Si, including GeSi and graphene electro-absorption modulators and plasmonic-organic electro-optical modulators, to achieve ultralow power and high speed modulation. Finally, we discuss emerging photodetectors beyond epitaxial Ge p–i–n photodiodes, including GeSn mid-infrared photodetectors, all-Si plasmonic Schottky infrared photodetectors, and Si quanta image sensors for non-avalanche, low noise single photon detection and photon counting. These emerging technologies, though still under development, could make a significant impact on the future of large-scale electronicSilicon photonics for synergistic electronic-photonic integration has achieved remarkable progress in the past two decades. Active photonic devices, including lasers, modulators, and photodetectors, are the key challenges for Si photonics to meet the requirement of high bandwidth and low power consumption in photonic datalinks. Here we review recent efforts and progress in high-performance active photonic devices on Si, focusing on emerging technologies beyond conventional foundry-ready Si photonics devices. For emerging laser sources, we will discuss recent progress towards efficient monolithic Ge lasers, mid-infrared GeSn lasers, and high-performance InAs quantum dot lasers on Si for data center applications in the near future. We will then review novel modulator materials and devices beyond the free carrier plasma dispersion effect in Si, including GeSi and graphene electro-absorption modulators and plasmonic-organic electro–optical modulators, to achieve ultralow power and high speed modulation. Finally, we discuss emerging photodetectors beyond epitaxial Ge p–i–n photodiodes, including GeSn mid-infrared photodetectors, all-Si plasmonic Schottky infrared photodetectors, and Si quanta image sensors for non-avalanche, low noise single photon detection and photon counting. These emerging technologies, though still under development, could make a significant impact on the future of large-scale electronic–photonic integration with performance inaccessible from conventional Si photonics technologies-photonic integration with performance inaccessible from conventional Si photonics technologies.

  16. Cross-linked polyimides for integrated optics

    NASA Astrophysics Data System (ADS)

    Singer, Kenneth D.; Kowalczyk, Tony C.; Nguyen, Hung D.; Beuhler, Allyson J.; Wargowski, David A.

    1997-01-01

    We have investigated a promising class of polyimide materials for both passive and active electro-optic devices, namely crosslinkable polyimides. These fluorinated polyimides are soluble in the imidized form and are both thermally and photo-crosslinkable leading to easy processability into waveguide structures and the possibility of stable electro-optic properties. We have fabricated channel and slab waveguides and investigated the mechanism of optical propagation loss using photothermal deflection spectroscopy and waveguide loss spectroscopy, and found the losses to arise from residual absorption due to the formation of charge transfer states. The absorption is inhibited by fluorination leading to propagation losses as low as 0.3 dB/cm in the near infrared. Because of the ability to photocrosslink, channel waveguides are fabricated using a simple wet-etch process. Channel waveguides so formed are observed to have no excess loss over slab structures. Solubility followed by thermal cross-linking allows the formation of multilayer structures. We have produced electro-optic polymers by doping with the nonlinear optical chromophores, DCM and DADC; and a process of concurrent poling and thermal crosslinking. Multilayer structures have been investigated and poling fields optimized in the active layer by doping the cladding with an anti-static agent. The high glass-transition temperature and cross-linking leads to very stable electro-optic properties. We are currently building electro-optic modulators based on these materials. Progress and results in this area also are reported.

  17. High-speed, Low Voltage, Miniature Electro-optic Modulators Based on Hybrid Photonic-Crystal/Polymer/Sol-Gel Technology

    DTIC Science & Technology

    2012-02-01

    code) 01/02/2012 FINAL 15/11/2008 - 15/11/2011 High-speed, Low Voltage, Miniature Electro - optic Modulators Based on Hybrid Photonic-Crystal/Polymer... optic modulator, silicon photonics, integrated optics, electro - optic polymer, avionics, optical communications, sol-gel, nanotechnology U U U UU 25...2011 Program Manager: Dr. Charles Y-C Lee High-speed, Low Voltage, Miniature Electro - optic Modulators Based on Hybrid Photonic-Crystal/Polymer/Sol

  18. Self-assembled materials and devices that process light

    NASA Astrophysics Data System (ADS)

    Zhu, Peiwang; Kang, Hu; van der Boom, Milko E.; Liu, Zhifu; Xu, Guoyang; Ma, Jing; Zhou, Delai; Ho, Seng-Tiong; Marks, Tobin J.

    2004-12-01

    Self-assembled superlattices (SASs) are intrinsically acentric and highly cross-linked structures. For organic electro-optics, they offer great advantages such as not requiring electric field poling for creating an acentric, EO-active microstructure and having excellent chemical, thermal, and orientational stabilities. In this paper, a greatly improved two-step all "wet-chemical" self-assembly (SA) approach is reported. Excellent radiation hardness of the SAS films is demonstrated by high-energy proton irradiation experiments. By introducing metal oxide nanolayers during SA, we show that the refractive indices of SAS films can be tuned over a wide range. Through special chromophore design, the optical absorption maxima of SAS films can also be greatly blue-shifted. Prototype waveguiding electro-optic modulators have been fabricated using the SAS films integrated with low-loss polymeric materials functioning as partial guiding and cladding layers. EO parameters such as the half-wave voltage and the effective electro-optic coefficient are reported.

  19. Waveguide-based electro-absorption modulator performance: comparative analysis

    NASA Astrophysics Data System (ADS)

    Amin, Rubab; Khurgin, Jacob B.; Sorger, Volker J.

    2018-06-01

    Electro-optic modulation is a key function for data communication. Given the vast amount of data handled, understanding the intricate physics and trade-offs of modulators on-chip allows revealing performance regimes not explored yet. Here we show a holistic performance analysis for waveguide-based electro-absorption modulators. Our approach centers around material properties revealing obtainable optical absorption leading to effective modal cross-section, and material broadening effects. Taken together both describe the modulator physical behavior entirely. We consider a plurality of material modulation classes to include two-level absorbers such as quantum dots, free carrier accumulation or depletion such as ITO or Silicon, two-dimensional electron gas in semiconductors such as quantum wells, Pauli blocking in Graphene, and excitons in two-dimensional atomic layered materials such as found in transition metal dichalcogendies. Our results show that reducing the modal area generally improves modulator performance defined by the amount of induced electrical charge, and hence the energy-per-bit function, required switching the signal. We find that broadening increases the amount of switching charge needed. While some material classes allow for reduced broadening such as quantum dots and 2-dimensional materials due to their reduced Coulomb screening leading to increased oscillator strengths, the sharpness of broadening is overshadowed by thermal effects independent of the material class. Further we find that plasmonics allows the switching charge and energy-per-bit function to be reduced by about one order of magnitude compared to bulk photonics. This analysis is aimed as a guide for the community to predict anticipated modulator performance based on both existing and emerging materials.

  20. Reversible unidirectional reflection and absorption of PT-symmetry structure under electro-optical modulation

    NASA Astrophysics Data System (ADS)

    Fang, Yun-tuan; Zhang, Yi-chi; Xia, Jing

    2018-06-01

    In order to obtain tunable unidirectional device, we assumed an ideal periodic layered Parity-Time (PT) symmetry structure inserted by doped LiNbO3 (LN) interlayers. LN is a typical electro-optical material of which the refractive index depends on the external electric field. In our work, we theoretically investigate the modulation effect of the external electric field on the transmittance and reflectance of the structure through numerical method. Through selected structural parameters, the one-way enhanced reflection and high absorption (above 0.9) behaviors are found. Within a special frequency band (not a single frequency), our theoretical model performs enhanced reflection in one incidence direction and high absorption in the other direction. Furthermore, the directions of enhanced reflection and absorption can be reversed through reversing the direction of applied electric field. Such structure with reversible properties has the potential in designing new optical devices.

  1. Direct Absorption Spectroscopy with Electro-Optic Frequency Combs

    NASA Astrophysics Data System (ADS)

    Fleisher, Adam J.; Long, David A.; Plusquellic, David F.; Hodges, Joseph T.

    2017-06-01

    The application of electro-optic frequency combs to direct absorption spectroscopy has increased research interest in high-agility, modulator-based comb generation. This talk will review common architectures for electro-optic frequency comb generators as well as describe common self-heterodyne and multi-heterodyne (i.e., dual-comb) detection approaches. In order to achieve a sufficient signal-to-noise ratio on the recorded interferogram while allowing for manageable data volumes, broadband electro-optic frequency combs require deep coherent averaging, preferably in real-time. Applications such as cavity-enhanced spectroscopy, precision atomic and molecular spectroscopy, as well as time-resolved spectroscopy will be introduced. D.A. Long et al., Opt. Lett. 39, 2688 (2014) A.J. Fleisher et al., Opt. Express 24, 10424 (2016)

  2. Electro-Optic Modulator Based on Organic Planar Waveguide Integrated with Prism Coupler

    NASA Technical Reports Server (NTRS)

    Sarkisov, Sergey S.

    2002-01-01

    The objectives of the project, as they were formulated in the proposal, are the following: (1) Design and development of novel electro-optic modulator using single crystalline film of highly efficient electro-optic organic material integrated with prism coupler; (2) Experimental characterization of the figures-of-merit of the modulator. It is expected to perform with an extinction ratio of 10 dB at a driving signal of 5 V; (3) Conclusions on feasibility of the modulator as an element of data communication systems of future generations. The accomplishments of the project are the following: (1) The design of the electro-optic modulator based on a single crystalline film of organic material NPP has been explored; (2) The evaluation of the figures-of-merit of the electro-optic modulator has been performed; (3) Based on the results of characterization of the figures-of-merit, the conclusion was made that the modulator based on a thin film of NPP is feasible and has a great potential of being used in optic communication with a modulation bandwidth of up to 100 GHz and a driving voltage of the order of 3 to 5 V.

  3. Hybrid plasmonic electro-optical absorption modulator based on epsilon-near-zero characteristics of ITO

    NASA Astrophysics Data System (ADS)

    Abdelatty, M. Y.; Badr, M. M.; Swillam, M. A.

    2018-03-01

    Using transparent conducting oxides (TCOs), like indium-tin-oxide (ITO), for optical modulation attracted research interest because of their epsilon-near-zero (ENZ) characteristics at telecom wavelengths. Utilizing indium-tin-oxide (ITO) in multilayer structure modulators, optical absorption of the active ITO layer can be electrically modulated over a large spectrum range. Although they show advances over common silicon electro-optical modulators (EOMs), they suffer from high insertion losses. To reduce insertion losses and device footprints without sacrificing bandwidth and modulation strength, slot waveguides are promising options because of their high optical confinement. In this paper, we present the study and the design of an electro-optical absorption modulator based on electrically tuning ITO carrier density inside a MOS structure. The device structure is based on dielectric slot waveguide with an ITO plasmonic waveguide modulation section. By changing the dimensions, the effective refractive indices for the slot mode and the off-sate mode of the plasmonic section can be matched. When applying electric field to the plasmonic section (on-state), carriers are generated at the ITO-dielectric interface that result in changing the layer where the electric field is confined from a transparent layer into a lossy layer. A finite difference time domain method with perfect matching layer (PML) absorbing boundary conditions is taken up to simulate and analyze this design. An extinction ratio of 2.3 dB is achieved for a 1-μm-short modulation section, at the telecommunications wavelength (1.55 μm). This EOM has advantages of simple design, easy fabrication, compact size, compatibility with existing silicon photonics platforms, as well as broadband performance.

  4. Triggerable electro-optic amplitude modulator bias stabilizer for integrated optical devices

    DOEpatents

    Conder, A.D.; Haigh, R.E.; Hugenberg, K.F.

    1995-09-26

    An improved Mach-Zehnder integrated optical electro-optic modulator is achieved by application and incorporation of a DC bias box containing a laser synchronized trigger circuit, a DC ramp and hold circuit, a modulator transfer function negative peak detector circuit, and an adjustable delay circuit. The DC bias box ramps the DC bias along the transfer function curve to any desired phase or point of operation at which point the RF modulation takes place. 7 figs.

  5. Triggerable electro-optic amplitude modulator bias stabilizer for integrated optical devices

    DOEpatents

    Conder, Alan D.; Haigh, Ronald E.; Hugenberg, Keith F.

    1995-01-01

    An improved Mach-Zehnder integrated optical electro-optic modulator is achieved by application and incorporation of a DC bias box containing a laser synchronized trigger circuit, a DC ramp and hold circuit, a modulator transfer function negative peak detector circuit, and an adjustable delay circuit. The DC bias box ramps the DC bias along the transfer function curve to any desired phase or point of operation at which point the RF modulation takes place.

  6. Electro-optic modulator with ultra-low residual amplitude modulation for frequency modulation and laser stabilization.

    PubMed

    Tai, Zhaoyang; Yan, Lulu; Zhang, Yanyan; Zhang, Xiaofei; Guo, Wenge; Zhang, Shougang; Jiang, Haifeng

    2016-12-01

    The reduction of the residual amplitude modulation (RAM) induced by electro-optic modulation is essential for many applications of frequency modulation spectroscopy requiring a lower system noise floor. Here, we demonstrate a simple passive approach employing an electro-optic modulator (EOM) cut at Brewster's angle. The proposed EOM exhibits a RAM of a few parts per million, which is comparable with that achieved by a common EOM under critical active temperature and bias voltage controls. The frequency instability of a 10 cm cavity-stabilized laser induced by the RAM effect of the proposed EOM is below 3×10-17 for integration times from 1 to 1000 s, and below 4×10-16 for comprehensive noise contributions for integration times from 1 to 100 s.

  7. Ring-resonator-integrated tunable external cavity laser employing EAM and SOA.

    PubMed

    Yoon, Ki-Hong; Kwon, O-Kyun; Kim, Ki Soo; Choi, Byung-Seok; Oh, Su Hwan; Kim, Hyun Su; Sim, Jae-Sik; Kim, Chul Soo

    2011-12-05

    We propose and demonstrate a tunable external cavity laser (ECL) composed of a polymer Bragg reflector (PBR) and integrated gain chip with gain, a ring resonator, an electro-absorption modulator (EAM), and a semiconductor optical amplifier (SOA). The cavity of the laser is composed of the PBR, gain, and ring resonator. The ring resonator reflects the predetermined wavelengths into the gain region and transmits the output signal into integrated devices such as the EAM and SOA. The output wavelength of the tunable laser is discretely tuned in steps of about 0.8 nm through the thermal-optic effect of the PBR and predetermined mode spacing of the ring resonator.

  8. Photonic integrated circuits based on sampled-grating distributed-Bragg-reflector lasers

    NASA Astrophysics Data System (ADS)

    Barton, Jonathon S.; Skogen, Erik J.; Masanovic, Milan L.; Raring, James; Sysak, Matt N.; Johansson, Leif; DenBaars, Steven P.; Coldren, Larry A.

    2003-07-01

    The Sampled-Grating Distributed-Bragg-Reflector laser(SGDBR) provides wide tunability (>40nm), and high output power (>10mW). Driven by the demand for network reconfigurability and ease of implementation, the SGDBR has moved from the research lab to be commercially viable in the marketplace. The SGDBR is most often implemented using an offset-quantum well epitaxial structure in which the quantum wells are etched off in the passive sections. Alternatively, quantum well intermixing has been used recently to achieve the same goal - resulting in improved optical gain and the potential for multiple bandgaps along the device structure. These epitaxial "platforms" provide the basis for more exotic opto-electronic device functionality exhibiting low chirp for digital applications and enhanced linearity for analog applications. This talk will cover state-of-the-art opto-electronic devices based on the SGDBR platform including: integrated Mach-Zehnder modulators, and integrated electro-absorption modulators.

  9. Microring resonator based modulator made by direct photodefinition of an electro-optic polymer

    NASA Astrophysics Data System (ADS)

    Balakrishnan, M.; Faccini, M.; Diemeer, M. B. J.; Klein, E. J.; Sengo, G.; Driessen, A.; Verboom, W.; Reinhoudt, D. N.

    2008-04-01

    A laterally coupled microring resonator was fabricated by direct photodefinition of negative photoresist SU8, containing tricyanovinylidenediphenylaminobenzene chromophore, by exploiting the low ultraviolet absorption window of this chromophore. The ring resonator was first photodefined by slight cross-linking. Thereafter, poling (to align the chromophores) and further cross-linking (to increase the glass transition temperature) were simultaneously carried out. The material showed excellent photostability and the electro-optic modulation with an r33 of 11pm/V was demonstrated at 10MHz.

  10. Strongly-guided indium phosphide/indium gallium arsenic phosphide Mach-Zehnder modulator for optical communications

    NASA Astrophysics Data System (ADS)

    Betty, Ian Brian

    2006-12-01

    The development of strongly-guided InP/In1-x GaxAsyP 1-y based Mach-Zehnder optical modulators for 10Gb/s telecommunications is detailed. The modulators have insertion losses including coupling as low as 4.5dB, due to the incorporation of monolithically integrated optical mode spot-size converters (SSC's). The modulators are optimized to produce system performance that is independent of optical coupling alignment and for wavelength operation between 1525nm and 1565nm. A negatively chirped Mach-Zehnder modulator design is demonstrated, giving optimal dispersion-limited reach for 10Gb/s ON/OFF-keying modulation. It is shown that the optical system performance for this design can be determined from purely DC based optical measurements. A Mach-Zehnder modulator design invoking nearly no transient frequency shifts under intensity modulation is also presented, for the first time, using phase-shifter implementations based on the Quantum-Confined-Stark-Effect (QCSE). The performance impact on the modulator from the higher-order vertical and lateral waveguide modes found in strongly-guided waveguides has been determined. The impact of these higher-order modes has been minimized using the design of the waveguide bends, MMI structures, and doping profiles. The fabrication process and optical design for the spot-size mode converters are also thoroughly explored. The SSC structures are based on butt-joined vertically tapered passive waveguide cores within laterally flared strongly-guided ridges, making them compatible with any strong-guiding waveguide structure. The flexibility of the SSC process is demonstrated by the superior performance it has also enabled in a 40Gb/s electro-absorption modulator. The presented electro-absorption modulator has 3.6dB fiber-to-fiber insertion loss, polarization dependent loss (PDL) of only 0.3dB over 15dB extinction, and low absolute chirp (|alpha H| < 0.6) over the full dynamic range.

  11. Self-starting picosecond optical pulse source using stimulated Brillouin scattering in an optical fiber.

    PubMed

    Tang, W W; Shu, C

    2005-02-21

    We demonstrate a regeneratively mode-locked optical pulse source at about 10 GHz using an optoelectronic oscillator constructed with an electro-absorption modulator integrated distributed feedback laser diode. The 10 GHz RF component is derived from the interaction between the pump wave and the backscattered, frequency-downshifted Stokes wave resulted from stimulated Brillouin scattering in an optical fiber. The component serves as a modulation source for the 1556 nm laser diode without the need for any electrical or optical RF filter to perform the frequency extraction. Dispersion-compensated fiber, dispersion-shifted fiber, and standard single-mode fiber have been used respectively to generate optical pulses at variable repetition rates.

  12. Dense electro-optic frequency comb generated by two-stage modulation for dual-comb spectroscopy.

    PubMed

    Wang, Shuai; Fan, Xinyu; Xu, Bingxin; He, Zuyuan

    2017-10-01

    An electro-optic frequency comb enables frequency-agile comb-based spectroscopy without using sophisticated phase-locking electronics. Nevertheless, dense electro-optic frequency combs over broad spans have yet to be developed. In this Letter, we propose a straightforward and efficient method for electro-optic frequency comb generation with a small line spacing and a large span. This method is based on two-stage modulation: generating an 18 GHz line-spacing comb at the first stage and a 250 MHz line-spacing comb at the second stage. After generating an electro-optic frequency comb covering 1500 lines, we set up an easily established mutually coherent hybrid dual-comb interferometer, which combines the generated electro-optic frequency comb and a free-running mode-locked laser. As a proof of concept, this hybrid dual-comb interferometer is used to measure the absorption and dispersion profiles of the molecular transition of H 13 CN with a spectral resolution of 250 MHz.

  13. Recent advances in IR liquid crystal spatial light modulators

    NASA Astrophysics Data System (ADS)

    Peng, Fenglin; Twieg, Robert J.; Wu, Shin-Tson

    2015-09-01

    Liquid crystal (LC) is an amazing class of electro-optic media; its applications span from visible to infrared, millimeter wave, and terahertz regions. In the visible and short-wavelength infrared (SWIR) regions, most LCs are highly transparent. However, to extend the electro-optic application of LCs into MWIR and LWIR, several key technical challenges have to be overcome: (1) low absorption loss, (2) high birefringence, (3) low operation voltage, and (4) fast response time. In the MWIR and LWIR regions, several fundamental molecular vibration bands and overtones exist, which contribute to high absorption loss. The absorbed light turns to heat and then alters the birefringence locally, which in turns causes spatially non-uniform phase modulation. To suppress the optical loss, several approaches have been investigated: (1) Employing thin cell gap by choosing a high birefringence LC mixture; (2) Shifting the absorption bands outside the spectral region of interest by deuteration, fluorination, or chlorination; (3) Reducing the overtone absorption by using a short alkyl chain. In this paper, we report some recently developed chlorinated LC compounds and mixtures with low absorption loss in the SWIR and MWIR regions. To achieve fast response time, we demonstrated a polymer network liquid crystal with 2π phase change at MWIR and response time less than 5 ms. Approaches to extend such a liquid crystal spatial light modulator to long-wavelength infrared will be discussed.

  14. Investigation of a GaAlAs Mach-Zehnder electro-optic modulator. M.S. Thesis. Final Contractor Report

    NASA Technical Reports Server (NTRS)

    Materna, David M.

    1987-01-01

    A GaAs modulator operating at 0.78 to 0.88 micron wavelength has the potential to be integrated with a GaAs/GaAlAs laser diode for an integrated fiber-optic transmitter. A travelling-wave Mach-Zehnder modulator using the electro-optic effect of GaAs and operating at a wavelength of 0.82 microns has been investigated for the first time. A four layer Strip-loaded ridge optical waveguide has been analyzed using the effective index method and single mode waveguides have been designed. The electro-optic effect of GaAs has also been analyzed and a modulator using the geometry producing the maximum phase shift has been designed. A coplanar transmission line structure is used in an effort to tap the potentially higher bandwidth of travelling-wave electrodes. The modulator bandwidth has been calculated at 11.95 GHz with a required drive power of 2.335 Watts for full intensity modulation. Finally, some preliminary experiments were performed to characterize a fabrication process for the modulator.

  15. Generation of ultra-wide and flat optical frequency comb based on electro absorption modulator

    NASA Astrophysics Data System (ADS)

    Ujjwal; Thangaraj, Jaisingh

    2018-05-01

    A novel technique is proposed for the generation of ultra-wide and flat optical frequency comb (OFC) based on serially cascading three stages of electro absorption modulators (EAMs) through sinusoidal radio frequency (RF) signals by setting frequencies at f GHz, f/2 GHz and f/4 GHz. Here, the first stage acts as subcarrier generator, the second stage acts as subcarrier doubler, and the third stage acts as subcarrier quadrupler. In addition, a higher number of subcarriers can easily be generated by adjusting the driving sinusoidal RF signal. In this paper, cascading three stages of EAMs driven by 50 GHz, 25 GHz and 12.5 GHz clock sources, we obtain 272 subcarriers with spacing of 2.5 GHz and power deviation within 1 dB. Theoretical analysis of serially cascaded EAMs for subcarrier generation is also investigated. Principal analysis and simulation of this technique are demonstrated.

  16. Electro-optical resonance modulation of vertical-cavity surface-emitting lasers.

    PubMed

    Germann, Tim David; Hofmann, Werner; Nadtochiy, Alexey M; Schulze, Jan-Hindrik; Mutig, Alex; Strittmatter, André; Bimberg, Dieter

    2012-02-27

    Optical and electrical investigations of vertical-cavity surface-emitting lasers (VCSEL) with a monolithically integrated electro-optical modulator (EOM) allow for a detailed physical understanding of this complex compound cavity laser system. The EOM VCSEL light output is investigated to identify optimal working points. An electro-optic resonance feature triggered by the quantum confined Stark effect is used to modulate individual VCSEL modes by more than 20 dB with an extremely small EOM voltage change of less than 100 mV. Spectral mode analysis reveals modulation of higher order modes and very low wavelength chirp of < 0.5 nm. Dynamic experiments and simulation predict an intrinsic bandwidth of the EOM VCSEL exceeding 50 GHz.

  17. Ultracompact electro-optic phase modulator based on III-V-on-silicon microdisk resonator.

    PubMed

    Lloret, J; Kumar, R; Sales, S; Ramos, F; Morthier, G; Mechet, P; Spuesens, T; Van Thourhout, D; Olivier, N; Fédéli, J-M; Capmany, J

    2012-06-15

    A novel ultracompact electro-optic phase modulator based on a single 9 μm-diameter III-V microdisk resonator heterogeneously integrated on and coupled to a nanophotonic waveguide is presented. Modulation is enabled by effective index modification through carrier injection. Proof-of-concept implementation involving binary phase shift keying modulation format is assembled. A power imbalance of ∼0.6  dB between both symbols and a modulation rate up to 1.8 Gbps are demonstrated without using any special driving technique.

  18. Design and performance of 10-Gb/s L-band REAM-SOA for OLT Transmitter in next generation access networks.

    PubMed

    Lee, Dong-Hun; Jeong, Jong Sool; Kim, Ki-Soo; Kim, Hyun-Soo; Kim, Dong Churl; Park, Mi-Ran; Han, Yong-Tak; Kwon, Oh Kee; Kwon, O-Kyun

    2015-02-09

    We present a 10-Gb/s L-band reflective electro-absorption modulator integrated with a semiconductor optical amplifier (REAM-SOA) having improved transmission performance at very low input power of seed light. To decrease the input power of seed light, the absorption characteristics of the REAM are adjusted to reduce the amplified spontaneous emission light returned into the SOA, suppressing the gain saturation effect of the SOA. At a considerably low input power of -16 dBm, the REAM-SOA exhibits a low transmission penalty of about 1.2 dB after 50-km SMF transmission. Over a wide input power range from -16 dBm to 5 dBm, a penalty of less than 1.6 dB is achieved at 50-km transmission.

  19. Optical modulation techniques for analog signal processing and CMOS compatible electro-optic modulation

    NASA Astrophysics Data System (ADS)

    Gill, Douglas M.; Rasras, Mahmoud; Tu, Kun-Yii; Chen, Young-Kai; White, Alice E.; Patel, Sanjay S.; Carothers, Daniel; Pomerene, Andrew; Kamocsai, Robert; Beattie, James; Kopa, Anthony; Apsel, Alyssa; Beals, Mark; Mitchel, Jurgen; Liu, Jifeng; Kimerling, Lionel C.

    2008-02-01

    Integrating electronic and photonic functions onto a single silicon-based chip using techniques compatible with mass-production CMOS electronics will enable new design paradigms for existing system architectures and open new opportunities for electro-optic applications with the potential to dramatically change the management, cost, footprint, weight, and power consumption of today's communication systems. While broadband analog system applications represent a smaller volume market than that for digital data transmission, there are significant deployments of analog electro-optic systems for commercial and military applications. Broadband linear modulation is a critical building block in optical analog signal processing and also could have significant applications in digital communication systems. Recently, broadband electro-optic modulators on a silicon platform have been demonstrated based on the plasma dispersion effect. The use of the plasma dispersion effect within a CMOS compatible waveguide creates new challenges and opportunities for analog signal processing since the index and propagation loss change within the waveguide during modulation. We will review the current status of silicon-based electrooptic modulators and also linearization techniques for optical modulation.

  20. Electro-optic polymeric reflection modulator based on plasmonic metamaterial

    NASA Astrophysics Data System (ADS)

    Abbas, A.; Swillam, M.

    2018-02-01

    A novel low power design for polymeric Electro-Optic reflection modulator is proposed based on the Extraordinary Reflection of light from multilayer structure consisting of a plasmonic metasurface with a periodic structure of sub wavelength circular apertures in a gold film above a thin layer of EO polymer and above another thin gold layer. The interference of the different reflected beams from different layer construct the modulated beam, The applied input driving voltage change the polymer refractive index which in turn determine whether the interference is constructive or destructive, so both phase and intensity modulation could be achieved. The resonant wavelength is tuned to the standard telecommunication wavelength 1.55μm, at this wavelength the reflection is minimum, while the absorption is maximum due to plasmonic resonance (PR) and the coupling between the incident light and the plasmonic metasurface.

  1. A strong electro-optically active lead-free ferroelectric integrated on silicon

    NASA Astrophysics Data System (ADS)

    Abel, Stefan; Stöferle, Thilo; Marchiori, Chiara; Rossel, Christophe; Rossell, Marta D.; Erni, Rolf; Caimi, Daniele; Sousa, Marilyne; Chelnokov, Alexei; Offrein, Bert J.; Fompeyrine, Jean

    2013-04-01

    The development of silicon photonics could greatly benefit from the linear electro-optical properties, absent in bulk silicon, of ferroelectric oxides, as a novel way to seamlessly connect the electrical and optical domain. Of all oxides, barium titanate exhibits one of the largest linear electro-optical coefficients, which has however not yet been explored for thin films on silicon. Here we report on the electro-optical properties of thin barium titanate films epitaxially grown on silicon substrates. We extract a large effective Pockels coefficient of reff=148 pm V-1, which is five times larger than in the current standard material for electro-optical devices, lithium niobate. We also reveal the tensor nature of the electro-optical properties, as necessary for properly designing future devices, and furthermore unambiguously demonstrate the presence of ferroelectricity. The integration of electro-optical active films on silicon could pave the way towards power-efficient, ultra-compact integrated devices, such as modulators, tuning elements and bistable switches.

  2. Nonlinearity-aware 200  Gbit/s DMT transmission for C-band short-reach optical interconnects with a single packaged electro-absorption modulated laser.

    PubMed

    Zhang, Lu; Hong, Xuezhi; Pang, Xiaodan; Ozolins, Oskars; Udalcovs, Aleksejs; Schatz, Richard; Guo, Changjian; Zhang, Junwei; Nordwall, Fredrik; Engenhardt, Klaus M; Westergren, Urban; Popov, Sergei; Jacobsen, Gunnar; Xiao, Shilin; Hu, Weisheng; Chen, Jiajia

    2018-01-15

    We experimentally demonstrate the transmission of a 200 Gbit/s discrete multitone (DMT) at the soft forward error correction limit in an intensity-modulation direct-detection system with a single C-band packaged distributed feedback laser and traveling-wave electro absorption modulator (DFB-TWEAM), digital-to-analog converter and photodiode. The bit-power loaded DMT signal is transmitted over 1.6 km standard single-mode fiber with a net rate of 166.7 Gbit/s, achieving an effective electrical spectrum efficiency of 4.93 bit/s/Hz. Meanwhile, net rates of 174.2 Gbit/s and 179.5 Gbit/s are also demonstrated over 0.8 km SSMF and in an optical back-to-back case, respectively. The feature of the packaged DFB-TWEAM is presented. The nonlinearity-aware digital signal processing algorithm for channel equalization is mathematically described, which improves the signal-to-noise ratio up to 3.5 dB.

  3. Low-power silicon-organic hybrid (SOH) modulators for advanced modulation formats.

    PubMed

    Lauermann, M; Palmer, R; Koeber, S; Schindler, P C; Korn, D; Wahlbrink, T; Bolten, J; Waldow, M; Elder, D L; Dalton, L R; Leuthold, J; Freude, W; Koos, C

    2014-12-01

    We demonstrate silicon-organic hybrid (SOH) electro-optic modulators that enable quadrature phase-shift keying (QPSK) and 16-state quadrature amplitude modulation (16QAM) with high signal quality and record-low energy consumption. SOH integration combines highly efficient electro-optic organic materials with conventional silicon-on-insulator (SOI) slot waveguides, and allows to overcome the intrinsic limitations of silicon as an optical integration platform. We demonstrate QPSK and 16QAM signaling at symbol rates of 28 GBd with peak-to-peak drive voltages of 0.6 V(pp). For the 16QAM experiment at 112 Gbit/s, we measure a bit-error ratio of 5.1 × 10⁻⁵ and a record-low energy consumption of only 19 fJ/bit.

  4. Electro-optical phenomena based on ionic liquids in an optofluidic waveguide.

    PubMed

    He, Xiaodong; Shao, Qunfeng; Cao, Pengfei; Kong, Weijie; Sun, Jiqian; Zhang, Xiaoping; Deng, Youquan

    2015-03-07

    An optofluidic waveguide with a simple two-terminal electrode geometry, when filled with an ionic liquid (IL), forms a lateral electric double-layer capacitor under a direct current (DC) electric field, which allows the realization of an extremely high carrier density in the vicinity of the electrode surface and terminals to modulate optical transmission at room temperature under low voltage operation (0 to 4 V). The unique electro-optical phenomenon of ILs was investigated at three wavelengths (663, 1330 and 1530 nm) using two waveguide geometries. Strong electro-optical modulations with different efficiencies were observed at the two near-infrared (NIR) wavelengths, while no detectable modulation was observed at 663 nm. The first waveguide geometry was used to investigate the position-dependent modulation along the waveguide; the strongest modulation was observed in the vicinity of the electrode terminal. The modulation phase is associated with the applied voltage polarity, which increases in the vicinity of the negative electrode and decreases at the positive electrode. The second waveguide geometry was used to improve the modulation efficiency. Meanwhile, the electro-optical modulations of seven ILs were compared at an applied voltage ranging from ±2 V to ±3.5 V. The results reveal that the modulation amplitude and response speed increase with increasing applied voltage, as well as the electrical conductivity of ILs. Despite the fact that the response speed isn't fast due to the high ionic density of ILs, the modulation amplitude can reach up to 6.0 dB when a higher voltage (U = ±3.5 V) is applied for the IL [Emim][BF4]. Finally, the physical explanation of the phenomenon was discussed. The effect of the change in IL structure on the electro-optical phenomena was investigated in another new experiment. The results reveal that the electro-optical phenomenon is probably caused mainly by the change in carrier concentration (ion redistribution near charged electrodes), which induces the enhancement and suppression of NIR optical absorption (contributed by C-H and N-H groups) in the vicinity of the negative electrode and positive electrode, respectively.

  5. Active material, optical mode and cavity impact on nanoscale electro-optic modulation performance

    NASA Astrophysics Data System (ADS)

    Amin, Rubab; Suer, Can; Ma, Zhizhen; Sarpkaya, Ibrahim; Khurgin, Jacob B.; Agarwal, Ritesh; Sorger, Volker J.

    2017-10-01

    Electro-optic modulation is a key function in optical data communication and possible future optical compute engines. The performance of modulators intricately depends on the interaction between the actively modulated material and the propagating waveguide mode. While a variety of high-performance modulators have been demonstrated, no comprehensive picture of what factors are most responsible for high performance has emerged so far. Here we report the first systematic and comprehensive analytical and computational investigation for high-performance compact on-chip electro-optic modulators by considering emerging active materials, model considerations and cavity feedback at the nanoscale. We discover that the delicate interplay between the material characteristics and the optical mode properties plays a key role in defining the modulator performance. Based on physical tradeoffs between index modulation, loss, optical confinement factors and slow-light effects, we find that there exist combinations of bias, material and optical mode that yield efficient phase or amplitude modulation with acceptable insertion loss. Furthermore, we show how material properties in the epsilon near zero regime enable reduction of length by as much as by 15 times. Lastly, we introduce and apply a cavity-based electro-optic modulator figure of merit, Δλ/Δα, relating obtainable resonance tuning via phase shifting relative to the incurred losses due to the fundamental Kramers-Kronig relations suggesting optimized device operating regions with optimized modulation-to-loss tradeoffs. This work paves the way for a holistic design rule of electro-optic modulators for high-density on-chip integration.

  6. Compact electro-optical module with polymer waveguides on a flexible substrate for high-density board-level communication

    NASA Astrophysics Data System (ADS)

    Weiss, J. R. M.; Lamprecht, T.; Meier, N.; Dangel, R.; Horst, F.; Jubin, D.; Beyeler, R.; Offrein, B. J.

    2010-02-01

    We report on the co-packaging of electrical CMOS transceiver and VCSEL chip arrays on a flexible electrical substrate with optical polymer waveguides. The electro-optical components are attached to the substrate edge and butt-coupled to the waveguides. Electrically conductive silver-ink connects them to the substrate at an angle of 90°. The final assembly contacts the surface of a package laminate with an integrated compressible connector. The module can be folded to save space, requires only a small footprint on the package laminate and provides short electrical high-speed signal paths. With our approach, the electro-optical package becomes a compact electro-optical module with integrated polymer waveguides terminated with either optical connectors (e.g., at the card edge) or with an identical assembly for a second processor on the board. Consequently, no costly subassemblies and connectors are needed, and a very high integration density and scalability to virtually arbitrary channel counts and towards very high data rates (20+ Gbps) become possible. Future cost targets of much less than US$1 per Gbps will be reached by employing standard PCB materials and technologies that are well established in the industry. Moreover, our technology platform has both electrical and optical connectivity and functionality.

  7. Optical probing of electric fields with an electro-acoustic effect toward integrated circuit diagnosis.

    PubMed

    Jin, Ru-Long; Yang, Han; Zhao, Di; Chen, Qi-Dai; Yan, Zhao-Xu; Yi, Mao-Bin; Sun, Hong-Bo

    2010-02-15

    Electro-optic probing of electric fields has been considered as a promising approach for integrated circuit diagnosis. However, the method is subject to relatively weak voltage sensitivity. In this Letter, we solve the problems with electro-acoustic effect. In contrast to the general electro-optic effect, the light phase modulation induced by the acoustic effect is 2 orders of magnitude stronger at its resonant frequency, as we observed in a GaAs thin film probe. Furthermore, this what we believe to be a novel method shows a highly reproducible linearity between the detected signals and the input voltages, which facilitates the voltage calibration.

  8. Polymer electro-optic waveguide devices: Low-loss etchless fabrication techniques and passive-to-active integration

    NASA Astrophysics Data System (ADS)

    Geary, Kevin

    The development of high-frequency polymer electro-optic modulators has seen steady and significant progress in recent years, yet applications of these promising materials to more complicated integrated optic structures and arrays of devices have been limited primarily due to high optical waveguide loss characteristics. This is unfortunate since a major advantage of polymers as photonic materials is their compatibility with photolithographic processing of large components. In this Dissertation, etchless waveguide writing techniques are presented in order to improve the overall optical insertion loss of electro-optic polymer waveguide devices. These techniques include poling-induced writing, stress-induced waveguide writing, and photobleaching. Using these waveguide writing mechanisms, we have demonstrated straight waveguides, phase modulators, Mach-Zehnder intensity modulators, variable optical attenuators, and multimode interference (MMI) power splitters, all with improved loss characteristics over their etched rib waveguide counterparts. Ultimately, the insertion loss of an integrated optic device is limited by the actual material loss of the core waveguide material. In this Dissertation, passive-to-active polymer waveguide transitions are proposed to circumvent this problem. These transitions are compact, in-plane, self-aligned, and require no tapering of any physical dimensions of the waveguides. By utilizing both the time-dependent and intensity-dependent photobleaching characteristics of electro-optic polymer materials, adiabatic refractive index tapers can be seamlessly coupled to in-plane butt couple transitions, resulting in losses as low as 0.1 dB per interface. By integrating passive polymer planar lightwave circuits with the high-speed phase shifting capability of electro-optic polymers, active wideband photonic devices of increased size and complexity can be realized. Optical fiber-to-device coupling can also result in significant contributions to the overall insertion loss of an integrated electro-optic polymer device. In this Dissertation, we leverage the photobleached refractive index taper component of our proposed passive-to-active polymer waveguide transitions in order to realize a two-dimensional optical mode transformer for improved overall fiber-to-device coupling of electro-optic polymer waveguide devices.

  9. Hybrid Silicon Photonic Integration using Quantum Well Intermixing

    NASA Astrophysics Data System (ADS)

    Jain, Siddharth R.

    With the push for faster data transfer across all domains of telecommunication, optical interconnects are transitioning into shorter range applications such as in data centers and personal computing. Silicon photonics, with its economic advantages of leveraging well-established silicon manufacturing facilities, is considered the most promising approach to further scale down the cost and size of optical interconnects for chip-to-chip communication. Intrinsic properties of silicon however limit its ability to generate and modulate light, both of which are key to realizing on-chip optical data transfer. The hybrid silicon approach directly addresses this problem by using molecularly bonded III-V epitaxial layers on silicon for optical gain and absorption. This technology includes direct transfer of III-V wafer to a pre-patterned silicon-on-insulator wafer. Several discrete devices for light generation, modulation, amplification and detection have already been demonstrated on this platform. As in the case of electronics, multiple photonic elements can be integrated on a single chip to improve performance and functionality. However, scalable photonic integration requires the ability to control the bandgap for individual devices along with design changes to simplify fabrication. In the research presented here, quantum well intermixing is used as a technique to define multiple bandgaps for integration on the hybrid silicon platform. Implantation enhanced disordering is used to generate four bandgaps spread over 120+ nm. By combining these selectively intermixed III-V layers with pre-defined gratings and waveguides on silicon, we fabricate distributed feedback, distributed Bragg reflector, Fabry-Perot and mode-locked lasers along with photodetectors, electro-absorption modulators and other test structures, all on a single chip. We demonstrate a broadband laser source with continuous-wave operational lasers over a 200 nm bandwidth. Some of these lasers are integrated with modulators with a 3-dB bandwidth above 25 GHz, thus demonstrating coarse wavelength division multiplexing transmitter on silicon.

  10. Design Considerations for Monolithic Beam Formers Based on Electro-Optic Polymer Phase Modulators and Strain-Induced Optical Waveguides - Postprint

    DTIC Science & Technology

    2015-01-01

    integrated circuit,” AFRL/SNDP Rome, NY (MIPR#F1ATA06317G002) (2007). [2] S-K. Kim, W. Yun, K. Geary, Y.-C. Hung, and H. R. Fetterman , “Electro-optic...Garner, H. Zhang, V. Chuyanov, L. R. Dalton, F. Wang, A. S. Ren, A. Zhang, G. Todorova, A. Harper, H. R. Fetterman , D. Chen, A. Upupa, D. Bhattacharya... Fetterman , “Push-pull electro-optic polymer modulators with half-wave voltage and low loss at both 1310 and 1550 nm,” Appl. Phys. Lett., 78, 3136-3138

  11. A 10-Gbit/s EML link using detuned narrowband optical filtering.

    PubMed

    Ebrahimi, P; Jones, R; Wang, Y; Yan, L; Mader, T; Paniccia, M; Willner, A E; Paraschis, L

    2007-08-20

    In this paper, the effects of asymmetric narrowband optical filtering are investigated in a 10-Gbit/s optical communication link using integrated electro-absorption modulated lasers (EML). We investigate the effect of EML chirp on link performance as well as the optimal filter bandwidth and wavelength detuning. We show that both the phase response and the spectral narrowing of the filter will enable a longer distance transmission by interacting with the EML transient chirp and compensating for the fiber chromatic dispersion. Experimentally, an 8.75-GHz filter is shown to improve the link distance by 40 km from 65 to 105 km, when transmitting over standard single mode fiber.

  12. Biotelemetry system for ambulatory patients

    NASA Technical Reports Server (NTRS)

    Fryer, T. B.

    1978-01-01

    Compact transmitter for multichannel telemetry of medical data is carried in patient's belt. Pulse-code modulation (PCM), is used for high-quality signal, and low-power CMOS integrated circuits make miniaturization possible. Transmitter is useful for electro-encephalograms (EEG) and electro-cardiograms (EKG) and other biomedical patient-monitoring situations.

  13. Scaling vectors of attoJoule per bit modulators

    NASA Astrophysics Data System (ADS)

    Sorger, Volker J.; Amin, Rubab; Khurgin, Jacob B.; Ma, Zhizhen; Dalir, Hamed; Khan, Sikandar

    2018-01-01

    Electro-optic modulation performs the conversion between the electrical and optical domain with applications in data communication for optical interconnects, but also for novel optical computing algorithms such as providing nonlinearity at the output stage of optical perceptrons in neuromorphic analog optical computing. While resembling an optical transistor, the weak light-matter-interaction makes modulators 105 times larger compared to their electronic counterparts. Since the clock frequency for photonics on-chip has a power-overhead sweet-spot around tens of GHz, ultrafast modulation may only be required in long-distance communication, not for short on-chip links. Hence, the search is open for power-efficient on-chip modulators beyond the solutions offered by foundries to date. Here, we show scaling vectors towards atto-Joule per bit efficient modulators on-chip as well as some experimental demonstrations of novel plasmonic modulators with sub-fJ/bit efficiencies. Our parametric study of placing different actively modulated materials into plasmonic versus photonic optical modes shows that 2D materials overcompensate their miniscule modal overlap by their unity-high index change. Furthermore, we reveal that the metal used in plasmonic-based modulators not only serves as an electrical contact, but also enables low electrical series resistances leading to near-ideal capacitors. We then discuss the first experimental demonstration of a photon-plasmon-hybrid graphene-based electro-absorption modulator on silicon. The device shows a sub-1 V steep switching enabled by near-ideal electrostatics delivering a high 0.05 dB V-1 μm-1 performance requiring only 110 aJ/bit. Improving on this demonstration, we discuss a plasmonic slot-based graphene modulator design, where the polarization of the plasmonic mode aligns with graphene’s in-plane dimension; where a push-pull dual-gating scheme enables 2 dB V-1 μm-1 efficient modulation allowing the device to be just 770 nm short for 3 dB small signal modulation. Lastly, comparing the switching energy of transistors to modulators shows that modulators based on emerging materials and plasmonic-silicon hybrid integration perform on-par relative to their electronic counter parts. This in turn allows for a device-enabled two orders-of-magnitude improvement of electrical-optical co-integrated network-on-chips over electronic-only architectures. The latter opens technological opportunities in cognitive computing, dynamic data-driven applications systems, and optical analog computer engines including neuromorphic photonic computing.

  14. A cost-effective 25-Gb/s EML TOSA using all-in-one FPCB wiring and metal optical bench.

    PubMed

    Han, Young-Tak; Kwon, Oh-Kee; Lee, Dong-Hun; Lee, Chul-Wook; Leem, Young-Ahn; Shin, Jang-Uk; Park, Sang-Ho; Baek, Yongsoon

    2013-11-04

    We present a cost-effective 25-Gb/s electro-absorption modulator integrated laser (EML) transmitter optical sub-assembly (TOSA) using all-in-one flexible printed circuit board (FPCB) wiring and a metal optical bench (MOB). For a low cost and high bandwidth TOSA, internal and external wirings and feed-through of the TOSA to transmit radio-frequency (RF) signal are configured all-in-one using the FPCB. The FPCB is extended from an exterior of the TOSA package up to an EML chip inside the package through the slit formed on a rear sidewall of the package and die-bonded on the MOB. The EML TOSA shows a modulated output power of more than 3.5 dBm and a clear eye pattern with a dynamic extinction ratio of ~8.4 dB at a data rate of 25.78 Gb/s.

  15. Narrow linewidth diode laser modules for quantum optical sensor applications in the field and in space

    NASA Astrophysics Data System (ADS)

    Wicht, A.; Bawamia, A.; Krüger, M.; Kürbis, Ch.; Schiemangk, M.; Smol, R.; Peters, A.; Tränkle, G.

    2017-02-01

    We present the status of our efforts to develop very compact and robust diode laser modules specifically suited for quantum optics experiments in the field and in space. The paper describes why hybrid micro-integration and GaAs-diode laser technology is best suited to meet the needs of such applications. The electro-optical performance achieved with hybrid micro-integrated, medium linewidth, high power distributed-feedback master-oscillator-power-amplifier modules and with medium power, narrow linewidth extended cavity diode lasers emitting at 767 nm and 780 nm are briefly described and the status of space relevant stress tests and space heritage is summarized. We also describe the performance of an ECDL operating at 1070 nm. Further, a novel and versatile technology platform is introduced that allows for integration of any type of laser system or electro-optical module that can be constructed from two GaAs chips. This facilitates, for the first time, hybrid micro-integration, e.g. of extended cavity diode laser master-oscillator-poweramplifier modules, of dual-stage optical amplifiers, or of lasers with integrated, chip-based phase modulator. As an example we describe the implementation of an ECDL-MOPA designed for experiments on ultra-cold rubidium and potassium atoms on board a sounding rocket and give basic performance parameters.

  16. Transceivers and receivers for quantum key distribution and methods pertaining thereto

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeRose, Christopher; Sarovar, Mohan; Soh, Daniel B.S.

    Various technologies for performing continuous-variable (CV) and discrete-variable (DV) quantum key distribution (QKD) with integrated electro-optical circuits are described herein. An integrated DV-QKD system uses Mach-Zehnder modulators to modulate a polarization of photons at a transmitter and select a photon polarization measurement basis at a receiver. An integrated CV-QKD system uses wavelength division multiplexing to send and receive amplitude-modulated and phase-modulated optical signals with a local oscillator signal while maintaining phase coherence between the modulated signals and the local oscillator signal.

  17. Cascade photonic integrated circuit architecture for electro-optic in-phase quadrature/single sideband modulation or frequency conversion.

    PubMed

    Hasan, Mehedi; Hall, Trevor

    2015-11-01

    A photonic integrated circuit architecture for implementing frequency upconversion is proposed. The circuit consists of a 1×2 splitter and 2×1 combiner interconnected by two stages of differentially driven phase modulators having 2×2 multimode interference coupler between the stages. A transfer matrix approach is used to model the operation of the architecture. The predictions of the model are validated by simulations performed using an industry standard software tool. The intrinsic conversion efficiency of the proposed design is improved by 6 dB over the alternative functionally equivalent circuit based on dual parallel Mach-Zehnder modulators known in the prior art. A two-tone analysis is presented to study the linearity of the proposed circuit, and a comparison is provided over the alternative. The proposed circuit is suitable for integration in any platform that offers linear electro-optic phase modulation such as LiNbO(3), silicon, III-V, or hybrid technology.

  18. Optical modulation from an electro-optic polymer based hybrid Fabry-Perot etalon using transparent conducting oxides

    NASA Astrophysics Data System (ADS)

    Gan, Haiyong; Zhang, Hongxi; DeRose, Christopher T.; Norwood, Robert A.; Fallahi, Mahmoud; Luo, Jingdong; Jen, Alex K.-Y.; Liu, Boyang; Ho, Seng-Tiong; Peyghambarian, Nasser

    2007-02-01

    Fabry-Perot etalons using electro-optic (EO) organic materials can be used for devices such as tunable filters and spatial light modulators (SLM's) for wavelength division multiplexing (WDM) communication systems 1-5 and ultrafast imaging systems. For these applications the SLM's need to have: (i) low insertion loss, (ii) high speed operation, and (iii) large modulation depth with low drive voltage. Recently, there have been three developments which together can enhance the SLM performance to a higher level. First, low loss distributed Bragg reflector (DBR) mirrors are now used in SLM's to replace thin metal mirrors, resulting in reduced transmission loss, high reflectivity (>99%) and high finesse. Second, EO polymer materials have shown excellent properties for wide bandwidth optical modulation for information technology due to their fabrication flexibility, compatibility with high speed operation, and large EO coefficients at telecommunication wavelengths. For instance, the EO polymer AJL8/APC (AJL8: nonlinear optical chromophore, and APC: amorphous polycarbonate has recently been incorporated into waveguide modulators and achieved good performance for optical modulation. Finally, very low loss transparent conducting oxide (TCO) electrodes have drawn increasing attention for applications in optoelectronic devices. Here we will address how the low loss indium oxide (In IIO 3) electrodes with an absorption coefficient ~1000/cm and conductivity ~204 S/cm can help improve the modulation performance of EO polymer Fabry-Pérot étalons using the advanced electro-optic (EO) polymer material (AJL8/APC). A hybrid etalon structure with one highly conductive indium tin oxide (ITO) electrode outside the etalon cavity and one low-absorption In IIO 3 electrode inside etalon cavity has been demonstrated. High finesse (~234), improved effective applied voltage ratio (~0.25), and low insertion loss (~4 dB) have been obtained. A 10 dB isolation ratio and ~10% modulation depth at 200 kHz with only 5 V applied voltage have been achieved. These results indicate that such etalons are very promising candidates for ultrafast spatial light modulation in information technology.

  19. Flip-chip integrated silicon Mach-Zehnder modulator with a 28nm fully depleted silicon-on-insulator CMOS driver.

    PubMed

    Yong, Zheng; Shopov, Stefan; Mikkelsen, Jared C; Mallard, Robert; Mak, Jason C C; Voinigescu, Sorin P; Poon, Joyce K S

    2017-03-20

    We present a silicon electro-optic transmitter consisting of a 28nm ultra-thin body and buried oxide fully depleted silicon-on-insulator (UTBB FD-SOI) CMOS driver flip-chip integrated onto a Mach-Zehnder modulator. The Mach-Zehnder silicon optical modulator was optimized to have a 3dB bandwidth of around 25 GHz at -1V bias and a 50 Ω impedance. The UTBB FD-SOI CMOS driver provided a large output voltage swing around 5 Vpp to enable a high dynamic extinction ratio and a low device insertion loss. At 44 Gbps, the transmitter achieved a high extinction ratio of 6.4 dB at the modulator quadrature operation point. This result shows open eye diagrams at the highest bit rates and with the largest extinction ratios for silicon electro-optic transmitter using a CMOS driver.

  20. Advances in Components for Active and Passive Airborne Sensors (Progres des Composants pour les Systemes des Detection Active et Passive Aeroportes)

    DTIC Science & Technology

    1990-09-01

    simplest form the modulators are systems. 1) The inter -band absorption edges at operated as non-resonant (single-pass) which the electro-absorption...transitions in -0111- 1,’. three different wavelength bands indicated. It is the NIR inter -band transition which is of interest in this E’l Iwork. 0...quartz crystal resonator is a vector quantity. 12 random vibration at 100 Hz away from the Therefore, the frequency during acceleration carrier. Of

  1. Design of a graphene-based dual-slot hybrid plasmonic electro-absorption modulator with high-modulation efficiency and broad optical bandwidth for on-chip communication.

    PubMed

    Wu, Zhongwei; Xu, Yin

    2018-04-20

    The hybrid plasmonic effect with lower loss and comparable light confinement than surface plasmon polariton opens new avenues for strengthening light-matter interactions with low loss. Here, we propose and numerically analyze a graphene-based electro-absorption modulator (EAM) with high-modulation efficiency and broad optical bandwidth using a dual-slot hybrid plasmonic waveguide (HPW), which consists of a central dual-slot HPW connected with two taper transitions and two additional dual-slot HPWs for coupling it with the input and output silicon nanowires, where graphene layers are located at the bottom and top side of the whole dual-slot HPW region. By combining the huge light enhancement effect of the dual-slot HPW and graphene's tunable conductivity, we obtain a high-modulation efficiency (ME) of 1.76 dB/μm for the graphene-based dual-slot HPW (higher ME of 2.19 dB/μm can also be obtained). Based upon this promising result, we further design a graphene-based hybrid plasmonic EAM, achieving a modulation depth (MD) of 15.95 dB and insertion loss of 1.89 dB @1.55 μm, respectively, in a total length of only 10 μm, where its bandwidth can reach over 500 nm for keeping MD>15  dB; MD can also be improved by slightly increasing the device length or shrinking the waveguide thickness, showing strong advantages for applying it into on-chip high-performance silicon modulators.

  2. 2D materials in electro-optic modulation: energy efficiency, electrostatics, mode overlap, material transfer and integration

    NASA Astrophysics Data System (ADS)

    Ma, Zhizhen; Hemnani, Rohit; Bartels, Ludwig; Agarwal, Ritesh; Sorger, Volker J.

    2018-02-01

    Here we discuss the physics of electro-optic modulators deploying 2D materials. We include a scaling laws analysis and show how energy-efficiency and speed change for three underlying cavity systems as a function of critical device length scaling. A key result is that the energy-per-bit of the modulator is proportional to the volume of the device, thus making the case for submicron-scale modulators possible deploying a plasmonic optical mode. We then show how Graphene's Pauli-blocking modulation mechanism is sensitive to the device operation temperature, whereby a reduction of the temperature enables a 10× reduction in modulator energy efficiency. Furthermore, we show how the high-index tunability of graphene is able to compensate for the small optical overlap factor of 2D-based material modulators, which is unlike classical silicon-based dispersion devices. Lastly, we demonstrate a novel method towards a 2D material printer suitable for cross-contamination free and on-demand printing. The latter paves the way to integrate 2D materials seamlessly into taped-out photonic chips.

  3. Barium Titanate Photonic Crystal Electro-Optic Modulators for Telecommunication and Data Network Applications

    NASA Astrophysics Data System (ADS)

    Girouard, Peter D.

    The microwave, optical, and electro-optic properties of epitaxial barium titanate thin films grown on (100) MgO substrates and photonic crystal electro-optic modulators fabricated on these films were investigated to demonstrate the applicability of these devices for telecommunication and data networks. The electrical and electro-optical properties were characterized up to modulation frequencies of 50 GHz, and the optical properties of photonic crystal waveguides were determined for wavelengths spanning the optical C band between 1500 and 1580 nm. Microwave scattering parameters were measured on coplanar stripline devices with electrode gap spacings between 5 and 12 mum on barium titanate films with thicknesses between 230 and 680 nm. The microwave index and device characteristic impedance were obtained from the measurements. Larger (lower) microwave indices (impedances) were obtained for devices with narrower electrode gap spacings and on thicker films. Thinner film devices have both lower index mismatch between the co-propagating microwave and optical signals and lower impedance mismatch to a 50O system, resulting in a larger predicted electro-optical 3 dB bandwidth. This was experimentally verified with electro-optical frequency response measurements. These observations were applied to demonstrate a record high 28 GHz electro-optic bandwidth measured for a BaTiO3 conventional ridge waveguide modulator having 1mm long electrodes and 12 mum gap spacing on a 260nm thick film. The half-wave voltage and electro-optic coefficients of barium titanate modulators were measured for films having thicknesses between 260 and 500 nm. The half-wave voltage was directly measured at low frequencies using a polarizer-sample-compensator-analyzer setup by over-driving waveguide integrated modulators beyond their linear response regime. Effective in-device electro-optic coefficients were obtained from the measured half-wave voltages. The effective electro-optic coefficients were found to increase with both applied electrical dc bias and with film thickness. A record low 0.39V ˙ cm (0.45V ˙ cm) voltage-length product was measured for barium titanate modulators operating at telecommunication wavelengths on a device with 5 ?m electrode gap spacing on a 500nm thick film modulated at a frequency of 100 Hz (1 MHz). This measured voltage-length product is more than a factor of 5 lower than that reported for state-of-the-art silicon conventional waveguide modulators. The electro-optical characterization of BaTiO3 films revealed a trade-off that exists for traveling wave BaTiO3 modulators: lower voltages are obtained in thicker film devices with narrow electrode gap spacing while larger bandwidths are obtained in thinner film devices with wider electrode gap spacing. These findings were supported by calculations of the film thickness dependent half-wave voltage and electro-optic bandwidth. In order to demonstrate modulators having simultaneously low voltage operation and high electro-optic bandwidth, photonic crystal waveguide modulators with large group index were investigated through theory and experiment. The theory for slow light phase delay in linear optical materials was extended for second order nonlinear optical materials. This theory was incorporated into a detailed model for predicting photonic crystal modulator performance in terms of voltage-length product and electro-optic bandwidth. Modeling shows that barium titanate photonic crystal modulators with sub-millimeter length, sub-volt operation, and greater than 40 GHz electro-optic bandwidth are achievable in a single device. Two types of photonic crystal waveguides (PC) on BaTiO3 films were designed, fabricated, and characterized: waveguides with hexagonal lattice symmetry and waveguides with hexagonal symmetry having a line defect oriented in the direction of light propagation. Excellent agreement was obtained between the simulated and measured transmission for hexagonal lattice PC waveguides. An extinction of 20 dB was measured across a 9.9 nm stop band edge, yielding a record large band edge sharpness of 2 dB/nm for all photonic crystal waveguides on ferroelectric films. A 12-fold enhancement of the electro-optic coefficient was measured via optical spectral analysis in a line defect BaTiO3 modulator, yielding an effective electro-optic coefficient of 900 pm/V in the photonic crystal region at a modulation frequency of 10 GHz. This enhancement was demonstrated over a 48 nm range, demonstrating the wideband operation of these devices.

  4. Femtosecond fibre laser stabilisation to an optical frequency standard using a KTP electro-optic crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nyushkov, B N; Pivtsov, V S; Koliada, N A

    2015-05-31

    A miniature intracavity KTP-based electro-optic phase modulator has been developed which can be used for effective stabilisation of an optical frequency comb of a femtosecond erbiumdoped fibre laser to an optical frequency standard. The use of such an electro-optic modulator (EOM) has made it possible to extend the working frequency band of a phase-locked loop system for laser stabilisation to several hundred kilohertz. We demonstrate that the KTP-based EOM is sufficiently sensitive even at a small optical length, which allows it to be readily integrated into cavities of femtosecond fibre lasers with high mode frequency spacings (over 100 MHz). (extrememore » light fields and their applications)« less

  5. Electro-optic resonant phase modulator

    NASA Technical Reports Server (NTRS)

    Chen, Chien-Chung (Inventor); Hemmati, Hamid (Inventor); Robinson, Deborah L. (Inventor)

    1992-01-01

    An electro-optic resonant cavity is used to achieve phase modulation with lower driving voltages. Laser damage thresholds are inherently higher than with previously used integrated optics due to the utilization of bulk optics. Phase modulation is achieved at higher speeds with lower driving voltages than previously obtained with non-resonant electro-optic phase modulators. The instant scheme uses a data locking dither approach as opposed to the conventional sinusoidal locking schemes. In accordance with a disclosed embodiment, a resonant cavity modulator has been designed to operate at a data rate in excess of 100 megabits per sec. By carefully choosing the cavity finesse and its dimension, it is possible to control the pulse switching time to within 4 nano-sec. and to limit the required switching voltage to within 10 V. This cavity locking scheme can be applied by using only the random data sequence, and without the need of dithering of the cavity. Compared to waveguide modulators, the resonant cavity has a comparable modulating voltage requirement. Because of its bulk geometry, the resonant cavity modulator has the potential of accommodating higher throughput power. Mode matching into the bulk device is easier and typically can be achieved with higher efficiency. An additional control loop is incorporated into the modulator to maintain the cavity on resonance.

  6. Graphene photonics for resonator-enhanced electro-optic devices and all-optical interactions

    DOEpatents

    Englund, Dirk R.; Gan, Xuetao

    2017-03-21

    Techniques for coupling light into graphene using a planar photonic crystal having a resonant cavity characterized by a mode volume and a quality factor and at least one graphene layer positioned in proximity to the planar photonic crystal to at least partially overlap with an evanescent field of the resonant cavity. At least one mode of the resonant cavity can couple into the graphene layer via evanescent coupling. The optical properties of the graphene layer can be controlled, and characteristics of the graphene-cavity system can be detected. Coupling light into graphene can include electro-optic modulation of light, photodetection, saturable absorption, bistability, and autocorrelation.

  7. Investigation of quadratic electro-optic effects and electro-absorption process in GaN/AlGaN spherical quantum dot

    PubMed Central

    2014-01-01

    Quadratic electro-optic effects (QEOEs) and electro-absorption (EA) process in a GaN/AlGaN spherical quantum dot are theoretically investigated. It is found that the magnitude and resonant position of third-order nonlinear optical susceptibility depend on the nanostructure size and aluminum mole fraction. With increase of the well width and barrier potential, quadratic electro-optic effect and electro-absorption process nonlinear susceptibilities are decreased and blueshifted. The results show that the DC Kerr effect in this case is much larger than that in the bulk case. Finally, it is observed that QEOEs and EA susceptibilities decrease and broaden with the decrease of relaxation time. PMID:24646318

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Xingshu; Silverman, Timothy J.; Zhou, Zhiguang

    For commercial one-sun solar modules, up to 80% of the incoming sunlight may be dissipated as heat, potentially raising the temperature 20-30 °C higher than the ambient. In the long term, extreme self-heating erodes efficiency and shortens lifetime, thereby dramatically reducing the total energy output. Therefore, it is critically important to develop effective and practical (and preferably passive) cooling methods to reduce operating temperature of photovoltaic (PV) modules. In this paper, we explore two fundamental (but often overlooked) origins of PV self-heating, namely, sub-bandgap absorption and imperfect thermal radiation. The analysis suggests that we redesign the optical properties of themore » solar module to eliminate parasitic absorption (selective-spectral cooling) and enhance thermal emission (radiative cooling). Comprehensive opto-electro-thermal simulation shows that the proposed techniques would cool one-sun terrestrial solar modules up to 10 °C. As a result, this self-cooling would substantially extend the lifetime for solar modules, with corresponding increase in energy yields and reduced levelized cost of electricity.« less

  9. Room temperature operation of electro-optical bistability in the edge-emitting tunneling-collector transistor laser

    NASA Astrophysics Data System (ADS)

    Feng, M.; Holonyak, N.; Wang, C. Y.

    2017-09-01

    Optical bistable devices are fundamental to digital photonics as building blocks of switches, logic gates, and memories in future computer systems. Here, we demonstrate both optical and electrical bistability and capability for switching in a single transistor operated at room temperature. The electro-optical hysteresis is explained by the interaction of electron-hole (e-h) generation and recombination dynamics with the cavity photon modulation in different switching paths. The switch-UP and switch-DOWN threshold voltages are determined by the rate difference of photon generation at the base quantum-well and the photon absorption via intra-cavity photon-assisted tunneling controlled by the collector voltage. Thus, the transistor laser electro-optical bistable switching is programmable with base current and collector voltage, and the basis for high speed optical logic processors.

  10. 50 Gb/s hybrid silicon traveling-wave electroabsorption modulator.

    PubMed

    Tang, Yongbo; Chen, Hui-Wen; Jain, Siddharth; Peters, Jonathan D; Westergren, Urban; Bowers, John E

    2011-03-28

    We have demonstrated a traveling-wave electroabsorption modulator based on the hybrid silicon platform. For a device with a 100 μm active segment, the small-signal electro/optical response renders a 3 dB bandwidth of around 42 GHz and its modulation efficiency reaches 23 GHz/V. A dynamic extinction ratio of 9.8 dB with a driving voltage swing of only 2 V was demonstrated at a transmission rate of 50 Gb/s. This represents a significant improvement for modulators compatible with integration of silicon-based photonic integrated circuits.

  11. Multiplexing electro-optic architectures for advanced aircraft integrated flight control systems

    NASA Technical Reports Server (NTRS)

    Seal, D. W.

    1989-01-01

    This report describes the results of a 10 month program sponsored by NASA. The objective of this program was to evaluate various optical sensor modulation technologies and to design an optimal Electro-Optic Architecture (EOA) for servicing remote clusters of sensors and actuators in advanced aircraft flight control systems. The EOA's supply optical power to remote sensors and actuators, process the modulated optical signals returned from the sensors, and produce conditioned electrical signals acceptable for use by a digital flight control computer or Vehicle Management System (VMS) computer. This study was part of a multi-year initiative under the Fiber Optic Control System Integration (FOCSI) program to design, develop, and test a totally integrated fiber optic flight/propulsion control system for application to advanced aircraft. Unlike earlier FOCSI studies, this program concentrated on the design of the EOA interface rather than the optical transducer technology itself.

  12. Reflective electroabsorption modular for compact base station radio-over-fiber systems

    NASA Astrophysics Data System (ADS)

    Wu, Yang; Chang, Wei-Xi; Yu, Paul K. L.

    2003-07-01

    A Radio-over-Fiber system with simplified Base Station (BS) is proposed in which a single chip DBR Reflective Electro-absorption Modulator (REAM) serves both as an optical transceiver and as a mixer at the BS. It enables full duplex optical transmission for base band and RF band services simultaneously due to good isolation between uplink and downlink at the same chip. Grating structure is incorporated into the EA modulator for the sake of system design. It also improves yield and efficiency of high-speed devices.

  13. Electro-Optic Modulator and Method

    DTIC Science & Technology

    An optical intensity modulator which uses a Sagnac interferometer having an electro - optic phase modulator therein. An electric modulation signal is...modulating the optical signals by the electrical signal, the electro - optic effect in the modulator phase shifts the optical signals with respect to one another

  14. Fast-response IR spatial light modulators with a polymer network liquid crystal

    NASA Astrophysics Data System (ADS)

    Peng, Fenglin; Chen, Haiwei; Tripathi, Suvagata; Twieg, Robert J.; Wu, Shin-Tson

    2015-03-01

    Liquid crystals (LC) have widespread applications for amplitude modulation (e.g. flat panel displays) and phase modulation (e.g. beam steering). For phase modulation, a 2π phase modulo is required. To extend the electro-optic application into infrared region (MWIR and LWIR), several key technical challenges have to be overcome: 1. low absorption loss, 2. high birefringence, 3. low operation voltage, and 4. fast response time. After three decades of extensive development, an increasing number of IR devices adopting LC technology have been demonstrated, such as liquid crystal waveguide, laser beam steering at 1.55μm and 10.6 μm, spatial light modulator in the MWIR (3~5μm) band, dynamic scene projectors for infrared seekers in the LWIR (8~12μm) band. However, several fundamental molecular vibration bands and overtones exist in the MWIR and LWIR regions, which contribute to high absorption coefficient and hinder its widespread application. Therefore, the inherent absorption loss becomes a major concern for IR devices. To suppress IR absorption, several approaches have been investigated: 1) Employing thin cell gap by choosing a high birefringence liquid crystal mixture; 2) Shifting the absorption bands outside the spectral region of interest by deuteration, fluorination and chlorination; 3) Reducing the overlap vibration bands by using shorter alkyl chain compounds. In this paper, we report some chlorinated LC compounds and mixtures with a low absorption loss in the near infrared and MWIR regions. To achieve fast response time, we have demonstrated a polymer network liquid crystal with 2π phase change at MWIR and response time less than 5 ms.

  15. Electro-optical co-simulation for integrated CMOS photonic circuits with VerilogA.

    PubMed

    Sorace-Agaskar, Cheryl; Leu, Jonathan; Watts, Michael R; Stojanovic, Vladimir

    2015-10-19

    We present a Cadence toolkit library written in VerilogA for simulation of electro-optical systems. We have identified and described a set of fundamental photonic components at the physical level such that characteristics of composite devices (e.g. ring modulators) are created organically - by simple instantiation of fundamental primitives. Both the amplitude and phase of optical signals as well as optical-electrical interactions are simulated. We show that the results match other simulations and analytic solutions that have previously been compared to theory for both simple devices, such as ring resonators, and more complicated devices and systems such as single-sideband modulators, WDM links and Pound Drever Hall Locking loops. We also illustrate the capability of such toolkit for co-simulation with electronic circuits, which is a key enabler of the electro-optic system development and verification.

  16. Nonlinear optical thin films

    NASA Technical Reports Server (NTRS)

    Leslie, Thomas M.

    1993-01-01

    A focused approach to development and evaluation of organic polymer films for use in optoelectronics is presented. The issues and challenges that are addressed include: (1) material synthesis, purification, and the tailoring of the material properties; (2) deposition of uniform thin films by a variety of methods; (3) characterization of material physical properties (thermal, electrical, optical, and electro-optical); and (4) device fabrication and testing. Photonic materials, devices, and systems were identified as critical technology areas by the Department of Commerce and the Department of Defense. This approach offers strong integration of basic material issues through engineering applications by the development of materials that can be exploited as the active unit in a variety of polymeric thin film devices. Improved materials were developed with unprecedented purity and stability. The absorptive properties can be tailored and controlled to provide significant improvement in propagation losses and nonlinear performance. Furthermore, the materials were incorporated into polymers that are highly compatible with fabrication and patterning processes for integrated optical devices and circuits. By simultaneously addressing the issues of materials development and characterization, keeping device design and fabrication in mind, many obstacles were overcome for implementation of these polymeric materials and devices into systems. We intend to considerably improve the upper use temperature, poling stability, and compatibility with silicon based devices. The principal device application that was targeted is a linear electro-optic modulation etalon. Organic polymers need to be properly designed and coupled with existing integrated circuit technology to create new photonic devices for optical communication, image processing, other laser applications such as harmonic generation, and eventually optical computing. The progression from microscopic sample to a suitable film-forming material in a working device is a complex, multifaceted endeavor. It requires close attention to maintaining the optical properties of the electro-optic active portion of the polymer while manipulating the polymer structure to obtain the desired secondary polymer properties.

  17. Silicon-integrated thin-film structure for electro-optic applications

    DOEpatents

    McKee, Rodney A.; Walker, Frederick Joseph

    2000-01-01

    A crystalline thin-film structure suited for use in any of an number of electro-optic applications, such as a phase modulator or a component of an interferometer, includes a semiconductor substrate of silicon and a ferroelectric, optically-clear thin film of the perovskite BaTiO.sub.3 overlying the surface of the silicon substrate. The BaTiO.sub.3 thin film is characterized in that substantially all of the dipole moments associated with the ferroelectric film are arranged substantially parallel to the surface of the substrate to enhance the electro-optic qualities of the film.

  18. Comprehensive Study of Z-Cut Highly Integrated LiNbO3 Optical Modulator with Adjustable Chirp Parameters

    NASA Astrophysics Data System (ADS)

    Palodiya, Vikram; Raghuwanshi, Sanjeev Kumar

    2017-12-01

    In this paper, the domain inversion is used in a simple fashion to improve the performance of a Z-cut highly integrated LiNbO3 optical modulator (LNOM). The Z-cut modulator having ≤ 3 V switching voltage and bandwidth of 15 GHz for an external modulator in which traveling-wave electrode length L_{m} imposed the modulating voltage, the product of V_π and L_{m} is fixed for a given electro-optic material (EOM). An investigation to achieve a low V_π by both magnitude of the electro-optic coefficient (EOC) for a wide variety of EOMs has been reported. The Sellmeier equation (SE) for the extraordinary index of congruent LiNbO3 is derived. The predictions related to phase matching are accurate between room temperature and 250 °C and wavelength ranging from 0.4 to 5 μm. The SE predicts more accurate refractive indices (RI) at long wavelengths. The different overlaps between the waveguides for the Z-cut structure are shown to yield a chirp parameter that can able to adjust 0-0.7. Theoretical results are perfectly verified by simulated results.

  19. Design and Development of a Package for a Diluted Waveguide Electro-Absorption Modulator

    DTIC Science & Technology

    2008-11-01

    the coupling efficiency. A design including mechanical, optical and RF elements was developed. A Newport Laser Welding system was utilized for...results, a design including mechanical, optical and RF elements was developed. A Newport Laser Welding system was utilized for fiber placement and...fixation. The laser welding techniques were customized in order to meet the needs of the EAM package design. Keywords: Electroabsorption

  20. Optics-based approach to thermal management of photovoltaics: Selective-spectral and radiative cooling

    DOE PAGES

    Sun, Xingshu; Silverman, Timothy J.; Zhou, Zhiguang; ...

    2017-01-20

    For commercial one-sun solar modules, up to 80% of the incoming sunlight may be dissipated as heat, potentially raising the temperature 20-30 °C higher than the ambient. In the long term, extreme self-heating erodes efficiency and shortens lifetime, thereby dramatically reducing the total energy output. Therefore, it is critically important to develop effective and practical (and preferably passive) cooling methods to reduce operating temperature of photovoltaic (PV) modules. In this paper, we explore two fundamental (but often overlooked) origins of PV self-heating, namely, sub-bandgap absorption and imperfect thermal radiation. The analysis suggests that we redesign the optical properties of themore » solar module to eliminate parasitic absorption (selective-spectral cooling) and enhance thermal emission (radiative cooling). Comprehensive opto-electro-thermal simulation shows that the proposed techniques would cool one-sun terrestrial solar modules up to 10 °C. As a result, this self-cooling would substantially extend the lifetime for solar modules, with corresponding increase in energy yields and reduced levelized cost of electricity.« less

  1. Integrated optical modulator manipulating the polarization and rotation handedness of Orbital Angular Momentum states.

    PubMed

    Mousavi, S Faezeh; Nouroozi, Rahman; Vallone, Giuseppe; Villoresi, Paolo

    2017-06-19

    Recent studies demonstrated that the optical channels encoded by Orbital Angular Momentum (OAM) are capable candidates for improving the next generation of communication systems. OAM states can enhance the capacity and security of high-dimensional communication channels in both classical and quantum regimes based on optical fibre and free space. Hence, fast and precise control of the beams encoded by OAM can provide their commercial applications in the compatible communication networks. Integrated optical devices are good miniaturized options to perform this issue. This paper proposes a numerically verified integrated high-frequency electro-optical modulator for manipulation of the guided modes encoded in both OAM and polarization states. The proposed modulator is designed as an electro-optically active Lithium Niobate (LN) core photonic wire with silica as its cladding in a LN on Insulator (LNOI) configuration. It consists of two successive parts; a phase shifter to reverse the rotation handedness of the input OAM state and a polarization converter to change the horizontally polarized OAM state to the vertically polarized one. It is shown that all four possible output polarization-OAM encoded states can be achieved with only 6 V and 7 V applied voltages to the electrodes in the two parts of the modulator.

  2. Robust integration schemes for junction-based modulators in a 200mm CMOS compatible silicon photonic platform (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Szelag, Bertrand; Abraham, Alexis; Brision, Stéphane; Gindre, Paul; Blampey, Benjamin; Myko, André; Olivier, Segolene; Kopp, Christophe

    2017-05-01

    Silicon photonic is becoming a reality for next generation communication system addressing the increasing needs of HPC (High Performance Computing) systems and datacenters. CMOS compatible photonic platforms are developed in many foundries integrating passive and active devices. The use of existing and qualified microelectronics process guarantees cost efficient and mature photonic technologies. Meanwhile, photonic devices have their own fabrication constraints, not similar to those of cmos devices, which can affect their performances. In this paper, we are addressing the integration of PN junction Mach Zehnder modulator in a 200mm CMOS compatible photonic platform. Implantation based device characteristics are impacted by many process variations among which screening layer thickness, dopant diffusion, implantation mask overlay. CMOS devices are generally quite robust with respect to these processes thanks to dedicated design rules. For photonic devices, the situation is different since, most of the time, doped areas must be carefully located within waveguides and CMOS solutions like self-alignment to the gate cannot be applied. In this work, we present different robust integration solutions for junction-based modulators. A simulation setup has been built in order to optimize of the process conditions. It consist in a Mathlab interface coupling process and device electro-optic simulators in order to run many iterations. Illustrations of modulator characteristic variations with process parameters are done using this simulation setup. Parameters under study are, for instance, X and Y direction lithography shifts, screening oxide and slab thicknesses. A robust process and design approach leading to a pn junction Mach Zehnder modulator insensitive to lithography misalignment is then proposed. Simulation results are compared with experimental datas. Indeed, various modulators have been fabricated with different process conditions and integration schemes. Extensive electro-optic characterization of these components will be presented.

  3. X-ray pushing of a mechanical microswing.

    PubMed

    Siria, A; Rodrigues, M S; Dhez, O; Schwartz, W; Torricelli, G; Ledenmat, S; Rochat, N; Auvert, G; Bikondoa, O; Metzger, T H; Wermeille, D; Felici, R; Comin, F; Chevrier, J

    2008-11-05

    We report here for the first time the combination of x-ray synchrotron light and a micro-electro-mechanical system (MEMS). We show how it is possible to modulate in real time a MEMS mass distribution to induce a nanometric and tunable mechanical oscillation. The quantitative experimental demonstration we present here uses periodic thermal dilatation of a Ge microcrystal attached to a Si microlever, induced by controlled absorption of an intensity modulated x-ray microbeam. The mechanism proposed can be envisaged either for the detection of small heat flux or for the actuation of a mechanical system.

  4. Communication using VCSEL laser array

    NASA Technical Reports Server (NTRS)

    Goorjian, Peter M. (Inventor)

    2008-01-01

    Ultrafast directional beam switching, using coupled vertical cavity surface emitting lasers (VCSELs) is combined with a light modulator to provide information transfer at bit rates of tens of GHz. This approach is demonstrated to achieve beam switching frequencies of 32-50 GHz in some embodiments and directional beam switching with angular differences of about eight degrees. This switching scheme is likely to be useful for ultrafast optical networks at frequencies much higher than achievable with other approaches. A Mach-Zehnder interferometer, a Fabry-Perot etalon, or a semiconductor-based electro-absorption transmission channel, among others, can be used as a light modulator.

  5. Fully integrated multi-optoelectronic synthesizer for THz pumping source in wireless communications with rich backup redundancy and wide tuning range.

    PubMed

    Xu, Junjie; Hou, Lianping; Deng, Qiufang; Han, Liangshun; Liang, Song; Marsh, John H; Zhu, Hongliang

    2016-07-06

    We report a monolithic photonic integrated circuit (PIC) for THz communication applications. The PIC generates up to 4 optical frequency lines which can be mixed in a separate device to generate THz radiation, and each of the optical lines can be modulated individually to encode data. Physically, the PIC comprises an array of wavelength tunable distributed feedback lasers each with its own electro-absorption modulator. The lasers are designed with a long cavity to operate with a narrow linewidth, typically <4 MHz. The light from the lasers is coupled via an multimode interference (MMI) coupler into a semiconductor optical amplifier (SOA). By appropriate selection and biasing of pairs of lasers, the optical beat signal can be tuned continuously over the range from 0.254 THz to 2.723 THz. The EAM of each channel enables signal leveling balanced between the lasers and realizing data encoding, currently at data rates up to 6.5 Gb/s. The PIC is fabricated using regrowth-free techniques, making it economic for volume applications, such for use in data centers. The PIC also has a degree of redundancy, making it suitable for applications, such as inter-satellite communications, where high reliability is mandatory.

  6. Wave-Coupled Millimeter-Wave Electro-Optic Techniques

    DTIC Science & Technology

    2001-03-01

    This report details results on two antenna-coupled millimeter-wave electro - optic modulators, the slot-vee antenna-coupled modulator and a 94 GHz...study of the effects of velocity mismatch on linearized electro - optic modulators was made and the results published. A key result was that directional...drift in electro - optic modulators was made and protons were determined to be the cause. Several inventions were made to reduce or eliminate proton-caused bias drift.

  7. Integration of carbon nanotubes in slot waveguides (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Durán-Valdeiglesias, Elena; Zhang, Weiwei; Hoang, Thi Hong Cam; Alonso-Ramos, Carlos; Serna, Samuel; Le Roux, Xavier; Cassan, Eric; Balestrieri, Matteo; Keita, Al-Saleh; Sarti, Francesco; Biccari, Francesco; Torrini, Ughetta; Vinattieri, Anna; Yang, Hongliu; Bezugly, Viktor; Cuniberti, Gianaurelio; Filoramo, Arianna; Gurioli, Massimo; Vivien, Laurent

    2016-05-01

    Demanding applications such as video streaming, social networking, or web search relay on a large network of data centres, interconnected through optical links. The ever-growing data rates and power consumption inside these data centres are pushing copper links close to their fundamental limits. Optical interconnects are being extensively studied with the purpose of solving these limitations. Among the different possible technology platforms, silicon photonics, due to its compatibility with the CMOS platform, has become one of the preferred solutions for the development of the future generation photonic interconnects. However, the on-chip integration of all photonic and optoelectronic building blocks (sources, modulators and detectors…) is very complex and is not cost-effective due to the various materials involved (Ge for detection, doped Si for modulators and III-V for lasing). Carbon nanotubes (CNTs) are nanomaterials of great interest in photonics thanks to their fundamental optical properties, including near-IR room-temperature foto- and electro- luminescence, Stark effect, Kerr effect and absorption. In consequence, CNTs have the ability to emit, modulate and detect light in the telecommunications wavelength range. Furthermore, they are being extensively developed for new nano-electronics applications. In this work, we propose to use CNTs as active material integrated into silicon photonics for the development of all optoelectronic devices. Here, we report on the development of new integration schemes to couple the light emission from CNTs into optical resonators implemented on the silicon-on-insulator and silicon-nitride-on-insulator platforms. A theoretical and experimental analysis of the light interaction of CNTs with micro-ring resonators based on strip and slot waveguides and slot photonic crystal heterostructure cavities were carried out.

  8. Stoichiometric Lithium Niobate (SLN) Based Linearized Electro-Optic (EO) Modulator

    DTIC Science & Technology

    2006-01-01

    AFRL-SN-RS-TR-2006-15 Final Technical Report January 2006 STOICHIOMETRIC LITHIUM NIOBATE (SLN) BASED LINEARIZED ELECTRO - OPTIC (EO...LITHIUM NIOBATE (SLN) BASED LINEARIZED ELECTRO - OPTIC (EO) MODULATOR 6. AUTHOR(S) Dr Stuart Kingsley, Dr Sri Sriram 5. FUNDING NUMBERS C...SUBJECT TERMS electro - optic modulator, linearization, directional coupler, variable coupling, optical waveguide, Mach-Zehnder, photonic link, lithium

  9. Broadband, Spectrally Flat, Graphene-based Terahertz Modulators.

    PubMed

    Shi, Fenghua; Chen, Yihang; Han, Peng; Tassin, Philippe

    2015-12-02

    Advances in the efficient manipulation of terahertz waves are crucial for the further development of terahertz technology, promising applications in many diverse areas, such as biotechnology and spectroscopy, to name just a few. Due to its exceptional electronic and optical properties, graphene is a good candidate for terahertz electro-absorption modulators. However, graphene-based modulators demonstrated to date are limited in bandwidth due to Fabry-Perot oscillations in the modulators' substrate. Here, a novel method is demonstrated to design electrically controlled graphene-based modulators that can achieve broadband and spectrally flat modulation of terahertz beams. In our design, a graphene layer is sandwiched between a dielectric and a slightly doped substrate on a metal reflector. It is shown that the spectral dependence of the electric field intensity at the graphene layer can be dramatically modified by optimizing the structural parameters of the device. In this way, the electric field intensity can be spectrally flat and even compensate for the dispersion of the graphene conductivity, resulting in almost invariant absorption in a wide frequency range. Modulation depths up to 76% can be achieved within a fractional operational bandwidth of over 55%. It is expected that our modulator designs will enable the use of terahertz technology in applications requiring broadband operation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Electro-optic voltage sensor head

    DOEpatents

    Crawford, T.M.; Davidson, J.R.; Woods, G.K.

    1999-08-17

    The invention is an electro-optic voltage sensor head designed for integration with existing types of high voltage transmission and distribution apparatus. The sensor head contains a transducer, which comprises a transducing material in which the Pockels electro-optic effect is observed. In the practice of the invention at least one beam of electromagnetic radiation is routed into the transducing material of the transducer in the sensor head. The beam undergoes an electro-optic effect in the sensor head when the transducing material is subjected to an E-field. The electro-optic effect is observed as a differential phase a shift, also called differential phase modulation, of the beam components in orthogonal planes of the electromagnetic radiation. In the preferred embodiment the beam is routed through the transducer along an initial axis and then reflected by a retro-reflector back substantially parallel to the initial axis, making a double pass through the transducer for increased measurement sensitivity. The preferred embodiment of the sensor head also includes a polarization state rotator and at least one beam splitter for orienting the beam along major and minor axes and for splitting the beam components into two signals which are independent converse amplitude-modulated signals carrying E-field magnitude and hence voltage information from the sensor head by way of optic fibers. 6 figs.

  11. Electro-optic voltage sensor head

    DOEpatents

    Crawford, Thomas M.; Davidson, James R.; Woods, Gregory K.

    1999-01-01

    The invention is an electro-optic voltage sensor head designed for integration with existing types of high voltage transmission and distribution apparatus. The sensor head contains a transducer, which comprises a transducing material in which the Pockels electro-optic effect is observed. In the practice of the invention at least one beam of electromagnetic radiation is routed into the transducing material of the transducer in the sensor head. The beam undergoes an electro-optic effect in the sensor head when the transducing material is subjected to an E-field. The electro-optic effect is observed as a differential phase a shift, also called differential phase modulation, of the beam components in orthogonal planes of the electromagnetic radiation. In the preferred embodiment the beam is routed through the transducer along an initial axis and then reflected by a retro-reflector back substantially parallel to the initial axis, making a double pass through the transducer for increased measurement sensitivity. The preferred embodiment of the sensor head also includes a polarization state rotator and at least one beam splitter for orienting the beam along major and minor axes and for splitting the beam components into two signals which are independent converse amplitude-modulated signals carrying E-field magnitude and hence voltage information from the sensor head by way of optic fibers.

  12. Automatic Suppression of Intense Monochromatic Light in Electro-Optical Sensors

    PubMed Central

    Ritt, Gunnar; Eberle, Bernd

    2012-01-01

    Electro-optical imaging sensors are widely distributed and used for many different tasks. Due to technical improvements, their pixel size has been steadily decreasing, resulting in a reduced saturation capacity. As a consequence, this progress makes them susceptible to intense point light sources. Developments in laser technology have led to very compact and powerful laser sources of any wavelength in the visible and near infrared spectral region, offered as laser pointers. The manifold of wavelengths makes it difficult to encounter sensor saturation over the complete operating waveband by conventional measures like absorption or interference filters. We present a concept for electro-optical sensors to suppress overexposure in the visible spectral region. The key element of the concept is a spatial light modulator in combination with wavelength multiplexing. This approach allows spectral filtering within a localized area in the field of view of the sensor. The system offers the possibility of automatic reduction of overexposure by monochromatic laser radiation. PMID:23202039

  13. A synthetic mammalian electro-genetic transcription circuit.

    PubMed

    Weber, Wilfried; Luzi, Stefan; Karlsson, Maria; Sanchez-Bustamante, Carlota Diaz; Frey, Urs; Hierlemann, Andreas; Fussenegger, Martin

    2009-03-01

    Electric signal processing has evolved to manage rapid information transfer in neuronal networks and muscular contraction in multicellular organisms and controls the most sophisticated man-built devices. Using a synthetic biology approach to assemble electronic parts with genetic control units engineered into mammalian cells, we designed an electric power-adjustable transcription control circuit able to integrate the intensity of a direct current over time, to translate the amplitude or frequency of an alternating current into an adjustable genetic readout or to modulate the beating frequency of primary heart cells. Successful miniaturization of the electro-genetic devices may pave the way for the design of novel hybrid electro-genetic implants assembled from electronic and genetic parts.

  14. A synthetic mammalian electro-genetic transcription circuit

    PubMed Central

    Weber, Wilfried; Luzi, Stefan; Karlsson, Maria; Sanchez-Bustamante, Carlota Diaz; Frey, Urs; Hierlemann, Andreas; Fussenegger, Martin

    2009-01-01

    Electric signal processing has evolved to manage rapid information transfer in neuronal networks and muscular contraction in multicellular organisms and controls the most sophisticated man-built devices. Using a synthetic biology approach to assemble electronic parts with genetic control units engineered into mammalian cells, we designed an electric power-adjustable transcription control circuit able to integrate the intensity of a direct current over time, to translate the amplitude or frequency of an alternating current into an adjustable genetic readout or to modulate the beating frequency of primary heart cells. Successful miniaturization of the electro-genetic devices may pave the way for the design of novel hybrid electro-genetic implants assembled from electronic and genetic parts. PMID:19190091

  15. High performance electro-optical modulator based on photonic crystal and graphene

    NASA Astrophysics Data System (ADS)

    Malekmohammad, M.; Asadi, R.

    2017-07-01

    An electro-optical modulator is demonstrated based on Fano-resonance effect in an out-of-plane illumination of one-dimensional slab photonic crystal composed of two graphene layers. It has been shown that high sensitivity of the Fano-resonance and electro-refractive tuning of graphene layers provides a suitable condition to obtain an electro-optical modulator with low energy consumption (8 pJ) with contrast of 0.4.

  16. Waveguide electro-optic modulators based on intrinsically polar self-assembled superlattices (SASs)

    NASA Astrophysics Data System (ADS)

    Liu, Zhifu; Ho, Seng Tiong; Chang, Seongsik; Zhao, Yiguang; Marks, Tobin J.; Kang, Hu; van der Boom, Milko E.; Zhu, Peiwang

    2002-12-01

    In this paper we describe methods of fabricating and characterizing organic electro-optic modulators based on intrinsically polar self-assembled superlattices. These structures are intrinsically acentric, and exhibit large second harmonic generation and electro-optic responses without the requirement of poling by an external electric field. A novel wet chemical protection-deprotection approach for the growth of self-assembled superlattices have been developed, and the refractive indices of self-assembled organic electro-optic superlattices may be tuned during the self-assembly process. Prototype electro-optic modulators based on chromophoric self-assembled superlattices have been designed and fabricated. The effective electro-optic coefficient of the self-assembled superlattice film in a phase modulator is estimated as about 20 pm/V at a wavelength of 1064 nm.

  17. Numerical model of the polymer electro-optic waveguide

    NASA Astrophysics Data System (ADS)

    Fan, Guofang; Li, Yuan; Han, Bing; Wang, Qi; Liu, Xinhou; Zhen, Zhen

    2012-09-01

    A numerical design model is presented for the polymer waveguide in an electro-optic modulator. The effective index method is used to analyze the height of the core waveguide and rib waveguide, an improved Marcatili method is presented to design the rib waveguide width in order to keep the strong single mode operation and have a good match with the standard fiber. Also, the thickness of the upper cladding layer is discussed through calculating the effective index of the multilayer planar waveguide structure has been obtained by setting the optical loss due to the metallic absorption to an acceptable value (<0.1 dB/cm). As a consequence, we take the EO polymer waveguide structure of UV15:CLD/APC:UFC170 as an example, an optimized design is reported.

  18. Ultrafast relaxation dynamics of amine-substituted bipyridyl ruthenium(II) complexes

    NASA Astrophysics Data System (ADS)

    Song, Hongwei; Wang, Xian; Yang, WenWen; He, Guiying; Kuang, Zhuoran; Li, Yang; Xia, Andong; Zhong, Yu-Wu; Kong, Fan'ao

    2017-09-01

    The excited state properties of a series of ruthenium(II) amine-substituted bipyridyl complexes, [Ru(bpy)n(NNbpy)3-n]2+, were investigated by steady-state and transient absorption spectroscopy, as well as quantum chemical calculations. The steady-state absorption spectra of these complexes in CH3CN show a distinct red-shift of the 1MLCT absorption with increasing numbers of amine substituent, whereas the emission spectra indicate an energy gap order of [Ru(bpy)3]2+ > [Ru(bpy)2(NNbpy)]2+ > [Ru(NNbpy)3]2+ > [Ru(bpy)(NNbpy)2]2+. Nanosecond, femtosecond transient absorption and electrochemical measurements suggest that NNbpy ligand has a strong influence on the electronic and emission properties of these complexes, due to electron-rich amine substituent. We illustrate how the numbers of amine substituent modulate the spectroscopic properties of transition metal complexes, which is related to the design of new electro-active systems with novel photoelectrochemical properties.

  19. Quantum model for electro-optical amplitude modulation.

    PubMed

    Capmany, José; Fernández-Pousa, Carlos R

    2010-11-22

    We present a quantum model for electro-optic amplitude modulation, which is built upon quantum models of the main photonic components that constitute the modulator, that is, the guided-wave beamsplitter and the electro-optic phase modulator and accounts for all the different available modulator structures. General models are developed both for single and dual drive configurations and specific results are obtained for the most common configurations currently employed. Finally, the operation with two-photon input for the control of phase-modulated photons and the important topic of multicarrier modulation are also addressed.

  20. Electro-Optic Modulator.

    DTIC Science & Technology

    An electro - optic modulator is used to modulate coherent light beams by the application of an electric potential. It combines a Fabry-Perot etalon and...a diffraction grating in a single unit. An etalon is constructed with an electro - optic material between reflecting surfaces. A voltage applied...between alternate, spaced-apart electrodes of a metal grid attached to one reflecting surface induces a diffraction grating in the electro optic material. Light entering the etalon is diffracted, reflected and efficiently coupled out.

  1. Self-Phase Modulation: A Review

    DTIC Science & Technology

    1975-01-01

    tions were noted in both media. A measurement of the time width of the continuum pulse shows it to be at least as short as the incident laser pulse...established. The excited singlet lifetime is 1.15 t. .15 nsec in ethanol and 560 _ 70 psec in water. The transient absorption spectra of DTTC was...determined that the band at 525 nm has a lifetime of 90 1 30 psec. FUTURE STUDIES SPM will be studied in a variety of materials with large electro- optic

  2. Augmented reality with image registration, vision correction and sunlight readability via liquid crystal devices.

    PubMed

    Wang, Yu-Jen; Chen, Po-Ju; Liang, Xiao; Lin, Yi-Hsin

    2017-03-27

    Augmented reality (AR), which use computer-aided projected information to augment our sense, has important impact on human life, especially for the elder people. However, there are three major challenges regarding the optical system in the AR system, which are registration, vision correction, and readability under strong ambient light. Here, we solve three challenges simultaneously for the first time using two liquid crystal (LC) lenses and polarizer-free attenuator integrated in optical-see-through AR system. One of the LC lens is used to electrically adjust the position of the projected virtual image which is so-called registration. The other LC lens with larger aperture and polarization independent characteristic is in charge of vision correction, such as myopia and presbyopia. The linearity of lens powers of two LC lenses is also discussed. The readability of virtual images under strong ambient light is solved by electrically switchable transmittance of the LC attenuator originating from light scattering and light absorption. The concept demonstrated in this paper could be further extended to other electro-optical devices as long as the devices exhibit the capability of phase modulations and amplitude modulations.

  3. Monolithically integrated active optical devices. [with application in optical communication

    NASA Technical Reports Server (NTRS)

    Ballantyne, J.; Wagner, D. K.; Kushner, B.; Wojtzcuk, S.

    1981-01-01

    Considerations relevant to the monolithic integration of optical detectors, lasers, and modulators with high speed amplifiers are discussed. Some design considerations for representative subsystems in the GaAs-AlGaAs and GaInAs-InP materials systems are described. Results of a detailed numerical design of an electro-optical birefringent filter for monolithic integration with a laser diode is described, and early experimental results on monolithic integration of broadband MESFET amplifiers with photoconductive detectors are reported.

  4. Atomic force microscope based on vertical silicon probes

    NASA Astrophysics Data System (ADS)

    Walter, Benjamin; Mairiaux, Estelle; Faucher, Marc

    2017-06-01

    A family of silicon micro-sensors for Atomic Force Microscope (AFM) is presented that allows to operate with integrated transducers from medium to high frequencies together with moderate stiffness constants. The sensors are based on Micro-Electro-Mechanical-Systems technology. The vertical design specifically enables a long tip to oscillate perpendicularly to the surface to be imaged. The tip is part of a resonator including quasi-flexural composite beams, and symmetrical transducers that can be used as piezoresistive detector and/or electro-thermal actuator. Two vertical probes (Vprobes) were operated up to 4.3 MHz with stiffness constants 150 N/m to 500 N/m and the capability to oscillate from 10 pm to 90 nm. AFM images of several samples both in amplitude modulation (tapping-mode) and in frequency modulation were obtained.

  5. Graphene-Boron Nitride Heterostructure Based Optoelectronic Devices for On-Chip Optical Interconnects

    NASA Astrophysics Data System (ADS)

    Gao, Yuanda

    Graphene has emerged as an appealing material for a variety of optoelectronic applications due to its unique electrical and optical characteristics. In this thesis, I will present recent advances in integrating graphene and graphene-boron nitride (BN) heterostructures with confined optical architectures, e.g. planar photonic crystal (PPC) nanocavities and silicon channel waveguides, to make this otherwise weakly absorbing material optically opaque. Based on these integrations, I will further demonstrate the resulting chip-integrated optoelectronic devices for optical interconnects. After transferring a layer of graphene onto PPC nanocavities, spectral selectivity at the resonance frequency and orders-of-magnitude enhancement of optical coupling with graphene have been observed in infrared spectrum. By applying electrostatic potential to graphene, electro-optic modulation of the cavity reflection is possible with contrast in excess of 10 dB. And furthermore, a novel and complex modulator device structure based on the cavity-coupled and BN-encapsulated dual-layer graphene capacitor is demonstrated to operate at a speed of 1.2 GHz. On the other hand, an enhanced broad-spectrum light-graphene interaction coupled with silicon channel waveguides is also demonstrated with ?0.1 dB/?m transmission attenuation due to graphene absorption. A waveguide-integrated graphene photodetector is fabricated and shown 0.1 A/W photoresponsivity and 20 GHz operation speed. An improved version of a similar photodetector using graphene-BN heterostructure exhibits 0.36 A/W photoresponsivity and 42 GHz response speed. The integration of graphene and graphene-BN heterostructures with nanophotonic architectures promises a new generation of compact, energy-efficient, high-speed optoelectronic device concepts for on-chip optical communications that are not yet feasible or very difficult to realize using traditional bulk semiconductors.

  6. Electro-Optic Effect in the PESO Acousto-Optic Modulator

    DTIC Science & Technology

    1994-11-09

    AD-A286 355 NAIC-ID(RS)T-0395-94 NATIONAL AIR INTELLIGENCE CENTER ELECTRO - OPTIC EFFECT IN THE PESO ACOUSTO-OPTIC MODULATOR by Tai Renzhong, Lu Futun...owing to coupling.betw;ee.elecuc grazing" and "acou- tic grating". Linear electro - optic effect in PESO modulator is helpful to the diffraction and...crystaO A-l/Am,ARjAb, anl / ar:.. thtta=30 and theta=900 . Along these two orientations. th;- electro - optic effect is restricted tcŽ the rn :-t m:,n e

  7. MQW Optical Feedback Modulators And Phase Shifters

    NASA Technical Reports Server (NTRS)

    Jackson, Deborah J.

    1995-01-01

    Laser diodes equipped with proposed multiple-quantum-well (MQW) optical feedback modulators prove useful in variety of analog and digital optical-communication applications, including fiber-optic signal-distribution networks and high-speed, low-crosstalk interconnections among super computers or very-high-speed integrated circuits. Development exploits accompanying electro-optical aspect of QCSE - variation in index of refraction with applied electric field. Also exploits sensitivity of laser diodes to optical feedback. Approach is reverse of prior approach.

  8. Electro-optic study of PZT ferroelectric ceramics using modulation of reflected light

    NASA Astrophysics Data System (ADS)

    Kniazkov, A. V.

    2016-04-01

    Electro-optic coefficients of variations in the refractive index of PZT and PLZT ceramic materials induced by ac electric field are estimated using modulation of reflected light. The electro-optic coefficients of PLZT ceramics measured with the aid of conventional birefringence using the phase shift of transmitted radiation and the proposed method of birefringence using the modulation of reflected light are compared.

  9. Design and Characterization of a High Resolution Microfluidic Heat Flux Sensor with Thermal Modulation

    PubMed Central

    Nam, Sung-Ki; Kim, Jung-Kyun; Cho, Sung-Cheon; Lee, Sun-Kyu

    2010-01-01

    A complementary metal-oxide semiconductor-compatible process was used in the design and fabrication of a suspended membrane microfluidic heat flux sensor with a thermopile for the purpose of measuring the heat flow rate. The combination of a thirty-junction gold and nickel thermoelectric sensor with an ultralow noise preamplifier, a low pass filter, and a lock-in amplifier can yield a resolution 20 nW with a sensitivity of 461 V/W. The thermal modulation method is used to eliminate low-frequency noise from the sensor output, and various amounts of fluidic heat were applied to the sensor to investigate its suitability for microfluidic applications. For sensor design and analysis of signal output, a method of modeling and simulating electro-thermal behavior in a microfluidic heat flux sensor with an integrated electronic circuit is presented and validated. The electro-thermal domain model was constructed by using system dynamics, particularly the bond graph. The electro-thermal domain system model in which the thermal and the electrical domains are coupled expresses the heat generation of samples and converts thermal input to electrical output. The proposed electro-thermal domain system model is in good agreement with the measured output voltage response in both the transient and the steady state. PMID:22163568

  10. Stimulated Raman scattering microscopy by Nyquist modulation of a two-branch ultrafast fiber source.

    PubMed

    Riek, Claudius; Kocher, Claudius; Zirak, Peyman; Kölbl, Christoph; Fimpel, Peter; Leitenstorfer, Alfred; Zumbusch, Andreas; Brida, Daniele

    2016-08-15

    A highly stable setup for stimulated Raman scattering (SRS) microscopy is presented. It is based on a two-branch femtosecond Er:fiber laser operating at a 40 MHz repetition rate. One of the outputs is directly modulated at the Nyquist frequency with an integrated electro-optic modulator (EOM). This compact source combines a jitter-free pulse synchronization with a broad tunability and allows for shot-noise limited SRS detection. The performance of the SRS microscope is illustrated with measurements on samples from material science and cell biology.

  11. Monolithic device for modelocking and stabilization of frequency combs.

    PubMed

    Lee, C-C; Hayashi, Y; Silverman, K L; Feldman, A; Harvey, T; Mirin, R P; Schibli, T R

    2015-12-28

    We demonstrate a device that integrates a III-V semiconductor saturable absorber mirror with a graphene electro-optic modulator, which provides a monolithic solution to modelocking and noise suppression in a frequency comb. The device offers a pure loss modulation bandwidth exceeding 5 MHz and only requires a low voltage driver. This hybrid device provides not only compactness and simplicity in laser cavity design, but also small insertion loss, compared to the previous metallic-mirror-based modulators. We believe this work paves the way to portable and fieldable phase-coherent frequency combs.

  12. Radiation resistance of a gamma-ray irradiated nonlinear optic chromophore

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng; Taylor, Edward W.

    2009-11-01

    The radiation resistance of organic electro-optic and optoelectronic materials for space applications is receiving increased attention. An earlier investigation reported that guest-host poled polymer EO modulator devices composed of a phenyltetraene bridge-type chromophore in amorphous polycarbonate (CLD/APC) did not exhibit a decrease in EO response (i.e., an increase in modulation-switching voltage- Vπ) following irradiation by low dose [10-160 krad(Si)] 60Co gamma-rays. To provide further evidences to the observed radiation stability, the post-irradiation responses of 60Co gamma-rays on CLD1/APC thin films are examined by various chemical and spectroscopic methods including: a solubility test, thin-layer chromatography, proton nuclear magnetic resonance spectroscopy, UV-vis absorption, and infra-red absorption. The results indicate that CLD1 and APC did not decompose under gamma-ray irradiation at dose levels ranging from 66-274 krad(Si) and from 61-154 krad(Si), respectively which support the previously reported data.

  13. Loop-locked coherent population trapping magnetometer based on a fiber electro-optic modulator.

    PubMed

    Hu, Yong; Feng, Y Y; Xu, Chi; Xue, H B; Sun, Li

    2014-04-01

    We have set up a coherent population trapping (CPT)-based magnetometer prototype with the D1 line of ⁸⁷Rb atoms. The dichromatic light field is derived from a fiber electro-optic modulator (FEOM) connected to an external cavity laser diode. A CPT resonance signal with a 516 Hz linewidth is observed. By feeding back the derivative of the resonance curve to the FEOM with a proportional integral controller, of which the voltage output is directly converted to the measured magnetic field intensity, the resonance peak is locked to the environmental magnetic field. The measurement data we have achieved are well matched with the data measured by a commercial fluxgate magnetometer within 2 nT, and the sensitivity is better than 8 pT/√Hz in a parallel B field.

  14. Ultra-Reliable Digital Avionics (URDA) processor

    NASA Astrophysics Data System (ADS)

    Branstetter, Reagan; Ruszczyk, William; Miville, Frank

    1994-10-01

    Texas Instruments Incorporated (TI) developed the URDA processor design under contract with the U.S. Air Force Wright Laboratory and the U.S. Army Night Vision and Electro-Sensors Directorate. TI's approach couples advanced packaging solutions with advanced integrated circuit (IC) technology to provide a high-performance (200 MIPS/800 MFLOPS) modular avionics processor module for a wide range of avionics applications. TI's processor design integrates two Ada-programmable, URDA basic processor modules (BPM's) with a JIAWG-compatible PiBus and TMBus on a single F-22 common integrated processor-compatible form-factor SEM-E avionics card. A separate, high-speed (25-MWord/second 32-bit word) input/output bus is provided for sensor data. Each BPM provides a peak throughput of 100 MIPS scalar concurrent with 400-MFLOPS vector processing in a removable multichip module (MCM) mounted to a liquid-flowthrough (LFT) core and interfacing to a processor interface module printed wiring board (PWB). Commercial RISC technology coupled with TI's advanced bipolar complementary metal oxide semiconductor (BiCMOS) application specific integrated circuit (ASIC) and silicon-on-silicon packaging technologies are used to achieve the high performance in a miniaturized package. A Mips R4000-family reduced instruction set computer (RISC) processor and a TI 100-MHz BiCMOS vector coprocessor (VCP) ASIC provide, respectively, the 100 MIPS of a scalar processor throughput and 400 MFLOPS of vector processing throughput for each BPM. The TI Aladdim ASIC chipset was developed on the TI Aladdin Program under contract with the U.S. Army Communications and Electronics Command and was sponsored by the Advanced Research Projects Agency with technical direction from the U.S. Army Night Vision and Electro-Sensors Directorate.

  15. Athermal design for the potassium titanyl phosphate electro-optical modulator

    NASA Astrophysics Data System (ADS)

    Zheng, Guoliang; Xu, Jie; Chen, Lixiang; Wang, Hongcheng; She, Weilong

    2007-09-01

    An athermal design for the KTP electro-optical modulator is presented. By using the wave coupling theory of linear electro-optic effect and taking account of thermal expansion, the more accurate athermal static phase retardation (ASPR) directions in potassium titanyl phosphate (KTP) are found, and the optimized design for a transverse amplitude modulator at ASPR orientation is obtained. The numerical results show that the modulator with an athermal Soleil-Babinet compensator is of excellent thermal stability, and the acceptable error of the ASPR direction is less than 0.1°.

  16. New Light Sources and Concepts for Electro-Optic Sampling

    DTIC Science & Technology

    1994-03-01

    Research to improve electro - optic sampling led to the development of several high performance optical phase modulators. These phase modulators serve...method of optical pulse shape measurement was demonstrated with 3 ps time resolution, excellent power sensitivity and relative system simplicity. These experiments have opened up the field of temporal optics. Electro - optic sampling.

  17. Spatially Modulated Gain Waveguide Electro-Optic Laser

    DTIC Science & Technology

    2013-08-09

    1997, pp 1223-1226. 5. Y. Li, S. M. Goldwasser, P. Herczfeld, L.M. Narducci, "Dynamics of an electro-optically tunable microchip laser ", IEEE...TYPE Final 3. DATES COVERED (From 7/2/2010-5-10-2013 To) 4. TITLE AND SUBTITLE Spatially modulated gain waveguide electro-optic laser 5a...optical waveguides laser on LiNb03 substrate. The main goal of this work is to implement an active LiNb03 waveguide with the desired spatially modulated

  18. TRANSVERSE MODE ELECTRO-OPTIC MATERIALS.

    DTIC Science & Technology

    electro - optic modulators presently used are crystals such as KDP which exhibit a longitudinal electro - optic effect. It has been demonstrated that a more efficient modulator can be produced when a crystal having a transverse electro - optic effect is employed. Generally these crystals are produced either from the melt or from fluxes. Since melt grown crystals must be cooled through several hundred degrees and often must undergo phase transitions, these crystals are generally highly strained. Flux grown crystals are also

  19. Microstructure and ferroelectricity of BaTiO3 thin films on Si for integrated photonics

    NASA Astrophysics Data System (ADS)

    Kormondy, Kristy J.; Popoff, Youri; Sousa, Marilyne; Eltes, Felix; Caimi, Daniele; Rossell, Marta D.; Fiebig, Manfred; Hoffmann, Patrik; Marchiori, Chiara; Reinke, Michael; Trassin, Morgan; Demkov, Alexander A.; Fompeyrine, Jean; Abe, Stefan

    2017-02-01

    Significant progress has been made in integrating novel materials into silicon photonic structures in order to extend the functionality of photonic circuits. One of these promising optical materials is BaTiO3 or barium titanate (BTO) that exhibits a very large Pockels coefficient as required for high-speed light modulators. However, all previous demonstrations show a noticable reduction of the Pockels effect in BTO thin films deposited on silicon substrates compared to BTO bulk crystals. Here, we report on the strong dependence of the Pockels effect in BTO thin films on their microstructure, and provide guidelines on how to engineer thin films with strong electro-optic response. We employ several deposition methods such as molecular beam epitaxy and chemical vapor deposition to realize BTO thin films with different morphology and crystalline structure. While a linear electro-optic response is present even in porous, polycrystalline BTO thin films with an effective Pockels coefficient r eff = 6 pm V-1, it is maximized for dense, tetragonal, epitaxial BTO films (r eff = 140 pm V-1). By identifying the key structural predictors of electro-optic response in BTO/Si, we provide a roadmap to fully exploit the linear electro-optic effect in novel hybrid oxide/semiconductor nanophotonic devices.

  20. Electro-optic Modulation in Single-crystal Film of DAST Measured at 1.55 microns

    NASA Astrophysics Data System (ADS)

    Titus, Jitto; Swamy, Rajendra; Govindan Kutty, Srivatsa; Khatavkar, Sanchit; Thakur, Mrinal

    2003-03-01

    Exceptionally large electro-optic coefficient and high-speed modulation at 750 nm in DAST single-crystal film has been recently reported.[1] In this presentation, our measurement of electro-optic modulation in DAST single-crystal film at 1.55 microns will be discussed. The single-crystal film was prepared by the modified shear method. The modulation measurement was performed in the transverse configuration using the field-induced birefringence method. A semiconductor laser was used for this experiment. The light beam was propagated perpendicular to the film and the modulation was recorded for an ac field applied along the dipole axis on the film. About 6.5at a low field leading to a magnitude of the electro-optic coefficient (r11) of about 200 pm/V at 1.55 microns. 1. M. Thakur, A. Mishra, J. Titus and A.C. Ahyi, APL, 81 3738 (2002).

  1. An Electro-Optic Spatial Light Modulator for Thermoelastic Generation of Programmably Focused Ultrasound.

    DTIC Science & Technology

    1984-12-01

    The concept proposed is an electro - optic technique that would make it possible to spatially modulate a high power pulsed laser beam to thermoelastically induce focused ultrasound in a test material. Being a purely electro - optic device, the modulator, and therefore the depth at which the acoustic focus occurs, can be programmed electronically at electronic speeds. If successful, it would become possible to scan ultrasound continuously in three dimensions within the component or structure under test. (Author)

  2. An electro-optic spatial light modulator for thermoelastic generation of programmably focused ultrasound

    NASA Astrophysics Data System (ADS)

    1984-12-01

    The concept proposed is an electro-optic technique that would make it possible to spatially modulate a high power pulsed laser beam to thermoelastically induce focused ultrasound in a test material. Being a purely electro-optic device, the modulator, and therefore the depth at which the acoustic focus occurs, can be programmed electronically at electronic speeds. If successful, it would become possible to scan ultrasound continuously in three dimensions within the component or structure under test.

  3. Liquid-crystals electro-optic modulator based on electrohydrodynamic effects.

    PubMed

    Muriel, M A; Martin-Pereda, J A

    1980-11-01

    A new method of light modulation is reported. This method is based on the electro-optical properties of nematic materials and on the use of a new wedge structure. The advantages of this structure are the possibility of modulating nonpolarized light and the improved signal-to-noise ratio. The highest modulating frequency obtained is 25 kHz.

  4. Frequency-agile, rapid scanning spectroscopy: absorption sensitivity of 2 × 10-12 cm-1 Hz-1/2 with a tunable diode laser

    NASA Astrophysics Data System (ADS)

    Long, D. A.; Truong, G.-W.; van Zee, R. D.; Plusquellic, D. F.; Hodges, J. T.

    2014-03-01

    We present ultrasensitive measurements of molecular absorption using frequency-agile rapid scanning, cavity ring-down spectroscopy with an external-cavity diode laser. A microwave source that drives an electro-optic phase modulator with a bandwidth of 20 GHz generates pairs of sidebands on the probe laser. The optical cavity provides for high sensitivity and filters the carrier and all but a single, selected sideband. Absorption spectra were acquired by stepping the tunable sideband from mode-to-mode of the ring-down cavity at a rate that was limited only by the cavity decay time. This approach allows for scanning rates of 8 kHz per cavity resonance, a minimum detectable absorption coefficient of 1.7 × 10-11 cm-1 after only 20 ms of averaging, and a noise-equivalent absorption coefficient of 1.7 × 10-12 cm-1 Hz-1/2. By comparison with cavity-enhanced laser absorption spectrometers reported in the literature, the present system is, to the best of our knowledge, among the most sensitive and has by far the highest spectrum scanning rate.

  5. Differential absorption lidar measurements of atmospheric water vapor using a pseudonoise code modulated AlGaAs laser. Thesis

    NASA Technical Reports Server (NTRS)

    Rall, Jonathan A. R.

    1994-01-01

    Lidar measurements using pseudonoise code modulated AlGaAs lasers are reported. Horizontal path lidar measurements were made at night to terrestrial targets at ranges of 5 and 13 km with 35 mW of average power and integration times of one second. Cloud and aerosol lidar measurements were made to thin cirrus clouds at 13 km altitude with Rayleigh (molecular) backscatter evident up to 9 km. Average transmitter power was 35 mW and measurement integration time was 20 minutes. An AlGaAs laser was used to characterize spectral properties of water vapor absorption lines at 811.617, 816.024, and 815.769 nm in a multipass absorption cell using derivative spectroscopy techniques. Frequency locking of an AlGaAs laser to a water vapor absorption line was achieved with a laser center frequency stability measured to better than one-fifth of the water vapor Doppler linewidth over several minutes. Differential absorption lidar measurements of atmospheric water vapor were made in both integrated path and range-resolved modes using an externally modulated AlGaAs laser. Mean water vapor number density was estimated from both integrated path and range-resolved DIAL measurements and agreed with measured humidity values to within 6.5 percent and 20 percent, respectively. Error sources were identified and their effects on estimates of water vapor number density calculated.

  6. Electro-optic Modulation Using a DAST Single-crystal Film in a Fabry-Perot Cavity

    NASA Astrophysics Data System (ADS)

    Kutty, S. P.

    2005-03-01

    In this paper, we report a multiple-pass electro-optic modulator using a single- crystal film of 4'-dimethyamino-N-methyl-4-stilbazolium tosylate (DAST) placed inside a Fabry-Perot cavity. The single-crystal film was prepared using the modified shear method. Electro-optic modulation was achieved at 633 nm using field-induced birefringence in the cross polarized geometry including the Fabry-Perot cavity. The modulation due to the electro-optic effect was recorded as a function of phase while the phase was controlled by moving one of the mirrors in the cavity. The observed modulation was high (80 percent) for a low field (0.5V/micron) applied along the charge transfer axis on the film. Similar modulation using the Fabry-Perot cavity with a lower modulation depth was observed involving electroabsorption at 633 nm. Electroabsorption in the DAST film has been recently reported [1]. These are important results considering applications in photonics. [1] ``Electroabsorption in single-crystal film of a second-order optical material,'' R. K. Swamy, S. P. Kutty, J. Titus, S. Khatavkar, and M. Thakur, APL, Vol. 85, 4025, (2004).

  7. Far-Field to Near-Field Coupling for Enhancing Light-Matter Interaction

    NASA Astrophysics Data System (ADS)

    Bonakdar, Alireza

    This thesis reports on theoretical, modeling, and experimental research within the framework of a key scientific question, which is enhancing the coupling between diffraction-limited far-field and sub-wavelength quantum emitter/absorber. A typical optoelectronic device delivers an optical process such as light detection (e.g. photodetector) or light intensity modulation (e.g. electro-absorptive modulator). In conventional devices, optical process is in the form of far-field or guided wave modes. The main aim of this thesis is to show that converting these modes into near-field domain can enhance the performance of the optoelectronic device. Light in the form of far-field can be converted into near-field domain by the optical antenna. Among different optoelectronic devices, this thesis focuses mainly on integrating the optical antenna with infrared photodetectors. The available semiconductors have weak infrared absorption that reduces light detection efficiency. Integration of the optical antenna with infrared absorber (such as quantum wells in quantum well infrared photodetector (QWIP)) increases the infrared absorption. Particularly this integration is favorable as the optical antenna has low metallic loss in infrared region. The author of this thesis believes that optical antenna has unique properties in confining light on the scale of deep sub-wavelength, enhancing electric field intensity and delivering optical energy to semiconductor absorbers. These properties are reaching into practical applications only if overall optical performance is low loss, parameter free (independent of optical parameters such a polarization and angle of incident) and broadband. In this thesis, the integration of optical antenna with infrared photodetectors and thermophotovoltaic are researched and developed which satisfy the aforementioned criteria. In addition, several different optical antennas have been designed, fabricated and characterized in order to analyze and demonstrate the improvement of infrared absorption. In terms of design, novel optical antennas were simulated and proposed for a variety of infrared photodetectors such as a quantum well infrared photodetector, metal-insulator-metal detector, Schottky infrared photodetector, and two-photon absorption infrared detector. Antenna analyzes are not limited to light detection as a chapter of this thesis devoted on design and develop of a low power and ultrafast all-optical/optomechanical switchable antenna. The rest of the manuscript contains the novel lithography method in order to fabricate optical antennas with low cost and in cm-scale area. The method is based on the microsphere photolithography that expose photoresist underneath each microsphere with a focused intensive light -so called photonic nanojet. The developed lithography method takes advantage of microscopic range of optical path (micro-optics) in microsphere lenses that allows to push the exposure wavelength beyond deep UV region, where the refractive optics becomes impractical due to severe material absorption. The author believes that micro-optics lithography is an excellent candidate for large area and high throughput fabrication of sub-100-nm feature sizes in periodic array. In particular, this method facilitates the feasibility of metasurfaces and metamaterials, optical coating with efficient photon extraction/trapping, and highly sensitive bio-sensors in near IR and visible ranges of spectrum.

  8. Interferometric phase locking of two electronic oscillators with a cascade electro-optic modulator

    NASA Astrophysics Data System (ADS)

    Chao, C. H.; Chien, P. Y.; Chang, L. W.; Juang, F. Y.; Hsia, C. H.; Chang, C. C.

    1993-01-01

    An optical-type electrical phase-locked-loop system based on a cascade electro-optic modulator has been demonstrated. By using this technique, a set of optical-type phase detectors, operating at any harmonic frequencies of two applied phase-modulation signals, has been implemented.

  9. Electro-optic modulation at 1.4 GHz using single-crystal film of DAST

    NASA Astrophysics Data System (ADS)

    Ahyi, Ayayi; Titus, Jitto; Thakur, Mrinal

    2002-03-01

    Electro-optic modulation at 4 kHz using single-crystal film of DAST has been recently reported.^1 The measurement was made in the transverse configuration with the light beam propagating perpendicular to the film while electric field was applied in the plane of the film - along the dipole axis. In this presentation, we will discuss results of electro-optic modulation in DAST single-crystal films at significantly higher speed (0.1 - 1.4 GHz). Single-crystal films of DAST with excellent optical quality were prepared by modified shear method. The electro-optic modulation was measured using the technique of field-induced birefringence and the signal was recorded by a spectrum analyzer. Light (λ = 750 nm) propagated perpendicular to the film (thickness ~ 3 μm). We have observed excellent signal-to-noise ratio at these high frequencies, along with a low insertion loss. The voltage we applied is only ~ 1 volt across a gap of 15 μm and the observed signal-to-noise ratio is comparable to that of guided-wave electro-optic modulators. 1. M. Thakur, J. Xu, A. Bhowmik and M. Thakur, Appl. Phys. Lett., 74 635

  10. A photonic circuit for complementary frequency shifting, in-phase quadrature/single sideband modulation and frequency multiplication: analysis and integration feasibility

    NASA Astrophysics Data System (ADS)

    Hasan, Mehedi; Hu, Jianqi; Nikkhah, Hamdam; Hall, Trevor

    2017-08-01

    A novel photonic integrated circuit architecture for implementing orthogonal frequency division multiplexing by means of photonic generation of phase-correlated sub-carriers is proposed. The circuit can also be used for implementing complex modulation, frequency up-conversion of the electrical signal to the optical domain and frequency multiplication. The principles of operation of the circuit are expounded using transmission matrices and the predictions of the analysis are verified by computer simulation using an industry-standard software tool. Non-ideal scenarios that may affect the correct function of the circuit are taken into consideration and quantified. The discussion of integration feasibility is illustrated by a photonic integrated circuit that has been fabricated using 'library' components and which features most of the elements of the proposed circuit architecture. The circuit is found to be practical and may be fabricated in any material platform that offers a linear electro-optic modulator such as organic or ferroelectric thin films hybridized with silicon photonics.

  11. Optical impedance spectroscopy with single-mode electro-active-integrated optical waveguides.

    PubMed

    Han, Xue; Mendes, Sergio B

    2014-02-04

    An optical impedance spectroscopy (OIS) technique based on a single-mode electro-active-integrated optical waveguide (EA-IOW) was developed to investigate electron-transfer processes of redox adsorbates. A highly sensitive single-mode EA-IOW device was used to optically follow the time-dependent faradaic current originated from a submonolayer of cytochrome c undergoing redox exchanges driven by a harmonic modulation of the electric potential at several dc bias potentials and at several frequencies. To properly retrieve the faradaic current density from the ac-modulated optical signal, we introduce here a mathematical formalism that (i) accounts for intrinsic changes that invariably occur in the optical baseline of the EA-IOW device during potential modulation and (ii) provides accurate results for the electro-chemical parameters. We are able to optically reconstruct the faradaic current density profile against the dc bias potential in the working electrode, identify the formal potential, and determine the energy-width of the electron-transfer process. In addition, by combining the optically reconstructed faradaic signal with simple electrical measurements of impedance across the whole electrochemical cell and the capacitance of the electric double-layer, we are able to determine the time-constant connected to the redox reaction of the adsorbed protein assembly. For cytochrome c directly immobilized onto the indium tin oxide (ITO) surface, we measured a reaction rate constant of 26.5 s(-1). Finally, we calculate the charge-transfer resistance and pseudocapacitance associated with the electron-transfer process and show that the frequency dependence of the redox reaction of the protein submonolayer follows as expected the electrical equivalent of an RC-series admittance diagram. Above all, we show here that OIS with single-mode EA-IOW's provide strong analytical signals that can be readily monitored even for small surface-densities of species involved in the redox process (e.g., fmol/cm(2), 0.1% of a full protein monolayer). This experimental approach, when combined with the analytical formalism described here, brings additional sensitivity, accuracy, and simplicity to electro-chemical analysis and is expected to become a useful tool in investigations of redox processes.

  12. Nonlinear optical and light emission studies of special organic molecules and crystals

    NASA Astrophysics Data System (ADS)

    Bhowmik, Achintya K.

    The nonlinear optical properties and light emission characteristics of some special organic molecules and crystals have been studied in detail. The second-order nonlinear optical effects were measured in the single- crystal films of the materials. The crystallographic orientations of the films were determined using x-ray diffraction measurements. The second-order susceptibility tensor elements of 4-aminobenzophenone (ABP) and 8- (4'-acetylphenyl)-1,4-dioxa-8- azaspiro[4.5]decane (APDA) films were measured using polarization selective second-harmonic generation experiments. The d-coefficients of ABP are: d 23 = 7.3 +/- 0.4 pm/V and d22 = 0.73 +/- 0.04 pm/V, while those of APDA are: d33 = 54 +/- 6 pm/V and d15 = 18 +/- 3 pm/V at 1064 nm. Phase-matched propagation directions were identified on the films. The application of these films in measuring ultra-short laser pulse-width was demonstrated. Polarized optical absorption and photo- luminescence were measured in 4'- dimethylamino-N-methyl-4-stilbazolium tosylate (DAST). The electro-optic properties of single- crystal films of DAST and styryl pyridinium cyanine dye (SPCD) were studied over a broad range of wavelengths. The measured r-coefficients are the largest reported in any material. Thin-film electro-optic modulators were demonstrated using these films which have insignificant insertion and propagation losses compared to the traditional waveguide based devices. The response was observed to be flat over the measured frequency range (2 kHz-100 MHz), which indicates the origin of the electro-optic effect to be predominantly electronic. Thus these materials have significant potential for applications in high-speed optical signal processing. Spectral broadening of femtosecond laser pulses in poly- [2,4 hexadiyne-1,6 diol-bis-(p-toluene sulfonate)] (PTS) single-crystals due to self-phase modulation was studied. The magnitudes of the nonlinear refractive index were determined over the wavelength range of 720-1064 nm. The two-photon absorption spectrum, determined from nonlinear transmission measurements, was observed to have no discernible influence on the dispersion of the nonlinear index at these wavelengths. Highly efficient spectrally narrowed emission has been observed for the first time in strongly dipolar organic salts based on the stilbazolium chromophore. An unusually high conversion efficiency (40%) with a low excitation threshold (<1 μJ) has been observed despite a very low photoluminescence efficiency (~0.3%). The results are explained in terms of cooperative emission upon short-pulse optical excitation. These materials have a wide range of potential applications in photonics, including frequency conversion, high-speed electro-optic modulation, sensors, and novel laser-like light sources.

  13. 113Gb/s (10 x 11.3Gb/s) ultra-low power EAM driver array.

    PubMed

    Vaernewyck, Renato; Bauwelinck, Johan; Yin, Xin; Pierco, Ramses; Verbrugghe, Jochen; Torfs, Guy; Li, Zhisheng; Qiu, Xing-Zhi; Vandewege, Jan; Cronin, Richard; Borghesani, Anna; Moodie, David

    2013-01-14

    This paper presents an ultra-low power SiGe BiCMOS IC for driving a 10 channel electro-absorption modulator (EAM) array at 113Gb/s for wavelength division multiplexing passive optical network (WDM-PON) applications. With an output swing of 2.5V(pp), the EAM driver array consumes only 2.2W or 220mW per channel, 50% below the state of the art. Both the output swing and bias are configurable between 1.5 and 3.0V(pp) and 0.75-2.15V respectively.

  14. A magneto-electro-optical effect in a plasmonic nanowire material

    PubMed Central

    Valente, João; Ou, Jun-Yu; Plum, Eric; Youngs, Ian J.; Zheludev, Nikolay I.

    2015-01-01

    Electro- and magneto-optical phenomena play key roles in photonic technology enabling light modulators, optical data storage, sensors and numerous spectroscopic techniques. Optical effects, linear and quadratic in external electric and magnetic field are widely known and comprehensively studied. However, optical phenomena that depend on the simultaneous application of external electric and magnetic fields in conventional media are barely detectable and technologically insignificant. Here we report that a large reciprocal magneto-electro-optical effect can be observed in metamaterials. In an artificial chevron nanowire structure fabricated on an elastic nano-membrane, the Lorentz force drives reversible transmission changes on application of a fraction of a volt when the structure is placed in a fraction-of-tesla magnetic field. We show that magneto-electro-optical modulation can be driven to hundreds of thousands of cycles per second promising applications in magneto-electro-optical modulators and field sensors at nano-tesla levels. PMID:25906761

  15. Infrared to visible image up-conversion using optically addressed spatial light modulator utilizing liquid crystal and InGaAs photodiodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solodar, A., E-mail: asisolodar@gmail.com; Arun Kumar, T.; Sarusi, G.

    2016-01-11

    Combination of InGaAs/InP heterojunction photodetector with nematic liquid crystal (LC) as the electro-optic modulating material for optically addressed spatial light modulator for short wavelength infra-red (SWIR) to visible light image conversion was designed, fabricated, and tested. The photodetector layer is composed of 640 × 512 photodiodes array based on heterojunction InP/InGaAs having 15 μm pitch on InP substrate and with backside illumination architecture. The photodiodes exhibit extremely low, dark current at room temperature, with optimum photo-response in the SWIR region. The photocurrent generated in the heterojunction, due to the SWIR photons absorption, is drifted to the surface of the InP,more » thus modulating the electric field distribution which modifies the orientation of the LC molecules. This device can be attractive for SWIR to visible image upconversion, such as for uncooled night vision goggles under low ambient light conditions.« less

  16. Flattened optical frequency-locked multi-carrier generation by cascading one EML and one phase modulator driven by different RF clocks

    NASA Astrophysics Data System (ADS)

    Li, Xinying; Xiao, Jiangnan

    2015-06-01

    We propose a novel scheme for optical frequency-locked multi-carrier generation based on one electro-absorption modulated laser (EML) and one phase modulator (PM) in cascade driven by different sinusoidal radio-frequency (RF) clocks. The optimal operating zone for the cascaded EML and PM is found out based on theoretical analysis and numerical simulation. We experimentally demonstrate 25 optical subcarriers with frequency spacing of 12.5 GHz and power difference less than 5 dB can be generated based on the cascaded EML and PM operating in the optimal zone, which agrees well with the numerical simulation. We also experimentally demonstrate 28-Gbaud polarization division multiplexing quadrature phase shift keying (PDM-QPSK) modulated coherent optical transmission based on the cascaded EML and PM. The bit error ratio (BER) can be below the pre-forward-error-correction (pre-FEC) threshold of 3.8 × 10-3 after 80-km single-mode fiber-28 (SMF-28) transmission.

  17. High-Q photonic resonators and electro-optic coupling using silicon-on-lithium-niobate

    NASA Astrophysics Data System (ADS)

    Witmer, Jeremy D.; Valery, Joseph A.; Arrangoiz-Arriola, Patricio; Sarabalis, Christopher J.; Hill, Jeff T.; Safavi-Naeini, Amir H.

    2017-04-01

    Future quantum networks, in which superconducting quantum processors are connected via optical links, will require microwave-to-optical photon converters that preserve entanglement. A doubly-resonant electro-optic modulator (EOM) is a promising platform to realize this conversion. Here, we present our progress towards building such a modulator by demonstrating the optically-resonant half of the device. We demonstrate high quality (Q) factor ring, disk and photonic crystal resonators using a hybrid silicon-on-lithium-niobate material system. Optical Q factors up to 730,000 are achieved, corresponding to propagation loss of 0.8 dB/cm. We also use the electro-optic effect to modulate the resonance frequency of a photonic crystal cavity, achieving a electro-optic modulation coefficient between 1 and 2 pm/V. In addition to quantum technology, we expect that our results will be useful both in traditional silicon photonics applications and in high-sensitivity acousto-optic devices.

  18. The effects of gamma-ray irradiation on organic materials of different conjugation lengths

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng; Taylor, Edward W.

    2009-08-01

    The radiation resistance of organic electro-optic and optoelectronic materials of different conjugation lengths for space applications is receiving increased attention. Earlier investigation reported that guest-host (G-H) poled polymer EO modulator devices composed of a phenyltetraene bridge-type chromophore in amorphous polycarbonate (CLD/APC) did not exhibit a decrease in EO response (i.e., an increase in modulation-switching voltage- Vπ) following irradiation by low dose [10-160 krad(Si)] 60Co gamma-rays. In this work, the post-irradiation responses of 60Co gamma-rays on CLD1/APC thin films are examined by various chemical and spectroscopic methods including: a solubility test, thin-layer chromatography, proton nuclear magnetic resonance spectroscopy, UV-vis absorption, and infra-red absorption. The results indicate that CLD1 and APC did not decompose under gamma-ray irradiation at dose levels ranging from 66-274 krad(Si) and from 61-154 krad(Si), respectively which support the previously reported data. A comparison with an in situ proton irradiated DRI/PMMA material is also presented.

  19. External electro-optic sampling utilizing a poled polymer asymmetric Fabry Perot cavity as an electro-optical probe tip

    NASA Astrophysics Data System (ADS)

    Chen, Kaixin; Zhang, Hongbo; Zhang, Daming; Yang, Han; Yi, Maobin

    2002-09-01

    External electro-optic sampling utilizing a poled polymer asymmetry Fabry-Perot cavity as electro-optic probe tip has been demonstrated. Electro-optical polymer spin coated on the high-reflectivity mirror (HRM) was corona poled. Thus, an asymmetric F-P cavity was formed based on the different reflectivity of the polymer and HRM and it converted the phase modulation that originates from electro-optic effect of the poled polymer to amplitude modulation, so only one laser beam is needed in this system. The principle of the sampling was analyzed by multiple reflection and index ellipsoid methods. A 1.2 GHz microwave signal propagating on coplanar waveguide transmission line was sampled, and the voltage sensitivity about 0.5 mV/ Hz was obtained.

  20. Polarized optical absorption and photoluminescence measurements in single-crystal thin films of 4'-dimethylamino-N-methyl-4-stilbazolium tosylate

    NASA Astrophysics Data System (ADS)

    Bhowmik, Achintya K.; Xu, Jianjun; Thakur, Mrinal

    1999-11-01

    Single-crystal thin films of the anhydrous (red) and the hydrated (orange) phases of the organic salt 4'-dimethylamino-N-methyl-4-stilbazolium tosylate were grown by a modification of the shear method. The optical absorption coefficients of the films were measured with light polarized along and normal to the dipole/molecular axis at both resonant and off-resonant wavelengths, and a strong dichroism was observed at the resonant wavelengths. The absorption measurements are important considering potential applications of these films (red phase) in high-speed single-pass thin-film electro-optic modulators [M. Thakur, J. Xu, A. Bhowmik, and L. Zhou, Appl. Phys. Lett. 74, 635 (1999)] and other photonic devices. Highly polarized photoluminescence (PL) has been observed in these films. The PL efficiencies of the red- and orange-phase single-crystal films were measured to be about 12% and 14%, respectively, which are significantly higher than the maximum PL efficiency measured in solution (3%).

  1. Detection of radio-frequency modulated optical signals by two and three terminal microwave devices

    NASA Technical Reports Server (NTRS)

    Bhasin, K. B.; Simons, R. N.; Wojtczuk, S.

    1987-01-01

    An interdigitated photoconductor (two terminal device) on GaAlAs/GaAs heterostructure was fabricated and tested by an electro-optical sampling technique. Further, the photoresponse of GaAlAs/GaAs HEMT (three terminal device) was obtained by illuminating the device with an optical signal modulated up to 8 GHz. Gain-bandwidth product, response time, and noise properties of photoconductor and HEMT devices were obtained. Monolithic integration of these photodetectors with GaAs microwave devices for optically controlled phased array antenna applications is discussed.

  2. Electro-Optic Computing Architectures. Volume I

    DTIC Science & Technology

    1998-02-01

    The objective of the Electro - Optic Computing Architecture (EOCA) program was to develop multi-function electro - optic interfaces and optical...interconnect units to enhance the performance of parallel processor systems and form the building blocks for future electro - optic computing architectures...Specifically, three multi-function interface modules were targeted for development - an Electro - Optic Interface (EOI), an Optical Interconnection Unit (OW

  3. Electric-optic resonant phase modulator

    NASA Technical Reports Server (NTRS)

    Chen, Chien-Chung (Inventor); Robinson, Deborah L. (Inventor); Hemmati, Hamid (Inventor)

    1994-01-01

    An electro-optic resonant cavity is used to achieve phase modulation with lower driving voltages. Laser damage thresholds are inherently higher than with previously used integrated optics due to the utilization of bulk optics. Phase modulation is achieved at higher speeds with lower driving voltages than previously obtained with non-resonant electro-optic phase modulators. The instant scheme uses a data locking dither approach as opposed to the conventional sinusoidal locking schemes. In accordance with a disclosed embodiment, a resonant cavity modulator has been designed to operate at a data rate in excess of 100 Mbps. By carefully choosing the cavity finesse and its dimension, it is possible to control the pulse switching time to within 4 ns and to limit the required switching voltage to within 10 V. Experimentally, the resonant cavity can be maintained on resonance with respect to the input laser signal by monitoring the fluctuation of output intensity as the cavity is switched. This cavity locking scheme can be applied by using only the random data sequence, and without the need of additional dithering of the cavity. Compared to waveguide modulators, the resonant cavity has a comparable modulating voltage requirement. Because of its bulk geometry, resonant cavity modulator has the potential of accommodating higher throughput power. Furthermore, mode matching into a bulk device is easier and typically can be achieved with higher efficiency. On the other hand, unlike waveguide modulators which are essentially traveling wave devices, the resonant cavity modulator requires that the cavity be maintained in resonance with respect to the incoming laser signal. An additional control loop is incorporated into the modulator to maintain the cavity on resonance.

  4. Visualization of frequency-modulated electric field based on photonic frequency tracking in asynchronous electro-optic measurement system

    NASA Astrophysics Data System (ADS)

    Hisatake, Shintaro; Yamaguchi, Koki; Uchida, Hirohisa; Tojyo, Makoto; Oikawa, Yoichi; Miyaji, Kunio; Nagatsuma, Tadao

    2018-04-01

    We propose a new asynchronous measurement system to visualize the amplitude and phase distribution of a frequency-modulated electromagnetic wave. The system consists of three parts: a nonpolarimetric electro-optic frequency down-conversion part, a phase-noise-canceling part, and a frequency-tracking part. The photonic local oscillator signal generated by electro-optic phase modulation is controlled to track the frequency of the radio frequency (RF) signal to significantly enhance the measurable RF bandwidth. We demonstrate amplitude and phase measurement of a quasi-millimeter-wave frequency-modulated continuous-wave signal (24 GHz ± 80 MHz with a 2.5 ms period) as a proof-of-concept experiment.

  5. Single-crystal films of a combination of materials (co-crystal) involving DAST and IR-125 for electro-optic applications

    NASA Astrophysics Data System (ADS)

    Narayanan, A.; Titus, J.; Rajagopalan, H.; Vippa, P.; Thakur, M.

    2006-03-01

    Single-crystal film of DAST (4'-dimethylamino-N-methyl-4-stilbazolium tosylate) has been shown [1] to have exceptionally large electro-optic coefficients (r11 ˜ 770 pm/V at 633 nm). In this report, single crystal film of a combination of materials (co-crystal) involving DAST and a dye molecule IR-125 will be discussed. Modified shear method was used to prepare the co-crystal films. The film has been characterized using polarized optical microscopy, optical absorption spectroscopy and x-ray diffraction. The optical absorption spectrum has two major bands: one at about 350--600 nm corresponding to DAST and the other at about 600-900 nm corresponding to IR-125. The x-ray diffraction results show peaks involving the presence of DAST and IR-125 within the co-crystal film. Since the co-crystal has strong absorption at longer wavelengths it is expected to show higher electro-optic coefficients at longer wavelengths. Preliminary measurements at 1.55 μm indicate a high electro-optic coefficient of the co-crystal film. [1] Swamy, Kutty, Titus, Khatavkar, Thakur, Appl. Phys. Lett. 2004, 85, 4025; Kutty, Thakur, Appl. Phys. Lett. 2005, 87, 191111.

  6. Silicon optical modulators for optical digital and analog communications (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Yang, Lin; Ding, Jianfeng; Zhang, Lei; Shao, Sizu

    2017-02-01

    Silicon photonics is considered as a promising technology to overcome the difficulties of the existing digital and analog optical communication systems, such as low integration, high cost, and high power consumption. Silicon optical modulator, as a component to transfer data from electronic domain to optical one, has attracted extensive attentions in the past decade. In this paper, we review the statuses of the silicon optical modulators for digital and analog optical communications and introduce our efforts on these topics. We analyze the relationship between the performance and the structural parameters of the silicon optical modulator and present how to optimize its performance including electro-optical bandwidth, modulation efficiency, optical bandwidth and insertion loss. The fabricated silicon optical modulator has an electro-optical bandwidth of 30 GHz. Its extinction ratios are 14.0 dB, 11.2 dB and 9.0 dB at the speeds of 40 Gbps, 50 Gbps and 64 Gbps for OOK modulation. The high extinction ratio of the silicon optical modulator at the high speed makes it very appropriate for the application of optical coherent modulation, such as QPSK and 16-QAM. The fabricated silicon optical modulator also can be utilized for analog optical communication. With respect to a noise floor of -165 dBc, the dynamic ranges for the second-order harmonic and the third-order intermodulation distortion are 90.8 dB and 110.5 dB respectively. By adopting a differential driving structure, the dynamic range for the second-order harmonic can be further improved to 100.0 dB while the third-order intermodulation distortion remains the same level.

  7. Quadratic Electro-optic Effect in a Novel Nonconjugated Conductive Polymer, iodine-doped Polynorbornene

    NASA Astrophysics Data System (ADS)

    Narayanan, Ananthakrishnan; Thakur, Mrinal

    2009-03-01

    Quadratic electro-optic effect in a novel nonconjugated conductive polymer, iodine-doped polynorbornene has been measured using field-induced birefringence at 633 nm. The electrical conductivity^1 of polynorbornene increases by twelve orders of magnitude to about 0.01 S/cm upon doping with iodine. The electro-optic measurement has been made in a film doped at the medium doping-level. The electro-optic modulation signal was recorded using a lock-in amplifier for various applied ac voltages (4 kHz) and the quadratic dependence of the modulation on the applied voltage was observed. A modulation of about 0.01% was observed for an applied electric field of 3 V/micron for a 100 nm thick film The Kerr coefficient as determined is about 1.77x10-11m/V^2. This exceptionally large quadratic electro-optic effect has been attributed to the confinement of this charge-transfer system within a sub-nanometer dimension. 1. A. Narayanan, A. Palthi and M. Thakur, J. Macromol. Sci. -- PAC, accepted.

  8. Active 2D materials for on-chip nanophotonics and quantum optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiue, Ren-Jye; Efetov, Dmitri K.; Grosso, Gabriele

    Abstract Two-dimensional materials have emerged as promising candidates to augment existing optical networks for metrology, sensing, and telecommunication, both in the classical and quantum mechanical regimes. Here, we review the development of several on-chip photonic components ranging from electro-optic modulators, photodetectors, bolometers, and light sources that are essential building blocks for a fully integrated nanophotonic and quantum photonic circuit.

  9. Active 2D materials for on-chip nanophotonics and quantum optics

    NASA Astrophysics Data System (ADS)

    Shiue, Ren-Jye; Efetov, Dmitri K.; Grosso, Gabriele; Peng, Cheng; Fong, Kin Chung; Englund, Dirk

    2017-03-01

    Two-dimensional materials have emerged as promising candidates to augment existing optical networks for metrology, sensing, and telecommunication, both in the classical and quantum mechanical regimes. Here, we review the development of several on-chip photonic components ranging from electro-optic modulators, photodetectors, bolometers, and light sources that are essential building blocks for a fully integrated nanophotonic and quantum photonic circuit.

  10. Impact of Convection on Surface Fluxes Observed During LASP/DYNAMO 2011

    DTIC Science & Technology

    2014-12-01

    20  Figure 8.  FFM maneuver used in the LASP/DYNAMO experiment (from Wang et al. 2013...Atmosphere Response Experiment DYNAMO Dynamics of Madden-Julian Oscillation EM electro-magnetic EO electro-optical FFM flight-level flux mapping FVS...level flux mapping ( FFM ) modules. Convection modules consisted of dropsonde cloud survey or radar convective element maneuver. Dropsonde modules

  11. Externally-Modulated Electro-Optically Coupled Detector Architecture for Nuclear Physics Instrumentation

    NASA Astrophysics Data System (ADS)

    Xi, Wenze; McKisson, J. E.; Weisenberger, Andrew G.; Zhang, Shukui; Zorn, Carl

    2014-06-01

    A new laser-based externally-modulated electro-optically coupled detector (EOCD) architecture is being developed to enable high-density readout for radiation detectors with accurate analog radiation pulse shape and timing preservation. Unlike digital conversion before electro-optical modulation, the EOCD implements complete analog optical signal modulation and multiplexing in its detector front-end. The result is a compact, high performance detector readout that can be both radiation tolerant and immune to magnetic fields. In this work, the feasibility of EOCD was explored by constructing a two-wavelength laser-based externally-modulated EOCD, and testing analog pulse shape preservation and wavelength-division multiplexing (WDM) crosstalk. Comparisons were first made between the corresponding initial pulses and the electro-optically coupled analog pulses. This confirmed an excellent analog pulse preservation over 29% of the modulator's switching voltage range. Optical spectrum analysis revealed less than -14 dB crosstalk with 1.2 nm WDM wavelength bandgap, and provided insight on experimental conditions that could lead to increased inter-wavelength crosstalk. Further discussions and previous research on the radiation tolerance and magnetic field immunity of the candidate materials were also given, and quantitative device testing is proposed in the future.

  12. Traveling wave electro-optic phase modulators based on intrinsically polar self-assembled chromophoric superlattices

    NASA Astrophysics Data System (ADS)

    Zhao, Y.-G.; Wu, A.; Lu, H.-L.; Chang, S.; Lu, W.-K.; Ho, S. T.; van der Boom, M. E.; Marks, T. J.

    2001-07-01

    Traveling-wave electro-optic modulators based on chromophoric self-assembled superlattices (SASs) possessing intrinsically polar microstructures have been designed and fabricated. Although the thickness of the SAS layer is only ˜150 nm, a π-phase shift is clearly observed. From the measured Vπ value, the effective electro-optic coefficient of the SAS film is determined to be ˜21.8 pm/V at an input wavelength of 1064 nm.

  13. Electro-optic modulation for high-speed characterization of entangled photon pairs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lukens, Joseph M.; Odele, Ogaga D.; Leaird, Daniel E.

    In this study, we demonstrate a new biphoton manipulation and characterization technique based on electro-optic intensity modulation and time shifting. By applying fast modulation signals with a sharply peaked cross-correlation to each photon from an entangled pair, it is possible to measure temporal correlations with significantly higher precision than that attainable using standard single-photon detection. Low-duty-cycle pulses and maximal-length sequences are considered as modulation functions, reducing the time spread in our correlation measurement by a factor of five compared to our detector jitter. With state-of-the-art electro-optic components, we expect the potential to surpass the speed of any single-photon detectors currentlymore » available.« less

  14. Electro-optic modulation for high-speed characterization of entangled photon pairs

    DOE PAGES

    Lukens, Joseph M.; Odele, Ogaga D.; Leaird, Daniel E.; ...

    2015-11-10

    In this study, we demonstrate a new biphoton manipulation and characterization technique based on electro-optic intensity modulation and time shifting. By applying fast modulation signals with a sharply peaked cross-correlation to each photon from an entangled pair, it is possible to measure temporal correlations with significantly higher precision than that attainable using standard single-photon detection. Low-duty-cycle pulses and maximal-length sequences are considered as modulation functions, reducing the time spread in our correlation measurement by a factor of five compared to our detector jitter. With state-of-the-art electro-optic components, we expect the potential to surpass the speed of any single-photon detectors currentlymore » available.« less

  15. Study of Linearization of Optical Polymer Modulators

    DTIC Science & Technology

    2004-02-01

    To improve the Spur Free Dynamic Range of analog electro - optic modulators in the 10 GHz regime, techniques for improving the linearity of these...devices must be developed. This report discusses an investigation into electro - optic directional couplers that use variable coupling in polymer-based

  16. High-Q photonic resonators and electro-optic coupling using silicon-on-lithium-niobate

    PubMed Central

    Witmer, Jeremy D.; Valery, Joseph A.; Arrangoiz-Arriola, Patricio; Sarabalis, Christopher J.; Hill, Jeff T.; Safavi-Naeini, Amir H.

    2017-01-01

    Future quantum networks, in which superconducting quantum processors are connected via optical links, will require microwave-to-optical photon converters that preserve entanglement. A doubly-resonant electro-optic modulator (EOM) is a promising platform to realize this conversion. Here, we present our progress towards building such a modulator by demonstrating the optically-resonant half of the device. We demonstrate high quality (Q) factor ring, disk and photonic crystal resonators using a hybrid silicon-on-lithium-niobate material system. Optical Q factors up to 730,000 are achieved, corresponding to propagation loss of 0.8 dB/cm. We also use the electro-optic effect to modulate the resonance frequency of a photonic crystal cavity, achieving a electro-optic modulation coefficient between 1 and 2 pm/V. In addition to quantum technology, we expect that our results will be useful both in traditional silicon photonics applications and in high-sensitivity acousto-optic devices. PMID:28406177

  17. Dual-function photonic integrated circuit for frequency octo-tupling or single-side-band modulation.

    PubMed

    Hasan, Mehedi; Maldonado-Basilio, Ramón; Hall, Trevor J

    2015-06-01

    A dual-function photonic integrated circuit for microwave photonic applications is proposed. The circuit consists of four linear electro-optic phase modulators connected optically in parallel within a generalized Mach-Zehnder interferometer architecture. The photonic circuit is arranged to have two separate output ports. A first port provides frequency up-conversion of a microwave signal from the electrical to the optical domain; equivalently single-side-band modulation. A second port provides tunable millimeter wave carriers by frequency octo-tupling of an appropriate amplitude RF carrier. The circuit exploits the intrinsic relative phases between the ports of multi-mode interference couplers to provide substantially all the static optical phases needed. The operation of the proposed dual-function photonic integrated circuit is verified by computer simulations. The performance of the frequency octo-tupling and up-conversion functions is analyzed in terms of the electrical signal to harmonic distortion ratio and the optical single side band to unwanted harmonics ratio, respectively.

  18. Electro-Optic Computing Architectures: Volume II. Components and System Design and Analysis

    DTIC Science & Technology

    1998-02-01

    The objective of the Electro - Optic Computing Architecture (EOCA) program was to develop multi-function electro - optic interfaces and optical...interconnect units to enhance the performance of parallel processor systems and form the building blocks for future electro - optic computing architectures...Specifically, three multi-function interface modules were targeted for development - an Electro - Optic Interface (EOI), an Optical Interconnection Unit

  19. Wavelength-tunable waveguides based on polycrystalline organic-inorganic perovskite microwires

    NASA Astrophysics Data System (ADS)

    Wang, Ziyu; Liu, Jingying; Xu, Zai-Quan; Xue, Yunzhou; Jiang, Liangcong; Song, Jingchao; Huang, Fuzhi; Wang, Yusheng; Zhong, Yu Lin; Zhang, Yupeng; Cheng, Yi-Bing; Bao, Qiaoliang

    2016-03-01

    Hybrid organic-inorganic perovskites have emerged as new photovoltaic materials with impressively high power conversion efficiency due to their high optical absorption coefficient and long charge carrier diffusion length. In addition to high photoluminescence quantum efficiency and chemical tunability, hybrid organic-inorganic perovskites also show intriguing potential for diverse photonic applications. In this work, we demonstrate that polycrystalline organic-inorganic perovskite microwires can function as active optical waveguides with small propagation loss. The successful production of high quality perovskite microwires with different halogen elements enables the guiding of light with different colours. Furthermore, it is interesting to find that out-coupled light intensity from the microwire can be effectively modulated by an external electric field, which behaves as an electro-optical modulator. This finding suggests the promising applications of perovskite microwires as effective building blocks in micro/nano scale photonic circuits.

  20. Wavelength-tunable waveguides based on polycrystalline organic-inorganic perovskite microwires.

    PubMed

    Wang, Ziyu; Liu, Jingying; Xu, Zai-Quan; Xue, Yunzhou; Jiang, Liangcong; Song, Jingchao; Huang, Fuzhi; Wang, Yusheng; Zhong, Yu Lin; Zhang, Yupeng; Cheng, Yi-Bing; Bao, Qiaoliang

    2016-03-28

    Hybrid organic-inorganic perovskites have emerged as new photovoltaic materials with impressively high power conversion efficiency due to their high optical absorption coefficient and long charge carrier diffusion length. In addition to high photoluminescence quantum efficiency and chemical tunability, hybrid organic-inorganic perovskites also show intriguing potential for diverse photonic applications. In this work, we demonstrate that polycrystalline organic-inorganic perovskite microwires can function as active optical waveguides with small propagation loss. The successful production of high quality perovskite microwires with different halogen elements enables the guiding of light with different colours. Furthermore, it is interesting to find that out-coupled light intensity from the microwire can be effectively modulated by an external electric field, which behaves as an electro-optical modulator. This finding suggests the promising applications of perovskite microwires as effective building blocks in micro/nano scale photonic circuits.

  1. Field-modulation spectroscopy of pentacene thin films using field-effect devices: Reconsideration of the excitonic structure

    NASA Astrophysics Data System (ADS)

    Haas, Simon; Matsui, Hiroyuki; Hasegawa, Tatsuo

    2010-10-01

    We report pure electric-field effects on the excitonic absorbance of pentacene thin films as measured by unipolar field-effect devices that allowed us to separate the charge accumulation effects. The field-modulated spectra between 1.8 and 2.6 eV can be well fitted with the first derivative curve of Frenkel exciton absorption and its vibronic progression, and at higher energy a field-induced feature appears at around 2.95 eV. The results are in sharp contrast to the electroabsorption spectra reported by Sebastian in previous studies [Chem. Phys. 61, 125 (1981)10.1016/0301-0104(81)85055-0], and leads us to reconsider the excitonic structure including the location of charge-transfer excitons. Nonlinear π -electronic response is discussed based on second-order electro-optic (Kerr) spectra.

  2. Ground-based DIAL and IPDA Systems for Remote Sensing of CO2, CH4, and H2O near 1.6 µm

    NASA Astrophysics Data System (ADS)

    Wagner, G. A.; Plusquellic, D. F.

    2017-12-01

    Integrated path differential absorption (IPDA) and differential absorption LIDAR (DIAL) are well established methods to monitor atmospheric constituents. At NIST, IPDA and DIAL systems have been developed as standoff systems and their overall performance has been evaluated through intercomparisons including the traceability to point sensor measurements. The all-fiber IPDA system is based on a low-power (< 13 mW, eye-safe) electro-optic modulated continuous-wave laser to produce 123 frequencies at a scan repetition frequency of 10 kHz.1 The transmitter-receiver system measures backscatter from natural targets and is rastered during the measurements to reduce speckle effects. The receiver consists of a 28 cm telescope, photomultiplier tube, and a streaming data acquisition system for direct photon discrimination and counting. The eye-safe DIAL system is based on an optical parametric oscillator2,3 that operates at a pulse repetition frequency of 100 Hz and alternates between on-line and off-line frequencies with pulse energies of < 10 mJ/pulse. The receivers consist of two telescopes (near field: 28 cm; far field: 40 cm), photomultiplier tubes, and a 2 GS/s hybrid data acquisition system for photon counting and current detection. We demonstrate the performance of the DIAL and IPDA systems and present results of a CO2 IPDA/DIAL/point sensor traceability study performed in Boulder (CO, USA) in summer 2017. 1. G. A. Wagner and D. F. Plusquellic, "Ground-Based, Integrated Path Differential Absorption LIDAR Measurement of CO2, CH4 and H2O near 1.6 µm," Applied Optics, 55(23), 6292-6310 (2016). 2. D. J. Armstrong, and A. V. Smith, "150-mJ 1550-nm KTA OPO with Good Beam Quality and High Efficiency," SPIE, 5337, 71-80 (2004). 3. K. O. Douglass, S. E. Maxwell, D. F. Plusquellic, J. T. Hodges, R. D. van Zee, D. V. Samarov, J. R. Whetstone, "Construction of a High Power OPO Laser System for Differential Absorption LIDAR," SPIE, 8159, 81590D (2011).

  3. Electro-optic correlator for large-format microwave interferometry: Up-conversion and correlation stages performance analysis

    NASA Astrophysics Data System (ADS)

    Ortiz, D.; Casas, Francisco J.; Ruiz-Lombera, R.; Mirapeix, J.

    2017-04-01

    In this paper, a microwave interferometer prototype with a near-infra-red optical correlator is proposed as a solution to get a large-format interferometer with hundreds of receivers for radio astronomy applications. A 10 Gbits/s Lithium Niobate modulator has been tested as part of an electro-optic correlator up-conversion stage that will be integrated in the interferometer prototype. Its internal circuitry consists of a single-drive modulator biased by a SubMiniature version A (SMA) connector allowing to up-convert microwave signals with bandwidths up to 12.5 GHz to the near infrared band. In order to characterize it, a 12 GHz tone and a bias voltage were applied to the SMA input using a polarization tee. Two different experimental techniques to stabilize the modulator operation point in its minimum optical carrier output power are described. The best achieved results showed a rather stable spectrum in amplitude and wavelength at the output of the modulator with an optical carrier level 23 dB lower than the signal of interest. On the other hand, preliminary measurements were made to analyze the correlation stage, using 4f and 6f optical configurations to characterize both the antenna/fiber array configuration and the corresponding point spread function.

  4. Polymeric Materials for Electro-Optic Testing.

    DTIC Science & Technology

    1987-07-01

    what Langmuir Blodgett films are, how they are grown and deposited on a material, and the electro - optic effects in Langmuir/Blodgett films. Stephen...Kowel has experimented with several different types of organic dyes mixed in the films to increase the electro - optic effect in the films. The bulk of his...test integrated circuits. Keywords: Langmuir Blodgett films, Electro - optic testing, Integrated circuits, Linear electro - optic effect.

  5. Smart nickel oxide materials for the applications of energy efficiency and storage

    NASA Astrophysics Data System (ADS)

    Lin, Feng

    The present dissertation studies nickel oxide-based materials for the application of electrochromic windows and lithium-air batteries. The materials were fabricated via radio frequency magnetron sputtering and subsequently post-treated with thermal evaporation and ozone exposure. The strategies to improve electrochromic performance of nickel oxide materials were investigated including compositional control, morphology tuning, modification of electronic structure and interface engineering (i.e., Li2O 2, graphene). The electrochemical properties of the resulting materials were characterized in lithium ion electrolytes. Extremely high performing nickel oxide-based electrochromic materials were obtained in terms of optical modulation, switching kinetics, bleached-state transparency and durability, which promise the implementation of these materials for practical smart windows. With the aid of advanced synchrotron X-ray absorption spectroscopy, it is reported for the first time that the electrochromic effect in multicomponent nickel oxide-based materials arises from the reversible formation of hole states in the NiO6 cluster accompanying with the reversible formation of Li2O2. The reversible formation of Li2O 2 was successfully leveraged with the study of electro-catalysts and cathode materials for lithium-air batteries. The reversibility of Li 2O2 was thoroughly investigated using soft X-ray absorption spectroscopy and theoretical simulation, which substantiates the promise of using electrochromic films as electro-catalysts and/or cathode materials in lithium-air batteries.

  6. Development of New Electro-Optic and Acousto-Optic Materials.

    DTIC Science & Technology

    1983-11-01

    Improved materials are required for active optical devices, including electro - optic and acousto-optic modulators, switches and tunable filters, as...many microwave applications. In addition, electro - optic and acousto-optic devices are materials limited because the materials currently available are...these materials for applications involving the electro - optic effect, degenerate four-wave mixing and surface acoustic wave technology.

  7. ELECTRO-OPTIC PROJECTION STUDY.

    DTIC Science & Technology

    light modulation. The light valve tubes used in the study employ an electron beam to develop discrete electric fields through an electro - optic material...Characteristics of two electro - optic materials, potassium dihydrogen phosphate and potassium dideuterium phosphate, were measured in order to optimize the

  8. Space-inhomogeneous phase modulation of laser radiation in an electro-optical ferroelectric liquid crystal cell for suppressing speckle noise.

    PubMed

    Andreev, Alexander L; Andreeva, Tatiana B; Kompanets, Igor N; Zalyapin, Nikolay V

    2018-02-20

    Spatially inhomogeneous modulation of a phase delay with the depth of the order π or more makes it possible to destroy phase relations in a laser beam passing through an electro-optical cell with the ferroelectric liquid crystal (FLC) and, as a consequence, to suppress speckle noise in images formed by this beam. Such a modulation is a consequence of chaotic changes in the position of the scattering indicatrix of helix-free FLC, when an electro-optical cell is simultaneously supplied with a low-frequency and high-frequency bipolar control voltage. In this work, the phase modulation and effective suppressing of the speckles are realized using a new type of helix-free FLC material with periodic deformations of smectic layers.

  9. Design of an electro-optic-polymer-based Mach-Zehnder modulator

    NASA Astrophysics Data System (ADS)

    Haugen, Chris J.; DeCorby, Ray G.; McMullin, James N.; Pulikkaseril, C.

    2000-12-01

    A novel structure for an electro-optic (e-o) polymer based Mach-Zehnder modulator is proposed and its anticipated device performance is detailed. The modulator is designed using commercially available materials and makes usc of wellcharacterized electrical and optical structures. The modulator is designed to be competitive with the pertrmance of LiNbO based modulators. The results of the analysis predict a bandwidth of 20 GHz, V of 8-10 V, optical insertion loss of S d13, and a contrast ratio of approximately 13 dB.

  10. Gold nanoparticles prepared by electro-exploding wire technique in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Kumar, Lalit; Kapoor, Akanksha; Meghwal, Mayank; Annapoorni, S.

    2016-05-01

    This article presents an effective approach for the synthesis of Au nanoparticles via an environmentally benevolent electro-exploding wire (EEW) technique. In this process, Au nanoparticles evolve through the plasma generated from the parent Au metal. Compared to other typical chemical methods, electro-exploding wire technique is a simple and economical technique which normally operates in water or organic liquids under ambient conditions. Efficient size control was achieved using different aqueous medium like (1mM) NaCl, deionized water and aqueous solution of sodium hydroxide (NaOH, pH 9.5) using identical electro-exploding conditions. The gold nanoparticles exhibited the UV-vis absorption spectrum with a maximum absorption band at 530 nm, similar to that of gold nanoparticles chemically prepared in a solution. The mechanism of size variation of Au nanoparticles is also proposed. The results obtained help to develop methodologies for the control of EEW based nanoparticle growth and the functionalization of nanoparticle surfaces by specific interactions.

  11. Microwave photonic filters with negative coefficients based on phase inversion in an electro-optic modulator.

    PubMed

    Capmany, José; Pastor, Daniel; Martinez, Alfonso; Ortega, Beatriz; Sales, Salvador

    2003-08-15

    We report on a novel technical approach to the implementation of photonic rf filters that is based on the pi phase inversion that a rf modulating signal suffers in an electro-optic Mach-Zehnder modulator, which depends on whether the positive or the negative linear slope of the signal's modulation transfer function is employed. Experimental evidence is provided of the implementation of filters with negative coefficients that shows excellent agreement with results predicted by the theory.

  12. Fabry-Perot Interferometer-Based Electrooptic Modulator using LiNbO3 and Organic Thin Films

    NASA Technical Reports Server (NTRS)

    Banks, C.; Frazier, D.; Penn, B.; Abdeldayem, H.; Sharma, A.; Yelleswarapu, C.; Leyderman, Alexander; Correa, Margarita; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    We report the study of a Fabry-Perot electro-optical modulator using thin crystalline film NPP, and Crystalline LiNbO3. We are able to observe 14, and 60 percent degree of modulation. Measurements were carried using a standard lock-in amplifier with a silicon detector. The proposal to design a Fabry-Perot electro-optic modulator with an intracavity electro-optically active organic material was based on the initial results using poled polymer thin films. The main feature of the proposed device is the observation that in traditional electrooptic modulators like a Packets cell, it requires few kilovolts of driving voltage to cause a 3 dB modulation even in high figure-of-merit electrooptic materials like LiNbO3. The driving voltage for the modulator can be reduced to as low as 10 volts by introducing the electrooptic material inside die resonant cavity of a Fabry-Perot modulator. This is because the transmission of the Fabry-Perot cavity varies nonlinearly with the change of refractive index or phase of light due to applied electric field.

  13. Electro-optical Probing Of Terahertz Integrated Circuits

    NASA Technical Reports Server (NTRS)

    Bhasin, K. B.; Romanofsky, R.; Whitaker, J. F.; Valdmanis, J. A.; Mourou, G.; Jackson, T. A.

    1990-01-01

    Electro-optical probe developed to perform noncontact, nondestructive, and relatively noninvasive measurements of electric fields over broad spectrum at millimeter and shorter wavelengths in integrated circuits. Manipulated with conventional intregrated-circuit-wafer-probing equipment and operated without any special preparation of integrated circuits. Tip of probe small electro-optical crystal serving as proximity electric-field sensor.

  14. Universal discrete Fourier optics RF photonic integrated circuit architecture.

    PubMed

    Hall, Trevor J; Hasan, Mehedi

    2016-04-04

    This paper describes a coherent electro-optic circuit architecture that generates a frequency comb consisting of N spatially separated orders using a generalised Mach-Zenhder interferometer (MZI) with its N × 1 combiner replaced by an optical N × N Discrete Fourier Transform (DFT). Advantage may be taken of the tight optical path-length control, component and circuit symmetries and emerging trimming algorithms offered by photonic integration in any platform that offers linear electro-optic phase modulation such as LiNbO3, silicon, III-V or hybrid technology. The circuit architecture subsumes all MZI-based RF photonic circuit architectures in the prior art given an appropriate choice of output port(s) and dimension N although the principal application envisaged is phase correlated subcarrier generation for all optical orthogonal frequency division multiplexing. A transfer matrix approach is used to model the operation of the architecture. The predictions of the model are validated by simulations performed using an industry standard software tool. Implementation is found to be practical.

  15. Heterogeneous microring and Mach-Zehnder modulators based on lithium niobate and chalcogenide glasses on silicon

    DOE PAGES

    Rao, Ashutosh; Patil, Aniket; Chiles, Jeff; ...

    2015-08-20

    In this study, thin films of lithium niobate are wafer bonded onto silicon substrates and rib-loaded with a chalcogenide glass, Ge 23Sb 7S 70, to demonstrate strongly confined single-mode submicron waveguides, microring modulators, and Mach-Zehnder modulators in the telecom C band. The 200 μm radii microring modulators present 1.2 dB/cm waveguide propagation loss, 1.2 × 10 5 quality factor, 0.4 GHz/V tuning rate, and 13 dB extinction ratio. The 6 mm long Mach-Zehnder modulators have a half-wave voltage-length product of 3.8 V.cm and an extinction ratio of 15 dB. The demonstrated work is a key step towards enabling wafer scalemore » dense on-chip integration of high performance lithium niobate electro-optical devices on silicon for short reach optical interconnects and higher order advanced modulation schemes.« less

  16. Complex modulation using tandem polarization modulators

    NASA Astrophysics Data System (ADS)

    Hasan, Mehedi; Hall, Trevor

    2017-11-01

    A novel photonic technique for implementing frequency up-conversion or complex modulation is proposed. The proposed circuit consists of a sandwich of a quarter-wave plate between two polarization modulators, driven, respectively, by an in-phase and quadrature-phase signals. The operation of the circuit is modelled using a transmission matrix method. The theoretical prediction is then validated by simulation using an industry-standard software tool. The intrinsic conversion efficiency of the architecture is improved by 6 dB over a functionally equivalent design based on dual parallel Mach-Zehnder modulators. Non-ideal scenarios such as imperfect alignment of the optical components and power imbalances and phase errors in the electric drive signals are also analysed. As light travels, along one physical path, the proposed design can be implemented using discrete components with greater control of relative optical path length differences. The circuit can further be integrated in any material platform that offers electro-optic polarization modulators.

  17. Heterogeneous microring and Mach-Zehnder modulators based on lithium niobate and chalcogenide glasses on silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, Ashutosh; Patil, Aniket; Chiles, Jeff

    In this study, thin films of lithium niobate are wafer bonded onto silicon substrates and rib-loaded with a chalcogenide glass, Ge 23Sb 7S 70, to demonstrate strongly confined single-mode submicron waveguides, microring modulators, and Mach-Zehnder modulators in the telecom C band. The 200 μm radii microring modulators present 1.2 dB/cm waveguide propagation loss, 1.2 × 10 5 quality factor, 0.4 GHz/V tuning rate, and 13 dB extinction ratio. The 6 mm long Mach-Zehnder modulators have a half-wave voltage-length product of 3.8 V.cm and an extinction ratio of 15 dB. The demonstrated work is a key step towards enabling wafer scalemore » dense on-chip integration of high performance lithium niobate electro-optical devices on silicon for short reach optical interconnects and higher order advanced modulation schemes.« less

  18. A Comparison between Two Heterodyne Light Sources Using Different Electro-Optic Modulators for Optical Temperature Measurements at Visible Wavelengths

    PubMed Central

    Twu, Ruey-Ching; Lee, Yi-Huan; Hou, Hong-Yao

    2010-01-01

    In this paper we have successfully demonstrated a z-propagating Zn-indiffused lithium niobate electro-optic modulator used for optical heterodyne interferometry. Compared to a commercial buck-type electro-optic modulator, the proposed waveguide-type modulator has a lower driving voltage and smaller phase variation while measuring visible wavelengths of 532 nm and 632.8 nm. We also demonstrate an optical temperature measurement system using a homemade modulator. The results show that the measurement sensitivities are almost the same values of 25 deg/°C for both the homemade and the buck-type modulators for a sensing light with a wavelength of 632.8 nm. Because photorefractive impacts are essential in the buck-type modulator at a wavelength of 532 nm, it is difficult to obtain reliable phase measurements, whereas the stable phase operation of the homemade one allows the measurement sensitivity to be improved up to 30 deg/°C with the best measurement resolution at about 0.07 °C for 532 nm. PMID:22163429

  19. Spectrally Selective Mirrors with Combined Optical and Thermal Benefit for Photovoltaic Module Thermal Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slauch, Ian M.; Deceglie, Michael G.; Silverman, Timothy J.

    Waste heat generated during daytime operation of a solar module will raise its temperature and reduce cell efficiency. In addition to thermalization and carrier recombination, one major source of excess heat in modules is the parasitic absorption of light with sub-bandgap energy. Parasitic absorption can be prevented if sub-bandgap radiation is reflected away from the module. We report on the design considerations and projected changes to module energy yield for photonic reflectors capable of reflecting a portion of sub-bandgap radiation while maintaining or improving transmission of light with energy greater than the semiconductor bandgap. Using a previously developed, self-consistent opto-electro-thermalmore » finite-element simulation, we calculate the total additional energy generated by a module, including various photonic reflectors, and decompose these benefits into thermal and optical effects. We show that the greatest total energy yield improvement comes from photonic mirrors designed for the outside of the glass, but that mirrors placed between the glass and the encapsulant can have significant thermal benefit. We then show that optimal photonic mirror design requires consideration of all angles of incidence, despite unequal amounts of radiation arriving at each angle. We find that optimized photonic mirrors will be omnidirectional in the sense that they have beneficial performance, regardless of the angle of incidence of radiation. By fulfilling these criteria, photonic mirrors can be used at different geographic locations or different tilt angles than their original optimization conditions with only marginal changes in performance. We show designs that improve energy output in Golden, Colorado by 3.7% over a full year. This work demonstrates the importance of considering real-world irradiance and weather conditions when designing optical structures for solar applications.« less

  20. Spectrally Selective Mirrors with Combined Optical and Thermal Benefit for Photovoltaic Module Thermal Management

    DOE PAGES

    Slauch, Ian M.; Deceglie, Michael G.; Silverman, Timothy J.; ...

    2018-03-02

    Waste heat generated during daytime operation of a solar module will raise its temperature and reduce cell efficiency. In addition to thermalization and carrier recombination, one major source of excess heat in modules is the parasitic absorption of light with sub-bandgap energy. Parasitic absorption can be prevented if sub-bandgap radiation is reflected away from the module. We report on the design considerations and projected changes to module energy yield for photonic reflectors capable of reflecting a portion of sub-bandgap radiation while maintaining or improving transmission of light with energy greater than the semiconductor bandgap. Using a previously developed, self-consistent opto-electro-thermalmore » finite-element simulation, we calculate the total additional energy generated by a module, including various photonic reflectors, and decompose these benefits into thermal and optical effects. We show that the greatest total energy yield improvement comes from photonic mirrors designed for the outside of the glass, but that mirrors placed between the glass and the encapsulant can have significant thermal benefit. We then show that optimal photonic mirror design requires consideration of all angles of incidence, despite unequal amounts of radiation arriving at each angle. We find that optimized photonic mirrors will be omnidirectional in the sense that they have beneficial performance, regardless of the angle of incidence of radiation. By fulfilling these criteria, photonic mirrors can be used at different geographic locations or different tilt angles than their original optimization conditions with only marginal changes in performance. We show designs that improve energy output in Golden, Colorado by 3.7% over a full year. This work demonstrates the importance of considering real-world irradiance and weather conditions when designing optical structures for solar applications.« less

  1. Towards toxicity detection using a lab-on-chip based on the integration of MOEMS and whole-cell sensors.

    PubMed

    Elman, Noel M; Ben-Yoav, Hadar; Sternheim, Marek; Rosen, Rachel; Krylov, Slava; Shacham-Diamand, Yosi

    2008-06-15

    A lab-on-chip consisting of a unique integration of whole-cell sensors, a MOEMS (Micro-Opto-Electro-Mechanical-System) modulator, and solid-state photo-detectors was implemented for the first time. Whole-cell sensors were genetically engineered to express a bioluminescent reporter (lux) as a function of the lac promoter. The MOEMS modulator was designed to overcome the inherent low frequency noise of solid-state photo-detectors by means of a previously reported modulation technique, named IHOS (Integrated Heterodyne Optical System). The bio-reporter signals were modulated prior to photo-detection, increasing the SNR of solid-state photo-detectors at least by three orders of magnitude. Experiments were performed using isopropyl-beta-d-thiogalactopyranoside (IPTG) as a preliminary step towards testing environmental toxicity. The inducer was used to trigger the expression response of the whole-cell sensors testing the sensitivity of the lab-on-chip. Low intensity bio-reporter optical signals were measured after the whole-cell sensors were exposed to IPTG concentrations of 0.1, 0.05, and 0.02mM. The experimental results reveal the potential of this technology for future implementation as an inexpensive massive method for rapid environmental toxicity detection.

  2. Electro-optical properties of Cu2O for P excitons in the regime of Franz-Keldysh oscillations

    NASA Astrophysics Data System (ADS)

    Zielińska-Raczyńska, Sylwia; Ziemkiewicz, David; Czajkowski, Gerard

    2018-04-01

    We present the analytical method which enables one to compute the optical functions i.e., reflectivity, transmission, and absorption, including the excitonic effects, for a semiconductor crystal exposed to a uniform electric field for the energy region above the gap and for the external field suitable for the appearance of Franz-Keldysh (FK) oscillations. Our approach intrinsically takes into account the coherence between the carriers and the electromagnetic field. We quantitatively describe the amplitudes and periodicity of FK modulations as well as the influence of Rydberg excitons on the FK effect. Our analytical findings are illustrated numerically for P excitons in Cu2O crystal.

  3. Multiple p-n junction subwavelength gratings for transmission-mode electro-optic modulators

    PubMed Central

    Lee, Ki Young; Yoon, Jae Woong; Song, Seok Ho; Magnusson, Robert

    2017-01-01

    We propose a free-space electro-optic transmission modulator based on multiple p-n-junction semiconductor subwavelength gratings. The proposed device operates with a high-Q guided-mode resonance undergoing electro-optic resonance shift due to direct electrical control. Using rigorous electrical and optical modeling methods, we theoretically demonstrate a modulation depth of 84%, on-state efficiency 85%, and on-off extinction ratio of 19 dB at 1,550 nm wavelength under electrical control signals within a favorably low bias voltage range from −4 V to +1 V. This functionality operates in the transmission mode and sustainable in the high-speed operation regime up to a 10-GHz-scale modulation bandwidth in principle. The theoretical performance prediction is remarkably advantageous over plasmonic tunable metasurfaces in the power-efficiency and absolute modulation-depth aspects. Therefore, further experimental study is of great interest for creating practical-level metasurface components in various application areas. PMID:28417962

  4. Quadratic electro-optic effects and electro-absorption process in multilayer nanoshells

    NASA Astrophysics Data System (ADS)

    Bahari, Ali; Rahimi Moghadam, Fereshteh

    2011-07-01

    In this corrigendum, the authors would like to report typographic errors in the first name of the second author and in equation 7. The details of these errors can be found in the PDF. The authors would like to express their sincere apologies for these errors in the article.

  5. Optical logic gates based on electro-optic modulation with Sagnac interferometer.

    PubMed

    Li, Qiliang; Zhu, Mengyun; Li, Dongqiang; Zhang, Zhen; Wei, Yizhen; Hu, Miao; Zhou, Xuefang; Tang, Xianghong

    2014-07-20

    In this work, we present a new structure to realize optical logic operation in a Sagnac interferometer with electro-optical modulation. In the scheme, we divide two counterpropagation signals in a Sagnac loop to two different arms with the electro-optical crystal by using two circulators. Lithium niobate materials whose electro-optical coefficient can be as large as 32.2×10(-12)  m/V make up the arms of the waveguides. Using the transfer matrix of the fiber coupler, we analyze the propagation of signals in this system and obtain the transmission characteristic curves and the extinction ratio. The results indicate that this optical switching has a high extinction ratio of about 60 dB and an ultrafast response time of 2.036 ns. In addition, the results reveal that the change of the dephasing between the two input signals and the modification of the modulation voltage added to the electro-optical crystal leads to the change of the extinction ratio. We also conclude that, in cases of the dephasing of two initial input signals Δφ=0, we can obtain the various logical operations, such as the logical operations D=A¯·B, D=A·B¯, C=A+B, and D=A⊕B in ports C and D of the system by adjusting the modulation voltage. When Δφ≠0, we obtain the arithmetic operations D=A+B, C=A⊕B, D=A·B¯, and C=A¯·B in ports C and D. This study is significant for the design of all optical networks by adjusting the modulation voltage.

  6. Electro-optic electrodes based on Lithium Niobate Mach Zhender Interferometer Modulators for wearable bioelectric activity recording

    NASA Astrophysics Data System (ADS)

    Fernandes, Mariana S.; Correia, José H.; Mendes, Paulo M.

    2011-05-01

    Wearable devices are used to record several physiological signals, providing unobtrusive and continuous monitoring. A main challenge in these systems is to develop new recording sensors, specially envisioning bioelectric activity detection. Available devices are difficult to integrate, mainly due to the amount of electrical wires and components needed. This work proposes a fiber-optic based device, which basis of operation relies on the electro-optic effect. A Lithium Niobate (LiBnO3) Mach-Zehnder Interferometer (MZI) modulator is used as the core sensing component, followed by a signal conversion and processing stage. Tests were performed in order to validate the proposed acquisition system in terms of signal amplification and quality, stability and frequency response. A light source with a wavelength operation of 1530- 1565 nm was used. The modulated intensity is amplified and converted to an output voltage with a high transimpedance gain. The filtering and electric amplification included a 50Hz notch filter, a bandpass filter with a -3 dB bandwidth from 0.50 to 35 Hz. The obtained system performance on key elements such as sensitivity, frequency content, and signal quality, have shown that the proposed acquisition system allows the development of new wearable bioelectric monitoring solutions based on optical technologies.

  7. Modules and methods for all photonic computing

    DOEpatents

    Schultz, David R.; Ma, Chao Hung

    2001-01-01

    A method for all photonic computing, comprising the steps of: encoding a first optical/electro-optical element with a two dimensional mathematical function representing input data; illuminating the first optical/electro-optical element with a collimated beam of light; illuminating a second optical/electro-optical element with light from the first optical/electro-optical element, the second optical/electro-optical element having a characteristic response corresponding to an iterative algorithm useful for solving a partial differential equation; iteratively recirculating the signal through the second optical/electro-optical element with light from the second optical/electro-optical element for a predetermined number of iterations; and, after the predetermined number of iterations, optically and/or electro-optically collecting output data representing an iterative optical solution from the second optical/electro-optical element.

  8. High-speed electro-optic polymers: mm-Wave applications and silica planar lightwave circuit integration

    NASA Astrophysics Data System (ADS)

    Chang, Daniel H.

    The development of high speed polymer electro-optic modulators has seen steady and significant progress in recent years, enabling novel applications in RF-Photonics. Two of these are described in this Thesis: an Opto-Electronic Oscillator (OEO), which is a hybrid RF and optical oscillator capable of high spectral purity, and Photonic Time-Stretch, which is a signal processing technique for waveform spectral shifting with application to photonically-assisted A/D conversion. In both cases, the operating frequencies achieved have been the highest demonstrated to date. Application of this promising material to more complicated devices, however, is stymied by insertion loss performance. Current loss figures, while acceptable for single modulators, are too high for large arrays of modulators or intrinsically long devices such as AWGs or photonic-RF phase shifters. This is especially frustrating in light of a key virtue which polymers possess as a photonic material: its photolithographic process-ability makes patterning complex devices possible. Indeed, the current ascendancy of silica-based waveguide devices can be attributed largely to the same reason. In this Thesis, we also demonstrate the first hybrid device composed of silica planar lightwave circuits (PLCs) and polymer planar waveguides. Our approach utilizes grayscale lithography to enable vertical coupling between polymer and silica layers, minimizing entanglement of their respective fabrication processes. We have achieved coupling excess loss figures on the order of 1dB. We believe this is the natural next step in the development of electro-optic polymer devices. The two technologies are highly complementary. Silica PLCs, with excellent propagation loss and fiber coupling, are ideally suited for long passive waveguiding. By endowing them with the high-speed phase shifting capability offered by polymers, active wideband photonic devices of increasing complexity and array size can be contemplated.

  9. Hybrid integration of carbon nanotubes in silicon photonic structures

    NASA Astrophysics Data System (ADS)

    Durán-Valdeiglesias, E.; Zhang, W.; Alonso-Ramos, C.; Le Roux, X.; Serna, S.; Hoang, H. C.; Marris-Morini, D.; Cassan, E.; Intonti, F.; Sarti, F.; Caselli, N.; La China, F.; Gurioli, M.; Balestrieri, M.; Vivien, L.; Filoramo, A.

    2017-02-01

    Silicon photonics, due to its compatibility with the CMOS platform and unprecedented integration capability, has become the preferred solution for the implementation of next generation optical interconnects to accomplish high efficiency, low energy consumption, low cost and device miniaturization in one single chip. However, it is restricted by silicon itself. Silicon does not have efficient light emission or detection in the telecommunication wavelength range (1.3 μm-1.5 μm) or any electro-optic effect (i.e. Pockels effect). Hence, silicon photonic needs to be complemented with other materials for the realization of optically-active devices, including III-V for lasing and Ge for detection. The very different requirement of these materials results in complex fabrication processes that offset the cost-effectiveness of the Si photonics approach. For this purpose, carbon nanotubes (CNTs) have recently been proposed as an attractive one-dimensional light emitting material. Interestingly, semiconducting single walled CNTs (SWNTs) exhibit room-temperature photo- and electro-luminescence in the near-IR that could be exploited for the implementation of integrated nano-sources. They can also be considered for the realization of photo-detectors and optical modulators, since they rely on intrinsically fast non-linear effects, such as Stark and Kerr effect. All these properties make SWNTs ideal candidates in order to fabricate a large variety of optoelectronic devices, including near-IR sources, modulators and photodetectors on Si photonic platforms. In addition, solution processed SWNTs can be integrated on Si using spin-coating or drop-casting techniques, obviating the need of complex epitaxial growth or chip bonding approaches. Here, we report on our recent progress in the coupling of SWNTs light emission into optical resonators implemented on the silicon-on-insulator (SOI) platform. .

  10. Molten salt CO2 capture and electro-transformation (MSCC-ET) into capacitive carbon at medium temperature: effect of the electrolyte composition.

    PubMed

    Deng, Bowen; Chen, Zhigang; Gao, Muxing; Song, Yuqiao; Zheng, Kaiyuan; Tang, Juanjuan; Xiao, Wei; Mao, Xuhui; Wang, Dihua

    2016-08-15

    Electrochemical transformation of CO2 into functional materials or fuels (i.e., carbon, CO) in high temperature molten salts has been demonstrated as a promising way of carbon capture, utilisation and storage (CCUS) in recent years. In a view of continuous operation, the electrolysis process should match very well with the CO2 absorption kinetics. At the same time, in consideration of the energy efficiency, a molten salt electrochemical cell running at lower temperature is more beneficial to a process powered by the fluctuating renewable electricity from solar/wind farms. Ternary carbonates (Li : Na : K = 43.5 : 31.5 : 25.0) and binary chlorides (Li : K = 58.5 : 41.5), two typical kinds of eutectic melt with low melting points and a wide electrochemical potential window, could be the ideal supporting electrolyte for the molten salt CO2 capture and electro-transformation (MSCC-ET) process. In this work, the CO2 absorption behaviour in Li2O/CaO containing carbonates and chlorides were investigated on a home-made gas absorption testing system. The electrode processes as well as the morphology and properties of carbon obtained in different salts are compared to each other. It was found that the composition of molten salts significantly affects the absorption of CO2, electrode processes and performance of the product. Furthermore, the relationship between the absorption and electro-transformation kinetics are discussed based on the findings.

  11. Flow-induced birefringence measurement system using dual-crystal transverse electro-optic modulator for microgravity fluid physics applications

    NASA Technical Reports Server (NTRS)

    Mackey, Jeffrey R.

    1999-01-01

    We have developed a new instrument that can measure fast transient birefringence and polymer chain orientation angle in complex fluids. The instrument uses a dual-crystal transverse electro-optic modulator with the second crystal's modulation voltage applied 180 deg out of phase from that of the first crystal. In this manner, the second crystal compensates for the intrinsic static birefringence of the first crystal, and it doubles the modulation depth. By incorporating a transverse electro-optic modulator with two lithium-niobate (LiNbO3) crystals oriented orthogonal to each other with a custom-designed optical system, we have produced a very small robust instrument capable of fast transient retardation measurements. By measuring the sample thickness or optical path length through the sample, we can calculate the transient birefringence. This system can also measure dichroism. We have compared the calibration results and retardation and orientation angle measurements of this instrument with those of a photoelastic modulator (PEM) based system using a quarter wave plate and a high-precision 1/16-wave plate to simulate a birefringent sample. Transient birefringence measurements on the order of 10(exp -9) can be measured using either modulator.

  12. Passive and electro-optic polymer photonics and InP electronics integration

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Katopodis, V.; Groumas, P.; Konczykowska, A.; Dupuy, J.-.; Beretta, A.; Dede, A.; Miller, E.; Choi, J. H.; Harati, P.; Jorge, F.; Nodjiadjim, V.; Dinu, R.; Cangini, G.; Vannucci, A.; Felipe, D.; Maese-Novo, A.; Keil, N.; Bach, H.-.; Schell, Martin; Avramopoulos, H.; Kouloumentas, Ch.

    2015-05-01

    Hybrid photonic integration allows individual components to be developed at their best-suited material platforms without sacrificing the overall performance. In the past few years a polymer-enabled hybrid integration platform has been established, comprising 1) EO polymers for constructing low-complexity and low-cost Mach-Zehnder modulators (MZMs) with extremely high modulation bandwidth; 2) InP components for light sources, detectors, and high-speed electronics including MUX drivers and DEMUX circuits; 3) Ceramic (AIN) RF board that links the electronic signals within the package. On this platform, advanced optoelectronic modules have been demonstrated, including serial 100 Gb/s [1] and 2x100 Gb/s [2] optical transmitters, but also 400 Gb/s optoelectronic interfaces for intra-data center networks [3]. To expand the device functionalities to an unprecedented level and at the same time improve the integration compatibility with diversified active / passive photonic components, we have added a passive polymer-based photonic board (polyboard) as the 4th material system. This passive polyboard allows for low-cost fabrication of single-mode waveguide networks, enables fast and convenient integration of various thin-film elements (TFEs) to control the light polarization, and provides efficient thermo-optic elements (TOEs) for wavelength tuning, light amplitude regulation and light-path switching.

  13. Ultrasensitive Silicon Photonic-Crystal Nanobeam Electro-Optical Modulator (Preprint)

    DTIC Science & Technology

    2013-10-01

    and simulation results are presented for an ultralow switching energy, resonator based silicon-on-insulator (SOI) electro-optical modulator. The...joshua.hendrickson@wpafb.af.mil Abstract: Design and simulation results are presented for an ultralow switching energy, resonator based silicon-on...S. Fegadolli, J. E. B. Oliveira, V. R. Almeida, and A. Scherer, “Compact and low power consumption tunable photonic crystal nanobeam cavity,” 21

  14. Passive Isolators for use on the International Space Station

    NASA Technical Reports Server (NTRS)

    Houston, Janice; Gattis, Christy

    2003-01-01

    The value of the International Space Station (ISS) as a premier microgravity environment is currently at risk due to structure-borne vibration. The vibration sources are varied and include crew activities such as exercising or simply moving from module to module, and electro- mechanical equipment such as fans and pumps. Given such potential degradation of usable microgravity, anything that can be done to dampen vibration on-orbit will significantly benefit microgravity users. Most vibration isolation schemes, both active and passive, have proven to be expensive - both operationally and from the cost of integrating isolation systems into primary/secondary structural interfaces (e.g., the ISS module/rack interface). Recently, passively absorptive materials have been tested at the bolt interfaces between the operating equipment and support structure (secondary/tertiary structural interfaces). The results indicate that these materials may prove cost-effective in mitigating the vibrational problems of the ISS. We report herein tests of passive absorbers placed at the interface of a vibration-inducing component: the Development Distillation Assembly, a subassembly of the Urine Processing Assembly, which is a rotating centrifuge and cylinder assembly attached to a mounting plate. Passive isolators were installed between this mounting plate and its support shelf. Three materials were tested: BISCO HT-800, Sorbothane 30 and Sorbothane 50, plus a control test with a hard shim. In addition, four distinct combinations of the HT-800 and Sorbothane 50 were tested. Results show a significant (three orders of magnitude) reduction of transmitted energy, as measured in power spectral density (PSD), using the isolation materials. It is noted, however, that passive materials cannot prevent the transmission of very strong forces or absorb the total energy induced from structural resonances.

  15. Solid-state YVO4/Nd:YVO4/KTP green laser system for the generation of subnanosecond pulses with adjustable kilohertz repetition rate.

    PubMed

    Zhang, Haijuan; Zhao, Shengzhi; Yang, Kejian; Li, Guiqiu; Li, Dechun; Zhao, Jia; Wang, Yonggang

    2013-09-20

    A solid-state green laser generating subnanosecond pulses with adjustable kilohertz repetition rate is presented. This pulse laser system is composed of a Q-switched and mode-locked YVO(4)/Nd:YVO(4)/KTP laser simultaneously modulated by an electro-optic (EO) modulator and a central semiconductor saturable absorption mirror. Because the repetition rate of the Q-switched envelope in this laser depends on the modulation frequency of the EO modulator, so long as the pulsewidth of the Q-switched envelope is shorter than the cavity roundtrip transmit time, i.e., the time interval of two neighboring mode-locking pulses, only one mode-locking pulse exists underneath a Q-switched envelope, resulting in the generation of subnanosecond pulses with kilohertz repetition rate. The experimental results show that the pulsewidth of subnanosecond pulses decreases with increasing pump power and the shortest pulse generated at 1 kHz was 450 ps with pulse energy as high as 252 μJ, corresponding to a peak power of 560 kW. In addition, this laser was confirmed to have high stability, and the pulse repetition rate could be freely adjusted from 1 to 4 kHz.

  16. Characterization and compensation of the residual chirp in a Mach-Zehnder-type electro-optical intensity modulator.

    PubMed

    Rogers, C E; Carini, J L; Pechkis, J A; Gould, P L

    2010-01-18

    We utilize various techniques to characterize the residual phase modulation of a waveguide-based Mach-Zehnder electro-optical intensity modulator. A heterodyne technique is used to directly measure the phase change due to a given change in intensity, thereby determining the chirp parameter of the device. This chirp parameter is also measured by examining the ratio of sidebands for sinusoidal amplitude modulation. Finally, the frequency chirp caused by an intensity pulse on the nanosecond time scale is measured via the heterodyne signal. We show that this chirp can be largely compensated with a separate phase modulator. The various measurements of the chirp parameter are in reasonable agreement.

  17. Electro-optical equivalent calibration technology for high-energy laser energy meters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Ji Feng, E-mail: wjfcom2000@163.com; Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang 621900; Graduate School of China Academy of Engineering Physics, Beijing 100088

    Electro-optical equivalent calibration with high calibration power and high equivalence is particularly well-suited to the calibration of high-energy laser energy meters. A large amount of energy is reserved during this process, however, which continues to radiate after power-off. This study measured the radiation efficiency of a halogen tungsten lamp during power-on and after power-off in order to calculate the total energy irradiated by a lamp until the high-energy laser energy meter reaches thermal equilibrium. A calibration system was designed based on the measurement results, and the calibration equivalence of the system was analyzed in detail. Results show that measurement precisionmore » is significantly affected by the absorption factor of the absorption chamber and by heat loss in the energy meter. Calibration precision is successfully improved by enhancing the equivalent power and reducing power-on time. The electro-optical equivalent calibration system, measurement uncertainty of which was evaluated as 2.4% (k = 2), was used to calibrate a graphite-cone-absorption-cavity absolute energy meter, yielding a calibration coefficient of 1.009 and measurement uncertainty of 3.5% (k = 2). A water-absorption-type high-energy laser energy meter with measurement uncertainty of 4.8% (k = 2) was considered the reference standard, and compared to the energy meter calibrated in this study, yielded a correction factor of 0.995 (standard deviation of 1.4%).« less

  18. 112 Gb/s sub-cycle 16-QAM Nyquist-SCM for intra-datacenter connectivity

    NASA Astrophysics Data System (ADS)

    Bakopoulos, Paraskevas; Dris, Stefanos; Argyris, Nikolaos; Spatharakis, Christos; Avramopoulos, Hercules

    2016-03-01

    Datacenter traffic is exploding. Ongoing advancements in network infrastructure that ride on Moore's law are unable to keep up, necessitating the introduction of multiplexing and advanced modulation formats for optical interconnects in order to overcome bandwidth limitations, and scale lane speeds with energy- and cost-efficiency to 100 Gb/s and beyond. While the jury is still out as to how this will be achieved, schemes relying on intensity modulation with direct detection (IM/DD) are regarded as particularly attractive, due to their inherent implementation simplicity. Moreover, the scaling-out of datacenters calls for longer transmission reach exceeding 300 m, requiring single-mode solutions. In this work we advocate using 16-QAM sub-cycle Nyquist-SCM as a simpler alternative to discrete multitone (DMT), but which is still more bandwidth-efficient than PAM-4. The proposed optical interconnect is demonstrated at 112 Gb/s, which, to the best of our knowledge, is the highest rate achieved in a single-polarization implementation of SCM. Off-the-shelf components are used: A DFB laser, a 24.3 GHz electro-absorption modulator (EAM) and a limiting photoreceiver, combined with equalization through digital signal processing (DSP) at the receiver. The EAM is driven by a low-swing (<1 V) arbitrary waveform generator (AWG), which produces a 28 Gbaud 16-QAM electrical signal with carrier frequency at ~15 GHz. Tight spectral shaping is leveraged as a means of maintaining signal fidelity when using low-bandwidth electro-optic components; matched root-raised-cosine transmit and receive filters with 0.1 excess bandwidth are thus employed. Performance is assessed through transmission experiments over 1250 m and 2000 m of SMF.

  19. Video display engineering and optimization system

    NASA Technical Reports Server (NTRS)

    Larimer, James (Inventor)

    1997-01-01

    A video display engineering and optimization CAD simulation system for designing a LCD display integrates models of a display device circuit, electro-optics, surface geometry, and physiological optics to model the system performance of a display. This CAD system permits system performance and design trade-offs to be evaluated without constructing a physical prototype of the device. The systems includes a series of modules which permit analysis of design trade-offs in terms of their visual impact on a viewer looking at a display.

  20. An ultralow power athermal silicon modulator.

    PubMed

    Timurdogan, Erman; Sorace-Agaskar, Cheryl M; Sun, Jie; Shah Hosseini, Ehsan; Biberman, Aleksandr; Watts, Michael R

    2014-06-11

    Silicon photonics has emerged as the leading candidate for implementing ultralow power wavelength-division-multiplexed communication networks in high-performance computers, yet current components (lasers, modulators, filters and detectors) consume too much power for the high-speed femtojoule-class links that ultimately will be required. Here we demonstrate and characterize the first modulator to achieve simultaneous high-speed (25 Gb s(-1)), low-voltage (0.5 VPP) and efficient 0.9 fJ per bit error-free operation. This low-energy high-speed operation is enabled by a record electro-optic response, obtained in a vertical p-n junction device that at 250 pm V(-1) (30 GHz V(-1)) is up to 10 times larger than prior demonstrations. In addition, this record electro-optic response is used to compensate for thermal drift over a 7.5 °C temperature range with little additional energy consumption (0.24 fJ per bit for a total energy consumption below 1.03 J per bit). The combined results of highly efficient modulation and electro-optic thermal compensation represent a new paradigm in modulator development and a major step towards single-digit femtojoule-class communications.

  1. Simultaneous chromatic dispersion, polarization-mode-dispersion and OSNR monitoring at 40Gbit/s.

    PubMed

    Baker-Meflah, Lamia; Thomsen, Benn; Mitchell, John; Bayvel, Polina

    2008-09-29

    A novel method for independent and simultaneous monitoring of chromatic dispersion (CD), first-order PMD and OSNR in 40Gbit/s systems is proposed and demonstrated. This is performed using in-band tone monitoring of 5GHz, optically down-converted to a low intermediate-frequency (IF) of 10kHz. The measurement provides a large monitoring range with good accuracies for CD (4742+/-100ps/nm), differential group delay (DGD) (200+/-4ps) and OSNR (23+/-1dB), independently of the bit-rate. In addition, the use of electro-absorption modulators (EAM) for the simultaneous down-conversion of all channels and the use of low-speed detectors makes it cost effective for multi-channel operation.

  2. Advanced Silicon Photonic Device Architectures for Optical Communications: Proposals and Demonstrations

    NASA Astrophysics Data System (ADS)

    Sacher, Wesley David

    Photonic integrated circuits implemented on silicon (Si) hold the potential for densely integrated electro-optic and passive devices manufactured by the high-volume fabrication and sophisticated assembly processes used for complementary metal-oxide-semiconductor (CMOS) electronics. However, high index contrast Si photonics has a number of functional limitations. In this thesis, several devices are proposed, designed, and experimentally demonstrated to overcome challenges in the areas of resonant modulation, waveguide loss, fiber-to-chip coupling, and polarization control. The devices were fabricated using foundry services at IBM and A*STAR Institute of Microelectronics (IME). First, we describe coupling modulated microrings, in which the coupler between a microring and the bus waveguide is modulated. The device circumvents the modulation bandwidth vs. resonator linewidth trade-off of conventional intracavity modulated microrings. We demonstrate a Si coupling modulated microring with a small-signal modulation response free of the parasitic resonator linewidth limitations at frequencies up to about 6x the linewidth. Comparisons of eye diagrams show that coupling modulation achieved data rates > 2x the rate attainable with intracavity modulation. Second, we demonstrate a silicon nitride (Si3N4)-on-Si photonic platform with independent Si3N4 and Si waveguides and taper transitions to couple light between the layers. The platform combines the excellent passive waveguide properties of Si3N4 and the compatibility of Si waveguides with electro-optic devices. Within the platform, we propose and demonstrate dual-level, Si3N 4-on-Si, fiber-to-chip grating couplers that simultaneously have wide bandwidths and high coupling efficiencies. Conventional Si and Si3N 4 grating couplers suffer from a trade-off between bandwidth and coupling efficiency. The dual-level grating coupler achieved a peak coupling efficiency of -1.3 dB and a 1-dB bandwidth of 80 nm, a record for the coupling efficiency-bandwidth product. Finally, we describe polarization rotator-splitters and controllers based on mode conversion between the fundamental transverse magnetic polarized mode and a high order transverse electric polarized mode in vertically asymmetric waveguides. We demonstrate the first polarization rotator-splitters and controllers that are fully compatible with standard active Si photonic platforms and extend the concept to our Si3N4-on-Si photonic platform.

  3. Electro-Optical Modulator Bias Control Using Bipolar Pulses

    NASA Technical Reports Server (NTRS)

    Farr, William; Kovalik, Joseph

    2007-01-01

    An improved method has been devised for controlling the DC bias applied to an electro-optical crystal that is part of a Mach-Zehnder modulator that generates low-duty-cycle optical pulses for a pulse-position modulation (PPM) optical data-communication system. In such a system, it is desirable to minimize the transmission of light during the intervals between pulses, and for this purpose, it is necessary to maximize the extinction ratio of the modulator (the ratio between the power transmitted during an "on" period and the power transmitted during an "off" period). The present method is related to prior dither error feedback methods, but unlike in those methods, there is no need for an auxiliary modulation subsystem to generate a dithering signal. Instead, as described below, dither is effected through alternation of the polarity of the modulation signal. The upper part of Figure 1 schematically depicts a Mach-Zehnder modulator. The signal applied to the electro-optical crystal consists of a radio-frequency modulating pulse signal, VRF, superimposed on a DC bias Vbias. Maximum extinction occurs during the off (VRF = 0) period if Vbias is set at a value that makes the two optical paths differ by an odd integer multiple of a half wavelength so that the beams traveling along the two paths interfere destructively at the output beam splitter. Assuming that the modulating pulse signal VRF has a rectangular waveform, maximum transmission occurs during the "on" period if the amplitude of VRF is set to a value, V , that shifts the length of the affected optical path by a half wavelength so that now the two beams interfere constructively at the output beam splitter. The modulating pulse signal is AC-coupled from an amplifier to the electro-optical crystal. Sometimes, two successive pulses occur so close in time that the operating point of the amplifier drifts, one result being that there is not enough time for the signal level to return to ground between pulses. Also, the difference between the optical-path lengths can drift with changes in temperature and other spurious effects. The effects of both types of drift are suppressed in the present method, in which one takes advantage of the fact that when Vbias is set at the value for maximum extinction, equal-magnitude positive and negative pulses applied to the electro-optical crystal produce equal output light pulses.

  4. Progress of MICE RFCC Module

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, D.; Bowring, D.; DeMello, A.

    2012-05-20

    Recent progress on the design and fabrication of the RFCC (RF and superconducting Coupling Coil) module for the international MICE (Muon Ionization Cooling Experiment) are reported. The MICE ionization cooling channel has two RFCC modules, each having four 201- MHz normal conducting RF cavities surrounded by one superconducting coupling coil (solenoid) magnet. The magnet is designed to be cooled by three cryocoolers. Fabrication of the RF cavities is complete; preparation for the cavity electro-polishing, low power RF measurements, and tuning are in progress at Lawrence Berkeley National Laboratory (LBNL). Fabrication of the cold mass of the first coupling coil magnetmore » has been completed in China and the cold mass arrived at LBNL in late 2011. Preparations for testing the cold mass are currently under way at Fermilab. Plans for the RFCC module assembly and integration are being developed and are described.« less

  5. Components for IFOG based inertial measurement units using active and passive polymer materials

    NASA Astrophysics Data System (ADS)

    Ashley, Paul R.; Temmen, Mark G.; Diffey, William M.; Sanghadasa, Mohan; Bramson, Michael D.; Lindsay, Geoffrey A.; Guenthner, Andrew J.

    2006-08-01

    Highly accurate, compact, and low cost inertial measurement units (IMUs) are needed for precision guidance in navigation systems. Active and passive polymer materials have been successfully used in fabricating two of the key guided-wave components, the phase modulator and the optical transceiver, for IMUs based on the interferometric fiber optic gyroscope (IFOG) technology. Advanced hybrid waveguide fabrication processes and novel optical integration techniques have been introduced. Backscatter compensated low loss phase modulators with low half-wave drive voltage (V π) have been fabricated with CLD- and FTC- type high performance electro-optic chromophores. A silicon-bench architecture has been used in fabricating high gain low noise transceivers with high optical power while maintaining the spectral quality and long lifetime. Gyro bias stability of less than 0.02 deg/hr has been demonstrated with these components. A review of the novel concepts introduced, fabrication and integration techniques developed and performance achieved are presented.

  6. Optimization of Pockels electric field in transverse modulated optical voltage sensor

    NASA Astrophysics Data System (ADS)

    Huang, Yifan; Xu, Qifeng; Chen, Kun-Long; Zhou, Jie

    2018-05-01

    This paper investigates the possibilities of optimizing the Pockels electric field in a transverse modulated optical voltage sensor with a spherical electrode structure. The simulations show that due to the edge effect and the electric field concentrations and distortions, the electric field distributions in the crystal are non-uniform. In this case, a tiny variation in the light path leads to an integral error of more than 0.5%. Moreover, a 2D model cannot effectively represent the edge effect, so a 3D model is employed to optimize the electric field distributions. Furthermore, a new method to attach a quartz crystal to the electro-optic crystal along the electric field direction is proposed to improve the non-uniformity of the electric field. The integral error is reduced therefore from 0.5% to 0.015% and less. The proposed method is simple, practical and effective, and it has been validated by numerical simulations and experimental tests.

  7. Integrated MEMS-tunable VCSELs for reconfigurable optical interconnects

    NASA Astrophysics Data System (ADS)

    Kögel, Benjamin; Debernardi, Pierluigi; Westbergh, Petter; Gustavsson, Johan S.; Haglund, Åsa; Haglund, Erik; Bengtsson, Jörgen; Larsson, Anders

    2012-03-01

    A simple and low-cost technology for tunable vertical-cavity surface-emitting lasers (VCSELs) with curved movable micromirror is presented. The micro-electro-mechanical system (MEMS) is integrated with the active optical component (so-called half-VCSEL) by means of surface-micromachining using a reflown photoresist droplet as sacrificial layer. The technology is demonstrated for electrically pumped, short-wavelength (850 nm) tunable VCSELs. Fabricated devices with 10 μm oxide aperture are singlemode with sidemode suppression >35 dB, tunable over 24 nm with output power up to 0.5mW, and have a beam divergence angle <6 °. An improved high-speed design with reduced parasitic capacitance enables direct modulation with 3dB-bandwidths up to 6GHz and error-free data transmission at 5Gbit/s. The modulation response of the MEMS under electrothermal actuation has a bandwidth of 400 Hz corresponding to switching times of about 10ms. The thermal crosstalk between MEMS and half-VCSEL is negligible and not degrading the device performance. With these characteristics the integrated MEMS-tunable VCSELs are basically suitable for use in reconfigurable optical interconnects and ready for test in a prototype system. Schemes for improving output power, tuning speed, and modulation bandwidth are briefly discussed.

  8. Parameterization and Validation of an Integrated Electro-Thermal LFP Battery Model

    DTIC Science & Technology

    2012-01-01

    integrated electro- thermal model for an A123 26650 LiFePO4 battery is presented. The electrical dynamics of the cell are described by an equivalent...the parameterization of an integrated electro-thermal model for an A123 26650 LiFePO4 battery is presented. The electrical dynamics of the cell are...the average of the charge and discharge curves taken at very low current (C/20), since the LiFePO4 cell chemistry is known to yield a hysteresis effect

  9. Laser-Excited Electronic and Thermal Elastic Vibrations in a Semiconductor Rectangular Plate

    NASA Astrophysics Data System (ADS)

    Todorović, D. M.; Cretin, B.; Vairac, P.; Song, Y. Q.; Rabasović, M. D.; Markushev, D. D.

    2013-09-01

    Photoacoustic and photothermal effects can be important as driven mechanisms for micro-(opto)-electro-mechanical structures (MOEMS). A new approach for a producing a compact, lightweight, highly sensitive detector is provided by MOEMS technology, which is based on the elastic bending of microstructure generated by absorption of modulated optical power. The electronic and thermal elastic vibrations (the electronic deformation and thermoelastic mechanisms of elastic wave generation) in a semiconductor rectangular simply supported plate (3D geometry), photogenerated by a focused and intensity-modulated laser beam, were studied. The theoretical model for the elastic displacements space and frequency distribution by using the Green function method was given. The amplitude of the elastic bending in the rectangular plate was calculated and analyzed, including the thermalization and surface and volume recombination heat sources. The theoretical results were compared with the experimental data. These investigations are important for many practical experimental situations (atomic force microscopy, thermal microscopy, thermoelastic microscopy, etc.) and sensors and actuators.

  10. Phase-locked-loop-based delay-line-free picosecond electro-optic sampling system

    NASA Astrophysics Data System (ADS)

    Lin, Gong-Ru; Chang, Yung-Cheng

    2003-04-01

    A delay-line-free, high-speed electro-optic sampling (EOS) system is proposed by employing a delay-time-controlled ultrafast laser diode as the optical probe. Versatile optoelectronic delay-time controllers (ODTCs) based on modified voltage-controlled phase-locked-loop phase-shifting technologies are designed for the laser. The integration of the ODTC circuit and the pulsed laser diode has replaced the traditional optomechanical delay-line module used in the conventional EOS system. This design essentially prevents sampling distortion from misalignment of the probe beam, and overcomes the difficulty in sampling free-running high-speed transients. The maximum tuning range, error, scanning speed, tuning responsivity, and resolution of the ODTC are 3.9π (700°), <5% deviation, 25-2405 ns/s, 0.557 ps/mV, and ˜1 ps, respectively. Free-running wave forms from the analog, digital, and pulsed microwave signals are sampled and compared with those measured by the commercial apparatus.

  11. Evaluation of a Programmable Voltage-Controlled MEMS Oscillator, Type SiT3701, Over a Wide Temperature Range

    NASA Technical Reports Server (NTRS)

    Patterson, Richard; Hammoud, Ahmad

    2009-01-01

    Semiconductor chips based on MEMS (Micro-Electro-Mechanical Systems) technology, such as sensors, transducers, and actuators, are becoming widely used in today s electronics due to their high performance, low power consumption, tolerance to shock and vibration, and immunity to electro-static discharge. In addition, the MEMS fabrication process allows for the miniaturization of individual chips as well as the integration of various electronic circuits into one module, such as system-on-a-chip. These measures would simplify overall system design, reduce parts count and interface, improve reliability, and reduce cost; and they would meet requirements of systems destined for use in space exploration missions. In this work, the performance of a recently-developed MEMS voltage-controlled oscillator was evaluated under a wide temperature range. Operation of this new commercial-off-the-shelf (COTS) device was also assessed under thermal cycling to address some operational conditions of the space environment

  12. Tunable microwave bandpass filter integrated power divider based on the high anisotropy electro-optic nematic liquid crystal.

    PubMed

    Liu, Yupeng; Liu, Yang; Li, Haiyan; Jiang, Di; Cao, Weiping; Chen, Hui; Xia, Lei; Xu, Ruimin

    2016-07-01

    A novel, compact microwave tunable bandpass filter integrated power divider, based on the high anisotropy electro-optic nematic liquid crystal, is proposed in this letter. Liquid crystal, as the electro-optic material, is placed between top inverted microstrip line and the metal plate. The proposed structure can realize continuous tunable bandpass response and miniaturization. The proposed design concept is validated by the good performance of simulation results and experimental results. The electro-optic material has shown great potential for microwave application.

  13. Reduction of electro-optic half-wave voltage of 0.93Pb(Zn1/3Nb2/3)O3-0.07PbTiO3 single crystal through large piezoelectric strain

    PubMed Central

    Sun, Enwei; Wang, Zhu; Zhang, Rui; Cao, Wenwu

    2011-01-01

    The influence of converse piezoelectric effect on the electro-optic coefficient of single domain relaxor-based 0.93Pb(Zn1/3Nb2/3)O3-0.07PbTiO3 (PZN-0.07PT) has been quantified under ambient conditions. It was found that the large piezoelectric constants d31 and d33 have significant influence to the half-wave voltage of electro-optic modulators. For single domain PZN-0.07PT crystal, Vπ13T is reduced by a factor of 8 and Vπ13L can be decreased by more than an order of magnitude due to the large piezoelectric effect. Compared to commonly used electro-optic crystal LiNbO3 and BaTiO3, PZN-xPT single crystal is much superior for optic phase modulation applications because they have much higher linear electro-optic coefficients and much lower half-wave voltage when piezoelectric strain influence is considered. PMID:21308004

  14. Traveling wave electrode design of electro-optically modulated coupled-cavity surface-emitting lasers.

    PubMed

    Zujewski, Mateusz; Thienpont, Hugo; Panajotov, Krassimir

    2012-11-19

    We present a novel design of an electro-optically modulated coupled-cavity vertical-cavity surface-emitting laser (CC-VCSEL) with traveling wave electrodes of the modulator cavity, which allows to overcome the RC time constant of a traditional lumped electrode structures. The CC-VCSEL optical design is based on longitudinal mode switching which has recently experimentally demonstrated a record modulation speed. We carry out segmented transmission line electrical design of the modulator cavity in order to compensate for the low impedance of the modulator section and to match the 50 Ω electrical network. We have optimized two types of highly efficient modulator structures reaching -3 dB electrical cut-off frequency of f(cut-off) = 330 GHz with maximum reflection of -22 dB in the range from f(LF) = 100 MHz to f(cut-off) and 77 - 89% modulation efficiency.

  15. Degradation of electro-optic components aboard LDEF

    NASA Technical Reports Server (NTRS)

    Blue, M. D.

    1993-01-01

    Remeasurement of the properties of a set of electro-optic components exposed to the low-earth environment aboard the Long Duration Exposure Facility (LDEF) indicates that most components survived quite well. Typical components showed some effects related to the space environment unless well protected. The effects were often small but significant. Results for semiconductor infrared detectors, lasers, and LED's, as well as filters, mirrors, and black paints are described. Semiconductor detectors and emitters were scarred but reproduced their original characteristics. Spectral characteristics of multi-layer dielectric filters and mirrors were found to be altered and degraded. Increased absorption in black paints indicates an increase in absorption sites, giving rise to enhanced performance as coatings for baffles and sunscreens.

  16. Iodine-frequency-stabilized laser diode and displacement-measuring interferometer based on sinusoidal phase modulation

    NASA Astrophysics Data System (ADS)

    Duong, Quang Anh; Vu, Thanh Tung; Higuchi, Masato; Wei, Dong; Aketagawa, Masato

    2018-06-01

    We propose a sinusoidal phase modulation method to achieve both the frequency stabilization of an external-cavity laser diode (ECLD) to an 127I2 saturated absorption transition near 633 nm and displacement measurement using a Mach–Zehnder interferometer. First, the frequency of the ECLD is stabilized to the b 21 hyperfine component of the P(33) 6-3 transition of 127I2 by combining sinusoidal phase modulation by an electro-optic modulator and frequency modulation spectroscopy by chopping the pump beam using an acousto-optic modulator. Even though a small modulation index of m  =  3.768 rad is utilized, a relative frequency stability of 10‑11 order is obtained over a sampling time of 400 s. Secondly, the frequency-stabilized ECLD is applied as a light source to a Mach–Zehnder interferometer. From the two consecutive modulation harmonics (second and third orders) involved in the interferometer signal, the displacement of the moving mirror is determined for four optical path differences (L 0  =  100, 200, 500, and 1000 mm). The measured modulation indexes for the four optical path differences coincide with the designated value (3.768 rad) within 0.5%. Compared with the sinusoidal frequency modulation Michelson interferometer (Vu et al 2016 Meas. Sci. Technol. 27 105201) which was demonstrated by some of the same authors of this paper, the phase modulation Mach–Zhender interferometer could fix the modulation index to a constant value for the four optical path differences. In this report, we discuss the measurement principle, experimental system, and results.

  17. System and method for tuning adjusting the central frequency of a laser while maintaining frequency stabilization to an external reference

    NASA Technical Reports Server (NTRS)

    Livas, Jeffrey (Inventor); Thorpe, James I. (Inventor); Numata, Kenji (Inventor)

    2011-01-01

    A method and system for stabilizing a laser to a frequency reference with an adjustable offset. The method locks a sideband signal generated by passing an incoming laser beam through the phase modulator to a frequency reference, and adjusts a carrier frequency relative to the locked sideband signal by changing a phase modulation frequency input to the phase modulator. The sideband signal can be a single sideband (SSB), dual sideband (DSB), or an electronic sideband (ESB) signal. Two separate electro-optic modulators can produce the DSB signal. The two electro-optic modulators can be a broadband modulator and a resonant modulator. With a DSB signal, the method can introduce two sinusoidal phase modulations at the phase modulator. With ESB signals, the method can further drive the optical phase modulator with an electrical signal with nominal frequency OMEGA(sub 1) that is phase modulated at a frequency OMEGA(sub 2)

  18. Modulation transfer function of a triangular pixel array detector.

    PubMed

    Karimzadeh, Ayatollah

    2014-07-01

    The modulation transfer function (MTF) is the main parameter that is used to evaluate image quality in electro-optical systems. Detector sampling MTF in most electro-optical systems determines the cutoff frequency of the system. The MTF of the detector depends on its pixel shape. In this work, we calculated the MTF of a detector with an equilateral triangular pixel shape. Some new results were found in deriving the MTF for the equilateral triangular pixel shape.

  19. An ultralow power athermal silicon modulator

    PubMed Central

    Timurdogan, Erman; Sorace-Agaskar, Cheryl M.; Sun, Jie; Shah Hosseini, Ehsan; Biberman, Aleksandr; Watts, Michael R.

    2014-01-01

    Silicon photonics has emerged as the leading candidate for implementing ultralow power wavelength–division–multiplexed communication networks in high-performance computers, yet current components (lasers, modulators, filters and detectors) consume too much power for the high-speed femtojoule-class links that ultimately will be required. Here we demonstrate and characterize the first modulator to achieve simultaneous high-speed (25 Gb s−1), low-voltage (0.5 VPP) and efficient 0.9 fJ per bit error-free operation. This low-energy high-speed operation is enabled by a record electro-optic response, obtained in a vertical p–n junction device that at 250 pm V−1 (30 GHz V−1) is up to 10 times larger than prior demonstrations. In addition, this record electro-optic response is used to compensate for thermal drift over a 7.5 °C temperature range with little additional energy consumption (0.24 fJ per bit for a total energy consumption below 1.03 J per bit). The combined results of highly efficient modulation and electro-optic thermal compensation represent a new paradigm in modulator development and a major step towards single-digit femtojoule-class communications. PMID:24915772

  20. Hybrid Electro-Optic Processor

    DTIC Science & Technology

    1991-07-01

    This report describes the design of a hybrid electro - optic processor to perform adaptive interference cancellation in radar systems. The processor is...modulator is reported. Included is this report is a discussion of the design, partial fabrication in the laboratory, and partial testing of the hybrid electro ... optic processor. A follow on effort is planned to complete the construction and testing of the processor. The work described in this report is the

  1. Sol-Gel Material-Enabled Electro-Optic Polymer Modulators

    PubMed Central

    Himmelhuber, Roland; Norwood, Robert A.; Enami, Yasufumi; Peyghambarian, Nasser

    2015-01-01

    Sol-gels are an important material class, as they provide easy modification of material properties, good processability and are easy to synthesize. In general, an electro-optic (EO) modulator transforms an electrical signal into an optical signal. The incoming electrical signal is most commonly information encoded in a voltage change. This voltage change is then transformed into either a phase change or an intensity change in the light signal. The less voltage needed to drive the modulator and the lower the optical loss, the higher the link gain and, therefore, the better the performance of the modulator. In this review, we will show how sol-gels can be used to enhance the performance of electro-optic modulators by allowing for designs with low optical loss, increased poling efficiency and manipulation of the electric field used for driving the modulator. The optical loss is influenced by the propagation loss in the device, as well as the losses occurring during fiber coupling in and out of the device. In both cases, the use of sol-gel materials can be beneficial due to the wide range of available refractive indices and low optical attenuation. The influence of material properties and synthesis conditions on the device performance will be discussed. PMID:26225971

  2. High speed ultra-broadband amplitude modulators with ultrahigh extinction >65 dB.

    PubMed

    Liu, S; Cai, H; DeRose, C T; Davids, P; Pomerene, A; Starbuck, A L; Trotter, D C; Camacho, R; Urayama, J; Lentine, A

    2017-05-15

    We experimentally demonstrate ultrahigh extinction ratio (>65 dB) amplitude modulators (AMs) that can be electrically tuned to operate across a broad spectral range of 160 nm from 1480 - 1640 nm and 95 nm from 1280 - 1375 nm. Our on-chip AMs employ one extra coupler compared with conventional Mach-Zehnder interferometers (MZI), thus form a cascaded MZI (CMZI) structure. Either directional or adiabatic couplers are used to compose the CMZI AMs and experimental comparisons are made between these two different structures. We investigate the performance of CMZI AMs under extreme conditions such as using 95:5 split ratio couplers and unbalanced waveguide losses. Electro-optic phase shifters are also integrated in the CMZI AMs for high-speed operation. Finally, we investigate the output optical phase when the amplitude is modulated, which provides us valuable information when both amplitude and phase are to be controlled. Our demonstration not only paves the road to applications such as quantum information processing that requires high extinction ratio AMs but also significantly alleviates the tight fabrication tolerance needed for large-scale integrated photonics.

  3. A preliminary design of the Ti:LiNbO3 optical channel waveguide

    NASA Astrophysics Data System (ADS)

    Choi, Yat

    1992-03-01

    One of the goals of technology-based activities within the Electronic Warfare Division is to facilitate the development within Australia, of facilities and a capability to manufacture sophisticated, highspeed electro-optic devices, in particular, the integrated optical amplitude modulator and integrated optical switch, for use in microwave and millimetre-wave systems for the Australian Defense Force (ADF). An initial step towards this goal would be to produce a low-loss and single-mode propagation optical channel waveguide using titanium-indiffused lithium niobate (Ti:LiNbO3). As no dimensions and fabrication parameters have yet been optimized, this technical report provides preliminary design data which optimizes these parameters.

  4. Electro-optic studies of novel organic materials and devices

    NASA Astrophysics Data System (ADS)

    Xu, Jianjun

    1997-11-01

    Specific single crystal organic materials have high potential for use in high speed optical signal processing and various other electro-optic applications. In this project some of the most important organic crystal materials were studied regarding their detailed electro- optic properties and potential device applications. In particular, the electro-optic properties of N-(4- Nitrophenyl)-L-Prolinol (NPP) and 4'-N,N- dimethylamino-4-methylstilbazolium tosylate (DAST) both of which have extremely large second order susceptibilites were studied. The orientation of the thin film crystal with respect to the substrate surface was determined using-X-ray diffraction. The principal axes of the single crystal thin film were determined by polarization transmission microscopy. The elements of the electro-optic coefficient tensor were measured by field induced birefringence measurements. Detailed measurements for NPP thin films with different orientations of the external electric field with respect to the charge transfer axis were carried out at a wavelength of 1064nm. The wavelength dependence of the electro-optic effect for DAST single crystal thin films was measured using a Ti:Sapphire laser. Several device geometries involving organic single crystal thin film materials were studied. A new method for the fabrication of channel waveguides for organic materials was initiated. Channel waveguides for NPP and ABP were obtained using this methods. Optical modulation due to the electro-optic effect based on the organic channel waveguide for NPP single crystal was demonstrated. The electro-optic modulation using NPP single crystals thin film in a Fabry-Perot cavity was measured. A device using a optical fiber half coupler and organic electro-optic thin film material was constructed, and it has potential applications in optical signal processing.

  5. High-speed switching of biphoton delays through electro-optic pump frequency modulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Odele, Ogaga D.; Lukens, Joseph M.; Jaramillo-Villegas, Jose A.

    The realization of high-speed tunable delay control has received significant attention in the scene of classical photonics. In quantum optics, however, such rapid delay control systems for entangled photons have remained undeveloped. Here for the first time, we demonstrate rapid (2.5 MHz) modulation of signal-idler arrival times through electro-optic pump frequency modulation. Our technique applies the quantum phenomenon of nonlocal dispersion cancellation along with pump frequency tuning to control the relative delay between photon pairs. Chirped fiber Bragg gratings are employed to provide large amounts of dispersion which result in biphoton delays exceeding 30 ns. This rapid delay modulation schememore » could be useful for on-demand single-photon distribution in addition to quantum versions of pulse position modulation.« less

  6. High-speed switching of biphoton delays through electro-optic pump frequency modulation

    DOE PAGES

    Odele, Ogaga D.; Lukens, Joseph M.; Jaramillo-Villegas, Jose A.; ...

    2016-12-08

    The realization of high-speed tunable delay control has received significant attention in the scene of classical photonics. In quantum optics, however, such rapid delay control systems for entangled photons have remained undeveloped. Here for the first time, we demonstrate rapid (2.5 MHz) modulation of signal-idler arrival times through electro-optic pump frequency modulation. Our technique applies the quantum phenomenon of nonlocal dispersion cancellation along with pump frequency tuning to control the relative delay between photon pairs. Chirped fiber Bragg gratings are employed to provide large amounts of dispersion which result in biphoton delays exceeding 30 ns. This rapid delay modulation schememore » could be useful for on-demand single-photon distribution in addition to quantum versions of pulse position modulation.« less

  7. Integration of Flex Nozzle System and Electro Hydraulic Actuators to Solid Rocket Motors

    NASA Astrophysics Data System (ADS)

    Nayani, Kishore Nath; Bajaj, Dinesh Kumar

    2017-10-01

    A rocket motor assembly comprised of solid rocket motor and flex nozzle system. Integration of flex nozzle system and hydraulic actuators to the solid rocket motors are done after transportation to the required place where integration occurred. The flex nozzle system is integrated to the rocket motor in horizontal condition and the electro hydraulic actuators are assembled to the flex nozzle systems. The electro hydraulic actuators are connected to the hydraulic power pack to operate the actuators. The nozzle-motor critical interface are insulation diametrical compression, inhibition resin-28, insulation facial compression, shaft seal `O' ring compression and face seal `O' ring compression.

  8. Metal-capped silicon organic micro-ring electro-optical modulator (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zaki, Aya O.; Kirah, Khaled A.; Swillam, Mohamed A.

    2017-02-01

    An ultra-compact hybrid plasmonic waveguide ring electro-optical modulator is designed to be easily fabricated on silicon on insulator (SOI) substrates using standard silicon photonics technology. The proposed waveguide is based on a buried standard silicon waveguide of height 220 nm topped with polymer and metal. The key advantage of this novel design is that only the silicon layer of the waveguide is structured as a coupled ring resonator. Then, the device is covered with electro-optical polymer and metal in post processes with no need for lithography or accurate mask alignment techniques. The simple fabrication method imposes many design challenges to obtain a resonator of reasonable loaded quality factor and high extinction ratio. Here, the performance of the resonator is optimized in the telecom wavelength range around 1550 nm using 3D FDTD simulations. The design of the coupling junction between the access waveguide and the tightly bent ring is thoroughly studied. The extension of the metal over the coupling region is exploited to make the critical dimension of the design geometry at least 2.5 times larger than conventional plasmonic resonators and the design is thus more robust. In this paper, we demonstrate an electro-optical modulator that offers an insertion loss < 1 dB, a modulation depth of 12 dB for an applied peak to peak voltage of only 2 V and energy consumption of 1.74 fJ/bit. The performance is superior to previously reported hybrid plasmonic ring resonator based modulators while the design shows robustness and low fabrication cost.

  9. Implementation of spatial overlap modulation nonlinear optical microscopy using an electro-optic deflector

    PubMed Central

    Isobe, Keisuke; Kawano, Hiroyuki; Kumagai, Akiko; Miyawaki, Atsushi; Midorikawa, Katsumi

    2013-01-01

    A spatial overlap modulation (SPOM) technique is a nonlinear optical microscopy technique which enhances the three-dimensional spatial resolution and rejects the out-of-focus background limiting the imaging depth inside a highly scattering sample. Here, we report on the implementation of SPOM in which beam pointing modulation is achieved by an electro-optic deflector. The modulation and demodulation frequencies are enhanced to 200 kHz and 400 kHz, respectively, resulting in a 200-fold enhancement compared with the previously reported system. The resolution enhancement and suppression of the out-of-focus background are demonstrated by sum-frequency-generation imaging of pounded granulated sugar and deep imaging of fluorescent beads in a tissue-like phantom, respectively. PMID:24156055

  10. Electro-optic phase matching in a Si photonic crystal slow light modulator using meander-line electrodes.

    PubMed

    Hinakura, Yosuke; Terada, Yosuke; Arai, Hiroyuki; Baba, Toshihiko

    2018-04-30

    We demonstrate a Si photonic crystal waveguide Mach-Zehnder modulator that incorporates meander-line electrodes to compensate for the phase mismatch between slow light and RF signals. We first employed commonized ground electrodes in the modulator to suppress undesired fluctuations in the electro-optic (EO) response due to coupled slot-line modes of RF signals. Then, we theoretically and experimentally investigated the effect of the phase mismatch on the EO response. We confirmed that meander-line electrodes improve the EO response, particularly in the absence of internal reflection of the RF signals. The cut-off frequency of this device can reach 27 GHz, which allows high-speed modulation up to 50 Gbps.

  11. Ultra-low power fiber-coupled gallium arsenide photonic crystal cavity electro-optic modulator.

    PubMed

    Shambat, Gary; Ellis, Bryan; Mayer, Marie A; Majumdar, Arka; Haller, Eugene E; Vučković, Jelena

    2011-04-11

    We demonstrate a gallium arsenide photonic crystal cavity injection-based electro-optic modulator coupled to a fiber taper waveguide. The fiber taper serves as a convenient and tunable waveguide for cavity coupling with minimal loss. Localized electrical injection of carriers into the cavity region via a laterally doped p-i-n diode combined with the small mode volume of the cavity enable ultra-low energy modulation at sub-fJ/bit levels. Speeds of up to 1 GHz are demonstrated with photoluminescence lifetime measurements revealing that the ultimate limit goes well into the tens of GHz. © 2011 Optical Society of America

  12. Active mode-locked lasers and other photonic devices using electro-optic whispering gallery mode resonators

    NASA Technical Reports Server (NTRS)

    Matsko, Andrey B. (Inventor); Ilchenko, Vladimir (Inventor); Savchenkov, Anatoliy (Inventor); Maleki, Lutfollah (Inventor)

    2006-01-01

    Techniques and devices using whispering gallery mode (WGM) optical resonators, where the optical materials of the WGM resonators exhibit an electro-optical effect to perform optical modulation. Examples of actively mode-locked lasers and other devices are described.

  13. Secure communications of CAP-4 and OOK signals over MMF based on electro-optic chaos.

    PubMed

    Ai, Jianzhou; Wang, Lulu; Wang, Jian

    2017-09-15

    Chaos-based secure communication can provide a high level of privacy in data transmission. Here, we experimentally demonstrate secure signal transmission over two kinds of multimode fiber (MMF) based on electro-optic intensity chaos. High-quality synchronization is achieved in an electro-optic feedback configuration. Both 5  Gbit/s carrier-less amplitude/phase (CAP-4) modulation and 10  Gbit/s on-off key (OOK) signals are recovered efficiently in electro-optic chaos-based communication systems. Degradations of chaos synchronization and communication system due to mismatch of various hardware keys are also discussed.

  14. Electronic band-gap modified passive silicon optical modulator at telecommunications wavelengths.

    PubMed

    Zhang, Rui; Yu, Haohai; Zhang, Huaijin; Liu, Xiangdong; Lu, Qingming; Wang, Jiyang

    2015-11-13

    The silicon optical modulator is considered to be the workhorse of a revolution in communications. In recent years, the capabilities of externally driven active silicon optical modulators have dramatically improved. Self-driven passive modulators, especially passive silicon modulators, possess advantages in compactness, integration, low-cost, etc. Constrained by a large indirect band-gap and sensitivity-related loss, the passive silicon optical modulator is scarce and has been not advancing, especially at telecommunications wavelengths. Here, a passive silicon optical modulator is fabricated by introducing an impurity band in the electronic band-gap, and its nonlinear optics and applications in the telecommunications-wavelength lasers are investigated. The saturable absorption properties at the wavelength of 1.55 μm was measured and indicates that the sample is quite sensitive to light intensity and has negligible absorption loss. With a passive silicon modulator, pulsed lasers were constructed at wavelengths at 1.34 and 1.42 μm. It is concluded that the sensitive self-driven passive silicon optical modulator is a viable candidate for photonics applications out to 2.5 μm.

  15. Highly Sensitive Electro-Optic Modulators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeVore, Peter S

    2015-10-26

    There are very important diagnostic and communication applications that receive faint electrical signals to be transmitted over long distances for capture. Optical links reduce bandwidth and distance restrictions of metal transmission lines; however, such signals are only weakly imprinted onto the optical carrier, resulting in low fidelity transmission. Increasing signal fidelity often necessitates insertion of radio-frequency (RF) amplifiers before the electro-optic modulator, but (especially at high frequencies) RF amplification results in large irreversible distortions. We have investigated the feasibility of a Sensitive and Linear Modulation by Optical Nonlinearity (SALMON) modulator to supersede RF-amplified modulators. SALMON uses cross-phase modulation, a manifestationmore » of the Kerr effect, to enhance the modulation depth of an RF-modulated optical wave. This ultrafast process has the potential to result in less irreversible distortions as compared to a RF-amplified modulator due to the broadband nature of the Kerr effect. Here, we prove that a SALMON modulator is a feasible alternative to an RFamplified modulator, by demonstrating a sensitivity enhancement factor greater than 20 and significantly reduced distortion.« less

  16. DESIGN AND IMPLEMENTATION OF A NOVEL ARCHITECTURE FOR AN INTEGRATED SOLAR THERMAL-BIOGAS CO-GENERATION SYSTEM

    EPA Science Inventory

    The immediate goal is a system based on the integration of the suite of modules developed solar thermal, biogas, ORC, absorption-chiller) that can be assembled together to create systems tailored to the unique demands of individual communities and climates, optimized for effic...

  17. Electro-Optic Coefficients of Guest-Host Poled Polymers Containing Chromophores with Large First Hyperpolarizabilities: A Test of the Two-State, Oriented-Gas Model

    NASA Technical Reports Server (NTRS)

    Skindhoj, J.; Bourhill, G.; Gilmour, S.; Tiemann, B.; Mansour, K.; Perry, K.; Heng, L-T.; Marder, S.; Perry, J.

    1994-01-01

    the electro-optic r33, coefficients of poled poly(methylmethacrylate) films containing dyes with first hyperpolarizabilities that span nearly two orders of magnitude have been determined at 820 and 1300 nm by modulated ellipsometry.

  18. EEG electrode caps can reduce SAR induced in the head by GSM900 mobile phones.

    PubMed

    Hamblin, Denise L; Anderson, Vitas; McIntosh, Robert L; McKenzie, Ray J; Wood, Andrew W; Iskra, Steve; Croft, Rodney J

    2007-05-01

    This paper investigates the influence of EEG electrode caps on specific absorption rate (SAR) in the head from a GSM900 mobile phone (217-Hz modulation, peak power output 2 W). SAR measurements were recorded in an anthropomorphic phantom using a precision robotic system. Peak 10 g average SAR in the whole head and in just the temporal region was compared for three phantom arrangements; no cap, 64-electrode "Electro-Cap," and 64-electrode "Quick-Cap". Relative to the "no cap" arrangement, the Electro-Cap and Quick-Cap caused a peak SAR (10 g) reduction of 14% and 18% respectively in both the whole head and in the temporal region. Additional computational modeling confirmed that SAR (10 g) is reduced by the presence of electrode leads and that the extent of the effect varies according to the orientation of the leads with respect to the radiofrequency (RF) source. The modeling also indicated that the nonconductive shell between the electrodes and simulated head material does not significantly alter the electrode lead shielding effect. The observed SAR reductions are not likely to be sufficiently large to have accounted for null EEG findings in the past but should nonetheless be noted in studies aiming to measure and report human brain activity under similar exposure conditions.

  19. Thin film lithium niobate electro-optic modulator with terahertz operating bandwidth.

    PubMed

    Mercante, Andrew J; Shi, Shouyuan; Yao, Peng; Xie, Linli; Weikle, Robert M; Prather, Dennis W

    2018-05-28

    We present a thin film crystal ion sliced (CIS) LiNbO 3 phase modulator that demonstrates an unprecedented measured electro-optic (EO) response up to 500 GHz. Shallow rib waveguides are utilized for guiding a single transverse electric (TE) optical mode, and Au coplanar waveguides (CPWs) support the modulating radio frequency (RF) mode. Precise index matching between the co-propagating RF and optical modes is responsible for the device's broadband response, which is estimated to extend even beyond 500 GHz. Matching the velocities of these co-propagating RF and optical modes is realized by cladding the modulator's interaction region in a thin UV15 polymer layer, which increases the RF modal index. The fabricated modulator possesses a tightly confined optical mode, which lends itself to a strong interaction between the modulating RF field and the guided optical carrier; resulting in a measured DC half-wave voltage of 3.8 V·cm -1 . The design, fabrication, and characterization of our broadband modulator is presented in this work.

  20. Resonator-Based Silicon Electro-Optic Modulator with Low Power Consumption

    NASA Astrophysics Data System (ADS)

    Xin, Maoqing; Danner, Aaron J.; Eng Png, Ching; Thor Lim, Soon

    2009-04-01

    This paper demonstrates, via simulation, an electro-optic modulator based on a subwavelength Fabry-Perot resonator cavity with low power consumption of 86 µW/µm. This is, to the best of our knowledge, the lowest power reported for silicon photonic bandgap modulators. The device is modulated at a doped p-i-n junction overlapping the cavity in a silicon waveguide perforated with etched holes, with the doping area optimized for minimum power consumption. The surface area of the entire device is only 2.1 µm2, which compares favorably to other silicon-based modulators. A modulation speed of at least 300 MHz is detected from the electrical simulator after sidewall doping is introduced which is suitable for sensing or fiber to the home (FTTH) technologies, where speed can be traded for low cost and power consumption. The device does not rely on ultra-high Q, and could serve as a sensor, modulator, or passive filter with built-in calibration.

  1. Transverse-longitudinal integrated resonator

    DOEpatents

    Hutchinson, Donald P [Knoxville, TN; Simpson, Marcus L [Knoxville, TN; Simpson, John T [Knoxville, TN

    2003-03-11

    A transverse-longitudinal integrated optical resonator (TLIR) is disclosed which includes a waveguide, a first and a second subwavelength resonant grating in the waveguide, and at least one photonic band gap resonant structure (PBG) in the waveguide. The PBG is positioned between the first and second subwavelength resonant gratings. An electro-optic waveguide material may be used to permit tuning the TLIR and to permit the TLIR to perform signal modulation and switching. The TLIR may be positioned on a bulk substrate die with one or more electronic and optical devices and may be communicably connected to the same. A method for fabricating a TLIR including fabricating a broadband reflective grating is disclosed. A method for tuning the TLIR's transmission resonance wavelength is also disclosed.

  2. Solid-state energy storage module employing integrated interconnect board

    DOEpatents

    Rouillard, Jean; Comte, Christophe; Daigle, Dominik; Hagen, Ronald A.; Knudson, Orlin B.; Morin, Andre; Ranger, Michel; Ross, Guy; Rouillard, Roger; St-Germain, Philippe; Sudano, Anthony; Turgeon, Thomas A.

    2004-09-28

    An electrochemical energy storage device includes a number of solid-state thin-film electrochemical cells which are selectively interconnected in series or parallel through use of an integrated interconnect board. The interconnect board is typically disposed within a sealed housing which also houses the electrochemical cells, and includes a first contact and a second contact respectively coupled to first and second power terminals of the energy storage device. The interconnect board advantageously provides for selective series or parallel connectivity with the electrochemical cells, irrespective of electrochemical cell position within the housing. Fuses and various electrical and electro-mechanical devices, such as bypass, equalization, and communication devices for example, may also be mounted to the interconnect board and selectively connected to the electrochemical cells.

  3. An electro-optic modulator-assisted wavevector-resolving Brillouin light scattering setup.

    PubMed

    Neumann, T; Schneider, T; Serga, A A; Hillebrands, B

    2009-05-01

    Brillouin light scattering spectroscopy is a powerful technique which incorporates several extensions such as space-, time-, phase-, and wavevector-resolution. Here, we report on the improvement of the wavevector-resolving setup by including an electro-optic modulator. This provides a reference to calibrate the position of the diaphragm hole which is used for wavevector selection. The accuracy of this calibration is only limited by the accuracy of the wavevector measurement itself. To demonstrate the validity of the approach the wavevectors of dipole-dominated spin waves excited by a microstrip antenna were measured.

  4. Electro Optic Modulation In a Polymer Ringresonator

    NASA Astrophysics Data System (ADS)

    Leinse, A.; Driessen, A.; Diemeer, M. B. J.

    2004-05-01

    A thermo optic and electro optic (EO) tunable polymer ringresonator was realized and tested. The device consisted of a microring resonator made of the 4-dimethylamino-4‵-nitrostilbene (DANS) containing polymer and measurements were done on the through port of this device. The ring was used in a vertical coupling structure. The port waveguides were made of the photo-definable epoxy (SU8). The rings used had a diameter of 100 μm and thermo optic tuning of about 170 pm/°C was measured. EO modulation was measured for TE polarization.

  5. Modelling electro-active polymers with a dispersion-type anisotropy

    NASA Astrophysics Data System (ADS)

    Hossain, Mokarram; Steinmann, Paul

    2018-02-01

    We propose a novel constitutive framework for electro-active polymers (EAPs) that can take into account anisotropy with a chain dispersion. To enhance actuation behaviour, particle-filled EAPs become promising candidates nowadays. Recent studies suggest that particle-filled EAPs, which can be cured under an electric field during the manufacturing time, do not necessarily form perfect anisotropic composites, rather they create composites with dispersed chains. Hence in this contribution, an electro-mechanically coupled constitutive model is devised that considers the chain dispersion with a probability distribution function in an integral form. To obtain relevant quantities in discrete form, numerical integration over the unit sphere is utilized. Necessary constitutive equations are derived exploiting the basic laws of thermodynamics that result in a thermodynamically consistent formulation. To demonstrate the performance of the proposed electro-mechanically coupled framework, we analytically solve a non-homogeneous boundary value problem, the extension and inflation of an axisymmetric cylindrical tube under electro-mechanically coupled load. The results capture various electro-mechanical couplings with the formulation proposed for EAP composites.

  6. Advanced Organic Electro-Optic Materials for Integrated Device Applications

    DTIC Science & Technology

    2001-06-01

    Electro - optic chromophores (FTC and CLD) were synthesized in bulk (kilogram) quantities and were distributed to the participants of this program...to stabilize electro - optic activity for operation at elevated temperatures and photon flux levels. Over 100 variants of these chromophores were...1.5-2.0 improvement over FTC and CLD chromophores in terms of electro - optic activity at telecommunication wavelengths. They also have proven more

  7. A hybrid electro-optic polymer and TiO2 double-slot waveguide modulator

    PubMed Central

    Qiu, Feng; Spring, Andrew M.; Maeda, Daisuke; Ozawa, Masa-aki; Odoi, Keisuke; Otomo, Akira; Aoki, Isao; Yokoyama, Shiyoshi

    2015-01-01

    An electro-optic (EO) modulator using a TiO2 slot hybrid waveguide has been designed and fabricated. Optical mode calculations revealed that the mode was primarily confined within the slots when using a double-slot configuration, thus achieving a high EO activity experimentally. The TiO2 slots also acted as an important barrier to induce an enhanced DC field during the poling of the EO polymer and the driving of the EO modulator. The hybrid phase modulator exhibited a driving voltage (Vπ) of 1.6 V at 1550 nm, which can be further reduced to 0.8 V in a 1 cm-long push-pull Mach–Zehnder interferometer (MZI) structure. The modulator demonstrated a low propagation loss of 5 dB/cm and a relatively high end-fire coupling efficiency. PMID:25708425

  8. Real-time digital signal processing for live electro-optic imaging.

    PubMed

    Sasagawa, Kiyotaka; Kanno, Atsushi; Tsuchiya, Masahiro

    2009-08-31

    We present an imaging system that enables real-time magnitude and phase detection of modulated signals and its application to a Live Electro-optic Imaging (LEI) system, which realizes instantaneous visualization of RF electric fields. The real-time acquisition of magnitude and phase images of a modulated optical signal at 5 kHz is demonstrated by imaging with a Si-based high-speed CMOS image sensor and real-time signal processing with a digital signal processor. In the LEI system, RF electric fields are probed with light via an electro-optic crystal plate and downconverted to an intermediate frequency by parallel optical heterodyning, which can be detected with the image sensor. The artifacts caused by the optics and the image sensor characteristics are corrected by image processing. As examples, we demonstrate real-time visualization of electric fields from RF circuits.

  9. Micro-/nanoscale multi-field coupling in nonlinear photonic devices

    NASA Astrophysics Data System (ADS)

    Yang, Qing; Wang, Yubo; Tang, Mingwei; Xu, Pengfei; Xu, Yingke; Liu, Xu

    2017-08-01

    The coupling of mechanics/electronics/photonics may improve the performance of nanophotonic devices not only in the linear region but also in the nonlinear region. This review letter mainly presents the recent advances on multi-field coupling in nonlinear photonic devices. The nonlinear piezoelectric effect and piezo-phototronic effects in quantum wells and fibers show that large second-order nonlinear susceptibilities can be achieved, and second harmonic generation and electro-optic modulation can be enhanced and modulated. Strain engineering can tune the lattice structures and induce second order susceptibilities in central symmetry semiconductors. By combining the absorption-based photoacoustic effect and intensity-dependent photobleaching effect, subdiffraction imaging can be achieved. This review will also discuss possible future applications of these novel effects and the perspective of their research. The review can help us develop a deeper knowledge of the substance of photon-electron-phonon interaction in a micro-/nano- system. Moreover, it can benefit the design of nonlinear optical sensors and imaging devices with a faster response rate, higher efficiency, more sensitivity and higher spatial resolution which could be applied in environmental detection, bio-sensors, medical imaging and so on.

  10. Design of high-speed optical transmission module with an integrated Ti:Er:LiNbO3 waveguide laser/ LiNbO3 electro-optic modulator

    NASA Astrophysics Data System (ADS)

    Bai, Yang; Chen, Shufen; Fu, Li; Fang, Wei; Lu, Junjun

    2005-01-01

    A high bit rate more than 10Gbit/s optical pulse generation device is the key to achieving high-speed and broadband optical fiber communication network system .Now, we propose a novel high-speed optical transmission module(TM) consisting of a Ti:Er:LiNbO3 waveguide laser and a Mach-Zehnder-type encoding modulator on the same Er-doped substrate. According to the standard of ITU-T, we design the 10Gbit/ s transmission module at 1.53μm on the Z cut Y propagation LiNbO3 slice. A dynamic model and the corresponding numerical code are used to analyze the waveguide laser while the electrooptic effect to design the modulator. Meanwhile, the working principle, key technology, typical characteristic parameters of the module are given. The transmission module has a high extinction ratio and a low driving voltage, which supplies the efficient, miniaturized light source for wavelength division multiplexing(WDM) system. In additional, the relation of the laser gain with the cavity parameter, as well as the relation of the bandwidth of the electrooptic modulator with some key factors are discussed .The designed module structure is simulated by BPM software and HFSS software.

  11. Highly stable and low loss electro-optic polymer waveguides for high speed microring modulators using photodefinition

    NASA Astrophysics Data System (ADS)

    Balakrishnan, M.; Diemeer, M. B. J.; Driessen, A.; Faccini, M.; Verboom, W.; Reinhoudt, D. N.; Leinse, A.

    2006-02-01

    Different electro-optic polymer systems are analyzed with respect to their electro-optic activity, glass transition temperature (T g) and photodefinable properties. The polymers tested are polysulfone (PS) and SU8. The electro-optic chromophore, tricyanovinylidenediphenylaminobenzene (TCVDPA), which was reported to have a high photochemical stability 1 has been employed in the current work. Tert-butyl-TCVDPA, having bulky side groups, was synthesized and a doubling of the electro-optic coefficient (r33) compared to the unmodified TCVDPA was shown. A microring resonator design was made based on the PS-TCVDPA system. SU8 (passive) and TCVDPA (active) channel waveguides were fabricated by the photodefinition technique and the passive waveguide losses were measured to be 5 dB/cm at 1550 nm.

  12. Linear electro-optic effect in sputtered polycrystalline LiNbO3 films

    NASA Astrophysics Data System (ADS)

    Griffel, G.; Ruschin, S.; Croitoru, N.

    1989-04-01

    Light guiding and modulation was demonstrated in sputtered LiNbO3 films deposited on glass substrates. We report on films' exceptionally low attenuation (<2 dB/cm) and the highest electro-optical coefficient reported so far for this kind of film (1.34×10-12 m/V).

  13. Electro-optic voltage sensor with Multiple Beam Splitting

    DOEpatents

    Woods, Gregory K.; Renak, Todd W.; Crawford, Thomas M.; Davidson, James R.

    2000-01-01

    A miniature electro-optic voltage sensor system capable of accurate operation at high voltages without use of the dedicated voltage dividing hardware. The invention achieves voltage measurement without significant error contributions from neighboring conductors or environmental perturbations. The invention employs a transmitter, a sensor, a detector, and a signal processor. The transmitter produces a beam of electromagnetic radiation which is routed into the sensor. Within the sensor the beam undergoes the Pockels electro-optic effect. The electro-optic effect produces a modulation of the beam's polarization, which is in turn converted to a pair of independent conversely-amplitude-modulated signals, from which the voltage of the E-field is determined by the signal processor. The use of converse AM signals enables the signal processor to better distinguish signal from noise. The sensor converts the beam by splitting the beam in accordance with the axes of the beam's polarization state (an ellipse) into at least two AM signals. These AM signals are fed into a signal processor and processed to determine the voltage between a ground conductor and the conductor on which voltage is being measured.

  14. Characterization of the electro-optic effect in styrylpyridinium cyanine dye thin-film crystals by an ac modulation method

    NASA Astrophysics Data System (ADS)

    Yoshimura, Tetsuzo

    1987-09-01

    The electro-optic effect in styrylpyridinium cyanine dye (SPCD) thin-film crystals is characterized by a newly developed ac modulation method that is effective in characterizing thin-film materials of small area. SPCD thin-film crystals 3-10 μm thick were grown from a methanol solution of SPCD. The crystal shows strong dichroism and anisotropy of refractive index, indicating that molecular dipole moments align along a definite direction (z axis). When an electric field is applied along the z axis, SPCD thin-film crystals show a large figure of merit of electro-optic phase retardation of 6.5×10-10 m/V, which is 5 times as large as in LiNbO3 crystal, 2 times that in 2-methyl-4-nitroaniline (MNA) crystal, and is the largest ever reported in organic solids. The electro-optic coefficient r33 of SPCD crystals is estimated to be approximately 4.3×10-10 m/V, which is 6 times larger than that of an MNA crystal. This value is consistent with that expected from second-harmonic generation measurements.

  15. MTF measurements of a type-II superlattice infrared focal plane array sealed in a cryocooler.

    PubMed

    Nghiem, Jean; Jaeck, Julien; Primot, Jerome; Coudrain, Christophe; Derelle, Sophie; Huard, Edouard; Caes, Marcel; Bernhardt, Sylvie; Haidar, Riad; Christol, Philippe; Ribet-Mohamed, Isabelle

    2018-04-16

    In operational electro-optical systems, infrared focal plane arrays (IR FPA) are integrated in cryocoolers which induce vibrations that may strongly affect their modulation transfer function (MTF). In this paper, we present the MTF measurement of an IR FPA sealed in its cryocooler. The method we use to measure the MTF decorrelates operational constraints and the technological limitations of the IR FPA. The bench is based on the diffraction properties of a continuously self imaging grating (CSIG). The 26 µm pixel size extracted from the MTF measurement is in good agreement with the expected value.

  16. EM Modelling of RF Propagation Through Plasma Plumes

    NASA Astrophysics Data System (ADS)

    Pandolfo, L.; Bandinelli, M.; Araque Quijano, J. L.; Vecchi, G.; Pawlak, H.; Marliani, F.

    2012-05-01

    Electric propulsion is a commercially attractive solution for attitude and position control of geostationary satellites. Hall-effect ion thrusters generate a localized plasma flow in the surrounding of the satellite, whose impact on the communication system needs to be qualitatively and quantitatively assessed. An electromagnetic modelling tool has been developed and integrated into the Antenna Design Framework- ElectroMagnetic Satellite (ADF-EMS). The system is able to guide the user from the plume definition phases through plume installation and simulation. A validation activity has been carried out and the system has been applied to the plume modulation analysis of SGEO/Hispasat mission.

  17. High speed ultra-broadband amplitude modulators with ultrahigh extinction >65 dB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, S.; Cai, H.; DeRose, C. T.

    Here, we experimentally demonstrate ultrahigh extinction ratio (>65 dB) amplitude modulators (AMs) that can be electrically tuned to operate across a broad spectral range of 160 nm from 1480 – 1640 nm and 95 nm from 1280 – 1375 nm. Our on-chip AMs employ one extra coupler compared with conventional Mach-Zehnder interferometers (MZI), thus form a cascaded MZI (CMZI) structure. Either directional or adiabatic couplers are used to compose the CMZI AMs and experimental comparisons are made between these two different structures. Furthermore, we investigate the performance of CMZI AMs under extreme conditions such as using 95:5 split ratio couplersmore » and unbalanced waveguide losses. Electro-optic phase shifters are also integrated in the CMZI AMs for high-speed operation. Finally, we investigate the output optical phase when the amplitude is modulated, which provides us valuable information when both amplitude and phase are to be controlled. This demonstration not only paves the road to applications such as quantum information processing that requires high extinction ratio AMs but also significantly alleviates the tight fabrication tolerance needed for large-scale integrated photonics.« less

  18. High speed ultra-broadband amplitude modulators with ultrahigh extinction >65 dB

    DOE PAGES

    Liu, S.; Cai, H.; DeRose, C. T.; ...

    2017-05-04

    Here, we experimentally demonstrate ultrahigh extinction ratio (>65 dB) amplitude modulators (AMs) that can be electrically tuned to operate across a broad spectral range of 160 nm from 1480 – 1640 nm and 95 nm from 1280 – 1375 nm. Our on-chip AMs employ one extra coupler compared with conventional Mach-Zehnder interferometers (MZI), thus form a cascaded MZI (CMZI) structure. Either directional or adiabatic couplers are used to compose the CMZI AMs and experimental comparisons are made between these two different structures. Furthermore, we investigate the performance of CMZI AMs under extreme conditions such as using 95:5 split ratio couplersmore » and unbalanced waveguide losses. Electro-optic phase shifters are also integrated in the CMZI AMs for high-speed operation. Finally, we investigate the output optical phase when the amplitude is modulated, which provides us valuable information when both amplitude and phase are to be controlled. This demonstration not only paves the road to applications such as quantum information processing that requires high extinction ratio AMs but also significantly alleviates the tight fabrication tolerance needed for large-scale integrated photonics.« less

  19. Improvement of both bandwidth and driving voltage of polymer phase modulators using buried in-plane coupled micro-strip driving electrodes

    NASA Astrophysics Data System (ADS)

    Hadjloum, Massinissa; El Gibari, Mohammed; Li, Hongwu; Daryoush, Afshin S.

    2017-06-01

    A large performance improvement of polymer phase modulators is reported by using buried in-plane coupled microstrip (CMS) driving electrodes, instead of standard vertical Micro-Strip electrodes. The in-plane CMS driving electrodes have both low radio frequency (RF) losses and high overlap integral between optical and RF waves compared to the vertical designs. Since the optical waveguide and CMS electrodes are located in the same plane, optical injection and microwave driving access cannot be separated perpendicularly without intersection between them. A via-less transition between grounded coplanar waveguide access and CMS driving electrodes is introduced in order to provide broadband excitation of optical phase modulators and avoid the intersection of the optical core and the electrical probe. Simulation and measurement results of the benzocyclobutene polymer as a cladding material and the PMMI-CPO1 polymer as an optical core with an electro-optic coefficient of 70 pm/V demonstrate a broadband operation of 67 GHz using travelling-wave driving electrodes with a half-wave voltage of 4.5 V, while satisfying its low RF losses and high overlap integral between optical and RF waves of in-plane CMS electrodes.

  20. Influence of electrically induced refraction and absorption on the measurement of spin current by pockels effect in GaAs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Houquan; She, Weilong, E-mail: shewl@mail.sysu.edu.cn

    2015-03-14

    The pockels effect could be utilized to measure spin current in semiconductors for linear electro-optic coefficient can be induced by spin current. When dc electric field is applied, the carriers will shift in k space, which could lead to the change of refraction and absorption coefficients. In this paper, we investigate the influence of the induced change of the refraction and absorption coefficients on the measurement of spin current by pockels effect in GaAs.

  1. Anisotropic electro-optic effect on InGaAs quantum dot chain modulators.

    PubMed

    Liu, Wei; Liang, Baolai; Huffaker, Diana; Fetterman, Harold

    2013-10-15

    We investigated the anisotropic electro-optic (EO) effect on InGaAs quantum dot (QD) chain modulators. The linear EO coefficients were determined as 24.3 pm/V (33.8 pm/V) along the [011] direction and 30.6 pm/V (40.3 pm/V) along the [011¯] direction at 1.55 μm (1.32 μm) operational wavelength. The corresponding half-wave voltages (Vπs) were measured to be 5.35 V (4.35 V) and 4.65 V (3.86 V) at 1.55 μm (1.32 μm) wavelength. This is the first report on the anisotropic EO effect on QD chain structures. These modulators have 3 dB bandwidths larger than 10 GHz.

  2. Full-Field Spectroscopy at Megahertz-frame-rates: Application of Coherent Time-Stretch Transform

    NASA Astrophysics Data System (ADS)

    DeVore, Peter Thomas Setsuda

    Outliers or rogue events are found extensively in our world and have incredible effects. Also called rare events, they arise in the distribution of wealth (e.g., Pareto index), finance, network traffic, ocean waves, and e-commerce (selling less of more). Interest in rare optical events exploded after the sighting of optical rogue waves in laboratory experiments at UCLA. Detecting such tail events in fast streams of information necessitates real-time measurements. The Coherent Time-Stretch Transform chirps a pulsed source of radiation so that its temporal envelope matches its spectral profile (analogous to the far field regime of spatial diffraction), and the mapped spectral electric field is slow enough to be captured by a real-time digitizer. Combining this technique with spectral encoding, the time stretch technique has enabled a new class of ultra-high performance spectrometers and cameras (30+ MHz), and analog-to-digital converters that have led to the discovery of optical rogue waves and detection of cancer cells in blood with one in a million sensitivity. Conventionally, the Coherent Time-Stretch Transform maps the spectrum into the temporal electric field, but the time-dilation process along with inherent fiber losses results in reduction of peak power and loss of sensitivity, a problem exacerbated by extremely narrow molecular linewidths. The loss issue notwithstanding, in many cases the requisite dispersive optical device is not available. By extending the Coherent Time-Stretch Transform to the temporal near field, I have demonstrated, for the first time, phase-sensitive absorption spectroscopy of a gaseous sample at millions of frames per second. As the Coherent Time-Stretch Transform may capture both near and far field optical waves, it is a complete spectro-temporal optical characterization tool. This is manifested as an amplitude-dependent chirp, which implies the ability to measure the complex refractive index dispersion at megahertz frame rates. This technique is not only four orders of magnitude faster than even the fastest (kHz) spectrometers, but will also enable capture of real-time complex dielectric function dynamics of plasmas and chemical reactions (e.g. combustion). It also has applications in high-energy physics, biology, and monitoring fast high-throughput industrial processes. Adding an electro-optic modulator to the Time-Stretch Transform yields time-to-time mapping of electrical waveforms. Known as TiSER, it is an analog slow-motion processor that uses light to reduce the bandwidth of broadband RF signals for capture by high-sensitivity analog-to-digital converters (ADC). However, the electro-optic modulator limits the electrical bandwidth of TiSER. To solve this, I introduced Optical Sideband-only Amplification, wherein electro-optically generated modulation (containing the RF information) is amplified at the expense of the carrier, addressing the two most important problems plaguing electro-optic modulators: (1) low RF bandwidth and (2) high required RF drive voltages. I demonstrated drive voltage reductions of 5x at 10 GHz and 10x at 50 GHz, while simultaneously increasing the RF bandwidth.

  3. Integrated micro-electro-mechanical sensor development for inertial applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, J.J.; Kinney, R.D.; Sarsfield, J.

    Electronic sensing circuitry and micro electro mechanical sense elements can be integrated to produce inertial instruments for applications unheard of a few years ago. This paper will describe the Sandia M3EMS fabrication process, inertial instruments that have been fabricated, and the results of initial characterization tests of micro-machined accelerometers.

  4. High bandwidth electro-optic technology for intersatellite optical communications

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.

    1992-01-01

    The research and development of electronic and electro-optic components for geosynchronous and low earth orbiting satellite optical high bandwidth communications at the NASA-Goddard Space Flight Center is reviewed. Intersatellite optical communications retains a strong reliance on microwave circuit technology in several areas - the microwave to optical interface, the laser transmitter modulation driver and the optical receiver. A microwave to optical interface is described requiring high bandwidth electronic downconverters and demodulators. Electrical bandwidth and current drive requirements for the laser modulation driver for three laser alternatives are discussed. Bandwidth and noise requirements are presented for optical receiver architectures.

  5. Reduction of the 3,4,9,10-perylenediimides and the formation of eletrodeposited films based on their radical anions

    NASA Astrophysics Data System (ADS)

    Zhu, Yuan-Yuan; Gu, Shuang-Xi

    2014-09-01

    The reduction of the two 3,4,9,10-perylene diimide (PDI) derivatives in the mixture of hydrazine hydrate and N,N-dimethylformamide was investigated by the UV-vis absorption spectra, fluorescence spectra (FL) and electron spin resonance spectroscopy (ESR). The time dependence of the PDI content, as well as the structure of PDI aggregates were also investigated and discussed. Combining the electro-migration behavior of PDI-· with the molecular self-assembly properties, the films of two PDI derivatives (PDI-32 and PDI-123) were successfully fabricated via anode electro-deposition (AED). The difference of aggregation state between the two PDI films was studied by UV-vis absorption spectra, XRD and SEM. Based on these, the formation mechanism of PDI films was also deduced.

  6. Optical Peaking Enhancement in High-Speed Ring Modulators

    PubMed Central

    Müller, J.; Merget, F.; Azadeh, S. Sharif; Hauck, J.; García, S. Romero; Shen, B.; Witzens, J.

    2014-01-01

    Ring resonator modulators (RRM) combine extreme compactness, low power consumption and wavelength division multiplexing functionality, making them a frontrunner for addressing the scalability requirements of short distance optical links. To extend data rates beyond the classically assumed bandwidth capability, we derive and experimentally verify closed form equations of the electro-optic response and asymmetric side band generation resulting from inherent transient time dynamics and leverage these to significantly improve device performance. An equivalent circuit description with a commonly used peaking amplifier model allows straightforward assessment of the effect on existing communication system architectures. A small signal analytical expression of peaking in the electro-optic response of RRMs is derived and used to extend the electro-optic bandwidth of the device above 40 GHz as well as to open eye diagrams penalized by intersymbol interference at 32, 40 and 44 Gbps. Predicted peaking and asymmetric side band generation are in excellent agreement with experiments. PMID:25209255

  7. Ultrasensitive detection of atmospheric trace gases using frequency modulation spectroscopy

    NASA Technical Reports Server (NTRS)

    Cooper, David E.

    1986-01-01

    Frequency modulation (FM) spectroscopy is a new technique that promises to significantly extend the state-of-the-art in point detection of atmospheric trace gases. FM spectroscopy is essentially a balanced bridge optical heterodyne approach in which a small optical absorption or dispersion from an atomic or molecular species of interest generates an easily detected radio frequency (RF) signal. This signal can be monitored using standard RF signal processing techniques and is, in principle, limited only by the shot noise generated in the photodetector by the laser source employed. The use of very high modulation frequencies which exceed the spectral width of the probed absorption line distinguishes this technique from the well-known derivative spectroscopy which makes use of low (kHz) modulation frequencies. FM spectroscopy was recently extended to the 10 micron infrared (IR) spectral region where numerous polyatomic molecules exhibit characteristic vibrational-rotational bands. In conjunction with tunable semiconductor diode lasers, the quantum-noise-limited sensitivity of the technique should allow for the detection of absorptions as small as .00000001 in the IR spectral region. This sensitivity would allow for the detection of H2O2 at concentrations as low as 1 pptv with an integration time of 10 seconds.

  8. Fundamental Scaling Laws in Nanophotonics

    PubMed Central

    Liu, Ke; Sun, Shuai; Majumdar, Arka; Sorger, Volker J.

    2016-01-01

    The success of information technology has clearly demonstrated that miniaturization often leads to unprecedented performance, and unanticipated applications. This hypothesis of “smaller-is-better” has motivated optical engineers to build various nanophotonic devices, although an understanding leading to fundamental scaling behavior for this new class of devices is missing. Here we analyze scaling laws for optoelectronic devices operating at micro and nanometer length-scale. We show that optoelectronic device performance scales non-monotonically with device length due to the various device tradeoffs, and analyze how both optical and electrical constrains influence device power consumption and operating speed. Specifically, we investigate the direct influence of scaling on the performance of four classes of photonic devices, namely laser sources, electro-optic modulators, photodetectors, and all-optical switches based on three types of optical resonators; microring, Fabry-Perot cavity, and plasmonic metal nanoparticle. Results show that while microrings and Fabry-Perot cavities can outperform plasmonic cavities at larger length-scales, they stop working when the device length drops below 100 nanometers, due to insufficient functionality such as feedback (laser), index-modulation (modulator), absorption (detector) or field density (optical switch). Our results provide a detailed understanding of the limits of nanophotonics, towards establishing an opto-electronics roadmap, akin to the International Technology Roadmap for Semiconductors. PMID:27869159

  9. Fundamental Scaling Laws in Nanophotonics.

    PubMed

    Liu, Ke; Sun, Shuai; Majumdar, Arka; Sorger, Volker J

    2016-11-21

    The success of information technology has clearly demonstrated that miniaturization often leads to unprecedented performance, and unanticipated applications. This hypothesis of "smaller-is-better" has motivated optical engineers to build various nanophotonic devices, although an understanding leading to fundamental scaling behavior for this new class of devices is missing. Here we analyze scaling laws for optoelectronic devices operating at micro and nanometer length-scale. We show that optoelectronic device performance scales non-monotonically with device length due to the various device tradeoffs, and analyze how both optical and electrical constrains influence device power consumption and operating speed. Specifically, we investigate the direct influence of scaling on the performance of four classes of photonic devices, namely laser sources, electro-optic modulators, photodetectors, and all-optical switches based on three types of optical resonators; microring, Fabry-Perot cavity, and plasmonic metal nanoparticle. Results show that while microrings and Fabry-Perot cavities can outperform plasmonic cavities at larger length-scales, they stop working when the device length drops below 100 nanometers, due to insufficient functionality such as feedback (laser), index-modulation (modulator), absorption (detector) or field density (optical switch). Our results provide a detailed understanding of the limits of nanophotonics, towards establishing an opto-electronics roadmap, akin to the International Technology Roadmap for Semiconductors.

  10. Fundamental Scaling Laws in Nanophotonics

    NASA Astrophysics Data System (ADS)

    Liu, Ke; Sun, Shuai; Majumdar, Arka; Sorger, Volker J.

    2016-11-01

    The success of information technology has clearly demonstrated that miniaturization often leads to unprecedented performance, and unanticipated applications. This hypothesis of “smaller-is-better” has motivated optical engineers to build various nanophotonic devices, although an understanding leading to fundamental scaling behavior for this new class of devices is missing. Here we analyze scaling laws for optoelectronic devices operating at micro and nanometer length-scale. We show that optoelectronic device performance scales non-monotonically with device length due to the various device tradeoffs, and analyze how both optical and electrical constrains influence device power consumption and operating speed. Specifically, we investigate the direct influence of scaling on the performance of four classes of photonic devices, namely laser sources, electro-optic modulators, photodetectors, and all-optical switches based on three types of optical resonators; microring, Fabry-Perot cavity, and plasmonic metal nanoparticle. Results show that while microrings and Fabry-Perot cavities can outperform plasmonic cavities at larger length-scales, they stop working when the device length drops below 100 nanometers, due to insufficient functionality such as feedback (laser), index-modulation (modulator), absorption (detector) or field density (optical switch). Our results provide a detailed understanding of the limits of nanophotonics, towards establishing an opto-electronics roadmap, akin to the International Technology Roadmap for Semiconductors.

  11. 50-GHz-spaced comb of high-dimensional frequency-bin entangled photons from an on-chip silicon nitride microresonator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imany, Poolad; Jaramillo-Villegas, Jose A.; Odele, Ogaga D.

    Quantum frequency combs from chip-scale integrated sources are promising candidates for scalable and robust quantum information processing (QIP). However, to use these quantum combs for frequency domain QIP, demonstration of entanglement in the frequency basis, showing that the entangled photons are in a coherent superposition of multiple frequency bins, is required. We present a verification of qubit and qutrit frequency-bin entanglement using an on-chip quantum frequency comb with 40 mode pairs, through a two-photon interference measurement that is based on electro-optic phase modulation. Our demonstrations provide an important contribution in establishing integrated optical microresonators as a source for high-dimensional frequency-binmore » encoded quantum computing, as well as dense quantum key distribution.« less

  12. 50-GHz-spaced comb of high-dimensional frequency-bin entangled photons from an on-chip silicon nitride microresonator

    DOE PAGES

    Imany, Poolad; Jaramillo-Villegas, Jose A.; Odele, Ogaga D.; ...

    2018-01-18

    Quantum frequency combs from chip-scale integrated sources are promising candidates for scalable and robust quantum information processing (QIP). However, to use these quantum combs for frequency domain QIP, demonstration of entanglement in the frequency basis, showing that the entangled photons are in a coherent superposition of multiple frequency bins, is required. We present a verification of qubit and qutrit frequency-bin entanglement using an on-chip quantum frequency comb with 40 mode pairs, through a two-photon interference measurement that is based on electro-optic phase modulation. Our demonstrations provide an important contribution in establishing integrated optical microresonators as a source for high-dimensional frequency-binmore » encoded quantum computing, as well as dense quantum key distribution.« less

  13. Tunable optical analog to electromagnetically induced transparency in graphene-ring resonators system.

    PubMed

    Wang, Yonghua; Xue, Chenyang; Zhang, Zengxing; Zheng, Hua; Zhang, Wendong; Yan, Shubin

    2016-12-12

    The analogue of electromagnetically induced transparency in optical ways has shown great potential in optical delay and quantum-information technology due to its flexible design and easy implementation. The chief drawback for these devices is the bad tunability. Here we demonstrate a tunable optical transparency system formed by graphene-silicon microrings which could control the transparent window by electro-optical means. The device consists of cascaded coupled ring resonators and a graphene/graphene capacitor which integrated on one of the rings. By tuning the Fermi level of the graphene sheets, we can modulate the round-trip ring loss so that the transparency window can be dynamically tuned. The results provide a new method for the manipulation and transmission of light in highly integrated optical circuits and quantum information storage devices.

  14. Tailoring entanglement through domain engineering in a lithium niobate waveguide

    PubMed Central

    Ming, Yang; Tan, Ai-Hong; Wu, Zi-Jian; Chen, Zhao-Xian; Xu, Fei; Lu, Yan-Qing

    2014-01-01

    We propose to integrate the electro-optic (EO) tuning function into on-chip domain engineered lithium niobate (LN) waveguide. Due to the versatility of LN, both the spontaneously parametric down conversion (SPDC) and EO interaction could be realized simultaneously. Photon pairs are generated through SPDC, and the formation of entangled state is modulated by EO processes. An EO tunable polarization-entangled photon state is proposed. Orthogonally-polarized and parallel-polarized entanglements of photon pairs are instantly switchable by tuning the applied field. The characteristics of the source are theoretically investigated showing adjustable bandwidths and high entanglement degrees. Moreover, other kinds of reconfigurable entanglement are also achievable based on suitable domain-design. We believe tailoring entanglement based on domain engineering is a very promising solution for next generation function-integrated quantum circuits. PMID:24770555

  15. A micromechanical analogue mixer with dynamic displacement amplification

    NASA Astrophysics Data System (ADS)

    Erismis, M. A.

    2018-06-01

    A new micromechanical device is proposed which is capable of modulation, demodulation and filtering operations. The device uses a patented 3-mass coupled micromechanical resonator which dynamically amplifies the displacement within a frequency range of interest. Modulation can be obtained by exciting different masses of the resonator with the data and the carrier signals. Demodulation can be obtained similarly by exciting the actuator with the input and carrier signals at the same time. With the help of dynamic motion amplification, filtering and signal amplification can be achieved simultaneously. A generic design approach is introduced which can be applied from kHz to MHz regime frequencies of interest. A sample mixer design for an silicon on insulator-based process is provided. A SPICE (Simulation Program with Integrated Circuit Emphasis)-based electro-mechanical co-simulation platform is also developed and the proposed mixer is simulated.

  16. Novel RF Interrogation of a Fiber Bragg Grating Sensor Using Bidirectional Modulation of a Mach-Zehnder Electro-Optical Modulator

    PubMed Central

    Choi, Sang-Jin; Mao, Wankai; Pan, Jae-Kyung

    2013-01-01

    We propose and experimentally demonstrate the novel radio-frequency (RF) interrogation of a fiber Bragg grating (FBG) sensor using bidirectional modulation of a Mach-Zehnder electro-optical modulator (MZ-EOM). Based on the microwave photonic technique and active detection, the transfer function of the proposed system was obtained, and the time delay was calculated from the change in the free spectral range (FSR) at different wavelengths over the optimal measuring range. The results show that the time delay and the wavelength variation have a good linear relationship, with a gradient of 9.31 ps/nm. An actual measurement taken with a sensing FBG for temperature variation shows the relationship with a gradient of 0.93 ps/10 °C. The developed system could be used for FBG temperature or strain sensing and other multiplexed sensor applications. PMID:23820744

  17. Submicrosecond electro-optic switching in the liquid-crystal smectic A phase: The soft-mode ferroelectric effect

    NASA Astrophysics Data System (ADS)

    Andersson, G.; Dahl, I.; Keller, P.; Kuczyński, W.; Lagerwall, S. T.; Skarp, K.; Stebler, B.

    1987-08-01

    A new liquid-crystal electro-optic modulating device similar to the surface-stabilized ferroelectric liquid-crystal device is described. It uses the same kind of ferroelectric chiral smectics and the same geometry as that device (thin sample in the ``bookshelf '' layer arrangement) but instead of using a tilted smectic phase like the C* phase, it utilizes the above-lying, nonferroelectric A phase, taking advantage of the electroclinic effect. The achievable optical intensity modulation that can be detected through the full range of the A phase is considerably lower than for the surface-stabilized device, but the response is much faster. Furthermore, the response is strictly linear with respect to the applied electric field. The device concept is thus appropriate for modulator rather than for display applications. We describe the underlying physics and present measurements of induced tilt angle, of light modulation depth, and of rise time.

  18. Electro-optical modulator in a polymerinfiltrated silicon slotted photonic crystal waveguide heterostructure resonator.

    PubMed

    Wülbern, Jan Hendrik; Petrov, Alexander; Eich, Manfred

    2009-01-05

    We present a novel concept of a compact, ultra fast electro-optic modulator, based on photonic crystal resonator structures that can be realized in two dimensional photonic crystal slabs of silicon as core material employing a nonlinear optical polymer as infiltration and cladding material. The novel concept is to combine a photonic crystal heterostructure cavity with a slotted defect waveguide. The photonic crystal lattice can be used as a distributed electrode for the application of a modulation signal. An electrical contact is hence provided while the optical wave is kept isolated from the lossy metal electrodes. Thereby, well known disadvantages of segmented electrode designs such as excessive scattering are avoided. The optical field enhancement in the slotted region increases the nonlinear interaction with an external electric field resulting in an envisaged switching voltage of approximately 1 V at modulation speeds up to 100 GHz.

  19. Optical to optical interface device

    NASA Technical Reports Server (NTRS)

    Oliver, D. S.; Vohl, P.; Nisenson, P.

    1972-01-01

    The development, fabrication, and testing of a preliminary model of an optical-to-optical (noncoherent-to-coherent) interface device for use in coherent optical parallel processing systems are described. The developed device demonstrates a capability for accepting as an input a scene illuminated by a noncoherent radiation source and providing as an output a coherent light beam spatially modulated to represent the original noncoherent scene. The converter device developed under this contract employs a Pockels readout optical modulator (PROM). This is a photosensitive electro-optic element which can sense and electrostatically store optical images. The stored images can be simultaneously or subsequently readout optically by utilizing the electrostatic storage pattern to control an electro-optic light modulating property of the PROM. The readout process is parallel as no scanning mechanism is required. The PROM provides the functions of optical image sensing, modulation, and storage in a single active material.

  20. Electro pneumatic trainer embedded with programmable integrated circuit (PIC) microcontroller and graphical user interface platform for aviation industries training purposes

    NASA Astrophysics Data System (ADS)

    Burhan, I.; Azman, A. A.; Othman, R.

    2016-10-01

    An electro pneumatic trainer embedded with programmable integrated circuit (PIC) microcontroller and Visual Basic (VB) platform is fabricated as a supporting tool to existing teaching and learning process, and to achieve the objectives and learning outcomes towards enhancing the student's knowledge and hands-on skill, especially in electro pneumatic devices. The existing learning process for electro pneumatic courses conducted in the classroom does not emphasize on simulation and complex practical aspects. VB is used as the platform for graphical user interface (GUI) while PIC as the interface circuit between the GUI and hardware of electro pneumatic apparatus. Fabrication of electro pneumatic trainer interfacing between PIC and VB has been designed and improved by involving multiple types of electro pneumatic apparatus such as linear drive, air motor, semi rotary motor, double acting cylinder and single acting cylinder. Newly fabricated electro pneumatic trainer microcontroller interface can be programmed and re-programmed for numerous combination of tasks. Based on the survey to 175 student participants, 97% of the respondents agreed that the newly fabricated trainer is user friendly, safe and attractive, and 96.8% of the respondents strongly agreed that there is improvement in knowledge development and also hands-on skill in their learning process. Furthermore, the Lab Practical Evaluation record has indicated that the respondents have improved their academic performance (hands-on skills) by an average of 23.5%.

  1. The boundary element method applied to 3D magneto-electro-elastic dynamic problems

    NASA Astrophysics Data System (ADS)

    Igumnov, L. A.; Markov, I. P.; Kuznetsov, Iu A.

    2017-11-01

    Due to the coupling properties, the magneto-electro-elastic materials possess a wide number of applications. They exhibit general anisotropic behaviour. Three-dimensional transient analyses of magneto-electro-elastic solids can hardly be found in the literature. 3D direct boundary element formulation based on the weakly-singular boundary integral equations in Laplace domain is presented in this work for solving dynamic linear magneto-electro-elastic problems. Integral expressions of the three-dimensional fundamental solutions are employed. Spatial discretization is based on a collocation method with mixed boundary elements. Convolution quadrature method is used as a numerical inverse Laplace transform scheme to obtain time domain solutions. Numerical examples are provided to illustrate the capability of the proposed approach to treat highly dynamic problems.

  2. Electro-optic fringe locking and photometric tuning using a two-stage Mach-Zehnder lithium niobate waveguide for high-contrast mid-infrared interferometry

    NASA Astrophysics Data System (ADS)

    Martin, Guillermo; Heidmann, Samuel; Rauch, Jean-Yves; Jocou, Laurent; Courjal, Nadège

    2014-03-01

    We present an optimization process to improve the rejection ratio in integrated beam combiners by locking the dark fringe and then monitoring its intensity. The method proposed here uses the electro-optic effect of lithium niobate in order to lock the dark fringe and to real-time balance the photometric flux by means of a two-stage Mach-Zehnder interferometer waveguide. By applying a control voltage on the output Y-junction, we are able to lock the phase and stay in the dark fringe, while an independent second voltage is applied on the first-stage intensity modulator, to finely balance the photometries. We have obtained a rejection ratio of 4600 (36.6 dB) at 3.39 μm in transverse electric polarization, corresponding to 99.98% fringe contrast, and shown that the system can compensate external phase perturbations (a piston variation of 100 nm) up to around 1 kHz. We also show the preliminary results of this process on wide-band modulation, where a contrast of 38% in 3.25- to 3.65-μm spectral range is obtained. These preliminary results on wide-band need to be optimized, in particular, for reducing scattered light of the device at the Y-junction. We expect this active method to be useful in high-contrast interferometry, in particular, for astronomical spatial projects actually under study.

  3. High-resolution photoluminescence electro-modulation microscopy by scanning lock-in

    NASA Astrophysics Data System (ADS)

    Koopman, W.; Muccini, M.; Toffanin, S.

    2018-04-01

    Morphological inhomogeneities and structural defects in organic semiconductors crucially determine the charge accumulation and lateral transport in organic thin-film transistors. Photoluminescence Electro-Modulation (PLEM) microscopy is a laser-scanning microscopy technique that relies on the modulation of the thin-film fluorescence in the presence of charge-carriers to image the spatial distribution of charges within the active organic semiconductor. Here, we present a lock-in scheme based on a scanning beam approach for increasing the PLEM microscopy resolution and contrast. The charge density in the device is modulated by a sinusoidal electrical signal, phase-locked to the scanning beam of the excitation laser. The lock-in detection scheme is achieved by acquiring a series of images with different phases between the beam scan and the electrical modulation. Application of high resolution PLEM to an organic transistor in accumulation mode demonstrates its potential to image local variations in the charge accumulation. A diffraction-limited precision of sub-300 nm and a signal to noise ratio of 21.4 dB could be achieved.

  4. Synchronized conductivity modulation to realize broadband lossless magnetic-free non-reciprocity.

    PubMed

    Dinc, Tolga; Tymchenko, Mykhailo; Nagulu, Aravind; Sounas, Dimitrios; Alu, Andrea; Krishnaswamy, Harish

    2017-10-06

    Recent research has explored the spatiotemporal modulation of permittivity to break Lorentz reciprocity in a manner compatible with integrated-circuit fabrication. However, permittivity modulation is inherently weak and accompanied by loss due to carrier injection, particularly at higher frequencies, resulting in large insertion loss, size, and/or narrow operation bandwidths. Here, we show that the presence of absorption in an integrated electronic circuit may be counter-intuitively used to our advantage to realize a new generation of magnet-free non-reciprocal components. We exploit the fact that conductivity in semiconductors provides a modulation index several orders of magnitude larger than permittivity. While directly associated with loss in static systems, we show that properly synchronized conductivity modulation enables loss-free, compact and extremely broadband non-reciprocity. We apply these concepts to obtain a wide range of responses, from isolation to gyration and circulation, and verify our findings by realizing a millimeter-wave (25 GHz) circulator fully integrated in complementary metal-oxide-semiconductor technology.Optical non-reciprocity achieved through refractive index modulation can have its challenges and limitations. Here, Dinc et al. introduce the concept of non-reciprocity based on synchronized spatio-temporal modulation of conductivity to achieve different types of non-reciprocal functionality.

  5. Electro-optic voltage sensor with beam splitting

    DOEpatents

    Woods, Gregory K.; Renak, Todd W.; Davidson, James R.; Crawford, Thomas M.

    2002-01-01

    The invention is a miniature electro-optic voltage sensor system capable of accurate operation at high voltages without use of the dedicated voltage dividing hardware typically found in the prior art. The invention achieves voltage measurement without significant error contributions from neighboring conductors or environmental perturbations. The invention employs a transmitter, a sensor, a detector, and a signal processor. The transmitter produces a beam of electromagnetic radiation which is routed into the sensor. Within the sensor the beam undergoes the Pockels electro-optic effect. The electro-optic effect produces a modulation of the beam's polarization, which is in turn converted to a pair of independent conversely-amplitude-modulated signals, from which the voltage of the E-field is determined by the signal processor. The use of converse AM signals enables the signal processor to better distinguish signal from noise. The sensor converts the beam by splitting the beam in accordance with the axes of the beam's polarization state (an ellipse) into at least two AM signals. These AM signals are fed into a signal processor and processed to determine the voltage between a ground conductor and the conductor on which voltage is being measured.

  6. Design of a compact high-speed optical modulator based on a hybrid plasmonic nanobeam cavity

    NASA Astrophysics Data System (ADS)

    Javid, Mohammad Reza; Miri, Mehdi; Zarifkar, Abbas

    2018-03-01

    A hybrid plasmonic electro-optic modulator based on a polymer-filled one dimensional photonic crystal nanobeam (1D PhCNB) cavity is proposed here. In the proposed structure the optical intensity modulation is realized by shifting the resonant wavelength of the cavity through electrically tuning the refractive index of the electro-optic polymer in the hybrid plasmonic waveguide. As a result of the subwavelength light confinement in the hybrid plasmonic waveguide and the compact footprint of the 1D PhCNB cavity, the designed modulator has the small overall footprint of 3 . 6 μm2 and the required wavelength shift can be achieved by applying very small actuating power. Three dimensional finite-difference time-domain (3D-FDTD) simulations show that the modulation depth of 10.9 dB, and insertion loss of 1.14 dB, along with very high modulation speed of 224 GHz can be achieved in the proposed modulator with very low modulation energy of 0.75 fJ/bit. A comparison between the performance parameters of the proposed modulator and those of previously reported PhCNB based modulators reveals the superior performance of the proposed structure in terms of modulation speed, energy consumption and overall footprint.

  7. Shallow-trap-induced positive absorptive two-beam coupling 'gain' and light-induced transparency in nominally undoped barium titanate

    NASA Technical Reports Server (NTRS)

    Garrett, M. H.; Tayebati, P.; Chang, J. Y.; Jenssen, H. P.; Warde, C.

    1992-01-01

    The asymmetry of beam coupling with respect to the orientation of the polar axis in a nominally undoped barium titanate crystal is used to determine the electro-optic and absorptive 'gain' in the usual beam-coupling geometry. For small grating wave vectors, the electrooptic coupling vanishes but the absorptive coupling remains finite and positive. Positive absorptive coupling at small grating wave vectors is correlated with the light-induced transparency of the crystal described herein. The intensity and grating wave vector dependence of the electrooptic and absorptive coupling, and the light-induced transparency are consistent with a model incorporating deep and shallow levels.

  8. Nanosecond pulse shaping at 780 nm with fiber-based electro-optical modulators and a double-pass tapered amplifier

    DOE PAGES

    Rogers, III, C. E.; Gould, P. L.

    2016-02-01

    Here, we describe a system for generating frequency-chirped and amplitude-shaped pulses on time scales from sub-nanosecond to ten nanoseconds. The system starts with cw diode-laser light at 780 nm and utilizes fiber-based electro-optical phase and intensity modulators, driven by an arbitrary waveform generator, to generate the shaped pulses. These pulses are subsequently amplified to several hundred mW with a tapered amplifier in a delayed double-pass configuration. Frequency chirps up to 5 GHz in 2 ns and pulse widths as short as 0.15 ns have been realized.

  9. Nanosecond pulse shaping at 780 nm with fiber-based electro-optical modulators and a double-pass tapered amplifier.

    PubMed

    Rogers, C E; Gould, P L

    2016-02-08

    We describe a system for generating frequency-chirped and amplitude-shaped pulses on time scales from sub-nanosecond to ten nanoseconds. The system starts with cw diode-laser light at 780 nm and utilizes fiber-based electro-optical phase and intensity modulators, driven by an arbitrary waveform generator, to generate the shaped pulses. These pulses are subsequently amplified to several hundred mW with a tapered amplifier in a delayed double-pass configuration. Frequency chirps up to 5 GHz in 2 ns and pulse widths as short as 0.15 ns have been realized.

  10. Controlling Fringe Sensitivity of Electro-Optic Holography Systems Using Laser Diode Current Modulation

    NASA Technical Reports Server (NTRS)

    Bybee, Shannon J.

    2001-01-01

    Electro-Optic Holography (EOH) is a non-intrusive, laser-based, displacement measurement technique capable of static and dynamic displacement measurements. EOH is an optical interference technique in which fringe patterns that represent displacement contour maps are generated. At excessively large displacements the fringe density may be so great that individual fringes are not resolvable using typical EOH techniques. This thesis focuses on the development and implementation of a method for controlling the sensitivity of the EOH system. This method is known as Frequency Translated Electro-Optic Holography (FTEOH). It was determined that by modulating the current source of the laser diode at integer multiples of the object vibration, the fringe pattern is governed by higher order Bessel function of the first kind and the number of fringes that represent a given displacement can be controlled. The reduction of fringes is theoretically unlimited but physically limited by the frequency bandwidth of the signal generator, providing modulation to the laser diode. Although this research technique has been verified theoretically and experimentally in this thesis, due to the current laser diode capabilities it is a tedious and time consuming process to acquire data using the FTEOH technique.

  11. Perfect absorption in 1D photonic crystal nanobeam embedded with graphene/Al2O3 multilayer stack

    NASA Astrophysics Data System (ADS)

    Liu, Hanqing; Zha, Song; Liu, Peiguo; Zhou, Xiaotian; Bian, Li-an

    2018-05-01

    We exploit the concept of critical coupling to graphene based chip-integrated applications and numerically demonstrate that a perfect absorption (PA) absorber in the near-infrared can be obtained by graphene/Al2O3 multilayer stack (GAMS) critical coupling with a resonant cavity in the 1D photonic crystal nanobeam (PCN). The key point is dynamically matching the coupling rate of incident light wave to the cavity with the absorbing rate of GAMS via electrically modulating the chemical potential of graphene. Simulation results show that the radius of GAMS as well as the thickness of Al2O3 layer are closely connected with the performance of perfect absorption. These results may provide potential applications in the high-density integrated optical devices, photolectric transducers, and laser pulse limiters.

  12. 100 GHz pulse waveform measurement based on electro-optic sampling

    NASA Astrophysics Data System (ADS)

    Feng, Zhigang; Zhao, Kejia; Yang, Zhijun; Miao, Jingyuan; Chen, He

    2018-05-01

    We present an ultrafast pulse waveform measurement system based on an electro-optic sampling technique at 1560 nm and prepare LiTaO3-based electro-optic modulators with a coplanar waveguide structure. The transmission and reflection characteristics of electrical pulses on a coplanar waveguide terminated with an open circuit and a resistor are investigated by analyzing the corresponding time-domain pulse waveforms. We measure the output electrical pulse waveform of a 100 GHz photodiode and the obtained rise times of the impulse and step responses are 2.5 and 3.4 ps, respectively.

  13. The effect of zinc diffusion on extinction ratio of MQW electroabsorption modulator integrated with DFB laser

    NASA Astrophysics Data System (ADS)

    Zhou, Daibing; Zhang, Ruikang; Wang, Huitao; Wang, Baojun; Bian, Jing; An, Xin; Zhao, Lingjuan; Zhu, Hongliang; Ji, Chen; Wang, Wei

    2014-11-01

    Monolithically integrated electroabsorption modulated lasers (EML) are widely being used in the optical fiber communication systems, due to their low chip, compact size and good compatible with the current communication systems. In this paper, we investigated the effect of Zinc diffusion on extinction ratio of electroabsorption modulator (EAM) integrated with distributed feedback laser (DFB). EML was fabricated by selective area growth (SAG) technology. The MQW structure of different quantum energy levels was grown on n-type InP buffer layer with 150nm thick SiO2 parallel stripes mask by selective area metal-organic chemical vapor deposition (MOCVD). A 35nm photoluminescence wavelength variation was observed between the laser area (λPL=1535nm) and modulator area (λPL=1500nm) by adjusting the dimension of parallel stripes. The grating (λ=1550nm) was fabricated in the selective area. The device was mesa ridge structure, which was constituted of the DFB laser, isolation gap and modulator. The length of every part is 300μm, 50μm, and 150μm respectively. Two samples were fabricated with the same structure and different p-type Zn-doped concentration, the extinction ratio of heavy Zn-doped device is 12.5dB at -6V. In contrast, the extinction ratio of light Zn-doped device is 20dB at -6V, that was improved for approximate 60%. The different Zn diffusion depth into the MQW absorption layer was observed by Secondary ion mass spectrometer (SIMS). The heavy Zn-doped device diffused into absorption layer deeper than the light Zn-doped device, which caused the large non-uniformity of the electric field in the MQW layer. So the extinction ratio characteristics can be improved by optimizing the Zn-doped concentration of p-type layer.

  14. Active terahertz metamaterials based on liquid-crystal induced transparency and absorption

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Fan, Fei; Chen, Meng; Zhang, Xuanzhou; Chang, Sheng-Jiang

    2017-01-01

    An active terahertz (THz) liquid crystal (LC) metamaterial has been experimentally investigated for THz wave modulation. Some interesting phenomena of resonance shifting, tunable electromagnetically induced transparency (EIT) and electromagnetically induced absorption (EIA) have been observed in the same device structure under different DC bias directions and different incident wave polarization directions by the THz time domain spectroscopy. Further theoretical studies indicate that these effects originate from interference and coupling between bright and dark mode components of elliptically polarized modes in the LC metamaterial, which are induced by the optical activity of LC alignment controllable by the electric field as well as the changes of LC refractive index. The LC layer is indeed a phase retarder and polarization converter that is controlled by the DC bias. The THz modulation depth of the analogs of EIT and EIA effects are 18.3 dB and 10.5 dB in their frequency band, respectively. Electrical control, large modulation depth and feasible integration of this LC device make it an ideal candidate for THz tunable filter, intensity modulator and spatial light modulator.

  15. High-speed electro-optic switch based on nonlinear polymer-clad waveguide incorporated with quasi-in-plane coplanar waveguide electrodes

    NASA Astrophysics Data System (ADS)

    Jiang, Ming-Hui; Wang, Xi-Bin; Xu, Qiang; Li, Ming; Niu, Dong-Hai; Sun, Xiao-Qiang; Wang, Fei; Li, Zhi-Yong; Zhang, Da-Ming

    2018-01-01

    Nonlinear optical (NLO) polymer is a promising material for active waveguide devices that can provide large bandwidth and high-speed response time. However, the performance of the active devices is not only related to the waveguide materials, but also related to the waveguide and electrode structures. In this paper, a high-speed Mach-Zehnder interferometer (MZI) type of electro-optic (EO) switch based on NLO polymer-clad waveguide was fabricated. The quasi-in-plane coplanar waveguide electrodes were also introduced to enhance the poling and modulating efficiency. The characteristic parameters of the waveguide and electrode were carefully designed and simulated. The switches were fabricated by the conventional micro-fabrication process. Under 1550-nm operating wavelength, a typical fabricated switch showed a low insertion loss of 10.2 dB, and the switching rise time and fall time were 55.58 and 57.98 ns, respectively. The proposed waveguide and electrode structures could be developed into other active EO devices and also used as the component in the polymer-based large-scale photonic integrated circuit.

  16. The Hands-On Optics Project: a demonstration of module 3-magnificent magnifications

    NASA Astrophysics Data System (ADS)

    Pompea, Stephen M.; Sparks, Robert T.; Walker, Constance E.

    2014-07-01

    The Hands-On Optics project offers an example of a set of instructional modules that foster active prolonged engagement. Developed by SPIE, OSA, and NOAO through funding from the U.S. National Science Foundation, the modules were originally designed for afterschool settings and museums. However, because they were based on national standards in mathematics, science, and technology, they were easily adapted for use in classrooms. The philosophy and implementation strategies of the six modules will be described as well as lessons learned in training educators. The modules were implementing with the help of optics industry professionals who served as expert volunteers to assist educators. A key element of the modules was that they were developed around an understanding of optics misconceptions and used culminating activities in each module as a form of authentic assessment. Thus student achievement could be measured by evaluating the actual product created by each student in applying key concepts, tools, and applications together at the end of each module. The program used a progression of disciplinary core concepts to build an integrated sequence and crosscutting ideas and practices to infuse the principles of the modern electro-optical field into the modules. Whenever possible, students were encouraged to experiment and to create, and to pursue inquiry-based approaches. The result was a program that had high appeal to regular as well as gifted students.

  17. Spectrophone stabilized laser with line center offset frequency control

    NASA Technical Reports Server (NTRS)

    Kavaya, M. J.; Menzies, R. T. (Inventor)

    1984-01-01

    Continuous offset tuning of a frequency stabilized CW gas laser is achieved by using a spectrophone filled with the same gas as the laser for sensing a dither modulation, detecting a first or second derivative of the spectrophone output with a lock-in amplifier, the detected output of which is integrated, and applying the integrator output as a correction signal through a circuit which adds to the dither signal from an oscillator a dc offset that is adjusted with a potentiometer to a frequency offset from the absorption line center of the gas, but within the spectral linewidth of the gas. Tuning about that offset frequency is achieved by adding a dc value to the detected output of the dither modulation before integration using a potentiometer.

  18. A prototype stationary Fourier transform spectrometer for near-infrared absorption spectroscopy.

    PubMed

    Li, Jinyang; Lu, Dan-feng; Qi, Zhi-mei

    2015-09-01

    A prototype stationary Fourier transform spectrometer (FTS) was constructed with a fiber-coupled lithium niobate (LiNbO3) waveguide Mach-Zehnder interferometer (MZI) for the purpose of rapid on-site spectroscopy of biological and chemical measurands. The MZI contains push-pull electrodes for electro-optic modulation, and its interferogram as a plot of intensity against voltage was obtained by scanning the modulating voltage from -60 to +60 V in 50 ms. The power spectrum of input signal was retrieved by Fourier transform processing of the interferogram combined with the wavelength dispersion of half-wave voltage determined for the MZI used. The prototype FTS operates in the single-mode wavelength range from 1200 to 1700 nm and allows for reproducible spectroscopy. A linear concentration dependence of the absorbance at λmax = 1451 nm for water in ethanolic solution was obtained using the prototype FTS. The near-infrared spectroscopy of solid samples was also implemented, and the different spectra obtained with different materials evidenced the chemical recognition capability of the prototype FTS. To make this prototype FTS practically applicable, work on improving its spectral resolution by increasing the maximum optical path length difference is in progress.

  19. Deconvolution of Voltage Sensor Time Series and Electro-diffusion Modeling Reveal the Role of Spine Geometry in Controlling Synaptic Strength.

    PubMed

    Cartailler, Jerome; Kwon, Taekyung; Yuste, Rafael; Holcman, David

    2018-03-07

    Most synaptic excitatory connections are made on dendritic spines. But how the voltage in spines is modulated by its geometry remains unclear. To investigate the electrical properties of spines, we combine voltage imaging data with electro-diffusion modeling. We first present a temporal deconvolution procedure for the genetically encoded voltage sensor expressed in hippocampal cultured neurons and then use electro-diffusion theory to compute the electric field and the current-voltage conversion. We extract a range for the neck resistances of 〈R〉=100±35MΩ. When a significant current is injected in a spine, the neck resistance can be inversely proportional to its radius, but not to the radius square, as predicted by Ohm's law. We conclude that the postsynaptic voltage cannot only be modulated by changing the number of receptors, but also by the spine geometry. Thus, spine morphology could be a key component in determining synaptic transduction and plasticity. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Quadratic Electro-Optic Effect and Electroabsorption in a Novel Nano-Optical Material based on the Nonconjugated Conductive Polymer, Poly(ethylenepyrrolediyl) Derivative

    NASA Astrophysics Data System (ADS)

    Swamy, R.; Vippa, P.; Rajagopalan, H.; Titus, J.; Thakur, M.; Sen, A.

    2005-03-01

    We report quadratic electro-optic effect and electroabsorption measurements in a novel nano-optical material based on the nonconjugated conductive polymer, iodine-doped poly(ethylenepyrrolediyl) derivative. Such effect has been recently reported in doped polyisoprene [1]. The measurement was made at 633 nm using field-induced birefringence. A modulation of 0.1% was observed for a field of 0.66 V/micron (film thickness 0.3 micron). The change in refractive index, δn, is 3.35x10-4 and the Kerr constant is 1.2x10-9 m/V^2 which is about 125 times that of nitrobenzene. Modulation due to electroabsorption was 0.05%. The exceptionally large electro-optic effect is most likely due to the specific structure and quantum confinement within a nanometer volume. In contrast, nonlinearity in a conjugated polymer is known to decrease upon iodine doping. [1] Thakur, Swamy and Titus, Macromolecules, Vol.37, 2677, (2004).

  1. Integrated Electro-optical Laser-Beam Scanners

    NASA Technical Reports Server (NTRS)

    Boord, Warren T.

    1990-01-01

    Scanners using solid-state devices compact, consume little power, and have no moving parts. Integrated electro-optical laser scanner, in conjunction with external lens, points outgoing beam of light in any number of different directions, depending on number of upper electrodes. Offers beam-deflection angles larger than those of acousto-optic scanners. Proposed for such diverse applications as nonimpact laser printing, color imaging, ranging, barcode reading, and robotic vision.

  2. Tunable optical analog to electromagnetically induced transparency in graphene-ring resonators system

    PubMed Central

    Wang, Yonghua; Xue, Chenyang; Zhang, Zengxing; Zheng, Hua; Zhang, Wendong; Yan, Shubin

    2016-01-01

    The analogue of electromagnetically induced transparency in optical ways has shown great potential in optical delay and quantum-information technology due to its flexible design and easy implementation. The chief drawback for these devices is the bad tunability. Here we demonstrate a tunable optical transparency system formed by graphene-silicon microrings which could control the transparent window by electro-optical means. The device consists of cascaded coupled ring resonators and a graphene/graphene capacitor which integrated on one of the rings. By tuning the Fermi level of the graphene sheets, we can modulate the round-trip ring loss so that the transparency window can be dynamically tuned. The results provide a new method for the manipulation and transmission of light in highly integrated optical circuits and quantum information storage devices. PMID:27941895

  3. Ultralow power trapping and fluorescence detection of single particles on an optofluidic chip.

    PubMed

    Kühn, S; Phillips, B S; Lunt, E J; Hawkins, A R; Schmidt, H

    2010-01-21

    The development of on-chip methods to manipulate particles is receiving rapidly increasing attention. All-optical traps offer numerous advantages, but are plagued by large required power levels on the order of hundreds of milliwatts and the inability to act exclusively on individual particles. Here, we demonstrate a fully integrated electro-optical trap for single particles with optical excitation power levels that are five orders of magnitude lower than in conventional optical force traps. The trap is based on spatio-temporal light modulation that is implemented using networks of antiresonant reflecting optical waveguides. We demonstrate the combination of on-chip trapping and fluorescence detection of single microorganisms by studying the photobleaching dynamics of stained DNA in E. coli bacteria. The favorable size scaling facilitates the trapping of single nanoparticles on integrated optofluidic chips.

  4. Synchronization in spread spectrum laser radar systems based on PMD-DLL

    NASA Astrophysics Data System (ADS)

    Buxbaum, Bernd; Schwarte, Rudolf; Ringbeck, Thorsten; Luan, Xuming; Zhang, Zhigang; Xu, Zhanping; Hess, H.

    2000-09-01

    This paper proposes a new optoelectronic delay locked loop (OE-DLL) and its use in optical ranging systems. The so called PMD-DLL receiver module is based on a novel electro-optical modulator (EOM), called the Photonic Mixer Device (PMD). This sensor element is a semiconductor device, which combines fast optical sensing and mixing of incoherent light signals in one component part by its unique and powerful principle of operation. Integration of some simple additional on-chip components offers a high integrated electro-optical correlation unit. Simulations and experimental results have already impressively verified the operation principle of PMD structures, all realized in CMOS technology so far. Although other technologies are also promising candidates for the PMD realization they should not be further discussed in this contribution. The principle of the new DLL approach is intensively discussed in this paper. Theoretical analysis as well as experimental results of a realized PMD-DLL system are demonstrated and judged. Due to the operation principle of sophisticated PMD devices and their unique features, a correlation process may be realized in order to synchronize a reflected incoherent light wave with an electronic reference signal. The phase shift between both signals represents the distance to an obstacle and may be determined by means of the synchronization process. This new approach, avoiding so far needed critical components such as broadband amplifiers and mixers for the detection of small photo currents in optical distance measurement, offers an extremely fast and precise phase determination in ranging applications based on the time- of-flight (TOF) principle. However, the optical measurement signal may be incoherent -- therefore a laser source is not needed imperatively. The kind of waveform used for the modulation of the light signal is variable and depends on the demands of every specific application. Even if there are plenty other alternatives (e.g., heterodyne techniques), in this contribution only so called quasi-heterodyne techniques - - also known as phase shifting methods -- are discussed and used for the implementation. The light modulation schemes described in this contribution are square-wave as well as pseudo-noise modulation. The latter approach, inspired by the wide spread use in communication as well as in position detection (e.g., IS-95 and GPS), offers essential advantages and is the most promising modulation method for the ranging approach. So called CDMA (code division multiple access) systems form a major task in communication technology investigations since the third generation mobile phone standard is also partly based on this principle. Fast and reliable synchronization in direct sequence spread spectrum communication systems (DSSS) differs hardly from the already mentioned ranging approach and will also be discussed. The possibility to integrate all components in a monolithic PMD based DLL design is also presented and discussed. This method might offer the feature to integrate complete lines or matrixes of PMD based DLLs for highly parallel, multidimensional ranging. Finally, an outlook is given with regard to further optimized PMD front ends. An estimation of the expected characteristics concerning accuracy and speed of the distance measurement is given in conclusion.

  5. Opto-electro-modulated transient photovoltage and photocurrent system for investigation of charge transport and recombination in solar cells.

    PubMed

    Shi, Jiangjian; Li, Dongmei; Luo, Yanhong; Wu, Huijue; Meng, Qingbo

    2016-12-01

    An opto-electro-modulated transient photovoltage/photocurrent system has been developed to probe microscopic charge processes of a solar cell in its adjustable operating conditions. The reliability of this system is carefully determined by electric circuit simulations and experimental measurements. Using this system, the charge transport, recombination and storage properties of a conventional multicrystalline silicon solar cell under different steady-state bias voltages, and light illumination intensities are investigated. This system has also been applied to study the influence of the hole transport material layer on charge extraction and the microscopic charge processes behind the widely considered photoelectric hysteresis in perovskite solar cells.

  6. Thermo-plasmonics: playing with temperature at the nanoscale (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Alabastri, Alessandro; Malerba, Mario; Calandrini, Eugenio; Toma, Andrea; Proietti Zaccaria, Remo

    2017-02-01

    The electro-magnetic field generated within and around dissipative nano-structures upon light radiation is intimately associated to the formation of localized heat sources. In turn, this phenomenon determines localized temperature variations, effect which can be exploited for applications such as photocatalysis [1], nanochemistry [2] or sensor devices [3]. Here we show how the geometrical characteristics of plasmonic nano-structures can indeed be used to modulate the temperature response. The idea is that when metallic structures interact with an electromagnetic field they heat up due to Joule effect. The corresponding temperature variation modifies the optical response of the structure [4,5] and thus its heating process. The key finding is that, depending on the structures geometry, absorption efficiency can either increase or decrease with temperature. Since absorption relates to the thermal energy dissipation and thus to temperature increase, the mechanism leads to positive or negative loops. Consequently, not only an error would be made by neglecting the role of temperature, but it would be not even possible to know, a priori, if the error is towards higher or lower absorption values. Our model can be utilized to study opto-thermal phenomena when high temperature or high intensity sources are employed. [1] M. Honda et al., Appl. Phys. Lett. 104, 061108 (2014) [2] G. Baffou et al., Chem. Soc. Rev. 43, 3898 (2014) [3] S. Ozdemir et al., J. Lightwave Tech. 21, 805 (2003) [4] A. Alabastri et al., ACS Photonics 2, 115 (2015) [5] A. Alabastri et al., Materials 6, 4879 (2013)

  7. Laser-based satellite communication systems stabilized by non-mechanical electro-optic scanners

    NASA Astrophysics Data System (ADS)

    Ziemkiewicz, Michael; Davis, Scott R.; Rommel, Scott D.; Gann, Derek; Luey, Benjamin; Gamble, Joseph D.; Anderson, Mike

    2016-05-01

    Laser communications systems provide numerous advantages for establishing satellite-to-ground data links. As a carrier for information, lasers are characterized by high bandwidth and directionality, allowing for fast and secure transfer of data. These systems are also highly resistant to RF influences since they operate in the infrared portion of the electromagnetic spectrum, far from radio bands. In this paper we will discuss an entirely non-mechanical electro-optic (EO) laser beam steering technology, with no moving parts, which we have used to form robust 400 Mbps optical data connections through air. This technology will enable low cost, compact, and rugged free space optical (FSO) communication modules for small satellite applications. The EO beam-steerer at the heart of this system is used to maintain beam pointing as the satellite orbits. It is characterized by extremely low values for size, weight and power consumption (SWaP) - approximately 300 cm3, 300 g, and 5 W respectively, which represents a marked improvement compared to heavy, and power-consuming gimbal mechanisms. It is capable of steering a 500 mW, 1 mm short wave infrared (SWIR) beam over a field of view (FOV) of up to 50° x 15°, a range which can be increased by adding polarization gratings, which provide a coarse adjust stage at the EO beam scanner output. We have integrated this device into a communication system and demonstrated the capability to lock on and transmit a high quality data stream by modulation of SWIR power.

  8. Design and realization of transparent solar modules based on luminescent solar concentrators integrating nanostructured photonic crystals.

    PubMed

    Jiménez-Solano, Alberto; Delgado-Sánchez, José-Maria; Calvo, Mauricio E; Miranda-Muñoz, José M; Lozano, Gabriel; Sancho, Diego; Sánchez-Cortezón, Emilio; Míguez, Hernán

    2015-12-01

    Herein, we present a prototype of a photovoltaic module that combines a luminescent solar concentrator integrating one-dimensional photonic crystals and in-plane CuInGaSe 2 (CIGS) solar cells. Highly uniform and wide-area nanostructured multilayers with photonic crystal properties were deposited by a cost-efficient and scalable liquid processing amenable to large-scale fabrication. Their role is to both maximize light absorption in the targeted spectral range, determined by the fluorophore employed, and minimize losses caused by emission at angles within the escape cone of the planar concentrator. From a structural perspective, the porous nature of the layers facilitates the integration with the thermoplastic polymers typically used to encapsulate and seal these modules. Judicious design of the module geometry, as well as of the optical properties of the dielectric mirrors employed, allows optimizing light guiding and hence photovoltaic performance while preserving a great deal of transparency. Optimized in-plane designs like the one herein proposed are of relevance for building integrated photovoltaics, as ease of fabrication, long-term stability and improved performance are simultaneously achieved. © 2015 The Authors. Progress in Photovoltaics: Research and Applications published by John Wiley & Sons Ltd.

  9. Design and realization of transparent solar modules based on luminescent solar concentrators integrating nanostructured photonic crystals

    PubMed Central

    Jiménez‐Solano, Alberto; Delgado‐Sánchez, José‐Maria; Calvo, Mauricio E.; Miranda‐Muñoz, José M.; Lozano, Gabriel; Sancho, Diego; Sánchez‐Cortezón, Emilio

    2015-01-01

    Abstract Herein, we present a prototype of a photovoltaic module that combines a luminescent solar concentrator integrating one‐dimensional photonic crystals and in‐plane CuInGaSe2 (CIGS) solar cells. Highly uniform and wide‐area nanostructured multilayers with photonic crystal properties were deposited by a cost‐efficient and scalable liquid processing amenable to large‐scale fabrication. Their role is to both maximize light absorption in the targeted spectral range, determined by the fluorophore employed, and minimize losses caused by emission at angles within the escape cone of the planar concentrator. From a structural perspective, the porous nature of the layers facilitates the integration with the thermoplastic polymers typically used to encapsulate and seal these modules. Judicious design of the module geometry, as well as of the optical properties of the dielectric mirrors employed, allows optimizing light guiding and hence photovoltaic performance while preserving a great deal of transparency. Optimized in‐plane designs like the one herein proposed are of relevance for building integrated photovoltaics, as ease of fabrication, long‐term stability and improved performance are simultaneously achieved. © 2015 The Authors. Progress in Photovoltaics: Research and Applications published by John Wiley & Sons Ltd. PMID:27656090

  10. Overview of EO polymers and polymer modulator stability

    NASA Astrophysics Data System (ADS)

    Lindsay, Geoffrey A.; Ashley, Paul R.; Guenther, Andrew P.; Sanghadasa, Mohan

    2005-09-01

    This is a brief overview of the technology of nonlinear optical polymers (NLOP) and their use in electro-optic (EO) modulators. This paper also covers preliminary results from the authors' laboratories on highly active CLD- and FTC-type chromophores in guest-host films of APC amorphous polycarbonate. Emphasis will be given to thermal stability and long-term EO modulator aging.

  11. A high frequency GaAlAs travelling wave electro-optic modulator at 0.82 micrometers

    NASA Technical Reports Server (NTRS)

    Chorey, Christopher M.; Ferendeci, Altan; Bhasin, Kul B.

    1988-01-01

    Experimental GaAlAs modulators operating at 0.82 micrometers using a Mach-Zehnder interferometer configuration were designed and fabricated. Coplanar 50 ohm travelling wave microwave electrodes were used to obtain a bandwidth length product of 11.95 GHz-cm. The design, fabrication and dc performance of the GaAlAs travelling wave modulator is presented.

  12. Dual use of photonic components in radiation environments

    NASA Astrophysics Data System (ADS)

    Taylor, Edward W.

    1994-06-01

    The steady evolution of and increased requirement for using photonic technologies within the commercial market coupled with decreased defense spending has brought forth new national philosophies regarding widespread use of the technology in both military and commercial sectors. Many commercially available photonic components (i.e., optical fibers, laser diodes, semiconductor detectors, detector arrays, spatial light modulators, integrated optic circuitry and other similar optoelectronic and electro-optic devices are being scrutinized for utility, cost effectiveness and dual-use in a variety of applications. One important area of application is space. This paper will discuss the current state-of-the-art and utility of qualifying and using several mature photonic component technologies in commercial and defense application areas.

  13. Overview of radiation effects research in photonics

    NASA Astrophysics Data System (ADS)

    Webb, Robert C.; Cohn, Lewis M.; Taylor, Edward W.; Greenwell, Roger A.

    1995-05-01

    A brief overview of ongoing radiation effects research in photonics is presented focusing on integrated optic and acousto-optic components. A short summary of radiation-induced effects in electro-optic modulators, detector arrays, and other photonic technologies is presented along with extensive references. The coordinated radiation effects studies among researchers within the Tri-Service Organizations and international experimental teams are beginning to demonstrate consistent measurements of radiation-induced effects in photonic components and confirming earlier reported data. This paper will present an overview of these coordinated investigations and focus on key research being conducted with the AFMC Phillips Laboratory, Naval Research Laboratory, Defence Nuclear Agency, NATO Nuclear Effects Task Group, and the Tri-Service Photonics Coordinating Committee.

  14. Book Reviews

    NASA Astrophysics Data System (ADS)

    Horner, Joseph L.

    1987-04-01

    Progress in the fields of integrated optics and fiber optics is continuing at a rapid pace. Recognizing this trend, the goal of the author is to provide an introductory textbook on time-harmonic electromagnetic theory, with an emphasis on optical rather than microwave technologies. The book is appropriate for an upper-level undergraduate or graduate course. Each chapter includes examples of problems. The book focuses on several areas of prime importance to intergrated optics. These include dielectric waveguide analysis, couple-mode thoery, Bragg scattering, and prism coupling There is very little coverage of active components such as electro-optic modulators and switches. The author assumes the reader has a working knowledge of vector calculus and is familiar with Maxwell's equations.

  15. Controlling graphene plasmons with a zero-index metasurface.

    PubMed

    Lin, Lihui; Lu, Yanxin; Yuan, Mengmeng; Shi, Fenghua; Xu, Haixia; Chen, Yihang

    2017-11-30

    Graphene plasmons, owing to their diverse applications including electro-optical modulation, optical sensing, spectral photometry and tunable lighting at the nanoscale, have recently attracted much attention. One key challenge in advancing this field is to precisely control the propagation of graphene plasmons. Here, we propose an on-chip integrated platform to engineer the wave front of the graphene plasmons through a metasurface with a refractive index of zero. We demonstrate that a well-designed graphene/photonic-crystal metasurface can possess conical plasmonic dispersion at the Brillouin zone center with a triply degenerate state at the Dirac frequency, giving rise to the zero-effective-index of graphene plasmons. Plane-wave-emission and focusing effects of the graphene plasmons are achieved by tailoring such a zero-index metasurface. In addition to the tunable Dirac point frequency enabled by the electrical tuning of the graphene Fermi level, our highly integrated system also provides stable performance even when defects exist. This actively controllable on-chip platform can potentially be useful for integrated photonic circuits and devices.

  16. Heterostructure Quantum Confined Stark Effect Electrooptic Modulators Operating at 938 nm

    DTIC Science & Technology

    1993-12-01

    type of modulator, suitable for use in optical interconnects, is an asymmetric Fabry-Perot reflection modulator (ARM). This type of an intensity ...calibrated spectrometer/diode array (Princeton Instruments Model ST-100) used in conjunction with an optical multichannel analyzer (OMA). The transmission...AD-A279 342 -" RL-TR-93-259 In -House Report December 1993N~I HETEROSTRUCTURE QUANTUM CONFINED STARK EFFECT ELECTRO- OPTIC MODULATORS OPERATING AT 938

  17. Fiber-Coupled Planar Light-Wave Circuit for Seed Laser Control in High Spectral Resolution Lidar Systems

    NASA Technical Reports Server (NTRS)

    Cook, Anthony; McNeil, Shirley; Switzer, Gregg; Battle, Philip

    2010-01-01

    Precise laser remote sensing of aerosol extinction and backscatter in the atmosphere requires a high-power, pulsed, frequency doubled Nd:YAG laser that is wavelength- stabilized to a narrow absorption line such as found in iodine vapor. One method for precise wavelength control is to injection seed the Nd:YAG laser with a low-power CW laser that is stabilized by frequency converting a fraction of the beam to 532 nm, and to actively frequency-lock it to an iodine vapor absorption line. While the feasibility of this approach has been demonstrated using bulk optics in NASA Langley s Airborne High Spectral Resolution Lidar (HSRL) program, an ideal, lower cost solution is to develop an all-waveguide, frequency-locked seed laser in a compact, robust package that will withstand the temperature, shock, and vibration levels associated with airborne and space-based remote sensing platforms. A key technology leading to this miniaturization is the integration of an efficient waveguide frequency doubling element, and a low-voltage phase modulation element into a single, monolithic, planar light-wave circuit (PLC). The PLC concept advances NASA's future lidar systems due to its compact, efficient and reliable design, thus enabling use on small aircraft and satellites. The immediate application for this technology is targeted for NASA Langley's HSRL system for aerosol and cloud characterization. This Phase I effort proposes the development of a potassium titanyl phosphate (KTP) waveguide phase modulator for future integration into a PLC. For this innovation, the proposed device is the integration of a waveguide-based frequency doubler and phase modulator in a single, fiber pigtail device that will be capable of efficient second harmonic generation of 1,064-nm light and subsequent phase modulation of the 532 nm light at 250 MHz, providing a properly spectrally formatted beam for HSRL s seed laser locking system. Fabrication of the integrated PLC chip for NASA Langley, planned for the Phase II effort, will require full integration and optimization of the waveguide components (SHG waveguide, splitters, and phase modulator) onto a single, monolithic device. The PLC will greatly reduce the size and weight, improve electrical- to-optical efficiency, and significantly reduce the cost of NASA Langley s current stabilized HSRL seed laser system built around a commercial off-the-shelf seed laser that is free-space coupled to a bulk doubler and bulk phase modulator.

  18. Integrated LTCC pressure/flow/temperature multisensor for compressed air diagnostics.

    PubMed

    Fournier, Yannick; Maeder, Thomas; Boutinard-Rouelle, Grégoire; Barras, Aurélie; Craquelin, Nicolas; Ryser, Peter

    2010-01-01

    We present a multisensor designed for industrial compressed air diagnostics and combining the measurement of pressure, flow, and temperature, integrated with the corresponding signal conditioning electronics in a single low-temperature co-fired ceramic (LTCC) package. The developed sensor may be soldered onto an integrated electro-fluidic platform by using standard surface mount device (SMD) technology, e.g., as a standard electronic component would be on a printed circuit board, obviating the need for both wires and tubes and thus paving the road towards low-cost integrated electro-fluidic systems. Several performance aspects of this device are presented and discussed, together with electronics design issues.

  19. Integrated LTCC Pressure/Flow/Temperature Multisensor for Compressed Air Diagnostics†

    PubMed Central

    Fournier, Yannick; Maeder, Thomas; Boutinard-Rouelle, Grégoire; Barras, Aurélie; Craquelin, Nicolas; Ryser, Peter

    2010-01-01

    We present a multisensor designed for industrial compressed air diagnostics and combining the measurement of pressure, flow, and temperature, integrated with the corresponding signal conditioning electronics in a single low-temperature co-fired ceramic (LTCC) package. The developed sensor may be soldered onto an integrated electro-fluidic platform by using standard surface mount device (SMD) technology, e.g., as a standard electronic component would be on a printed circuit board, obviating the need for both wires and tubes and thus paving the road towards low-cost integrated electro-fluidic systems. Several performance aspects of this device are presented and discussed, together with electronics design issues. PMID:22163518

  20. Novel ultra-wideband (UWB) photonic generation through photodetection and cross-absorption modulation in a single electroabsorption modulator.

    PubMed

    Wu, Tsu-Hsiu; Wu, Jui-pin; Chiu, Yi-Jen

    2010-02-15

    We propose and demonstrate, by proof of concept, a novel method of ultra-wide band (UWB) photonic generation using photodetection and cross-absorption modulation (XAM) of multiple quantum wells (MQW) in a single short-terminated electroabsorption modulator (SEAM). As an optical pump pulse excite the MQWs of SEAM waveguide, the probe light pulse with the same polarity can be generated through XAM, simultaneously creating photocurrent pulse propagating along the waveguide. Using the short termination of SEAM accompanied by the delayed microwave line, the photocurrent pulse can be reversed in polarity and re-modulated the waveguide, forming a monocycle UWB optical pulse. An 89 ps cycle of monocycle pulse with 114% fractional bandwidth is obtained, where the electrical power spectrum centered at 4 GHz of frequency ranges from 0.1 GHz to 8 GHz for -10 dB drops. Meanwhile, the generation processing is also confirmed by observing the same cycle of monocycle electrical pulse from the photodetection of SEAM. The whole optical processing is performed inside a compact semiconductor device, suggesting the optoelectronic integration template has a potential for the application of UWB photonic generation.

  1. Ruggedizing vibration sensitive components of electro-optical module using wideband dynamic absorber

    NASA Astrophysics Data System (ADS)

    Veprik, Alexander; Openhaim, Yaki; Babitsky, Vladimir; Tuito, Avi

    2018-05-01

    In the modern design approach, the cold portion of Integrated Dewar-Detector-Cooler-Assembly (substrate, infrared focal plane array, cold shield and cold filter) is directly mounted upon the distal end of a cold finger of a cryogenic cooler with no mechanical contact with the warm Dewar shroud. This concept allows for essential reduction of parasitic (conductive) heat load. The penalty, however, is that resulting tip-mass cantilever is lightly damped and, therefore, prone to vibrational extremes typical of the modern battlefield. Without sufficient ruggedizing, vibration induced structural resonances may affect image quality and even may cause mechanical failures due to material fatigue. Use of additional front supports or thickening the cold finger walls results in increased parasitic conductive heat load, power consumption and mechanical complexity. The authors explore the concept of wideband dynamic absorber in application to ruggedizing the Integrated Dewar-Detector-Cooler Assembly.

  2. Optics Communications: Special issue on Polymer Photonics and Its Applications

    NASA Astrophysics Data System (ADS)

    Zhang, Ziyang; Pitwon, Richard C. A.; Feng, Jing

    2016-03-01

    In the last decade polymer photonics has witnessed a tremendous boost in research efforts and practical applications. Polymer materials can be engineered to exhibit unique optical and electrical properties. Extremely transparent and reliable passive optical polymers have been made commercially available and paved the ground for the development of various waveguide components. Advancement in the research activities regarding the synthesis of active polymers has enabled devices such as ultra-fast electro-optic modulators, efficient white light emitting diodes, broadband solar cells, flexible displays, and so on. The fabrication technology is not only fast and cost-effective, but also provides flexibility and broad compatibility with other semiconductor processing technologies. Reports show that polymers have been integrated in photonic platforms such as silicon-on-insulator (SOI), III-V semiconductors, and silica PLCs, and vice versa, photonic components made from a multitude of materials have been integrated, in a heterogeneous/hybrid manner, in polymer photonic platforms.

  3. Measurements of Atmospheric CO2 Column in Cloudy Weather Conditions using An IM-CW Lidar at 1.57 Micron

    NASA Technical Reports Server (NTRS)

    Lin, Bing; Obland, Michael; Harrison, F. Wallace; Nehrir, Amin; Browell, Edward; Campbell, Joel; Dobler, Jeremy; Meadows, Bryon; Fan, Tai-Fang; Kooi, Susan; hide

    2015-01-01

    This study evaluates the capability of atmospheric CO2 column measurements under cloudy conditions using an airborne intensity-modulated continuous-wave integrated-path-differential-absorption lidar operating in the 1.57-m CO2 absorption band. The atmospheric CO2 column amounts from the aircraft to the tops of optically thick cumulus clouds and to the surface in the presence of optically thin clouds are retrieved from lidar data obtained during the summer 2011 and spring 2013 flight campaigns, respectively.

  4. Narrow linewidth comb realized with a mode-locked fiber laser using an intra-cavity waveguide electro-optic modulator for high-speed control.

    PubMed

    Iwakuni, Kana; Inaba, Hajime; Nakajima, Yoshiaki; Kobayashi, Takumi; Hosaka, Kazumoto; Onae, Atsushi; Hong, Feng-Lei

    2012-06-18

    We have developed an optical frequency comb using a mode-locked fiber ring laser with an intra-cavity waveguide electro-optic modulator controlling the optical length in the laser cavity. The mode-locking is achieved with a simple ring configuration and a nonlinear polarization rotation mechanism. The beat note between the laser and a reference laser and the carrier envelope offset frequency of the comb were simultaneously phase locked with servo bandwidths of 1.3 MHz and 900 kHz, respectively. We observed an out-of-loop beat between two identical combs, and obtained a coherent δ-function peak with a signal to noise ratio of 70 dB/Hz.

  5. Design of CMOS compatible and compact, thermally-compensated electro-optic modulator based on off-axis microring resonator for dense wavelength division multiplexing applications.

    PubMed

    Haldar, Raktim; Banik, Abhik D; Varshney, Shailendra K

    2014-09-22

    In this work, we propose and demonstrate the performance of silicon-on-insulator (SOI) off-axis microring resonator (MRR) as electro-optic modulator (EOM). Adding an extra off-axis inner-ring in conventional microring structure provides control to compensate thermal effects on EOM. It is shown that dynamically controlled bias-voltage applied to the outer ring has the potency to quell the thermal effects over a wide range of temperature. Thus, besides the appositely biased conventional microring, off-axis inner microring with pre-emphasized electrical input message signal enables our proposed structure suitable for high data-rate dense wavelength division multiplexing scheme of optical communication within a very compact device size.

  6. Ppbv-Level Ethane Detection Using Quartz-Enhanced Photoacoustic Spectroscopy with a Continuous-Wave, Room Temperature Interband Cascade Laser

    PubMed Central

    Li, Chunguang; Dong, Lei; Zheng, Chuantao; Lin, Jun; Wang, Yiding

    2018-01-01

    A ppbv-level quartz-enhanced photoacoustic spectroscopy (QEPAS)-based ethane (C2H6) sensor was demonstrated by using a 3.3 μm continuous-wave (CW), distributed feedback (DFB) interband cascade laser (ICL). The ICL was employed for targeting a strong C2H6 absorption line located at 2996.88 cm−1 in its fundamental absorption band. Wavelength modulation spectroscopy (WMS) combined with the second harmonic (2f) detection technique was utilized to increase the signal-to-noise ratio (SNR) and simplify data acquisition and processing. Gas pressure and laser frequency modulation depth were optimized to be 100 Torr and 0.106 cm−1, respectively, for maximizing the 2f signal amplitude. Performance of the QEPAS sensor was evaluated using specially prepared C2H6 samples. A detection limit of 11 parts per billion in volume (ppbv) was obtained with a 1-s integration time based on an Allan-Werle variance analysis, and the detection precision can be further improved to ~1.5 ppbv by increasing the integration time up to 230 s. PMID:29495610

  7. Electro-optic guided-mode resonance tuning suppressible by optically induced screening in a vertically coupled hybrid GaN/Si microring resonator

    NASA Astrophysics Data System (ADS)

    Thubthimthong, B.; Sasaki, T.; Hane, K.

    2018-02-01

    GaN as a nanophotonic material has gained much attention in recent years. Using the hybrid GaN/Si platform, we report the electro-optic tuning of guided-mode resonance in a vertically coupled hybrid GaN/Si microring resonator operating in the 1.5 μm window with up to a 6 dB extinction ratio and a 1.5 MHz modulation frequency (test equipment limit). The electro-optic tuning could be optically suppressed by electron-hole-originated screening induced by an ultraviolet excitation at 325 nm. Our work may benefit in externally intervenable optical interconnects for uninterrupted secure photonic networks.

  8. Optimization of A 2-Micron Laser Frequency Stabilization System for a Double-Pulse CO2 Differential Absorption Lidar

    NASA Technical Reports Server (NTRS)

    Chen, Songsheng; Yu, Jirong; Bai, Yingsin; Koch, Grady; Petros, Mulugeta; Trieu, Bo; Petzar, Paul; Singh, Upendra N.; Kavaya, Michael J.; Beyon, Jeffrey

    2010-01-01

    A carbon dioxide (CO2) Differential Absorption Lidar (DIAL) for accurate CO2 concentration measurement requires a frequency locking system to achieve high frequency locking precision and stability. We describe the frequency locking system utilizing Frequency Modulation (FM), Phase Sensitive Detection (PSD), and Proportional Integration Derivative (PID) feedback servo loop, and report the optimization of the sensitivity of the system for the feed back loop based on the characteristics of a variable path-length CO2 gas cell. The CO2 gas cell is characterized with HITRAN database (2004). The method can be applied for any other frequency locking systems referring to gas absorption line.

  9. Performance of ethanol electro-oxidation on Ni-Cu alloy nanowires through composition modulation.

    PubMed

    Tian, Xi-Ke; Zhao, Xiao-Yu; Zhang, Li-de; Yang, Chao; Pi, Zhen-Bang; Zhang, Su-Xin

    2008-05-28

    To reduce the cost of the catalyst for direct ethanol fuel cells and improve its catalytic activity, highly ordered Ni-Cu alloy nanowire arrays have been fabricated successfully by differential pulse current electro-deposition into the pores of a porous anodic alumina membrane (AAMs). The energy dispersion spectrum, scanning and transmission electron microscopy were utilized to characterize the composition and morphology of the Ni-Cu alloy nanowire arrays. The results reveal that the nanowires in the array are uniform, well isolated and parallel to each other. The catalytic activity of the nanowire electrode arrays for ethanol oxidation was tested and the binary alloy nanowire array possesses good catalytic activity for the electro-oxidation of ethanol. The performance of ethanol electro-oxidation was controlled by varying the Cu content in the Ni-Cu alloy and the Ni-Cu alloy nanowire electrode shows much better stability than the pure Ni one.

  10. Electro-Optic Time-to-Space Converter for Optical Detector Jitter Mitigation

    NASA Technical Reports Server (NTRS)

    Birnbaum, Kevin; Farr, William

    2013-01-01

    A common problem in optical detection is determining the arrival time of a weak optical pulse that may comprise only one to a few photons. Currently, this problem is solved by using a photodetector to convert the optical signal to an electronic signal. The timing of the electrical signal is used to infer the timing of the optical pulse, but error is introduced by random delay between the absorption of the optical pulse and the creation of the electrical one. To eliminate this error, a time-to-space converter separates a sequence of optical pulses and sends them to different photodetectors, depending on their arrival time. The random delay, called jitter, is at least 20 picoseconds for the best detectors capable of detecting the weakest optical pulses, a single photon, and can be as great as 500 picoseconds. This limits the resolution with which the timing of the optical pulse can be measured. The time-to-space converter overcomes this limitation. Generally, the time-to-space converter imparts a time-dependent momentum shift to the incoming optical pulses, followed by an optical system that separates photons of different momenta. As an example, an electro-optic phase modulator can be used to apply longitudinal momentum changes (frequency changes) that vary in time, followed by an optical spectrometer (such as a diffraction grating), which separates photons with different momenta into different paths and directs them to impinge upon an array of photodetectors. The pulse arrival time is then inferred by measuring which photodetector receives the pulse. The use of a time-to-space converter mitigates detector jitter and improves the resolution with which the timing of an optical pulse is determined. Also, the application of the converter enables the demodulation of a pulse position modulated signal (PPM) at higher bandwidths than using previous photodetector technology. This allows the creation of a receiver for a communication system with high bandwidth and high bits/photon efficiency.

  11. Recent Progress on Cellulose-Based Electro-Active Paper, Its Hybrid Nanocomposites and Applications

    PubMed Central

    Khan, Asif; Abas, Zafar; Kim, Heung Soo; Kim, Jaehwan

    2016-01-01

    We report on the recent progress and development of research into cellulose-based electro-active paper for bending actuators, bioelectronics devices, and electromechanical transducers. The cellulose electro-active paper is characterized in terms of its biodegradability, chirality, ample chemically modifying capacity, light weight, actuation capability, and ability to form hybrid nanocomposites. The mechanical, electrical, and chemical characterizations of the cellulose-based electro-active paper and its hybrid composites such as blends or coatings with synthetic polymers, biopolymers, carbon nanotubes, chitosan, and metal oxides, are explained. In addition, the integration of cellulose electro-active paper is highlighted to form various functional devices including but not limited to bending actuators, flexible speaker, strain sensors, energy harvesting transducers, biosensors, chemical sensors and transistors for electronic applications. The frontiers in cellulose paper devices are reviewed together with the strategies and perspectives of cellulose electro-active paper and cellulose nanocomposite research and applications. PMID:27472335

  12. Recent Progress on Cellulose-Based Electro-Active Paper, Its Hybrid Nanocomposites and Applications.

    PubMed

    Khan, Asif; Abas, Zafar; Kim, Heung Soo; Kim, Jaehwan

    2016-07-26

    We report on the recent progress and development of research into cellulose-based electro-active paper for bending actuators, bioelectronics devices, and electromechanical transducers. The cellulose electro-active paper is characterized in terms of its biodegradability, chirality, ample chemically modifying capacity, light weight, actuation capability, and ability to form hybrid nanocomposites. The mechanical, electrical, and chemical characterizations of the cellulose-based electro-active paper and its hybrid composites such as blends or coatings with synthetic polymers, biopolymers, carbon nanotubes, chitosan, and metal oxides, are explained. In addition, the integration of cellulose electro-active paper is highlighted to form various functional devices including but not limited to bending actuators, flexible speaker, strain sensors, energy harvesting transducers, biosensors, chemical sensors and transistors for electronic applications. The frontiers in cellulose paper devices are reviewed together with the strategies and perspectives of cellulose electro-active paper and cellulose nanocomposite research and applications.

  13. Applications of telecommunication technology for optical instrumentation with an emphasis on space-time duality

    NASA Astrophysics Data System (ADS)

    van Howe, James William

    Telecommunication technology has often been applied to areas of science and engineering seemingly unrelated to communication systems. Innovations such as electronic amplifiers, the transistor, digital coding, optical fiber, and the laser, which all had roots in communication technology, have been implemented in devices from bar-code scanners to fiber endoscopes for medical procedures. In the same way, the central theme of the work in the following chapters has been to borrow both the concepts and technology of telecommunications systems to develop novel optical instrumentation for non-telecom pursuits. This work particularly leverages fiber-integrated electro-optic phase modulators to apply custom phase profiles to ultrafast pulses for control and manipulation. Such devices are typically used in telecom transmitters to encode phase data onto optical pulses (differential phase-shift keying), or for chirped data transmission. We, however, use electro-optic phase modulators to construct four novel optical devices: (1) a programmable ultrafast optical delay line with record scanning speed for applications in optical metrology, interferometry, or broad-band phase arrays, (2) a multiwavelength pulse generator for real-time optical sampling of electronic waveforms, (3) a simple femtosecond pulse generator for uses in biomedical imaging or ultrafast spectroscopy, and (4) a nonlinear phase compensator to increase the energy of fiber-amplified ultrashort pulse systems. In addition, we describe a fifth instrument which makes use of a higher-order mode fiber, similar in design to dispersion compensating fibers used for telecom. Through soliton self-frequency shift in the higher-order mode fiber, we can broadly-tune the center frequency of ultrashort pulses in energy regimes useful for biomedical imaging or ultrafast spectroscopy. The advantages gained through using telecom components in each of these systems are the simplicity and robustness of all-fiber configurations, high-speed operation, and electronic control of signals. Finally, we devote much attention to the paradigm of space-time duality and temporal imaging which allows the electro-optic phase modulators used in our instrumentation to be framed as temporal analogs of diffractive optical elements such as lenses and prisms. We show how the concepts of "time-lenses" and "time-prisms" give an intuitive understanding of our work as well as insight for the general development of optical instrumentation.

  14. Measurements of photorefractive and absorptive gratings in GaAs:EL2 and their use in extracting material parameters

    NASA Astrophysics Data System (ADS)

    Rychnovsky, Steve; Gilbreath, G. C.; Zavriyev, A.

    1996-10-01

    Simultaneous measurements of the photorefractive and the absorptive grating gain components in GaAs:EL2 are made and are shown to display qualitative behavior consistent with linearized solutions of a two-carrier rate equation model. These two components, together with the linear absorption coefficient, permit determination of four independent material parameters, e.g., the ionized and the nonionized EL2 densities, the hole photoionization cross section ( sigma h), and the electro-optic coefficient (r41). Data obtained at optical wavelengths of 0.96 and 1.06 mu m indicate that sigma h and r41 are larger than published values. .

  15. Electro-optic architecture (EOA) for sensors and actuators in aircraft propulsion systems

    NASA Technical Reports Server (NTRS)

    Glomb, W. L., Jr.

    1989-01-01

    Results of a study to design an optimal architecture for electro-optical sensing and control in advanced aircraft and space systems are described. The propulsion full authority digital Electronic Engine Control (EEC) was the focus for the study. The recommended architecture is an on-engine EEC which contains electro-optic interface circuits for fiber-optic sensors on the engine. Size and weight are reduced by multiplexing arrays of functionally similar sensors on a pair of optical fibers to common electro-optical interfaces. The architecture contains common, multiplex interfaces to seven sensor groups: (1) self luminous sensors; (2) high temperatures; (3) low temperatures; (4) speeds and flows; (5) vibration; (6) pressures; and (7) mechanical positions. Nine distinct fiber-optic sensor types were found to provide these sensing functions: (1) continuous wave (CW) intensity modulators; (2) time division multiplexing (TDM) digital optic codeplates; (3) time division multiplexing (TDM) analog self-referenced sensors; (4) wavelength division multiplexing (WDM) digital optic code plates; (5) wavelength division multiplexing (WDM) analog self-referenced intensity modulators; (6) analog optical spectral shifters; (7) self-luminous bodies; (8) coherent optical interferometers; and (9) remote electrical sensors. The report includes the results of a trade study including engine sensor requirements, environment, the basic sensor types, and relevant evaluation criteria. These figures of merit for the candidate interface types were calculated from the data supplied by leading manufacturers of fiber-optic sensors.

  16. Graphene optical modulator

    NASA Astrophysics Data System (ADS)

    Liu, Ming; Yin, Xiaobo; Wang, Feng; Zhang, Xiang

    2011-10-01

    Data communications have been growing at a speed even faster than Moore's Law, with a 44-fold increase expected within the next 10 years. Data Transfer on such scale would have to recruit optical communication technology and inspire new designs of light sources, modulators, and photodetectors. An ideal optical modulator will require high modulation speed, small device footprint and large operating bandwidth. Silicon modulators based on free carrier plasma dispersion effect and compound semiconductors utilizing direct bandgap transition have seen rapid improvement over the past decade. One of the key limitations for using silicon as modulator material is its weak refractive index change, which limits the footprint of silicon Mach-Zehnder interferometer modulators to millimeters. Other approaches such as silicon microring modulators reduce the operation wavelength range to around 100 pm and are highly sensitive to typical fabrication tolerances and temperature fluctuations. Growing large, high quality wafers of compound semiconductors, and integrating them on silicon or other substrates is expensive, which also restricts their commercialization. In this work, we demonstrate that graphene can be used as the active media for electroabsorption modulators. By tuning the Fermi energy level of the graphene layer, we induced changes in the absorption coefficient of graphene at communication wavelength and achieve a modulation depth above 3 dB. This integrated device also has the potential of working at high speed.

  17. High frequency GaAlAs modulator and photodetector for phased array antenna applications

    NASA Technical Reports Server (NTRS)

    Claspy, P. C.; Chorey, C. M.; Hill, S. M.; Bhasin, K. B.

    1988-01-01

    A waveguide Mach-Zehnder electro-optic modulator and an interdigitated photoconductive detector designed to operate at 820 nm, fabricated on different GaAlAs/GaAs heterostructure materials, are being investigated for use in optical interconnects in phased array antenna systems. Measured optical attenuation effects in the modulator are discussed and the observed modulation performance up to 1 GHz is presented. Measurements of detector frequency response are described and results presented.

  18. Optical modulator based on silicon nanowires racetrack resonator

    NASA Astrophysics Data System (ADS)

    Sherif, S. M.; Shahada, L.; Swillam, M.

    2018-02-01

    An optical modulator based on the racetrack resonator configuration is introduced. The structure of the resonator modulator is built from silicon nanowires on silica. The cladding and voids between the silicon nanowires are filled with an electro-optic polymer. The proposed modulator is fully CMOS compatible. When the resonance is tuned to the 1.55μm wavelength, it experiences a wavelength shift upon voltage application, which is measured at the output as a change in the power level.

  19. Frequency-agile dual-comb spectroscopy

    NASA Astrophysics Data System (ADS)

    Millot, Guy; Pitois, Stéphane; Yan, Ming; Hovhannisyan, Tatevik; Bendahmane, Abdelkrim; Hänsch, Theodor W.; Picqué, Nathalie

    2016-01-01

    Spectroscopic gas sensing and its applications to, for example, trace detection or chemical kinetics, require ever more demanding measurement times, acquisition rates, sensitivities, precisions and broad tuning ranges. Here, we propose a new approach to near-infrared molecular spectroscopy, utilizing advanced concepts of optical telecommunications and supercontinuum photonics. We generate, without mode-locked lasers, two frequency combs of slightly different repetition frequencies and moderate, but rapidly tunable, spectral span. The output of a frequency-agile continuous-wave laser is split and sent into two electro-optic intensity modulators. Flat-top low-noise frequency combs are produced by wave-breaking in a nonlinear optical fibre of normal dispersion. With a dual-comb spectrometer, we record Doppler-limited spectra spanning 60 GHz within 13 μs and an 80 kHz refresh rate, at a tuning speed of 10 nm s-1. The sensitivity for weak absorption is enhanced by a long gas-filled hollow-core fibre. New opportunities for real-time diagnostics may be opened up, even outside the laboratory.

  20. Over-the-air in-band full-duplex system with hybrid RF optical and baseband digital self-interference cancellation

    NASA Astrophysics Data System (ADS)

    Zhang, Yunhao; Li, Longsheng; Bi, Meihua; Xiao, Shilin

    2017-12-01

    In this paper, we propose a hybrid analog optical self-interference cancellation (OSIC) and baseband digital SIC (DSIC) system for over-the-air in-band full-duplex (IBFD) wireless communication. Analog OSIC system is based on optical delay line, electro-absorption modulation lasers (EMLs) and balanced photodetector (BPD), which has the properties of high adjusting precision and broad processing bandwidth. With the help of baseband DSIC, the cancellation depth limitation of OSIC can be mitigated so as to achieve deeper total SIC depth. Experimental results show about 20-dB depth by OSIC and 10-dB more depth by DSIC over 1GHz broad baseband, so that the signal of interest (SOI) overlapped by wideband self-interference (SI) signal is better recovered compared to the IBFD system with OSIC or DSIC only. The hybrid of OSIC and DSIC takes advantages of the merits of optical devices and digital processors to achieve deep cancellation depth over broad bandwidth.

  1. Gigahertz speed operation of epsilon-near-zero silicon photonic modulators

    DOE PAGES

    Wood, Michael G.; Campione, Salvatore; Parameswaran, S.; ...

    2018-02-21

    Opmore » tical communication systems increasingly require electro-optical modulators that deliver high modulation speeds across a large optical bandwidth with a small device footprint and a CMOS-compatible fabrication process. Although silicon photonic modulators based on transparent conducting oxides (TCOs) have shown promise for delivering on these requirements, modulation speeds to date have been limited. Here, we describe the design, fabrication, and performance of a fast, compact electroabsorption modulator based on TCOs. The modulator works by using bias voltage to increase the carrier density in the conducting oxide, which changes the permittivity and hence optical attenuation by almost 10 dB. Under bias, light is tightly confined to the conducting oxide layer through nonresonant epsilon-near-zero (ENZ) effects, which enable modulation over a broad range of wavelengths in the telecommunications band. Our approach features simple integration with passive silicon waveguides, the use of stable inorganic materials, and the ability to modulate both transverse electric and magnetic polarizations with the same device design. Using a 4-μm-long modulator and a drive voltage of 2 V p p , we demonstrate digital modulation at rates of 2.5 Gb/s. We report broadband operation with a 6.5 dB extinction ratio across the 1530–1590 nm band and a 10 dB insertion loss. This work verifies that high-speed ENZ devices can be created using conducting oxide materials and paves the way for additional technology development that could have a broad impact on future optical communications systems.« less

  2. Gigahertz speed operation of epsilon-near-zero silicon photonic modulators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, Michael G.; Campione, Salvatore; Parameswaran, S.

    Opmore » tical communication systems increasingly require electro-optical modulators that deliver high modulation speeds across a large optical bandwidth with a small device footprint and a CMOS-compatible fabrication process. Although silicon photonic modulators based on transparent conducting oxides (TCOs) have shown promise for delivering on these requirements, modulation speeds to date have been limited. Here, we describe the design, fabrication, and performance of a fast, compact electroabsorption modulator based on TCOs. The modulator works by using bias voltage to increase the carrier density in the conducting oxide, which changes the permittivity and hence optical attenuation by almost 10 dB. Under bias, light is tightly confined to the conducting oxide layer through nonresonant epsilon-near-zero (ENZ) effects, which enable modulation over a broad range of wavelengths in the telecommunications band. Our approach features simple integration with passive silicon waveguides, the use of stable inorganic materials, and the ability to modulate both transverse electric and magnetic polarizations with the same device design. Using a 4-μm-long modulator and a drive voltage of 2 V p p , we demonstrate digital modulation at rates of 2.5 Gb/s. We report broadband operation with a 6.5 dB extinction ratio across the 1530–1590 nm band and a 10 dB insertion loss. This work verifies that high-speed ENZ devices can be created using conducting oxide materials and paves the way for additional technology development that could have a broad impact on future optical communications systems.« less

  3. Robust Hinfinity position control synthesis of an electro-hydraulic servo system.

    PubMed

    Milić, Vladimir; Situm, Zeljko; Essert, Mario

    2010-10-01

    This paper focuses on the use of the techniques based on linear matrix inequalities for robust H(infinity) position control synthesis of an electro-hydraulic servo system. A nonlinear dynamic model of the hydraulic cylindrical actuator with a proportional valve has been developed. For the purpose of the feedback control an uncertain linearized mathematical model of the system has been derived. The structured (parametric) perturbations in the electro-hydraulic coefficients are taken into account. H(infinity) controller extended with an integral action is proposed. To estimate internal states of the electro-hydraulic servo system an observer is designed. Developed control algorithms have been tested experimentally in the laboratory model of an electro-hydraulic servo system. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Symmetric 40-Gb/s TWDM-PON with 51-dB loss budget by using a single SOA as preamplifier, booster and format converter in ONU.

    PubMed

    Li, Zhengxuan; Yi, Lilin; Hu, Weisheng

    2014-10-06

    In this paper, we propose to use a semiconductor optical amplifier (SOA) in the optical network unit (ONU) to improve the loss budget in time and wavelength division multiplexed-passive optical network (TWDM-PON) systems. The SOA boosts the upstream signal to increase the output power of the electro-absorption modulated laser (EML) and simultaneously pre-amplifies the downstream signal for sensitivity improvement. The penalty caused by cross gain modulation (XGM) effect is negligible due to the low extinction ratio (ER) of upstream signal and the large wavelength difference between upstream and downstream links. In order to achieve a higher output power, the SOA is driven into its saturation region, where the self-phase modulation (SPM) effect converts the intensity into phase information and realizes on-off-keying (OOK) to phase-shifted-keying (PSK) format conversion. In this way, the pattern effect is eliminated, which releases the requirement of gain-clamping on SOA. To further improve the loss budget of upstream link, an Erbium doped fiber amplifier (EDFA) is used in the optical line terminal (OLT) to pre-amplify the received signal. For the downstream direction, directly modulated laser (DML) is used as the laser source. Taking advantage of its carrier-less characteristic, directly modulated signal shows high tolerance to fiber nonlinearity, which could support a downstream launch power as high as + 16 dBm per channel. In addition, the signal is pre-amplified by the SOA in ONU before being detected, so the sensitivity limitation for downstream link is also removed. As a result, a truly passive symmetric 40-Gb/s TWDM-PON was demonstrated, achieving a link loss budget of 51 dB.

  5. Performance Comparison of 112-Gb/s DMT, Nyquist PAM4, and Partial-Response PAM4 for Future 5G Ethernet-Based Fronthaul Architecture

    NASA Astrophysics Data System (ADS)

    Eiselt, Nicklas; Muench, Daniel; Dochhan, Annika; Griesser, Helmut; Eiselt, Michael; Olmos, Juan Jose Vegas; Monroy, Idelfonso Tafur; Elbers, Joerg-Peter

    2018-05-01

    For a future 5G Ethernet-based fronthaul architecture, 100G trunk lines of a transmission distance up to 10 km standard single mode fiber (SSMF) in combination with cheap grey optics to daisy chain cell site network interfaces are a promising cost- and power-efficient solution. For such a scenario, different intensity modulation and direct detect (IMDD) Formats at a data rate of 112 Gb/s, namely Nyquist four-level pulse amplitude modulation (PAM4), discrete multi-tone Transmission (DMT) and partial-response (PR) PAM4 are experimentally investigated, using a low-cost electro-absorption modulated laser (EML), a 25G driver and current state-of-the-art high Speed 84 GS/s CMOS digital-to-analog converter (DAC) and analog-to-digital converter (ADC) test chips. Each modulation Format is optimized independently for the desired scenario and their digital signal processing (DSP) requirements are investigated. The performance of Nyquist PAM4 and PR PAM4 depend very much on the efficiency of pre- and post-equalization. We show the necessity for at least 11 FFE-taps for pre-emphasis and up to 41 FFE coefficients at the receiver side. In addition, PR PAM4 requires an MLSE with four states to decode the signal back to a PAM4 signal. On the contrary, bit- and power-loading (BL, PL) is crucial for DMT and an FFT length of at least 512 is necessary. With optimized parameters, all Modulation formats result in a very similar performances, demonstrating a transmission distance of up to 10 km over SSMF with bit error rates (BERs) below a FEC threshold of 4.4E-3, allowing error free transmission.

  6. Development of a unit cell for a Ge:Ga detector array

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Two modules of gallium-doped germanium (Ge:Ga) infrared detectors with integrated multiplexing readouts and supporting drive electronics were designed and tested. This development investigated the feasibility of producing two-dimensional Ge:Ga arrays by stacking linear modules in a housing capable of providing uniaxial stress for enhanced long-wavelength response. Each module includes 8 detectors (1x1x2 mm) mounted to a sapphire board. The element spacing is 12 microns. The back faces of the detector elements are beveled with an 18 deg angle, which was proved to significantly enhance optical absorption. Each module includes a different silicon metal-oxide semiconductor field effect transistor (MOSFET) readout. The first circuit was built from discrete MOSFET components; the second incorporated devices taken from low-temperature integrated circuit multiplexers. The latter circuit exhibited much lower stray capacitance and improved stability. Using these switched-FET circuits, it was demonstrated that burst readout, with multiplexer active only during the readout period, could successfully be implemented at approximately 3.5 K.

  7. Interferometric Phase-Locking of Two Electronic Oscillators Based on a Cascade Electro-Optic Modulator

    NASA Astrophysics Data System (ADS)

    Chien, Pie-Yau; Chao, Chen-Hsing

    1993-03-01

    An optical phase-locked loop system based on a triangular phase-modulated cascade Mach-Zehnder modulator is demonstrated. A reference oscillator of 10 MHz is multiplied such that it can be used to lock a target oscillator of 120 MHz. The phase error of \\varDeltaθe≤2.0× 10-4 rad/Hz1/2 has been implemented in this system.

  8. Demonstration of 40 MHz thin-film electro-optic modulator using an organic molecular salt

    NASA Astrophysics Data System (ADS)

    Bhowmik, Achintya; Ahyi, Ayayi; Tan, Shida; Mishra, Alpana; Thakur, Mrinal

    2000-03-01

    Recently we reported the first demonstration of a single-pass thin-film electro-optic modulator based on a DAST single-crystal film.(M. Thakur, J. Xu, A. Bhowmik, and L. Zhou, Appl. Phys. Lett. 74, 635-637 (1999).) In this work, we report a larger modulation depth ( ~80%) and higher speed of operation. Excellent optical quality single-crystal films were prepared by a modified shear method.(M. Thakur and S. Meyler, Macromolecules 18, 2341 (1985); M. Thakur, Y. Shani, G. C. Chi, and K. O'Brien, Synth. Met. 28, D595 (1989).) Thin-film modulator was constructed by depositing electrodes across the polar axis. The beam from a Ti-Sapphire laser, tunable over 720-850 nm, was propagated perpendicular to the film surface. The modulated signal was detected using a fast photodetector, and displayed on a high bandwidth oscilloscope and a spectrum analyzer. The response was independent of the frequency of applied field over the measurement range (2 kHz - 40 MHz). A much higher speed (>100 GHz) of operation should be possible using these films. These modulators involve negligible losses compared to the waveguide structures, and have significant potential for a broad range of applications in high speed optical signal processing.

  9. MEMS Technology for Space Applications

    NASA Technical Reports Server (NTRS)

    vandenBerg, A.; Spiering, V. L.; Lammerink, T. S. J.; Elwenspoek, M.; Bergveld, P.

    1995-01-01

    Micro-technology enables the manufacturing of all kinds of components for miniature systems or micro-systems, such as sensors, pumps, valves, and channels. The integration of these components into a micro-electro-mechanical system (MEMS) drastically decreases the total system volume and mass. These properties, combined with the increasing need for monitoring and control of small flows in (bio)chemical experiments, makes MEMS attractive for space applications. The level of integration and applied technology depends on the product demands and the market. The ultimate integration is process integration, which results in a one-chip system. An example of process integration is a dosing system of pump, flow sensor, micromixer, and hybrid feedback electronics to regulate the flow. However, for many applications, a hybrid integration of components is sufficient and offers the advantages of design flexibility and even the exchange of components in the case of a modular set up. Currently, we are working on hybrid integration of all kinds of sensors (physical and chemical) and flow system modules towards a modular system; the micro total analysis system (micro TAS). The substrate contains electrical connections as in a printed circuit board (PCB) as well as fluid channels for a circuit channel board (CCB) which, when integrated, form a mixed circuit board (MCB).

  10. Absolute determination of local tropospheric OH concentrations

    NASA Technical Reports Server (NTRS)

    Armerding, Wolfgang; Comes, Franz-Josef

    1994-01-01

    Long path absorption (LPA) according to Lambert Beer's law is a method to determine absolute concentrations of trace gases such as tropospheric OH. We have developed a LPA instrument which is based on a rapid tuning of the light source which is a frequency doubled dye laser. The laser is tuned across two or three OH absorption features around 308 nm with a scanning speed of 0.07 cm(exp -1)/microsecond and a repetition rate of 1.3 kHz. This high scanning speed greatly reduces the fluctuation of the light intensity caused by the atmosphere. To obtain the required high sensitivity the laser output power is additionally made constant and stabilized by an electro-optical modulator. The present sensitivity is of the order of a few times 10(exp 5) OH per cm(exp 3) for an acquisition time of a minute and an absorption path length of only 1200 meters so that a folding of the optical path in a multireflection cell was possible leading to a lateral dimension of the cell of a few meters. This allows local measurements to be made. Tropospheric measurements have been carried out in 1991 resulting in the determination of OH diurnal variation at specific days in late summer. Comparison with model calculations have been made. Interferences are mainly due to SO2 absorption. The problem of OH self generation in the multireflection cell is of minor extent. This could be shown by using different experimental methods. The minimum-maximum signal to noise ratio is about 8 x 10(exp -4) for a single scan. Due to the small size of the absorption cell the realization of an open air laboratory is possible in which by use of an additional UV light source or by additional fluxes of trace gases the chemistry can be changed under controlled conditions allowing kinetic studies of tropospheric photochemistry to be made in open air.

  11. Hybrid Membrane/Absorption Process for Post-combustion CO2 Capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Shiguang; Shou, S.; Pyrzynski, Travis

    2013-12-31

    This report summarizes scientific/technical progress made for bench-scale membrane contactor technology for post-combustion CO2 capture from DOE Contract No. DE-FE-0004787. Budget Period 1 (BP1) membrane absorber, Budget Period 2 (BP2) membrane desorber and Budget Period 3 (BP3) integrated system and field testing studies have been completed successfully and met or exceeded the technical targets (≥ 90% CO2 removal and CO2 purity of 97% in one membrane stage). Significant breakthroughs are summarized below: BP1 research: The feasibility of utilizing the poly (ether ether ketone), PEEK, based hollow fiber contractor (HFC) in combination with chemical solvents to separate and capture at leastmore » 90% of the CO2 from simulated flue gases has been successfully established. Excellent progress has been made as we have achieved the BP1 goal: ≥ 1,000 membrane intrinsic CO2 permeance, ≥ 90% CO2 removal in one stage, ≤ 2 psi gas side pressure drop, and ≥ 1 (sec)-1 mass transfer coefficient. Initial test results also show that the CO2 capture performance, using activated Methyl Diethanol Amine (aMDEA) solvent, was not affected by flue gas contaminants O2 (~3%), NO2 (66 ppmv), and SO2 (145 ppmv). BP2 research: The feasibility of utilizing the PEEK HFC for CO2-loaded solvent regeneration has been successfully established High CO2 stripping flux, one order of magnitude higher than CO2 absorption flux, have been achieved. Refined economic evaluation based on BP1 membrane absorber and BP2 membrane desorber laboratory test data indicate that the CO2 capture costs are 36% lower than DOE’s benchmark amine absorption technology. BP3 research: A bench-scale system utilizing a membrane absorber and desorber was integrated into a continuous CO2 capture process using contactors containing 10 to 20 ft2 of membrane area. The integrated process operation was stable through a 100-hour laboratory test, utilizing a simulated flue gas stream. Greater than 90% CO2 capture combined with 97% CO2 product purity was achieved throughout the test. Membrane contactor modules have been scaled from bench scale 2-inch diameter by 12-inch long (20 ft2 membrane surface area) modules to 4-inch diameter by 60-inch long pilot scale modules (165 ft2 membrane surface area). Pilot scale modules were tested in an integrated absorption/regeneration system for CO2 capture field tests at a coal-fired power plant (Midwest Generation’s Will County Station located in Romeoville, IL). Absorption and regeneration contactors were constructed utilizing high performance super-hydrophobic, nano-porous PEEK membranes with CO2 gas permeance of 2,000 GPU and a 1,000 GPU, respectively. Field tests using aMDEA solvent achieved greater than 90% CO2 removal in a single stage. The absorption mass transfer coefficient was 1.2 (sec)-1, exceeding the initial target of 1.0 (sec)-1. This mass transfer coefficient is over one order of magnitude greater than that of conventional gas/liquid contacting equipment. The economic evaluation based on field tests data indicates that the CO2 capture cost associated with membrane contactor technology is $54.69 (Yr 2011$)/tonne of CO2 captured when using aMDEA as a solvent. It is projected that the DOE’s 2025 cost goal of $40 (Yr 2011$)/tonne of CO2 captured can be met by decreasing membrane module cost and by utilizing advanced CO2 capture solvents. In the second stage of the field test, an advanced solvent, Hitachi’s H3-1 was utilized. The use of H3-1 solvent increased mass transfer coefficient by 17% as compared to aMDEA solvent. The high mass transfer coefficient of H3-1 solvent combined with much more favorable solvent regeneration requirements, indicate that the projected savings achievable with membrane contactor process can be further improved. H3-1 solvent will be used in the next pilot-scale development phase. The integrated absorption/regeneration process design and high performance membrane contactors developed in the current bench-scale program will be used as the base technology for future pilot-scale development.« less

  12. Shuttle sortie electro-optical instruments study

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A study to determine the feasibility of adapting existing electro-optical instruments (designed and sucessfully used for ground operations) for use on a shuttle sortie flight and to perform satisfactorily in the space environment is considered. The suitability of these two instruments (a custom made image intensifier camera system and an off-the-shelf secondary electron conduction television camera) to support a barium ion cloud experiment was studied for two different modes of spacelab operation - within the pressurized module and on the pallet.

  13. A Spherical Electro Optic High Voltage Sensor

    DTIC Science & Technology

    1989-06-01

    electro - optic (EO) crystal is introduced for photonic measurement of pulsed high-voltage fields. A spherical shape is used in order to reduce electric field gradients in the vicinity of the sensor. The sensor is pure dielectric and is interrogated remotely using a laser. The sensor does not require the connection of any conducting components, which results in the highest electrical isolation. The spherical nature of the crystal coupled with the incident laser beam, and crossed polarizers (intensity modulation scheme). automatically produces interference figures. The

  14. Enhanced Electro-Optic Phase Shifts in Suspended Waveguides

    DTIC Science & Technology

    2010-01-18

    section,” J. Lightwave. Technol. (16), 1851–1853 (1998). 9. T . Ikegami , “Reflectivity of mode at facet and oscillation mode in double-heterostructure...Enhanced Electro-Optic Phase Shifts in Suspended Waveguides T . H. Stievater,1 D. Park,1 W. S. Rabinovich,1 M. W. Pruessner,1, S. Kanakaraju,2 C. J. K... T . H. Stievater, W. S. Rabinovich, P. G. Goetz, R. Mahon, and S. C. Binari, “A Surface-Normal Coupled- Quantum-Well Modulator at 1.55 Microns,” IEEE

  15. Forster Resonance Energy Transfer and Conformational Stability of Proteins: An Advanced Biophysical Module for Physical Chemistry Students

    ERIC Educational Resources Information Center

    Sanchez, Katheryn M.; Schlamadinger, Diana E.; Gable, Jonathan E.; Kim, Judy E.

    2008-01-01

    Protein folding is an exploding area of research in biophysics and physical chemistry. Here, we describe the integration of several techniques, including absorption spectroscopy, fluorescence spectroscopy, and Forster resonance energy transfer (FRET) measurements, to probe important topics in protein folding. Cytochrome c is used as a model…

  16. Role of interleukin 10 in norfloxacin prevention of luminal free endotoxin translocation in mice with cirrhosis.

    PubMed

    Gómez-Hurtado, Isabel; Moratalla, Alba; Moya-Pérez, Ángela; Peiró, Gloria; Zapater, Pedro; González-Navajas, José M; Giménez, Paula; Such, José; Sanz, Yolanda; Francés, Rubén

    2014-10-01

    Bacterial endotoxin is present in patients with advanced cirrhosis and can induce an immunogenic response without an overt infection. Norfloxacin is a gram-negative bactericidal drug able to maintain low endotoxin levels and stimulate IL-10 production. We aimed at investigating the role of IL-10 in decreasing endotoxin absorption in cirrhotic mice treated with norfloxacin. Cirrhosis was induced by carbon tetrachloride or bile duct ligation in wild type and IL10-deficient mice with or without norfloxacin prior to an intragastrical administration of E. coli, K. pneumonia or E. faecalis. Spontaneous and induced bacterial translocation, free endotoxin and cytokine levels were evaluated in mesenteric lymph nodes. Intestinal permeability was followed by fluorimetry and barrier integrity markers were measured in disrupted intestinal samples. The inflammatory-modulating mechanism was characterized in purified intestinal mononuclear cells. Norfloxacin reduced spontaneous and induced MLN positive-cultures in wild type and IL-10-deficient animals. However, reduction of free endotoxin levels was associated with norfloxacin in wild type but not in IL-10-deficient mice. Wild type but not IL-10-deficient mice treated with norfloxacin significantly normalized intestinal permeability and improved gut barrier integrity markers. The toll-like receptor 4-mediated pro-inflammatory milieu was modulated by norfloxacin in a concentration-dependent manner in cultured intestinal mononuclear cells of wild type mice but not of IL-10-deficient mice. The restoration of IL-10 levels in IL-10-deficient animals reactivated the norfloxacin effect on inflammatory-modulation, gut barrier permeability, and luminal endotoxin absorption. Norfloxacin not only reduces gram-negative intestinal flora but also participates in an IL-10-driven modulation of gut barrier permeability, thus reducing luminal free endotoxin absorption in experimental cirrhosis. Copyright © 2014 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  17. Guided-wave photodiode using through-absorber quantum-well-intermixing and methods thereof

    DOEpatents

    Skogen, Erik J.

    2016-10-25

    The present invention includes a high-speed, high-saturation power detector (e.g., a photodiode) compatible with a relatively simple monolithic integration process. In particular embodiments, the photodiode includes an intrinsic bulk absorption region, which is grown above a main waveguide core including a number of quantum wells (QWs) that are used as the active region of a phase modulator. The invention also includes methods of fabricating integrated photodiode and waveguide assemblies using a monolithic, simplified process.

  18. System and method for controlling engine knock using electro-hydraulic valve actuation

    DOEpatents

    Brennan, Daniel G

    2013-12-10

    A control system for an engine includes a knock control module and a valve control module. The knock control module adjusts a period that one or more of an intake valve and an exhaust valve of a cylinder are open based on engine knock corresponding to the cylinder. The valve control module, based on the adjusted period, controls the one or more of the intake valve and the exhaust valve using one or more hydraulic actuators.

  19. A diode laser-based velocimeter providing point measurements in unseeded flows using modulated filtered Rayleigh scattering (MFRS)

    NASA Astrophysics Data System (ADS)

    Jagodzinski, Jeremy James

    2007-12-01

    The development to date of a diode-laser based velocimeter providing point-velocity-measurements in unseeded flows using molecular Rayleigh scattering is discussed. The velocimeter is based on modulated filtered Rayleigh scattering (MFRS), a novel variation of filtered Rayleigh scattering (FRS), utilizing modulated absorption spectroscopy techniques to detect a strong absorption of a relatively weak Rayleigh scattered signal. A rubidium (Rb) vapor filter is used to provide the relatively strong absorption; alkali metal vapors have a high optical depth at modest vapor pressures, and their narrow linewidth is ideally suited for high-resolution velocimetry. Semiconductor diode lasers are used to generate the relatively weak Rayleigh scattered signal; due to their compact, rugged construction diode lasers are ideally suited for the environmental extremes encountered in many experiments. The MFRS technique utilizes the frequency-tuning capability of diode lasers to implement a homodyne detection scheme using lock-in amplifiers. The optical frequency of the diode-based laser system used to interrogate the flow is rapidly modulated about a reference frequency in the D2-line of Rb. The frequency modulation is imposed on the Rayleigh scattered light that is collected from the probe volume in the flow under investigation. The collected frequency modulating Rayleigh scattered light is transmitted through a Rb vapor filter before being detected. The detected modulated absorption signal is fed to two lock-in amplifers synchronized with the modulation frequency of the source laser. High levels of background rejection are attained since the lock-ins are both frequency and phase selective. The two lock-in amplifiers extract different Fourier components of the detected modulated absorption signal, which are ratioed to provide an intensity normalized frequency dependent signal from a single detector. A Doppler frequency shift in the collected Rayleigh scattered light due to a change in the velocity of the flow under investigation results in a change in the detected modulated absorption signal. This change in the detected signal provides a quantifiable measure of the Doppler frequency shift, and hence the velocity in the probe volume, provided that the laser source exhibits acceptable levels of frequency stability (determined by the magnitude of the velocities being measured). An extended cavity diode laser (ECDL) in the Littrow configuration provides frequency tunable, relatively narrow-linewidth lasing for the MFRS velocimeter. Frequency stabilization of the ECDL is provided by a proportional-integral-differential (PID) controller based on an error signal in the reference arm of the experiment. The optical power of the Littrow laser source is amplified by an antireflection coated (AR coated) broad stripe diode laser. The single-mode, frequency-modulatable, frequency-stable O(50 mW) of optical power provided by this extended cavity diode laser master oscillator power amplifier (ECDL-MOPA) system provided sufficient scattering signal from a condensing jet of CO2 to implement the MFRS technique in the frequency-locked mode of operation.

  20. Narrowband resonant transmitter

    DOEpatents

    Hutchinson, Donald P.; Simpson, Marcus L.; Simpson, John T.

    2004-06-29

    A transverse-longitudinal integrated optical resonator (TLIR) is disclosed which includes a waveguide, a first and a second subwavelength resonant grating in the waveguide, and at least one photonic band gap resonant structure (PBG) in the waveguide. The PBG is positioned between the first and second subwavelength resonant gratings. An electro-optic waveguide material may be used to permit tuning the TLIR and to permit the TLIR to perform signal modulation and switching. The TLIR may be positioned on a bulk substrate die with one or more electronic and optical devices and may be communicably connected to the same. A method for fabricating a TLIR including fabricating a broadband reflective grating is disclosed. A method for tuning the TLIR's transmission resonance wavelength is also disclosed.

  1. Stretchable inorganic nanomembrane electronics for healthcare devices

    NASA Astrophysics Data System (ADS)

    Kim, Dae-Hyeong; Son, Donghee; Kim, Jaemin

    2015-05-01

    Flexible or stretchable electronic devices for healthcare technologies have attracted much attention in terms of usefulness to assist doctors in their operating rooms and to monitor patients' physical conditions for a long period of time. Each device to monitor the patients' physiological signals real-time, such as strain, pressure, temperature, and humidity, etc. has been reported recently. However, their limitations are found in acquisition of various physiological signals simultaneously because all the functions are not assembled in one skin-like electronic system. Here, we describe a skin-like, multi-functional healthcare system, which includes single crystalline silicon nanomembrane based sensors, nanoparticle-integrated non-volatile memory modules, electro-resistive thermal actuators, and drug delivery. Smart prosthetics coupled with therapeutic electronic system would provide new approaches to personalized healthcare.

  2. Micro-optical design of a three-dimensional microlens scanner for vertically integrated micro-opto-electro-mechanical systems.

    PubMed

    Baranski, Maciej; Bargiel, Sylwester; Passilly, Nicolas; Gorecki, Christophe; Jia, Chenping; Frömel, Jörg; Wiemer, Maik

    2015-08-01

    This paper presents the optical design of a miniature 3D scanning system, which is fully compatible with the vertical integration technology of micro-opto-electro-mechanical systems (MOEMS). The constraints related to this integration strategy are considered, resulting in a simple three-element micro-optical setup based on an afocal scanning microlens doublet and a focusing microlens, which is tolerant to axial position inaccuracy. The 3D scanning is achieved by axial and lateral displacement of microlenses of the scanning doublet, realized by micro-electro-mechanical systems microactuators (the transmission scanning approach). Optical scanning performance of the system is determined analytically by use of the extended ray transfer matrix method, leading to two different optical configurations, relying either on a ball lens or plano-convex microlenses. The presented system is aimed to be a core component of miniature MOEMS-based optical devices, which require a 3D optical scanning function, e.g., miniature imaging systems (confocal or optical coherence microscopes) or optical tweezers.

  3. Spectral analysis techniques for characterizing cadmium zinc telluride polarization modulators

    NASA Astrophysics Data System (ADS)

    FitzGerald, William R.; Taherion, Saeid; Kumar, F. Joseph; Giles, David; Hore, Dennis K.

    2018-04-01

    The low frequency electro-optic characteristics of cadmium zinc telluride are demonstrated in the mid-infrared, in the spectral range 2.5-11 μm. Conventional methods for characterizing the dynamic response by monitoring the amplitude of the time-varying light intensity do not account for spatial variation in material properties. In such cases, a more revealing method involves monitoring two distinct frequency components in order to characterize the dynamic and static contributions to the optical retardation. We demonstrate that, while this method works well for a ZnSe photo-elastic modulator, it does not fully capture the response of a cadmium zinc telluride electro-optic modulator. Ultimately, we show that acquiring the full waveform of the optical response enables a model to be created that accounts for inhomogeneity in the material that results in an asymmetric response with respect to the polarity of the driving voltage. This technique is applicable to broadband and fixed-wavelength applications in a variety of spectral ranges.

  4. Electro- and Magneto-Modulated Ion Transport through Graphene Oxide Membranes

    PubMed Central

    Sun, Pengzhan; Zheng, Feng; Wang, Kunlin; Zhong, Minlin; Wu, Dehai; Zhu, Hongwei

    2014-01-01

    The control of ion trans-membrane transport through graphene oxide (GO) membranes is achieved by electric and magnetic fields. Electric field can either increase or decrease the ion transport through GO membranes depending on its direction, and magnetic field can enhance the ion penetration monotonically. When electric field is applied across GO membrane, excellent control of ion fluidic flows can be done. With the magnetic field, the effective anchoring of ions is demonstrated but the modulation of the ion flowing directions does not occur. The mechanism of the electro- and magneto-modulated ion trans-membrane transport is investigated, indicating that the electric fields dominate the ion migration process while the magnetic fields tune the structure of nanocapillaries within GO membranes. Results also show that the ion selectivity of GO membranes can be tuned with the electric fields while the transport of ions can be enhanced synchronously with the magnetic fields. These excellent properties make GO membranes promising in areas such as field-induced mass transport control and membrane separation. PMID:25347969

  5. Electro-optic modulator based gate transient suppression for sine-wave gated InGaAs/InP single photon avalanche photodiode

    NASA Astrophysics Data System (ADS)

    Zhang, Yixin; Zhang, Xuping; Shi, Yuanlei; Ying, Zhoufeng; Wang, Shun

    2014-06-01

    Capacitive gate transient noise has been problematic for the high-speed single photon avalanche photodiode (SPAD), especially when the operating frequency extends to the gigahertz level. We proposed an electro-optic modulator based gate transient noise suppression method for sine-wave gated InGaAs/InP SPAD. With the modulator, gate transient is up-converted to its higher-order harmonics that can be easily removed by low pass filtering. The proposed method enables online tuning of the operating rate without modification of the hardware setup. At 250 K, detection efficiency of 14.7% was obtained with 4.8×10-6 per gate dark count and 3.6% after-pulse probabilities for 1550-nm optical signal under 1-GHz gating frequency. Experimental results have shown that the performance of the detector can be maintained within a designated frequency range from 0.97 to 1.03 GHz, which is quite suitable for practical high-speed SPAD applications operated around the gigahertz level.

  6. Wideband and high-gain frequency stabilization of a 100-W injection-locked Nd:YAG laser for second-generation gravitational wave detectors.

    PubMed

    Ohmae, Noriaki; Moriwaki, Shigenori; Mio, Norikatsu

    2010-07-01

    Second-generation gravitational wave detectors require a highly stable laser with an output power greater than 100 W to attain their target sensitivity. We have developed a frequency stabilization system for a 100-W injection-locked Nd:YAG (yttrium aluminum garnet) laser. By placing an external wideband electro-optic modulator used as a fast-frequency actuator in the optical path of the slave output, we can circumvent a phase delay in the frequency control loop originating from the pole of an injection-locked slave cavity. Thus, we have developed an electro-optic modulator made of a MgO-doped stoichiometric LiNbO(3) crystal. Using this modulator, we achieve a frequency control bandwidth of 800 kHz and a control gain of 180 dB at 1 kHz. These values satisfy the requirement for a laser frequency control loop in second-generation gravitational wave detectors.

  7. System and Method for Generating a Frequency Modulated Linear Laser Waveform

    NASA Technical Reports Server (NTRS)

    Pierrottet, Diego F. (Inventor); Petway, Larry B. (Inventor); Amzajerdian, Farzin (Inventor); Barnes, Bruce W. (Inventor); Lockard, George E. (Inventor); Hines, Glenn D. (Inventor)

    2017-01-01

    A system for generating a frequency modulated linear laser waveform includes a single frequency laser generator to produce a laser output signal. An electro-optical modulator modulates the frequency of the laser output signal to define a linear triangular waveform. An optical circulator passes the linear triangular waveform to a band-pass optical filter to filter out harmonic frequencies created in the waveform during modulation of the laser output signal, to define a pure filtered modulated waveform having a very narrow bandwidth. The optical circulator receives the pure filtered modulated laser waveform and transmits the modulated laser waveform to a target.

  8. System and Method for Generating a Frequency Modulated Linear Laser Waveform

    NASA Technical Reports Server (NTRS)

    Pierrottet, Diego F. (Inventor); Petway, Larry B. (Inventor); Amzajerdian, Farzin (Inventor); Barnes, Bruce W. (Inventor); Lockard, George E. (Inventor); Hines, Glenn D. (Inventor)

    2014-01-01

    A system for generating a frequency modulated linear laser waveform includes a single frequency laser generator to produce a laser output signal. An electro-optical modulator modulates the frequency of the laser output signal to define a linear triangular waveform. An optical circulator passes the linear triangular waveform to a band-pass optical filter to filter out harmonic frequencies created in the waveform during modulation of the laser output signal, to define a pure filtered modulated waveform having a very narrow bandwidth. The optical circulator receives the pure filtered modulated laser waveform and transmits the modulated laser waveform to a target.

  9. Electro-optic component mounting device

    DOEpatents

    Gruchalla, M.E.

    1994-09-13

    A technique is provided for integrally mounting a device such as an electro-optic device in a transmission line to avoid series resonant effects. A center conductor of the transmission line has an aperture formed therein for receiving the device. The aperture splits the center conductor into two parallel sections on opposite sides of the device. For a waveguide application, the center conductor is surrounded by a conductive ground surface which is spaced apart from the center conductor with a dielectric material. One set of electrodes formed on the surface of the electro-optic device is directly connected to the center conductor and an electrode formed on the surface of the electro-optic device is directly connected to the conductive ground surface. The electrodes formed on the surface of the electro-optic device are formed on curved sections of the surface of the device to mate with correspondingly shaped electrodes on the conductor and ground surface to provide a uniform electric field across the electro-optic device. The center conductor includes a passage formed therein for passage of optical signals to an electro-optic device. 10 figs.

  10. Advanced electro-mechanical micro-shutters for thermal infrared night vision imaging and targeting systems

    NASA Astrophysics Data System (ADS)

    Durfee, David; Johnson, Walter; McLeod, Scott

    2007-04-01

    Un-cooled microbolometer sensors used in modern infrared night vision systems such as driver vehicle enhancement (DVE) or thermal weapons sights (TWS) require a mechanical shutter. Although much consideration is given to the performance requirements of the sensor, supporting electronic components and imaging optics, the shutter technology required to survive in combat is typically the last consideration in the system design. Electro-mechanical shutters used in military IR applications must be reliable in temperature extremes from a low temperature of -40°C to a high temperature of +70°C. They must be extremely light weight while having the ability to withstand the high vibration and shock forces associated with systems mounted in military combat vehicles, weapon telescopic sights, or downed unmanned aerial vehicles (UAV). Electro-mechanical shutters must have minimal power consumption and contain circuitry integrated into the shutter to manage battery power while simultaneously adapting to changes in electrical component operating parameters caused by extreme temperature variations. The technology required to produce a miniature electro-mechanical shutter capable of fitting into a rifle scope with these capabilities requires innovations in mechanical design, material science, and electronics. This paper describes a new, miniature electro-mechanical shutter technology with integrated power management electronics designed for extreme service infra-red night vision systems.

  11. Hybrid electro-optics and chipscale integration of electronics and photonics

    NASA Astrophysics Data System (ADS)

    Dalton, L. R.; Robinson, B. H.; Elder, D. L.; Tillack, A. F.; Johnson, L. E.

    2017-08-01

    Taken together, theory-guided nano-engineering of organic electro-optic materials and hybrid device architectures have permitted dramatic improvement of the performance of electro-optic devices. For example, the voltage-length product has been improved by nearly a factor of 104 , bandwidths have been extended to nearly 200 GHz, device footprints reduced to less than 200 μm2 , and femtojoule energy efficiency achieved. This presentation discusses the utilization of new coarse-grained theoretical methods and advanced quantum mechanical methods to quantitatively simulate the physical properties of new classes of organic electro-optic materials and to evaluate their performance in nanoscopic device architectures, accounting for the effect on chromophore ordering at interfaces in nanoscopic waveguides.

  12. Optically Driven Q-Switches For Lasers

    NASA Technical Reports Server (NTRS)

    Hemmati, Hamid

    1994-01-01

    Optically driven Q-switches for pulsed lasers proposed, taking place of acousto-optical, magneto-optical, and electro-optical switches. Optical switching beams of proposed Q-switching most likely generated in pulsed diode lasers or light-emitting diodes, outputs of which are amplitude-modulated easily by direct modulation of relatively small input currents. Energy efficiencies exceed those of electrically driven Q-switches.

  13. Enhanced Electro-Kinetics of C-C Bond-Splitting during Ethanol Oxidation Reaction using Pt/Rh/Sn Catalyst with a Partially Oxidized Pt and Rh Core and a SnO2 Shell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, G.; Su, D.; Frenkel, A. I.

    Direct ethanol fuel cell (DEFC) is a promising technology for generating electricity via the electro-oxidation of liquid ethanol. Its implementation requires the development of anode catalysts capable of producing CO 2 and yielding 12-electron transfer through breaking C-C bond of ethanol. Here we presented comprehensive studies of electro-kinetics of the CO 2 generation on Pt/Rh/Sn ternary catalysts. Our studies showed that, for the first time, the tri–phase PtRhOx- SnO 2 catalysts with a partially oxidized Pt and Rh core and a SnO 2 shell, validated by X-ray absorption analyses and scanning transmission electron microscope-electron energy loss spectroscopy line scan, coincidedmore » with a 2.5-fold increase in the CO 2 generation rate towards ethanol oxidation reaction, compared with the bi-phase PtRh-SnO 2 catalysts with a metallic PtRh alloy core and commercial Pt. These studies provided insight on the design of a new genre of electro-catalysts with a partially oxidized noble metal.« less

  14. Enhanced Electro-Kinetics of C-C Bond-Splitting during Ethanol Oxidation Reaction using Pt/Rh/Sn Catalyst with a Partially Oxidized Pt and Rh Core and a SnO2 Shell

    DOE PAGES

    Yang, G.; Su, D.; Frenkel, A. I.; ...

    2016-09-04

    Direct ethanol fuel cell (DEFC) is a promising technology for generating electricity via the electro-oxidation of liquid ethanol. Its implementation requires the development of anode catalysts capable of producing CO 2 and yielding 12-electron transfer through breaking C-C bond of ethanol. Here we presented comprehensive studies of electro-kinetics of the CO 2 generation on Pt/Rh/Sn ternary catalysts. Our studies showed that, for the first time, the tri–phase PtRhOx- SnO 2 catalysts with a partially oxidized Pt and Rh core and a SnO 2 shell, validated by X-ray absorption analyses and scanning transmission electron microscope-electron energy loss spectroscopy line scan, coincidedmore » with a 2.5-fold increase in the CO 2 generation rate towards ethanol oxidation reaction, compared with the bi-phase PtRh-SnO 2 catalysts with a metallic PtRh alloy core and commercial Pt. These studies provided insight on the design of a new genre of electro-catalysts with a partially oxidized noble metal.« less

  15. A 50-kW Module Power Station of Directly Solar-Pumped Iodine Laser

    NASA Technical Reports Server (NTRS)

    Choi, S. H.; Lee, J. H.; Meador, W. E.; Conway, E. J.

    1997-01-01

    The conceptual design of a 50 kW Directly Solar-Pumped Iodine Laser (DSPIL) module was developed for a space-based power station which transmits its coherent-beam power to users such as the moon, Martian rovers, or other satellites with large (greater than 25 kW) electric power requirements. Integration of multiple modules would provide an amount of power that exceeds the power of a single module by combining and directing the coherent beams to the user's receiver. The model developed for the DSPIL system conservatively predicts the laser output power (50 kW) that appears much less than the laser output (93 kW) obtained from the gain volume ratio extrapolation of experimental data. The difference in laser outputs may be attributed to reflector configurations adopted in both design and experiment. Even though the photon absorption by multiple reflections in experimental cavity setup was more efficient, the maximum secondary absorption amounts to be only 24.7 percent of the primary. However, the gain volume ratio shows 86 percent more power output than theoretical estimation that is roughly 60 percent more than the contribution by the secondary absorption. Such a difference indicates that the theoretical model adopted in the study underestimates the overall performance of the DSPIL. This fact may tolerate more flexible and radical selection of design parameters than used in this design study. The design achieves an overall specific power of approximately 5 W/kg and total mass of 10 metric tons.

  16. Optical Properties of Gallium Arsenide and Indium Gallium Arsenide Quantum Wells and Their Applications to Opto-Electronic Devices.

    NASA Astrophysics Data System (ADS)

    Huang, Daming

    1990-01-01

    In this thesis we investigate the optical properties of modulation doped GaAs/AlGaAs and strained-layer undoped InGaAs/GaAs multiple quantum well structures (MQWS). The phenomena studied are the effects of carrier, strain, and the electric field on the absorption of excitons. For GaAs/AlGaAs modulation doped MQWS, the quenching of excitons by free carriers has been demonstrated. The comparison of the experimental results with calculations which consider phase space filling, screening, and exchange interaction showed the phase space filling to be the dominant mechanism responsible for the change of oscillator strength and binding energy of excitons associated with partially filled subband. On the other hand, the screening and exchange interaction are equally important to excitons associated with empty subbands. For InGaAs/GaAs strained-layer MQWS, we have demonstrated that the band edges are dramatically modified by strain. We determined the band discontinuities at InGaAs/GaAs interfaces using optical absorption, and showed that in this structure the heavy holes are confined in InGaAs layers while the light holes are in GaAs layers, in contrast to GaAs/AlGaAs MQWS. We also explore applications of GaAs/AlGaAs and InGaAs/GaAs MQWS to opto-electronic devices. The principle of devices investigated is mainly based on the electric field effect on the excitonic absorption in MQWS (the quantum confined Stark effect). Two examples presented in this thesis are the strained-layer InGaAs/GaAs MQWS electroabsorption modulators grown on GaAs substrates and the GaAs/AlGaAs MQWS reflection modulators grown on Si substrates. The large modulation observed in the absorption coefficient by an electric field is expected to facilitate opto-electronic integration.

  17. Patient-controlled analgesia: therapeutic interventions using transdermal electro-activated and electro-modulated drug delivery.

    PubMed

    Indermun, Sunaina; Choonara, Yahya E; Kumar, Pradeep; Du Toit, Lisa C; Modi, Girish; Luttge, Regina; Pillay, Viness

    2014-02-01

    Chronic pain poses a major concern to modern medicine and is frequently undertreated, causing suffering and disability. Patient-controlled analgesia, although successful, does have limitations. Transdermal delivery is the pivot to which analgesic research in drug delivery has centralized, especially with the confines of needle phobias and associated pain related to traditional injections, and the existing limitations associated with oral drug delivery. Highlighted within is the possibility of further developing transdermal drug delivery for chronic pain treatment using iontophoresis-based microneedle array patches. A concerted effort was made to review critically all available therapies designed for the treatment of chronic pain. The drug delivery systems developed for this purpose and nondrug routes are elaborated on, in a systematic manner. Recent developments and future goals in transdermal delivery as a means to overcome the individual limitations of the aforementioned delivery routes are represented as well. The approval of patch-like devices that contain both the microelectronic-processing mechanism and the active medicament in a small portable device is still awaited by the pharmaceutical industry. This anticipated platform may provide transdermal electro-activated and electro-modulated drug delivery systems a feasible attempt in chronic pain treatment. Iontophoresis has been proven an effective mode used to administer ionized drugs in physiotherapeutic, diagnostic, and dermatological applications and may be an encouraging probability for the development of devices and aids in the treatment of chronic pain. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.

  18. Polymer enabled 100 Gbaud connectivity for datacom applications

    NASA Astrophysics Data System (ADS)

    Katopodis, V.; Groumas, P.; Zhang, Z.; Dinu, R.; Miller, E.; Konczykowska, A.; Dupuy, J.-Y.; Beretta, A.; Dede, A.; Choi, J. H.; Harati, P.; Jorge, F.; Nodjiadjim, V.; Riet, Muriel; Cangini, G.; Vannucci, A.; Keil, N.; Bach, H.-G.; Grote, N.; Avramopoulos, H.; Kouloumentas, Ch.

    2016-03-01

    Polymers hold the promise for ultra-fast modulation of optical signals due to their potential for ultra-fast electro-optic (EO) response and high EO coefficient. In this work, we present the basic structure and properties of an efficient EO material system, and we summarize the efforts made within the project ICT-POLYSYS for the development of high-speed transmitters based on this system. More specifically, we describe successful efforts for the monolithic integration of multi-mode interference (MMI) couplers and Bragg-gratings (BGs) along with Mach-Zehnder modulators (MZMs) on this platform, and for the hybrid integration of InP active elements in the form of laser diodes (LDs) and gain chips (GCs). Using these integration techniques and the combination of the hybrid optical chips with ultra-fast indium phosphide double heterojunction bipolar transistor (InP-DHBT) electronics, we develop and fully package a single 100 Gb/s transmitter and a 2×100 Gb/s transmitter that can support serial operation at this rate with conventional non-return-to-zero on-off-keying (NRZ-OOK) modulation format. We also present the experimental evaluation of the devices, validating the efficiency of the monolithic and hybrid integration concepts and confirming the potential of this technology for single-lane 100 Gb/s optical connectivity in data-center network environments. Results from transmission experiments to this end include the achievement of BER close to 6·10-9 in B2B configuration, the achievement of BER lower than 10-7 for propagation over standard single-mode fiber (SSMF) with total length up to 1000 m, and the achievement of BER at the level of 10-5 after 1625 m of SSMF. Finally, plans for the use of the EO polymer system in a more complex hybrid integration platform for high-flexibility/high-capacity transmitters are also outlined.

  19. Poling of Microwave Electro-Optic Devices

    NASA Technical Reports Server (NTRS)

    Singer, Kenneth D.

    1997-01-01

    The desire to transmit high frequency, microwave RF signals over fiber optic cables has necessitated the need for electro-optic modulation devices. However, in order to reap these potential benefits, it is necessary to develop the devices and their associated fabrication processes, particularly those processes associated with the poling of the devices. To this end, we entered into a cooperative research agreement with Richard Kunath of NASA LeRC. A graduate student in my group, Tony Kowalczyk, worked closely with the group at NASA to develop processes for construction of a microwave frequency electro-optic modulator. Materials were commercially obtained from Amoco Chemical and in collaboration with Lockheed-Martin. The photolithography processes were developed at NASA LeRC and the electric-field poling process was carried out in our laboratory at CWRU. During the grant period, the poling process conditions were investigated for these multilayer devices. Samples were poled and the resulting nonlinear optical properties were evaluated in our laboratory. Following the grant period, Kowalczyk went to NASA under a NRC fellowship, and I continued to collaborate as a consultant. Publications listed at the end of this report came out of this work. Another manuscript is in preparation and will be submitted shortly.

  20. Strong quantum-confined Stark effect in a lattice-matched GeSiSn/GeSn multi-quantum-well structure

    NASA Astrophysics Data System (ADS)

    Peng, Ruizhi; Chunfuzhang; Han, Genquan; Hao, Yue

    2017-06-01

    This paper presents modeling and simulation of a multiple quantum well structure formed with Ge0.95Sn0.05 quantum wells separated by Ge0.51Si0.35Sn0.14 barriers for the applications. These alloy compositions are chosen to satisfy two conditions simultaneously: type-I band alignment between Ge0.95Sn0.05/Ge0.51Si0.35Sn0.14 and a lattice match between wells and barriers. This lattice match ensures that the strain-free structure can be grown upon a relaxed Ge0.51Si0.35Sn0.14 buffer on a silicon substrate - a CMOS compatible process. A electro-absorption modulator with the Ge0.95Sn0.05/Ge0.51Si0.35Sn0.14 multiple quantum well structure based on quantum-confined Stark effect(QCSE) is demonstrated in theory. The energy band diagrams of the GeSiSn/GeSn multi-quantum-well structure at 0 and 0.5V bias are calculated, respectively. And the corresponding absorption coefficients as a function of cut-off energy for this multiple quantum well structure at 0 and 0.5Vbias are also obtained, respectively. The reduction of cut-off energy is observed with the applying of the external electric field, indicating a strong QCSE in the structure.

  1. Wideband THz Time Domain Spectroscopy based on Optical Rectification and Electro-Optic Sampling

    PubMed Central

    Tomasino, A.; Parisi, A.; Stivala, S.; Livreri, P.; Cino, A. C.; Busacca, A. C.; Peccianti, M.; Morandotti, R.

    2013-01-01

    We present an analytical model describing the full electromagnetic propagation in a THz time-domain spectroscopy (THz-TDS) system, from the THz pulses via Optical Rectification to the detection via Electro Optic-Sampling. While several investigations deal singularly with the many elements that constitute a THz-TDS, in our work we pay particular attention to the modelling of the time-frequency behaviour of all the stages which compose the experimental set-up. Therefore, our model considers the following main aspects: (i) pump beam focusing into the generation crystal; (ii) phase-matching inside both the generation and detection crystals; (iii) chromatic dispersion and absorption inside the crystals; (iv) Fabry-Perot effect; (v) diffraction outside, i.e. along the propagation, (vi) focalization and overlapping between THz and probe beams, (vii) electro-optic sampling. In order to validate our model, we report on the comparison between the simulations and the experimental data obtained from the same set-up, showing their good agreement. PMID:24173583

  2. CWDM for very-short-reach and optical-backplane interconnections

    NASA Astrophysics Data System (ADS)

    Laha, Michael J.

    2002-06-01

    Course Wavelength Division Multiplexing (CWDM) provides access to next generation optical interconnect data rates by utilizing conventional electro-optical components that are widely available in the market today. This is achieved through the use of CWDM multiplexers and demultiplexers that integrate commodity type active components, lasers and photodiodes, into small optical subassemblies. In contrast to dense wavelength division multiplexing (DWDM), in which multiple serial data streams are combined to create aggregate data pipes perhaps 100s of gigabits wide, CWDM uses multiple laser sources contained in one module to create a serial equivalent data stream. For example, four 2.5 Gb/s lasers are multiplexed to create a 10 Gb/s data pipe. The advantages of CWDM over traditional serial optical interconnects include lower module power consumption, smaller packaging, and a superior electrical interface. This discussion will detail the concept of CWDM and design parameters that are considered when productizing a CWDM module into an industry standard optical interconnect. Additionally, a scalable parallel CWDM hybrid architecture will be described that allows the transport of large amounts of data from rack to rack in an economical fashion. This particular solution is targeted at solving optical backplane bottleneck problems predicted for the next generation terabit and petabit routers.

  3. Comparison of performance of high-power mid-IR QCL modules in actively and passively cooled mode

    NASA Astrophysics Data System (ADS)

    Münzhuber, F.; Denzel, H.; Tholl, H. D.

    2017-10-01

    We report on the effects of active and passive cooling on the performance of high power mid-IR QCL modules (λ ≈ 3.9 μm) in quasi-cw mode. In active cooling mode, a thermo-electrical cooler attached with its hot side to a heat sink of constant temperature, a local thermometer in close proximity to the QCL chip (epi-down mounted) as well as a control unit has been used for temperature control of the QCL submount. In contrast, the passive cooling was performed by attaching the QCL module solely to the heat sink. Electro-optical light-current- (L-I-) curves are measured in a quasi-cw mode, from which efficiencies can be deduced. Waiving of the active cooling elements results in a drop of the maximum intensity of less than 5 %, compared to the case wherein the temperature of the submount is stabilized to the temperature of the heat sink. The application of a model of electro-optical performance to the data shows good agreement and captures the relevant observations. We further determine the heat resistance of the module and demonstrate that the system performance is not limited by the packaging of the module, but rather by the heat dissipation on the QCL chip itself.

  4. Detection of hydrogen peroxide based on long-path absorption spectroscopy using a CW EC-QCL

    NASA Astrophysics Data System (ADS)

    Sanchez, N. P.; Yu, Y.; Dong, L.; Griffin, R.; Tittel, F. K.

    2016-02-01

    A sensor system based on a CW EC-QCL (mode-hop-free range 1225-1285 cm-1) coupled with long-path absorption spectroscopy was developed for the monitoring of gas-phase hydrogen peroxide (H2O2) using an interference-free absorption line located at 1234.055 cm-1. Wavelength modulation spectroscopy (WMS) with second harmonic detection was implemented for data processing. Optimum levels of pressure and modulation amplitude of the sensor system led to a minimum detection limit (MDL) of 25 ppb using an integration time of 280 sec. The selected absorption line for H2O2, which exhibits no interference from H2O, makes this sensor system suitable for sensitive and selective monitoring of H2O2 levels in decontamination and sterilization processes based on Vapor Phase Hydrogen Peroxide (VPHP) units, in which a mixture of H2O and H2O2 is generated. Furthermore, continuous realtime monitoring of H2O2 concentrations in industrial facilities employing this species can be achieved with this sensing system in order to evaluate average permissible exposure levels (PELs) and potential exceedances of guidelines established by the US Occupational Safety and Health Administration for H2O2.

  5. Design of Hybrid Silicon and Lithium Niobate Active Region for Electro-optical Modulation

    DTIC Science & Technology

    2017-03-01

    bandwidth our group has proposed a Mach-Zehnder traveling -wave type modulator with optimized cross section dimensions using a similar material stack as...increases the electric field intensity available to the Pockel’s effect. At the same time , the induced metal loss increases as the electrodes become...Gopalakrishnan et al., “Performance and modeling of broadband LiNbO3 traveling wave optical intensity modulators,” J. Light. Technol., vol. 12, no. 10, pp

  6. Diffraction leveraged modulation of X-ray pulses using MEMS-based X-ray optics

    DOEpatents

    Lopez, Daniel; Shenoy, Gopal; Wang, Jin; Walko, Donald A.; Jung, Il-Woong; Mukhopadhyay, Deepkishore

    2016-08-09

    A method and apparatus are provided for implementing Bragg-diffraction leveraged modulation of X-ray pulses using MicroElectroMechanical systems (MEMS) based diffractive optics. An oscillating crystalline MEMS device generates a controllable time-window for diffraction of the incident X-ray radiation. The Bragg-diffraction leveraged modulation of X-ray pulses includes isolating a particular pulse, spatially separating individual pulses, and spreading a single pulse from an X-ray pulse-train.

  7. High-Q microwave photonic filter with a tuned modulator.

    PubMed

    Capmany, J; Mora, J; Ortega, B; Pastor, D

    2005-09-01

    We propose the use of tuned electro-optic or electroabsorption external modulators to implement high-quality (high-Q) factor, single-bandpass photonic filters for microwave signals. Using this approach, we experimentally demonstrate a transversal finite impulse response with a Q factor of 237. This is to our knowledge the highest value ever reported for a passive finite impulse-response microwave photonic filter.

  8. Controlling chaotic behavior in CO2 and other lasers

    NASA Astrophysics Data System (ADS)

    1993-06-01

    Additional substantial experimental progress has been made, in the third month of the project, in setting up equipment and testing for producing chaotic behavior with a CO2 laser. The project goal is to synchronize and control chaos in CO2 and other lasers, and thereby increase the power in ensembles of coupled laser sources. Numerous investigations into the chaos regime have been made, a second CO2 laser has been brought on stream, and work is progressing in the fourth month toward coupling the two lasers and control of the first laser. It is also intended to submit at least two papers to the Second Experimental Chaos Conference which is supported by the Office of Naval Research. Abstracts to those two papers are attached. Last month's report discussed the experimental investigation of nonlinear dynamics of CO2 lasers which involved a new technique of inducing chaos. In this new technique, an acoustically modulated feedback of the laser light was used and led to chaotic dynamics at a very low modulation frequency of 375 Hz. Since then, new results have been obtained by an Electro-Optical Modulation (EOM) technique. In the new setup, the electro-optical modulator is placed in an external cavity outside the laser.

  9. Revision of Electro-Mechanical Drafting Program to Include CAD/D (Computer-Aided Drafting/Design). Final Report.

    ERIC Educational Resources Information Center

    Snyder, Nancy V.

    North Seattle Community College decided to integrate computer-aided design/drafting (CAD/D) into its Electro-Mechanical Drafting Program. This choice necessitated a redefinition of the program through new curriculum and course development. To initiate the project, a new industrial advisory council was formed. Major electronic and recruiting firms…

  10. MOEMS optical delay line for optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Choudhary, Om P.; Chouksey, S.; Sen, P. K.; Sen, P.; Solanki, J.; Andrews, J. T.

    2014-09-01

    Micro-Opto-Electro-Mechanical optical coherence tomography, a lab-on-chip for biomedical applications is designed, studied, fabricated and characterized. To fabricate the device standard PolyMUMPS processes is adopted. We report the utilization of electro-optic modulator for a fast scanning optical delay line for time domain optical coherence tomography. Design optimization are performed using Tanner EDA while simulations are performed using COMSOL. The paper summarizes various results and fabrication methodology adopted. The success of the device promises a future hand-held or endoscopic optical coherence tomography for biomedical applications.

  11. High-Power, High-Speed Electro-Optic Pockels Cell Modulator

    NASA Technical Reports Server (NTRS)

    Hawthorne, Justin; Battle, Philip

    2013-01-01

    Electro-optic modulators rely on a change in the index of refraction for the optical wave as a function of an applied voltage. The corresponding change in index acts to delay the wavefront in the waveguide. The goal of this work was to develop a high-speed, high-power waveguide- based modulator (phase and amplitude) and investigate its use as a pulse slicer. The key innovation in this effort is the use of potassium titanyl phosphate (KTP) waveguides, making the highpower, polarization-based waveguide amplitude modulator possible. Furthermore, because it is fabricated in KTP, the waveguide component will withstand high optical power and have a significantly higher RF modulation figure of merit (FOM) relative to lithium niobate. KTP waveguides support high-power TE and TM modes - a necessary requirement for polarization-based modulation as with a Pockels cell. High-power fiber laser development has greatly outpaced fiber-based modulators in terms of its maturity and specifications. The demand for high-performance nonlinear optical (NLO) devices in terms of power handling, efficiency, bandwidth, and useful wavelength range has driven the development of bulk NLO options, which are limited in their bandwidth, as well as waveguide based LN modulators, which are limited by their low optical damage threshold. Today, commercially available lithium niobate (LN) modulators are used for laser formatting; however, because of photorefractive damage that can reduce transmission and increase requirements on bias control, LN modulators cannot be used with powers over several mW, dependent on wavelength. The high-power, high-speed modulators proposed for development under this effort will enable advancements in several exciting fields including lidarbased remote sensing, atomic interferometry, free-space laser communications, and others.

  12. Tunability of temperature-dependent absorption in a graphene-based hybrid nanostructure cavity

    NASA Astrophysics Data System (ADS)

    Rashidi, Arezou; Namdar, Abdolrahman

    2018-04-01

    Enhanced absorption is obtained in a hybrid nanostructure composed of graphene and one-dimensional photonic crystal as a cavity in the visible wavelength range thanks to the localized electric field around the defect layers. The temperature-induced wavelength shift is revealed in the absorption spectra in which the peak wavelength is red-shifted by increasing the temperature. This temperature dependence comes from the thermal expansion and thermo-optical effects in the constituent layers of the structure. Moreover, the absorption peaks can be adjusted by varying the incident angle. The results show that absorption is sensitive to TE/TM polarization and its peak values for the TE mode are higher than the TM case. Also, the peak wavelength is blue-shifted by increasing the incident angle for both polarizations. Finally, the possibility of tuning the absorption using the electro-optical response of graphene sheets is discussed in detail. We believe our study may be beneficial for designing tunable graphene-based temperature-sensitive absorbers.

  13. Electro-optic component mounting device

    DOEpatents

    Gruchalla, Michael E.

    1994-01-01

    A technique is provided for integrally mounting a device such as an electro-optic device (50) in a transmission line to avoid series resonant effects. A center conductor (52) of the transmission line has an aperture (58) formed therein for receiving the device (50). The aperture (58) splits the center conductor into two parallel sections on opposite sides of the device. For a waveguide application, the center conductor is surrounded by a conductive ground surface (54), which is spaced apart from the center conductor with a dielectric material (56). One set of electrodes formed on the surface of the electro-optic device (50) is directly connected to the center conductor 52 and an electrode formed on the surface of the electro-optic device is directly connected to the conductive ground surface (54). The electrodes formed on the surface of the electro-optic device are formed on curved sections of the surface of the device to mate with correspondingly shaped electrodes on the conductor and ground surface to provide a uniform electric field across the electro-optic device. The center conductor includes a passage ( 60) formed therein for passage of optical signals to an electro-optic device.

  14. Studies of absorption coefficient cum electro-optic performance of polymer dispersed liquid crystal doped with CNT and dichroic dye

    NASA Astrophysics Data System (ADS)

    Sharma, Vandna; Kumar, Pankaj

    2017-11-01

    Absorption coefficient of doped polymer dispersed liquid crystals (PDLCs) is a critical factor for their device performance and depends on dopants parameters like solubility, order parameter and extinction coefficients, in addition to configuration and orientation of the droplets. In this study, a fixed amount (0.125% wt/wt) of multiwall carbon nanotubes (CNTs) and orange azo dichroic dye was doped in PDLC and measured the OFF state absorption coefficient. Considering the theory based on Beer's law and followed by extinction coefficients of CNT and dye, the OFF state transmission for dye doped PDLC was found lower compared to CNT doped PDLC. As a result, absorption coefficient for dye doped PDLC was higher and resulted in the superior contrast ratio. The experimental results were found be consistent with the theoretical results.

  15. Tissue characterization with ballistic photons: counting scattering and/or absorption centres

    NASA Astrophysics Data System (ADS)

    Corral, F.; Strojnik, M.; Paez, G.

    2015-03-01

    We describe a new method to separate ballistic from the scattered photons for optical tissue characterization. It is based on the hypothesis that the scattered photons acquire a phase delay. The photons passing through the sample without scattering or absorption preserve their coherence so they may participate in interference. We implement a Mach-Zehnder experimental setup where the ballistic photons pass through the sample with the delay caused uniquely by the sample indices of refraction. We incorporate a movable mirror on the piezoelectric actuator in the sample arm to detect the amplitude of the modulation term. We present the theory that predicts the path-integrated (or total) concentration of the scattering and absorption centres. The proposed technique may characterize samples with transmission attenuation of ballistic photons by a factor of 10-14.

  16. Oscillations of absorption of a probe picosecond light pulse caused by its interaction with stimulated picosecond emission of GaAs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ageeva, N. N.; Bronevoi, I. L., E-mail: bil@cplire.ru; Zabegaev, D. N.

    2015-04-15

    The self-modulation of absorption of a picosecond light pulse was observed earlier [1] in a thin (∼1-μm thick) GaAs layer pumped by a high-power picosecond pulse. Analysis of the characteristics of this self-modulation predicted [5] that the dependences of the probe pulse absorption on the pump pulse energy and picosecond delay between pump and probe pulses should be self-modulated by oscillations. Such self-modulation was experimentally observed in this work. Under certain conditions, absorption oscillations proved to be a function of part of the energy of picosecond stimulated emission of GaAs lying above a certain threshold in the region where themore » emission front overlapped the probe pulse front. Absorption oscillations are similar to self-modulation of the GaAs emission characteristics observed earlier [4]. This suggests that the self-modulation of absorption and emission is determined by the same type of interaction of light pulses in the active medium, the physical mechanism of which has yet to be determined.« less

  17. Experimental demonstration of record high 19.125 Gb/s real-time end-to-end dual-band optical OFDM transmission over 25 km SMF in a simple EML-based IMDD system.

    PubMed

    Giddings, R P; Hugues-Salas, E; Tang, J M

    2012-08-27

    Record high 19.125 Gb/s real-time end-to-end dual-band optical OFDM (OOFDM) transmission is experimentally demonstrated, for the first time, in a simple electro-absorption modulated laser (EML)-based 25 km standard SMF system using intensity modulation and direct detection (IMDD). Adaptively modulated baseband (0-2GHz) and passband (6.125 ± 2GHz) OFDM RF sub-bands, supporting line rates of 10 Gb/s and 9.125 Gb/s respectively, are independently generated and detected with FPGA-based DSP clocked at only 100 MHz and DACs/ADCs operating at sampling speeds as low as 4GS/s. The two OFDM sub-bands are electrically frequency-division-multiplexed (FDM) for intensity modulation of a single optical carrier by an EML. To maximize and balance the signal transmission performance of each sub-band, on-line adaptive features and on-line performance monitoring is fully exploited to optimize key OOFDM transceiver and system parameters, which includes subcarrier characteristics within each individual OFDM sub-band, total and relative sub-band power as well as EML operating conditions. The achieved 19.125 Gb/s over 25 km SMF OOFDM transmission system has an optical power budget of 13.5 dB, and shows almost identical bit error rate (BER) performances for both the baseband and passband signals. In addition, experimental investigations also indicate that the maximum achievable transmission capacity of the present system is mainly determined by the EML frequency chirp-enhanced chromatic dispersion effect, and the passband BER performance is not affected by the two sub-band-induced intermixing effect, which, however, gives a 1.2dB optical power penalty to the baseband signal transmission.

  18. Damage Detection Based on Power Dissipation Measured with PZT Sensors through the Combination of Electro-Mechanical Impedances and Guided Waves

    PubMed Central

    Sevillano, Enrique; Sun, Rui; Perera, Ricardo

    2016-01-01

    The use of piezoelectric ceramic transducers (such as Lead-Zirconate-Titanate—PZT) has become more and more widespread for Structural Health Monitoring (SHM) applications. Among all the techniques that are based on this smart sensing solution, guided waves and electro-mechanical impedance techniques have found wider acceptance, and so more studies and experimental works can be found containing these applications. However, even though these two techniques can be considered as complementary to each other, little work can be found focused on the combination of them in order to define a new and integrated damage detection procedure. In this work, this combination of techniques has been studied by proposing a new integrated damage indicator based on Electro-Mechanical Power Dissipation (EMPD). The applicability of this proposed technique has been tested through different experimental tests, with both lab-scale and real-scale structures. PMID:27164104

  19. Damage Detection Based on Power Dissipation Measured with PZT Sensors through the Combination of Electro-Mechanical Impedances and Guided Waves.

    PubMed

    Sevillano, Enrique; Sun, Rui; Perera, Ricardo

    2016-05-05

    The use of piezoelectric ceramic transducers (such as Lead-Zirconate-Titanate-PZT) has become more and more widespread for Structural Health Monitoring (SHM) applications. Among all the techniques that are based on this smart sensing solution, guided waves and electro-mechanical impedance techniques have found wider acceptance, and so more studies and experimental works can be found containing these applications. However, even though these two techniques can be considered as complementary to each other, little work can be found focused on the combination of them in order to define a new and integrated damage detection procedure. In this work, this combination of techniques has been studied by proposing a new integrated damage indicator based on Electro-Mechanical Power Dissipation (EMPD). The applicability of this proposed technique has been tested through different experimental tests, with both lab-scale and real-scale structures.

  20. HSDPA (3.5G)-based ubiquitous integrated biotelemetry system for emergency care.

    PubMed

    Kang, Jaemin; Shin, Il Hyung; Koo, Yoonseo; Jung, Min Yang; Suh, Gil Joon; Kim, Hee Chan

    2007-01-01

    We have developed the second prototype system of Ubiquitous Integrated Biotelemetry System for Emergency Care(UIBSEC) using a HSDPA(High Speed Downlink Packet Access) modem to be used by emergency rescuers to get directions from medical doctors in providing emergency medical services for patients in ambulance. Five vital bio-signal instrumentation modules have been implemented, which include noninvasive arterial blood pressure (NIBP), arterial oxygen saturation (SaO2), 6-channel electro-cardiogram(ECG), blood glucose level, and body temperature and real-time motion picture of the patient and GPS information are also taken. Measured patient data, captured motion picture and GPS information are then transferred to a doctor's PC through the HSDPA and TCP/IP networks using stand-alone HSDPA modem. Most prominent feature of the developed system is that it is based on the HSDPA backbone networks available in Korea now, through which we will be able to establish a ubiquitous emergency healthcare service system.

  1. Graphene-on-silicon hybrid plasmonic-photonic integrated circuits.

    PubMed

    Xiao, Ting-Hui; Cheng, Zhenzhou; Goda, Keisuke

    2017-06-16

    Graphene surface plasmons (GSPs) have shown great potential in biochemical sensing, thermal imaging, and optoelectronics. To excite GSPs, several methods based on the near-field optical microscope and graphene nanostructures have been developed in the past few years. However, these methods suffer from their bulky setups and low GSP-excitation efficiency due to the short interaction length between free-space vertical excitation light and the atomic layer of graphene. Here we present a CMOS-compatible design of graphene-on-silicon hybrid plasmonic-photonic integrated circuits that achieve the in-plane excitation of GSP polaritons as well as localized surface plasmon (SP) resonance. By employing a suspended membrane slot waveguide, our design is able to excite GSP polaritons on a chip. Moreover, by utilizing a graphene nanoribbon array, we engineer the transmission spectrum of the waveguide by excitation of localized SP resonance. Our theoretical and computational study paves a new avenue to enable, modulate, and monitor GSPs on a chip, potentially applicable for the development of on-chip electro-optic devices.

  2. Coupling of lithium niobate disk resonators to integrated waveguides

    NASA Astrophysics Data System (ADS)

    Berneschi, S.; Cosi, F.; Nunzi Conti, G.; Pelli, S.; Soria, S.; Righini, G. C.; Dispenza, M.; Secchi, A.

    2011-01-01

    Whispering gallery mode (WGM) disk resonators fabricated in single crystals can have high Q factors within their transparency bandwidth and may have application both in fundamental and applied optics. Lithium niobate (LN) resonators thanks to their electro-optical properties may be used in particular as tunable filters, modulators, and delay lines. A critical step toward the actual application of these devices is the implementation of a robust and efficient coupling system. High index prisms are typically used for this purpose. In this work we demonstrate coupling to high-Q WGM LN disks from an integrated optical LN waveguide. The waveguides are made by proton exchange in X-cut LN. The disks with diameters of about 5 mm and thickness of 1 mm are made from commercial Z-cut LN wafers by core drilling a cylinder and thereafter polishing the edges into a spheroidal profile. Both resonance linewidth and cavity photon lifetime measurements were performed to calculate the Q factor of the resonator, which is in excess of 108.

  3. Model MTF for the mosaic window

    NASA Astrophysics Data System (ADS)

    Xing, Zhenchong; Hong, Yongfeng; Zhang, Bao

    2017-10-01

    An electro-optical targeting system mounted either within an airframe or housed in separate pods requires a window to form an environmental barrier to the outside world. In current practice, such windows usually use a mosaic or segmented window. When scanning the target, internally gimbaled systems sweep over the window, which can affect the modulation transfer function (MTF) due to wave-front division and optical path differences arising from the thickness/wedge differences between panes. In this paper, a mathematical model of the MTF of the mosaic window is presented that allows an analysis of influencing factors; we show how the model may be integrated into ZEMAX® software for optical design. The model can be used to guide both the design and the tolerance analysis of optical systems that employ a mosaic window.

  4. Physicochemical treatments of anionic surfactants wastewater: Effect on aerobic biodegradability.

    PubMed

    Aloui, Fathi; Kchaou, Sonia; Sayadi, Sami

    2009-05-15

    The effect of different physicochemical treatments on the aerobic biodegradability of an industrial wastewater resulting from a cosmetic industry has been investigated. This industrial wastewater contains 11423 and 3148mgL(-1) of chemical oxygen demand (COD) and anionic surfactants, respectively. The concentration of COD and anionic surfactants were followed throughout the diverse physicochemical treatments and biodegradation experiments. Different pretreatments of this industrial wastewater using chemical flocculation process with lime and aluminium sulphate (alum), and also advanced oxidation process (electro-coagulation (Fe and Al) and electro-Fenton) led to important COD and anionic surfactants removals. The best results were obtained using electro-Fenton process, exceeding 98 and 80% of anionic surfactants and COD removals, respectively. The biological treatment by an isolated strain Citrobacter braakii of the surfactant wastewater, as well as the pretreated wastewater by the various physicochemical processes used in this study showed that the best results were obtained with electro-Fenton pretreated wastewater. The characterization of the treated surfactant wastewater by the integrated process (electro-coagulation or electro-Fenton)-biological showed that it respects Tunisian discharge standards.

  5. Frequency accurate coherent electro-optic dual-comb spectroscopy in real-time.

    PubMed

    Martín-Mateos, Pedro; Jerez, Borja; Largo-Izquierdo, Pedro; Acedo, Pablo

    2018-04-16

    Electro-optic dual-comb spectrometers have proved to be a promising technology for sensitive, high-resolution and rapid spectral measurements. Electro-optic combs possess very attractive features like simplicity, reliability, bright optical teeth, and typically moderate but quickly tunable optical spans. Furthermore, in a dual-comb arrangement, narrowband electro-optic combs are generated with a level of mutual coherence that is sufficiently high to enable optical multiheterodyning without inter-comb stabilization or signal processing systems. However, this valuable tool still presents several limitations; for instance, on most systems, absolute frequency accuracy and long-term stability cannot be guaranteed; likewise, interferometer-induced phase noise restricts coherence time and limits the attainable signal-to-noise ratio. In this paper, we address these drawbacks and demonstrate a cost-efficient absolute electro-optic dual-comb instrument based on a frequency stabilization mechanism and a novel adaptive interferogram acquisition approach devised for electro-optic dual-combs capable of operating in real-time. The spectrometer, completely built from commercial components, provides sub-ppm frequency uncertainties and enables a signal-to-noise ratio of 10000 (intensity noise) in 30 seconds of integration time.

  6. InGaAs Multiple Quantum Well Modulating Retro-reflector for Free Space Optical Communications

    DTIC Science & Technology

    2002-01-01

    PIN optical modulators grown on GaAs substrates by molecular beam epitaxy ,J. Vac Sci. B 18, 1609-16 13 (2000). Peter G. Goetz, W. S. Rabinovich...reflector is then interrogated by a cw laser beam from a conventional optical communications system and returns a modulated signal beam to the...optical communication systems. By mounting an electro-optic shutter in front of the corner- cube, the retro-reflected beam can be turned on or off (or at

  7. Modulation of electromagnetic and absorption properties in 18-26.5 GHz frequency range of strontium hexaferrites with doping of cobalt-zirconium

    NASA Astrophysics Data System (ADS)

    Pubby, Kunal; Narang, Sukhleen Bindra; Kaur, Prabhjyot; Chawla, S. K.

    2017-05-01

    Hexaferrite nano-particles of stoichiometric composition {{Sr}}{({{CoZr}})_x}{{F}}{{{e}}_{12 - 2x}}{{{O}}_{19}}, with x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0 were prepared using sol-gel auto-combustion route owing to its advantages such as low sintering temperature requirement, homogeneity and uniformity of grains. Tartaric acid as a fuel was utilized to complete the chemical reaction. The goal of this study is to analyse the effect of co-substitution of cobalt and zirconium on the electromagnetic and absorption properties of pure {{SrF}}{{{e}}_{12}}{{{O}}_{19}} hexaferrite. The properties were measured on the rectangular pellets of thickness 2.5 mm for K-frequency band using Vector Network Analyzer. The doping of Co-Zr has resulted in increase in real as well as imaginary parts of permittivity. The values of real permittivity lie in the range 3.6-7.0 for all the composition. The real part of permeability remains in range 0.7-1.6 in the studied frequency band for all the samples and shows slightly increasing trend with frequency. The maximum values of dielectric loss tangent peak (3.04) and magnetic loss tangent peak (2.34), among all the prepared compositions, have been observed for composition x = 0.2. Compositions with x = 0.6 and x = 0.0 also have high dielectric and magnetic loss peaks. Dielectric loss peaks are attributed to dielectric resonance and magnetic loss peaks are attributed to natural resonance. Experimentally determined reflection loss results show that all six compositions of prepared series have high values of absorption to propose them as single-layer absorbers in 18-26.5 GHz frequency range. The composition with x = 0.2 has maximum absorption capacity with reflection loss peak of -37.2 dB at 24.3 GHz frequency. The undoped composition also has high absorption peak (-25.46 dB), but -10 dB absorption bandwidth is minimum (2.2 GHz) out of the present series. Maximum absorption bandwidth is obtained for x = 1.0 (4.1 GHz). Other doped compositions also have high absorption bandwidth in range 3.4-3.9 GHz. The results of absorption were related to the dielectric phase angle to conclude that high electro-magnetic losses are dominant factor in deciding absorption properties of ferrites in comparison to impedance matching.

  8. Plasmon-Exciton Coupling Interaction for Surface Catalytic Reactions.

    PubMed

    Wang, Jingang; Lin, Weihua; Xu, Xuefeng; Ma, Fengcai; Sun, Mengtao

    2018-05-01

    In this review, we firstly reveal the physical principle of plasmon-exciton coupling interaction with steady absorption spectroscopy, and ultrafast transition absorption spectroscopy, based on the pump-prop technology. Secondly, we introduce the fabrication of electro-optical device of two-dimensional semiconductor-nanostructure noble metals hybrid, based on the plasmon-exciton coupling interactions. Thirdly, we introduce the applications of plasmon-exciton coupling interaction in the field of surface catalytic reactions. Lastly, the perspective of plasmon-exciton coupling interaction and applications closed this review. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. 46 CFR 11.335 - Requirements to qualify for an STCW endorsement as an electro-technical officer on vessels...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... electro-technical officer on vessels powered by main propulsion machinery of 750 kW/1,000 HP or more... propulsion machinery of 750 kW/1,000 HP or more (operational level). (a) To qualify for an STCW endorsement... electronics. (iii) Integrated navigation equipment. (iv) Ship propulsion and auxiliary machinery. (v...

  10. The Impact of Emerging MEMS-Based Microsystems on US Defense Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    STAPLE,BEVAN D.; JAKUBCZAK II,JEROME F.

    2000-01-20

    This paper examines the impact of inserting Micro-Electro-Mechanical Systems (MEMS) into US defense applications. As specific examples, the impacts of micro Inertial Measurement Units (IMUs), radio frequency MEMS (RF MEMS), and Micro-Opto-Electro-Mechanical Systems (MOEMS) to provide integrated intelligence, communication, and control to the defense infrastructure with increased affordability, functionality, and performance are highlighted.

  11. Investigating Quantum Modulation States

    DTIC Science & Technology

    2016-03-01

    Coherent state quantum data encryption is highly interoperable with current classical optical infrastructure in both fiber and free space optical networks...hub’s field of regard has a transmit/receive module that are endpoints of the Lyot filter stage tree within the hub’s backend electro-optics control... mobile airborne and space-borne networking. Just like any laser communication technology, QC links are affected by several sources of distortions

  12. Electro-Optics and Millimeter-Wave Technology in Japan.

    DTIC Science & Technology

    1987-05-01

    and communication set is about the price of a car airconditioner . a The GPS could be used in an interferometer application for seismic studies to...COMMUNICATIONS SYSTEM.................. 2-16 10 BATTLE COMMUNICATIONS SYSTEMS ....................... 2-17 11 OPTICAL MODULE PARAMETERS .............. 2-18 12...Conduct follow-up visits to Japanese industries in high interest areas (e.g., displays, radar modules , detectors, and fiber optics), * Visit additional

  13. Navigation and Elctro-Optic Sensor Integration Technology for Fusion of Imagery and Digital Mapping Products

    DTIC Science & Technology

    1999-08-01

    Electro - Optic Sensor Integration Technology (NEOSIT) software application. The design is highly modular and based on COTS tools to facilitate integration with sensors, navigation and digital data sources already installed on different host

  14. Vacuum field-effect transistor with a deep submicron channel fabricated by electro-forming

    NASA Astrophysics Data System (ADS)

    Wang, Xiao; Shen, Zhihua; Wu, Shengli; Zhang, Jintao

    2017-06-01

    Vacuum field-effect transistors (VFETs) with channel lengths down to 500 nm (i.e., the deep submicron scale) were fabricated with the mature technology of the surface conduction electron emitter fabrication process in our former experiments. The vacuum channel of this new VFET was generated by using the electro-forming process. During electro-forming, the joule heat cracks the conductive film and then generates the submicron scale gap that serves as the vacuum channel. The gap separates the conductive film into two plane-to-plane electrodes, which serve as a source (cathode) electrode and a drain (anode) electrode of the VFET, respectively. Experimental results reveal that the fabricated device demonstrates a clear triode behavior of the gate modulation. Fowler-Nordheim theory was used to analyze the electron emission mechanism and operating principle of the device.

  15. Microwave generation with low residual phase noise from a femtosecond fiber laser with an intracavity electro-optic modulator.

    PubMed

    Swann, William C; Baumann, Esther; Giorgetta, Fabrizio R; Newbury, Nathan R

    2011-11-21

    Low phase-noise microwave generation has previously been demonstrated using self-referenced frequency combs to divide down a low noise optical reference. We demonstrate an approach based on a fs Er-fiber laser that avoids the complexity of self-referenced stabilization of the offset frequency. Instead, the repetition rate of the femtosecond Er-fiber laser is phase locked to two cavity-stabilized cw fiber lasers that span 3.74 THz by use of an intracavity electro-optic modulator with over 2 MHz feedback bandwidth. The fs fiber laser effectively divides the 3.74 THz difference signal to produce microwave signals at harmonics of the repetition rate. Through comparison of two identical dividers, we measure a residual phase noise on a 1.5 GHz carrier of -120 dBc/Hz at 1 Hz offset. © 2011 Optical Society of America

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shoup, R.W.; Long, F.; Martin, T.H.

    Sandia is developing PBFA-Z, a 20-MA driver for z-pinch experiments by replacing the water lines, insulator stack, and MITLs on PBFA II with new hardware. The design of the vacuum insulator stack was dictated by the drive voltage, the electric field stress and grading requirements, the water line and MITL interface requirements, and the machine operations and maintenance requirements. The insulator stack will consist of four separate modules, each of a different design because of different voltage drive and hardware interface requirements. The shape of the components in each module, i.e., grading rings, insulator rings, flux excluders, anode and cathodemore » conductors, and the design of the water line and MITL interfaces, were optimized by using the electrostatic analysis codes, ELECTRO and JASON. The time dependent performance of the insulator stack was evaluated using IVORY, a 2-D PIC code. This paper will describe the insulator stack design and present the results of the ELECTRO and IVORY analyses.« less

  17. Steering optical comb frequencies by rotating the polarization state

    NASA Astrophysics Data System (ADS)

    Zhang, Yanyan; Zhang, Xiaofei; Yan, Lulu; Zhang, Pan; Rao, Bingjie; Han, Wei; Guo, Wenge; Zhang, Shougang; Jiang, Haifeng

    2017-12-01

    Optical frequency combs, with precise control of repetition rate and carrier-envelope-offset frequency, have revolutionized many fields, such as fine optical spectroscopy, optical frequency standards, ultra-fast science research, ultra-stable microwave generation and precise ranging measurement. However, existing high bandwidth frequency control methods have small dynamic range, requiring complex hybrid control techniques. To overcome this limitation, we develop a new approach, where a home-made intra-cavity electro-optic modulator tunes polarization state of laser signal rather than only optical length of the cavity, to steer frequencies of a nonlinear-polarization-rotation mode-locked laser. By taking advantage of birefringence of the whole cavity, this approach results in not only broadband but also relative large-dynamic frequency control. Experimental results show that frequency control dynamic range increase at least one order in comparison with the traditional intra-cavity electro-optic modulator technique. In additional, this technique exhibits less side-effect than traditional frequency control methods.

  18. Pressure-Dependent Detection of Carbon Monoxide Employing Wavelength Modulation Spectroscopy Using a Herriott-Type Cell.

    PubMed

    Li, Chuanliang; Wu, Yingfa; Qiu, Xuanbing; Wei, Jilin; Deng, Lunhua

    2017-05-01

    Wavelength modulation spectroscopy (WMS) combined with a multipass absorption cell has been used to measure a weak absorption line of carbon monoxide (CO) at 1.578 µm. A 0.95m Herriott-type cell provides an effective absorption path length of 55.1 m. The WMS signals from the first and second harmonic output of a lock-in amplifier (WMS-1 f and 2 f, respectively) agree with the Beer-Lambert law, especially at low concentrations. After boxcar averaging, the minimum detection limit achieved is 4.3 ppm for a measurement time of 0.125 s. The corresponding normalized detection limit is 84 ppm m Hz -1/2 . If the integrated time is increased to 88 s, the minimum detectable limit of CO can reach to 0.29 ppm based on an Allan variation analysis. The pressure-dependent relationship is validated after accounting for the pressure factor in data processing. Finally, a linear correlation between the WMS-2 f amplitudes and gas concentrations is obtained at concentration ratios less than 15.5%, and the accuracy is better than 92% at total pressure less than 62.7 Torr.

  19. Impacts of underwater turbulence on acoustical and optical signals and their linkage.

    PubMed

    Hou, Weilin; Jarosz, Ewa; Woods, Sarah; Goode, Wesley; Weidemann, Alan

    2013-02-25

    Acoustical and optical signal transmission underwater is of vital interest for both civilian and military applications. The range and signal to noise during the transmission, as a function of system and water optical properties, in terms of absorption and scattering, determines the effectiveness of deployed electro-optical (EO) technology. The impacts from turbulence have been demonstrated to affect system performance comparable to those from particles by recent studies. This paper examines the impacts from underwater turbulence on both acoustic scattering and EO imaging degradation, and establishes a framework that can be used to correlate these. It is hypothesized here that underwater turbulence would influence the acoustic scattering cross section and the optical turbulence intensity coefficient in a similar manner. Data from a recent field campaign, Skaneateles Optical Turbulence Exercise (SOTEX, July, 2010) is used to examine the above relationship. Results presented here show strong correlation between the acoustic scattering cross-sections and the intensity coefficient related to the modulation transfer function of an EO imaging system. This significant finding will pave ways to utilize long range acoustical returns to predict EO system performance.

  20. Feed-forward coherent link from a comb to a diode laser: Application to widely tunable cavity ring-down spectroscopy

    NASA Astrophysics Data System (ADS)

    Gotti, Riccardo; Prevedelli, Marco; Kassi, Samir; Marangoni, Marco; Romanini, Daniele

    2018-02-01

    We apply a feed-forward frequency control scheme to establish a phase-coherent link from an optical frequency comb to a distributed feedback (DFB) diode laser: This allows us to exploit the full laser tuning range (up to 1 THz) with the linewidth and frequency accuracy of the comb modes. The approach relies on the combination of an RF single-sideband modulator (SSM) and of an electro-optical SSM, providing a correction bandwidth in excess of 10 MHz and a comb-referenced RF-driven agile tuning over several GHz. As a demonstration, we obtain a 0.3 THz cavity ring-down scan of the low-pressure methane absorption spectrum. The spectral resolution is 100 kHz, limited by the self-referenced comb, starting from a DFB diode linewidth of 3 MHz. To illustrate the spectral resolution, we obtain saturation dips for the 2ν3 R(6) methane multiplet at μbar pressure. Repeated measurements of the Lamb-dip positions provide a statistical uncertainty in the kHz range.

  1. Basic characteristics of high-frequency Stark-effect modulation of CO2 lasers.

    NASA Technical Reports Server (NTRS)

    Claspy, P. C.; Pao, Y. H.

    1971-01-01

    The molecular Stark effect and its application to the modulation of infrared laser radiation have been investigated both theoretically and experimentally. Using a density matrix approach, a quantum mechanical description of the effect of a time-varying electric field on the absorption coefficient and refractive index of a molecular gas near an absorption line has been formulated. For modulation applications a quantity known as the ?modulation depth' is of prime importance. Theoretical expressions for the frequency dependence of the modulation depth show that the response to the frequency of a time-varying Stark field is separated into a nondispersive and a dispersive region, depending on whether the modulating frequency is less than or greater than the homogeneous absorption linewidth. Experimental results showing nondispersive modulation at frequencies to 30 MHz are presented. In addition it is shown that the response of modulation depth to Stark field amplitude is separated into linear and nonlinear regions, the field at which nonlinearities begin being determined by the absorption spectrum of the molecule being used.

  2. Absorption-Edge-Modulated Transmission Spectra for Water Contaminant Monitoring

    DTIC Science & Technology

    2016-03-31

    Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6390--16-9675 Absorption-Edge-Modulated Transmission Spectra for Water Contaminant ...ABSTRACT c. THIS PAGE 18. NUMBER OF PAGES 17. LIMITATION OF ABSTRACT Absorption-Edge-Modulated Transmission Spectra for Water Contaminant Monitoring...Unlimited Unclassified Unlimited 35 Samuel G. Lambrakos (202) 767-2601 Monitoring of contaminants associated with specific water resources using

  3. Using integrating spheres with wavelength modulation spectroscopy: effect of pathlength distribution on 2nd harmonic signals

    NASA Astrophysics Data System (ADS)

    Hodgkinson, J.; Masiyano, D.; Tatam, R. P.

    2013-02-01

    We have studied the effect on 2nd harmonic wavelength modulation spectroscopy of the use of integrating spheres as multipass gas cells. The gas lineshape becomes distorted at high concentrations, as a consequence of the exponential pathlength distribution of the sphere, introducing nonlinearity beyond that expected from the Beer-Lambert law. We have modelled this numerically for methane absorption at 1.651 μm, with gas concentrations in the range of 0-2.5 %vol in air. The results of this model compare well with experimental measurements. The nonlinearity for the 2 fWMS measurements is larger than that for direct scan measurements; if this additional effect were not accounted for, the resulting error would be approximately 20 % of the reading at a concentration of 2.5 %vol methane.

  4. Electro-optic modulation of a laser at microwave frequencies for interferometric purposes

    NASA Astrophysics Data System (ADS)

    Specht, Paul E.; Jilek, Brook A.

    2017-02-01

    A multi-point microwave interferometer (MPMI) concept was previously proposed by the authors for spatially-resolved, non-invasive tracking of a shock, reaction, or detonation front in energetic media [P. Specht et al., AIP Conf. Proc. 1793, 160010 (2017).]. The advantage of the MPMI concept over current microwave interferometry techniques is its detection of Doppler shifted microwave signals through electro-optic (EO) modulation of a laser. Since EO modulation preserves spatial variations in the Doppler shift, collecting the EO modulated laser light into a fiber array for recording with an optical heterodyne interferometer yields spatially-resolved velocity information. This work demonstrates the underlying physical principle of the MPMI diagnostic: the monitoring of a microwave signal with nanosecond temporal resolution using an optical heterodyne interferometer. For this purpose, the MPMI concept was simplified to a single-point construction using two tunable 1550 nm lasers and a 35.2 GHz microwave source. A (110) ZnTe crystal imparted the microwave frequency onto a laser, which was combined with a reference laser for determination of the microwave frequency in an optical heterodyne interferometer. A single, characteristic frequency associated with the microwave source was identified in all experiments, providing a means to monitor a microwave signal on nanosecond time scales. Lastly, areas for improving the frequency resolution of this technique are discussed, focusing on increasing the phase-modulated signal strength.

  5. Electro-optic modulation of a laser at microwave frequencies for interferometric purposes.

    PubMed

    Specht, Paul E; Jilek, Brook A

    2017-02-01

    A multi-point microwave interferometer (MPMI) concept was previously proposed by the authors for spatially-resolved, non-invasive tracking of a shock, reaction, or detonation front in energetic media [P. Specht et al., AIP Conf. Proc. 1793, 160010 (2017).]. The advantage of the MPMI concept over current microwave interferometry techniques is its detection of Doppler shifted microwave signals through electro-optic (EO) modulation of a laser. Since EO modulation preserves spatial variations in the Doppler shift, collecting the EO modulated laser light into a fiber array for recording with an optical heterodyne interferometer yields spatially-resolved velocity information. This work demonstrates the underlying physical principle of the MPMI diagnostic: the monitoring of a microwave signal with nanosecond temporal resolution using an optical heterodyne interferometer. For this purpose, the MPMI concept was simplified to a single-point construction using two tunable 1550 nm lasers and a 35.2 GHz microwave source. A (110) ZnTe crystal imparted the microwave frequency onto a laser, which was combined with a reference laser for determination of the microwave frequency in an optical heterodyne interferometer. A single, characteristic frequency associated with the microwave source was identified in all experiments, providing a means to monitor a microwave signal on nanosecond time scales. Lastly, areas for improving the frequency resolution of this technique are discussed, focusing on increasing the phase-modulated signal strength.

  6. System and method for controlling hydraulic pressure in electro-hydraulic valve actuation systems

    DOEpatents

    Brennan, Daniel G; Marriott, Craig D; Cowgill, Joel; Wiles, Matthew A; Patton, Kenneth James

    2014-09-23

    A control system for an engine includes a first lift control module and a second lift control module. The first lift control module increases lift of M valves of the engine to a predetermined valve lift during a period before disabling or re-enabling N valves of the engine. The second lift control module decreases the lift of the M valves to a desired valve lift during a period after enabling or re-enabling the N valves of the engine, wherein N and M are integers greater than or equal to one.

  7. Laser line scan performance prediction

    NASA Astrophysics Data System (ADS)

    Mahoney, Kevin L.; Schofield, Oscar; Kerfoot, John; Giddings, Tom; Shirron, Joe; Twardowski, Mike

    2007-09-01

    The effectiveness of sensors that use optical measurements for the laser detection and identification of subsurface mines is directly related to water clarity. The primary objective of the work presented here was to use the optical data collected by UUV (Slocum Glider) surveys of an operational areas to estimate the performance of an electro-optical identification (EOID) Laser Line Scan (LLS) system during RIMPAC 06, an international naval exercise off the coast of Hawaii. Measurements of optical backscattering and beam attenuation were made with a Wet Labs, Inc. Scattering Absorption Meter (SAM), mounted on a Rutgers University/Webb Research Slocum glider. The optical data universally indicated extremely clear water in the operational area, except very close to shore. The beam-c values from the SAM sensor were integrated to three attenuation lengths to provide an estimate of how well the LLS would perform in detecting and identifying mines in the operational areas. Additionally, the processed in situ optical data served as near-real-time input to the Electro-Optic Detection Simulator, ver. 3 (EODES-3; Metron, Inc.) model for EOID performance prediction. Both methods of predicting LLS performance suggested a high probability of detection and probability of identification. These predictions were validated by the actual performance of the LLS as the EOID system yielded imagery from which reliable mine identification could be made. Future plans include repeating this work in more optically challenging water types to demonstrate the utility of pre-mission UUV surveys of operational areas as a tactical decision aid for planning EOID missions.

  8. Wideband laser locking to an atomic reference with modulation transfer spectroscopy.

    PubMed

    Negnevitsky, V; Turner, L D

    2013-02-11

    We demonstrate that conventional modulated spectroscopy apparatus, used for laser frequency stabilization in many atomic physics laboratories, can be enhanced to provide a wideband lock delivering deep suppression of frequency noise across the acoustic range. Using an acousto-optic modulator driven with an agile oscillator, we show that wideband frequency modulation of the pump laser in modulation transfer spectroscopy produces the unique single lock-point spectrum previously demonstrated with electro-optic phase modulation. We achieve a laser lock with 100 kHz feedback bandwidth, limited by our laser control electronics. This bandwidth is sufficient to reduce frequency noise by 30 dB across the acoustic range and narrows the imputed linewidth by a factor of five.

  9. Improved electro-transformation of highly DNA-restrictive corynebacteria with DNA extracted from starved Escherichia coli.

    PubMed

    Ankri, S; Reyes, O; Leblon, G

    1996-07-01

    Differences of up to 33 000-fold in electro-transformability of highly DNA restrictive corynebacteria are observed in the DNA of a shuttle plasmid extracted from Escherichia coli hosts propagated in different nutritional conditions. Growth of the host in minimal medium increases plasmid transformability, whereas growth on rich media decreases it. In the E. coli DH5 alpha host, the starvation-dependent increase DNA transformability is reverted by supplementing with methionine, an obligate 5-adenosyl-methionine (SAM) precursor. This suggests that an E. coli nutritionally modulated SAM-dependent DNA-methyltransferase may be involved in this phenomenon.

  10. Electro-Optic Effect in Thin Films of a Dielectric and a Ferroelectric with Subwavelength Aluminum Grating

    NASA Astrophysics Data System (ADS)

    Blinov, L. M.; Lazarev, V. V.; Yudin, S. G.; Artemov, V. V.; Palto, S. P.; Gorkunov, M. V.

    2018-01-01

    The electro-optic effect in three nanoscale heterostructures, in each of which a thin layer of dielectric or ferroelectric material is inserted between two planar metal electrodes, has been studied. Each structure has one aluminum layer, containing a subwavelength grating with a period of 400 nm, contacting with either the glass substrate or air. The light transmission spectra of structures with subwavelength grating contain characteristic plasmon dips. Short external-voltage pulses affect the change in the refractive index of the corresponding active layer. Significant values of these changes may be useful for designing optical modulators.

  11. Electroosmosis modulated biomechanical transport through asymmetric microfluidics channel

    NASA Astrophysics Data System (ADS)

    Jhorar, R.; Tripathi, D.; Bhatti, M. M.; Ellahi, R.

    2018-05-01

    This article addresses the electrokinetically modulated biomechanical transport through a two-dimensional asymmetric microchannel induced by peristaltic waves. Electrokinetic transport with peristaltic phenomena grabbed a significant attention due to its novel applications in engineering. Electrical fields also provide an excellent mode for regulating flows. The electrohydrodynamics problem is modified by means of Debye-Hückel linearization. Firstly, the governing flow problem is described by continuity and momentum equations in the presence of electrokinetic forces in Cartesian coordinates, then long wavelength and low/zero Reynolds ("neglecting the inertial forces") approximations are applied to modify the governing flow problem. The resulting differential equations are solved analytically in order to obtain exact solutions for velocity profile whereas the numerical integration is carried out to analyze the pumping characteristics. The physical behaviour of sundry parameters is discussed for velocity profile, pressure rise and volume flow rate. In particular, the behaviour of electro-osmotic parameter, phase difference, and Helmholtz-Smoluchowski velocity is examined and discussed. The trapping mechanism is also visualized by drawing streamlines against the governing parameters. The present study offers various interesting results that warrant further study on electrokinetic transport with peristalsis.

  12. Combined, solid-state molecular property and gamma spectrometers for CBRNE detection

    NASA Astrophysics Data System (ADS)

    Rogers, Ben; Grate, Jay; Pearson, Brett; Gallagher, Neal; Wise, Barry; Whitten, Ralph; Adams, Jesse

    2013-05-01

    Nevada Nanotech Systems, Inc. (Nevada Nano) has developed a multi-sensor solution to Chemical, Biological, Radiological, Nuclear and Explosives (CBRNE) detection that combines the Molecular Property Spectrometer™ (MPS™)—a micro-electro-mechanical chip-based technology capable of measuring a variety of thermodynamic and electrostatic molecular properties of sampled vapors and particles—and a compact, high-resolution, solid-state gamma spectrometer module for identifying radioactive materials, including isotopes used in dirty bombs and nuclear weapons. By conducting multiple measurements, the system can provide a more complete characterization of an unknown sample, leading to a more accurate identification. Positive identifications of threats are communicated using an integrated wireless module. Currently, system development is focused on detection of commercial, military and improvised explosives, radioactive materials, and chemical threats. The system can be configured for a variety of CBRNE applications, including handheld wands and swab-type threat detectors requiring short sample times, and ultra-high sensitivity detectors in which longer sampling times are used. Here we provide an overview of the system design and operation and present results from preliminary testing.

  13. Investigation of Analog Photonic Link Technology for Timing and Metrological Applications

    DTIC Science & Technology

    2015-05-18

    same model bias tee in each case. Fig. 1.8: Measured residual single-sideband (SSB) phase noise for two amplifiers with various RF pads at...deflection at the AO output. The deflected signal is reflected onto a tilted diffraction grating and passed backed through the device to the output...Other TTD modulation mechanisms have been considered including fiber stretches (mechanical and piezoelectric ), electro-optic modulators (i.e

  14. Ultra-thin silicon/electro-optic polymer hybrid waveguide modulators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiu, Feng; Spring, Andrew M.; Sato, Hiromu

    2015-09-21

    Ultra-thin silicon and electro-optic (EO) polymer hybrid waveguide modulators have been designed and fabricated. The waveguide consists of a silicon core with a thickness of 30 nm and a width of 2 μm. The cladding is an EO polymer. Optical mode calculation reveals that 55% of the optical field around the silicon extends into the EO polymer in the TE mode. A Mach-Zehnder interferometer (MZI) modulator was prepared using common coplanar electrodes. The measured half-wave voltage of the MZI with 7 μm spacing and 1.3 cm long electrodes is 4.6 V at 1550 nm. The evaluated EO coefficient is 70 pm/V, which is comparable to that ofmore » the bulk EO polymer film. Using ultra-thin silicon is beneficial in order to reduce the side-wall scattering loss, yielding a propagation loss of 4.0 dB/cm. We also investigated a mode converter which couples light from the hybrid EO waveguide into a strip silicon waveguide. The calculation indicates that the coupling loss between these two devices is small enough to exploit the potential fusion of a hybrid EO polymer modulator together with a silicon micro-photonics device.« less

  15. Rotational modulation of hydrogen Lyman alpha flux from 44ii Bootis

    NASA Technical Reports Server (NTRS)

    Vilhu, O.; Neff, J. E.; Rahunen, T.

    1988-01-01

    Observations with IUE that cover the entire 6.4 hr orbital cycle of the late-type contact binary 44i Bootis are presented. Intrinsic stellar hydrogen Lyman alpha emission flux was determined from low-resolution IUE spectra, compensating for geocoronal emission and for interstellar absorption. The variation of the stellar Lyman alpha emission flux correlates well with the variation of the C II and C IV emission fluxes, and shows orbital modulation in phase with the visual light curve. The ratio of Lyman alpha to CII flux (15 to 20) is similar to that observed in solar active regions. Hydrogen Lyman alpha emission is thus one of the most important cooling channels in the outer atmosphere of 44i Boo. A high-resolution spectrum of the Lyman alpha line was obtained between orbital phases 0.0 and 0.6. The integrated flux in the observed high-resolution Lyman alpha profile is consistent with the fluxes determined using low-resolution spectra, and the composite profile indicates that both components of this binary have equally active chromospheres and transition regions. The uncertainty in the interstellar hydrogen column density cannot mimic the observed variation in the integrated Lyman alpha flux, because the stellar line is very much broader than the interstellar absorption.

  16. Rotational modulation of hydrogen Lyman alpha flux from 44i Bootis

    NASA Technical Reports Server (NTRS)

    Vilhu, O.; Neff, J. E.; Rahunen, T.

    1989-01-01

    Observations with IUE that cover the entire 6.4 hr orbital cycle of the late-type contact binary 44i Bootis are presented. Intrinsic stellar hydrogen Lyman alpha emission flux was determined from low-resolution IUE spectra, compensating for geocoronal emission and for interstellar absorption. The variation of the stellar Lyman alpha emission flux correlates well with the variation of the CII and CIV emission fluxes, and shows orbital modulation in phase with the visual light curve. The ratio of Lyman alpha to CII flux (15 to 20) is similar to that observed in solar active regions. Hydrogen Lyman alpha emission is thus one of the most important cooling channels in the outer atmosphere of 44i Boo. A high-resolution spectrum of the Lyman alpha line was obtained between orbital phases 0.0 and 0.6. The integrated flux in the observed high-resolution Lyman alpha profile is consistent with the fluxes determined using low-resolution spectra, and the composite profile indicates that both components of this binary have equally active chromospheres and transition regions. The uncertainty in the interstellar hydrogen column density cannot mimic the observed variation in the integrated Lyman alpha flux, because the stellar line is very much broader than the interstellar absorption.

  17. Laser frequency-offset locking based on the frequency modulation spectroscopy with higher harmonic detection

    NASA Astrophysics Data System (ADS)

    Wang, Anqi; Meng, Zhixin; Feng, Yanying

    2017-10-01

    We design a fiber electro-optic modulator (FEOM)-based laser frequency-offset locking system using frequency modulation spectroscopy (FMS) with the 3F modulation. The modulation signal and the frequency-offset control signal are simultaneously loaded on the FEOM by a mixer in order to suppress the frequency and power jitter caused by internal modulation on the current or piezoelectric ceramic transducer (PZT). It is expected to accomplish a fast locking, a widely tunable frequency-offset, a sensitive and rapid detection of narrow spectral features with the 3F modulation. The laser frequency fluctuation is limited to +/-1MHz and its overlapping Allan deviation is around 10-12 in twenty minutes, which successfully meets the requirements of the cold atom interferometer.

  18. Electro-optic architecture for servicing sensors and actuators in advanced aircraft propulsion systems

    NASA Technical Reports Server (NTRS)

    Poppel, G. L.; Glasheen, W. M.

    1989-01-01

    A detailed design of a fiber optic propulsion control system, integrating favored sensors and electro-optics architecture is presented. Layouts, schematics, and sensor lists describe an advanced fighter engine system model. Components and attributes of candidate fiber optic sensors are identified, and evaluation criteria are used in a trade study resulting in favored sensors for each measurand. System architectural ground rules were applied to accomplish an electro-optics architecture for the favored sensors. A key result was a considerable reduction in signal conductors. Drawings, schematics, specifications, and printed circuit board layouts describe the detailed system design, including application of a planar optical waveguide interface.

  19. Chalcogenide glass-on-graphene photonics

    NASA Astrophysics Data System (ADS)

    Lin, Hongtao; Song, Yi; Huang, Yizhong; Kita, Derek; Deckoff-Jones, Skylar; Wang, Kaiqi; Li, Lan; Li, Junying; Zheng, Hanyu; Luo, Zhengqian; Wang, Haozhe; Novak, Spencer; Yadav, Anupama; Huang, Chung-Che; Shiue, Ren-Jye; Englund, Dirk; Gu, Tian; Hewak, Daniel; Richardson, Kathleen; Kong, Jing; Hu, Juejun

    2017-12-01

    Two-dimensional (2D) materials are of tremendous interest to integrated photonics, given their singular optical characteristics spanning light emission, modulation, saturable absorption and nonlinear optics. To harness their optical properties, these atomically thin materials are usually attached onto prefabricated devices via a transfer process. Here, we present a new route for 2D material integration with planar photonics. Central to this approach is the use of chalcogenide glass, a multifunctional material that can be directly deposited and patterned on a wide variety of 2D materials and can simultaneously function as the light-guiding medium, a gate dielectric and a passivation layer for 2D materials. Besides achieving improved fabrication yield and throughput compared with the traditional transfer process, our technique also enables unconventional multilayer device geometries optimally designed for enhancing light-matter interactions in the 2D layers. Capitalizing on this facile integration method, we demonstrate a series of high-performance glass-on-graphene devices including ultra-broadband on-chip polarizers, energy-efficient thermo-optic switches, as well as graphene-based mid-infrared waveguide-integrated photodetectors and modulators.

  20. Effective charge separation in BiOI/Cu2O composites with enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Xia, Yongmei; He, Zuming; Yang, Wei; Tang, Bin; Lu, Yalin; Hu, Kejun; Su, Jiangbin; Li, Xiaoping

    2018-02-01

    Novel BiOI/Cu2O composites were designed and synthesized for the first time by coupling reduction method at low temperature. The samples were characterized by XRD, XPS, SEM, EDS, HRTEM, UV-vis (DRS), FTIR and photo-electro-chemical (PEC) analysis. Results showed that the BiOI/Cu2O composites consisted of three-dimensional (3D), hierarchical cauliflower-like structure composed of BiOI nanosheet and Cu2O cubic submicrometer structure, the composite absorption band broadened, and the absorption intensity in the visible region strengthened. And the composites exhibited an excellent photocatalytic performance, which might be attributed to the improvement of the composite absorption and effective charge separation in BiOI/Cu2O composites. In addition, the possible photocatalytic mechanism was proposed.

  1. Potentiometric Dye Imaging for Pheochromocytoma and Cortical Neurons with a Novel Measurement System Using an Integrated Complementary Metal-Oxide-Semiconductor Imaging Device

    NASA Astrophysics Data System (ADS)

    Kobayashi, Takuma; Tagawa, Ayato; Noda, Toshihiko; Sasagawa, Kiyotaka; Tokuda, Takashi; Hatanaka, Yumiko; Tamura, Hideki; Ishikawa, Yasuyuki; Shiosaka, Sadao; Ohta, Jun

    2010-11-01

    The combination of optical imaging with voltage-sensitive dyes is a powerful tool for studying the spatiotemporal patterns of neural activity and understanding the neural networks of the brain. To visualize the potential status of multiple neurons simultaneously using a compact instrument with high density and a wide range, we present a novel measurement system using an implantable biomedical photonic LSI device with a red absorptive light filter for voltage-sensitive dye imaging (BpLSI-red). The BpLSI-red was developed for sensing fluorescence by the on-chip LSI, which was designed by using complementary metal-oxide-semiconductor (CMOS) technology. A micro-electro-mechanical system (MEMS) microfabrication technique was used to postprocess the CMOS sensor chip; light-emitting diodes (LEDs) were integrated for illumination and to enable long-term cell culture. Using the device, we succeeded in visualizing the membrane potential of 2000-3000 cells and the process of depolarization of pheochromocytoma cells (PC12 cells) and mouse cerebral cortical neurons in a primary culture with cellular resolution. Therefore, our measurement application enables the detection of multiple neural activities simultaneously.

  2. Curcumin-mediated regulation of intestinal barrier function: The mechanism underlying its beneficial effects.

    PubMed

    Ghosh, Siddhartha S; He, Hongliang; Wang, Jing; Gehr, Todd W; Ghosh, Shobha

    2018-01-02

    Curcumin has anti-inflammatory, anti-oxidant and anti-proliferative properties established largely by in vitro studies. Accordingly, oral administration of curcumin beneficially modulates many diseases including diabetes, fatty-liver disease, atherosclerosis, arthritis, cancer and neurological disorders such as depression, Alzheimer's or Parkinson's disease. However, limited bioavailability and inability to detect curcumin in circulation or target tissues has hindered the validation of a causal role. We established curcumin-mediated decrease in the release of gut bacteria-derived lipopolysaccharide (LPS) into circulation by maintaining the integrity of the intestinal barrier function as the mechanism underlying the attenuation of metabolic diseases (diabetes, atherosclerosis, kidney disease) by curcumin supplementation precluding the need for curcumin absorption. In view of the causative role of circulating LPS and resulting chronic inflammation in the development of diseases listed above, this review summarizes the mechanism by which curcumin affects the several layers of the intestinal barrier and, despite negligible absorption, can beneficially modulate these diseases.

  3. Resolving Overlimiting Current Mechanisms in Microchannel-Nanochannel Interface Devices

    NASA Astrophysics Data System (ADS)

    Yossifon, Gilad; Leibowitz, Neta; Liel, Uri; Schiffbauer, Jarrod; Park, Sinwook

    2015-11-01

    We present results demonstrating the space charge-mediated transition between classical, diffusion-limited current and surface-conduction dominant over-limiting currents in a shallow micro-nanochannel device. The extended space charge layer develops at the depleted micro-nanochannel entrance at high current and is correlated with a distinctive maximum in the dc resistance. Experimental results for a shallow surface-conduction dominated system are compared with theoretical models, allowing estimates of the effective surface charge at high voltage to be obtained. Further, we extend the study to microchannels of moderate to large depths where the role of various electro-convection mechanisms becomes dominant. In particular, electro-osmotic of the second kind and electro-osmotic instability (EOI) which competes each other at geometrically heterogeneous (e.g. undulated nanoslot interface, array of nanoslots) nanoslot devices. Also, these effects are also shown to be strongly modulated by the non-ideal permselectivity of the nanochannel.

  4. Science and technology of stressed liquid crystals: display and non-display applications

    NASA Astrophysics Data System (ADS)

    Melnyk, Olha; Garbovskiy, Yuriy; Glushchenko, Anatoliy

    2017-08-01

    Stressed liquid crystals (SLCs) have emerged as promising tunable electro-optical materials more than a decade ago. They are optically transparent and are characterized by a giant phase modulation of the incident light (Nπ, N >> 1), fast (millisecond and shorter) electro-optical response, and a relatively low driving voltage (∼1 V/μm). Surprisingly, despite their advanced electro-optical performance, these new materials did not receive due attention in the research community. One possible reason of such an inadequate interest in SLCs is the lack of the well-documented procedure describing how to actually produce these materials. This paper is aimed at the development of such a step-by-step practical guide suitable for experimentalist and engineers. The proposed technology is applied to produce and characterize SLCs. In addition, some applications of the materials are briefly discussed and a broader overview of their possible use is outlined.

  5. Adaptability Through Modular Materials

    ERIC Educational Resources Information Center

    Hull, Daniel M.; And Others

    1974-01-01

    Several short articles describe programs utilizing laser/electro-optics technology curriculum materials developed by Technical Education Research Centers (TERC): at undergraduate and graduate levels in universities; in a city college; in continuing education; and in industry. Modules, independent units based on booklets or films, include…

  6. Surface emitting ring quantum cascade lasers for chemical sensing

    NASA Astrophysics Data System (ADS)

    Szedlak, Rolf; Hayden, Jakob; Martín-Mateos, Pedro; Holzbauer, Martin; Harrer, Andreas; Schwarz, Benedikt; Hinkov, Borislav; MacFarland, Donald; Zederbauer, Tobias; Detz, Hermann; Andrews, Aaron Maxwell; Schrenk, Werner; Acedo, Pablo; Lendl, Bernhard; Strasser, Gottfried

    2018-01-01

    We review recent advances in chemical sensing applications based on surface emitting ring quantum cascade lasers (QCLs). Such lasers can be implemented in monolithically integrated on-chip laser/detector devices forming compact gas sensors, which are based on direct absorption spectroscopy according to the Beer-Lambert law. Furthermore, we present experimental results on radio frequency modulation up to 150 MHz of surface emitting ring QCLs. This technique provides detailed insight into the modulation characteristics of such lasers. The gained knowledge facilitates the utilization of ring QCLs in combination with spectroscopic techniques, such as heterodyne phase-sensitive dispersion spectroscopy for gas detection and analysis.

  7. Electro-optical backplane demonstrator with integrated multimode gradient-index thin glass waveguide panel

    NASA Astrophysics Data System (ADS)

    Schröder, Henning; Brusberg, Lars; Pitwon, Richard; Whalley, Simon; Wang, Kai; Miller, Allen; Herbst, Christian; Weber, Daniel; Lang, Klaus-Dieter

    2015-03-01

    Optical interconnects for data transmission at board level offer increased energy efficiency, system density, and bandwidth scalability compared to purely copper driven systems. We present recent results on manufacturing of electrooptical printed circuit board (PCB) with integrated planar glass waveguides. The graded index multi-mode waveguides are patterned inside commercially available thin-glass panels by performing a specific ion-exchange process. The glass waveguide panel is embedded within the layer stack-up of a PCB using proven industrial processes. This paper describes the design, manufacture, assembly and characterization of the first electro-optical backplane demonstrator based on integrated planar glass waveguides. The electro-optical backplane in question is created by laminating the glass waveguide panel into a conventional multi-layer electronic printed circuit board stack-up. High precision ferrule mounts are automatically assembled, which will enable MT compliant connectors to be plugged accurately to the embedded waveguide interfaces on the glass panel edges. The demonstration platform comprises a standardized sub-rack chassis and five pluggable test cards each housing optical engines and pluggable optical connectors. The test cards support a variety of different data interfaces and can support data rates of up to 32 Gb/s per channel.

  8. Linear electro-optic properties of relaxor-based ferroelectric 0.24Pb(In1/2Nb1/2)O3-(0.76 − x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 single crystals

    PubMed Central

    Wu, Fengmin; Yang, Bin; Sun, Enwei; Liu, Gang; Tian, Hao; Cao, Wenwu

    2013-01-01

    Linear electro-optic properties of 0.24Pb(In1/2Nb1/2)O3-(0.76 − x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 single crystals, with compositions in the rhombohedral, morphotropic phase boundary (MPB) and tetragonal phases, have been investigated. Very large effective electro-optic coefficient γc (204 pm/V) was observed in a crystal with the MPB composition when it is poled along [001]. The rhombohedral phase (x = 0.27 and 0.30) single crystals poled along [111] direction and tetragonal phase (x = 0.39) single crystal poled along [001] direction are in single domain, and their electro-optic coefficients (γc = 76, 94, and 43 pm/V for the crystals with x = 0.27, 0.30, and 0.39, respectively) were found to be much higher than that of traditional electro-optic single crystal LiNbO3 (γc = 19.9 pm/V). The electro-optic coefficients of the single crystal in the rhombohedral phase have excellent temperature stability in the experimental temperature range of 10–40 °C. The half-wave voltage Vπ was calculated to be much lower (less than 1000 V) than that of LiNbO3 single crystal (2800 V). These superior properties make the ternary relaxor-PT single crystals very promising for electro-optic modulation applications. PMID:23922449

  9. Natural gas pipeline leak detector based on NIR diode laser absorption spectroscopy.

    PubMed

    Gao, Xiaoming; Fan, Hong; Huang, Teng; Wang, Xia; Bao, Jian; Li, Xiaoyun; Huang, Wei; Zhang, Weijun

    2006-09-01

    The paper reports on the development of an integrated natural gas pipeline leak detector based on diode laser absorption spectroscopy. The detector transmits a 1.653 microm DFB diode laser with 10 mW and detects a fraction of the backscatter reflected from the topographic targets. To eliminate the effect of topographic scatter targets, a ratio detection technique was used. Wavelength modulation and harmonic detection were used to improve the detection sensitivity. The experimental detection limit is 50 ppmm, remote detection for a distance up to 20 m away topographic scatter target is demonstrated. Using a known simulative leak pipe, minimum detectable pipe leak flux is less than 10 ml/min.

  10. Tunable microwave photonic filter free from baseband and carrier suppression effect not requiring single sideband modulation using a Mach-Zenhder configuration.

    PubMed

    Mora, José; Ortigosa-Blanch, Arturo; Pastor, Daniel; Capmany, José

    2006-08-21

    We present a full theoretical and experimental analysis of a novel all-optical microwave photonic filter combining a mode-locked fiber laser and a Mach-Zenhder structure in cascade to a 2x1 electro-optic modulator. The filter is free from the carrier suppression effect and thus it does not require single sideband modulation. Positive and negative coefficients are obtained inherently in the system and the tunability is achieved by controlling the optical path difference of the Mach-Zenhder structure.

  11. Electro-optic routing of photons from a single quantum dot in photonic integrated circuits

    NASA Astrophysics Data System (ADS)

    Midolo, Leonardo; Hansen, Sofie L.; Zhang, Weili; Papon, Camille; Schott, Rüdiger; Ludwig, Arne; Wieck, Andreas D.; Lodahl, Peter; Stobbe, Søren

    2017-12-01

    Recent breakthroughs in solid-state photonic quantum technologies enable generating and detecting single photons with near-unity efficiency as required for a range of photonic quantum technologies. The lack of methods to simultaneously generate and control photons within the same chip, however, has formed a main obstacle to achieving efficient multi-qubit gates and to harness the advantages of chip-scale quantum photonics. Here we propose and demonstrate an integrated voltage-controlled phase shifter based on the electro-optic effect in suspended photonic waveguides with embedded quantum emitters. The phase control allows building a compact Mach-Zehnder interferometer with two orthogonal arms, taking advantage of the anisotropic electro-optic response in gallium arsenide. Photons emitted by single self-assembled quantum dots can be actively routed into the two outputs of the interferometer. These results, together with the observed sub-microsecond response time, constitute a significant step towards chip-scale single-photon-source de-multiplexing, fiber-loop boson sampling, and linear optical quantum computing.

  12. Prototype positron emission tomography insert with electro-optical signal transmission for simultaneous operation with MRI.

    PubMed

    Olcott, Peter; Kim, Ealgoo; Hong, Keyjo; Lee, Brian J; Grant, Alexander M; Chang, Chen-Ming; Glover, Gary; Levin, Craig S

    2015-05-07

    The simultaneous acquisition of PET and MRI data shows promise to provide powerful capabilities to study disease processes in human subjects, guide the development of novel treatments, and monitor therapy response and disease progression. A brain-size PET detector ring insert for an MRI system is being developed that, if successful, can be inserted into any existing MRI system to enable simultaneous PET and MRI images of the brain to be acquired without mutual interference. The PET insert uses electro-optical coupling to relay all the signals from the PET detectors out of the MRI system using analog modulated lasers coupled to fiber optics. Because the fibers use light instead of electrical signals, the PET detector can be electrically decoupled from the MRI making it partially transmissive to the RF field of the MRI. The SiPM devices and low power lasers were powered using non-magnetic MRI compatible batteries. Also, the number of laser-fiber channels in the system was reduced using techniques adapted from the field of compressed sensing. Using the fact that incoming PET data is sparse in time and space, electronic circuits implementing constant weight codes uniquely encode the detector signals in order to reduce the number of electro-optical readout channels by 8-fold. Two out of a total of sixteen electro-optical detector modules have been built and tested with the entire RF-shielded detector gantry for the PET ring insert. The two detectors have been tested outside and inside of a 3T MRI system to study mutual interference effects and simultaneous performance with MRI. Preliminary results show that the PET insert is feasible for high resolution simultaneous PET/MRI imaging for applications in the brain.

  13. Prototype positron emission tomography insert with electro-optical signal transmission for simultaneous operation with MRI

    NASA Astrophysics Data System (ADS)

    Olcott, Peter; Kim, Ealgoo; Hong, Keyjo; Lee, Brian J.; Grant, Alexander M.; Chang, Chen-Ming; Glover, Gary; Levin, Craig S.

    2015-05-01

    The simultaneous acquisition of PET and MRI data shows promise to provide powerful capabilities to study disease processes in human subjects, guide the development of novel treatments, and monitor therapy response and disease progression. A brain-size PET detector ring insert for an MRI system is being developed that, if successful, can be inserted into any existing MRI system to enable simultaneous PET and MRI images of the brain to be acquired without mutual interference. The PET insert uses electro-optical coupling to relay all the signals from the PET detectors out of the MRI system using analog modulated lasers coupled to fiber optics. Because the fibers use light instead of electrical signals, the PET detector can be electrically decoupled from the MRI making it partially transmissive to the RF field of the MRI. The SiPM devices and low power lasers were powered using non-magnetic MRI compatible batteries. Also, the number of laser-fiber channels in the system was reduced using techniques adapted from the field of compressed sensing. Using the fact that incoming PET data is sparse in time and space, electronic circuits implementing constant weight codes uniquely encode the detector signals in order to reduce the number of electro-optical readout channels by 8-fold. Two out of a total of sixteen electro-optical detector modules have been built and tested with the entire RF-shielded detector gantry for the PET ring insert. The two detectors have been tested outside and inside of a 3T MRI system to study mutual interference effects and simultaneous performance with MRI. Preliminary results show that the PET insert is feasible for high resolution simultaneous PET/MRI imaging for applications in the brain.

  14. Advanced treatment of biologically pretreated coal gasification wastewater by a novel integration of three-dimensional catalytic electro-Fenton and membrane bioreactor.

    PubMed

    Jia, Shengyong; Han, Hongjun; Hou, Baolin; Zhuang, Haifeng

    2015-12-01

    Laboratorial scale experiments were conducted to investigate a novel system three-dimensional catalytic electro-Fenton (3DCEF, catalyst of sewage sludge based activated carbon which loaded Fe3O4) integrating with membrane bioreactor (3DCEF-MBR) on advanced treatment of biologically pretreated coal gasification wastewater. The results indicated that 3DCEF-MBR represented high efficiencies in eliminating COD and total organic carbon, giving the maximum removal efficiencies of 80% and 75%, respectively. The integrated 3DCEF-MBR system significantly reduced the transmembrane pressure, giving 35% lower than conventional MBR after 30 days operation. The enhanced hydroxyl radical oxidation and bacteria self repair function were the mechanisms for 3DCEF-MBR performance. Therefore, the integrated 3DCEF-MBR was expected to be the promising technology for advanced treatment in engineering applications. Copyright © 2015. Published by Elsevier Ltd.

  15. Fly Ear Inspired Miniature Acoustic Sensors for Detection and Localization

    DTIC Science & Technology

    2011-07-31

    Micro-Opto-Electro-Mechnical-System ( MOEMS ) sensor platform that is capable of integrating multiplexed Fabry-Perot (FP) interferometer based sensors. A...on a single MOEMS chip is shown in Figure 8. Light from a low coherence light source with a coherence length Lc is first sent to the reference...towards developing a low coherence interferometer based MOEMS detection system. An optical Micro-Electro-Mechanical-System (MEMS) sensor platform was

  16. Light sensitive memristor with bi-directional and wavelength-dependent conductance control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maier, P.; Hartmann, F., E-mail: fabian.hartmann@physik.uni-wuerzburg.de; Emmerling, M.

    2016-07-11

    We report the optical control of localized charge on positioned quantum dots in an electro-photo-sensitive memristor. Interband absorption processes in the quantum dot barrier matrix lead to photo-generated electron-hole-pairs that, depending on the applied bias voltage, charge or discharge the quantum dots and hence decrease or increase the conductance. Wavelength-dependent conductance control is observed by illumination with red and infrared light, which leads to charging via interband and discharging via intraband absorption. The presented memristor enables optical conductance control and may thus be considered for sensory applications in artificial neural networks as light-sensitive synapses or optically tunable memories.

  17. A methodology for identification and control of electro-mechanical actuators

    PubMed Central

    Tutunji, Tarek A.; Saleem, Ashraf

    2015-01-01

    Mechatronic systems are fully-integrated engineering systems that are composed of mechanical, electronic, and computer control sub-systems. These integrated systems use electro-mechanical actuators to cause the required motion. Therefore, the design of appropriate controllers for these actuators are an essential step in mechatronic system design. In this paper, a three-stage methodology for real-time identification and control of electro-mechanical actuator plants is presented, tested, and validated. First, identification models are constructed from experimental data to approximate the plants’ response. Second, the identified model is used in a simulation environment for the purpose of designing a suitable controller. Finally, the designed controller is applied and tested on the real plant through Hardware-in-the-Loop (HIL) environment. The described three-stage methodology provides the following practical contributions: • Establishes an easy-to-follow methodology for controller design of electro-mechanical actuators. • Combines off-line and on-line controller design for practical performance. • Modifies the HIL concept by using physical plants with computer control (rather than virtual plants with physical controllers). Simulated and experimental results for two case studies, induction motor and vehicle drive system, are presented in order to validate the proposed methodology. These results showed that electromechanical actuators can be identified and controlled using an easy-to-duplicate and flexible procedure. PMID:26150992

  18. A methodology for identification and control of electro-mechanical actuators.

    PubMed

    Tutunji, Tarek A; Saleem, Ashraf

    2015-01-01

    Mechatronic systems are fully-integrated engineering systems that are composed of mechanical, electronic, and computer control sub-systems. These integrated systems use electro-mechanical actuators to cause the required motion. Therefore, the design of appropriate controllers for these actuators are an essential step in mechatronic system design. In this paper, a three-stage methodology for real-time identification and control of electro-mechanical actuator plants is presented, tested, and validated. First, identification models are constructed from experimental data to approximate the plants' response. Second, the identified model is used in a simulation environment for the purpose of designing a suitable controller. Finally, the designed controller is applied and tested on the real plant through Hardware-in-the-Loop (HIL) environment. The described three-stage methodology provides the following practical contributions: •Establishes an easy-to-follow methodology for controller design of electro-mechanical actuators.•Combines off-line and on-line controller design for practical performance.•Modifies the HIL concept by using physical plants with computer control (rather than virtual plants with physical controllers). Simulated and experimental results for two case studies, induction motor and vehicle drive system, are presented in order to validate the proposed methodology. These results showed that electromechanical actuators can be identified and controlled using an easy-to-duplicate and flexible procedure.

  19. The utility of polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS) in surface and in situ studies: new data processing and presentation approach.

    PubMed

    Monyoncho, Evans A; Zamlynny, Vlad; Woo, Tom K; Baranova, Elena A

    2018-05-29

    Infrared spectroscopy is a powerful non-destructive technique for the identification and quantification of organic molecules widely used in scientific studies. For many years, efforts have been made to adopt this technique for the in situ monitoring of reactions. From these efforts, polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS) was developed three decades ago. Unfortunately, because of the complexity of data processing and interpretation, PM-IRRAS had been avoided in lieu of the single potential alteration infrared spectroscopy (SPAIRS) and subtractively normalized interfacial Fourier transform infrared (SNIFTIR). In this work, we present a new approach for PM-IRRAS data processing and presentation, which provides more insight into in situ and surface studies besides dramatically improving the S/N. In this new approach, we recommend three complementary methods of data treatment (eqn (7), (9) and (10)) as the new protocols for presenting PM-IRRAS data. These equations are robust in visualising the surface processes at the solid-liquid and solid-gas interphases. Eqn (7) contrasts the surface adsorbed species with respect to the isotropic background with or without the influence of the applied potential. Eqn (9) highlights the surface potential-driven changes between the sample and the reference spectra. Eqn (10) focuses on the bulk-phase (solution/gas and surface species) potential-driven changes between the sample and the reference spectra, and hence it can be used to track the production of species, which desorb from the surface upon their formation. Examples of ethanol electro-oxidation reaction are provided as a test system for in situ studies and PVP deposited on glassy carbon for thin-film studies to illustrate the utility of the new PM-IRRAS data handling protocol, which is poised to improve the understanding of the chemistry and physics of surface processes.

  20. High-Q Microsphere Cavity for Laser Stabilization and Optoelectronic Microwave Oscillator

    NASA Technical Reports Server (NTRS)

    Ilchenko, Vladimir S.; Yao, X. Steve; Maleki, Lute

    2000-01-01

    With submillimeter size and optical Q up to approximately 10 (exp 10), microspheres with whispering-gallery (WG) modes are attractive new component for fiber-optics/photonics applications and a potential core in ultra-compact high-spectral-purity optical and microwave oscillators. In addition to earlier demonstrated optical locking of diode laser to WG mode in a microsphere, we report on microsphere application in the microwave optoelectronic oscillator, OEO. In OEO, a steady-state microwave modulation of optical carrier is obtained in a closed loop including electro-optical modulator, fiber-optic delay, detector and microwave amplifier. OEO demonstrates exceptionally low phase noise (-140 dBc/Hz at l0kHz from approximately 10GHz carrier) with a fiber length approximately 2km. Current technology allows to put all parts of the OEO, except the fiber, on the same chip. Microspheres, with their demonstrated Q equivalent to a kilometer fiber storage, can replace fiber delays in a truly integrated device. We have obtained microwave oscillation in microsphere-based OEO at 5 to 18 GHz, with 1310nm and 1550nm optical carrier, in two configurations: 1) with external DFB pump laser, and 2) with a ring laser including microsphere and a fiber optic amplifier. Also reported is a simple and efficient fiber coupler for microspheres facilitating their integration with existing fiber optics devices.

  1. Integrated optic single-ring filter for narrowband phase demodulation

    NASA Astrophysics Data System (ADS)

    Madsen, C. K.

    2017-05-01

    Integrated optic notch filters are key building blocks for higher-order spectral filter responses and have been demonstrated in many technology platforms from dielectrics (such as Si3N4) to semiconductors (Si photonics). Photonic-assisted RF processing applications for notch filters include identifying and filtering out high-amplitude, narrowband signals that may be interfering with the desired signal, including undesired frequencies detected in radar and free-space optical links. The fundamental tradeoffs for bandwidth and rejection depth as a function of the roundtrip loss and coupling coefficient are investigated along with the resulting spectral phase response for minimum-phase and maximum-phase responses compared to the critical coupling condition and integration within a Mach Zehnder interferometer. Based on a full width at half maximum criterion, it is shown that maximum-phase responses offer the smallest bandwidths for a given roundtrip loss. Then, a new role for passive notch filters in combination with high-speed electro-optic phase modulation is explored around narrowband phase-to-amplitude demodulation using a single ring operating on one sideband. Applications may include microwave processing and instantaneous frequency measurement (IFM) for radar, space and defense applications.

  2. SIERRA Low Mach Module: Fuego User Manual Version 4.46.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sierra Thermal/Fluid Team

    2017-09-01

    The SIERRA Low Mach Module: Fuego along with the SIERRA Participating Media Radiation Module: Syrinx, henceforth referred to as Fuego and Syrinx, respectively, are the key elements of the ASCI fire environment simulation project. The fire environment simulation project is directed at characterizing both open large-scale pool fires and building enclosure fires. Fuego represents the turbulent, buoyantly-driven incompressible flow, heat transfer, mass transfer, combustion, soot, and absorption coefficient model portion of the simulation software. Syrinx represents the participating-media thermal radiation mechanics. This project is an integral part of the SIERRA multi-mechanics software development project. Fuego depends heavily upon the coremore » architecture developments provided by SIERRA for massively parallel computing, solution adaptivity, and mechanics coupling on unstructured grids.« less

  3. SIERRA Low Mach Module: Fuego Theory Manual Version 4.44

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sierra Thermal /Fluid Team

    2017-04-01

    The SIERRA Low Mach Module: Fuego along with the SIERRA Participating Media Radiation Module: Syrinx, henceforth referred to as Fuego and Syrinx, respectively, are the key elements of the ASCI fire environment simulation project. The fire environment simulation project is directed at characterizing both open large-scale pool fires and building enclosure fires. Fuego represents the turbulent, buoyantly-driven incompressible flow, heat transfer, mass transfer, combustion, soot, and absorption coefficient model portion of the simulation software. Syrinx represents the participating-media thermal radiation mechanics. This project is an integral part of the SIERRA multi-mechanics software development project. Fuego depends heavily upon the coremore » architecture developments provided by SIERRA for massively parallel computing, solution adaptivity, and mechanics coupling on unstructured grids.« less

  4. SIERRA Low Mach Module: Fuego Theory Manual Version 4.46.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sierra Thermal/Fluid Team

    The SIERRA Low Mach Module: Fuego along with the SIERRA Participating Media Radiation Module: Syrinx, henceforth referred to as Fuego and Syrinx, respectively, are the key elements of the ASCI fire environment simulation project. The fire environment simulation project is directed at characterizing both open large-scale pool fires and building enclosure fires. Fuego represents the turbulent, buoyantly-driven incompressible flow, heat transfer, mass transfer, combustion, soot, and absorption coefficient model portion of the simulation software. Syrinx represents the participating-media thermal radiation mechanics. This project is an integral part of the SIERRA multi-mechanics software development project. Fuego depends heavily upon the coremore » architecture developments provided by SIERRA for massively parallel computing, solution adaptivity, and mechanics coupling on unstructured grids.« less

  5. Randomized controlled trial of electro-stimulation therapies to modulate retinal blood flow and visual function in retinitis pigmentosa.

    PubMed

    Bittner, Ava K; Seger, Kenneth; Salveson, Rachel; Kayser, Samantha; Morrison, Natalia; Vargas, Patricia; Mendelsohn, Deborah; Han, Jorge; Bi, Hua; Dagnelie, Gislin; Benavente, Alexandra; Ramella-Roman, Jessica

    2018-05-01

    We examined changes in visual function and ocular and retinal blood flow (RBF) among retinitis pigmentosa (RP) participants in a randomized controlled trial of electro-stimulation therapies. Twenty-one RP participants were randomized (1:1:1) to transcorneal electrical stimulation (TES) at 6 weekly half-hour sessions, electro-acupuncture or inactive laser acupuncture (sham control) at 10 half-hour sessions over 2 weeks. Early Treatment of Diabetic Retinopathy Study (ETDRS) visual acuity (VA), quick contrast sensitivity function, Goldmann visual fields, AdaptDx scotopic sensitivity, spectral flow and colour Doppler imaging of the central retinal artery (CRA), and RBF in macular capillaries were measured twice pre-treatment, after 2 TES sessions, within a week and a month after intervention completion. We measured a significant improvement in retrobulbar CRA mean flow velocity for both the TES (p = 0.038) and electro-acupuncture groups (p = 0.001) on average after 2 weeks of treatment when compared to sham controls. Transcorneal electrical simulation (TES) and electro-acupuncture subjects had significant 55% and 34% greater increases, respectively, in RBF in the macular vessels when compared to sham controls (p < 0.001; p = 0.008) within a week of completing six TES sessions or a month after electro-acupuncture. There was a significant difference in the proportion of eyes that had improved visual function when comparing the three intervention groups (p = 0.038): four of seven TES subjects (57%), two of seven electro-acupuncture subjects (29%) and none of the seven control subjects (0%) had a significant visual improvement outside of typical test-retest variability at two consecutive post-treatment visits. Increased blood flow following electro-stimulation therapies is an objective, physiological change that occurred in addition to visual function improvements in some RP patients. © 2017 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  6. High Precision Laser Range Sensor

    NASA Technical Reports Server (NTRS)

    Dubovitsky, Serge (Inventor); Lay, Oliver P. (Inventor)

    2003-01-01

    The present invention is an improved distance measuring interferometer that includes high speed phase modulators and additional phase meters to generate and analyze multiple heterodyne signal pairs with distinct frequencies. Modulation sidebands with large frequency separation are generated by the high speed electro-optic phase modulators, requiring only a single frequency stable laser source and eliminating the need for a fist laser to be tuned or stabilized relative to a second laser. The combination of signals produced by the modulated sidebands is separated and processed to give the target distance. The resulting metrology apparatus enables a sensor with submicron accuracy or better over a multi- kilometer ambiguity range.

  7. Non-isothermal electro-osmotic flow in a microchannel with charge-modulated surfaces

    NASA Astrophysics Data System (ADS)

    Bautista, Oscar; Sanchez, Salvador; Mendez, Federico

    2015-11-01

    In this work, we present an theoretical analysis of a nonisothermal electro-osmotic flow of a Newtonian fluid over charge-modulated surfaces in a microchannel. Here, the heating in the microchannel is due to the Joule effect caused by the imposition of an external electric field. The study is conducted through the use of perturbation techniques and is validated by means of numerical simulations. We consider that both, viscosity and electrical conductivity of the fluid are temperature-dependent; therefore, in order to determine the heat transfer process and the corresponding effects on the flow field, the governing equations of continuity, momentum, energy and electric potential have to be solved in a coupled manner. The principal obtained results evidence that the flow patterns are perturbed in a noticeable manner in comparison with the isothernal case. Our results may be used for increasing microfluidics mixing by conjugating thermal effects with the use of charge-modulated surfaces. This work has been supported by the research grants no. 220900 of Consejo Nacional de Ciencia y Tecnología (CONACYT) and 20150919 of SIP-IPN at Mexico. F. Méndez acknowledges also the economical support of PAPIIT-UNAM under contract number IN112215.

  8. Light manipulation for organic optoelectronics using bio-inspired moth's eye nanostructures.

    PubMed

    Zhou, Lei; Ou, Qing-Dong; Chen, Jing-De; Shen, Su; Tang, Jian-Xin; Li, Yan-Qing; Lee, Shuit-Tong

    2014-02-10

    Organic-based optoelectronic devices, including light-emitting diodes (OLEDs) and solar cells (OSCs) hold great promise as low-cost and large-area electro-optical devices and renewable energy sources. However, further improvement in efficiency remains a daunting challenge due to limited light extraction or absorption in conventional device architectures. Here we report a universal method of optical manipulation of light by integrating a dual-side bio-inspired moth's eye nanostructure with broadband anti-reflective and quasi-omnidirectional properties. Light out-coupling efficiency of OLEDs with stacked triple emission units is over 2 times that of a conventional device, resulting in drastic increase in external quantum efficiency and current efficiency to 119.7% and 366 cd A(-1) without introducing spectral distortion and directionality. Similarly, the light in-coupling efficiency of OSCs is increased 20%, yielding an enhanced power conversion efficiency of 9.33%. We anticipate this method would offer a convenient and scalable way for inexpensive and high-efficiency organic optoelectronic designs.

  9. Femtosecond writing of near-surface waveguides in lithium niobate for low-loss electro-optical modulators of broadband emission

    NASA Astrophysics Data System (ADS)

    Bukharin, Mikhail A.; Skryabin, Nikolay N.; Khudyakov, Dmitriy V.; Vartapetov, Sergey K.

    2016-05-01

    In the investigation we demonstrated technique of direct femtosecond laser writing of tracks with induced refractive index at record low depth under surface of lithium niobate (3-15 μm). It was shown that with the help of proposed technique one can be written claddings of near surface optical waveguides that plays a key role in fabrication of fast electro-optical modulators with low operating voltage. Fundamental problem resolved in the investigation consists in suppression of negative factors impeding femtosecond inscription of waveguides at low depths. To prevent optical breakdown of crystal surface we used high numerical aperture objectives for focusing of light. It was shown, that advanced heat accumulation regime of femtosecond inscription is inapplicable for writing of near-surface waveguides, and near the surface waveguides should be written in non-thermal regime in contrast to widespread femtosecond writing at depths of tens micrometers. Inscribed waveguides were examined for optical losses and polarization properties. It was experimentally shown, that femtosecond written near surface waveguides have such advantages over widely used proton exchanged and Ti-diffusion waveguides as lower optical losses (down to 0.3 dB/cm) and maintaining of all polarization states of propagation light, which is crucial for development of electro-optical modulators for broadband and ultrashort laser emission. Novelty of the results consists in technique of femtosecond inscription of waveguides at record low depths under the surface of crystals. As compared to previous investigations in the field (structures at depths near 50 um with buried electrodes), the obtained waveguides could be used with simple closely adjacent on-surface electrodes.

  10. Piezoelectric polymer gated OFET: Cutting-edge electro-mechanical transducer for organic MEMS-based sensors

    PubMed Central

    Thuau, Damien; Abbas, Mamatimin; Wantz, Guillaume; Hirsch, Lionel; Dufour, Isabelle; Ayela, Cédric

    2016-01-01

    The growth of micro electro-mechanical system (MEMS) based sensors on the electronic market is forecast to be invigorated soon by the development of a new branch of MEMS-based sensors made of organic materials. Organic MEMS have the potential to revolutionize sensor products due to their light weight, low-cost and mechanical flexibility. However, their sensitivity and stability in comparison to inorganic MEMS-based sensors have been the major concerns. In the present work, an organic MEMS sensor with a cutting-edge electro-mechanical transducer based on an active organic field effect transistor (OFET) has been demonstrated. Using poly(vinylidenefluoride/trifluoroethylene) (P(VDF-TrFE)) piezoelectric polymer as active gate dielectric in the transistor mounted on a polymeric micro-cantilever, unique electro-mechanical properties were observed. Such an advanced scheme enables highly efficient integrated electro-mechanical transduction for physical and chemical sensing applications. Record relative sensitivity over 600 in the low strain regime (<0.3%) was demonstrated, which represents a key-step for the development of highly sensitive all organic MEMS-based sensors. PMID:27924853

  11. Piezoelectric polymer gated OFET: Cutting-edge electro-mechanical transducer for organic MEMS-based sensors.

    PubMed

    Thuau, Damien; Abbas, Mamatimin; Wantz, Guillaume; Hirsch, Lionel; Dufour, Isabelle; Ayela, Cédric

    2016-12-07

    The growth of micro electro-mechanical system (MEMS) based sensors on the electronic market is forecast to be invigorated soon by the development of a new branch of MEMS-based sensors made of organic materials. Organic MEMS have the potential to revolutionize sensor products due to their light weight, low-cost and mechanical flexibility. However, their sensitivity and stability in comparison to inorganic MEMS-based sensors have been the major concerns. In the present work, an organic MEMS sensor with a cutting-edge electro-mechanical transducer based on an active organic field effect transistor (OFET) has been demonstrated. Using poly(vinylidenefluoride/trifluoroethylene) (P(VDF-TrFE)) piezoelectric polymer as active gate dielectric in the transistor mounted on a polymeric micro-cantilever, unique electro-mechanical properties were observed. Such an advanced scheme enables highly efficient integrated electro-mechanical transduction for physical and chemical sensing applications. Record relative sensitivity over 600 in the low strain regime (<0.3%) was demonstrated, which represents a key-step for the development of highly sensitive all organic MEMS-based sensors.

  12. A Compact, Tunable Near-UV Source for Quantitative Microgravity Combustion Diagnostics

    NASA Technical Reports Server (NTRS)

    Peterson, K. A.; Oh, D. B.

    1999-01-01

    There is a need for improved optical diagnostic methods for use in microgravity combustion research. Spectroscopic methods with fast time response that can provide absolute concentrations and concentration profiles of important chemical species in flames are needed to facilitate the understanding of combustion kinetics in microgravity. Although a variety of sophisticated laser-based diagnostics (such as planar laser induced fluorescence, degenerate four wave mixing and coherent Raman methods) have been applied to the study of combustion in laboratory flames, the instrumentation associated with these methods is not well suited to microgravity drop tower or space station platforms. Important attributes of diagnostic systems for such applications include compact size, low power consumption, ruggedness, and reliability. We describe a diode laser-based near-UV source designed with the constraints of microgravity research in mind. Coherent light near 420 nm is generated by frequency doubling in a nonlinear crystal. This light source is single mode with a very narrow bandwidth suitable for gas phase diagnostics, can be tuned over several 1/cm and can be wavelength modulated at up to MHz frequencies. We demonstrate the usefulness of this source for combustion diagnostics by measuring CH radical concentration profiles in an atmospheric pressure laboratory flame. The radical concentrations are measured using wavelength modulation spectroscopy (WMS) to obtain the line-of-sight integrated absorption for different paths through the flame. Laser induced fluorescence (LIF) measurements are also demonstrated with this instrument, showing the feasibility of simultaneous WMS absorption and LIF measurements with the same light source. LIF detection perpendicular to the laser beam can be used to map relative species densities along the line-of-sight while the integrated absorption available through WMS provides a mathematical constraint on the extraction of quantitative information from the LIF data. Combining absorption with LIF - especially if the measurements are made simultaneously with the same excitation beam - may allow elimination of geometrical factors and effects of intensity fluctuations (common difficulties with the analysis of LIF data) from the analysis.

  13. Optimized MCT IR-modules for high-performance imaging applications

    NASA Astrophysics Data System (ADS)

    Breiter, R.; Eich, D.; Figgemeier, H.; Lutz, H.; Wendler, J.; Rühlich, I.; Rutzinger, S.; Schallenberg, T.

    2014-06-01

    In today's typical military operations situational awareness is a key element for mission success. In contrast to what is known from conventional warfare with typical targets such as tanks, asymmetric scenarios now dominate military operations. These scenarios require improved identification capabilities, for example the assessment of threat levels posed by personnel targets. Also, it is vital to identify and reliably distinguish between combatants, non-combatants and friendly forces. To satisfy these requirements, high-definition (HD) large format systems are well suited due to their high spatial and thermal resolution combined with high contrast. Typical applications are sights for long-range surveillance, targeting and reconnaissance platforms as well as rotorcraft pilotage sight systems. In 2012 AIM presented first prototypes of large format detectors with 1280 × 1024 elements in a 15μm pitch for both spectral bands MWIR and LWIR. The modular design allows integration of different cooler types, like AIM's split linear coolers SX095 or SX040 or rotary integral types depending whatever fits best to the application. Large format FPAs have been fabricated using liquid phase epitaxy (LPE) or molecular beam epitaxy (MBE) grown MCT. To offer high resolution in a more compact configuration AIM started the development of a 1024 × 768 10μm pitch IRmodule. Keeping electro/optical performance is achieved by a higher specific charge handling capacity of the readout integrated circuit (ROIC) in a 0.18μm Si CMOS technology. The FPA size fits to a dewar cooler configuration used for 640 × 512 15μm pitch modules.

  14. Vibration and bending analyses of magneto-electro-thermo-elastic sandwich microplates resting on viscoelastic foundation

    NASA Astrophysics Data System (ADS)

    Arefi, Mohammad; Zenkour, Ashraf M.

    2017-08-01

    Magneto-electro-thermo-mechanical bending and free vibration analysis of a sandwich microplate using strain gradient theory is expressed in this paper. The sandwich plate is made of a core and two integrated piezo-magnetic face sheets. The structure is subjected to electric and magnetic potentials, thermal loadings, and resting on Pasternak's foundation. Electro-magnetic equations are developed by considering the variation form of Hamilton's principle. The effects of important parameters of this problem such as applied electric and magnetic potentials, direct and shear parameter of foundation, three microlength-scale parameters, and two parameters of temperature rising are investigated on the vibration and bending results of problem.

  15. Electro-mechanical control of an on-chip optical beam splitter containing an embedded quantum emitter

    NASA Astrophysics Data System (ADS)

    Bishop, Z. K.; Foster, A. P.; Royall, B.; Bentham, C.; Clarke, E.; Skolnick, M. S.; Wilson, L. R.

    2018-05-01

    We demonstrate electro-mechanical control of an on-chip GaAs optical beam splitter containing a quantum dot single-photon source. The beam splitter consists of two nanobeam waveguides, which form a directional coupler (DC). The splitting ratio of the DC is controlled by varying the out-of-plane separation of the two waveguides using electro-mechanical actuation. We reversibly tune the beam splitter between an initial state, with emission into both output arms, and a final state with photons emitted into a single output arm. The device represents a compact and scalable tuning approach for use in III-V semiconductor integrated quantum optical circuits.

  16. Frequency Modulation and Absorption Improvement of THz Micro-bolometer with Micro-bridge Structure by Spiral-Type Antennas

    NASA Astrophysics Data System (ADS)

    Gou, Jun; Niu, Qingchen; Liang, Kai; Wang, Jun; Jiang, Yadong

    2018-03-01

    Antenna-coupled micro-bridge structure is proven to be a good solution to extend infrared micro-bolometer technology for THz application. Spiral-type antennas are proposed in 25 μm × 25 μm micro-bridge structure with a single separate linear antenna, two separate linear antennas, or two connected linear antennas on the bridge legs, in addition to traditional spiral-type antenna on the support layer. The effects of structural parameters of each antenna on THz absorption of micro-bridge structure are discussed for optimized absorption of 2.52 THz wave radiated by far infrared CO2 lasers. The design of spiral-type antenna with two separate linear antennas for wide absorption peak and spiral-type antenna with two connected linear antennas for relatively stable absorption are good candidates for high absorption at low absorption frequency with a rotation angle of 360* n ( n = 1.6). Spiral-type antenna with extended legs also provides a highly integrated micro-bridge structure with fast response and a highly compatible, process-simplified way to realize the structure. This research demonstrates the design of several spiral-type antenna-coupled micro-bridge structures and provides preferred schemes for potential device applications in room temperature sensing and real-time imaging.

  17. Frequency Modulation and Absorption Improvement of THz Micro-bolometer with Micro-bridge Structure by Spiral-Type Antennas.

    PubMed

    Gou, Jun; Niu, Qingchen; Liang, Kai; Wang, Jun; Jiang, Yadong

    2018-03-05

    Antenna-coupled micro-bridge structure is proven to be a good solution to extend infrared micro-bolometer technology for THz application. Spiral-type antennas are proposed in 25 μm × 25 μm micro-bridge structure with a single separate linear antenna, two separate linear antennas, or two connected linear antennas on the bridge legs, in addition to traditional spiral-type antenna on the support layer. The effects of structural parameters of each antenna on THz absorption of micro-bridge structure are discussed for optimized absorption of 2.52 THz wave radiated by far infrared CO 2 lasers. The design of spiral-type antenna with two separate linear antennas for wide absorption peak and spiral-type antenna with two connected linear antennas for relatively stable absorption are good candidates for high absorption at low absorption frequency with a rotation angle of 360*n (n = 1.6). Spiral-type antenna with extended legs also provides a highly integrated micro-bridge structure with fast response and a highly compatible, process-simplified way to realize the structure. This research demonstrates the design of several spiral-type antenna-coupled micro-bridge structures and provides preferred schemes for potential device applications in room temperature sensing and real-time imaging.

  18. A systematic optimization of design parameters in strained silicon waveguides to further enhance the linear electro-optic effect

    NASA Astrophysics Data System (ADS)

    Olivares, Irene; Angelova, Todora I.; Pinilla-Cienfuegos, Elena; Sanchis, Pablo

    2016-05-01

    The electro-optic Pockels effect may be generated in silicon photonics structures by breaking the crystal symmetry by means of a highly stressing cladding layer (typically silicon nitride, SiN) deposited on top of the silicon waveguide. In this work, the influence of the waveguide parameters on the strain distribution and its overlap with the optical mode to enhance the Pockels effect has been analyzed. The optimum waveguide structure have been designed based on the definition and quantification of a figure of merit. The fabrication of highly stressing SiN layers by PECVD has also been optimized to characterize the designed structures. The residual stress has been controlled during the growth process by analyzing the influence of the main deposition parameters. Therefore, two identical samples with low and high stress conditions were fabricated and electro-optically characterized to test the induced Pockels effect and the influence of carrier effects. Electro-optical modulation was only measured in the sample with the high stressing SiN layer that could be attributed to the Pockels effect. Nevertheless, the influence of carriers were also observed thus making necessary additional experiments to decouple both effects.

  19. Large electro-optic coefficient in single-crystal film of a novel organic salt, DASMS

    NASA Astrophysics Data System (ADS)

    Tan, Shida; Ahyi, Ayayi; Mishra, Alpana; Thakur, Mrinal

    2001-03-01

    We have synthesized a novel electro-optic material 4'-dimethylamino-4-methylstilbazolium methanesulfonate (DASMS). Large-area ( 60 mm^2), single-crystal films of DASMS with excellent optical quality have been grown for the first time by a modified shear method^1. These films have the noncentrosymmetric hydrated phase, which is electro-optically active^2. Polarized optical microscopy, X-ray diffraction and polarized UV-visible spectroscopic studies have been used to characterize the films. The single-crystal films were observed to be highly dichroic. Using field-induced birefringence measurement, the electro-optic coefficient of DASMS at 632.8 nm has been estimated to be r_11 160 pm/V, which is five times larger than the eletro-optic coefficient of LiNbO_3. For a 1.8 μm thick film, 28% intensity modulation was observed for an electric field of 4 V/μm. 1. M. Thakur and S. Meyler, Macromolecules 18, 2341 (1985); M. Thakur, Y. Shani, G. C. Chi, and K. O'Brien, Synth. Met. 28, D595 (1989). 2. E. P. Boden, P. D. Phelps, C. P. Yakymyshyn, and K. R. Stewart, US patent 5,194,584.

  20. A method of reducing background fluctuation in tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Yang, Rendi; Dong, Xiaozhou; Bi, Yunfeng; Lv, Tieliang

    2018-03-01

    Optical interference fringe is the main factor that leads to background fluctuation in gas concentration detection based on tunable diode laser absorption spectroscopy. The interference fringes are generated by multiple reflections or scatterings upon optical surfaces in optical path and make the background signal present an approximated sinusoidal oscillation. To reduce the fluctuation of the background, a method that combines dual tone modulation (DTM) with vibration reflector (VR) is proposed in this paper. The combination of DTM and VR can make the unwanted periodic interference fringes to be averaged out and the effectiveness of the method in reducing background fluctuation has been verified by simulation and real experiments in this paper. In the detection system based on the proposed method, the standard deviation (STD) value of the background signal is decreased to 0.0924 parts per million (ppm), which is reduced by a factor of 16 compared with that of wavelength modulation spectroscopy. The STD value of 0.0924 ppm corresponds to the absorption of 4 . 328 × 10-6Hz - 1 / 2 (with effective optical path length of 4 m and integral time of 0.1 s). Moreover, the proposed method presents a better stable performance in reducing background fluctuation in long time experiments.

  1. Ultralow-phase-noise millimetre-wave signal generator assisted with an electro-optics-modulator-based optical frequency comb

    PubMed Central

    Ishizawa, A.; Nishikawa, T.; Goto, T.; Hitachi, K.; Sogawa, T.; Gotoh, H.

    2016-01-01

    Low-noise millimetre-wave signals are valuable for digital sampling systems, arbitrary waveform generation for ultra-wideband communications, and coherent radar systems. However, the phase noise of widely used conventional signal generators (SGs) will increase as the millimetre-wave frequency increases. Our goal has been to improve commercially available SGs so that they provide a low-phase-noise millimetre-wave signal with assistance from an electro-optics-modulator-based optical frequency comb (EOM-OFC). Here, we show that the phase noise can be greatly reduced by bridging the vast frequency difference between the gigahertz and terahertz ranges with an EOM-OFC. The EOM-OFC serves as a liaison that magnifies the phase noise of the SG. With the EOM-OFC used as a phase noise “booster” for a millimetre-wave signal, the phase noise of widely used SGs can be reduced at an arbitrary frequency f (6 ≦ f ≦ 72 GHz). PMID:27185040

  2. Superior electro-optic response in multiferroic bismuth ferrite nanoparticle doped nematic liquid crystal device

    PubMed Central

    Nayek, Prasenjit; Li, Guoqiang

    2015-01-01

    A superior electro-optic (E-O) response has been achieved when multiferroic bismuth ferrite (BiFeO3/BFO) nanoparticles (NPs) were doped in nematic liquid crystal (NLC) host E7 and the LC device was addressed in the large signal regime by an amplitude modulated square wave signal at the frequency of 100 Hz. The optimized concentration of BFO is 0.15 wt%, and the corresponding total optical response time (rise time + decay time) for a 5 μm-thick cell is 2.5 ms for ~7 Vrms. This might be exploited for the construction of adaptive lenses, modulators, displays, and other E-O devices. The possible reason behind the fast response time could be the visco-elastic constant and restoring force imparted by the locally ordered LCs induced by the multiferroic nanoparticles (MNPs). Polarized optical microscopic textural observation shows that the macroscopic dislocation-free excellent contrast have significant impact on improving the image quality and performance of the devices. PMID:26041701

  3. Optical analysis of electro-optical systems by MTF calculus

    NASA Astrophysics Data System (ADS)

    Barbarini, Elisa Signoreto; Dos Santos, Daniel, Jr.; Stefani, Mário Antonio; Yasuoka, Fátima Maria Mitsue; Castro Neto, Jarbas C.; Rodrigues, Evandro Luís Linhari

    2011-08-01

    One of the widely used methods for performance analysis of an optical system is the determination of the Modulation Transfer Function (MTF). The MTF represents a quantitative and direct measure of image quality, and, besides being an objective test, it can be used on concatenated optical system. This paper presents the application of software called SMTF (software modulation transfer function), built in C++ and Open CV platforms for MTF calculation on electro-optical system. Through this technique, it is possible to develop specific method to measure the real time performance of a digital fundus camera, an infrared sensor and an ophthalmological surgery microscope. Each optical instrument mentioned has a particular device to measure the MTF response, which is being developed. Then the MTF information assists the analysis of the optical system alignment, and also defines its resolution limit by the MTF graphic. The result obtained from the implemented software is compared with the theoretical MTF curve from the analyzed systems.

  4. Theory of low-power ultra-broadband terahertz sideband generation in bi-layer graphene.

    PubMed

    Crosse, J A; Xu, Xiaodong; Sherwin, Mark S; Liu, R B

    2014-09-24

    In a semiconductor illuminated by a strong terahertz (THz) field, optically excited electron-hole pairs can recombine to emit light in a broad frequency comb evenly spaced by twice the THz frequency. Such high-order THz sideband generation is of interest both as an example of extreme nonlinear optics and also as a method for ultrafast electro-optical modulation. So far, this phenomenon has only been observed with large field strengths (~10 kV cm(-1)), an obstacle for technological applications. Here we predict that bi-layer graphene generates high-order sidebands at much weaker THz fields. We find that a THz field of strength 1 kV cm(-1) can produce a high-sideband spectrum of about 30 THz, 100 times broader than in GaAs. The sidebands are generated despite the absence of classical collisions, with the quantum coherence of the electron-hole pairs enabling recombination. These remarkable features lower the barrier to desktop electro-optical modulation at THz frequencies, facilitating ultrafast optical communications.

  5. Field-Sequential Electronic Stereoscopic Projector

    NASA Astrophysics Data System (ADS)

    Lipton, Lenny

    1989-07-01

    Culminating a research and development project spanning many years, StereoGraphics Corporation has succeeded in bringing to market the first field-sequential electronic stereoscopic projector. The product is based on a modification of Electrohome and Barco projectors. Our design goal was to produce a projector capable of displaying an image on a six-foot (or larger) diagonal screen for an audience of 50 or 60 people, or for an individual using a simulator. A second goal was to produce an image that required only passive polarizing glasses rather than powered, tethered visors. Two major design challenges posed themselves. First, it was necessary to create an electro-optical modulator which could switch the characteristic of polarized light at field rate, and second, it was necessary to produce a bright green CRT with short persistence to prevent crosstalk between left and right fields. To solve the first problem, development was undertaken to produce the required electro-optical modulator. The second problem was solved with the help of a vendor specializing in high performance CRT's.

  6. A multi-branch, fiber-based frequency comb with millihertz-level relative linewidths using an intra-cavity electro-optic modulator.

    PubMed

    Nakajima, Yoshiaki; Inaba, Hajime; Hosaka, Kazumoto; Minoshima, Kaoru; Onae, Atsushi; Yasuda, Masami; Kohno, Takuya; Kawato, Sakae; Kobayashi, Takao; Katsuyama, Toshio; Hong, Feng-Lei

    2010-01-18

    We demonstrate that fiber-based frequency combs with multi-branch configurations can transfer both linewidth and frequency stability to another wavelength at the millihertz level. An intra-cavity electro-optic modulator is employed to obtain a broad servo bandwidth for repetition rate control. We investigate the relative linewidths between two combs using a stable continuous-wave laser as a common reference to stabilize the repetition rate frequencies in both combs. The achieved energy concentration to the carrier of the out-of-loop beat between the two combs was 99% and 30% at a bandwidth of 1 kHz and 7.6 mHz, respectively. The frequency instability of the comb was 3.7x10(-16) for a 1 s averaging time, improving to 5-8x10(-19) for 10000 s. We show that the frequency noise in the out-of-loop beat originates mainly from phase noise in branched optical fibers.

  7. Method for calibration-free scanned-wavelength modulation spectroscopy for gas sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanson, Ronald K.; Jeffries, Jay B.; Sun, Kai

    A method of calibration-free scanned-wavelength modulation spectroscopy (WMS) absorption sensing is provided by obtaining absorption lineshape measurements of a gas sample on a sensor using 1f-normalized WMS-2f where an injection current to an injection current-tunable diode laser (TDL) is modulated at a frequency f, where a wavelength modulation and an intensity modulation of the TDL are simultaneously generated, extracting using a numerical lock-in program and a low-pass filter appropriate band-width WMS-nf (n=1, 2, . . . ) signals, where the WMS-nf signals are harmonics of the f, determining a physical property of the gas sample according to ratios of themore » WMS-nf signals, determining the zero-absorption background using scanned-wavelength WMS, and determining non-absorption losses using at least two of the harmonics, where a need for a non-absorption baseline measurement is removed from measurements in environments where collision broadening has blended transition linewidths, where calibration free WMS measurements without knowledge of the transition linewidth is enabled.« less

  8. Micro-optics technology and sensor systems applications

    NASA Technical Reports Server (NTRS)

    Gal, George; Herman, B.; Anderson, W.; Whitney, R.; Morrow, H.

    1993-01-01

    The current generation of electro-optical sensors utilizing refractive and reflective optical elements require sophisticated, complex, and expensive designs. Advanced-technology-based electro-optical sensors of minimum size and weight require miniaturization of optical, electrical, and mechanical devices with an increasing trend toward integration of various components. Micro-optics technology has the potential in a number of areas to simplify optical design with improved performance. This includes internally cooled apertures, hybrid optical design, microlenses, dispersive multicolor microlenses, active dither, electronically controlled optical beam steer, and microscopic integration of micro-optics, detectors, and signal processing layers. This paper describes our approach to the development of micro-optics technology with our main emphasis for sensors applications.

  9. Solid-state energy storage module employing integrated interconnect board

    DOEpatents

    Rouillard, Jean; Comte, Christophe; Daigle, Dominik; Hagen, Ronald A.; Knudson, Orlin B.; Morin, Andre; Ranger, Michel; Ross, Guy; Rouillard, Roger; St-Germain, Philippe; Sudano, Anthony; Turgeon, Thomas A.

    2000-01-01

    The present invention is directed to an improved electrochemical energy storage device. The electrochemical energy storage device includes a number of solid-state, thin-film electrochemical cells which are selectively interconnected in series or parallel through use of an integrated interconnect board. The interconnect board is typically disposed within a sealed housing which also houses the electrochemical cells, and includes a first contact and a second contact respectively coupled to first and second power terminals of the energy storage device. The interconnect board advantageously provides for selective series or parallel connectivity with the electrochemical cells, irrespective of electrochemical cell position within the housing. In one embodiment, a sheet of conductive material is processed by employing a known milling, stamping, or chemical etching technique to include a connection pattern which provides for flexible and selective interconnecting of individual electrochemical cells within the housing, which may be a hermetically sealed housing. Fuses and various electrical and electro-mechanical devices, such as bypass, equalization, and communication devices for example, may also be mounted to the interconnect board and selectively connected to the electrochemical cells.

  10. Plasmon absorption modulator systems and methods

    DOEpatents

    Kekatpure, Rohan Deodatta; Davids, Paul

    2014-07-15

    Plasmon absorption modulator systems and methods are disclosed. A plasmon absorption modulator system includes a semiconductor substrate, a plurality of quantum well layers stacked on a top surface of the semiconductor substrate, and a metal layer formed on a top surface of the stack of quantum well layers. A method for modulating plasmonic current includes enabling propagation of the plasmonic current along a metal layer, and applying a voltage across the stack of quantum well layers to cause absorption of a portion of energy of the plasmonic current by the stack of quantum well layers. A metamaterial switching system includes a semiconductor substrate, a plurality of quantum well layers stacked on a top surface of the semiconductor substrate, and at least one metamaterial structure formed on a top surface of the stack of quantum well layers.

  11. Integrated source of tunable nonmaximally mode-entangled photons in a domain-engineered lithium niobate waveguide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ming, Yang; Wu, Zi-jian; Xu, Fei, E-mail: feixu@nju.edu.cn

    The nonmaximally entangled state is a special kind of entangled state, which has important applications in quantum information processing. It has been generated in quantum circuits based on bulk optical elements. However, corresponding schemes in integrated quantum circuits have been rarely considered. In this Letter, we propose an effective solution for this problem. An electro-optically tunable nonmaximally mode-entangled photon state is generated in an on-chip domain-engineered lithium niobate (LN) waveguide. Spontaneous parametric down-conversion and electro-optic interaction are effectively combined through suitable domain design to transform the entangled state into our desired formation. Moreover, this is a flexible approach to entanglementmore » architectures. Other kinds of reconfigurable entanglements are also achievable through this method. LN provides a very promising platform for future quantum circuit integration.« less

  12. Nonlinear intermodulation distortion suppression in coherent analog fiber optic link using electro-optic polymeric dual parallel Mach-Zehnder modulator.

    PubMed

    Kim, Seong-Ku; Liu, Wei; Pei, Qibing; Dalton, Larry R; Fetterman, Harold R

    2011-04-11

    A linearized dual parallel Mach-Zehnder modulator (DPMZM) based on electro-optic (EO) polymer was both fabricated, and experimentally used to suppress the third-order intermodulation distortion (IMD3) in a coherent analog fiber optic link. This optical transmitter design was based on a new EO chromophore called B10, which was synthesized for applications dealing with the fiber-optic communication systems. The chromophore was mixed with amorphous polycarbonate (APC) to form the waveguide's core material. The DPMZM was configured with two MZMs, of different lengths in parallel, with unbalanced input and output couplers and a phase shifter in one arm. In this configuration each of the MZMs carried a different optical power, and imposed a different depth of optical modulation. When the two optical beams from the MZMs were combined to generate the transmitted signal it was possible to set the IMD3 produced by each modulator to be equal in amplitude but 180° out of phase from the other. Therefore, the resulting IMD3 of the DPMZM transmitter was effectively canceled out during two-tone experiments. A reduction of the IMD3 below the noise floor was observed while leaving fifth-order distortion (IMD5) as the dominant IMD product. This configuration has the capability of broadband operation and shot-noise limited operation simultaneously. © 2011 Optical Society of America

  13. Thermally modulated nano-trampoline material as smart skin for gas molecular mass detection

    NASA Astrophysics Data System (ADS)

    Xia, Hua

    2012-06-01

    Conventional multi-component gas analysis is based either on laser spectroscopy, laser and photoacoustic absorption at specific wavelengths, or on gas chromatography by separating the components of a gas mixture primarily due to boiling point (or vapor pressure) differences. This paper will present a new gas molecular mass detection method based on thermally modulated nano-trampoline material as smart skin for gas molecular mass detection by fiber Bragg grating-based gas sensors. Such a nanomaterial and fiber Bragg grating integrated sensing device has been designed to be operated either at high-energy level (highly thermal strained status) or at low-energy level (low thermal strained status). Thermal energy absorption of gas molecular trigs the sensing device transition from high-thermal-energy status to low-thermal- energy status. Experiment has shown that thermal energy variation due to gas molecular thermal energy absorption is dependent upon the gas molecular mass, and can be detected by fiber Bragg resonant wavelength shift with a linear function from 17 kg/kmol to 32 kg/kmol and a sensitivity of 0.025 kg/kmol for a 5 micron-thick nano-trampoline structure and fiber Bragg grating integrated gas sensing device. The laboratory and field validation data have further demonstrated its fast response characteristics and reliability to be online gas analysis instrument for measuring effective gas molecular mass from single-component gas, binary-component gas mixture, and multi-gas mixture. The potential industrial applications include fouling and surge control for gas charge centrifugal compressor ethylene production, gas purity for hydrogen-cooled generator, gasification for syngas production, gasoline/diesel and natural gas fuel quality monitoring for consumer market.

  14. Optical vector network analyzer with improved accuracy based on polarization modulation and polarization pulling.

    PubMed

    Li, Wei; Liu, Jian Guo; Zhu, Ning Hua

    2015-04-15

    We report a novel optical vector network analyzer (OVNA) with improved accuracy based on polarization modulation and stimulated Brillouin scattering (SBS) assisted polarization pulling. The beating between adjacent higher-order optical sidebands which are generated because of the nonlinearity of an electro-optic modulator (EOM) introduces considerable error to the OVNA. In our scheme, the measurement error is significantly reduced by removing the even-order optical sidebands using polarization discrimination. The proposed approach is theoretically analyzed and experimentally verified. The experimental results show that the accuracy of the OVNA is greatly improved compared to a conventional OVNA.

  15. Spatial Light Modulators and Applications: Summaries of Papers Presented at the Spatial Light Modulators and Applications Topical Meeting Held on March 15-17, 1993 in Palm Springs, California

    DTIC Science & Technology

    1993-03-17

    modulator: Number of Elements 16 x 16 Pixel Size 1 mmxl mm Area Fill Factor > 90% Reflectance > 90% Phase Shift 900 Frame Rate > 1 kHz Operational Spectral...electro-optic constants. By using reflected light from the second interface a factor of two increase in phase shift is obtained for an applied voltage vs...wavelengths in general require thinner PLZT wafers. One of the objectives of the SLM design was to maximize pixel area fill factor and thereby the

  16. Topological, chemical and electro-optical characteristics of riboflavin-doped artificial and natural DNA thin films

    NASA Astrophysics Data System (ADS)

    Gnapareddy, Bramaramba; Dugasani, Sreekantha Reddy; Son, Junyoung; Park, Sung Ha

    2018-02-01

    DNA is considered as a useful building bio-material, and it serves as an efficient template to align functionalized nanomaterials. Riboflavin (RF)-doped synthetic double-crossover DNA (DX-DNA) lattices and natural salmon DNA (SDNA) thin films were constructed using substrate-assisted growth and drop-casting methods, respectively, and their topological, chemical and electro-optical characteristics were evaluated. The critical doping concentrations of RF ([RF]C, approx. 5 mM) at given concentrations of DX-DNA and SDNA were obtained by observing the phase transition (from crystalline to amorphous structures) of DX-DNA and precipitation of SDNA in solution above [RF]C. [RF]C are verified by analysing the atomic force microscopy images for DX-DNA and current, absorbance and photoluminescence (PL) for SDNA. We study the physical characteristics of RF-embedded SDNA thin films, using the Fourier transform infrared spectrum to understand the interaction between the RF and DNA molecules, current to evaluate the conductance, absorption to understand the RF binding to the DNA and PL to analyse the energy transfer between the RF and DNA. The current and UV absorption band of SDNA thin films decrease up to [RF]C followed by an increase above [RF]C. By contrast, the PL intensity illustrates the reverse trend, as compared to the current and UV absorption behaviour as a function of the varying [RF]. Owing to the intense PL characteristic of RF, the DNA lattices and thin films with RF might offer immense potential to develop efficient bio-sensors and useful bio-photonic devices.

  17. Topological, chemical and electro-optical characteristics of riboflavin-doped artificial and natural DNA thin films

    PubMed Central

    Gnapareddy, Bramaramba; Son, Junyoung

    2018-01-01

    DNA is considered as a useful building bio-material, and it serves as an efficient template to align functionalized nanomaterials. Riboflavin (RF)-doped synthetic double-crossover DNA (DX-DNA) lattices and natural salmon DNA (SDNA) thin films were constructed using substrate-assisted growth and drop-casting methods, respectively, and their topological, chemical and electro-optical characteristics were evaluated. The critical doping concentrations of RF ([RF]C, approx. 5 mM) at given concentrations of DX-DNA and SDNA were obtained by observing the phase transition (from crystalline to amorphous structures) of DX-DNA and precipitation of SDNA in solution above [RF]C. [RF]C are verified by analysing the atomic force microscopy images for DX-DNA and current, absorbance and photoluminescence (PL) for SDNA. We study the physical characteristics of RF-embedded SDNA thin films, using the Fourier transform infrared spectrum to understand the interaction between the RF and DNA molecules, current to evaluate the conductance, absorption to understand the RF binding to the DNA and PL to analyse the energy transfer between the RF and DNA. The current and UV absorption band of SDNA thin films decrease up to [RF]C followed by an increase above [RF]C. By contrast, the PL intensity illustrates the reverse trend, as compared to the current and UV absorption behaviour as a function of the varying [RF]. Owing to the intense PL characteristic of RF, the DNA lattices and thin films with RF might offer immense potential to develop efficient bio-sensors and useful bio-photonic devices. PMID:29515837

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sierra Thermal /Fluid Team

    The SIERRA Low Mach Module: Fuego along with the SIERRA Participating Media Radiation Module: Syrinx, henceforth referred to as Fuego and Syrinx, respectively, are the key elements of the ASCI fire environment simulation project. The fire environment simulation project is directed at characterizing both open large-scale pool fires and building enclosure fires. Fuego represents the turbulent, buoyantly-driven incompressible flow, heat transfer, mass transfer, combustion, soot, and absorption coefficient model portion of the simulation software. Syrinx represents the participating-media thermal radiation mechanics. This project is an integral part of the SIERRA multi-mechanics software development project. Fuego depends heavily upon the coremore » architecture developments provided by SIERRA for massively parallel computing, solution adaptivity, and mechanics coupling on unstructured grids.« less

  19. Microwave Detection of Chemical Agents: A Review

    DTIC Science & Technology

    1986-06-01

    Health (NIOSH).8’l1 This instrument was designed to detect acetonitrile, acetaldehyde , acetone, carbonyl sulfide, ethanol, ethylene oxide , isopropyl...absolute temperature mij - the dipole matrix element connecting the upper and lower energy states vo = the absorption line center v - transition...from multiple reflections through the cell. The Q of a cavity is defined as the electro - magnetic energy in the cavity divided by the energy lost per

  20. A Profile of Defense Manufacturing Costs and Enabling Technologies

    DTIC Science & Technology

    1992-01-01

    RECEIVE MODULE F Missiles 75mm Cadmium Zinc Telluride F 94 GHZ MILLIMETER WAVE TRANSCEIVER F COMPOSITES FOR PASSIVE THERMAL MANAGEMENT F COMPOSITES FOR... PASSIVE THERMAL MANAGEMENT F Design standards for surface mount devices I Electro-optic Components Advanced Manufacturing PrDcess I FIBER OPTIC

Top