A novel multi-actuation CMOS RF MEMS switch
NASA Astrophysics Data System (ADS)
Lee, Chiung-I.; Ko, Chih-Hsiang; Huang, Tsun-Che
2008-12-01
This paper demonstrates a capacitive shunt type RF MEMS switch, which is actuated by electro-thermal actuator and electrostatic actuator at the same time, and than latching the switching status by electrostatic force only. Since thermal actuators need relative low voltage compare to electrostatic actuators, and electrostatic force needs almost no power to maintain the switching status, the benefits of the mechanism are very low actuation voltage and low power consumption. Moreover, the RF MEMS switch has considered issues for integrated circuit compatible in design phase. So the switch is fabricated by a standard 0.35um 2P4M CMOS process and uses wet etching and dry etching technologies for postprocess. This compatible ability is important because the RF characteristics are not only related to the device itself. If a packaged RF switch and a packaged IC wired together, the parasitic capacitance will cause the problem for optimization. The structure of the switch consists of a set of CPW transmission lines and a suspended membrane. The CPW lines and the membrane are in metal layers of CMOS process. Besides, the electro-thermal actuators are designed by polysilicon layer of the CMOS process. So the RF switch is only CMOS process layers needed for both electro-thermal and electrostatic actuations in switch. The thermal actuator is composed of a three-dimensional membrane and two heaters. The membrane is a stacked step structure including two metal layers in CMOS process, and heat is generated by poly silicon resistors near the anchors of membrane. Measured results show that the actuation voltage of the switch is under 7V for electro-thermal added electrostatic actuation.
NASA Astrophysics Data System (ADS)
Ilias, Samir; Picard, Francis; Larouche, Carl; Kruzelecky, Roman; Jamroz, Wes
2017-11-01
16x1 programmable microshutter arrays allowing control of the light transmitted through a transparent substrate supporting the array were successfully fabricated using surface micromachining technology. Each microshutter is basically an electrostatic zipping actuator having a curved shape induced by a stress gradient through the actuator thickness. When a sufficient voltage is applied between the microshutter and the actuation electrode surrounding the associated microslit area, the generated electrostatic force pulls the actuator down to the substrate which closes the microslit. Opening the slit relies on the restoring force. High light transmission through the slit area is obtained with the actuator in the open position and excellent light blocking is observed when the shutter is closed. Static and dynamic responses of the device were determined. The pull-in voltage to close the microslit was about 110 V and the response times to close and open the microslit were about 2 ms and 7 ms, respectively.
Electrostatic actuators for portable microfluidic systems
NASA Astrophysics Data System (ADS)
Tice, Joshua
Both developed and developing nations have an urgent need to diagnose disease cheaply, reliably, and independently of centralized facilities. Microfulidic platforms are well-positioned to address the need for portable diagnostics, mainly due to their obvious advantage in size. However, most microfluidic methods rely on equipment outside of the chip either for driving fluid flow (e.g., syringe pumps) or for taking measurements (e.g., lasers or microscopes). The energy and space requirements of the whole system inhibit portability and contribute to costs. To capitalize on the strengths of microfluidic platforms and address the serious needs of society, system components need to be miniaturized. Also, miniaturization should be accomplished as simply as possible, considering that simplicity is usually requisite for achieving truly transformative technology. Herein, I attempt to address the issue of controlling fluid flow in portable microfluidic systems. I focus on systems that are driven by elastomer-based membrane valves, since these valves are inherently simple, yet they are capable of sophisticated fluid manipulation. Others have attempted to modify pneumatic microvalves for portable applications, e.g., by transitioning to electromagnetic, thermopneumatic, or piezoelectric actuation principles. However, none of these strategies maintain the proper balance of simplicity, functionality, and ease of integration. My research centers on electrostatic actuators, due to their conceptual simplicity and the efficacy of electrostatic forces on the microscale. To ensure easy integration with polymer-based systems, and to maintain simplicity in the fabrication procedure, the actuators were constructed solely from poly(dimethylsiloxane) and multi-walled carbon nanotubes. In addition, the actuators were fabricated exclusively with soft-lithographic techniques. A mathematical model was developed to identify actuator parameters compatible with soft-lithography, and also to minimize actuation potentials while eliminating stiction. Two strategies were developed to overcome challenges with electrode screening in the presence of aqueous fluids. First, instead of using the electrostatic actuators to interact directly with aqueous solutions, the actuators were used to regulate pressurized control lines for pneumatic microvalves. Secondly, by adopting a normally-closed architecture, the actuators were converted into microvalves capable of directly interacting with aqueous solutions. The two strategies are complementary, and together should enable sophisticated microfluidic systems for applications ranging from point-of-care diagnostics to portable chemical detection. To conclude the dissertation, I demonstrate a proof-of-principle microfluidic system that contained sixteen independently-operated electrostatic valves, operated with battery-operated electrical ancillaries in a hand-held format.
2D Electrostatic Actuation of Microshutter Arrays
NASA Technical Reports Server (NTRS)
Burns, Devin E.; Oh, Lance H.; Li, Mary J.; Kelly, Daniel P.; Kutyrev, Alexander S.; Moseley, Samuel H.
2015-01-01
Electrostatically actuated microshutter arrays consisting of rotational microshutters (shutters that rotate about a torsion bar) were designed and fabricated through the use of models and experiments. Design iterations focused on minimizing the torsional stiffness of the microshutters, while maintaining their structural integrity. Mechanical and electromechanical test systems were constructed to measure the static and dynamic behavior of the microshutters. The torsional stiffness was reduced by a factor of four over initial designs without sacrificing durability. Analysis of the resonant behavior of the microshutters demonstrates that the first resonant mode is a torsional mode occurring around 3000 Hz. At low vacuum pressures, this resonant mode can be used to significantly reduce the drive voltage necessary for actuation requiring as little as 25V. 2D electrostatic latching and addressing was demonstrated using both a resonant and pulsed addressing scheme.
2D Electrostatic Actuation of Microshutter Arrays
NASA Technical Reports Server (NTRS)
Burns, Devin E.; Oh, Lance H.; Li, Mary J.; Jones, Justin S.; Kelly, Daniel P.; Zheng, Yun; Kutyrev, Alexander S.; Moseley, Samuel H.
2015-01-01
An electrostatically actuated microshutter array consisting of rotational microshutters (shutters that rotate about a torsion bar) were designed and fabricated through the use of models and experiments. Design iterations focused on minimizing the torsional stiffness of the microshutters, while maintaining their structural integrity. Mechanical and electromechanical test systems were constructed to measure the static and dynamic behavior of the microshutters. The torsional stiffness was reduced by a factor of four over initial designs without sacrificing durability. Analysis of the resonant behavior of the microshutter arrays demonstrates that the first resonant mode is a torsional mode occurring around 3000 Hz. At low vacuum pressures, this resonant mode can be used to significantly reduce the drive voltage necessary for actuation requiring as little as 25V. 2D electrostatic latching and addressing was demonstrated using both a resonant and pulsed addressing scheme.
Compact electrostatic comb actuator
Rodgers, M. Steven; Burg, Michael S.; Jensen, Brian D.; Miller, Samuel L.; Barnes, Stephen M.
2000-01-01
A compact electrostatic comb actuator is disclosed for microelectromechanical (MEM) applications. The actuator is based upon a plurality of meshed electrostatic combs, some of which are stationary and others of which are moveable. One or more restoring springs are fabricated within an outline of the electrostatic combs (i.e. superposed with the moveable electrostatic combs) to considerably reduce the space required for the actuator. Additionally, a truss structure is provided to support the moveable electrostatic combs and prevent bending or distortion of these combs due to unbalanced electrostatic forces or external loading. The truss structure formed about the moveable electrostatic combs allows the spacing between the interdigitated fingers of the combs to be reduced to about one micron or less, thereby substantially increasing the number of active fingers which can be provided in a given area. Finally, electrostatic shields can be used in the actuator to substantially reduce unwanted electrostatic fields to further improve performance of the device. As a result, the compact electrostatic comb actuator of the present invention occupies only a fraction of the space required for conventional electrostatic comb actuators, while providing a substantial increase in the available drive force (up to one-hundred times).
NASA Astrophysics Data System (ADS)
Honma, H.; Mitsudome, M.; Ishida, M.; Sawada, K.; Takahashi, K.
2017-03-01
We report a tunable plasmonic color filter consisting of a metamaterial periodic grating and microelectromechanical systems (MEMS) actuator. An aluminum subwavelength grating is integrated with electrostatic comb-drive actuators to expand the metal subwavelength period, which allows continuous control of the excitation wavelength of surface plasmons (SPs). We develop a batch fabrication process by employing a liftoff technique using an electron beam resist altered by the electron dose depending on different aspect ratios (length/width) for various components such as the subwavelength grating, nanohinge flexural suspensions, and comb fingers. We successfully demonstrate a continuous shift in the excitation wavelength over the 514-635 nm range by nanopitch expansion. The design margin of the grating period for SP excitation is evaluated by comparing the experimental pitch variation and theoretically calculated values. The resonance frequency of the tunable filter is optically measured to be approximately 10 kHz. The optically and mechanically obtained values agree well with the theory of electrostatic actuation and finite-difference time-domain simulation.
Rodgers, M. Steven; Miller, Samuel L.
2003-01-01
A compact electrostatic actuator is disclosed for microelectromechanical (MEM) applications. The actuator utilizes stationary and moveable electrodes, with the stationary electrodes being formed on a substrate and the moveable electrodes being supported above the substrate on a frame. The frame provides a rigid structure which allows the electrostatic actuator to be operated at high voltages (up to 190 Volts) to provide a relatively large actuation force compared to conventional electrostatic comb actuators which are much larger in size. For operation at its maximum displacement, the electrostatic actuator is relatively insensitive to the exact value of the applied voltage and provides a self-limiting displacement.
A small-gap electrostatic micro-actuator for large deflections
Conrad, Holger; Schenk, Harald; Kaiser, Bert; Langa, Sergiu; Gaudet, Matthieu; Schimmanz, Klaus; Stolz, Michael; Lenz, Miriam
2015-01-01
Common quasi-static electrostatic micro actuators have significant limitations in deflection due to electrode separation and unstable drive regions. State-of-the-art electrostatic actuators achieve maximum deflections of approximately one third of the electrode separation. Large electrode separation and high driving voltages are normally required to achieve large actuator movements. Here we report on an electrostatic actuator class, fabricated in a CMOS-compatible process, which allows high deflections with small electrode separation. The concept presented makes the huge electrostatic forces within nanometre small electrode separation accessible for large deflections. Electrostatic actuations that are larger than the electrode separation were measured. An analytical theory is compared with measurement and simulation results and enables closer understanding of these actuators. The scaling behaviour discussed indicates significant future improvement on actuator deflection. The presented driving concept enables the investigation and development of novel micro systems with a high potential for improved device and system performance. PMID:26655557
Integrated Multiple Device CMOS-MEMS IMU Systems and RF MEMS Applications
2002-12-17
microstructures [7]~[9]. The success of the surface-micromachined electrostatic micromotor in the late 80’s [10] stimulated the industry and government...processed electrostatic synchronous micromotors ,” Sensors Actuators, vol. 20, pp. 48-56, 1989. [11] “ADXL05-monolithic accelerometer with signal
New dynamic silicon photonic components enabled by MEMS technology
NASA Astrophysics Data System (ADS)
Errando-Herranz, Carlos; Edinger, Pierre; Colangelo, Marco; Björk, Joel; Ahmed, Samy; Stemme, Göran; Niklaus, Frank; Gylfason, Kristinn B.
2018-02-01
Silicon photonics is the study and application of integrated optical systems which use silicon as an optical medium, usually by confining light in optical waveguides etched into the surface of silicon-on-insulator (SOI) wafers. The term microelectromechanical systems (MEMS) refers to the technology of mechanics on the microscale actuated by electrostatic actuators. Due to the low power requirements of electrostatic actuation, MEMS components are very power efficient, making them well suited for dense integration and mobile operation. MEMS components are conventionally also implemented in silicon, and MEMS sensors such as accelerometers, gyros, and microphones are now standard in every smartphone. By combining these two successful technologies, new active photonic components with extremely low power consumption can be made. We discuss our recent experimental work on tunable filters, tunable fiber-to-chip couplers, and dynamic waveguide dispersion tuning, enabled by the marriage of silicon MEMS and silicon photonics.
Micromachined electrostatic vertical actuator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Abraham P.; Sommargren, Gary E.; McConaghy, Charles F.
A micromachined vertical actuator utilizing a levitational force, such as in electrostatic comb drives, provides vertical actuation that is relatively linear in actuation for control, and can be readily combined with parallel plate capacitive position sensing for position control. The micromachined electrostatic vertical actuator provides accurate movement in the sub-micron to micron ranges which is desirable in the phase modulation instrument, such as optical phase shifting. For example, compact, inexpensive, and position controllable micromirrors utilizing an electrostatic vertical actuator can replace the large, expensive, and difficult-to-maintain piezoelectric actuators. A thirty pound piezoelectric actuator with corner cube reflectors, as utilized inmore » a phase shifting diffraction interferometer can be replaced with a micromirror and a lens. For any very precise and small amplitudes of motion` micromachined electrostatic actuation may be used because it is the most compact in size, with low power consumption and has more straightforward sensing and control options.« less
Micromachined electrostatic vertical actuator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, A.P.; Sommargren, G.E.; McConaghy, C.F.
A micromachined vertical actuator utilizing a levitational force, such as in electrostatic comb drives, provides vertical actuation that is relatively linear in actuation for control, and can be readily combined with parallel plate capacitive position sensing for position control. The micromachined electrostatic vertical actuator provides accurate movement in the sub-micron to micron ranges which is desirable in the phase modulation instrument, such as optical phase shifting. For example, compact, inexpensive, and position controllable micromirrors utilizing an electrostatic vertical actuator can replace the large, expensive, and difficult-to-maintain piezoelectric actuators. A thirty pound piezoelectric actuator with corner cube reflectors, as utilized inmore » a phase shifting diffraction interferometer can be replaced with a micromirror and a lens. For any very precise and small amplitudes of motion, micromachined electrostatic actuation may be used because it is the most compact in size, with low power consumption and has more straightforward sensing and control options.« less
NASA Astrophysics Data System (ADS)
Alneamy, A. M.; Khater, M. E.; Al-Ghamdi, M. S.; Park, S.; Heppler, G. R.; Abdel-Rahman, E. M.
2018-07-01
This paper investigates the performance of cantilever-type micro-mirrors under electromagnetic, electrostatic and dual actuation. We developed and validated a two-DOFs model of the coupled bending-torsion motions of the mirror and used it in conjunction with experiments in air and in vacuum to compare all three actuation methods. We found that electromagnetic actuation is the most effective delivering a scanning range of ± out of a geometrically allowable range of ± at a current amplitude i = 3 mA and a magnetic field of B = 30 mT. Electrostatic actuation, whether alone or in conjunction with electromagnetic actuation, limited the stable angular range to smaller values (as small as ) due to the presence of spurious piston motions. This is an innate characteristic of micro-scale electrostatic actuation, the electrostatic force and the undesirable piston motion grow faster than the electrostatic torque and the desired angular displacement as the voltage is increased and they limit the stable angular range. Finally, we found that the dual actuation can be used to design two-DOF mirrors where electromagnetic actuation drives angular motion for optical beam steering and electrostatic actuation drives piston motion to control the mirror focus.
Operation of electrothermal and electrostatic MUMPs microactuators underwater
NASA Astrophysics Data System (ADS)
Sameoto, Dan; Hubbard, Ted; Kujath, Marek
2004-10-01
Surface-micromachined actuators made in multi-user MEMS processes (MUMPs) have been operated underwater without modifying the manufacturing process. Such actuators have generally been either electro-thermally or electro-statically actuated and both actuator styles are tested here for suitability underwater. This is believed to be the first time that thermal and electrostatic actuators have been compared for deflection underwater relative to air performance. A high-frequency ac square wave is used to replicate a dc-driven actuator output without the associated problem of electrolysis in water. This method of ac activation, with frequencies far above the mechanical resonance frequencies of the MEMS actuators, has been termed root mean square (RMS) operation. Both thermal and electrostatic actuators have been tested and proved to work using RMS control. Underwater performance has been evaluated by using in-air operation of these actuators as a benchmark. When comparing deflection per volt applied, thermal actuators operate between 5 and 9% of in-air deflection and electrostatic actuators show an improvement in force per volt applied of upwards of 6000%. These results agree with predictions based on the physical properties of the surrounding medium.
NASA Technical Reports Server (NTRS)
Wang, P. K. C.; Hadaegh, F. Y.
1996-01-01
In modeling micromachined deformable mirrors with electrostatic actuators whose gap spacings are of the same order of magnitude as those of the surface deformations, it is necessary to use nonlinear models for the actuators. In this paper, we consider micromachined deformable mirrors modeled by a membrane or plate equation with nonlinear electrostatic actuator characteristics. Numerical methods for computing the mirror deformation due to given actuator voltages and the actuator voltages required for producing the desired deformations at the actuator locations are presented. The application of the proposed methods to circular deformable mirrors whose surfaces are modeled by elastic membranes is discussed in detail. Numerical results are obtained for a typical circular micromachined mirror with electrostatic actuators.
Zipping dielectric elastomer actuators: characterization, design and modeling
NASA Astrophysics Data System (ADS)
Maffli, L.; Rosset, S.; Shea, H. R.
2013-10-01
We report on miniature dielectric elastomer actuators (DEAs) operating in zipping mode with an analytical model that predicts their behavior. Electrostatic zipping is a well-known mechanism in silicon MEMS to obtain large deformations and forces at lower voltages than for parallel plate electrostatic actuation. We extend this concept to DEAs, which allows us to obtain much larger out-of-plane displacements compared to silicon thanks to the softness of the elastomer membrane. We study experimentally the effect of sidewall angles and elastomer prestretch on 2.3 mm diameter actuators with PDMS membranes. With 15° and 22.5° sidewall angles, the devices zip in a bistable manner down 300 μm to the bottom of the chambers. The highly tunable bistable behavior is controllable by both chamber geometry and membrane parameters. Other specific characteristics of zipping DEAs include well-controlled deflected shape, tunable displacement versus voltage characteristics to virtually any shape, including multi-stable modes, sealing of embedded holes or channels for valving action and the reduction of the operating voltage. These properties make zipping DEAs an excellent candidate for applications such as integrated microfluidics actuators or Braille displays.
Contribution of crosstalk to the uncertainty of electrostatic actuator calibrations.
Shams, Qamar A; Soto, Hector L; Zuckerwar, Allan J
2009-09-01
Crosstalk in electrostatic actuator calibrations is defined as the ratio of the microphone response to the actuator excitation voltage at a given frequency with the actuator polarization voltage turned off to the response, at the excitation frequency, with the polarization voltage turned on. It consequently contributes to the uncertainty of electrostatic actuator calibrations. Two sources of crosstalk are analyzed: the first attributed to the stray capacitance between the actuator electrode and the microphone backplate, and the second to the ground resistance appearing as a common element in the actuator excitation and microphone input loops. Measurements conducted on 1/4, 1/2, and 1 in. air condenser microphones reveal that the crosstalk has no frequency dependence up to the membrane resonance frequency and that the level of crosstalk lies at about -60 dB for all three microphones-conclusions that are consistent with theory. The measurements support the stray capacitance model. The contribution of crosstalk to the measurement standard uncertainty of an electrostatic actuator calibration is therewith 0.01 dB.
NASA Astrophysics Data System (ADS)
Vescovo, P.; Joseph, E.; Bourbon, G.; Le Moal, P.; Minotti, P.; Hibert, C.; Pont, G.
2003-09-01
This paper focuses on recent advances in the field of MEMS-based actuators and distributed microelectromechanical systems (MEMS). IC-processed actuators (e.g. actuators that are machined using integrated circuit batch processes) are expected to open a wide range of industrial applications on the near term. The most promising investigations deal with high-aspect ratio electric field driven microactuators suitable for use in numerous technical fields such as aeronautics and space industry. Because the silicon micromachining technology have the potential to integrate both mechanical components and control circuits within a single process, MEMS-based active control of microscopic and macroscopic structures appears to be one of the most promising challenges for the next decade. As a first step towards new generations of MEMS-based smart structures, recent investigations dealing with silicon mechanisms involving MEMS-based actuators are briefly discussed in this paper.
Hydraulically amplified self-healing electrostatic actuators with muscle-like performance
NASA Astrophysics Data System (ADS)
Acome, E.; Mitchell, S. K.; Morrissey, T. G.; Emmett, M. B.; Benjamin, C.; King, M.; Radakovitz, M.; Keplinger, C.
2018-01-01
Existing soft actuators have persistent challenges that restrain the potential of soft robotics, highlighting a need for soft transducers that are powerful, high-speed, efficient, and robust. We describe a class of soft actuators, termed hydraulically amplified self-healing electrostatic (HASEL) actuators, which harness a mechanism that couples electrostatic and hydraulic forces to achieve a variety of actuation modes. We introduce prototypical designs of HASEL actuators and demonstrate their robust, muscle-like performance as well as their ability to repeatedly self-heal after dielectric breakdown—all using widely available materials and common fabrication techniques. A soft gripper handling delicate objects and a self-sensing artificial muscle powering a robotic arm illustrate the wide potential of HASEL actuators for next-generation soft robotic devices.
Thin film fabrication and system integration test run for a microactuator for a tuneable lens
NASA Astrophysics Data System (ADS)
Hoheisel, Dominik; Rissing, Lutz
2014-03-01
An electromagnetic microactuator, for controlling of a tuneable lens, with an integrated electrostatic element is fabricated by thin film technology. The actuator consists of two parts: the first part with microcoil and flux guide and the second part with a ring shaped back iron on a polyimide membrane. The back iron is additionally useable as electrode for electrostatic measurement of the air gap and for electrostatic actuation. By attracting the back iron an optical liquid is displaced and forms a liquid lens inside the back iron ring covered by the membrane. For testing the thin film fabrication sequence, up-scaled systems are generated in a test run. To fabricate the flux guide in an easy and quick way, a Ni-Fe foil with a thickness of 50 μm is laminated on the Si-wafer. This foil is also utilized in the following fabrication sequence as seed layer for electroplating. Compared to Ni-Fe structures deposited by electroplating, the foil is featuring better soft magnetic properties. The foil is structured by wet chemical etching and the backside of the wafer is structured by deep reactive ion etching (DRIE). For post fabrication thinning, the polyimide membrane is treated by oxygen plasma etching. To align the back iron to the microcoil and the flux guide, a flip-chip-bonder is used during test run of system integration. To adjust a constant air gap, a water solvable polymer is tested. A two component epoxy and a polyimide based glue are compared for their bonding properties of the actuator parts.
NASA Astrophysics Data System (ADS)
Dean, Robert; Flowers, George; Sanders, Nicole; MacAllister, Ken; Horvath, Roland; Hodel, A. S.; Johnson, Wayne; Kranz, Michael; Whitley, Michael
2005-05-01
Some harsh environments, such as those encountered by aerospace vehicles and various types of industrial machinery, contain high frequency/amplitude mechanical vibrations. Unfortunately, some very useful components are sensitive to these high frequency mechanical vibrations. Examples include MEMS gyroscopes and resonators, oscillators and some micro optics. Exposure of these components to high frequency mechanical vibrations present in the operating environment can result in problems ranging from an increased noise floor to component failure. Passive micromachined silicon lowpass filter structures (spring-mass-damper) have been demonstrated in recent years. However, the performance of these filter structures is typically limited by low damping (especially if operated in near-vacuum environments) and a lack of tunability after fabrication. Active filter topologies, such as piezoelectric, electrostrictive-polymer-film and SMA have also been investigated in recent years. Electrostatic actuators, however, are utilized in many micromachined silicon devices to generate mechanical motion. They offer a number of advantages, including low power, fast response time, compatibility with silicon micromachining, capacitive position measurement and relative simplicity of fabrication. This paper presents an approach for realizing active micromachined mechanical lowpass vibration isolation filters by integrating an electrostatic actuator with the micromachined passive filter structure to realize an active mechanical lowpass filter. Although the electrostatic actuator can be used to adjust the filter resonant frequency, the primary application is for increasing the damping to an acceptable level. The physical size of these active filters is suitable for use in or as packaging for sensitive electronic and MEMS devices, such as MEMS vibratory gyroscope chips.
Chen, Yang; Young, Paul M; Fletcher, David F; Chan, Hak Kim; Long, Edward; Lewis, David; Church, Tanya; Traini, Daniela
2015-04-01
To investigate the influence of different actuator nozzle designs on aerosol electrostatic charges and aerosol performances for pressurised metered dose inhalers (pMDIs). Four actuator nozzle designs (flat, curved flat, cone and curved cone) were manufactured using insulating thermoplastics (PET and PTFE) and conducting metal (aluminium) materials. Aerosol electrostatic profiles of solution pMDI formulations containing propellant HFA 134a with different ethanol concentration and/or model drug beclomethasone dipropionate (BDP) were studied using a modified electrical low-pressure impactor (ELPI) for all actuator designs and materials. The mass of the deposited drug was analysed using high performance liquid chromatography (HPLC). Both curved nozzle designs for insulating PET and PTFE actuators significantly influenced aerosol electrostatics and aerosol performance compared with conducting aluminium actuator, where reversed charge polarity and higher throat deposition were observed with pMDI formulation containing BDP. Results are likely due to the changes in plume geometry caused by the curved edge nozzle designs and the bipolar charging nature of insulating materials. This study demonstrated that actuator nozzle designs could significantly influence the electrostatic charges profiles and aerosol drug deposition pattern of pMDI aerosols, especially when using insulating thermoplastic materials where bipolar charging is more dominant.
NASA Astrophysics Data System (ADS)
Tajaddodianfar, Farid; Hairi Yazdi, Mohammad Reza; Pishkenari, Hossein Nejat
Motivated by specific applications, electrostatically actuated bistable arch shaped micro-nano resonators have attracted growing attention in the research community in recent years. Nevertheless, some issues relating to their nonlinear dynamics, including the possibility of chaos, are still not well known. In this paper, we investigate the chaotic vibrations of a bistable resonator comprised of a double clamped initially curved microbeam under combined harmonic AC and static DC distributed electrostatic actuation. A reduced order equation obtained by the application of the Galerkin method to the nonlinear partial differential equation of motion, given in the framework of Euler-Bernoulli beam theory, is used for the investigation in this paper. We numerically integrate the obtained equation to study the chaotic vibrations of the proposed system. Moreover, we investigate the effects of various parameters including the arch curvature, the actuation parameters and the quality factor of the resonator, which are effective in the formation of both static and dynamic behaviors of the system. Using appropriate numerical tools, including Poincaré maps, bifurcation diagrams, Fourier spectrum and Lyapunov exponents we scrutinize the effects of various parameters on the formation of chaotic regions in the parametric space of the resonator. Results of this work provide better insight into the problem of nonlinear dynamics of the investigated family of bistable micro/nano resonators, and facilitate the design of arch resonators for applications such as filters.
Low-Actuation Voltage MEMS Digital-to-Analog Converter with Parylene Spring Structures.
Ma, Cheng-Wen; Lee, Fu-Wei; Liao, Hsin-Hung; Kuo, Wen-Cheng; Yang, Yao-Joe
2015-08-28
We propose an electrostatically-actuated microelectromechanical digital-to-analog converter (M-DAC) device with low actuation voltage. The spring structures of the silicon-based M-DAC device were monolithically fabricated using parylene-C. Because the Young's modulus of parylene-C is considerably lower than that of silicon, the electrostatic microactuators in the proposed device require much lower actuation voltages. The actuation voltage of the proposed M-DAC device is approximately 6 V, which is less than one half of the actuation voltages of a previously reported M-DAC equipped with electrostatic microactuators. The measured total displacement of the proposed three-bit M-DAC is nearly 504 nm, and the motion step is approximately 72 nm. Furthermore, we demonstrated that the M-DAC can be employed as a mirror platform with discrete displacement output for a noncontact surface profiling system.
Chen, Yang; Young, Paul M; Fletcher, David F; Chan, Hak Kim; Long, Edward; Lewis, David; Church, Tanya; Traini, Daniela
2014-05-01
To investigate the influence of different actuator materials and nozzle designs on the electrostatic charge properties of a series of solution metered dose inhaler (pMDI) aerosols. Actuators were manufactured with flat and cone nozzle designs using five different materials from the triboelectric series (Nylon, Polyethylene terephthalate, Polyethylene-High density, Polypropylene copolymer and Polytetrafluoroethylene). The electrostatic charge profiles of pMDI containing beclomethasone dipropionate (BDP) as model drug in HFA-134a propellant, with different concentrations of ethanol were studied. Electrostatic measurements were taken using a modified electrical low-pressure impactor (ELPI) and the deposited drug mass assayed chemically using HPLC. The charge profiles of HFA 134a alone have shown strong electronegativity with all actuator materials and nozzle designs, at an average of -1531.34 pC ± 377.34. The presence of co-solvent ethanol significantly reduced the negative charge magnitude. BDP reduced the suppressing effect of ethanol on the negative charging of the propellant. For all tested formulations, the flat nozzle design showed no significant differences in net charge between different actuator materials, whereas the charge profiles of cone designs followed the triboelectric series. The electrostatic charging profiles from a solution pMDI containing BDP and ethanol can be significantly influenced by the actuator material, nozzle design and formulation components. Ethanol concentration appears to have the most significant impact. Furthermore, BDP interactions with ethanol and HFA have an influence on the electrostatic charge of aerosols. By choosing different combinations of actuator materials and orifice design, the fine particle fractions of formulations can be altered.
Electrostatically Driven Nanoballoon Actuator.
Barzegar, Hamid Reza; Yan, Aiming; Coh, Sinisa; Gracia-Espino, Eduardo; Dunn, Gabriel; Wågberg, Thomas; Louie, Steven G; Cohen, Marvin L; Zettl, Alex
2016-11-09
We demonstrate an inflatable nanoballoon actuator based on geometrical transitions between the inflated (cylindrical) and collapsed (flattened) forms of a carbon nanotube. In situ transmission electron microscopy experiments employing a nanoelectromechanical manipulator show that a collapsed carbon nanotube can be reinflated by electrically charging the nanotube, thus realizing an electrostatically driven nanoballoon actuator. We find that the tube actuator can be reliably cycled with only modest control voltages (few volts) with no apparent wear or fatigue. A complementary theoretical analysis identifies critical parameters for nanotube nanoballoon actuation.
Stability, Nonlinearity and Reliability of Electrostatically Actuated MEMS Devices
Zhang, Wen-Ming; Meng, Guang; Chen, Di
2007-01-01
Electrostatic micro-electro-mechanical system (MEMS) is a special branch with a wide range of applications in sensing and actuating devices in MEMS. This paper provides a survey and analysis of the electrostatic force of importance in MEMS, its physical model, scaling effect, stability, nonlinearity and reliability in detail. It is necessary to understand the effects of electrostatic forces in MEMS and then many phenomena of practical importance, such as pull-in instability and the effects of effective stiffness, dielectric charging, stress gradient, temperature on the pull-in voltage, nonlinear dynamic effects and reliability due to electrostatic forces occurred in MEMS can be explained scientifically, and consequently the great potential of MEMS technology could be explored effectively and utilized optimally. A simplified parallel-plate capacitor model is proposed to investigate the resonance response, inherent nonlinearity, stiffness softened effect and coupled nonlinear effect of the typical electrostatically actuated MEMS devices. Many failure modes and mechanisms and various methods and techniques, including materials selection, reasonable design and extending the controllable travel range used to analyze and reduce the failures are discussed in the electrostatically actuated MEMS devices. Numerical simulations and discussions indicate that the effects of instability, nonlinear characteristics and reliability subjected to electrostatic forces cannot be ignored and are in need of further investigation.
Low-Actuation Voltage MEMS Digital-to-Analog Converter with Parylene Spring Structures
Ma, Cheng-Wen; Lee, Fu-Wei; Liao, Hsin-Hung; Kuo, Wen-Cheng; Yang, Yao-Joe
2015-01-01
We propose an electrostatically-actuated microelectromechanical digital-to-analog converter (M-DAC) device with low actuation voltage. The spring structures of the silicon-based M-DAC device were monolithically fabricated using parylene-C. Because the Young’s modulus of parylene-C is considerably lower than that of silicon, the electrostatic microactuators in the proposed device require much lower actuation voltages. The actuation voltage of the proposed M-DAC device is approximately 6 V, which is less than one half of the actuation voltages of a previously reported M-DAC equipped with electrostatic microactuators. The measured total displacement of the proposed three-bit M-DAC is nearly 504 nm, and the motion step is approximately 72 nm. Furthermore, we demonstrated that the M-DAC can be employed as a mirror platform with discrete displacement output for a noncontact surface profiling system. PMID:26343682
NASA Astrophysics Data System (ADS)
Preetham, B. S.; Lake, Melinda A.; Hoelzle, David J.
2017-09-01
There is a need for the development of large displacement (O (10-6) m) and force (O (10-6) N) electrostatic actuators with low actuation voltages (< ±8 V) for underwater bio-MEMS applications. In this paper, we present the design, fabrication, and characterization of a curved electrode electrostatic actuator in a clamped-clamped beam configuration meant to operate in an underwater environment. Our curved electrode actuator is unique in that it operates in a stable manner past the pull-in instability. Models based on the Rayleigh-Ritz method accurately predict the onset of static instability and the displacement versus voltage function, as validated by quasistatic experiments. We demonstrate that the actuator is capable of achieving a large peak-to-peak displacement of 19.5 µm and force of 43 µN for a low actuation voltage of less than ±8 V and is thus appropriate for underwater bio-MEMS applications.
Compliant displacement-multiplying apparatus for microelectromechanical systems
Kota, Sridhar; Rodgers, M. Steven; Hetrick, Joel A.
2001-01-01
A pivotless compliant structure is disclosed that can be used to increase the geometric advantage or mechanical advantage of a microelectromechanical (MEM) actuator such as an electrostatic comb actuator, a capacitive-plate electrostatic actuator, or a thermal actuator. The compliant structure, based on a combination of interconnected flexible beams and cross-beams formed of one or more layers of polysilicon or silicon nitride, can provide a geometric advantage of from about 5:1 to about 60:1 to multiply a 0.25-3 .mu.m displacement provided by a short-stroke actuator so that such an actuator can be used to generate a displacement stroke of about 10-34 .mu.m to operate a ratchet-driven MEM device or a microengine. The compliant structure has less play than conventional displacement-multiplying devices based on lever arms and pivoting joints, and is expected to be more reliable than such devices. The compliant structure and an associated electrostatic or thermal actuator can be formed on a common substrate (e.g. silicon) using surface micromachining.
Sun, Jian-Ke; Zhang, Weiyi; Guterman, Ryan; Lin, Hui-Juan; Yuan, Jiayin
2018-04-30
Soft actuators with integration of ultrasensitivity and capability of simultaneous interaction with multiple stimuli through an entire event ask for a high level of structure complexity, adaptability, and/or multi-responsiveness, which is a great challenge. Here, we develop a porous polycarbene-bearing membrane actuator built up from ionic complexation between a poly(ionic liquid) and trimesic acid (TA). The actuator features two concurrent structure gradients, i.e., an electrostatic complexation (EC) degree and a density distribution of a carbene-NH 3 adduct (CNA) along the membrane cross-section. The membrane actuator performs the highest sensitivity among the state-of-the-art soft proton actuators toward acetic acid at 10 -6 mol L -1 (M) level in aqueous media. Through competing actuation of the two gradients, it is capable of monitoring an entire process of proton-involved chemical reactions that comprise multiple stimuli and operational steps. The present achievement constitutes a significant step toward real-life application of soft actuators in chemical sensing and reaction technology.
Extended-range tiltable micromirror
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen, James J; Wiens, Gloria J; Bronson, Jessica R
A tiltable micromirror device is disclosed in which a micromirror is suspended by a progressive linkage with an electrostatic actuator (e.g. a vertical comb actuator or a capacitive plate electrostatic actuator) being located beneath the micromirror. The progressive linkage includes a pair of torsion springs which are connected together to operate similar to a four-bar linkage with spring joints. The progressive linkage provides a non-linear spring constant which can allow the micromirror to be tilted at any angle within its range substantially free from any electrostatic instability or hysteretic behavior.
Electrostatically actuatable light modulating device
Koehler, Dale R.
1991-01-01
The electrostatically actuatable light modulator utilizes an opaque substrate plate patterned with an array of aperture cells, the cells comprised of physically positionable dielectric shutters and electrostatic actuators. With incorporation of a light source and a viewing screen, a projection display system is effected. Inclusion of a color filter array aligned with the aperture cells accomplishes a color display. The system is realized in terms of a silicon based manufacturing technology allowing fabrication of a high resolution capability in a physically small device which with the utilization of included magnification optics allows both large and small projection displays.
NASA Astrophysics Data System (ADS)
Chan, Edward K.; Dutton, Robert W.
1999-03-01
The important practical and realistic design issues of an electrostatic actuator/positioner with full-gap travel are discussed. Analytic expressions and numerical simulations show that parasitic capacitances, and non-uniform deformation in two and three dimensions influence the range of travel of an electrostatic positioner stabilized by the addition of a series capacitor. The effects of residual charge on electrostatically-actuated devices are described. The dynamic stepping characteristics of the positioner under compressible squeeze-film damping and resistive damping are compared. The physical descriptions of devices being fabricated in the MUMPs process are presented along with 3D simulation results that demonstrate viability.
Electrostatic polymer-based microdeformable mirror for adaptive optics
NASA Astrophysics Data System (ADS)
Zamkotsian, Frederic; Conedera, Veronique; Granier, Hugues; Liotard, Arnaud; Lanzoni, Patrick; Salvagnac, Ludovic; Fabre, Norbert; Camon, Henri
2007-02-01
Future adaptive optics (AO) systems require deformable mirrors with very challenging parameters, up to 250 000 actuators and inter-actuator spacing around 500 μm. MOEMS-based devices are promising for the development of a complete generation of new deformable mirrors. Our micro-deformable mirror (MDM) is based on an array of electrostatic actuators with attachments to a continuous mirror on top. The originality of our approach lies in the elaboration of layers made of polymer materials. Mirror layers and active actuators have been demonstrated. Based on the design of this actuator and our polymer process, realization of a complete polymer-MDM has been done using two process flows: the first involves exclusively polymer materials while the second uses SU8 polymer for structural layers and SiO II and sol-gel for sacrificial layers. The latest shows a better capability in order to produce completely released structures. The electrostatic force provides a non-linear actuation, while AO systems are based on linear matrices operations. Then, we have developed a dedicated 14-bit electronics in order to "linearize" the actuation, using a calibration and a sixth-order polynomial fitting strategy. The response is nearly perfect over our 3×3 MDM prototype with a standard deviation of 3.5 nm; the influence function of the central actuator has been measured. First evaluation on the cross non-linarities has also been studied on OKO mirror and a simple look-up table is sufficient for determining the location of each actuator whatever the locations of the neighbor actuators. Electrostatic MDM are particularly well suited for open-loop AO applications.
A Novel Concept for a Deformable Membrane Mirror for Correction of Large Amplitude Aberrations
NASA Technical Reports Server (NTRS)
Moore, Jim; Patrick, Brian
2006-01-01
Very large, light weight mirrors are being developed for applications in space. Due to launch mass and volume restrictions these mirrors will need to be much more flexible than traditional optics. The use of primary mirrors with these characteristics will lead to requirements for adaptive optics capable of correcting wave front errors with large amplitude relatively low spatial frequency aberrations. The use of low modulus membrane mirrors actuated with electrostatic attraction forces is a potential solution for this application. Several different electrostatic membrane mirrors are now available commercially. However, as the dynamic range requirement of the adaptive mirror is increased the separation distance between the membrane and the electrodes must increase to accommodate the required face sheet deformations. The actuation force applied to the mirror decreases inversely proportional to the square of the separation distance; thus for large dynamic ranges the voltage requirement can rapidly increase into the high voltage regime. Experimentation with mirrors operating in the KV range has shown that at the higher voltages a serious problem with electrostatic field cross coupling between actuators can occur. Voltage changes on individual actuators affect the voltage of other actuators making the system very difficult to control. A novel solution has been proposed that combines high voltage electrodes with mechanical actuation to overcome this problem. In this design an array of electrodes are mounted to a backing structure via light weight large dynamic range flextensional actuators. With this design the control input becomes the separation distance between the electrode and the mirror. The voltage on each of the actuators is set to a uniform relatively high voltage, thus the problem of cross talk between actuators is avoided and the favorable distributed load characteristic of electrostatic actuation is retained. Initial testing and modeling of this concept demonstrates that this is an attractive concept for increasing the dynamic range capability of electrostatic deformable mirrors.
A contribution to the expansion of the applicability of electrostatic forces in micro transducers
NASA Astrophysics Data System (ADS)
Schenk, Harald; Conrad, Holger; Gaudet, Matthieu; Uhlig, Sebastian; Kaiser, Bert; Langa, Sergiu; Stolz, Michael; Schimmanz, Klaus
2017-02-01
Electrostatic actuation is highly efficient at micro and nanoscale. However, large deflection in common electrostatically driven MEMS requires large electrode separation and thus high driving voltages. To offer a solution to this problem we developed a novel electrostatic actuator class, which is based on a force-to-stress transformation in the periodically patterned upper layer of a silicon cantilever beam. We report on advances in the development of such electrostatic bending actuators. Several variants of a CMOS compatible and RoHS-directive compliant fabrication processes to fabricate vertical deflecting beams with a thickness of 30 μm are presented. A concept to extend the actuation space towards lateral deflecting elements is introduced. The fabricated and characterized vertical deflecting cantilever beam variants make use of a 0.2 μm electrode gap and achieve deflections of up to multiples of this value. Simulation results based on an FE-model applied to calculate the voltage dependent curvature for various actuator cell designs are presented. The calculated values show very good agreement with the experimentally determined voltage controlled actuation curvatures. Particular attention was paid to parasitic effects induced by small, sub micrometer, electrode gaps. This includes parasitic currents between the two electrode layers. No experimental hint was found that such effects significantly influence the curvature for a control voltage up to 45 V. The paper provides an outlook for the applicability of the technology based on specifically designed and fabricated actuators which allow for a large variety of motion patterns including out-of-plane and in-plane motion as well as membrane deformation and linear motion.
Microfluidic pressure amplifier circuits and electrostatic gates for pneumatic microsystems
Tice, Joshua D.; Bassett, Thomas A.; Desai, Amit V.; Apblett, Christopher A.; Kenis, Paul J. A.
2016-09-20
An electrostatic actuator is provide that can include a fluidic line, a first electrode, and a second electrode such that a gate chamber portion of the fluidic line is sandwiched between the first electrode and the second electrode. The electrostatic actuator can also include a pressure-balancing channel in fluid communication with the gate chamber portion where the first electrode is sandwiched between the pressure-balancing channel and the gate chamber portion. A pneumatic valve system is provided which includes an electrostatic gate and a fluidic channel fluidly separate from a fluidic control line. A pneumatic valve portion of the fluidic control line can be positioned relative to a portion of the fluidic channel such that expansion of the pneumatic valve portion restricts fluid flow through the fluidic channel. Methods of using an electrostatic actuator and a pneumatic valve system are also provided.
Evolution from MEMS-based Linear Drives to Bio-based Nano Drives
NASA Astrophysics Data System (ADS)
Fujita, Hiroyuki
The successful extension of semiconductor technology to fabricate mechanical parts of the sizes from 10 to 100 micrometers opened wide ranges of possibilities for micromechanical devices and systems. The fabrication technique is called micromachining. Micromachining processes are based on silicon integrated circuits (IC) technology and used to build three-dimensional structures and movable parts by the combination of lithography, etching, film deposition, and wafer bonding. Microactuators are the key devices allowing MEMS to perform physical functions. Some of them are driven by electric, magnetic, and fluidic forces. Some others utilize actuator materials including piezoelectric (PZT, ZnO, quartz) and magnetostrictive materials (TbFe), shape memory alloy (TiNi) and bio molecular motors. This paper deals with the development of MEMS based microactuators, especially linear drives, following my own research experience. They include an electrostatic actuator, a superconductive levitated actuator, arrayed actuators, and a bio-motor-driven actuator.
NASA Astrophysics Data System (ADS)
Jin, Young-Hyun; Seo, Kyoung-Sun; Cho, Young-Ho; Lee, Sang-Shin; Song, Ki-Chang; Bu, Jong-Uk
2004-12-01
We present an silicon-on-insulator (SOI) optical microswitch, composed of silicon waveguides and electrostatically actuated gold-coated silicon micromirrors integrated with laser diode (LD) receivers and photo diode (PD) transmitters. For a low switching voltage, we modify the conventional curved electrode microactuator into a new microactuator with touch-down beams. We fabricate the waveguides and the actuated micromirror using the inductively coupled plasma (ICP) etching process of SOI wafers. The fabricated microswitch operates at the switching voltage of 31.7 ± 4 V with the resonant frequency of 6.89 kHz. Compared to the conventional microactuator, the touch-down beam microactuator achieves 77.4% reduction of the switching voltage. We observe the single mode wave propagation through the silicon waveguide with the measured micromirror loss of 4.18 ± 0.25 dB. We discuss a feasible method to achieve the switching voltage lower than 10 V by reducing the residual stress in the insulation layers of touch-down beams to the level of 30 MPa. We also analyze the major source of micromirror loss, thereby presenting design guidelines for low-loss micromirror switches.
Toward milli-Newton electro- and magneto-static microactuators
NASA Technical Reports Server (NTRS)
Fan, Long-Sheng
1993-01-01
Microtechnologies can potentially push integrated electro- and magnetostatic actuators toward the regime where constant forces in the order of milli-Newton (or torques in the order of micro-Newton meter) can be generated with constant inputs within a volume of 1.0 x 1.0 x 0.02 mm with 'conventional' technology. 'Micro' actuators are, by definition, actuators with dimensions confined within a millimeter cube. Integrated microactuators based on electrostatics typically have force/torque in the order of sub-micro-Newton (sub-nano-Newton meter). These devices are capable of moving small objects at MHz frequencies. On the other hand, suppose we want to move a one cubic millimeter object around with 100 G acceleration; a few milli-Newton force will be required. Thus, milli-Newton microactuators are very desirable for some immediate applications, and it challenges micromechanical researchers to develop new process technologies, designs, and materials toward this goal.
Electrostatic micromembrane actuator arrays as motion generator
NASA Astrophysics Data System (ADS)
Wu, X. T.; Hui, J.; Young, M.; Kayatta, P.; Wong, J.; Kennith, D.; Zhe, J.; Warde, C.
2004-05-01
A rigid-body motion generator based on an array of micromembrane actuators is described. Unlike previous microelectromechanical systems (MEMS) techniques, the architecture employs a large number (typically greater than 1000) of micron-sized (10-200 μm) membrane actuators to simultaneously generate the displacement of a large rigid body, such as a conventional optical mirror. For optical applications, the approach provides optical design freedom of MEMS mirrors by enabling large-aperture mirrors to be driven electrostatically by MEMS actuators. The micromembrane actuator arrays have been built using a stacked architecture similar to that employed in the Multiuser MEMS Process (MUMPS), and the motion transfer from the arrayed micron-sized actuators to macro-sized components was demonstrated.
High-resolution inchworm linear motor based on electrostatic twisting microactuators
NASA Astrophysics Data System (ADS)
Kim, Sang-Ho; Hwang, Il-Han; Jo, Kyoung-Woo; Yoon, Eui-Sung; Lee, Jong-Hyun
2005-09-01
A new inchworm micromotor using new electrostatic in-plane twisting microactuators has been designed, fabricated and characterized for nano-resolution manipulators. The proposed twisting mechanism was implemented employing a pair of differential electrostatic actuators with a high stiffness in the driving direction for stable positioning. The electromechanically coupled motion of the voltage-displacement relation was analyzed using a finite element method (FEM), confirming that the twisting actuator makes a tiny step movement efficiently. The proposed actuator was fabricated on a silicon-on-insulator (SOI) wafer with the device footprint of 2.2 × 2.8 mm2, and its nano-stepping characteristics were measured by an optical interferometer consisting of an integrated micromirror and optical fiber. The fabricated inchworm motor showed a minimum step displacement of 5.2 ± 3.8 nm (2σ) and 4.1 ± 2.9 nm (2σ) for cyclic motion in the +y- and the -y-directions, respectively, with the gripping voltage of 15 V and differential voltage of 1 V. As a result, the proposed inchworm micromotor could operate with a stroke of 3 µm and a bi-directional step displacement of less than 10 nm. The step displacement is the smallest value of in-plane-type micromotors so far, and its magnitude was controllable up to 120 nm/cycle by changing the differential voltage.
Electrostatic repulsive out-of-plane actuator using conductive substrate.
Wang, Weimin; Wang, Qiang; Ren, Hao; Ma, Wenying; Qiu, Chuankai; Chen, Zexiang; Fan, Bin
2016-10-07
A pseudo-three-layer electrostatic repulsive out-of-plane actuator is proposed. It combines the advantages of two-layer and three-layer repulsive actuators, i.e., fabrication requirements and fill factor. A theoretical model for the proposed actuator is developed and solved through the numerical calculation of Schwarz-Christoffel mapping. Theoretical and simulated results show that the pseudo-three-layer actuator offers higher performance than the two-layer and three-layer actuators with regard to the two most important characteristics of actuators, namely, driving force and theoretical stroke. Given that the pseudo-three-layer actuator structure is compatible with both the parallel-plate actuators and these two types of repulsive actuators, a 19-element two-layer repulsive actuated deformable mirror is operated in pseudo-three-layer electrical connection mode. Theoretical and experimental results demonstrate that the pseudo-three-layer mode produces a larger displacement of 0-4.5 μm for a dc driving voltage of 0-100 V, when compared with that in two-layer mode.
Electrostatic repulsive out-of-plane actuator using conductive substrate
Wang, Weimin; Wang, Qiang; Ren, Hao; Ma, Wenying; Qiu, Chuankai; Chen, Zexiang; Fan, Bin
2016-01-01
A pseudo-three-layer electrostatic repulsive out-of-plane actuator is proposed. It combines the advantages of two-layer and three-layer repulsive actuators, i.e., fabrication requirements and fill factor. A theoretical model for the proposed actuator is developed and solved through the numerical calculation of Schwarz-Christoffel mapping. Theoretical and simulated results show that the pseudo-three-layer actuator offers higher performance than the two-layer and three-layer actuators with regard to the two most important characteristics of actuators, namely, driving force and theoretical stroke. Given that the pseudo-three-layer actuator structure is compatible with both the parallel-plate actuators and these two types of repulsive actuators, a 19-element two-layer repulsive actuated deformable mirror is operated in pseudo-three-layer electrical connection mode. Theoretical and experimental results demonstrate that the pseudo-three-layer mode produces a larger displacement of 0–4.5 μm for a dc driving voltage of 0–100 V, when compared with that in two-layer mode. PMID:27713542
Nonlinear Parameter Identification of a Resonant Electrostatic MEMS Actuator
Al-Ghamdi, Majed S.; Alneamy, Ayman M.; Park, Sangtak; Li, Beichen; Khater, Mahmoud E.; Abdel-Rahman, Eihab M.; Heppler, Glenn R.; Yavuz, Mustafa
2017-01-01
We experimentally investigate the primary superharmonic of order two and subharmonic of order one-half resonances of an electrostatic MEMS actuator under direct excitation. We identify the parameters of a one degree of freedom (1-DOF) generalized Duffing oscillator model representing it. The experiments were conducted in soft vacuum to reduce squeeze-film damping, and the actuator response was measured optically using a laser vibrometer. The predictions of the identified model were found to be in close agreement with the experimental results. We also identified the noise spectral density of process (actuation voltage) and measurement noise. PMID:28505097
Nonlinear Parameter Identification of a Resonant Electrostatic MEMS Actuator.
Al-Ghamdi, Majed S; Alneamy, Ayman M; Park, Sangtak; Li, Beichen; Khater, Mahmoud E; Abdel-Rahman, Eihab M; Heppler, Glenn R; Yavuz, Mustafa
2017-05-13
We experimentally investigate the primary superharmonic of order two and subharmonic of order one-half resonances of an electrostatic MEMS actuator under direct excitation. We identify the parameters of a one degree of freedom (1-DOF) generalized Duffing oscillator model representing it. The experiments were conducted in soft vacuum to reduce squeeze-film damping, and the actuator response was measured optically using a laser vibrometer. The predictions of the identified model were found to be in close agreement with the experimental results. We also identified the noise spectral density of process (actuation voltage) and measurement noise.
Flexible and stretchable electrodes for dielectric elastomer actuators
NASA Astrophysics Data System (ADS)
Rosset, Samuel; Shea, Herbert R.
2013-02-01
Dielectric elastomer actuators (DEAs) are flexible lightweight actuators that can generate strains of over 100 %. They are used in applications ranging from haptic feedback (mm-sized devices), to cm-scale soft robots, to meter-long blimps. DEAs consist of an electrode-elastomer-electrode stack, placed on a frame. Applying a voltage between the electrodes electrostatically compresses the elastomer, which deforms in-plane or out-of plane depending on design. Since the electrodes are bonded to the elastomer, they must reliably sustain repeated very large deformations while remaining conductive, and without significantly adding to the stiffness of the soft elastomer. The electrodes are required for electrostatic actuation, but also enable resistive and capacitive sensing of the strain, leading to self-sensing actuators. This review compares the different technologies used to make compliant electrodes for DEAs in terms of: impact on DEA device performance (speed, efficiency, maximum strain), manufacturability, miniaturization, the integration of self-sensing and self-switching, and compatibility with low-voltage operation. While graphite and carbon black have been the most widely used technique in research environments, alternative methods are emerging which combine compliance, conduction at over 100 % strain with better conductivity and/or ease of patternability, including microfabrication-based approaches for compliant metal thin-films, metal-polymer nano-composites, nanoparticle implantation, and reel-to-reel production of μm-scale patterned thin films on elastomers. Such electrodes are key to miniaturization, low-voltage operation, and widespread commercialization of DEAs.
NASA Astrophysics Data System (ADS)
Juillard, J.; Brenes, A.
2018-05-01
In this paper, the frequency stability of high-Q electrostatically-actuated MEMS oscillators with cubic restoring forces, and its relation with the amplitude, the phase and the shape of the excitation waveform, is studied. The influence on close-to-the carrier frequency noise of additive processes (such as thermomechanical noise) or parametric processes (bias voltage fluctuations, feedback phase fluctuations, feedback level fluctuations) is taken into account. It is shown that the optimal operating conditions of electrostatically-actuated MEMS oscillators are highly waveform-dependent, a factor that is largely overlooked in the existing literature. This simulation-based study covers the cases of harmonic and pulsed excitation of a parallel-plate capacitive MEMS resonator.
Design and Fabrication of Electrostatically Actuated Silicon Microshutters Arrays
NASA Technical Reports Server (NTRS)
Oh, L.; Li, M.; Kim, K.; Kelly, D.; Kutyrev, A.; Moseley, S.
2017-01-01
We have developed a new fabrication process to actuate microshutter arrays (MSA) electrostatically at NASA Goddard Space Flight Center. The microshutters are fabricated on silicon with thin silicon nitride membranes. A pixel size of each microshutter is 100 x 200 micrometers 2. The microshutters rotate 90 degrees on torsion bars. The selected microshutters are actuated, held, and addressed electrostatically by applying voltages on the electrodes the front and back sides of the microshutters. The atomic layer deposition (ALD) of aluminum oxide was used to insulate electrodes on the back side of walls; the insulation can withstand over 100 V. The ALD aluminum oxide is dry etched, and then the microshutters are released in vapor HF.
2D stepping drive for hyperspectral systems
NASA Astrophysics Data System (ADS)
Endrödy, Csaba; Mehner, Hannes; Grewe, Adrian; Sinzinger, Stefan; Hoffmann, Martin
2015-07-01
We present the design, fabrication and characterization of a compact 2D stepping microdrive for pinhole array positioning. The miniaturized solution enables a highly integrated compact hyperspectral imaging system. Based on the geometry of the pinhole array, an inch-worm drive with electrostatic actuators was designed resulting in a compact (1 cm2) positioning system featuring a step size of about 15 µm in a 170 µm displacement range. The high payload (20 mg) as required for the pinhole array and the compact system design exceed the known electrostatic inch-worm-based microdrives.
Modular apparatus for electrostatic actuation of common atomic force microscope cantilevers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Long, Christian J., E-mail: christian.long@nist.gov; Maryland Nanocenter, University of Maryland, College Park, Maryland 20742; Cannara, Rachel J.
2015-07-15
Piezoelectric actuation of atomic force microscope (AFM) cantilevers often suffers from spurious mechanical resonances in the loop between the signal driving the cantilever and the actual tip motion. These spurious resonances can reduce the accuracy of AFM measurements and in some cases completely obscure the cantilever response. To address these limitations, we developed a specialized AFM cantilever holder for electrostatic actuation of AFM cantilevers. The holder contains electrical contacts for the AFM cantilever chip, as well as an electrode (or electrodes) that may be precisely positioned with respect to the back of the cantilever. By controlling the voltages on themore » AFM cantilever and the actuation electrode(s), an electrostatic force is applied directly to the cantilever, providing a near-ideal transfer function from drive signal to tip motion. We demonstrate both static and dynamic actuations, achieved through the application of direct current and alternating current voltage schemes, respectively. As an example application, we explore contact resonance atomic force microscopy, which is a technique for measuring the mechanical properties of surfaces on the sub-micron length scale. Using multiple electrodes, we also show that the torsional resonances of the AFM cantilever may be excited electrostatically, opening the door for advanced dynamic lateral force measurements with improved accuracy and precision.« less
Vertical electrostatic actuator with extended digital range via tailored topology
NASA Astrophysics Data System (ADS)
Zhang, Yanhang; Dunn, Martin L.
2002-07-01
We describe the design, fabrication, and testing of an electrostatic vertical actuator that exhibits a range of motion that covers the entire initial gap between the actuator and substrate and provides controllable digital output motion. This is obtained by spatially tailoring the electrode arrangement and the stiffness characteristics of the microstructure to control the voltage-deflection characteristics. The concept is based on the electrostatic pull down of bimaterial beams, via a series of electrodes attached to the beams by flexures with tailored stiffness characteristics. The range of travel of the actuator is defined by the post-release deformed shape of the bilayer beams, and can be controlled by a post-release heat-treat process combined with a tailored actuator topology (material distribution and geometry, including spatial geometrical patterning of the individual layers of the bilayer beams). Not only does this allow an increase in the range of travel to cover the entire initial gap, but it also permits digital control of the tip of the actuator which can be designed to yield linear displacement - pull in step characteristics. We fabricated these actuators using the MUMPs surface micromachining process, and packaged them in-house. We measured, using an interferometric microscope, full field deformed shapes of the actuator at each pull in step. The measurements compare well with companion simulation results, both qualitatively and quantitatively.
The Stiffness Variation of a Micro-Ring Driven by a Traveling Piecewise-Electrode
Li, Yingjie; Yu, Tao; Hu, Yuh-Chung
2014-01-01
In the practice of electrostatically actuated micro devices; the electrostatic force is implemented by sequentially actuated piecewise-electrodes which result in a traveling distributed electrostatic force. However; such force was modeled as a traveling concentrated electrostatic force in literatures. This article; for the first time; presents an analytical study on the stiffness variation of microstructures driven by a traveling piecewise electrode. The analytical model is based on the theory of shallow shell and uniform electrical field. The traveling electrode not only applies electrostatic force on the circular-ring but also alters its dynamical characteristics via the negative electrostatic stiffness. It is known that; when a structure is subjected to a traveling constant force; its natural mode will be resonated as the traveling speed approaches certain critical speeds; and each natural mode refers to exactly one critical speed. However; for the case of a traveling electrostatic force; the number of critical speeds is more than that of the natural modes. This is due to the fact that the traveling electrostatic force makes the resonant frequencies of the forward and backward traveling waves of the circular-ring different. Furthermore; the resonance and stability can be independently controlled by the length of the traveling electrode; though the driving voltage and traveling speed of the electrostatic force alter the dynamics and stabilities of microstructures. This paper extends the fundamental insights into the electromechanical behavior of microstructures driven by electrostatic forces as well as the future development of MEMS/NEMS devices with electrostatic actuation and sensing. PMID:25230308
The stiffness variation of a micro-ring driven by a traveling piecewise-electrode.
Li, Yingjie; Yu, Tao; Hu, Yuh-Chung
2014-09-16
In the practice of electrostatically actuated micro devices; the electrostatic force is implemented by sequentially actuated piecewise-electrodes which result in a traveling distributed electrostatic force. However; such force was modeled as a traveling concentrated electrostatic force in literatures. This article; for the first time; presents an analytical study on the stiffness variation of microstructures driven by a traveling piecewise electrode. The analytical model is based on the theory of shallow shell and uniform electrical field. The traveling electrode not only applies electrostatic force on the circular-ring but also alters its dynamical characteristics via the negative electrostatic stiffness. It is known that; when a structure is subjected to a traveling constant force; its natural mode will be resonated as the traveling speed approaches certain critical speeds; and each natural mode refers to exactly one critical speed. However; for the case of a traveling electrostatic force; the number of critical speeds is more than that of the natural modes. This is due to the fact that the traveling electrostatic force makes the resonant frequencies of the forward and backward traveling waves of the circular-ring different. Furthermore; the resonance and stability can be independently controlled by the length of the traveling electrode; though the driving voltage and traveling speed of the electrostatic force alter the dynamics and stabilities of microstructures. This paper extends the fundamental insights into the electromechanical behavior of microstructures driven by electrostatic forces as well as the future development of MEMS/NEMS devices with electrostatic actuation and sensing.
Linear micromechanical stepping drive for pinhole array positioning
NASA Astrophysics Data System (ADS)
Endrödy, Csaba; Mehner, Hannes; Grewe, Adrian; Hoffmann, Martin
2015-05-01
A compact linear micromechanical stepping drive for positioning a 7 × 5.5 mm2 optical pinhole array is presented. The system features a step size of 13.2 µm and a full displacement range of 200 µm. The electrostatic inch-worm stepping mechanism shows a compact design capable of positioning a payload 50% of its own weight. The stepping drive movement, step sizes and position accuracy are characterized. The actuated pinhole array is integrated in a confocal chromatic hyperspectral imaging system, where coverage of the object plane, and therefore the useful picture data, can be multiplied by 14 in contrast to a non-actuated array.
2015-06-18
platform assembly 2, with micro-mirror platform deflection, measured on actuation side ( PFa ) and side opposite actuation (PFo...beam micro-mirror platform assembly 1; micro-mirror platform deflection, measured on actuation side ( PFa ) and side opposite actuation (PFo...side ( PFa ) and side opposite actuation (PFo) ........................................................ 106 xiv Figure 73: Graph of measured 10-beam
Research on Plasma Synthetic Jet Actuator
NASA Astrophysics Data System (ADS)
Che, X. K.; Nie, W. S.; Hou, Z. Y.
2011-09-01
Circular dielectric barrier surface discharge (DBDs) actuator is a new concept of zero mass synthetic jet actuator. The characteristic of discharge and flow control effect of annular-circular plasma synthetic jet actuator has been studied by means of of numerical simulation and experiment. The discharge current density, electron density, electrostatic body force density and flowfield have been obtained. The results show annular-circular actuator can produce normal jet whose velocity will be greater than 2.0 m/s. The jet will excite circumfluence. In order to insure the discharge is generated in the exposed electrode annular and produce centripetal and normal electrostatic body force, the width and annular diameter of exposed electrode must be big enough, or an opposite phase drove voltage potential should be applied between the two electrodes.
NASA Technical Reports Server (NTRS)
Patrick, Brian; Moore, James; Hackenberger, Wesley; Jiang, Xiaoning
2013-01-01
A lightweight, cryogenically capable, scalable, deformable mirror has been developed for space telescopes. This innovation makes use of polymer-based membrane mirror technology to enable large-aperture mirrors that can be easily launched and deployed. The key component of this innovation is a lightweight, large-stroke, cryogenic actuator array that combines the high degree of mirror figure control needed with a large actuator influence function. The latter aspect of the innovation allows membrane mirror figure correction with a relatively low actuator density, preserving the lightweight attributes of the system. The principal components of this technology are lightweight, low-profile, high-stroke, cryogenic-capable piezoelectric actuators based on PMN-PT (piezoelectric lead magnesium niobate-lead titanate) single-crystal configured in a flextensional actuator format; high-quality, low-thermal-expansion polymer membrane mirror materials developed by NeXolve; and electrostatic coupling between the membrane mirror and the piezoelectric actuator assembly to minimize problems such as actuator print-through.
Integration of motor proteins - towards an ATP fueled soft actuator.
Kakugo, Akira; Shikinaka, Kazuhiro; Gong, Jian Ping
2008-09-01
We present a soft bio-machine constructed from biological motors (actin/myosin). We have found that chemically cross-linked polymer-actin complex gel filaments can move on myosin coated surfaces with a velocity as high as that of native F-actin, by coupling to ATP hydrolysis. Additionally, it is shown that the velocity of polymer-actin complex gel depends on the species of polycations binding to the F-actins. Since the design of functional actuators of well-defined size and morphology is important, the structural behavior of polymer-actin complexes has been investigated. Our results show that the morphology and growth size of polymer-actin complex can be controlled by changes in the electrostatic interactions between F-actins and polycations. Our results indicate that bio actuators with desired shapes can be created by using a polymer-actin complex.
Next-Generation Microshutter Arrays for Large-Format Imaging and Spectroscopy
NASA Technical Reports Server (NTRS)
Moseley, Samuel; Kutyrev, Alexander; Brown, Ari; Li, Mary
2012-01-01
A next-generation microshutter array, LArge Microshutter Array (LAMA), was developed as a multi-object field selector. LAMA consists of small-scaled microshutter arrays that can be combined to form large-scale microshutter array mosaics. Microshutter actuation is accomplished via electrostatic attraction between the shutter and a counter electrode, and 2D addressing can be accomplished by applying an electrostatic potential between a row of shutters and a column, orthogonal to the row, of counter electrodes. Microelectromechanical system (MEMS) technology is used to fabricate the microshutter arrays. The main feature of the microshutter device is to use a set of standard surface micromachining processes for device fabrication. Electrostatic actuation is used to eliminate the need for macromechanical magnet actuating components. A simplified electrostatic actuation with no macro components (e.g. moving magnets) required for actuation and latching of the shutters will make the microshutter arrays robust and less prone to mechanical failure. Smaller-size individual arrays will help to increase the yield and thus reduce the cost and improve robustness of the fabrication process. Reducing the size of the individual shutter array to about one square inch and building the large-scale mosaics by tiling these smaller-size arrays would further help to reduce the cost of the device due to the higher yield of smaller devices. The LAMA development is based on prior experience acquired while developing microshutter arrays for the James Webb Space Telescope (JWST), but it will have different features. The LAMA modular design permits large-format mosaicking to cover a field of view at least 50 times larger than JWST MSA. The LAMA electrostatic, instead of magnetic, actuation enables operation cycles at least 100 times faster and a mass significantly smaller compared to JWST MSA. Also, standard surface micromachining technology will simplify the fabrication process, increasing yield and reducing cost.
Evaluation of a silicon 5 MHz p–n diode actuator with a laterally vibrating extensional mode
NASA Astrophysics Data System (ADS)
Miyazaki, Fumito; Baba, Kazuki; Tanigawa, Hiroshi; Furutsuka, Takashi; Suzuki, Kenichiro
2018-05-01
In this paper, we describe p–n diode actuators that are laterally driven by the force induced in a depletion layer. The previously reported p–n diode actuators have been vertically driven. Because the resonant frequency depends on the thickness of the vibrating plate, the integration of resonators with different frequencies on a chip has been difficult. The resonators in this work are driven laterally by using length-extensional vibration. We have developed a compact model based on an analytical expression, in which p–n diode actuators are driven by the forces induced by the spread of the depletion layer. The deflection generated by the p–n diode actuators was proportional to the ratio of the depletion layer width to the resonator thickness as well as the position of the p–n junction. Good agreement of experimental results with the theory was confirmed by comparing the measured values for silicon p–n diode rectangular-plate actuators fabricated using a silicon-on-insulator (SOI) substrate. The displacement amplitude of the actuators was proportional to the DC bias, while the resonant frequency was independent of the DC bias. The latter characteristic is very different from that of widely used electrostatic actuators. Although the amplitude of the actuator measured in this work was very small, it is expected that the amplitude will increase greatly by increasing the doping of the p–n diode actuators.
Mm-size bistable zipping dielectric elastomer actuators for integrated microfluidics
NASA Astrophysics Data System (ADS)
Maffli, Luc; Rosset, Samuel; Shea, Herbert R.
2013-04-01
We report on a new structure of Dielectric Elastomer Actuators (DEAs) called zipping DEAs, which have a set of unique characteristics that are a good match for the requirements of electrically-powered integrated microfluidic pumping and/or valving units as well as Braille displays. The zipping DEAs operate by pulling electrostatically an elastomer membrane in contact with the rigid sidewalls of a sloped chamber. In this work, we report on fully functional mm-size zipping DEAs that demonstrate a complete sealing of the chamber sidewalls and a tunable bistable behavior, and compare the measurements with an analytical model. Compared to our first generation of devices, we are able vary the sidewall angle and benefit therefore from more flexibility to study the requirements to make fully functional actuators. In particular, we show that with Nusil CF19 as membrane material (1.2 MPa Young's modulus), it is possible to zip completely 2.3 mm diameter chambers with 15° and 21° sidewalls angle equibiaxially prestretched to λ0=1.12 and 15° chambers with λ0=1.27.
Comparative study of 2-DOF micromirrors for precision light manipulation
NASA Astrophysics Data System (ADS)
Young, Johanna I.; Shkel, Andrei M.
2001-08-01
Many industry experts predict that the future of fiber optic telecommunications depends on the development of all-optical components for switching of photonic signals from fiber to fiber throughout the networks. MEMS is a promising technology for providing all-optical switching at high speeds with significant cost reductions. This paper reports on the the analysis of two designs for 2-DOF electrostatically actuated MEMS micromirrors for precision controllable large optical switching arrays. The behavior of the micromirror designs is predicted by coupled-field electrostatic and modal analysis using a finite element analysis (FEA) multi-physics modeling software. The analysis indicates that the commonly used gimbal type mirror design experiences electrostatic interference and would therefore be difficult to precisely control for 2-DOF motion. We propose a new design approach which preserves 2-DOF actuation while minimizing electrostatic interference between the drive electrodes and the mirror. Instead of using two torsional axes, we use one actuator which combines torsional and flexural DOFs. A comparative analysis of the conventional gimbal design and the one proposed in this paper is performed.
Evaluation of synthetic linear motor-molecule actuation energetics
Brough, Branden; Northrop, Brian H.; Schmidt, Jacob J.; Tseng, Hsian-Rong; Houk, Kendall N.; Stoddart, J. Fraser; Ho, Chih-Ming
2006-01-01
By applying atomic force microscope (AFM)-based force spectroscopy together with computational modeling in the form of molecular force-field simulations, we have determined quantitatively the actuation energetics of a synthetic motor-molecule. This multidisciplinary approach was performed on specifically designed, bistable, redox-controllable [2]rotaxanes to probe the steric and electrostatic interactions that dictate their mechanical switching at the single-molecule level. The fusion of experimental force spectroscopy and theoretical computational modeling has revealed that the repulsive electrostatic interaction, which is responsible for the molecular actuation, is as high as 65 kcal·mol−1, a result that is supported by ab initio calculations. PMID:16735470
Compound semiconductor optical waveguide switch
Spahn, Olga B.; Sullivan, Charles T.; Garcia, Ernest J.
2003-06-10
An optical waveguide switch is disclosed which is formed from III-V compound semiconductors and which has a moveable optical waveguide with a cantilevered portion that can be bent laterally by an integral electrostatic actuator to route an optical signal (i.e. light) between the moveable optical waveguide and one of a plurality of fixed optical waveguides. A plurality of optical waveguide switches can be formed on a common substrate and interconnected to form an optical switching network.
Programmable optical microshutter arrays for large aspect ratio microslits
NASA Astrophysics Data System (ADS)
Ilias, S.; Picard, F.; Larouche, C.; Kruzelecky, R.; Jamroz, W.; Le Noc, L.; Topart, P.
2008-06-01
Design, fabrication and characterization of a 16x1 programmable microshutter array are described. Each shutter controls the light transmitted through a microslit defined on the transparent substrate supporting the array. Two approaches were considered for the shutter array implementation: sweeping blades and zipping actuators. Simulation results and fabrication constraints led to the selection of the zipping actuators. The device was fabricated using a surface micromachining process. Each microshutter is basically an electrostatic zipping actuator having a curved shape induced by a stress gradient throughout the actuator thickness. When a sufficient voltage is applied between the microshutter and an actuation electrode surrounding the microslit area, the generated electrostatic force pulls the actuator down to the substrate which closes the microslit. Opening the slit relies on the restoring force due to the actuator deformation. Microshutter arrays were fabricated successfully. High light transmission through the slit area is obtained with the actuator in the open position and excellent light blocking is observed when the shutter is closed. Static and dynamic responses of the device were determined. A pull-in voltage of about 110 V closes the microslit and the response times to close and open the microslit are about 2 and 7 ms, respectively.
Micromechanical Switches on GaAs for Microwave Applications
NASA Technical Reports Server (NTRS)
Randall, John N.; Goldsmith, Chuck; Denniston, David; Lin, Tsen-Hwang
1995-01-01
In this presentation, we describe the fabrication of micro-electro-mechanical system (MEMS) devices, in particular, of low-frequency multi-element electrical switches using SiO2 cantilevers. The switches discussed are related to micromechanical membrane structures used to perform switching of optical signals on silicon substrates. These switches use a thin metal membrane which is actuated by an electrostatic potential, causing the switch to make or break contact. The advantages include: superior isolation, high power handling capabilities, high radiation hardening, very low power operations, and the ability to integrate onto GaAs monolithic microwave integrated circuit (MMIC) chips.
A variable stiffness dielectric elastomer actuator based on electrostatic chucking.
Imamura, Hiroya; Kadooka, Kevin; Taya, Minoru
2017-05-14
Dielectric elastomer actuators (DEA) are one type of promising artificial muscle; however, applications of bending-type DEA for robotic end-effectors may be limited by their low stiffness and ability to resist external loads without buckling. Unimorph DEA can produce large out-of-plane deformation suitable for use as robotic end effectors; however, design of such actuators for large displacement comes at the cost of low stiffness and blocking force. This work proposes and demonstrates a variable stiffness dielectric elastomer actuator (VSDEA) consisting of a plurality of unimorph DEA units operating in parallel, which can exhibit variable electrostatic chucking to modulate the structure's bending stiffness. The unimorph DEA units are additively manufactured using a high-resolution pneumatic dispenser, and VSDEA comprising various numbers of units are assembled. The performance of the DEA units and VSDEA are compared to model predictions, exhibiting a maximum stiffness change of 39.2×. A claw actuator comprising two VSDEA and weighing 0.6 grams is demonstrated grasping and lifting a 10 gram object.
Electrostatic actuation and electromechanical switching behavior of one-dimensional nanostructures.
Subramanian, Arunkumar; Alt, Andreas R; Dong, Lixin; Kratochvil, Bradley E; Bolognesi, Colombo R; Nelson, Bradley J
2009-10-27
We report on the electromechanical actuation and switching performance of nanoconstructs involving doubly clamped, individual multiwalled carbon nanotubes. Batch-fabricated, three-state switches with low ON-state voltages (6.7 V average) are demonstrated. A nanoassembly architecture that permits individual probing of one device at a time without crosstalk from other nanotubes, which are originally assembled in parallel, is presented. Experimental investigations into device performance metrics such as hysteresis, repeatability and failure modes are presented. Furthermore, current-driven shell etching is demonstrated as a tool to tune the nanomechanical clamping configuration, stiffness, and actuation voltage of fabricated devices. Computational models, which take into account the nonlinearities induced by stress-stiffening of 1-D nanowires at large deformations, are presented. Apart from providing accurate estimates of device performance, these models provide new insights into the extension of stable travel range in electrostatically actuated nanowire-based constructs as compared to their microscale counterparts.
Mechanical behavior simulation of MEMS-based cantilever beam using COMSOL multiphysics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acheli, A., E-mail: aacheli@cdta.dz; Serhane, R.
This paper presents the studies of mechanical behavior of MEMS cantilever beam made of poly-silicon material, using the coupling of three application modes (plane strain, electrostatics and the moving mesh) of COMSOL Multi-physics software. The cantilevers playing a key role in Micro Electro-Mechanical Systems (MEMS) devices (switches, resonators, etc) working under potential shock. This is why they require actuation under predetermined conditions, such as electrostatic force or inertial force. In this paper, we present mechanical behavior of a cantilever actuated by an electrostatic force. In addition to the simplification of calculations, the weight of the cantilever was not taken intomore » account. Different parameters like beam displacement, electrostatics force and stress over the beam have been calculated by finite element method after having defining the geometry, the material of the cantilever model (fixed at one of ends but is free to move otherwise) and his operational space.« less
Füzesi, F; Jornod, A; Thomann, P; Plimmer, M D; Dudle, G; Moser, R; Sache, L; Bleuler, H
2007-10-01
This article describes the design, characterization, and performance of an electrostatic glass actuator adapted to an ultrahigh vacuum environment (10(-8) mbar). The three-phase rotary motor is used to drive a turbine that acts as a velocity-selective light trap for a slow continuous beam of laser-cooled atoms. This simple, compact, and nonmagnetic device should find applications in the realm of time and frequency metrology, as well as in other areas of atomic, molecular physics and elsewhere.
Scaling Laws of Microactuators and Potential Applications of Electroactive Polymers in MEMS
NASA Technical Reports Server (NTRS)
Liu, Chang; Bar-Cohen, Y.
1999-01-01
Besides the scale factor that distinguishes the various species, fundamentally biological muscles changes little between species, indicating a highly optimized system. Electroactive polymer actuators offer the closest resemblance to biological muscles, however besides the large actuation displacement these materials are falling short with regards to the actuation force. As improved materials are emerging it is becoming necessary to address key issues such as the need for effective electromechanical modeling and guiding parameters in scaling the actuators. In this paper, we will review the scaling laws for three major actuation mechanisms that are of relevance to micro electromechanical systems: electrostatic actuation, magnetic actuation, thermal bimetallic actuation, and piezoelectric actuation.
NASA Astrophysics Data System (ADS)
Snow, Michael G.; Bajaj, Anil K.
2015-08-01
This work presents an uncertainty quantification (UQ) analysis of a comprehensive model for an electrostatically actuated microelectromechanical system (MEMS) switch. The goal is to elucidate the effects of parameter variations on certain key performance characteristics of the switch. A sufficiently detailed model of the electrostatically actuated switch in the basic configuration of a clamped-clamped beam is developed. This multi-physics model accounts for various physical effects, including the electrostatic fringing field, finite length of electrodes, squeeze film damping, and contact between the beam and the dielectric layer. The performance characteristics of immediate interest are the static and dynamic pull-in voltages for the switch. Numerical approaches for evaluating these characteristics are developed and described. Using Latin Hypercube Sampling and other sampling methods, the model is evaluated to find these performance characteristics when variability in the model's geometric and physical parameters is specified. Response surfaces of these results are constructed via a Multivariate Adaptive Regression Splines (MARS) technique. Using a Direct Simulation Monte Carlo (DSMC) technique on these response surfaces gives smooth probability density functions (PDFs) of the outputs characteristics when input probability characteristics are specified. The relative variation in the two pull-in voltages due to each of the input parameters is used to determine the critical parameters.
NASA Astrophysics Data System (ADS)
Li, Lijie; Brown, James G.; Uttamchandani, Deepak G.
2002-09-01
The scratch drive actuator (SDA) is a key element in microelectromechanical System (MEMS) technology. The actuator can be designed to travel very long distance with precise step size. Various articles describe the characteristics of scratch drive actuators.3, 6, 8 The MEMS designer needs models of SDA in order to incorporate them into their Microsystems applications. The objective of our effort is to develop models for SDA when it is in the working state. In this paper, a suspended SDA plate actuated by electrostatic force is analyzed. A mathematical model is established based on electrostatic coupled mechanical theory. Two phases have been calculated because the plate will contact the bottom surface due to the electrostatic force. One phase is named non-contact mode, and another is named contact mode. From these two models, the relationship between applied voltage and contact distance has been obtained. The geometrical model of bending plate is established to determine the relationship between contact distance and step size. Therefore we can use those two results to obtain the result of step size versus applied voltage that we expect. Finally, couple-field electro-mechanical simulation has been done by commercial software IntelliSuite. We assume that the dimension of SDA plate and bushing are fixed. All the material properties are from JDSU Cronos MUMPs. A Veeco NT1000 surface profiling tool has been used to investigate the bending of SDA plate. The results of experimental and theoretical are compared.
Integrated sample-to-detection chip for nucleic acid test assays.
Prakash, R; Pabbaraju, K; Wong, S; Tellier, R; Kaler, K V I S
2016-06-01
Nucleic acid based diagnostic techniques are routinely used for the detection of infectious agents. Most of these assays rely on nucleic acid extraction platforms for the extraction and purification of nucleic acids and a separate real-time PCR platform for quantitative nucleic acid amplification tests (NATs). Several microfluidic lab on chip (LOC) technologies have been developed, where mechanical and chemical methods are used for the extraction and purification of nucleic acids. Microfluidic technologies have also been effectively utilized for chip based real-time PCR assays. However, there are few examples of microfluidic systems which have successfully integrated these two key processes. In this study, we have implemented an electro-actuation based LOC micro-device that leverages multi-frequency actuation of samples and reagents droplets for chip based nucleic acid extraction and real-time, reverse transcription (RT) PCR (qRT-PCR) amplification from clinical samples. Our prototype micro-device combines chemical lysis with electric field assisted isolation of nucleic acid in a four channel parallel processing scheme. Furthermore, a four channel parallel qRT-PCR amplification and detection assay is integrated to deliver the sample-to-detection NAT chip. The NAT chip combines dielectrophoresis and electrostatic/electrowetting actuation methods with resistive micro-heaters and temperature sensors to perform chip based integrated NATs. The two chip modules have been validated using different panels of clinical samples and their performance compared with standard platforms. This study has established that our integrated NAT chip system has a sensitivity and specificity comparable to that of the standard platforms while providing up to 10 fold reduction in sample/reagent volumes.
Four-Point-Latching Microactuator
NASA Technical Reports Server (NTRS)
Toda, Risaku; Yang, Eui-Hyeok
2008-01-01
An experimental inchworm-type linear microactuator is depicted. This microactuator is a successor to one described in "MEMS-Based Piezoelectric/Electrostatic Inchworm Actuator" (NPO-30672), NASA Tech Briefs, Vol. 27, No. 6 (June 2003), page 68. Both actuators are based on the principle of using a piezoelectric transducer operated in alternation with electrostatically actuated clutches to cause a slider to move in small increments. However, the design of the present actuator incorporates several improvements over that of the previous one. The most readily apparent improvement is in geometry and, consequently, in fabrication: In the previous actuator, the inchworm motion was perpendicular to the broad faces of a flat silicon wafer on which the actuator was fabricated, and fabrication involved complex processes to form complex three-dimensional shapes in and on the wafer. In the present actuator, the inchworm motion is parallel to the broad faces of a wafer on which it is fabricated. The components needed to produce the in-plane motion are nearly planar in character and, consequently, easier to fabricate. Other advantages of the present design are described, including that the previous actuator contained two clutches (denoted 'holders' in the cited prior article), the present actuator contains four clutches. The operational sequence of the previous two-clutch actuator is similar. However, the two-clutch configuration is susceptible to tilt of the slider and a consequent large increase in drag. Hence, the primary operational advantages of the present four-point-latching design over the prior two-point-latching design are less drag and greater control robustness arising from greater stability of the orientation of the slider.
Addressable microshutter array for a high-performance infrared miniature dispersive spectrometer
NASA Astrophysics Data System (ADS)
Ilias, S.; Picard, F.; Larouche, C.; Kruzelecky, R.; Jamroz, W.
2009-02-01
Programmable microshutter arrays were designed to improve the attainable signal to noise ratio (SNR) of a miniature dispersive spectrometer developed for space applications. Integration of a microshutter array to this instrument provides advantages such as the addition of a binary coded optical input operation mode for the miniature spectrometer which results in SNR benefits without spectral resolution loss. These arrays were successfully fabricated using surface micromachining technology. Each microshutter is basically an electrostatic zipping actuator having a curved shape. Applying critical voltage to one microshutter pulls the actuator down to the substrate and closes the associated slit. Opening of the microslits relies on the restoring force generated within the actuated zippers. High light transmission is obtained with the actuator in the open position and excellent light blocking is observed when the shutter is closed. The pull-in voltage to close the microslits was about 110 V and the response times to close and open the microslits were about 2 ms and 7 ms, respectively. Selected array dies were mounted in modified off-the-shelf ceramic packages and electrically connected to package pins. The packages were hermetically sealed with AR coated sapphire windows. This last packaging step was performed in a dry nitrogen controlled atmosphere.
An electrostatic 3-phase linear stepper motor fabricated by vertical trench isolation technology
NASA Astrophysics Data System (ADS)
Sarajlic, Edin; Yamahata, Christophe; Cordero, Mauricio; Fujita, Hiroyuki
2009-07-01
We present the design, microfabrication and characterization of an electrostatic 3-phase linear stepper micromotor constructed with vertical trench isolation technology. This suitable technology was used to create a monolithic stepper motor with high-aspect-ratio poles and an integrated 3-phase electrical network in the bulk of a standard single-crystal silicon wafer. The shuttle of the stepper motor is suspended by a flexure to avoid any mechanical contact during operation, enhancing the precision, repeatability and reliability of the stepping motion. The prototype is capable of a maximum travel of +/-26 µm (52 µm) at an actuation voltage of 30 V and a step size of 1.4 µm during a half-stepping sequence. This work was presented in part at the 19th MicroMechanics Europe Workshop (MME), 28-30 September 2008, Aachen, Germany.
Fe₃O₄⁻Silicone Mixture as Flexible Actuator.
Song, Kahye; Cha, Youngsu
2018-05-08
In this study, we introduce Fe₃O₄-silicone flexible composite actuators fabricated by combining silicone and iron oxide particles. The actuators exploit the flexibility of silicone and the electric conductivity of iron oxide particles. These actuators are activated by electrostatic force using the properties of the metal particles. Herein, we investigate the characteristic changes in actuation performance by increasing the concentration of iron oxide from 1% to 20%. The developed flexible actuators exhibit a resonant frequency near 3 Hz and their actuation amplitudes increase with increasing input voltage. We found that the actuator can move well at metal particle concentrations >2.5%. We also studied the changes in actuation behavior, depending on the portion of the Fe₃O₄-silicone in the length. Overall, we experimentally analyzed the characteristics of the newly proposed metal particle-silicone composite actuators.
Thermal Actuation Based 3-DoF Non-Resonant Microgyroscope Using MetalMUMPs
Shakoor, Rana Iqtidar; Bazaz, Shafaat Ahmed; Kraft, Michael; Lai, Yongjun; Masood ul Hassan, Muhammad
2009-01-01
High force, large displacement and low voltage consumption are a primary concern for microgyroscopes. The chevron-shaped thermal actuators are unique in terms of high force generation combined with the large displacements at a low operating voltage in comparison with traditional electrostatic actuators. A Nickel based 3-DoF micromachined gyroscope comprising 2-DoF drive mode and 1-DoF sense mode oscillator utilizing the chevron-shaped thermal actuators is presented here. Analytical derivations and finite element simulations are carried out to predict the performance of the proposed device using the thermo-physical properties of electroplated nickel. The device sensitivity is improved by utilizing the dynamical amplification of the oscillation in 2-DoF drive mode using an active-passive mass configuration. A comprehensive theoretical description, dynamics and mechanical design considerations of the proposed gyroscopes model are discussed in detail. Parametric optimization of gyroscope, its prototype modeling and fabrication using MetalMUMPs has also been investigated. Dynamic transient simulation results predicted that the sense mass of the proposed device achieved a drive displacement of 4.1μm when a sinusoidal voltage of 0.5V is applied at 1.77 kHz exhibiting a mechanical sensitivity of 1.7μm /°/s in vacuum. The wide bandwidth frequency response of the 2-DoF drive mode oscillator consists of two resonant peaks and a flat region of 2.11 kHz between the peaks defining the operational frequency region. The sense mode resonant frequency can lie anywhere within this region and therefore the amplitude of the response is insensitive to structural parameter variations, enhancing device robustness against such variations. The proposed device has a size of 2.2 × 2.6 mm2, almost one third in comparison with existing M-DoF vibratory gyroscope with an estimated power consumption of 0.26 Watts. These predicted results illustrate that the chevron-shaped thermal actuator has a large voltage-stroke ratio shifting the paradigm in MEMS gyroscope design from the traditional interdigitated comb drive electrostatic actuator. These actuators have low damping compared to electrostatic comb drive actuators which may result in high quality factor microgyroscopes operating at atmospheric pressure. PMID:22574020
A force transmission system based on a tulip-shaped electrostatic clutch for haptic display devices
NASA Astrophysics Data System (ADS)
Sasaki, Hikaru; Shikida, Mitsuhiro; Sato, Kazuo
2006-12-01
This paper describes a novel type of force transmission system for haptic display devices. The system consists of an array of end-effecter elements, a force/displacement transmitter and a single actuator producing a large force/displacement. It has tulip-shaped electrostatic clutch devices to distribute the force/displacement from the actuator among the individual end effecters. The specifications of three components were determined to stimulate touched human fingers. The components were fabricated by using micro-electromechanical systems and conventional machining technologies, and finally they were assembled by hand. The performance of the assembled transmission system was experimentally examined and it was confirmed that each projection in the arrayed end effecters could be moved individually. The actuator in a system whose total size was only 3.0 cm × 3.0 cm × 4.0 cm produced a 600 mN force and displaced individual array elements by 18 µm.
Finite Element Analysis of MEMS Devices
NASA Technical Reports Server (NTRS)
Corrigan, Jennifer
2004-01-01
A side-slide actuator and a corrugated diaphragm actuator will be analyzed and optimized this summer. Coupled electrostatic and fluid analyses will also be initiated. Both the side-slide actuator and the corrugated diaphragm actuator will be used to regulate the flow of fuel in a jet engine. Many of the side-slide actuators will be placed on top of a fuel injector that is still in the developmental stage as well. The corrugated diaphragm actuator will also be used to regulate the flow of fuel in fuel injectors. A comparative analysis of the performance matrix of both actuators will be conducted. The side-slide actuator uses the concept of mechanical advantage to regulate the flow of fuel using electrostatic forces. It is made from Nickel, Silicon Carbide, and thin layers of Oxide. The slider will have a hole in the middle that will allow fuel to pass through the hole underneath it. The goal is to regulate the flow of fuel through the inlet. This means that the actuator needs to be designed so that when a voltage is applied to the push rod, the slider will deflect in the x-direction and be able to completely block the inlet and no fuel can pass through. Different voltage levels will be tested. The parameters that are being optimized are the thickness of the diaphragm, what kind of corrugation the diaphragm should have, the length, width, and thickness of the push rod, and what design should be used to return the slider. The current possibilities for a return rod are a built in spring on the slider, a return rod that acts like a spring, or a return rod that is identical to the push rod. The final actuator design should have a push rod that has rotational motion and no translation motion, a push rod thickness that prevents warping due to the slider, and a large ratio of the displacement on the bottom of the push rod to displacement on the top of the push rod. The corrugated diaphragm actuator was optimized last winter and this summer will be spent completing the optimization of the coupled electrostatic and fluid flow parameters. It was found that Nickel is the best material to use for the diaphragm because it has a higher yield strength and allows for a larger stress, deflection and applied pressure. The parameters that were optimized were the wavelength and thickness of the diaphragm.
Fe3O4–Silicone Mixture as Flexible Actuator
Song, Kahye
2018-01-01
In this study, we introduce Fe3O4-silicone flexible composite actuators fabricated by combining silicone and iron oxide particles. The actuators exploit the flexibility of silicone and the electric conductivity of iron oxide particles. These actuators are activated by electrostatic force using the properties of the metal particles. Herein, we investigate the characteristic changes in actuation performance by increasing the concentration of iron oxide from 1% to 20%. The developed flexible actuators exhibit a resonant frequency near 3 Hz and their actuation amplitudes increase with increasing input voltage. We found that the actuator can move well at metal particle concentrations >2.5%. We also studied the changes in actuation behavior, depending on the portion of the Fe3O4-silicone in the length. Overall, we experimentally analyzed the characteristics of the newly proposed metal particle-silicone composite actuators. PMID:29738466
NASA Astrophysics Data System (ADS)
Mansoori Kermani, Maryam; Dehestani, Maryam
2018-06-01
We modeled a one-dimensional actuator including the Casimir and electrostatic forces perturbed by an external force with fractional damping. The movable electrode was assumed to oscillate by an anharmonic elastic force originated from Murrell-Mottram or Lippincott potential. The nonlinear equations have been solved via the Adomian decomposition method. The behavior of the displacement of the electrode from equilibrium position, its velocity and acceleration were described versus time. Also, the changes of the displacement have been investigated according to the frequency of the external force and the voltage of the electrostatic force. The convergence of the Adomian method and the effect of the orders of expansion on the displacement versus time, frequency, and voltage were discussed. The pull-in parameter was obtained and compared with the other models in the literature. This parameter was described versus the equilibrium position and anharmonicity constant.
NASA Astrophysics Data System (ADS)
Mansoori Kermani, Maryam; Dehestani, Maryam
2018-03-01
We modeled a one-dimensional actuator including the Casimir and electrostatic forces perturbed by an external force with fractional damping. The movable electrode was assumed to oscillate by an anharmonic elastic force originated from Murrell-Mottram or Lippincott potential. The nonlinear equations have been solved via the Adomian decomposition method. The behavior of the displacement of the electrode from equilibrium position, its velocity and acceleration were described versus time. Also, the changes of the displacement have been investigated according to the frequency of the external force and the voltage of the electrostatic force. The convergence of the Adomian method and the effect of the orders of expansion on the displacement versus time, frequency, and voltage were discussed. The pull-in parameter was obtained and compared with the other models in the literature. This parameter was described versus the equilibrium position and anharmonicity constant.
SMA Foils for MEMS: From Material Properties to the Engineering of Microdevices
NASA Astrophysics Data System (ADS)
Kohl, Manfred; Ossmer, Hinnerk; Gueltig, Marcel; Megnin, Christof
2018-03-01
In the early nineties, microelectromechanical systems (MEMS) technology has been still in its infancy. As silicon (Si) is not a transducer material, it was clear at the very beginning that mechanically active materials had to be introduced to MEMS in order to enable functional microdevices with actuation capability beyond electrostatics. At that time, shape memory alloys (SMAs) have been available in bulk form, mainly as SMA wires and SMA plates. On the macro scale, these materials show highest work densities compared to other actuation principles in the order of 107 J/m3, which stimulated research on the integration of SMA to MEMS. Subsequently, two approaches for producing planar materials have been initiated (1) magnetron sputtering of SMA thin films and (2) the integration of rolled SMA foils, which both turned out to be very successful creating a paradigm change in microactuation technology. The following review covers important milestones of the research and development of SMA foil-based microactuators including materials characterization, design engineering, technology, and demonstrator development as well as first commercial products.
SMA Foils for MEMS: From Material Properties to the Engineering of Microdevices
NASA Astrophysics Data System (ADS)
Kohl, Manfred; Ossmer, Hinnerk; Gueltig, Marcel; Megnin, Christof
2017-12-01
In the early nineties, microelectromechanical systems (MEMS) technology has been still in its infancy. As silicon (Si) is not a transducer material, it was clear at the very beginning that mechanically active materials had to be introduced to MEMS in order to enable functional microdevices with actuation capability beyond electrostatics. At that time, shape memory alloys (SMAs) have been available in bulk form, mainly as SMA wires and SMA plates. On the macro scale, these materials show highest work densities compared to other actuation principles in the order of 107 J/m3, which stimulated research on the integration of SMA to MEMS. Subsequently, two approaches for producing planar materials have been initiated (1) magnetron sputtering of SMA thin films and (2) the integration of rolled SMA foils, which both turned out to be very successful creating a paradigm change in microactuation technology. The following review covers important milestones of the research and development of SMA foil-based microactuators including materials characterization, design engineering, technology, and demonstrator development as well as first commercial products.
High-speed wavefront control using MEMS micromirrors
NASA Astrophysics Data System (ADS)
Bifano, T. G.; Stewart, J. B.
2005-08-01
Over the past decade, a number of electrostatically-actuated MEMS deformable mirror devices have been used for adaptive control in beam-forming and imaging applications. One architecture that has been widely used is the silicon device developed by Boston University, consisting of a continuous or segmented mirror supported by post attachments to an array of parallel plate electrostatic actuators. MEMS deformable mirrors and segmented mirrors with up to 1024 of these actuators have been used in open loop and closed loop control systems to control wavefront errors. Frame rates as high as 11kHz have been demonstrated. Mechanically, the actuators used in this device exhibit a first-mode resonant frequency that is in the range of many tens of kilohertz up to a few hundred kilohertz. Viscous air damping has been found to limit operation at such high frequencies in air at standard pressure. Some applications in high-speed tracking and beam-forming could benefit from increased speed. In this paper, several approaches to achieving critically-damped performance with such MEMS DMs are detailed, and theoretical and experimental results are presented. One approach is to seal the MEMS DM in a full or partial vacuum environment, thereby affecting air damping. After vacuum sealing the device's predicted resonant behavior at tens of kilohertz was observed. In vacuum, the actuator's intrinsic material damping is quite small, resulting in considerable oscillation in step response. To alleviate this problem, a two-step actuation algorithm was employed. Precise control of a single actuator frequencies up to 100kHz without overshoot was demonstrated using this approach. Another approach to increasing actuation speed was to design actuators that reduce air damping effects. This is also demonstrated in the paper.
Characterization and modeling of electrostatically actuated polysilicon micromechanical devices
NASA Astrophysics Data System (ADS)
Chan, Edward Keat Leem
Sensors, actuators, transducers, microsystems and MEMS (MicroElertroMechanical Systems) are some of the terms describing technologies that interface information processing systems with the physical world. Electrostatically actuated micromechanical devices are important building blocks in many of these technologies. Arrays of these devices are used in video projection displays, fluid pumping systems, optical communications systems, tunable lasers and microwave circuits. Well-calibrated simulation tools are essential for propelling ideas from the drawing board into production. This work characterizes a fabrication process---the widely-used polysilicon MUMPs process---to facilitate the design of electrostatically actuated micromechanical devices. The operating principles of a representative device---a capacitive microwave switch---are characterized using a wide range of electrical and optical measurements of test structures along with detailed electromechanical simulations. Consistency in the extraction of material properties from measurements of both pull-in voltage and buckling amplitude is demonstrated. Gold is identified as an area-dependent source of nonuniformity in polysilicon thicknesses and stress. Effects of stress gradients, substrate curvature, and film coverage are examined quantitatively. Using well-characterized beams as in-situ surface probes, capacitance-voltage and surface profile measurements reveal that compressible surface residue modifies the effective electrical gap when the movable electrode contacts an underlying silicon nitride layer. A compressible contact surface model used in simulations improves the fit to measurements. In addition, the electric field across the nitride causes charge to build up in the nitride, increasing the measured capacitance over time. The rate of charging corresponds to charge injection through direct tunneling. A novel actuator that can travel stably beyond one-third of the initial gap (a trademark limitation of conventional actuators) is demonstrated. A "folded capacitor" design, requiring only minimal modifications to the layout of conventional devices, reduces the parasitic capacitances and modes of deformation that limit performance. This device, useful for optical applications, can travel almost twice the conventional range before succumbing to a tilting instability.
NASA Astrophysics Data System (ADS)
Trivedi, R. R.; Joglekar, M. M.; Shimpi, R. P.; Pawaskar, D. N.
2013-12-01
The objective of this paper is to present a systematic development of the generic shape optimization of elec- trostatically actuated microcantilever beams for extending their static travel range. Electrostatic actuators are widely used in micro electro mechanical system (MEMS) devices because of low power density and ease of fab- rication. However, their useful travel range is often restricted by a phenomenon known as pull-in instability. The Rayleigh- Ritz energy method is used for computation of pull-in parameters which includes electrostatic potential and fringing field effect. Appropriate width function and linear thickness functions are employed along the length of the non-prismatic beam to achieve enhanced travel range. Parameters used for varying the thick- ness and width functions are optimized using simulated annealing with pattern search method towards the end to refine the results. Appropriate penalties are imposed on the violation of volume, width, thickness and area constraints. Nine test cases are considered for demonstration of the said optimization method. Our results indicate that around 26% increase in the travel range of a non-prismatic beam can be achieved after optimiza- tion compared to that in a prismatic beam having the same volume. Our results also show an improvement in the pull-in displacement of around 5% compared to that of a variable width constant thickness actuator. We show that simulated annealing is an effective and flexible method to carry out design optimization of structural elements under electrostatic loading.
Tensile-stressed microelectromechanical apparatus and micromirrors formed therefrom
Fleming, James G [Albuquerque, NM
2006-05-16
A microelectromechanical (MEM) apparatus is disclosed which includes one or more tensile-stressed actuators that are coupled through flexures to a stage on a substrate. The tensile-stressed actuators, which can be formed from tensile-stressed tungsten or silicon nitride, initially raise the stage above the substrate without any applied electrical voltage, and can then be used to control the height or tilt angle of the stage. An electrostatic actuator can also be used in combination with each tensile-stressed actuator. The MEM apparatus has applications for forming piston micromirrors or tiltable micromirrors and independently addressable arrays of such devices.
NASA Astrophysics Data System (ADS)
Mokhtari, J.; Farrokhabadi, A.; Rach, R.; Abadyan, M.
2015-04-01
The presence of the quantum vacuum fluctuations, i.e. the Casimir attraction, can strongly affect the performance of ultra-small actuators. The strength of the Casimir force is significantly influenced by the geometries of interacting bodies. Previous research has exclusively studied the impact of the vacuum fluctuations on the instability of nanoactuators with planar geometries. However, no work has yet considered this phenomenon in actuators fabricated from nanowires/nanotubes with cylindrical geometries. In our present work, the influence of the Casimir attraction on the electrostatic stability of nanoactuators fabricated from cylindrical conductive nanowire/nanotube is investigated. The Dirichlet mode is considered and an asymptotic solution, based on scattering theory, is applied to consider the effect of vacuum fluctuations in the theoretical model. The size-dependent modified couple stress theory is employed to derive the constitutive equation of the actuator. The governing nonlinear equations are solved by two different approaches, i.e. the finite difference method and modified Adomian-Padé method. Various aspects of the problem, i.e. comparison with the van der Waals force regime, the variation of instability parameters, effect of geometry and coupling between the Casimir force and size dependency are discussed. This work is beneficial to determine the impact of Casimir force on nanowire/nanotube-fabricated actuators.
NASA Astrophysics Data System (ADS)
Ayela, F.; Bret, J. L.; Chaussy, J.; Fournier, T.; Ménégaz, E.
2000-05-01
This article presents an innovative micromachined silicon actuator. A 50-μm-thick silicon foil is anodically bonded onto a broached Pyrex substrate. A free standing membrane and four coplanar electrodes in close proximity are then lithographied and etched. The use of phosphorus doped silicon with low electrical resistivity allows the application of an electrostatic force between one electrode and the moving diaphragm. This plane displacement and the induced interelectrode variation are capacitively detected. Due to the very low electrical resistivity of the doped silicon, there is no need to metallize the vertical trenches of the device. No piezoelectric transducer takes place so that the mechanical device is free from any hysteretic or temperature dependance. The range of the possible actuation along the x and y axis is around 5 μm. The actual sensitivity is xn=0.54 Å/Hz1/2 and yn=0.14 Å/Hz1/2. The microengineering steps and the electronic setup devoted to design the actuator and to perform relative capacitive measurements ΔC/C=10-6 from an initial value C≈10-13 F are described. The elaborated tests and performances of the device are presented. As a conclusion, some experimental projects using this subnanometric sensitive device are mentioned.
Top-Down CMOS-NEMS Polysilicon Nanowire with Piezoresistive Transduction
Marigó, Eloi; Sansa, Marc; Pérez-Murano, Francesc; Uranga, Arantxa; Barniol, Núria
2015-01-01
A top-down clamped-clamped beam integrated in a CMOS technology with a cross section of 500 nm × 280 nm has been electrostatic actuated and sensed using two different transduction methods: capacitive and piezoresistive. The resonator made from a single polysilicon layer has a fundamental in-plane resonance at 27 MHz. Piezoresistive transduction avoids the effect of the parasitic capacitance assessing the capability to use it and enhance the CMOS-NEMS resonators towards more efficient oscillator. The displacement derived from the capacitive transduction allows to compute the gauge factor for the polysilicon material available in the CMOS technology. PMID:26184222
Top-Down CMOS-NEMS Polysilicon Nanowire with Piezoresistive Transduction.
Marigó, Eloi; Sansa, Marc; Pérez-Murano, Francesc; Uranga, Arantxa; Barniol, Núria
2015-07-14
A top-down clamped-clamped beam integrated in a CMOS technology with a cross section of 500 nm × 280 nm has been electrostatic actuated and sensed using two different transduction methods: capacitive and piezoresistive. The resonator made from a single polysilicon layer has a fundamental in-plane resonance at 27 MHz. Piezoresistive transduction avoids the effect of the parasitic capacitance assessing the capability to use it and enhance the CMOS-NEMS resonators towards more efficient oscillator. The displacement derived from the capacitive transduction allows to compute the gauge factor for the polysilicon material available in the CMOS technology.
Nonlinear analysis of thermally and electrically actuated functionally graded material microbeam.
Li, Yingli; Meguid, S A; Fu, Yiming; Xu, Daolin
2014-02-08
In this paper, we provide a unified and self-consistent treatment of a functionally graded material (FGM) microbeam with varying thermal conductivity subjected to non-uniform or uniform temperature field. Specifically, it is our objective to determine the effect of the microscopic size of the beam, the electrostatic gap, the temperature field and material property on the pull-in voltage of the microbeam under different boundary conditions. The non-uniform temperature field is obtained by integrating the steady-state heat conduction equation. The governing equations account for the microbeam size by introducing an internal material length-scale parameter that is based on the modified couple stress theory. Furthermore, it takes into account Casimir and van der Waals forces, and the associated electrostatic force with the first-order fringing field effects. The resulting nonlinear differential equations were converted to a coupled system of algebraic equations using the differential quadrature method. The outcome of our work shows the dramatic effect and dependence of the pull-in voltage of the FGM microbeam upon the temperature field, its gradient for a given boundary condition. Specifically, both uniform and non-uniform thermal loading can actuate the FGM microbeam even without an applied voltage. Our work also reveals that the non-uniform temperature field is more effective than the uniform temperature field in actuating a FGM cantilever-type microbeam. For the clamped-clamped case, care must be taken to account for the effective use of thermal loading in the design of microbeams. It is also observed that uniform thermal loading will lead to a reduction in the pull-in voltage of a FGM microbeam for all the three boundary conditions considered.
MEMS deformable mirror embedded wavefront sensing and control system
NASA Astrophysics Data System (ADS)
Owens, Donald; Schoen, Michael; Bush, Keith
2006-01-01
Electrostatic Membrane Deformable Mirror (MDM) technology developed using silicon bulk micro-machining techniques offers the potential of providing low-cost, compact wavefront control systems for diverse optical system applications. Electrostatic mirror construction using bulk micro-machining allows for custom designs to satisfy wavefront control requirements for most optical systems. An electrostatic MDM consists of a thin membrane, generally with a thin metal or multi-layer high-reflectivity coating, suspended over an actuator pad array that is connected to a high-voltage driver. Voltages applied to the array elements deflect the membrane to provide an optical surface capable of correcting for measured optical aberrations in a given system. Electrostatic membrane DM designs are derived from well-known principles of membrane mechanics and electrostatics, the desired optical wavefront control requirements, and the current limitations of mirror fabrication and actuator drive electronics. MDM performance is strongly dependent on mirror diameter and air damping in meeting desired spatial and temporal frequency requirements. In this paper, we present wavefront control results from an embedded wavefront control system developed around a commercially available high-speed camera and an AgilOptics Unifi MDM driver using USB 2.0 communications and the Linux development environment. This new product, ClariFast TM, combines our previous Clarifi TM product offering into a faster more streamlined version dedicated strictly to Hartmann Wavefront sensing.
Rotational MEMS mirror with latching arm for silicon photonics
NASA Astrophysics Data System (ADS)
Brière, Jonathan; Beaulieu, Philippe-Olivier; Saidani, Menouer; Nabki, Frederic; Menard, Michaël.
2015-02-01
We present an innovative rotational MEMS mirror that can control the direction of propagation of light beams inside of planar waveguides implemented in silicon photonics. Potential applications include but are not limited to optical telecommunications, medical imaging, scan and spectrometry. The mirror has a half-cylinder shape with a radius of 300 μm that provides low and constant optical losses over the full angular displacement range. A circular comb drive structure is anchored such that it allows free or latched rotation experimentally demonstrated over 8.5° (X-Y planar rotational movement) using 290V electrostatic actuation. The entire MEMS structure was implemented using the MEMSCAP SOIMUMPs process. The center of the anchor beam is designed to be the approximate rotation point of the circular comb drive to counter the rotation offset of the mirror displacement. A mechanical characterization of the MEMS mirror is presented. The latching mechanism provides up to 20 different angular locking positions allowing the mirror to counter any resonance or vibration effects and it is actuated with an electrostatic linear comb drive. An innovative gap closing structure was designed to reduce optical propagation losses due to beam divergence in the interstitial space between the mirror and the planar waveguide. The gap closing structure is also electrostatically actuated and includes two side stoppers to prevent stiction.
Analysis of a Chevron Beam Thermal Actuator
NASA Astrophysics Data System (ADS)
Joshi, Amey Sanjay; Mohammed, Hussain; Kulkarni, S. M., Dr.
2018-02-01
Thermal MEMS (Micro-Electro-Mechanical Systems) actuators and sensors have a wide range of applications. The chevron type thermal actuators comparatively show superior performance over other existing electrostatic and thermal actuators. This paper describes the design and analysis of chevron type thermal actuator. Here standard design of Chevron type thermal actuator is considered which comprises of proof mass at center and array of six beams of a uniform cross section of 3 3 microns and an initial angle of 5°. The thermal actuator was designed and analyzed using analytical and finite element method and the results were compared. The model was also analyzed for initial angles of 2.5° and 7.5°, and the results were compared with FEA model. The cross section of the beam was varied and the finite element analysis of all three models was compared to suggest the best suitable thermal actuator structure.
NASA Astrophysics Data System (ADS)
Seubert, Carl R.
Spacecraft operating in a desired formation offers an abundance of attractive mission capabilities. One proposed method of controlling a close formation of spacecraft is with Coulomb (electrostatic) forces. The Coulomb formation flight idea utilizes charge emission to drive the spacecraft to kilovolt-level potentials and generate adjustable, micronewton- to millinewton-level Coulomb forces for relative position control. In order to advance the prospects of the Coulomb formation flight concept, this dissertation presents the design and implementation of a unique one-dimensional testbed. The disturbances of the testbed are identified and reduced below 1 mN. This noise level offers a near-frictionless platform that is used to perform relative motion actuation with electrostatics in a terrestrial atmospheric environment. Potentials up to 30 kV are used to actuate a cart over a translational range of motion of 40 cm. A challenge to both theoretical and hardware implemented electrostatic actuation developments is correctly modeling the forces between finite charged bodies, outside a vacuum. To remedy this, studies of Earth orbit plasmas and Coulomb force theory is used to derive and propose a model of the Coulomb force between finite spheres in close proximity, in a plasma. This plasma force model is then used as a basis for a candidate terrestrial force model. The plasma-like parameters of this terrestrial model are estimated using charged motion data from fixed-potential, single-direction experiments on the testbed. The testbed is advanced to the level of autonomous feedback position control using solely Coulomb force actuation. This allows relative motion repositioning on a flat and level track as well as an inclined track that mimics the dynamics of two charged spacecraft that are aligned with the principal orbit axis. This controlled motion is accurately predicted with simulations using the terrestrial force model. This demonstrates similarities between the partial charge shielding of space-based plasmas to the electrostatic screening in the laboratory atmosphere.
Electrostatic artificial eyelid actuator as an analog micromirror device
NASA Astrophysics Data System (ADS)
Goodwin, Scott H.; Dausch, David E.; Solomon, Steven L.; Lamvik, Michael K.
2005-05-01
An electrostatic MEMS actuator is described for use as an analog micromirror device (AMD) for high performance, broadband, hardware-in-the-loop (HWIL) scene generation. Current state-of-the-art technology is based on resistively heated pixel arrays. As these arrays drive to the higher scene temperatures required by missile defense scenarios, the power required to drive the large format resistive arrays will ultimately become prohibitive. Existing digital micromirrors (DMD) are, in principle, capable of generating the required scene irradiances, but suffer from limited dynamic range, resolution and flicker effects. An AMD would be free of these limitations, and so represents a viable alternative for high performance UV/VIS/IR scene generation. An electrostatic flexible film actuator technology, developed for use as "artificial eyelid" shutters for focal plane sensors to protect against damaging radiation, is suitable as an AMD for analog control of projection irradiance. In shutter applications, the artificial eyelid actuator contained radius of curvature as low as 25um and operated at high voltage (>200V). Recent testing suggests that these devices are capable of analog operation as reflective microcantilever mirrors appropriate for scene projector systems. In this case, the device would possess larger radius and operate at lower voltages (20-50V). Additionally, frame rates have been measured at greater than 5kHz for continuous operation. The paper will describe the artificial eyelid technology, preliminary measurements of analog test pixels, and design aspects related to application for scene projection systems. We believe this technology will enable AMD projectors with at least 5122 spatial resolution, non-temporally-modulated output, and pixel response times of <1.25ms.
Graphene nanoplatelet composite 'paper' as an electrostatic actuator.
Yu, Zeyang; Drzal, Lawrence T
2018-08-03
Graphene nanoplatelets (GnP) can be made into a thin 'paper' through vacuum filtration of GnP suspension. Electrodes were fabricated from the compressed GnP paper and then by coating the surface with epoxy. The electrostatic actuator was constructed from two parallel-aligned composite papers fixed at the anode and a cathode connected to ground. The two composite papers would then separate when a voltage was applied. The GnP paper was also modified to increase surface area by introducing porosity or adding ∼10 wt% C750 (GnP with diameter less than 1 μm); or changing the relative permittivity by adding barium titanate particles; or combining these two effects by adding CNCs. Overall the output work could be significantly improved to over 400%.
TOPICAL REVIEW: Pneumatic and hydraulic microactuators: a review
NASA Astrophysics Data System (ADS)
De Volder, Michaël; Reynaerts, Dominiek
2010-04-01
The development of MEMS actuators is rapidly evolving and continuously new progress in terms of efficiency, power and force output is reported. Pneumatic and hydraulic are an interesting class of microactuators that are easily overlooked. Despite the 20 years of research, and hundreds of publications on this topic, these actuators are only popular in microfluidic systems. In other MEMS applications, pneumatic and hydraulic actuators are rare in comparison with electrostatic, thermal or piezo-electric actuators. However, several studies have shown that hydraulic and pneumatic actuators deliver among the highest force and power densities at microscale. It is believed that this asset is particularly important in modern industrial and medical microsystems, and therefore, pneumatic and hydraulic actuators could start playing an increasingly important role. This paper shows an in-depth overview of the developments in this field ranging from the classic inflatable membrane actuators to more complex piston-cylinder and drag-based microdevices.
Han, Fengtian; Liu, Tianyi; Li, Linlin; Wu, Qiuping
2016-08-10
The differential electrostatic space accelerometer is an equivalence principle (EP) experiment instrument proposed to operate onboard China's space station in the 2020s. It is designed to compare the spin-spin interaction between two rotating extended bodies and the Earth to a precision of 10(-12), which is five orders of magnitude better than terrestrial experiment results to date. To achieve the targeted test accuracy, the sensitive space accelerometer will use the very soft space environment provided by a quasi-drag-free floating capsule and long-time observation of the free-fall mass motion for integration of the measurements over 20 orbits. In this work, we describe the design and capability of the differential accelerometer to test weak space acceleration. Modeling and simulation results of the electrostatic suspension and electrostatic motor are presented based on attainable space microgravity condition. Noise evaluation shows that the electrostatic actuation and residual non-gravitational acceleration are two major noise sources. The evaluated differential acceleration noise is 1.01 × 10(-9) m/s²/Hz(1/2) at the NEP signal frequency of 0.182 mHz, by neglecting small acceleration disturbances. The preliminary work on development of the first instrument prototype is introduced for on-ground technological assessments. This development has already confirmed several crucial fabrication processes and measurement techniques and it will open the way to the construction of the final differential space accelerometer.
Han, Fengtian; Liu, Tianyi; Li, Linlin; Wu, Qiuping
2016-01-01
The differential electrostatic space accelerometer is an equivalence principle (EP) experiment instrument proposed to operate onboard China’s space station in the 2020s. It is designed to compare the spin-spin interaction between two rotating extended bodies and the Earth to a precision of 10−12, which is five orders of magnitude better than terrestrial experiment results to date. To achieve the targeted test accuracy, the sensitive space accelerometer will use the very soft space environment provided by a quasi-drag-free floating capsule and long-time observation of the free-fall mass motion for integration of the measurements over 20 orbits. In this work, we describe the design and capability of the differential accelerometer to test weak space acceleration. Modeling and simulation results of the electrostatic suspension and electrostatic motor are presented based on attainable space microgravity condition. Noise evaluation shows that the electrostatic actuation and residual non-gravitational acceleration are two major noise sources. The evaluated differential acceleration noise is 1.01 × 10−9 m/s2/Hz1/2 at the NEP signal frequency of 0.182 mHz, by neglecting small acceleration disturbances. The preliminary work on development of the first instrument prototype is introduced for on-ground technological assessments. This development has already confirmed several crucial fabrication processes and measurement techniques and it will open the way to the construction of the final differential space accelerometer. PMID:27517927
Piezoresistive cantilever force-clamp system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Sung-Jin; Petzold, Bryan C.; Pruitt, Beth L.
2011-04-15
We present a microelectromechanical device-based tool, namely, a force-clamp system that sets or ''clamps'' the scaled force and can apply designed loading profiles (e.g., constant, sinusoidal) of a desired magnitude. The system implements a piezoresistive cantilever as a force sensor and the built-in capacitive sensor of a piezoelectric actuator as a displacement sensor, such that sample indentation depth can be directly calculated from the force and displacement signals. A programmable real-time controller operating at 100 kHz feedback calculates the driving voltage of the actuator. The system has two distinct modes: a force-clamp mode that controls the force applied to amore » sample and a displacement-clamp mode that controls the moving distance of the actuator. We demonstrate that the system has a large dynamic range (sub-nN up to tens of {mu}N force and nm up to tens of {mu}m displacement) in both air and water, and excellent dynamic response (fast response time, <2 ms and large bandwidth, 1 Hz up to 1 kHz). In addition, the system has been specifically designed to be integrated with other instruments such as a microscope with patch-clamp electronics. We demonstrate the capabilities of the system by using it to calibrate the stiffness and sensitivity of an electrostatic actuator and to measure the mechanics of a living, freely moving Caenorhabditis elegans nematode.« less
Piezoresistive cantilever force-clamp system
Park, Sung-Jin; Petzold, Bryan C.; Goodman, Miriam B.; Pruitt, Beth L.
2011-01-01
We present a microelectromechanical device-based tool, namely, a force-clamp system that sets or “clamps” the scaled force and can apply designed loading profiles (e.g., constant, sinusoidal) of a desired magnitude. The system implements a piezoresistive cantilever as a force sensor and the built-in capacitive sensor of a piezoelectric actuator as a displacement sensor, such that sample indentation depth can be directly calculated from the force and displacement signals. A programmable real-time controller operating at 100 kHz feedback calculates the driving voltage of the actuator. The system has two distinct modes: a force-clamp mode that controls the force applied to a sample and a displacement-clamp mode that controls the moving distance of the actuator. We demonstrate that the system has a large dynamic range (sub-nN up to tens of μN force and nm up to tens of μm displacement) in both air and water, and excellent dynamic response (fast response time, <2 ms and large bandwidth, 1 Hz up to 1 kHz). In addition, the system has been specifically designed to be integrated with other instruments such as a microscope with patch-clamp electronics. We demonstrate the capabilities of the system by using it to calibrate the stiffness and sensitivity of an electrostatic actuator and to measure the mechanics of a living, freely moving Caenorhabditis elegans nematode. PMID:21529009
Modeling a dielectric elastomer as driven by triboelectric nanogenerator
NASA Astrophysics Data System (ADS)
Chen, Xiangyu; Jiang, Tao; Wang, Zhong Lin
2017-01-01
By integrating a triboelectric nanogenerator (TENG) and a thin film dielectric elastomer actuator (DEA), the DEA can be directly powered and controlled by the output of the TENG, which demonstrates a self-powered actuation system toward various practical applications in the fields of electronic skin and soft robotics. This paper describes a method to construct a physical model for this integrated TENG-DEA system on the basis of nonequilibrium thermodynamics and electrostatics induction theory. The model can precisely simulate the influences from both the viscoelasticity and current leakage to the output performance of the TENG, which can help us to better understand the interaction between TENG and DEA devices. Accordingly, the established electric field, the deformation strain of the DEA, and the output current from the TENG are systemically analyzed by using this model. A comparison between real measurements and simulation results confirms that the proposed model can predict the dynamic response of the DEA driven by contact-electrification and can also quantitatively analyze the relaxation of the tribo-induced strain due to the leakage behavior. Hence, the proposed model in this work could serve as a guidance for optimizing the devices in the future studies.
Investigation of Electrostatic Accelerometer in HUST for Space Science Missions
NASA Astrophysics Data System (ADS)
Bai, Yanzheng; Hu, Ming; Li, Gui; Liu, Li; Qu, Shaobo; Wu, Shuchao; Zhou, Zebing
2014-05-01
High-precision electrostatic accelerometers are significant payload in CHAMP, GRACE and GOCE gravity missions to measure the non-gravitational forces. In our group, space electrostatic accelerometer and inertial sensor based on the capacitive sensors and electrostatic control technique has been investigated for space science research in China such as testing of equivalence principle (TEPO), searching non-Newtonian force in micrometer range, satellite Earth's field recovery and so on. In our group, a capacitive position sensor with a resolution of 10-7pF/Hz1/2 and the μV/Hz1/2 level electrostatic actuator are developed. The fiber torsion pendulum facility is adopt to measure the parameters of the electrostatic controlled inertial sensor such as the resolution, and the electrostatic stiffness, the cross couple between different DOFs. Meanwhile, high voltage suspension and free fall methods are applied to verify the function of electrostatic accelerometer. Last, the engineering model of electrostatic accelerometer has been developed and tested successfully in space and preliminary results are present.
Warren, Oden L.; Asif, S. A. Syed; Cyrankowski, Edward; Kounev, Kalin
2010-09-21
An actuatable capacitive transducer including a transducer body, a first capacitor including a displaceable electrode and electrically configured as an electrostatic actuator, and a second capacitor including a displaceable electrode and electrically configured as a capacitive displacement sensor, wherein the second capacitor comprises a multi-plate capacitor. The actuatable capacitive transducer further includes a coupling shaft configured to mechanically couple the displaceable electrode of the first capacitor to the displaceable electrode of the second capacitor to form a displaceable electrode unit which is displaceable relative to the transducer body, and an electrically-conductive indenter mechanically coupled to the coupling shaft so as to be displaceable in unison with the displaceable electrode unit.-
Warren, Oden L; Asif, Syed Amanula Syed; Cyrankowski, Edward; Kounev, Kalin
2013-06-04
An actuatable capacitive transducer including a transducer body, a first capacitor including a displaceable electrode and electrically configured as an electrostatic actuator, and a second capacitor including a displaceable electrode and electrically configured as a capacitive displacement sensor, wherein the second capacitor comprises a multi-plate capacitor. The actuatable capacitive transducer further includes a coupling shaft configured to mechanically couple the displaceable electrode of the first capacitor to the displaceable electrode of the second capacitor to form a displaceable electrode unit which is displaceable relative to the transducer body, and an electrically-conductive indenter mechanically coupled to the coupling shaft so as to be displaceable in unison with the displaceable electrode unit.
Displacement Models for THUNDER Actuators having General Loads and Boundary Conditions
NASA Technical Reports Server (NTRS)
Wieman, Robert; Smith, Ralph C.; Kackley, Tyson; Ounaies, Zoubeida; Bernd, Jeff; Bushnell, Dennis M. (Technical Monitor)
2001-01-01
This paper summarizes techniques for quantifying the displacements generated in THUNDER actuators in response to applied voltages for a variety of boundary conditions and exogenous loads. The PDE (partial differential equations) models for the actuators are constructed in two steps. In the first, previously developed theory quantifying thermal and electrostatic strains is employed to model the actuator shapes which result from the manufacturing process and subsequent repoling. Newtonian principles are then employed to develop PDE models which quantify displacements in the actuator due to voltage inputs to the piezoceramic patch. For this analysis, drive levels are assumed to be moderate so that linear piezoelectric relations can be employed. Finite element methods for discretizing the models are developed and the performance of the discretized models are illustrated through comparison with experimental data.
NASA Astrophysics Data System (ADS)
Mukherjee, Banibrata; Sen, Siddhartha
2018-04-01
This paper presents generalized closed form expressions for determining the dimension limit for the basic design parameters as well as the pull-in characteristics of a nanocantilever beam under the influences of van der Waals and Casimir forces. The coupled nonlinear electromechanical problem of electrostatic nanocantilever is formulated in nondimensional form with Galerkin’s approximation considering the effects of these intermolecular forces and fringe field. The resulting integrals and higher order polynomials are solved numerically to derive the closed form expressions for maximum permissible detachment length, minimum feasible gap spacing and critical pull-in limit. The derived expressions are compared and validated as well with several reported literature showing reasonable agreement. The major advantages of the proposed closed form expressions are that, they do not contain any complex mathematical term or operation unlike in reported literature and thus they will serve as convenient tools for the NEMS community in successful design of various electrostatically actuated nanosystems.
Terasawa, Naohiro; Asaka, Kinji
2014-12-02
The electrochemical and electromechanical properties of polymeric actuators prepared using nickel peroxide hydrate (NiO2·xH2O) or nickel peroxide anhydride (NiO2)/vapor-grown carbon nanofibers (VGCF)/ionic liquid (IL) electrodes were compared with actuators prepared using solely VGCFs or single-walled carbon nanotubes (SWCNTs) and an IL. The electrode in these actuator systems is equivalent to an electrochemical capacitor (EC) exhibiting both electrostatic double-layer capacitor (EDLC)- and faradaic capacitor (FC)-like behaviors. The capacitance of the metal oxide (NiO2·xH2O or NiO2)/VGCF/IL electrode is primarily attributable to the EDLC mechanism such that, at low frequencies, the strains exhibited by the NiO2·xH2O/VGCF/IL and NiO2/VGCF/IL actuators primarily result from the FC mechanism. The VGCFs in the NiO2·xH2O/VGCF/IL and NiO2/VGCF/IL actuators strengthen the EDLC mechanism and increase the electroconductivity of the devices. The mechanism underlying the functioning of the NiO2·xH2O/VGCF/IL actuator in which NiO2·xH2O/VGCF = 1.0 was found to be different from that of the devices produced using solely VGCFs or SWCNTs, which exhibited only the EDLC mechanism. In addition, it was found that both NiO2 and VGCFs are essential with regard to producing actuators that are capable of exhibiting strain levels greater than those of SWCNT-based polymer actuators and are thus suitable for practical applications. Furthermore, the frequency dependence of the displacement responses of the NiO2·xH2O/VGCF and NiO2/VGCF polymer actuators were successfully simulated using a double-layer charging kinetic model. This model, which accounted for the oxidization and reduction reactions of the metal oxide, can also be applied to SWCNT-based actuators. The results of electromechanical response simulations for the NiO2·xH2O/VGCF and NiO2/VGCF actuators predicted the strains at low frequencies as well as the time constants of the devices, confirming that the model is applicable not only to EDLC-based actuator systems but also to the fabricated EDLC/FC system.
ESD testing of the 8S actuator (u)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mchugh, Douglas C
2010-12-03
The 8S actuator is a hot-wire initiated explosive component used to drive the W76-1 2X Acorn 1V valve. It is known to be safe from human electrostatic discharge (ESD) pin-to-pin and all pin-to-cup stimuli as well as 1 amp/1 watt safe. However low impedance (furniture) ESD stimuli applied pin-to-pin has not been evaluated. Components were tested and the results analyzed. The 8S actuator has been shown to be immune to human and severe furniture ESD, whether applied pin-to-pin or pin-to-cup.
Piston-Driven Fluid Ejectors In Silicon Mems
Galambos, Paul C.; Benavides, Gilbert L.; Jokiel, Jr., Bernhard; Jakubczak II, Jerome F.
2005-05-03
A surface-micromachined fluid-ejection apparatus is disclosed which utilizes a piston to provide for the ejection of jets or drops of a fluid (e.g. for ink-jet printing). The piston, which is located at least partially inside a fluid reservoir, is moveable into a cylindrical fluid-ejection chamber connected to the reservoir by a microelectromechanical (MEM) actuator which is located outside the reservoir. In this way, the reservoir and fluid-ejection chamber can be maintained as electric-field-free regions thereby allowing the apparatus to be used with fluids that are electrically conductive or which may react or break down in the presence of a high electric field. The MEM actuator can comprise either an electrostatic actuator or a thermal actuator.
Apparatus for raising or tilting a micromechanical structure
Allen, James J [Albuquerque, NM
2008-09-09
An active hinge apparatus is disclosed which can be used to raise a micromechanical structure (e.g. a plate or micromirror) on a substrate. The active hinge apparatus utilizes one or more of teeth protruding outward from an axle which also supports the micromechanical structure on one end thereof. A rack is used to engage the teeth and rotate the axle to raise the micromechanical structure and tilt the structure at an angle to the substrate. Motion of the rack is provided by an actuator which can be a mechanically-powered actuator, or alternately an electrostatic comb actuator or a thermal actuator. A latch can be optionally provided in the active hinge apparatus to lock the micromechanical structure in an "erected" position.
NASA Astrophysics Data System (ADS)
Stolyarova, Sara; Shemesh, Ariel; Aharon, Oren; Cohen, Omer; Gal, Lior; Eichen, Yoav; Nemirovsky, Yael
This study focuses on arrays of cantilevers made of crystalline silicon (c-Si), using SOI wafers as the starting material and using bulk micromachining. The arrays are subsequently transformed into composite porous silicon-crystalline silicon cantilevers, using a unique vapor phase process tailored for providing a thin surface layer of porous silicon on one side only. This results in asymmetric cantilever arrays, with one side providing nano-structured porous large surface, which can be further coated with polymers, thus providing additional sensing capabilities and enhanced sensing. The c-Si cantilevers are vertically integrated with a bottom silicon die with electrodes allowing electrostatic actuation. Flip Chip bonding is used for the vertical integration. The readout is provided by a sensitive Capacitance to Digital Converter. The fabrication, processing and characterization results are reported. The reported study is aimed towards achieving miniature cantilever chips with integrated readout for sensing explosives and chemical warfare agents in the field.
Jasulaneca, Liga; Kosmaca, Jelena; Meija, Raimonds; Andzane, Jana
2018-01-01
This review summarizes relevant research in the field of electrostatically actuated nanobeam-based nanoelectromechanical (NEM) switches. The main switch architectures and structural elements are briefly described and compared. Investigation methods that allow for exploring coupled electromechanical interactions as well as studies of mechanically or electrically induced effects are covered. An examination of the complex nanocontact behaviour during various stages of the switching cycle is provided. The choice of the switching element and the electrode is addressed from the materials perspective, detailing the benefits and drawbacks for each. An overview of experimentally demonstrated NEM switching devices is provided, and together with their operational parameters, the reliability issues and impact of the operating environment are discussed. Finally, the most common NEM switch failure modes and the physical mechanisms behind them are reviewed and solutions proposed. PMID:29441272
NASA Astrophysics Data System (ADS)
Ma, Wenying; Ma, Changwei; Wang, Weimin
2018-03-01
Deformable mirrors (DM) based on microelectromechanical system (MEMS) technology are being applied in adaptive optics (AO) system for astronomical telescopes and human eyes more and more. In this paper a MEMS DM with hexagonal actuator is proposed and designed. The relationship between structural design and performance parameters, mainly actuator coupling, is analyzed carefully and calculated. The optimum value of actuator coupling is obtained. A 7-element DM prototype is fabricated using a commercial available standard three-layer polysilicon surface multi-user-MEMS-processes (PolyMUMPs). Some key performances, including surface figure and voltage-displacement curve, are measured through a 3D white light profiler. The measured performances are very consistent with the theoretical values. The proposed DM will benefit the miniaturization of AO systems and lower their cost.
Frangi, Attilio; Guerrieri, Andrea; Boni, Nicoló
2017-01-01
Electrostatically actuated torsional micromirrors are key elements in Micro-Opto-Electro- Mechanical-Systems. When forced by means of in-plane comb-fingers, the dynamics of the main torsional response is known to be strongly non-linear and governed by parametric resonance. Here, in order to also trace unstable branches of the mirror response, we implement a simplified continuation method with arc-length control and propose an innovative technique based on Finite Elements and the concepts of material derivative in order to compute the electrostatic stiffness; i.e., the derivative of the torque with respect to the torsional angle, as required by the continuation approach. PMID:28383483
Frangi, Attilio; Guerrieri, Andrea; Boni, Nicoló
2017-04-06
Electrostatically actuated torsional micromirrors are key elements in Micro-Opto-Electro- Mechanical-Systems. When forced by means of in-plane comb-fingers, the dynamics of the main torsional response is known to be strongly non-linear and governed by parametric resonance. Here, in order to also trace unstable branches of the mirror response, we implement a simplified continuation method with arc-length control and propose an innovative technique based on Finite Elements and the concepts of material derivative in order to compute the electrostatic stiffness; i.e., the derivative of the torque with respect to the torsional angle, as required by the continuation approach.
PLZT Ceramic Driving Rotary Micro-mirror Based on Photoelectric-electrostatic Mechanism
NASA Astrophysics Data System (ADS)
Tang, Yujuan; Yang, Zhong; Chen, Yusong; Wang, Xinjie
2017-12-01
Based on the anomalous photovoltaic effect of PLZT, a rotary micro-mirror driven by hybrid photoelectric-electrostatic actuation of PLZT ceramic is proposed. Firstly, the mathematical modelling of coupled multi-physics fields of PLZT ceramic is established during illumination and light off phases. Then, the relationship between the rotation angle and the photovoltage of PLZT ceramics is established. In addition, the feasibility of rotary micro-mirror with hybrid photoelectric-electrostatic driving is verified via closed-loop control for photo-induced voltage of PLZT ceramic. The experimental results show that the photo-induced voltage of PLZT ceramics has good dynamic control precision using on-off closed-loop control method.
NASA Astrophysics Data System (ADS)
Rezaei Kivi, Araz; Azizi, Saber; Norouzi, Peyman
2017-12-01
In this paper, the nonlinear size-dependent static and dynamic behavior of an electrostatically actuated nano-beam is investigated. A fully clamped nano-beam is considered for the modeling of the deformable electrode of the NEMS. The governing differential equation of the motion is derived using Hamiltonian principle based on couple stress theory; a non-classical theory for considering length scale effects. The nonlinear partial differential equation of the motion is discretized to a nonlinear Duffing type ODE's using Galerkin method. Static and dynamic pull-in instabilities obtained by both classical theory and MCST are compared. At the second stage of analysis, shooting technique is utilized to obtain the frequency response curve, and to capture the periodic solutions of the motion; the stability of the periodic solutions are gained by Floquet theory. The nonlinear dynamic behavior of the deformable electrode due to the AC harmonic accompanied with size dependency is investigated.
Single mask, simple structure micro rotational motor driven by electrostatic comb-drive actuators
NASA Astrophysics Data System (ADS)
Pham, Phuc Hong; Viet Dao, Dzung; Dang, Lam Bao; Sugiyama, Susumu
2012-01-01
We report a design and fabrication of a new micro rotational motor (MRM) using silicon micromachining technology with the overall diameter of 2.4 mm. This motor utilizes four silicon electrostatic comb-drive actuators to drive the outer ring (or rotor) through ratchet teeth. The novel design of the anti-reverse structure helps us to overcome the gap problem after deep reactive ion etching of silicon. The MRM was fabricated by using silicon on insulator wafer with the thickness of the device layer being 30 µm and one mask only. The motor was successfully tested for performance. It was driven by periodic voltage with different frequencies ranging from 1 to 50 Hz. The angular velocity of the outer ratchet ring was proportional to the frequency. Moreover, when the driving frequency is lower than 30 Hz, the experiment results perfectly match the theoretical calculation.
Design and reliability of a MEMS thermal rotary actuator.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, Michael Sean; Corwin, Alex David
2007-09-01
A new rotary MEMS actuator has been developed and tested at Sandia National Laboratories that utilizes a linear thermal actuator as the drive mechanism. This actuator was designed to be a low-voltage, high-force alternative to the existing electrostatic torsional ratcheting actuator (TRA) [1]. The new actuator, called the Thermal Rotary Actuator (ThRA), is conceptually much simpler than the TRA and consists of a gear on a hub that is turned by a linear thermal actuator [2] positioned outside of the gear. As seen in Figure 1, the gear is turned through a ratcheting pawl, with anti-reverse pawls positioned around themore » gear for unidirectional motion (see Figure 1). A primary consideration in the design of the ThRA was the device reliability and in particular, the required one-to-one relationship between the ratcheting output motion and the electrical input signal. The electrostatic TRA design has been shown to both over-drive and under-drive relative to the number of input pulses [3]. Two different ThRA designs were cycle tested to measure the skip rate. This was done in an automated test setup by using pattern matching to measure the angle of rotation of the output gear after a defined number of actuation pulses. By measuring this gear angle over time, the number of skips can be determined. Figure 2 shows a picture of the ThRA during testing, with the pattern-matching features highlighted. In the first design tested, it was found that creep in the thermal actuator limited the number of skip-free cycles, as the rest position of the actuator would creep forward enough to prevent the counter-rotation pawls from fully engaging (Figure 3). Even with this limitation, devices were measured with up to 100 million cycles with no skipping. A design modification was made to reduce the operating temperature of the thermal actuator which has been shown in a previous study [2] to reduce the creep rate. In addition, changes were made to the drive ratchet design and actuation direction to increase the available output force. This new design was tested and shown to operate in one case out to greater than 360 million cycles without any skipping, after which the test was stopped without failure. The output force was also measured as a function of input voltage (Figure 4), and shown to be higher than the previous design. The maximum force shown in the figure is a limit of the gauge used, not the actuator itself. Continued work for this design will focus on understanding the actuator performance while driving a load, as all current tests were performed with no load on the output gear.« less
HAREM: high aspect ratio etching and metallization for microsystems fabrication
NASA Astrophysics Data System (ADS)
Sarajlic, Edin; Yamahata, Christophe; Cordero, Mauricio; Collard, Dominique; Fujita, Hiroyuki
2008-07-01
We report a simple bulk micromachining method for the fabrication of high aspect ratio monocrystalline silicon MEMS (microelectromechanical systems) in a standard silicon wafer. We call this two-mask microfabrication process high aspect ratio etching and metallization or HAREM: it combines double-side etching and metallization to create suspended micromechanical structures with electrically 'insulating walls' on their backside. The insulating walls ensure a proper electrical insulation between the different actuation and sensing elements situated on either fixed or movable parts of the device. To demonstrate the high potential of this simple microfabrication method, we have designed and characterized electrostatically actuated microtweezers that integrate a differential capacitive sensor. The prototype showed an electrical insulation better than 1 GΩ between the different elements of the device. Furthermore, using a lock-in amplifier circuit, we could measure the position of the moving probe with few nanometers resolution for a displacement range of about 3 µm. This work was presented in part at the 21st IEEE MEMS Conference (Tucson, AZ, USA, 13-17 January, 2008) (doi:10.1109/MEMSYS.2008.4443656).
Structural Analysis of a Magnetically Actuated Silicon Nitride Micro-Shutter for Space Applications
NASA Technical Reports Server (NTRS)
Loughlin, James P.; Fettig, Rainer K.; Moseley, S. Harvey; Kutyrev, Alexander S.; Mott, D. Brent; Obenschain, Arthur F. (Technical Monitor)
2002-01-01
Finite element models have been created to simulate the electrostatic and electromagnetic actuation of a 0.5 micrometers silicon nitride micro-shutter for use in a spacebased Multi-object Spectrometer (MOS). The microshutter uses a torsion hinge to go from the closed, 0 degree, position, to the open, 90 degree position. Stresses in the torsion hinge are determined with a large deformation nonlinear finite element model. The simulation results are compared to experimental measurements of fabricated micro-shutter devices.
NASA Astrophysics Data System (ADS)
Shen, I. Y.
1997-02-01
This paper studies vibration control of a shell structure through use of an active constrained layer (ACL) damping treatment. A deep-shell theory that assumes arbitrary Lamé parameters 0964-1726/6/1/011/img1 and 0964-1726/6/1/011/img2 is first developed. Application of Hamilton's principle leads to the governing Love equations, the charge equation of electrostatics, and the associated boundary conditions. The Love equations and boundary conditions imply that the control action of the ACL for shell treatments consists of two components: free-end boundary actuation and membrane actuation. The free-end boundary actuation is identical to that of beam and plate ACL treatments, while the membrane actuation is unique to shell treatments as a result of the curvatures of the shells. In particular, the membrane actuation may reinforce or counteract the boundary actuation, depending on the location of the ACL treatment. Finally, an energy analysis is developed to determine the proper control law that guarantees the stability of ACL shell treatments. Moreover, the energy analysis results in a simple rule predicting whether or not the membrane actuation reinforces the boundary actuation.
Aligning Optical Fibers by Means of Actuated MEMS Wedges
NASA Technical Reports Server (NTRS)
Morgan, Brian; Ghodssi, Reza
2007-01-01
Microelectromechanical systems (MEMS) of a proposed type would be designed and fabricated to effect lateral and vertical alignment of optical fibers with respect to optical, electro-optical, optoelectronic, and/or photonic devices on integrated circuit chips and similar monolithic device structures. A MEMS device of this type would consist of a pair of oppositely sloped alignment wedges attached to linear actuators that would translate the wedges in the plane of a substrate, causing an optical fiber in contact with the sloping wedge surfaces to undergo various displacements parallel and perpendicular to the plane. In making it possible to accurately align optical fibers individually during the packaging stages of fabrication of the affected devices, this MEMS device would also make it possible to relax tolerances in other stages of fabrication, thereby potentially reducing costs and increasing yields. In a typical system according to the proposal (see Figure 1), one or more pair(s) of alignment wedges would be positioned to create a V groove in which an optical fiber would rest. The fiber would be clamped at a suitable distance from the wedges to create a cantilever with a slight bend to push the free end of the fiber gently to the bottom of the V groove. The wedges would be translated in the substrate plane by amounts Dx1 and Dx2, respectively, which would be chosen to move the fiber parallel to the plane by a desired amount Dx and perpendicular to the plane by a desired amount Dy. The actuators used to translate the wedges could be variants of electrostatic or thermal actuators that are common in MEMS.
The Electromechanical Behavior of a Micro-Ring Driven by Traveling Electrostatic Force
Ye, Xiuqian; Chen, Yibao; Chen, Da-Chih; Huang, Kuo-Yi; Hu, Yuh-Chung
2012-01-01
There is no literature mentioning the electromechanical behavior of micro structures driven by traveling electrostatic forces. This article is thus the first to present the dynamics and stabilities of a micro-ring subjected to a traveling electrostatic force. The traveling electrostatic force may be induced by sequentially actuated electrodes which are arranged around the flexible micro-ring. The analysis is based on a linearized distributed model considering the electromechanical coupling effects between electrostatic force and structure. The micro-ring will resonate when the traveling speeds of the electrostatic force approach some critical speeds. The critical speeds are equal to the ratio of the natural frequencies to the wave number of the correlative natural mode of the ring. Apart from resonance, the ring may be unstable at some unstable traveling speeds. The unstable regions appear not only near the critical speeds, but also near some fractions of some critical speeds differences. Furthermore the unstable regions expand with increasing driving voltage. This article may lead to a new research branch on electrostatic-driven micro devices. PMID:22438705
Haptic device development based on electro static force of cellulose electro active paper
NASA Astrophysics Data System (ADS)
Yun, Gyu-young; Kim, Sang-Youn; Jang, Sang-Dong; Kim, Dong-Gu; Kim, Jaehwan
2011-04-01
Haptic is one of well-considered device which is suitable for demanding virtual reality applications such as medical equipment, mobile devices, the online marketing and so on. Nowadays, many of concepts for haptic devices have been suggested to meet the demand of industries. Cellulose has received much attention as an emerging smart material, named as electro-active paper (EAPap). The EAPap is attractive for mobile haptic devices due to its unique characteristics in terms of low actuation power, suitability for thin devices and transparency. In this paper, we suggest a new concept of haptic actuator with the use of cellulose EAPap. Its performance is evaluated depending on various actuation conditions. As a result, cellulose electrostatic force actuator shows a large output displacement and fast response, which is suitable for mobile haptic devices.
Microelectromechanical apparatus for elevating and tilting a platform
Miller, Samuel Lee; McWhorter, Paul Jackson; Rodgers, Murray Steven; Sniegowski, Jeffry J.; Barnes, Stephen M.
2003-04-08
A microelectromechanical (MEM) apparatus is disclosed which has a platform that can be elevated above a substrate and tilted at an arbitrary angle using a plurality of flexible members which support the platform and control its movement. Each flexible member is further controlled by one or more MEM actuators which act to bend the flexible member. The MEM actuators can be electrostatic comb actuators or vertical zip actuators, or a combination thereof. The MEM apparatus can include a mirror coating to form a programmable mirror for redirecting or switching one or more light beams for use in a projection display. The MEM apparatus with the mirror coating also has applications for switching light beams between optical fibers for use in a local area fiber optic network, or for use in fiber optic telecommunications or data communications systems.
Microelectromechanical apparatus for elevating and tilting a platform
Miller, Samuel Lee; McWhorter, Paul Jackson; Rodgers, Murray Steven; Sniegowski, Jeffry J.; Barnes, Stephen M.
2004-07-06
A microelectromechanical (MEM) apparatus is disclosed which has a platform that can be elevated above a substrate and tilted at an arbitrary angle using a plurality of flexible members which support the platform and control its movement. Each flexible member is further controlled by one or more MEM actuators which act to bend the flexible member. The MEM actuators can be electrostatic comb actuators or vertical zip actuators, or a combination thereof. The MEM apparatus can include a mirror coating to form a programmable mirror for redirecting or switching one or more light beams for use in a projection display. The MEM apparatus with-the mirror coating also has applications for switching light beams between optical fibers for use in a local area fiber optic network, or for use in fiber optic telecommunications or data communications systems.
MEMS tunable optical filter based on multi-ring resonator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dessalegn, Hailu, E-mail: hailudessalegn@yahoo.com, E-mail: tsrinu@ece.iisc.ernet.in; Srinivas, T., E-mail: hailudessalegn@yahoo.com, E-mail: tsrinu@ece.iisc.ernet.in
We propose a novel MEMS tunable optical filter with a flat-top pass band based on multi-ring resonator in an electrostatically actuated microcantilever for communication application. The filter is basically structured on a microcantilever beam and built in optical integrated ring resonator which is placed in one end of the beam to gain maximum stress on the resonator. Thus, when a DC voltage is applied, the beam will bend, that induces a stress and strain in the ring, which brings a change in refractive index and perimeter of the rings leading to change in the output spectrum shift, providing the tenabilitymore » as high as 0.68nm/μN and it is capable of tuning up to 1.7nm.« less
Electro-Statically Stricted Polymers (ESSP)
NASA Technical Reports Server (NTRS)
Liu, C.; Bar-Cohen, Y.; Leary, S.
1999-01-01
Miniature, lightweight, miser actuators that operate similar to biological muscles can be used to develop robotic devices with unmatched capabilities and impact many technology areas. Electroactive polymers (EAP) offer the potential to producing such actuators and their main attractive feature is their ability to induce relatively large bending or longitudinal strain. EAP actuators can change the paradigm about the complexity of robots, where robotic components such as motors, gears, bearings, and others can be eliminated with simple drive mechanisms. Generally, these materials produce a relatively low force and the applications that can be considered at the current state of the art are relatively limited. While improved material are being developed there is a need for methods to develop longitudinal actuators that can contract similar to muscles. In this study, the authors began investigating the electromechanical behavior of polymers in reaction to a complex configuration of electric fields. A computer model was used to simulate the electromechanical response. Efforts were made to develop both the material basis as well as the electromechanical modeling of the actuator.
Differentially-driven MEMS spatial light modulator
Stappaerts, Eddy A.
2004-09-14
A MEMS SLM and an electrostatic actuator associated with a pixel in an SLM. The actuator has three electrodes: a lower electrode; an upper electrode fixed with respect to the lower electrode; and a center electrode suspended and actuable between the upper and lower electrodes. The center electrode is capable of resiliently-biasing to restore the center electrode to a non-actuated first equilibrium position, and a mirror is operably connected to the center electrode. A first voltage source provides a first bias voltage across the lower and center electrodes and a second voltage source provides a second bias voltage across the upper and center electrodes, with the first and second bias voltages determining the non-actuated first equilibrium position of the center electrode. A third voltage source provides a variable driver voltage across one of the lower/center and upper/center electrode pairs in series with the corresponding first or second bias voltage, to actuate the center electrode to a dynamic second equilibrium position.
Bistable microelectromechanical actuator
Fleming, James G.
1999-01-01
A bistable microelectromechanical (MEM) actuator is formed on a substrate and includes a stressed membrane of generally rectangular shape that upon release assumes a curvilinear cross-sectional shape due to attachment at a midpoint to a resilient member and at opposing edges to a pair of elongate supports. The stressed membrane can be electrostatically switched between a pair of mechanical states having mirror-image symmetry, with the MEM actuator remaining in a quiescent state after a programming voltage is removed. The bistable MEM actuator according to various embodiments of the present invention can be used to form a nonvolatile memory element, an optical modulator (with a pair of mirrors supported above the membrane and moving in synchronism as the membrane is switched), a switchable mirror (with a single mirror supported above the membrane at the midpoint thereof) and a latching relay (with a pair of contacts that open and close as the membrane is switched). Arrays of bistable MEM actuators can be formed for applications including nonvolatile memories, optical displays and optical computing.
Bistable microelectromechanical actuator
Fleming, J.G.
1999-02-02
A bistable microelectromechanical (MEM) actuator is formed on a substrate and includes a stressed membrane of generally rectangular shape that upon release assumes a curvilinear cross-sectional shape due to attachment at a midpoint to a resilient member and at opposing edges to a pair of elongate supports. The stressed membrane can be electrostatically switched between a pair of mechanical states having mirror-image symmetry, with the MEM actuator remaining in a quiescent state after a programming voltage is removed. The bistable MEM actuator according to various embodiments of the present invention can be used to form a nonvolatile memory element, an optical modulator (with a pair of mirrors supported above the membrane and moving in synchronism as the membrane is switched), a switchable mirror (with a single mirror supported above the membrane at the midpoint thereof) and a latching relay (with a pair of contacts that open and close as the membrane is switched). Arrays of bistable MEM actuators can be formed for applications including nonvolatile memories, optical displays and optical computing. 49 figs.
Manifold-Based Image Understanding
2010-06-30
3] employs a Texas Instruments digital micromirror device (DMD), which consists of an array of N electrostatically actuated micromirrors . The camera...image x) is reflected off a digital micromirror device (DMD) array whose mirror orientations are modulated in the pseudorandom pattern φm supplied by a
Borenstein, Johann; Granosik, Grzegorz
2005-03-22
An apparatus for traversing obstacles having an elongated, round, flexible body that includes a plurality of segments interconnected by an integrated joint actuator assembly. The integrated joint actuator assembly includes a plurality of bellows-type actuators individually coupling adjacent segments to permit pivotal actuation of the apparatus therebetween. A controller is employed to maintain proper positional control and stiffness control while minimize air flow.
Thermal, size and surface effects on the nonlinear pull-in of small-scale piezoelectric actuators
NASA Astrophysics Data System (ADS)
SoltanRezaee, Masoud; Ghazavi, Mohammad-Reza
2017-09-01
Electrostatically actuated miniature wires/tubes have many operational applications in the high-tech industries. In this research, the nonlinear pull-in instability of piezoelectric thermal small-scale switches subjected to Coulomb and dissipative forces is analyzed using strain gradient and modified couple stress theories. The discretized governing equation is solved numerically by means of the step-by-step linearization method. The correctness of the formulated model and solution procedure is validated through comparison with experimental and several theoretical results. Herein, the length-scale, surface energy, van der Waals attraction and nonlinear curvature are considered in the present comprehensive model and the thermo-electro-mechanical behavior of cantilever piezo-beams are discussed in detail. It is found that the piezoelectric actuation can be used as a design parameter to control the pull-in phenomenon. The obtained results are applicable in stability analysis, practical design and control of actuated miniature intelligent devices.
Nanotube Aerogel Sheet Flutter for Actuation, Power Generation, and Infrasound Detection
Kang, Tae June; Kim, Taewoo; Jang, Eui Yun; Im, Hyeongwook; Lepro-Chavez, Xavier; Ovalle-Robles, Raquel; Oh, Jiyoung; Kozlov, Mikhail E.; Baughman, Ray H.; Lee, Hong H.; Kim, Yong Hyup
2014-01-01
Electromagnetic induction (EMI) is a mechanism of classical physics that can be utilized to convert mechanical energy to electrical energy or electrical to mechanical energy. This mechanism has not been exploited fully because of lack of a material with a sufficiently low force constant. We here show that carbon nanotube (CNT) aerogel sheets can exploit EMI to provide mechanical actuation at very low applied voltages, to harvest mechanical energy from small air pressure fluctuations, and to detect infrasound at inaudible frequencies below 20 Hz. Using conformal deposition of 100 nm thick aluminum coatings on the nanotubes in the sheets, mechanical actuation can be obtained by applying millivolts, as compared with the thousand volts needed to achieve giant-stroke electrostatic actuation of carbon nanotube aerogel sheets. Device simplicity and performance suggest possible applications as an energy harvester of low energy air fluctuations and as a sensor for infrasound frequencies. PMID:25130708
Nanotube aerogel sheet flutter for actuation, power generation, and infrasound detection.
Kang, Tae June; Kim, Taewoo; Jang, Eui Yun; Im, Hyeongwook; Lepro-Chavez, Xavier; Ovalle-Robles, Raquel; Oh, Jiyoung; Kozlov, Mikhail E; Baughman, Ray H; Lee, Hong H; Kim, Yong Hyup
2014-08-18
Electromagnetic induction (EMI) is a mechanism of classical physics that can be utilized to convert mechanical energy to electrical energy or electrical to mechanical energy. This mechanism has not been exploited fully because of lack of a material with a sufficiently low force constant. We here show that carbon nanotube (CNT) aerogel sheets can exploit EMI to provide mechanical actuation at very low applied voltages, to harvest mechanical energy from small air pressure fluctuations, and to detect infrasound at inaudible frequencies below 20 Hz. Using conformal deposition of 100 nm thick aluminum coatings on the nanotubes in the sheets, mechanical actuation can be obtained by applying millivolts, as compared with the thousand volts needed to achieve giant-stroke electrostatic actuation of carbon nanotube aerogel sheets. Device simplicity and performance suggest possible applications as an energy harvester of low energy air fluctuations and as a sensor for infrasound frequencies.
Apparatus to position a microelectromechanical platform
Miller, Samuel Lee; Rodgers, Murray Steven
2003-09-23
The present invention comprises a microelectromechanical positioner to achieve substantially translational positioning of a platform without rotational motion, thereby maintaining a constant angular orientation of the platform during movement. A linkage mechanism of the positioner can comprise parallelogram linkages to constrain the rotational motion of the platform. Such linkages further can comprise flexural hinges or other turning joints at the linkage pivots to eliminate the need for rubbing surfaces. A plurality of the linkage mechanisms can be used to enable translational motion of the platform with two degrees of freedom. A variety of means can be used to actuate the positioner. Independent actuation of the anchor links of the linkage mechanisms with rotary electrostatic actuators can be used to provide controlled translational movement of the platform.
Electro-Mechanical Simulation of a Large Aperture MOEMS Fabry-Perot Tunable Filter
NASA Technical Reports Server (NTRS)
Kuhn, Jonathan L.; Barclay, Richard B.; Greenhouse, Matthew A.; Mott, D. Brent; Satyapal, Shobita; Powers, Edward I. (Technical Monitor)
2000-01-01
We are developing a micro-machined electrostatically actuated Fabry-Perot tunable filter with a large clear aperture for application in high through-put wide-field imaging spectroscopy and lidar systems. In the first phase of this effort, we are developing key components based on coupled electro-mechanical simulations. In particular, the movable etalon plate design leverages high coating stresses to yield a flat surface in drum-head tension over a large diameter (12.5 mm). In this approach, the cylindrical silicon movable plate is back etched, resulting in an optically coated membrane that is suspended from a thick silicon support ring. Understanding the interaction between the support ring, suspended membrane, and coating is critical to developing surfaces that are flat to within stringent etalon requirements. In this work, we present the simulations used to develop the movable plate, spring suspension system, and electrostatic actuation mechanism. We also present results from tests of fabricated proof of concept components.
Batra, Romesh C.; Porfiri, Maurizio; Spinello, Davide
2008-01-01
We study the influence of von Kármán nonlinearity, van der Waals force, and thermal stresses on pull-in instability and small vibrations of electrostatically actuated microplates. We use the Galerkin method to develop a tractable reduced-order model for electrostatically actuated clamped rectangular microplates in the presence of van der Waals forces and thermal stresses. More specifically, we reduce the governing two-dimensional nonlinear transient boundary-value problem to a single nonlinear ordinary differential equation. For the static problem, the pull-in voltage and the pull-in displacement are determined by solving a pair of nonlinear algebraic equations. The fundamental vibration frequency corresponding to a deflected configuration of the microplate is determined by solving a linear algebraic equation. The proposed reduced-order model allows for accurately estimating the combined effects of van der Waals force and thermal stresses on the pull-in voltage and the pull-in deflection profile with an extremely limited computational effort. PMID:27879752
A low-g electrostatically actuated resonant switch
NASA Astrophysics Data System (ADS)
Ramini, A.; Younis, M. I.; Su, Q. T.
2013-02-01
This work investigates a new concept of an electrostatically actuated resonant switch (EARS) for earthquake detection and low-g seismic applications. The resonator is designed to operate close to the instability bands of frequency-response curves, where it is forced to collapse dynamically (pull-in) if operated within these bands. By careful tuning, the resonator can be made to enter the pull-in instability zone upon the detection of the earthquake signal, thereby snapping down as an electric switch. Such a switching action can be functionalized for alarming purposes or can be used to activate a network of sensors for seismic activity recording. The EARS is modeled and its dynamic response is simulated using a nonlinear single-degree-of-freedom model. Experimental investigation is conducted demonstrating the EARS’ capability of being triggered at small levels of acceleration as low as 0.02g. Results for the switching events for several levels of low-g accelerations using both theory and experiments are presented and compared.
Batra, Romesh C; Porfiri, Maurizio; Spinello, Davide
2008-02-15
We study the influence of von Karman nonlinearity, van der Waals force, and a athermal stresses on pull-in instability and small vibrations of electrostatically actuated mi-croplates. We use the Galerkin method to develop a tractable reduced-order model for elec-trostatically actuated clamped rectangular microplates in the presence of van der Waals forcesand thermal stresses. More specifically, we reduce the governing two-dimensional nonlineartransient boundary-value problem to a single nonlinear ordinary differential equation. For thestatic problem, the pull-in voltage and the pull-in displacement are determined by solving apair of nonlinear algebraic equations. The fundamental vibration frequency corresponding toa deflected configuration of the microplate is determined by solving a linear algebraic equa-tion. The proposed reduced-order model allows for accurately estimating the combined effectsof van der Waals force and thermal stresses on the pull-in voltage and the pull-in deflectionprofile with an extremely limited computational effort.
Physical and reliability issues in MEMS microrelays with gold contacts
NASA Astrophysics Data System (ADS)
Lafontan, Xavier; Pressecq, Francis; Perez, Guy; Dufaza, Christian; Karam, Jean Michel
2001-10-01
This paper presents the work we have done on micro-relays with gold micro-contacts in MUMPs. Firstly, the theoretical physical principles of MEMS micro-relay are described. This study is divided in two parts: the micro-contact and the micro-actuator. The micro-contact part deals with resistance of constriction, contact area, adhesion, arcing and wear. Whereas the micro-actuator part describes general principles, contact force, restoring force and actuator reliability. Then, in a second part, an innovative electrostatic relay design in MUMPs is presented. The concept, the implementation and the final realization are discussed. Then, in the third part, characterization results are reported. This part particularly focuses on the micro-contact study. Conduction mode, contact area, mechanical and thermal deformation, and adhesion energies are presented.
Integration of Flex Nozzle System and Electro Hydraulic Actuators to Solid Rocket Motors
NASA Astrophysics Data System (ADS)
Nayani, Kishore Nath; Bajaj, Dinesh Kumar
2017-10-01
A rocket motor assembly comprised of solid rocket motor and flex nozzle system. Integration of flex nozzle system and hydraulic actuators to the solid rocket motors are done after transportation to the required place where integration occurred. The flex nozzle system is integrated to the rocket motor in horizontal condition and the electro hydraulic actuators are assembled to the flex nozzle systems. The electro hydraulic actuators are connected to the hydraulic power pack to operate the actuators. The nozzle-motor critical interface are insulation diametrical compression, inhibition resin-28, insulation facial compression, shaft seal `O' ring compression and face seal `O' ring compression.
Thermal Switch for Satellite Temperature Control
NASA Technical Reports Server (NTRS)
Ziad, H.; Slater, T.; vanGerwen, P.; Masure, E.; Preudhomme, F.; Baert, K.
1995-01-01
An active radiator tile (ART) thermal valve has been fabricated using silicon micromachining. Intended for orbital satellite heat control applications, the operational principal of the ART is to control heat flow between two thermally isolated surfaces by bring the surfaces into intimate mechanical contact using electrostatic actuation. Prototype devices have been tested in a vacuum and demonstrate thermal actuation voltages as low as 40 volts, very good thermal insulation in the OFF state, and a large increase in radiative heat flow in the ON state. Thin, anodized aluminum was developed as a coating for high infrared emissivity and high solar reflectance.
Flexible printed circuit board actuators
NASA Astrophysics Data System (ADS)
Lee, Junseok; Cha, Youngsu
2017-12-01
Out-of-plane actuators are made possible by the breaking of planar symmetry. In this paper, we present a thin-film out-of-plane electrostatic actuator for a flexible printed circuit board (FPCB) that can be fabricated with a single step of the conventional manufacturing process. No other components are required for actuation except a single sheet of the FPCB, and it works based on the planar asymmetry resulting from asymmetrically patterned top and bottom electrodes on each side of the polyimide film. With the structural asymmetry, the application of a high voltage in the order of kilovolts results in the asymmetry of the electric fields and the body force density, which generates the bending moment that leads to macroscopic deformations. We applied the finite element method to examine the asymmetry induced by the difference in the electrodes. In the experiment, the displacement responses to step input and square wave input of various frequencies were analyzed. It was found that our actuator constitutes an underdamped system, exhibiting resonance characteristics. The maximum oscillatory amplitude was determined at resonance, and the relationship between the displacement and the applied voltage was investigated.
Large scale integration of CVD-graphene based NEMS with narrow distribution of resonance parameters
NASA Astrophysics Data System (ADS)
Arjmandi-Tash, Hadi; Allain, Adrien; (Vitto Han, Zheng; Bouchiat, Vincent
2017-06-01
We present a novel method for the fabrication of the arrays of suspended micron-sized membranes, based on monolayer pulsed-CVD graphene. Such devices are the source of an efficient integration of graphene nano-electro-mechanical resonators, compatible with production at the wafer scale using standard photolithography and processing tools. As the graphene surface is continuously protected by the same polymer layer during the whole process, suspended graphene membranes are clean and free of imperfections such as deposits, wrinkles and tears. Batch fabrication of 100 μm-long multi-connected suspended ribbons is presented. At room temperature, mechanical resonance of electrostatically-actuated devices show narrow distribution of their characteristic parameters with high quality factor and low effective mass and resonance frequencies, as expected for low stress and adsorbate-free membranes. Upon cooling, a sharp increase of both resonant frequency and quality factor is observed, enabling to extract the thermal expansion coefficient of CVD graphene. Comparison with state-of-the-art graphene NEMS is presented.
Integrated wide-angle scanner based on translating a curved mirror of acylindrical shape.
Sabry, Yasser M; Khalil, Diaa; Saadany, Bassam; Bourouina, Tarik
2013-06-17
A wide angle microscanning architecture is presented in which the angular deflection is achieved by displacing the principle axis of a curved silicon micromirror of acylindrical shape, with respect to the incident beam optical axis. The micromirror curvature is designed to overcome the possible deformation of the scanned beam spot size during scanning. In the presented architecture, the optical axis of the beam lays in-plane with respect to the substrate opening the door for a completely integrated and self-aligned miniaturized scanner. A micro-optical bench scanning device, based on translating a 200 μm focal length micromirror by an electrostatic comb-drive actuator, is implemented on a silicon chip. The microelectromechanical system has a resonance frequency of 329 Hz and a quality factor of 22. A single-mode optical fiber is used as the optical source and inserted into a micromachined groove fabricated and lithographically aligned with the microbench. Optical deflection angles up to 110 degrees are demonstrated.
NASA Astrophysics Data System (ADS)
Min, Young-Hoon; Kim, Yong-Kweon
1998-09-01
A silicon based micro mirror array is a highly efficient component for use in optical applications as adaptive optical systems and optical correlators. Many types of micro mirror or micro mirror array have been studied and proposed in order to obtain the optimal performance according to their own purposes. A micro mirror array designed, fabricated and tested in this paper consists of 5 X 5 single layer polysilicon-based, electrostatically driven actuators. The micro mirror array for the optical phase modulation is made by using only two masks and can be driven independently by 25 channel circuits. About 6 (pi) phase modulation is obtained in He-Ne laser ((lambda) equals 633 nm) with 67% fill-factor. In this paper, the deflection characteristics of the actuators in controllable range were studied. The experimental results show that the deflection characteristics is much dependent upon a residual stress in flexure, the initial curvature of mirror due to stress gradient and an electrostatic force acted on other element except for mirror itself. The modeling results agree well with the experimental results. Also, it is important to fabricate a flat mirror that is not initially curved because the curved mirror brings a bad performance in optical use. Therefore, a new method to obtain the flat mirror by using the gold metallization in spite of the residual stress unbalance is proposed in this paper.
Reconfigurable Full-Page Braille Displays
NASA Technical Reports Server (NTRS)
Garner, H. Douglas
1994-01-01
Electrically actuated braille display cells of proposed type arrayed together to form full-page braille displays. Like other braille display cells, these provide changeable patterns of bumps driven by digitally recorded text stored on magnetic tapes or in solid-state electronic memories. Proposed cells contain electrorheological fluid. Viscosity of such fluid increases in strong electrostatic field.
Use of thermal cycling to reduce adhesion of OTS coated coated MEMS cantilevers
NASA Astrophysics Data System (ADS)
Ali, Shaikh M.; Phinney, Leslie M.
2003-01-01
°Microelectromechanical systems (MEMS) have enormous potential to contribute in diverse fields such as automotive, health care, aerospace, consumer products, and biotechnology, but successful commercial applications of MEMS are still small in number. Reliability of MEMS is a major impediment to the commercialization of laboratory prototypes. Due to the multitude of MEMS applications and the numerous processing and packaging steps, MEMS are exposed to a variety of environmental conditions, making the prediction of operational reliability difficult. In this paper, we investigate the effects of operating temperature on the in-use adhesive failure of electrostatically actuated MEMS microcantilevers coated with octadecyltrichlorosilane (OTS) films. The cantilevers are subjected to repeated temperature cycles and electrostatically actuated at temperatures between 25°C and 300°C in ambient air. The experimental results indicate that temperature cycling of the OTS coated cantilevers in air reduces the sticking probability of the microcantilevers. The sticking probability of OTS coated cantilevers was highest during heating, which decreased during cooling, and was lowest during reheating. Modifications to the OTS release method to increase its yield are also discussed.
NASA Astrophysics Data System (ADS)
Özer, Ahmet Özkan
2016-04-01
An infinite dimensional model for a three-layer active constrained layer (ACL) beam model, consisting of a piezoelectric elastic layer at the top and an elastic host layer at the bottom constraining a viscoelastic layer in the middle, is obtained for clamped-free boundary conditions by using a thorough variational approach. The Rao-Nakra thin compliant layer approximation is adopted to model the sandwich structure, and the electrostatic approach (magnetic effects are ignored) is assumed for the piezoelectric layer. Instead of the voltage actuation of the piezoelectric layer, the piezoelectric layer is proposed to be activated by a charge (or current) source. We show that, the closed-loop system with all mechanical feedback is shown to be uniformly exponentially stable. Our result is the outcome of the compact perturbation argument and a unique continuation result for the spectral problem which relies on the multipliers method. Finally, the modeling methodology of the paper is generalized to the multilayer ACL beams, and the uniform exponential stabilizability result is established analogously.
Micromachine friction test apparatus
deBoer, Maarten P.; Redmond, James M.; Michalske, Terry A.
2002-01-01
A microelectromechanical (MEM) friction test apparatus is disclosed for determining static or dynamic friction in MEM devices. The friction test apparatus, formed by surface micromachining, is based on a friction pad supported at one end of a cantilevered beam, with the friction pad overlying a contact pad formed on the substrate. A first electrostatic actuator can be used to bring a lower surface of the friction pad into contact with an upper surface of the contact pad with a controlled and adjustable force of contact. A second electrostatic actuator can then be used to bend the cantilevered beam, thereby shortening its length and generating a relative motion between the two contacting surfaces. The displacement of the cantilevered beam can be measured optically and used to determine the static or dynamic friction, including frictional losses and the coefficient of friction between the surfaces. The test apparatus can also be used to assess the reliability of rubbing surfaces in MEM devices by producing and measuring wear of those surfaces. Finally, the friction test apparatus, which is small in size, can be used as an in situ process quality tool for improving the fabrication of MEM devices.
On the improvement for charging large-scale flexible electrostatic actuators
NASA Astrophysics Data System (ADS)
Liao, Hsu-Ching; Chen, Han-Long; Su, Yu-Hao; Chen, Yu-Chi; Ko, Wen-Ching; Liou, Chang-Ho; Wu, Wen-Jong; Lee, Chih-Kung
2011-04-01
Recently, the development of flexible electret based electrostatic actuator has been widely discussed. The devices was shown to have high sound quality, energy saving, flexible structure and can be cut to any shape. However, achieving uniform charge on the electret diaphragm is one of the most critical processes needed to have the speaker ready for large-scale production. In this paper, corona discharge equipment contains multi-corona probes and grid bias was set up to inject spatial charges within the electret diaphragm. The optimal multi-corona probes system was adjusted to achieve uniform charge distribution of electret diaphragm. The processing conditions include the distance between the corona probes, the voltages of corona probe and grid bias, etc. We assembled the flexible electret loudspeakers first and then measured their sound pressure and beam pattern. The uniform charge distribution within the electret diaphragm based flexible electret loudspeaker provided us with the opportunity to shape the loudspeaker arbitrarily and to tailor the sound distribution per specifications request. Some of the potential futuristic applications for this device such as sound poster, smart clothes, and sound wallpaper, etc. were discussed as well.
Microelectromechanical ratcheting apparatus
Barnes, Stephen M.; Miller, Samuel L.; Jensen, Brian D.; Rodgers, M. Steven; Burg, Michael S.
2001-01-01
A microelectromechanical (MEM) ratcheting apparatus is disclosed which includes an electrostatic or thermal actuator that drives a moveable member in the form of a ring gear, stage, or rack. Motion is effected by one or more reciprocating pawls driven by the actuator in a direction that is parallel to, in line with, or tangential to the path. The reciprocating pawls engage indexing elements (e.g. teeth or pins) on the moveable member to incrementally move the member along a curved or straight path with the ability to precisely control and determine the position of the moveable member. The MEM apparatus can be formed on a silicon substrate by conventional surface micromachining methods.
Allen, James J.; Sinclair, Michael B.; Dohner, Jeffrey L.
2005-11-22
A microelectromechanical (MEM) device for redirecting incident light is disclosed. The MEM device utilizes a pair of electrostatic actuators formed one above the other from different stacked and interconnected layers of polysilicon to move or tilt an overlying light-reflective plate (i.e. a mirror) to provide a reflected component of the incident light which can be shifted in phase or propagation angle. The MEM device, which utilizes leveraged bending to provide a relatively-large vertical displacement up to several microns for the light-reflective plate, has applications for forming an electrically-programmable diffraction grating (i.e. a polychromator) or a micromirror array.
NASA Astrophysics Data System (ADS)
Tsushima, Takafumi; Asahi, Yoichi; Tanigawa, Hiroshi; Furutsuka, Takashi; Suzuki, Kenichiro
2018-06-01
In this paper, we describe p–n diode actuators that are formed in the lateral direction on resonators. Because previously reported p–n diode actuators, which were driven by a force parallel to the electrostatic force induced in a p–n diode, were fabricated in the perpendicular direction to the surface, the fabrication process to satisfy the requirement of realizing a p–n junction set in the middle of the plate thickness has been difficult. The resonators in this work are driven by p–n diodes formed in the lateral direction, making the process easy. We have fabricated a silicon ring resonator that has in-plane vibration using p–n–p and n–p–n diode actuators formed in the lateral direction. First, we consider a space charge model that can sufficiently accurately describe the force induced in p–n diode actuators and compare it with the capacitance model used in most computer simulations. Then, we show that multiplying the vibration amplitude calculated by computer simulation by the modification coefficient of 4/3 provides the vibration amplitude in the p–n diode actuators. Good agreement of the theory with experimental results of the in-plane vibration measured for silicon ring resonators is obtained. The computer simulation is very useful for evaluating various vibration modes in resonators driven by the p–n diode actuators. The small amplitude of the p–n diode actuator measured in this work is expected to increase greatly with increased doping of the actuator.
Developments and Control of Biocompatible Conducting Polymer for Intracorporeal Continuum Robots.
Chikhaoui, Mohamed Taha; Benouhiba, Amine; Rougeot, Patrick; Rabenorosoa, Kanty; Ouisse, Morvan; Andreff, Nicolas
2018-04-30
Dexterity of robots is highly required when it comes to integration for medical applications. Major efforts have been conducted to increase the dexterity at the distal parts of medical robots. This paper reports on developments toward integrating biocompatible conducting polymers (CP) into inherently dexterous concentric tube robot paradigm. In the form of tri-layer thin structures, CP micro-actuators produce high strains while requiring less than 1 V for actuation. Fabrication, characterization, and first integrations of such micro-actuators are presented. The integration is validated in a preliminary telescopic soft robot prototype with qualitative and quantitative performance assessment of accurate position control for trajectory tracking scenarios. Further, CP micro-actuators are integrated to a laser steering system in a closed-loop control scheme with displacements up to 5 mm. Our first developments aim toward intracorporeal medical robotics, with miniaturized actuators to be embedded into continuum robots.
Large micromirror array for multi-object spectroscopy in space
NASA Astrophysics Data System (ADS)
Canonica, Michael; Zamkotsian, Frédéric; Lanzoni, Patrick; Noell, Wilfried
2017-11-01
Multi-object spectroscopy (MOS) is a powerful tool for space and ground-based telescopes for the study of the formation and evolution of galaxies. This technique requires a programmable slit mask for astronomical object selection. We are engaged in a European development of micromirror arrays (MMA) for generating reflective slit masks in future MOS, called MIRA. The 100 x 200 μm2 micromirrors are electrostatically tilted providing a precise angle. The main requirements are cryogenic environment capabilities, precise and uniform tilt angle over the whole device, uniformity of the mirror voltage-tilt hysteresis and a low mirror deformation. A first MMA with single-crystal silicon micromirrors was successfully designed, fabricated and tested. A new generation of micromirror arrays composed of 2048 micromirrors (32 x 64) and modelled for individual addressing were fabricated using fusion and eutectic wafer-level bonding. These micromirrors without coating show a peak-to-valley deformation less than 10 nm, a tilt angle of 24° for an actuation voltage of 130 V. Individual addressing capability of each mirror has been demonstrated using a line-column algorithm based on an optimized voltage-tilt hysteresis. Devices are currently packaged, wire-bonded and integrated to a dedicated electronics to demonstrate the individual actuation of all micromirrors on an array. An operational test of this large array with gold coated mirrors has been done at cryogenic temperature (162 K): the micromirrors were actuated successfully before, during and after the cryogenic experiment. The micromirror surface deformation was measured at cryo and is below 30 nm peak-to-valley.
Characterization of contour shapes achievable with a MEMS deformable mirror
NASA Astrophysics Data System (ADS)
Zhou, Yaopeng; Bifano, Thomas
2006-01-01
An important consideration in the design of an adaptive optics controller is the range of physical shapes required by the DM to compensate the existing aberrations. Conversely, if the range of surface shapes achievable with a DM is known, its suitability for a particular AO application can be determined. In this paper, we characterize one MEMS DM that was recently developed for vision science applications. The device has 140 actuators supporting a continuous face sheet deformable mirror having 4mm square aperture. The total range of actuation is about 4μm, achieved using electrostatic actuation in an architecture that has been described previously. We incorporated the MEMS mirror into an adaptive optics (AO) testbed to measure its capacity to transform an initially planar wavefront into a wavefront having one of thirty-six orthogonal shapes corresponding to the first seven orders of Zernike polynomials. The testbed included a superluminescent diode source emitting light with a wavelength 630nm, a MEMS DM, and a Shack Hartmann wavefront sensor (SHWS). The DM was positioned in a plane conjugate to the SHWS lenslets, using a pair of relay lenses. Wavefront slope measurements provided by the SHWS were used in an integral controller to regulate DM shape. The control software used the difference between the the wavefront measured by the SHWS and the desired (reference) wavefront as feedback for the DM. The DM is able to produce all 36 terms with a wavefront height root mean square (RMS) from 1.35μm for the lower order Zernike shapes to 0.2μm for the 7th order.
SOIMUMPs micromirror scanner and its application in laser line generator
NASA Astrophysics Data System (ADS)
Zuo, Hui; Nia, Farzad Hossein; He, Siyuan
2017-01-01
A SOIMUMPs 1-D rotation micromirror is presented. The micromirror is driven by electrostatic vertical comb-drive actuators to work at resonant mode to scan a laser beam. The residual stress in the metal film coated on the SOI device layer is used to generate vertical offset in the comb-drive actuators with the combs located far from the rotation axis to increase the torque. A concave lens is designed to put after the micromirror to amplify the laser beam scanning angle, as well as to compensate for the curvature of the micromirror. A micromirror-based scanning system is used to build a laser line generator with a continuously adjustable fan angle, which solves the limitation of a fixed fan angle in conventional laser line generators. Prototypes of the micromirror and the laser line generator are fabricated and measured. A driving circuit that can generate a high-voltage square wave driving signal with adjustable amplitude and frequency is designed. All the parts are integrated in a 44 mm×88 mm×44 mm box and powered with a single 5-V power supply. The optical scanning angle under 100 V with or without the concave lens is 27 deg and 12 deg, respectively, at a resonant frequency of 900 Hz.
NASA Astrophysics Data System (ADS)
Nelson, Hunter Barton
A simplified second-order transfer function actuator model used in most flight dynamics applications cannot easily capture the effects of different actuator parameters. The present work integrates a nonlinear actuator model into a nonlinear state space rotorcraft model to determine the effect of actuator parameters on key flight dynamics. The completed actuator model was integrated with a swashplate kinematics where step responses were generated over a range of key hydraulic parameters. The actuator-swashplate system was then introduced into a nonlinear state space rotorcraft simulation where flight dynamics quantities such as bandwidth and phase delay analyzed. Frequency sweeps were simulated for unique actuator configurations using the coupled nonlinear actuator-rotorcraft system. The software package CIFER was used for system identification and compared directly to the linearized models. As the actuator became rate saturated, the effects on bandwidth and phase delay were apparent on the predicted handling qualities specifications.
A smart microelectromechanical sensor and switch triggered by gas
NASA Astrophysics Data System (ADS)
Bouchaala, Adam; Jaber, Nizar; Shekhah, Osama; Chernikova, Valeriya; Eddaoudi, Mohamed; Younis, Mohammad I.
2016-07-01
There is an increasing interest to realize smarter sensors and actuators that can deliver a multitude of sophisticated functionalities while being compact in size and of low cost. We report here combining both sensing and actuation on the same device based on a single microstructure. Specifically, we demonstrate a smart resonant gas (mass) sensor, which in addition to being capable of quantifying the amount of absorbed gas, can be autonomously triggered as an electrical switch upon exceeding a preset threshold of absorbed gas. Toward this, an electrostatically actuated polymer microbeam is fabricated and is then functionalized with a metal-organic framework, namely, HKUST-1. The microbeam is demonstrated to absorb vapors up to a certain threshold, after which is shown to collapse through the dynamic pull-in instability. Upon pull-in, the microstructure can be made to act as an electrical switch to achieve desirable actions, such as alarming.
Programmable Aperture with MEMS Microshutter Arrays
NASA Technical Reports Server (NTRS)
Moseley, Samuel; Li, Mary; Kutyrev, Alexander; Kletetschka, Gunther; Fettig, Rainer
2011-01-01
A microshutter array (MSA) has been developed for use as an aperture array for multi-object selections in James Webb Space Telescope (JWST) technology. Light shields, molybdenum nitride (MoN) coating on shutters, and aluminum/aluminum oxide coatings on interior walls are put on each shutter for light leak prevention, and to enhance optical contrast. Individual shutters are patterned with a torsion flexure that permits shutters to open 90 deg. with a minimized mechanical stress concentration. The shutters are actuated magnetically, latched, and addressed electrostatically. Also, micromechanical features are tailored onto individual shutters to prevent stiction. An individual shutter consists of a torsion hinge, a shutter blade, a front electrode that is coated on the shutter blade, a backside electrode that is coated on the interior walls, and a magnetic cobalt-iron coating. The magnetic coating is patterned into stripes on microshutters so that shutters can respond to an external magnetic field for the magnetic actuation. A set of column electrodes is placed on top of shutters, and a set of row electrodes on sidewalls is underneath the shutters so that they can be electrostatically latched open. A linear permanent magnet is aligned with the shutter rows and is positioned above a flipped upside-down array, and sweeps across the array in a direction parallel to shutter columns. As the magnet sweeps across the array, sequential rows of shutters are rotated from their natural horizontal orientation to a vertical open position, where they approach vertical electrodes on the sidewalls. When the electrodes are biased with a sufficient electrostatic force to overcome the mechanical restoring force of torsion bars, shutters remain latched to vertical electrodes in their open state. When the bias is removed, or is insufficient, the shutters return to their horizontal, closed positions. To release a shutter, both the electrode on the shutter and the one on the back wall where the shutter sits are grounded. The shutters with one or both ungrounded electrodes are held open. Sub-micron bumps underneath light shields and silicon ribs on back walls are the two features to prevent stiction. These features ensure that the microshutter array functions properly in mechanical motions. The MSA technology can be used primarily in multi-object imaging and spectroscopy, photomask generation, light switches, and in the stepper equipment used to make integrated circuits and MEMS (microelectromechanical systems) devices.
Integrated sensing and actuation of dielectric elastomer actuator
NASA Astrophysics Data System (ADS)
Ye, Zhihang; Chen, Zheng
2017-04-01
Dielectric elastomer (DE) is a type of soft actuating material, the shape of which can be changed under electrical voltage stimuli. DE materials have great potential in applications involving energy harvesters, micro-manipulators, and adaptive optics. In this paper, a stripe DE actuator with integrated sensing and actuation is designed and fabricated, and characterized through several experiments. Considering the actuator's capacitor-like structure and its deform mechanism, detecting the actuator's displacement through the actuator's circuit feature is a potential approach. A self-sensing scheme that adds a high frequency probing signal into actuation signal is developed. A fast Fourier transform (FFT) algorithm is used to extract the magnitude change of the probing signal, and a non-linear fitting method and artificial neural network (ANN) approach are utilized to reflect the relationship between the probing signal and the actuator's displacement. Experimental results showed this structure has capability of performing self-sensing and actuation, simultaneously. With an enhanced ANN, the self-sensing scheme can achieve 2.5% accuracy.
Wafer-Level Membrane-Transfer Process for Fabricating MEMS
NASA Technical Reports Server (NTRS)
Yang, Eui-Hyeok; Wiberg, Dean
2003-01-01
A process for transferring an entire wafer-level micromachined silicon structure for mating with and bonding to another such structure has been devised. This process is intended especially for use in wafer-level integration of microelectromechanical systems (MEMS) that have been fabricated on dissimilar substrates. Unlike in some older membrane-transfer processes, there is no use of wax or epoxy during transfer. In this process, the substrate of a wafer-level structure to be transferred serves as a carrier, and is etched away once the transfer has been completed. Another important feature of this process is that two electrodes constitutes an electrostatic actuator array. An SOI wafer and a silicon wafer (see Figure 1) are used as the carrier and electrode wafers, respectively. After oxidation, both wafers are patterned and etched to define a corrugation profile and electrode array, respectively. The polysilicon layer is deposited on the SOI wafer. The carrier wafer is bonded to the electrode wafer by using evaporated indium bumps. The piston pressure of 4 kPa is applied at 156 C in a vacuum chamber to provide hermetic sealing. The substrate of the SOI wafer is etched in a 25 weight percent TMAH bath at 80 C. The exposed buried oxide is then removed by using 49 percent HF droplets after an oxygen plasma ashing. The SOI top silicon layer is etched away by using an SF6 plasma to define the corrugation profile, followed by the HF droplet etching of the remaining oxide. The SF6 plasma with a shadow mask selectively etches the polysilicon membrane, if the transferred membrane structure needs to be patterned. Electrostatic actuators with various electrode gaps have been fabricated by this transfer technique. The gap between the transferred membrane and electrode substrate is very uniform ( 0.1 m across a wafer diameter of 100 mm, provided by optimizing the bonding control). Figure 2 depicts the finished product.
NASA Astrophysics Data System (ADS)
Wickramasinghe, Viresh K.; Hagood, Nesbitt W.
2004-10-01
The primary objective of this work was to perform material characterization of the active fiber composite (AFC) actuator system for the Boeing active material rotor (AMR) blade application. The purpose of the AMR was to demonstrate active vibration control in helicopters through integral twist-actuation of the blade. The AFCs were a new structural actuator system consisting of piezoceramic fibers embedded in an epoxy matrix and sandwiched between interdigitated electrodes to enhance actuation performance. These conformable actuators were integrated directly into the blade spar laminate as active plies within the composite structure to perform structural control. Therefore, extensive electromechanical material characterization was required to evaluate AFCs both as actuators and as structural components of the blade. The characterization tests designed to extract important electromechanical properties under simulated blade operating conditions included nominal actuation tests, stress-strain tests and actuation under tensile load tests. This paper presents the test results as well as the comprehensive testing procedure developed to evaluate the relevant properties of the AFCs for structural application. The material characterization tests provided an invaluable insight into the behavior of the AFCs under various electromechanical conditions. The results from this comprehensive material characterization of the AFC actuator system supported the design and operation of the AMR blades scheduled for wind tunnel tests.
Nonlinear-Based MEMS Sensors and Active Switches for Gas Detection.
Bouchaala, Adam; Jaber, Nizar; Yassine, Omar; Shekhah, Osama; Chernikova, Valeriya; Eddaoudi, Mohamed; Younis, Mohammad I
2016-05-25
The objective of this paper is to demonstrate the integration of a MOF thin film on electrostatically actuated microstructures to realize a switch triggered by gas and a sensing algorithm based on amplitude tracking. The devices are based on the nonlinear response of micromachined clamped-clamped beams. The microbeams are coated with a metal-organic framework (MOF), namely HKUST-1, to achieve high sensitivity. The softening and hardening nonlinear behaviors of the microbeams are exploited to demonstrate the ideas. For gas sensing, an amplitude-based tracking algorithm is developed to quantify the captured quantity of gas. Then, a MEMS switch triggered by gas using the nonlinear response of the microbeam is demonstrated. Noise analysis is conducted, which shows that the switch has high stability against thermal noise. The proposed switch is promising for delivering binary sensing information, and also can be used directly to activate useful functionalities, such as alarming.
NASA Technical Reports Server (NTRS)
Patterson, Richard; Hammoud, Ahmad
2009-01-01
Semiconductor chips based on MEMS (Micro-Electro-Mechanical Systems) technology, such as sensors, transducers, and actuators, are becoming widely used in today s electronics due to their high performance, low power consumption, tolerance to shock and vibration, and immunity to electro-static discharge. In addition, the MEMS fabrication process allows for the miniaturization of individual chips as well as the integration of various electronic circuits into one module, such as system-on-a-chip. These measures would simplify overall system design, reduce parts count and interface, improve reliability, and reduce cost; and they would meet requirements of systems destined for use in space exploration missions. In this work, the performance of a recently-developed MEMS voltage-controlled oscillator was evaluated under a wide temperature range. Operation of this new commercial-off-the-shelf (COTS) device was also assessed under thermal cycling to address some operational conditions of the space environment
Apparatus and method for transforming living cells
Okandan, Murat; Galambos, Paul C.
2003-11-11
An apparatus and method are disclosed for in vitro transformation of living cells. The apparatus, which is formed as a microelectromechanical device by surface micromachining, can be used to temporarily disrupt the cell walls or membrane of host cells one at a time so that a particular substance (e.g. a molecular tag, nucleic acid, bacteria, virus etc.) can be introduced into the cell. Disruption of the integrity of the host cells (i.e. poration) can be performed mechanically or electrically, or by both while the host cells are contained within a flow channel. Mechanical poration is possible using a moveable member which has a pointed or serrated edge and which is driven by an electrostatic actuator to abrade, impact or penetrate the host cell. Electroporation is produced by generating a relatively high electric field across the host cell when the host cell is located in the flow channel between a pair of electrodes having a voltage applied therebetween.
Nonlinear-Based MEMS Sensors and Active Switches for Gas Detection
Bouchaala, Adam; Jaber, Nizar; Yassine, Omar; Shekhah, Osama; Chernikova, Valeriya; Eddaoudi, Mohamed; Younis, Mohammad I.
2016-01-01
The objective of this paper is to demonstrate the integration of a MOF thin film on electrostatically actuated microstructures to realize a switch triggered by gas and a sensing algorithm based on amplitude tracking. The devices are based on the nonlinear response of micromachined clamped-clamped beams. The microbeams are coated with a metal-organic framework (MOF), namely HKUST-1, to achieve high sensitivity. The softening and hardening nonlinear behaviors of the microbeams are exploited to demonstrate the ideas. For gas sensing, an amplitude-based tracking algorithm is developed to quantify the captured quantity of gas. Then, a MEMS switch triggered by gas using the nonlinear response of the microbeam is demonstrated. Noise analysis is conducted, which shows that the switch has high stability against thermal noise. The proposed switch is promising for delivering binary sensing information, and also can be used directly to activate useful functionalities, such as alarming. PMID:27231914
Larsen, T; Doll, J C; Loizeau, F; Hosseini, N; Peng, A W; Fantner, G; Ricci, A J; Pruitt, B L
2017-01-01
Electrothermal actuators have many advantages compared to other actuators used in Micro-Electro-Mechanical Systems (MEMS). They are simple to design, easy to fabricate and provide large displacements at low voltages. Low voltages enable less stringent passivation requirements for operation in liquid. Despite these advantages, thermal actuation is typically limited to a few kHz bandwidth when using step inputs due to its intrinsic thermal time constant. However, the use of pre-shaped input signals offers a route for reducing the rise time of these actuators by orders of magnitude. We started with an electrothermally actuated cantilever having an initial 10-90% rise time of 85 μs in air and 234 μs in water for a standard open-loop step input. We experimentally characterized the linearity and frequency response of the cantilever when operated in air and water, allowing us to obtain transfer functions for the two cases. We used these transfer functions, along with functions describing desired reduced rise-time system responses, to numerically simulate the required input signals. Using these pre-shaped input signals, we improved the open-loop 10-90% rise time from 85 μs to 3 μs in air and from 234 μs to 5 μs in water, an improvement by a factor of 28 and 47, respectively. Using this simple control strategy for MEMS electrothermal actuators makes them an attractive alternative to other high speed micromechanical actuators such as piezoelectric stacks or electrostatic comb structures which are more complex to design, fabricate, or operate.
Microelectromechanical reciprocating-tooth indexing apparatus
Allen, James J.
1999-01-01
An indexing apparatus is disclosed that can be used to rotate a gear or move a rack in a precise, controllable manner. The indexing apparatus, based on a reciprocating shuttle driven by one or more actuators, can be formed either as a micromachine, or as a millimachine. The reciprocating shuttle of the indexing apparatus can be driven by a thermal, electrostatic or electromagnetic actuator, with one or more wedge-shaped drive teeth of the shuttle being moveable to engage and slide against indexing teeth on the gear or rack, thereby moving the gear or rack. The indexing apparatus can be formed by either surface micromachining processes or LIGA processes, depending on the size of the apparatus that is to be formed.
Flexible Low-Mass Devices and Mechanisms Actuated by Electroactive Polymers
NASA Technical Reports Server (NTRS)
Bar-Cohen, Y; Leary, S.; Shahinpoor, M.; Harrison, J. O.; Smith, J.
1999-01-01
Miniature, lightweight, miser actuators that operate similar to biological muscles can be used to develop robotic devices with unmatched capabilities to impact many technology areas. Electroactive polymers (EAP) offer the potential to producing such actuators and their main attractive feature is their ability to induce relatively large bending or longitudinal strain. Generally, these materials produce a relatively low force and the applications that can be considered at the current state of the art are relatively limited. This reported study is concentrating on the development of effective EAPs and the resultant enabling mechanisms employing their unique characteristics. Several EAP driven mechanisms, which emulate human hand, were developed including a gripper, manipulator arm and surface wiper. The manipulator arm was made of a composite rod with an EAP actuator consisting of a scrolled rope that is activated longitudinally by an electrostatic field. A gripper was made to serve as an end effector and it consisted of multiple bending EAP fingers for grabbing and holding such objects as rocks. An EAP surface wiper was developed to operate like a human finger and to demonstrate the potential to remove dust from optical and IR windows as well as solar cells. These EAP driven devices are taking advantage of the large actuation displacement of these materials but there is need for a significantly greater actuation force capability.
1992-04-30
Figure 111.2.16 Stress Contour After 800 Cycles With Smart Actuation... . . . . . . . . 37 Figure 111.3.1 A Schematic of an Electrostatic Micromotor ...43 Figure 111.3.2 Top and Cross-Sectional Views of a Micromotor ..... . ............ ... 44 Figure 111.3.3 Shape Memory Alloy...as a Micromotor . ... 45 Figure 111.3.4 A Typical Induced Drive Mechanism ........ .. 46 Figure 111.3.5 Ceramic Plate. . . . . ............. 47 Figure
NASA Astrophysics Data System (ADS)
Sathya, S.; Pavithra, M.; Muruganand, S.
2016-09-01
This paper presents an actuation mechanism based on the interdigitated comb drive MEMS resonator. The important role of that device is to establish MEMS resonators for the second order systems. Comb drive model is one of the basic model which uses the principle of electrostatic and force can be generated for the capacitive sensors. This work is done by overlapping movable and fixed comb fingers which produces an energy. The specific range of the polyimide material properties of young's modulus of 3.1GPa and density of 1300 Kg/m3. Results are shown in the structural domain performance of a lateral motion which corresponds to the applying voltage between the interdigitated comb fingers. It has laterally driven about 40pm with driving voltage. Also the resonance frequency 24Hz and 15Hz with high quality factors are depending on the spring length 260pm and 360pm and structure thickness of 2μm and 5 μm. Here Finite element method (FEM) is used to simulate the various physics scenario and it is designed as two dimensional structure multiphysics domain. The prototype of comb drive MEMS resonator has been suitable for energy harvesting system applications.
Linkage design effect on the reliability of surface-micromachined microengines driving a load
NASA Astrophysics Data System (ADS)
Tanner, Danelle M.; Peterson, Kenneth A.; Irwin, Lloyd W.; Tangyunyong, Paiboon; Miller, William M.; Eaton, William P.; Smith, Norman F.; Rodgers, M. Steven
1998-09-01
The reliability of microengines is a function of the design of the mechanical linkage used to connect the electrostatic actuator to the drive. We have completed a series of reliability stress tests on surface micromachined microengines driving an inertial load. In these experiments, we used microengines that had pin mechanisms with guides connecting the drive arms to the electrostatic actuators. Comparing this data to previous results using flexure linkages revealed that the pin linkage design was less reliable. The devices were stressed to failure at eight frequencies, both above and below the measured resonance frequency of the microengine. Significant amounts of wear debris were observed both around the hub and pin joint of the drive gear. Additionally, wear tracks were observed in the area where the moving shuttle rubbed against the guides of the pin linkage. At each frequency, we analyzed the statistical data yielding a lifetime (t50) for median cycles to failure and (sigma) , the shape parameter of the distribution. A model was developed to describe the failure data based on fundamental wear mechanisms and forces exhibited in mechanical resonant systems. The comparison to the model will be discussed.
Vertical electrostatic force in MEMS cantilever IR sensor
NASA Astrophysics Data System (ADS)
Rezadad, Imen; Boroumand Azad, Javaneh; Smith, Evan M.; Alhasan, Ammar; Peale, Robert E.
2014-06-01
A MEMS cantilever IR detector that repetitively lifts from the surface under the influence of a saw-tooth electrostatic force, where the contact duty cycle is a measure of the absorbed IR radiation, is analyzed. The design is comprised of three parallel conducting plates. Fixed buried and surface plates are held at opposite potential. A moveable cantilever is biased the same as the surface plate. Calculations based on energy methods with position-dependent capacity and electrostatic induction coefficients demonstrate the upward sign of the force on the cantilever and determine the force magnitude. 2D finite element method calculations of the local fields confirm the sign of the force and determine its distribution across the cantilever. The upward force is maximized when the surface plate is slightly larger than the other two. The electrostatic repulsion is compared with Casimir sticking force to determine the maximum useful contact area. MEMS devices were fabricated and the vertical displacement of the cantilever was observed in a number of experiments. The approach may be applied also to MEMS actuators and micromirrors.
NASA Astrophysics Data System (ADS)
Deterre, M.; Risquez, S.; Bouthaud, B.; Dal Molin, R.; Woytasik, M.; Lefeuvre, E.
2013-12-01
We present an innovative multilayer out-of-plane electrostatic energy harvesting device conceived in view of scavenging energy from regular blood pressure in the heart. This concept involves the use of a deformable packaging for the implant in order to transmit the blood pressure to the electrostatic transducer. As shown in previous work, this is possible by using thin metal micro-bellows structure, providing long term hermeticity and high flexibility. The design of the electrostatic device has overcome several challenges such as the very low frequency of the mechanical excitation (1 to 2 Hz) and the small available room in the medical implant. Analytical and numerical models have been used to maximize the capacitance variation, and hence to optimize the energy conversion. We have theoretically shown that a 25-layer transducer with 6-mm diameter and 1-mm thickness could harvest at least 20 mJ per heart beat in the left ventricle under a maximum voltage of 75 V. These results show that the proposed concept is promising and could power the next generation of leadless pacemakers.
A study of electrostatic spring softening for dual-axis micromirror
NASA Astrophysics Data System (ADS)
Zhao, Yi; E H Tay, Francis; Zhou, Guangya; Siong Chau, Fook
2006-08-01
Electrostatic spring softening is an important characteristic of electrostatically actuated dual-axis micromirror, since it lowers the resonant frequencies. This paper presents an approach based on approximating the electrostatic forces by the first-order Taylor's series expansion to investigate this characteristic. The dual-axis micromirror studied in this paper has three motion modes, two torsional (about x- and y-axis, respectively) and one translational (about z-axis). The stiffnesses of all these modes are softened by a DC bias voltage applied to the mirror plate. The resonant frequencies are lowered with the increment of the bias voltage. The relationship of the bias voltage and the resonant frequencies of all the motion modes is derived. The analytical results show that the resonant frequency curves are affected by the capacitor geometries, i.e. the gap between the mirror plate and the electrodes and the electrodes size. The lowering curves drop slowly when the bias voltage is small. While for large bias voltage, the lowering curves drop rapidly. The experiment results are consistent with those obtained by the analytical approach.
Integrated modeling for parametric evaluation of smart x-ray optics
NASA Astrophysics Data System (ADS)
Dell'Agostino, S.; Riva, M.; Spiga, D.; Basso, S.; Civitani, Marta
2014-08-01
This work is developed in the framework of AXYOM project, which proposes to study the application of a system of piezoelectric actuators to grazing-incidence X-ray telescope optic prototypes: thin glass or plastic foils, in order to increase their angular resolution. An integrated optomechanical model has been set up to evaluate the performances of X-ray optics under deformation induced by Piezo Actuators. Parametric evaluation has been done looking at different number and position of actuators to optimize the outcome. Different evaluations have also been done over the actuator types, considering Flexible Piezoceramic, Multi Fiber Composites piezo actuators, and PVDF.
Active Piezoelectric Structures for Tip Clearance Management Assessed
NASA Technical Reports Server (NTRS)
1995-01-01
Managing blade tip clearance in turbomachinery stages is critical to developing advanced subsonic propulsion systems. Active casing structures with embedded piezoelectric actuators appear to be a promising solution. They can control static and dynamic tip clearance, compensate for uneven deflections, and accomplish electromechanical coupling at the material level. In addition, they have a compact design. To assess the feasibility of this concept and assist the development of these novel structures, the NASA Lewis Research Center developed in-house computational capabilities for composite structures with piezoelectric actuators and sensors, and subsequently used them to simulate candidate active casing structures. The simulations indicated the potential of active casings to modify the blade tip clearance enough to improve stage efficiency. They also provided valuable design information, such as preliminary actuator configurations (number and location) and the corresponding voltage patterns required to compensate for uneven casing deformations. An active ovalization of a casing with four discrete piezoceramic actuators attached on the outer surface is shown. The center figure shows the predicted radial displacements along the hoop direction that are induced when electrostatic voltage is applied at the piezoceramic actuators. This work, which has demonstrated the capabilities of in-house computational models to analyze and design active casing structures, is expected to contribute toward the development of advanced subsonic engines.
CMOS compatible thin-film ALD tungsten nanoelectromechanical devices
NASA Astrophysics Data System (ADS)
Davidson, Bradley Darren
This research focuses on the development of a novel, low-temperature, CMOS compatible, atomic-layer-deposition (ALD) enabled NEMS fabrication process for the development of ALD Tungsten (WALD) NEMS devices. The devices are intended for use in CMOS/NEMS hybrid systems, and NEMS based micro-processors/controllers capable of reliable operation in harsh environments not accessible to standard CMOS technologies. The majority of NEMS switches/devices to date have been based on carbon-nano-tube (CNT) designs. The devices consume little power during actuation, and as expected, have demonstrated actuation voltages much smaller than MEMS switches. Unfortunately, NEMS CNT switches are not typically CMOS integrable due to the high temperatures required for their growth, and their fabrication typically results in extremely low and unpredictable yields. Thin-film NEMS devices offer great advantages over reported CNT devices for several reasons, including: higher fabrication yields, low-temperature (CMOS compatible) deposition techniques like ALD, and increased control over design parameters/device performance metrics, i.e., device geometry. Furthermore, top-down, thin-film, nano-fabrication techniques are better capable of producing complicated device geometries than CNT based processes, enabling the design and development of multi-terminal switches well-suited for low-power hybrid NEMS/CMOS systems as well as electromechanical transistors and logic devices for use in temperature/radiation hard computing architectures. In this work several novel, low-temperature, CMOS compatible fabrication technologies, employing WALD as a structural layer for MEMS or NEMS devices, were developed. The technologies developed are top-down nano-scale fabrication processes based on traditional micro-machining techniques commonly used in the fabrication of MEMS devices. Using these processes a variety of novel WALD NEMS devices have been successfully fabricated and characterized. Using two different WALD fabrication technologies two generations of 2-terminal WALD NEMS switches have been developed. These devices have functional gap heights of 30-50 nm, and actuation voltages typically ranging from 3--5 Volts. Via the extension of a two terminal WALD technology novel 3-terminal WALD NEMS devices were developed. These devices have actuation voltages ranging from 1.5--3 Volts, reliabilities in excess of 2 million cycles, and have been designed to be the fundamental building blocks for WALD NEMS complementary inverters. Through the development of these devices several advancements in the modeling and design of thin-film NEMS devices were achieved. A new model was developed to better characterize pre-actuation currents commonly measured for NEMS switches with nano-scale gate-to-source gap heights. The developed model is an extension of the standard field-emission model and considers the electromechanical response, and electric field effects specific to thin-film NEMS switches. Finally, a multi-physics FEM/FD based model was developed to simulate the dynamic behavior of 2 or 3-terminal electrostatically actuated devices whose electrostatic domains have an aspect ratio on the order of 10-3. The model uses a faux-Lagrangian finite difference method to solve Laplaces equation in a quasi-statatically deforming domain. This model allows for the numerical characterization and design of thin-film NEMS devices not feasible using typical non-specialized BEM/FEM based software. Using this model several novel and feasible designs for fixed-fixed 3-terminal WALD NEMS switches capable for the construction of complementary inverters were discovered.
An Optimized Integrator Windup Protection Technique Applied to a Turbofan Engine Control
NASA Technical Reports Server (NTRS)
Watts, Stephen R.; Garg, Sanjay
1995-01-01
This paper introduces a new technique for providing memoryless integrator windup protection which utilizes readily available optimization software tools. This integrator windup protection synthesis provides a concise methodology for creating integrator windup protection for each actuation system loop independently while assuring both controller and closed loop system stability. The individual actuation system loops' integrator windup protection can then be combined to provide integrator windup protection for the entire system. This technique is applied to an H(exp infinity) based multivariable control designed for a linear model of an advanced afterburning turbofan engine. The resulting transient characteristics are examined for the integrated system while encountering single and multiple actuation limits.
Chen, Chang-Hsiao; Chuang, Shih-Chang; Su, Huan-Chieh; Hsu, Wei-Lun; Yew, Tri-Rung; Chang, Yen-Chung; Yeh, Shih-Rung; Yao, Da-Jeng
2011-05-07
We designed, fabricated and tested a novel three-dimensional flexible microprobe to record neural signals of a lateral giant nerve fiber of the escape circuit of an American crayfish. An electrostatic actuation folded planar probes into three-dimensional neural probes with arbitrary orientations for neuroscientific applications. A batch assembly based on electrostatic forces simplified the fabrication and was non-toxic. A novel fabrication for these three-dimensional flexible probes used SU-8 and Parylene technology. The mechanical strength of the neural probe was great enough to penetrate into a bio-gel. A flexible probe both decreased the micromotion and alleviated tissue encapsulation of the implant caused by chronic inflammation of tissue when an animal breathes or moves. The cortex consisted of six horizontal layers, and the neurons of the cortex were arranged in vertical structures; the three-dimensional microelectrode arrays were suitable to investigate the cooperative activity for neurons in horizontal separate layers and in vertical cortical columns. With this flexible probe we recorded neural signals of a lateral giant cell from an American crayfish. The response amplitude of action potentials was about 343 µV during 1 ms period; the average recorded data had a ratio of signal to noise as great as 30.22 ± 3.58 dB. The improved performance of this electrode made feasible the separation of neural signals according to their distinct shapes. The cytotoxicity indicated a satisfactory biocompatibility and non-toxicity of the flexible device fabricated in this work. © The Royal Society of Chemistry 2011
Architecture for distributed actuation and sensing using smart piezoelectric elements
NASA Astrophysics Data System (ADS)
Etienne-Cummings, Ralph; Pourboghrat, Farzad; Maruboyina, Hari K.; Abrate, Serge; Dhali, Shirshak K.
1998-07-01
We discuss vibration control of a cantilevered plate with multiple sensors and actuators. An architecture is chosen to minimize the number of control and sensing wires required. A custom VLSI chip, integrated with the sensor/actuator elements, controls the local behavior of the plate. All the actuators are addressed in parallel; local decode logic selects which actuator is stimulated. Downloaded binary data controls the applied voltage and modulation frequency for each actuator, and High Voltage MOSFETs are used to activate them. The sensors, which are independent adjacent piezoelectric ceramic elements, can be accessed in a random or sequential manner. An A/D card and GPIB interconnected test equipment allow a PC to read the sensors' outputs and dictate the actuation procedure. A visual programming environment is used to integrate the sensors, controller and actuators. Based on the constitutive relations for the piezoelectric material, simple models for the sensors and actuators are derived. A two level hierarchical robust controller is derived for motion control and for damping of vibrations.
Use of self-actuating and self-sensing cantilevers for imaging biological samples in fluid
Barbero, R J; Deutschinger, A; Todorov, V; Gray, D S; Belcher, A M; Rangelow, I W; Youcef-Toumi, K
2014-01-01
In this paper, we present a detailed investigation into the suitability of atomic force microscopy (AFM) cantilevers with integrated deflection sensor and micro-actuator for imaging of soft biological samples in fluid. The Si cantilevers are actuated using a micro-heater at the bottom end of the cantilever. Sensing is achieved through p-doped resistors connected in a Wheatstone bridge. We investigated the influence of the water on the cantilever dynamics, the actuation and the sensing mechanisms, as well as the crosstalk between sensing and actuation. Successful imaging of yeast cells in water using the integrated sensor and actuator shows the potential of the combination of this actuation and sensing method. This constitutes a major step towards the automation and miniaturization required to establish AFM in routine biomedical diagnostics and in vivo applications. PMID:19801750
Application of Inkjet-Printing Technology to Micro-Electro-Mechanical Systems
2014-05-01
dimensional MEMS using inkjet-printing metal nanoparticles and demonstrated resonant inductive coils, electrostatic-drive motors, and electrothermal actuators...telecommunications base stataions, satellites and defense systems [48]. 1.4 Printed Microshell Encapsulation In this thesis, a fabrication process was...that the solvent of the ink needs to be heat-compatible, which may limit the range of solvent that can be used. For example, most bio -compatible
Self-sensing of dielectric elastomer actuator enhanced by artificial neural network
NASA Astrophysics Data System (ADS)
Ye, Zhihang; Chen, Zheng
2017-09-01
Dielectric elastomer (DE) is a type of soft actuating material, the shape of which can be changed under electrical voltage stimuli. DE materials have promising usage in future’s soft actuators and sensors, such as soft robotics, energy harvesters, and wearable sensors. In this paper, a stripe DE actuator with integrated sensing capability is designed, fabricated, and characterized. Since the strip actuator can be approximated as a compliant capacitor, it is possible to detect the actuator’s displacement by analyzing the actuator’s impedance change. An integrated sensing scheme that adds a high frequency probing signal into actuation signal is developed. Electrical impedance changes in the probing signal are extracted by fast Fourier transform algorithm, and nonlinear data fitting methods involving artificial neural network are implemented to detect the actuator’s displacement. A series of experiments show that by improving data processing and analyzing methods, the integrated sensing method can achieve error level of lower than 1%.
Evaluation of actuators for the SDOF and MDOF active microgravity isolation systems
NASA Technical Reports Server (NTRS)
1993-01-01
The University of Virginia examined the design of actuators for both single-degree-of-freedom (SDOF) and multiple-degree-of-freedom (MDOF) active microgravity isolation systems. For SDOF systems, two actuators were considered: a special large gap magnetic actuator and a large stroke Lorentz actuator. The magnetic actuator was viewed to be of greater difficulty than the Lorentz actuator with little compelling technical advantage and was dropped from consideration. A Lorentz actuator was designed and built for the SDOF test rig using magnetic circuit and finite element analysis. The design and some experimental results are discussed. The University also examined the design of actuators for MDOF isolation systems. This includes design of an integrated 1 cm gap 6-DOF noncontacting magnetic suspension system and of a 'coarse' follower which permits the practical extension of magnetic suspension to large strokes. The proposed 'coarse' actuator was a closed kinematic chain manipulator known as a Stewart Platform. The integration of the two isolation systems together, the isolation tasks assigned to each, and possible control architectures were also explored. The results of this research are examined.
Satir, Sarp; Zahorian, Jaime; Degertekin, F. Levent
2014-01-01
A large signal, transient model has been developed to predict the output characteristics of a CMUT array operated in the non-collapse mode. The model is based on separation of the nonlinear electrostatic voltage-to-force relation and the linear acoustic array response. For linear acoustic radiation and crosstalk effects, the boundary element method is used. The stiffness matrix in the vibroacoustics calculations is obtained using static finite element analysis of a single membrane which can have arbitrary geometry and boundary conditions. A lumped modeling approach is used to reduce the order of the system for modeling the transient nonlinear electrostatic actuation. To accurately capture the dynamics of the non-uniform electrostatic force distribution over the CMUT electrode during large deflections, the membrane electrode is divided into patches shaped to match higher order membrane modes, each introducing a variable to the system model. This reduced order nonlinear lumped model is solved in the time domain using Simulink. The model has two linear blocks to calculate the displacement profile of the electrode patches and the output pressure for a given force distribution over the array, respectively. The force to array displacement block uses the linear acoustic model, and the Rayleigh integral is evaluated to calculate the pressure at any field point. Using the model, the transient transmitted pressure can be simulated for different large signal drive signal configurations. The acoustic model is verified by comparison to harmonic FEA in vacuum and fluid for high and low aspect ratio membranes as well as mass-loaded membranes. The overall Simulink model is verified by comparison to transient 3D FEA and experimental results for different large drive signals; and an example for a phased array simulation is given. PMID:24158297
Mechanical Rectification of Oscillatory Motion for High Torque Microactuators
NASA Astrophysics Data System (ADS)
You, Liang; Tabib-Azar, Massood
2004-03-01
High-torque and scalable rotational micromotors were designed, microfabricated using a 3 mask LPCVD polysilicon process, and characterized. Oscillatory motions generated by comb-drive actuators were rectified by a rotor with fins. The actuator periodically deforms the fins generating forces with tangential and normal components in the rotor. Tangential forces generate rotation. In comparison to the electrostatic side-drive micromotor (torque pN-m), the measured torques for these micromotors were much larger and reached 4.5 µN-m at 200Vpp applied to the comb-drive at 1 KHz. Both the comb-drive and the finned rotor are second-order resonant structures that, when coupled, result in interesting dynamic that manifests itself as different excitation (forward, reverse, stepping, and chaotic) modes of the rotor.
Fiber-reinforced dielectric elastomer laminates with integrated function of actuating and sensing
NASA Astrophysics Data System (ADS)
Li, Tiefeng; Xie, Yuhan; Li, Chi; Yang, Xuxu; Jin, Yongbin; Liu, Junjie; Huang, Xiaoqiang
2015-04-01
The natural limbs of animals and insects integrate muscles, skins and neurons, providing both the actuating and sensing functions simultaneously. Inspired by the natural structure, we present a novel structure with integrated function of actuating and sensing with dielectric elastomer (DE) laminates. The structure can deform when subjected to high voltage loading and generate corresponding output signal in return. We investigate the basic physical phenomenon of dielectric elastomer experimentally. It is noted that when applying high voltage, the actuating dielectric elastomer membrane deforms and the sensing dielectric elastomer membrane changes the capacitance in return. Based on the concept, finite element method (FEM) simulation has been conducted to further investigate the electromechanical behavior of the structure.
NASA Astrophysics Data System (ADS)
Honma, Hiroaki; Takahashi, Kazuhiro; Ishida, Makoto; Sawada, Kazuaki
2012-11-01
This paper reports on the construction of a nano-electro-mechanical system (NEMS) tunable color filter based on a subwavelength grating with high color uniformity and a low drive voltage. We recently proposed a ground-voltage-ground (GVG)-type tunable color filter with a parallel-plate actuator with three pairs of electrodes to decrease the crosstalk due to the electrostatic attractive force between each pair of actuators. Our finite element method (FEM) simulation results indicate that the drive voltage is decreased by 10 V, as compared to that of the previously reported GV type. The proposed structure was fabricated using a silicon-on-insulator (SOI) wafer. The color tuning capability of the device was demonstrated by applying a drive voltage of 6.7 V. The reflected light intensity was decreased by 34% at a wavelength of 680 nm. Color uniformity was also obtained in the filter area by reducing the variation of the displacement on the one-dimensional actuator arrays.
Elastomer actuators: systematic improvement in properties by use of composite materials
NASA Astrophysics Data System (ADS)
Molberg, Martin; Leterrier, Yves; Plummer, Christopher J. G.; Löwe, Christiane; Opris, Dorina M.; Clemens, Frank; Månson, Jan-Anders E.
2010-04-01
Dielectric elastomer actuators (DEAs) have attracted increasing attention over the last few years owing to their outstanding properties, e.g. their large actuation strains, high energy density, and pliability, which have opened up a wide spectrum of potential applications in fields ranging from microengineering to medical prosthetics. There is consequently a huge demand for new elastomer materials with improved properties to enhance the performance of DEAs and to overcome the limitations associated with currently available materials, such as the need for high activation voltages and the poor long-term stability. The electrostatic pressure that activates dielectric elastomers can be increased by higher permittivity of the elastomer and thus may lead to lower activation voltages. This has led us to consider composite elastomeric dielectrics based on thermoplastic elastomers or PDMS, and conductive polyaniline or ceramic (soft doped PZT) powder fillers. The potential of such materials and strategies to counter the adverse effects of increased conductivity and elastic modulus are discussed.
Stress measurements of planar dielectric elastomer actuators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osmani, Bekim; Aeby, Elise A.; Müller, Bert
Dielectric elastomer actuator (DEA) micro- and nano-structures are referred to artificial muscles because of their specific continuous power and adequate time response. The bending measurement of an asymmetric, planar DEA is described. The asymmetric cantilevers consist of 1 or 5 μm-thin DEAs deposited on polyethylene naphthalate (PEN) substrates 16, 25, 38, or 50 μm thick. The application of a voltage to the DEA electrodes generates an electrostatic pressure in the sandwiched silicone elastomer layer, which causes the underlying PEN substrate to bend. Optical beam deflection enables the detection of the bending angle vs. applied voltage. Bending radii as large asmore » 850 m were reproducibly detected. DEA tests with electric fields of up to 80 V/μm showed limitations in electrode’s conductivity and structure failures. The actuation measurement is essential for the quantitative characterization of nanometer-thin, low-voltage, single- and multi-layer DEAs, as foreseen for artificial sphincters to efficiently treat severe urinary and fecal incontinence.« less
Fluid electrodes for submersible robotics based on dielectric elastomer actuators
NASA Astrophysics Data System (ADS)
Christianson, Caleb; Goldberg, Nathaniel; Cai, Shengqiang; Tolley, Michael T.
2017-04-01
Recently, dielectric elastomer actuators (DEAs) have gathered interest for soft robotics due to their low cost, light weight, large strain, low power consumption, and high energy density. However, developing reliable, compliant electrodes for DEAs remains an ongoing challenge due to issues with fabrication, uniformity of the conductive layer, and mechanical stiffening of the actuators caused by conductive materials with large Young's moduli. In this work, we present a method for preparing, patterning, and utilizing conductive fluid electrodes. Further, when we submerse the DEAs in a bath containing a conductive fluid connected to ground, the bath serves as a second electrode, obviating the need for depositing a conductive layer to serve as either of the electrodes required of most DEAs. When we apply a positive electrical potential to the conductive fluid in the actuator with respect to ground, the electric field across the dielectric membrane causes charge carriers in the solution to apply an electrostatic force on the membrane, which compresses the membrane and causes the actuator to deform. We have used this process to develop a tethered submersible robot that can swim in a tank of saltwater at a maximum measured speed of 9.2 mm/s. Since saltwater serves as the electrode, we overcome buoyancy issues that may be a challenge for pneumatically actuated soft robots and traditional, rigid robotics. This research opens the door to low-power underwater robots for search and rescue and environmental monitoring applications.
Flight Test Experience with an Electromechanical Actuator on the F-18 Systems Research Aircraft
NASA Technical Reports Server (NTRS)
Jensen, Stephen C.; Jenney, Gavin D.; Raymond, Bruce; Dawson, David; Flick, Brad (Technical Monitor)
2000-01-01
Development of reliable power-by-wire actuation systems for both aeronautical and space applications has been sought recently to eliminate hydraulic systems from aircraft and spacecraft and thus improve safety, efficiency, reliability, and maintainability. The Electrically Powered Actuation Design (EPAD) program was a joint effort between the Air Force, Navy, and NASA to develop and fly a series of actuators validating power-by-wire actuation technology on a primary flight control surface of a tactical aircraft. To achieve this goal, each of the EPAD actuators was installed in place of the standard hydraulic actuator on the left aileron of the NASA F/A-18B Systems Research Aircraft (SRA) and flown throughout the SRA flight envelope. Numerous parameters were recorded, and overall actuator performance was compared with the performance of the standard hydraulic actuator on the opposite wing. This paper discusses the integration and testing of the EPAD electromechanical actuator (EMA) on the SRA. The architecture of the EMA system is discussed, as well as its integration with the F/A-18 Flight Control System. The flight test program is described, and actuator performance is shown to be very close to that of the standard hydraulic actuator it replaced. Lessons learned during this program are presented and discussed, as well as suggestions for future research.
Flight Test Experience With an Electromechanical Actuator on the F-18 Systems Research Aircraft
NASA Technical Reports Server (NTRS)
Jensen, Stephen C.; Jenney, Gavin D.; Raymond, Bruce; Dawson, David
2000-01-01
Development of reliable power-by-wire actuation systems for both aeronautical and space applications has been sought recently to eliminate hydraulic systems from aircraft and spacecraft and thus improve safety, efficiency, reliability, and maintainability. The Electrically Powered Actuation Design (EPAD) program was a joint effort between the Air Force, Navy, and NASA to develop and fly a series of actuators validating power-by-wire actuation technology on a primary flight control surface of a tactical aircraft. To achieve this goal, each of the EPAD actuators was installed in place of the standard hydraulic actuator on the left aileron of the NASA F/A-18B Systems Research Aircraft (SRA) and flown throughout the SRA flight envelope. Numerous parameters were recorded, and overall actuator performance was compared with the performance of the standard hydraulic actuator on the opposite wing. This paper discusses the integration and testing of the EPAD electromechanical actuator (EMA) on the SRA. The architecture of the EMA system is discussed, as well as its integration with the F/A-18 Flight Control System. The flight test program is described, and actuator performance is shown to be very close to that of the standard hydraulic actuator it replaced. Lessons learned during this program are presented and discussed, as well as suggestions for future research.
Performance improvements of MOEMS-based diffractive arrays: address isolation and optical switching
NASA Astrophysics Data System (ADS)
Panaman, Ganesh; Madison, Seth; Sano, Michael; Castracane, James
2005-01-01
Micro-Opto-Electro-Mechanical Systems (MOEMS) have found a variety of applications in fields such as telecommunications, spectroscopy and display technology. MOEMS-based optical switching is currently under investigation for the increased flexibility that such devices provide for reconfiguration of the I/O network for inter-chip communication applications. This potential not only adds an additional degree of freedom for adjustment of transmitter/receiver links but also allows for fine alignment of individual channels in the network link. Further, this use of diffractive arrays for specific applications combines beam steering/adjustment capabilities with the inherent wavelength dependence of the diffractive approach for channel separation and de-multiplexing. Research and development has been concentrated on the progression from single MOEMS components to parallel arrays integrated with optical source arrays for a successful feasibility demonstration. Successful development of such an approach will have a major impact of the next generation communication protocols. This paper will focus on the current status of the MOEMS research program for Free Space Optical inter-chip communication at the College of NanoScale Science and Engineering, University at Albany-SUNY (CNSE). New versions of diffractive arrays stemming from the basic MEMS Compound Grating (MCG; patent #5,999,319) have been produced through various fabrication methods including the MUMPs process1. Most MEMS components relying on electrostatic actuation tend to require high actuation voltages (>20V) compared to the typical 5V levels prevalent in conventional integrated circuits. The specific goal is to yield improved performance while minimizing the power consumption of the components. Structural modifications through the variation in the ruling/electrode spacing distance and array wiring layout through individually addressable gratings have been studied to understand effects on the actuation voltage and cross talk, respectively. A detailed overview of the optical and mechanical properties will be included. Modeling results along with the mechanical and optical testing results have been detailed and compared with previously obtained results. Future work focuses on alternate material sets for a reduction in operational voltage, improvements in optical efficiency and technology demonstrators for verification of massively parallel I/O performance.
NASA Astrophysics Data System (ADS)
Tutcuoglu, A.; Majidi, C.
2014-12-01
Using principles of damped harmonic oscillation with continuous media, we examine electrostatic energy harvesting with a "soft-matter" array of dielectric elastomer (DE) transducers. The array is composed of infinitely thin and deformable electrodes separated by layers of insulating elastomer. During vibration, it deforms longitudinally, resulting in a change in the capacitance and electrical enthalpy of the charged electrodes. Depending on the phase of electrostatic loading, the DE array can function as either an actuator that amplifies small vibrations or a generator that converts these external excitations into electrical power. Both cases are addressed with a comprehensive theory that accounts for the influence of viscoelasticity, dielectric breakdown, and electromechanical coupling induced by Maxwell stress. In the case of a linearized Kelvin-Voigt model of the dielectric, we obtain a closed-form estimate for the electrical power output and a scaling law for DE generator design. For the complete nonlinear model, we obtain the optimal electrostatic voltage input for maximum electrical power output.
Design evaluation of graphene nanoribbon nanoelectromechanical devices
NASA Astrophysics Data System (ADS)
Lam, Kai-Tak; Stephen Leo, Marie; Lee, Chengkuo; Liang, Gengchiau
2011-07-01
Computational studies on nanoelectromechanical switches based on bilayer graphene nanoribbons (BGNRs) with different designs are presented in this work. By varying the interlayer distance via electrostatic means, the conductance of the BGNR can be changed in order to achieve ON-states and OFF-states, thereby mimicking the function of a switch. Two actuator designs based on the modified capacitive parallel plate (CPP) model and the electrostatic repulsive force (ERF) model are discussed for different applications. Although the CPP design provides a simple electrostatic approach to changing the interlayer distance of the BGNR, their switching gate bias VTH strongly depends on the gate area, which poses a limitation on the size of the device. In addition, there exists a risk of device failure due to static fraction between the mobile and fixed electrodes. In contrast, the ERF design can circumvent both issues with a more complex structure. Finally, optimizations of the devices are carried out in order to provide insights into the design considerations of these nanoelectromechanical switches.
Electrostatically Levitated Ring-Shaped Rotational-Gyro/Accelerometer
NASA Astrophysics Data System (ADS)
Murakoshi, Takao; Endo, Yasuo; Fukatsu, Keisuke; Nakamura, Sigeru; Esashi, Masayoshi
2003-04-01
This paper reports an electrostatically levitated inertia measurement system which is based on the principle of a rotational gyro. The device has several advantages: the levitation of the rotor in a vacuum eliminates mechanical friction resulting in high sensitivity; the position control for the levitation allows accelerations to be sensed in the tri-axis; and the fabrication of the device by a micromachining technique has the cost advantages afforded by miniaturization. Latest measurements yield a noise floor of the gyro and that of the accelerometer as low as 0.15 deg/h1/2 and 30 μG/Hz1/2, respectively. This performance is achieved by a new sensor design. To further improve of the previous device, a ring-shaped structure is designed and fabricated by deep reactive ion etching using inductively coupled plasma. The rotor levitation is performed with capacitive detection and electrostatic actuation. Multiaxis closed-loop control is realized by differential capacitance sensing and frequency multiplying. The rotation of the micro gyro is based on the principle of a planar variable capacitance motor.
Self-sensing paper-based actuators employing ferromagnetic nanoparticles and graphite
NASA Astrophysics Data System (ADS)
Phan, Hoang-Phuong; Dinh, Toan; Nguyen, Tuan-Khoa; Vatani, Ashkan; Md Foisal, Abu Riduan; Qamar, Afzaal; Kermany, Atieh Ranjbar; Dao, Dzung Viet; Nguyen, Nam-Trung
2017-04-01
Paper-based microfluidics and sensors have attracted great attention. Although a large number of paper-based devices have been developed, surprisingly there are only a few studies investigating paper actuators. To fulfill the requirements for the integration of both sensors and actuators into paper, this work presents an unprecedented platform which utilizes ferromagnetic particles for actuation and graphite for motion monitoring. The use of the integrated mechanical sensing element eliminates the reliance on image processing for motion detection and also allows real-time measurements of the dynamic response in paper-based actuators. The proposed platform can also be quickly fabricated using a simple process, indicating its potential for controllable paper-based lab on chip.
A portable integrated system to control an active needle
NASA Astrophysics Data System (ADS)
Konh, Bardia; Motalleb, Mahdi; Ashrafiuon, Hashem
2017-04-01
The primary objective of this work is to introduce an integrated portable system to operate a flexible active surgical needle with actuation capabilities. The smart needle uses the robust actuation capabilities of the shape memory alloy wires to drastically improve the accuracy of in medical procedures such as brachytherapy. This, however, requires an integrated system aimed to control the insertion of the needle via a linear motor and its deflection by the SMA wire in real-time. The integrated system includes a flexible needle prototype, a Raspberry Pi computer, a linear stage motor, an SMA wire actuator, a power supply, electromagnetic tracking system, and various communication supplies. The linear stage motor guides the needle into tissue. The power supply provides appropriate current to the SMA actuator. The tracking system measures tip movement for feedback, The Raspberry Pi is the central tool that receives the tip movement feedback and controls the linear stage motor and the SMA actuator via the power supply. The implemented algorithms required for communication and feedback control are also described. This paper demonstrates that the portable integrated system may be a viable solution for more effective procedures requiring surgical needles.
Complaint liquid metal electrodes for dielectric elastomer actuators
NASA Astrophysics Data System (ADS)
Finkenauer, Lauren R.; Majidi, Carmel
2014-03-01
This work presents a liquid-phase metal electrode to be used with poly(dimethylsiloxane) (PDMS) for a dielectric elastomer actuator (DEA). DEAs are favorable for soft-matter applications where high efficiency and response times are desirable. A consistent challenge faced during the fabrication of these devices is the selection and deposition of electrode material. While numerous designs have been demonstrated with a variety of conductive elastomers and greases, these materials have significant and often intrinsic shortcomings, e.g. low conductivity, hysteresis, incapability of large deformations, and complex fabrication requirements. The liquid metal alloy eutectic Gallium-Indium (EGaIn) is a promising alternative to existing compliant electrodes, having both high conductivity and complete soft-matter functionality. The liquid electrode shares almost the same electrical conductivity as conventional metal wiring and provides no mechanical resistance to bending or stretching of the DEA. This research establishes a straightforward and effective method for quickly depositing EGaIn electrodes, which can be adapted for batch fabrication, and demonstrates the successful actuation of sample curved cantilever elastomer actuators using these electrodes. As with the vast majority of electrostatically actuated elastomer devices, the voltage requirements for these curved DEAs are still quite significant, though modifications to the fabrication process show some improved electrical properties. The ease and speed with which this method can be implemented suggests that the development of a more electronically efficient device is realistic and worthwhile.
Velosa-Moncada, Luis A; Aguilera-Cortés, Luz Antonio; González-Palacios, Max A; Raskin, Jean-Pierre; Herrera-May, Agustin L
2018-05-22
Primary tumors of patients can release circulating tumor cells (CTCs) to flow inside of their blood. The CTCs have different mechanical properties in comparison with red and white blood cells, and their detection may be employed to study the efficiency of medical treatments against cancer. We present the design of a novel MEMS microgripper with rotatory electrostatic comb-drive actuators for mechanical properties characterization of cells. The microgripper has a compact structural configuration of four polysilicon layers and a simple performance that control the opening and closing displacements of the microgripper tips. The microgripper has a mobile arm, a fixed arm, two different actuators and two serpentine springs, which are designed based on the SUMMiT V surface micromachining process from Sandia National Laboratories. The proposed microgripper operates at its first rotational resonant frequency and its mobile arm has a controlled displacement of 40 µm at both opening and closing directions using dc and ac bias voltages. Analytical models are developed to predict the stiffness, damping forces and first torsional resonant frequency of the microgripper. In addition, finite element method (FEM) models are obtained to estimate the mechanical behavior of the microgripper. The results of the analytical models agree very well respect to FEM simulations. The microgripper has a first rotational resonant frequency of 463.8 Hz without gripped cell and it can operate up to with maximum dc and ac voltages of 23.4 V and 129.2 V, respectively. Based on the results of the analytical and FEM models about the performance of the proposed microgripper, it could be used as a dispositive for mechanical properties characterization of circulating tumor cells (CTCs).
Velosa-Moncada, Luis A.; Aguilera-Cortés, Luz Antonio; Raskin, Jean-Pierre
2018-01-01
Primary tumors of patients can release circulating tumor cells (CTCs) to flow inside of their blood. The CTCs have different mechanical properties in comparison with red and white blood cells, and their detection may be employed to study the efficiency of medical treatments against cancer. We present the design of a novel MEMS microgripper with rotatory electrostatic comb-drive actuators for mechanical properties characterization of cells. The microgripper has a compact structural configuration of four polysilicon layers and a simple performance that control the opening and closing displacements of the microgripper tips. The microgripper has a mobile arm, a fixed arm, two different actuators and two serpentine springs, which are designed based on the SUMMiT V surface micromachining process from Sandia National Laboratories. The proposed microgripper operates at its first rotational resonant frequency and its mobile arm has a controlled displacement of 40 µm at both opening and closing directions using dc and ac bias voltages. Analytical models are developed to predict the stiffness, damping forces and first torsional resonant frequency of the microgripper. In addition, finite element method (FEM) models are obtained to estimate the mechanical behavior of the microgripper. The results of the analytical models agree very well respect to FEM simulations. The microgripper has a first rotational resonant frequency of 463.8 Hz without gripped cell and it can operate up to with maximum dc and ac voltages of 23.4 V and 129.2 V, respectively. Based on the results of the analytical and FEM models about the performance of the proposed microgripper, it could be used as a dispositive for mechanical properties characterization of circulating tumor cells (CTCs). PMID:29789474
NASA Astrophysics Data System (ADS)
Kamiya, Daiki; Bagheri, Saeed; Horie, Mikio
2004-08-01
Many studies on optical switches have been performed in an attempt to develop optical information networks to speed information technology. In reality, however, mirror manipulators cannot be applied to multiple input and output systems due to both insufficient output displacements by the mirror parts inside the manipulator, and the difficulty of designing structures and mechanisms suitable for multi-dimensional manipulation. The principal reasons for insufficient displacement are the high rigidity of the elastic parts compared to the available driving forces and the pull-in effect. Therefore, in order to develop optical switches capable of multiple input and output switching, we suggest a novel 2-DOF(degree of freedom) electrostatic microactuator. The actuator is composed of one mirror with four beams laid about it in a corkscrew pattern, with four corkscrew electrodes on the substrate below and one mirror support pyramid situated under the mirror. Using electrostatic force, one or more of the beams are attracted from their outer ends toward the substrate. The mirror is then tilted by an angle proportional to the attracted length along the beam. The inclination and direction of the mirror are determined by the combined attracted length of the four beams. In this work we derive the mathematical model for the corkscrew beam microactuator for optical switches and show that this mathematical model accurately simulates the device by comparison with finite element analysis results. We use this mathematical model for design of the microactuator. Further we show that the designed optical switch microactuator is capable of rotating the mirror from +32 to -32 degrees about two axes with a maximum operating voltage of 163 volts. Finally, stress analysis of the actuator shows that the generated stress in the structure is at most 369 MPa.
NASA Astrophysics Data System (ADS)
Mercorelli, Paolo; Werner, Nils
2016-10-01
The paper deals with some interdisciplinary aspects and problems concerning the actuation control which occur in the integration of a piezoelectric structure in an aggregate actuator consisting of a piezoelectric, a stroke ratio displacement, a mechanical and a hydraulic part. Problems like compensation of the piezo hysteresis effect, scaling force-position to obtain an adequate displacement of the actuator and finally the control of such a complex aggregate system are considered and solved. Even though this work considers a particular application, the solutions proposed in the paper are quite general. In fact, the considered technical aspects occurring in systems which utilize piezoelectric technologies can be used in a variegated gamma of actuators integrating piezoelectric technologies. A cascade controller is proposed to combine a Feedforward action with an internal and an external PI-Controller. The Feedforward Controller is based on the model of the whole actuator, so particular attention is paid to the model structure. The resulting Feedforward action is an adaptive one to compensate hydraulic pressure faults. Real measurements are shown.
Shape memory system with integrated actuation using embedded particles
Buckley, Patrick R [New York, NY; Maitland, Duncan J [Pleasant Hill, CA
2009-09-22
A shape memory material with integrated actuation using embedded particles. One embodiment provides a shape memory material apparatus comprising a shape memory material body and magnetic pieces in the shape memory material body. Another embodiment provides a method of actuating a device to perform an activity on a subject comprising the steps of positioning a shape memory material body in a desired position with regard to the subject, the shape memory material body capable of being formed in a specific primary shape, reformed into a secondary stable shape, and controllably actuated to recover the specific primary shape; including pieces in the shape memory material body; and actuating the shape memory material body using the pieces causing the shape memory material body to be controllably actuated to recover the specific primary shape and perform the activity on the subject.
Shape memory system with integrated actuation using embedded particles
Buckley, Patrick R [New York, NY; Maitland, Duncan J [Pleasant Hill, CA
2012-05-29
A shape memory material with integrated actuation using embedded particles. One embodiment provides a shape memory material apparatus comprising a shape memory material body and magnetic pieces in the shape memory material body. Another embodiment provides a method of actuating a device to perform an activity on a subject comprising the steps of positioning a shape memory material body in a desired position with regard to the subject, the shape memory material body capable of being formed in a specific primary shape, reformed into a secondary stable shape, and controllably actuated to recover the specific primary shape; including pieces in the shape memory material body; and actuating the shape memory material body using the pieces causing the shape memory material body to be controllably actuated to recover the specific primary shape and perform the activity on the subject.
Shape memory system with integrated actuation using embedded particles
Buckley, Patrick R.; Maitland, Duncan J.
2014-04-01
A shape memory material with integrated actuation using embedded particles. One embodiment provides a shape memory material apparatus comprising a shape memory material body and magnetic pieces in the shape memory material body. Another embodiment provides a method of actuating a device to perform an activity on a subject comprising the steps of positioning a shape memory material body in a desired position with regard to the subject, the shape memory material body capable of being formed in a specific primary shape, reformed into a secondary stable shape, and controllably actuated to recover the specific primary shape; including pieces in the shape memory material body; and actuating the shape memory material body using the pieces causing the shape memory material body to be controllably actuated to recover the specific primary shape and perform the activity on the subject.
NASA Astrophysics Data System (ADS)
Paik, Seung Hoon; Kim, Ji Yeon; Shin, Sang Joon; Kim, Seung Jo
2004-07-01
Smart structures incorporating active materials have been designed and analyzed to improve aerospace vehicle performance and its vibration/noise characteristics. Helicopter integral blade actuation is one example of those efforts using embedded anisotropic piezoelectric actuators. To design and analyze such integrally-actuated blades, beam approach based on homogenization methodology has been traditionally used. Using this approach, the global behavior of the structures is predicted in an averaged sense. However, this approach has intrinsic limitations in describing the local behaviors in the level of the constituents. For example, the failure analysis of the individual active fibers requires the knowledge of the local behaviors. Microscopic approach for the analysis of integrally-actuated structures is established in this paper. Piezoelectric fibers and matrices are modeled individually and finite element method using three-dimensional solid elements is adopted. Due to huge size of the resulting finite element meshes, high performance computing technology is required in its solution process. The present methodology is quoted as Direct Numerical Simulation (DNS) of the smart structure. As an initial validation effort, present analytical results are correlated with the experiments from a small-scaled integrally-actuated blade, Active Twist Rotor (ATR). Through DNS, local stress distribution around the interface of fiber and matrix can be analyzed.
NASA Astrophysics Data System (ADS)
Tahani, Masoud; Askari, Amir R.
2014-09-01
In spite of the fact that pull-in instability of electrically actuated nano/micro-beams has been investigated by many researchers to date, no explicit formula has been presented yet which can predict pull-in voltage based on a geometrically non-linear and distributed parameter model. The objective of present paper is to introduce a simple and accurate formula to predict this value for a fully clamped electrostatically actuated nano/micro-beam. To this end, a non-linear Euler-Bernoulli beam model is employed, which accounts for the axial residual stress, geometric non-linearity of mid-plane stretching, distributed electrostatic force and the van der Waals (vdW) attraction. The non-linear boundary value governing equation of equilibrium is non-dimensionalized and solved iteratively through single-term Galerkin based reduced order model (ROM). The solutions are validated thorough direct comparison with experimental and other existing results reported in previous studies. Pull-in instability under electrical and vdW loads are also investigated using universal graphs. Based on the results of these graphs, non-dimensional pull-in and vdW parameters, which are defined in the text, vary linearly versus the other dimensionless parameters of the problem. Using this fact, some linear equations are presented to predict pull-in voltage, the maximum allowable length, the so-called detachment length, and the minimum allowable gap for a nano/micro-system. These linear equations are also reduced to a couple of universal pull-in formulas for systems with small initial gap. The accuracy of the universal pull-in formulas are also validated by comparing its results with available experimental and some previous geometric linear and closed-form findings published in the literature.
NASA Astrophysics Data System (ADS)
Sosnowchik, Brian D.; Galambos, Paul C.; Sharp, Kendra V.; Jenkins, Mark W.; Horn, Mark W.; Hendrix, Jason R.
2003-12-01
This paper presents the dry actuation testing procedures and results for novel viscous drag micropumping systems. To overcome the limitations of previously developed mechanical pumps, we have developed pumps that are surface micromachined for efficient mass production which utilize viscous drag (dominant at low Reynolds numbers typical of microfluidics) to move fluid. The SUMMiT (www.sandia.gov/micromachine) fabricated pumps, presented first by Kilani et al., are being experimentally and computationally analyzed. In this paper we will describe the development of optimal waveforms to drive the electrostatic pumping mechanism while dry. While wet actuation will be significantly different, dry testing provides insight into how to optimally move the mechanism and differences between dry and wet actuation can be used to isolate fluid effects. Characterization began with an analysis of the driving voltage waveforms for the torsional ratcheting actuator (TRA), a micro-motor that drove the gear transmission for the pump, actuated with SAMA (Sandia"s Arbitrary waveform MEMS Actuator), a new waveform generating computer program with the ability to generate and output arbitrary voltage signals. Based upon previous research, a 50% duty cycle half-sine wave was initially selected for actuation of the TRA. However, due to the geometry of the half-sine waveform, the loaded micromotor could not transmit the motion required to pump the tested liquids. Six waveforms were then conceived, constructed, and selected for device actuation testing. Dry actuation tests included high voltage, low voltage, high frequency, and endurance/reliability testing of the TRA, gear transmission and pump assembly. In the SUMMiT process, all of the components of the system are fabricated together on one silicon chip already assembled in a monolithic microfabrication process. A 40% duty cycle quarter-sine waveform with a 20% DC at 60V has currently proved to be the most reliable, allowing for an 825Hz continuous TRA operating frequency for the micropumps. This novel waveform allowed for higher TRA actuation frequencies than those obtained in prior research of the pumps.
Zhou, Miaolei; Zhang, Qi; Wang, Jingyuan
2014-01-01
As a new type of smart material, magnetic shape memory alloy has the advantages of a fast response frequency and outstanding strain capability in the field of microdrive and microposition actuators. The hysteresis nonlinearity in magnetic shape memory alloy actuators, however, limits system performance and further application. Here we propose a feedforward-feedback hybrid control method to improve control precision and mitigate the effects of the hysteresis nonlinearity of magnetic shape memory alloy actuators. First, hysteresis nonlinearity compensation for the magnetic shape memory alloy actuator is implemented by establishing a feedforward controller which is an inverse hysteresis model based on Krasnosel'skii-Pokrovskii operator. Secondly, the paper employs the classical Proportion Integration Differentiation feedback control with feedforward control to comprise the hybrid control system, and for further enhancing the adaptive performance of the system and improving the control accuracy, the Radial Basis Function neural network self-tuning Proportion Integration Differentiation feedback control replaces the classical Proportion Integration Differentiation feedback control. Utilizing self-learning ability of the Radial Basis Function neural network obtains Jacobian information of magnetic shape memory alloy actuator for the on-line adjustment of parameters in Proportion Integration Differentiation controller. Finally, simulation results show that the hybrid control method proposed in this paper can greatly improve the control precision of magnetic shape memory alloy actuator and the maximum tracking error is reduced from 1.1% in the open-loop system to 0.43% in the hybrid control system. PMID:24828010
Zhou, Miaolei; Zhang, Qi; Wang, Jingyuan
2014-01-01
As a new type of smart material, magnetic shape memory alloy has the advantages of a fast response frequency and outstanding strain capability in the field of microdrive and microposition actuators. The hysteresis nonlinearity in magnetic shape memory alloy actuators, however, limits system performance and further application. Here we propose a feedforward-feedback hybrid control method to improve control precision and mitigate the effects of the hysteresis nonlinearity of magnetic shape memory alloy actuators. First, hysteresis nonlinearity compensation for the magnetic shape memory alloy actuator is implemented by establishing a feedforward controller which is an inverse hysteresis model based on Krasnosel'skii-Pokrovskii operator. Secondly, the paper employs the classical Proportion Integration Differentiation feedback control with feedforward control to comprise the hybrid control system, and for further enhancing the adaptive performance of the system and improving the control accuracy, the Radial Basis Function neural network self-tuning Proportion Integration Differentiation feedback control replaces the classical Proportion Integration Differentiation feedback control. Utilizing self-learning ability of the Radial Basis Function neural network obtains Jacobian information of magnetic shape memory alloy actuator for the on-line adjustment of parameters in Proportion Integration Differentiation controller. Finally, simulation results show that the hybrid control method proposed in this paper can greatly improve the control precision of magnetic shape memory alloy actuator and the maximum tracking error is reduced from 1.1% in the open-loop system to 0.43% in the hybrid control system.
Modeling of electrically actuated elastomer structures for electro-optical modulation
NASA Astrophysics Data System (ADS)
Kluge, Christian; Galler, Nicole; Ditlbacher, Harald; Gerken, Martina
2011-02-01
A transparent elastomer layer sandwiched between two metal electrodes deforms upon voltage application due to electrostatic forces. This structure can be used as tunable waveguide. We investigate structures of a polydimethylsiloxane (PDMS) layer with 1-30 μm thickness and 40 nm gold electrodes. For extended electrodes the effect size may be calculated analytically as a function of the Poisson ratio. A fully coupled finite-element method (FEM) is used for calculation of the position-dependent deformation in case of structured electrodes. Different geometries are compared concerning actuation effect size and homogeneity. Structuring of the top electrode results in high effect magnitude, but non-uniform deformation concentrated at the electrode edges. Structured bottom electrodes provide good compromise between effect size and homogeneity for electrode widths of 2.75 times the elastomer thickness.
Fabrication of silicon-based shape memory alloy micro-actuators
NASA Technical Reports Server (NTRS)
Johnson, A. David; Busch, John D.; Ray, Curtis A.; Sloan, Charles L.
1992-01-01
Thin film shape memory alloy has been integrated with silicon in a new actuation mechanism for microelectromechanical systems. This paper compares nickel-titanium film with other actuators, describes recent results of chemical milling processes developed to fabricate shape memory alloy microactuators in silicon, and describes simple actuation mechanisms which have been fabricated and tested.
Power systems and requirements for the integration of smart structures into aircraft
NASA Astrophysics Data System (ADS)
Lockyer, Allen J.; Martin, Christopher A.; Lindner, Douglas K.; Walia, Paramjit S.
2002-07-01
Electrical power distribution for recently developed smart actuators becomes an important air-vehicle challenge if projected smart actuation benefits are to be met. Among the items under development are variable shape inlets and control surfaces that utilize shape memory alloys (SMA); full span, chord-wise and span-wise contouring trailing control surfaces that use SMA or piezoelectric materials for actuation; and other strain-based actuators for buffet load alleviation, flutter suppression and flow control. At first glance, such technologies afford overall vehicle performance improvement, however, integration system impacts have yet to be determined or quantified. Power systems to support smart structures initiatives are the focus of the current paper. The paper has been organized into five main topics for further discussion: (1) air-vehicle power system architectures - standard and advanced distribution concepts for actuators, (2) smart wing actuator power requirements and results - highlighting wind tunnel power measurements from shape memory alloy and piezoelectric ultrasonic motor actuated control surfaces and different dynamic pressure and angle of attack; (3) vehicle electromagnetic effects (EME) issues, (4) power supply design considerations for smart actuators - featuring the aircraft power and actuator interface, and (5) summary and conclusions.
Polybenzoxazole Nanofiber-Reinforced Moisture-Responsive Soft Actuators.
Chen, Meiling; Frueh, Johannes; Wang, Daolin; Lin, Xiankun; Xie, Hui; He, Qiang
2017-04-10
Hydromorphic biological systems, such as morning glory flowers, pinecones, and awns, have inspired researchers to design moisture-sensitive soft actuators capable of directly converting the change of moisture into motion or mechanical work. Here, we report a moisture-sensitive poly(p-phenylene benzobisoxazole) nanofiber (PBONF)-reinforced carbon nanotube/poly(vinyl alcohol) (CNT/PVA) bilayer soft actuator with fine performance on conductivity and mechanical properties. The embedded PBONFs not only assist CNTs to form a continuous, conductive film, but also enhance the mechanical performance of the actuators. The PBONF-reinforced CNT/PVA bilayer actuators can unsymmetrically adsorb and desorb water, resulting in a reversible deformation. More importantly, the actuators show a pronounced increase of conductivity due to the deformation induced by the moisture change, which allows the integration of a moisture-sensitive actuator and a humidity sensor. Upon changing the environmental humidity, the actuators can respond by the deformation for shielding and report the humidity change in a visual manner, which has been demonstrated by a tweezer and a curtain. Such nanofiber-reinforced bilayer actuators with the sensing capability should hold considerable promise for the applications such as soft robots, sensors, intelligent switches, integrated devices, and material storage.
Micro-patterning of resin-bonded NdFeB magnet for a fully integrated electromagnetic actuator
NASA Astrophysics Data System (ADS)
Tao, Kai; Wu, Jin; Kottapalli, Ajay Giri Prakash; Chen, Di; Yang, Zhuoqing; Ding, Guifu; Lye, Sun Woh; Miao, Jianmin
2017-12-01
This paper reports a fully-integrated, batch-fabricated electromagnetic actuator which features micro-patterned NdFeB magnets. The entire actuator is fabricated through MEMS-compatible laminated surface micromachining technology, eliminating the requirement for further component assembly processes. The fabrication strategy allowed the entire volume of the actuator to be reduced to a small size of 2.5 × 2.5 × 2 mm3, which is one of the smallest NdFeB-based electromagnetic actuators demonstrated to date. The magnetic properties of NdFeB thin films are further investigated and optimized using different types of lithographically-defined micromolds. By altering the direction of the input current, actuating displacements of approximately ±10 μm are achieved during both the attraction and the repulsion operations. This work demonstrates the viability and compatibility of using polymer-bonded magnets for magnetic MEMS applications.
High-authority smart material integrated electric actuator
NASA Astrophysics Data System (ADS)
Weisensel, G. N.; Pierce, Thomas D.; Zunkel, Gary
1997-05-01
For many current applications, hydraulic power is still the preferred method of gaining mechanical advantage. However, in many of these applications, this power comes with the penalties of high weight, size, cost, and maintenance due to the system's distributed nature and redundancy requirements. A high authority smart material Integrated Electric Actuator (IEA) is a modular, self-contained linear motion device that is capable of producing dynamic output strokes similar to those of hydraulic actuators yet at significantly reduced weight and volume. It provides system simplification and miniaturization. This actuator concept has many innovative features, including a TERFENOL-D-based pump, TERFENOL-D- based active valves, control algorithms, a displacement amplification unit and integrated, unitized packaging. The IEA needs only electrical power and a control command signal as inputs to provide high authority, high response rate actuation. This approach is directly compatible with distributed control strategies. Aircraft control, automotive brakes and fuel injection, and fluid power delivery are just some examples of the IEA's pervasive applications in aerospace, defense and commercial systems.
Control Demonstration of a Thin Deformable In-Plane Actuated Mirror
2006-03-01
where a four-quadrant electrode grid sitting behind a pre-shaped membrane mirror uses electrostatic forces to deform the surface. Any manufacturing...to receive the Wavescope data due to its MATLAB and Simulink capa- bilities. The dSPACE computer system is stocked with a UART (Universal Asynchronous...cations,” SPIE Smart Structures and Materials Symposium, EAPAD Conference, Vol. 5051-45 (2003). 6. Bennet, H. E. and others, . “Development of
Surface Control of Actuated Hybrid Space Mirrors
2010-10-01
precision Nanolaminate foil facesheet and Silicon Carbide ( SiC ) substrate embedded with electroactive ceramic actuators. Wavefront sensors are used to...integrate precision Nanolaminate foil facesheet with Silicon Carbide ( SiC ) substrate equipped with embedded electroactive ceramic actuators...IAC-10.C2.5.8 SURFACE CONTROL OF ACTUATED HYBRID SPACE MIRRORS Brij. N. Agrawal Naval Postgraduate School, Monterey, CA, 93943, agrawal
Bonora, Stefano; Jian, Yifan; Zhang, Pengfei; Zam, Azhar; Pugh, Edward N; Zawadzki, Robert J; Sarunic, Marinko V
2015-08-24
Adaptive optics is rapidly transforming microscopy and high-resolution ophthalmic imaging. The adaptive elements commonly used to control optical wavefronts are liquid crystal spatial light modulators and deformable mirrors. We introduce a novel Multi-actuator Adaptive Lens that can correct aberrations to high order, and which has the potential to increase the spread of adaptive optics to many new applications by simplifying its integration with existing systems. Our method combines an adaptive lens with an imaged-based optimization control that allows the correction of images to the diffraction limit, and provides a reduction of hardware complexity with respect to existing state-of-the-art adaptive optics systems. The Multi-actuator Adaptive Lens design that we present can correct wavefront aberrations up to the 4th order of the Zernike polynomial characterization. The performance of the Multi-actuator Adaptive Lens is demonstrated in a wide field microscope, using a Shack-Hartmann wavefront sensor for closed loop control. The Multi-actuator Adaptive Lens and image-based wavefront-sensorless control were also integrated into the objective of a Fourier Domain Optical Coherence Tomography system for in vivo imaging of mouse retinal structures. The experimental results demonstrate that the insertion of the Multi-actuator Objective Lens can generate arbitrary wavefronts to correct aberrations down to the diffraction limit, and can be easily integrated into optical systems to improve the quality of aberrated images.
Novel design and fabrication of a microcentrifuge for biomedical and biochemical applications
NASA Astrophysics Data System (ADS)
Yan, Dong; Xu, Bai; Castracane, James
2003-01-01
In this paper, modeling and simulation of a novel micro-centrifuge for biomedical and biochemical applications is described. The micro-centrifuge that we designed can work not only as a shaker but also as a detector of cell growth, which has great potential applications in bioanalysis. The initial design contains four channels for mixing or collecting of samples by centrifugal force. The rotor, the key component of this device, is actuated using electrostatic force. There are four electrodes on the substrate to actuate the micro-centrifuge rotation around the X-axis (lateral in plane) and the Y-axis (vertical in plane) respectively, and eight pairs of comb drives are used to actuate the micro-centrifuge rotation around the Z-axis (perpendicular to the XY plane). The multiple axis actuation design makes it very flexible to control the micro-centrifuge. Because of its small feature size, the cost of the reagent used for the micro-centrifuge will be greatly reduced. An array of micro-centrifuges will be designed to achieve a fast cycling time. A Finite Element Analysis (FEA) has been completed to analyze the static and dynamic performance of the micro-centrifuge, such as the natural frequencies, tilt angle, and driving voltage. A novel fabrication process using SOI technology has been proposed which is now being developed.
Applications of Non-linearities in RF MEMS Switches and Resonators
NASA Astrophysics Data System (ADS)
Vummidi Murali, Krishna Prasad
The 21st century is emerging into an era of wireless ubiquity. To support this trend, the RF (Radio Frequency) front end must be capable of processing a range of wireless signals (cellular phone, data connectivity, broadcast TV, GPS positioning, etc.) spanning a total bandwidth of nearly 6 GHz. This warrants the need for multi-band/multi-mode radio architectures. For such architectures to satisfy the constraints on size, battery life, functionality and cost, the radio front-end must be made reconfigurable. RF-MEMS (RF Micro-Electro-Mechanical Systems) are seen as an enabling technology for such reconfigurable radios. RF-MEMS mainly include micromechanical switches (used in phase shifters, switched capacitor banks, impedance tuners etc.) and micromechanical resonators (used in tunable filters, oscillators, reference clocks etc.). MEMS technology also has the potential to be directly integrated into CMOS (Complementary metal-oxide semiconductor) ICs (Integrated Circuits) leading to further potential reductions of cost and size. However, RF-MEMS face challenges that must be addressed before they can gain widespread commercial acceptance. Relatively low switching speed, power handling, and high-voltage drive are some of the key issues in MEMS switches. Phase noise influenced by non-linearities, need for temperature compensation (especially Si based resonators), large start-up times, and aging are the key issues in Si MEMS Resonators. In this work potential solutions are proposed to address some of these key issues, specifically the reduction of high voltage drives in switches and the reduction of phase noise in MEMS resonators for timing applications. MEMS devices that are electrostatically actuated exhibit significant non-linearities. The origins of the non-linearities are both electrical (electrostatic actuation) and mechanical (dimensions and material properties). The influence of spring non-linearities (cubic and quadratic) on the performance of switches and resonators are studied. Gold electroplated fixed-fixed beams were fabricated to test the phenomenon of dynamic (or resonant) pull-in in shunt switches. The dynamic pull-in phenomenon was also tested on commercially fabricated lateral switches. It is shown that the resonant pull-in technique reduces the overall voltage required to actuate the switch. There is an additional reduction of total actuation voltage possible via applying an AC actuation signal at the correct non-linear resonant frequency. The demonstrated best case savings from operating at the non-linear resonance is 50% (for the lateral switch) and 60% (for the vertical switch) as compared to 25% and 40% respectively using a fixed frequency approach. However, the timing response for resonant pull-in has been experimentally shown to be slower than the static actuation. To reduce the switching time, a shifted-frequency method is proposed where the excitation frequency is shifted up or down by a discrete amount deltaO after a brief hold time. It was theoretically shown that the shifted-frequency method enables a minimum realizable switching time comparable to the static switching time for a given set of actuation frequencies. The influence of VDC on the effective non-linearities of a fixed-fixed beam is also studied. Based on the dimensions of the resonator and the type of resonance there is a certain VDC,Lin where the response is near linear (S ≈ 0). In the near-linear domain, the dynamic pull-in is the only upper bound to the amplitude of vibrations, and hence the amplitude of output current, thereby maximizing the power handling capacity of the resonator. Apart from maximizing the output current, it is essential to reduce the amplitude and phase variations of the displacement response which are due to noise mixing into frequency of interest, and are eventually manifested as output phase noise due to capacitive current nonlinearity. Two major aliasing schemes were analyzed and it was shown that the capacitive force non-linearity is the major source of mixing that causes the up-conversion of 1/f frequency into signal sidebands. The resonator's periodic response (displacement) is defined by a set of two first-order nonlinear ordinary differential equations that describe the modulation of amplitude and phase of the response. Frequency response curves of amplitude and frequency are determined from these modulation equations. The zero slope point on the amplitude resonance curve is the peak of the resonance curve where the phase (gammadc) of the response is +/-pi/2. For a strongly non-linear system, the resonance curves are skewed based on the amount of total non-linearity S. For systems that are strongly non-linear, the best region to operate the resonator is the fixed point that correspond to infinite slope (gammadc = +/-2pi/3) in the frequency response of the system. The best case phase noise response was analytically developed for such a fixed point. Theoretically at this fixed point, phase noise will have contributions only from 1/ fnoise and not from 1/f2 and 1/ f3. The resonators phase can be set by controlling the rest of the phase in the loop such that the total phase around the loop is zero or 2pi. In addition, this work has also developed an analytical model for a lateral MEMS switch fabricated in a commercial foundry that has the potential to be processed as MEMS on CMOS. This model accounts for trapezoidal cross sections of the electrodes and springs and also models electrostatic fringing as a function of the moving gap. The analytical model matches closely with the Finite Element (FEA) model.
BRIEF COMMUNICATION: Electrothermal bistability tuning in a large displacement micro actuator
NASA Astrophysics Data System (ADS)
Gerson, Y.; Krylov, S.; Ilic, B.
2010-11-01
We report on an approach allowing simple yet efficient tuning of the bistability properties in large displacement micro actuators. The devices fabricated from silicon on insulator (SOI) wafers using a deep reactive ion etching (DRIE)-based process incorporate elastic suspension realized as a pair of beams initially curved in-plane and are operated electrostatically by a comb-drive transducer. The curvature of beam and therefore the stability characteristics of the suspension are controlled by passing a current through the suspension and resistive heating the beam material. Experimental results, which are in good agreement with the finite elements model predictions, demonstrate the feasibility of the suggested approach and show that the application of a small tuning current increases the device deflection from 42 to 56 µm, allows adjustment of the critical snap-through and snap-back voltages and makes it possible the control of latching without an additional electrode. The approach can be efficiently implemented in electrical and optical switches and threshold inertial and mass sensors where the use of long displacement actuators with an adjustable bistability range is beneficial.
Development of ultrasonic electrostatic microjets for distributed propulsion and microflight
NASA Astrophysics Data System (ADS)
Amirparviz, Babak
This dissertation details the first attempt to design and fabricate a distributed micro propulsion system based on acoustic streaming. A novel micro propulsion method is suggested by combining Helmholtz resonance, acoustic streaming and flow entrainment and thrust augmentation. In this method, oscillatory motion of an electrostatically actuated diaphragm creates a high frequency acoustic field inside the cavity of a Helmholtz resonator. The initial fluid motion velocity is amplified by the Helmholtz resonator structure and creates a jet flow at the exit nozzle. Acoustic streaming is the phenomenon responsible for primary jet stream creation. Primary jets produced by a few resonators can be combined in an ejector configuration to induce flow entrainment and thrust augmentation. Basic governing equations for the electrostatic actuator, deformation of the diaphragm and the fluid flow inside the resonator are derived. These equations are linearized and used to derive an equivalent electrical circuit model for the operation of the device. Numerical solution of the governing equations and simulation of the circuit model are used to predict the performance of the experimental systems. Thrust values as high as 30.3muN are expected per resonator. A micro machined electrostatically-driven high frequency Helmholtz resonator prototype is designed and fabricated. A new micro fabrication technique is developed for bulk micromachining and in particular fabrication of the resonator. Geometric stops for wet anisotropic etching of silicon are introduced for the fist time for structure formation. Arrays of high frequency (>60kHz) micro Helmholtz resonators are fabricated. In one sample more than 1000 resonators cover the surface of a four-inch silicon wafer and in effect convert it to a distributed propulsion system. A high yield (>85%) micro fabrication process is presented for realization of this propulsion system taking advantage of newly developed deep glass micromachining and lithography on thin (15mum) silicon methods. Extensive test and characterization are performed on the micro jets using current frequency component analysis, laser interferometry, acoustic measurements, hot-wire anemometers, video particle imaging and load cells. The occurrence of acoustic streaming at jet nozzles is verified and flow velocities exceeding 1m/s are measured at the 15mum x 330mum jet exit nozzle.
Development of a wavelength tunable filter using MEMS technology
NASA Astrophysics Data System (ADS)
Liu, Junting
Microelectromechanical systems (MEMS) for optical applications have received intensive attention in recent years because of their potential applications in optical telecommunication. Traditional wavelength division multiplexing (WDM) offers high capacity but requires the fabrication of selective add-drop filters. MEMS technology offers an effective way to fabricate these components at low cost. This thesis presents the development of a device that tunes the Bragg wavelength by coupling into the evanescent field of the grating. A Bragg grating is a periodic perturbation of the refractive index along a fiber or a periodic perturbation of the structure of a planar waveguide. The Bragg wavelength can be tuned by changing the degree to which a dielectric slab couples into the evanescent field. The result is a change in the effective index of the grating, and thus a change in the wavelength that which it reflects. In this thesis Bragg gratings were successfully written into an optical fiber using phase mask technique. Mechanical polishing was used to side-polish the fiber and remove cladding to expose the core. Grating structures were also fabricated in planar waveguide using E-beam writing and dry etching. In order to achieve the smoothest possible morphology of the waveguide, plasma dry etching of transparent substrates was studied in great detail. It is found that the pre-etch cleaning procedure greatly influences the ability to obtain a smooth etched surface. Upper limits of evanescent field tuning were investigated by applying different index liquids such as D. I. water and index matching oils or by positioning different dielectric materials such as glass and silicon close to the grating. Planar waveguides were found to be more sensitive to effective index change. Two kinds of computer simulation were carried out to understand the mode profile and to estimate the value of effective index of planar waveguide under "dry" and "wet" conditions. The first one used an average depth of grating approximation. The second explicitly considered the corrugated structure of the waveguide. Results of both simulations were compared with the experimental results in order to find the proper simulation approach. The fiber or planar waveguide gratings were "device" integrated and their pro and cons were compared. Devices using an optical fiber employed a microactuator driven by electrothermal vibromotor to change the degree of coupling between fiber and "tuning block". Device using planar waveguides used an electrostatic force actuated membrane, flip-chip mounted atop the waveguide. All devices were fabricated using polysilicon surface micromachining processes. I concluded that devices driven by electrostatic force were easier to actuate and their integration with waveguide less challenging.
Fault-tolerant rotary actuator
Tesar, Delbert
2006-10-17
A fault-tolerant actuator module, in a single containment shell, containing two actuator subsystems that are either asymmetrically or symmetrically laid out is provided. Fault tolerance in the actuators of the present invention is achieved by the employment of dual sets of equal resources. Dual resources are integrated into single modules, with each having the external appearance and functionality of a single set of resources.
Single Crystal DMs for Space-Based Observatories
NASA Astrophysics Data System (ADS)
Bierden, Paul
We propose to demonstrate the feasibility of a new manufacturing process for large aperture, high-actuator count microelectromechanical deformable mirrors (MEMS-DMs). These DMs are designed to fill a critical technology gap in NASA s plan for high- contrast space-based exoplanet observatories. We will manufacture a prototype DM with a continuous mirror facesheet, having an active aperture of 50mm diameter, supported by 2040 electrostatic actuators (50 across the diameter of the active aperture), spaced at a pitch of 1mm. The DM will be manufactured using silicon microfabrication tools. The strategic motivation for the proposed project is to advance MEMS DMs as an enabling technology in NASA s rapidly emerging program for extrasolar planet exploration. That goal is supported by an Astro2010 white paper on Technologies for Direct Optical Imaging of Exoplanets, which concluded that DMs are a critical component for all proposed internal coronagraph instrument concepts. That white paper pointed to great strides made by DM developers in the past decade, and acknowledged the components made by Boston Micromachines Corporation to be the most notable MEMS-based technology option. The principal manufacturing innovation in this project will be assembly of the DM through fusion bonding of three separate single crystal silicon wafers comprising the device s substrate, actuator array, and facesheet. The most significant challenge of this project will be to develop processes that allow reliable fusion bonds between multiple compliant silicon layers while yielding an optically flat surface and a robust electromechanical system. The compliance of the DM, which is required for its electromechanical function, will make it challenging to achieve the intimate, planar contact that is generally needed for success in fusion bonding. The manufacturing approach will use photolithography and reactive ion etching to pattern structural layers. Three wafer-scale devices will be patterned and etched independently: one for the substrate and fixed electrode layer, one for the actuator layer, and one for the mirror layer. Subsequently, each of these wafers will be bonded through a thermal fusion process to the others. In an innovative new processing technique, we will employ sacrificial oxide pillars to add temporary support to the otherwise compliant device structures. These pillars will be dissolved after assembly. The result will be a stress-free, single crystal silicon device with broadly expanded design space for geometric parameters such as actuator pitch, mirror diameter, array size, and actuator gap. Consequently, this approach will allow us to make devices with characteristics that are needed for some important NASA applications in space-based coronography, especially where larger array sizes, greater actuator pitch, and better optical surface quality are needed. The significance of this work is that it will provide a technology platform that meets or exceeds the superb optical performance that has been demonstrated in conventional pizezoelectrically actuated DMs, while retaining the advantages in cost, repeatability, and thermal insensitivity that have been demonstrated in the newer generation of MEMS electrostatically actuated DMs. The shift to bonded single-crystal structures will eliminate the single biggest drawback in previously reported NASA-fielded MEMS DM technology: device susceptibility to stress-induced scalloping and print through artifacts resulting from polycrystalline thin film surface micromachining. With single crystal structures bonded at atomic scales, uncorrected surface topography can be controlled to subnanometer levels, enabling the advancement of NASA s next-generation space-based coronagraphs.
NASA Astrophysics Data System (ADS)
Ghommem, M.; Abdelkefi, A.
2017-12-01
The nonlinear dynamics of a microgyroscope consisting of a vibrating beam with attached proof mass and operating at high frequency is numerically investigated. The working principle of this inertial sensor is based on exploiting the transfer of the mechanical energy among two vibrations modes via the Coriolis effect to measure the rotation rate. The flexural motion (drive mode) is generated by applying a DC electrostatic load and an AC harmonic load. We propose a novel sensing technique based on resistance change to detect the induced vibrations of the microbeam (sense mode) and extract the rotation rate. The sensing technique is based on transmitting the Coriolis force acting on the proof mass to a probe that affects the resistance of an electrical circuit acting as a variable voltage divider. This is achieved by integrating the probe dipping μpool (PDP) technology deploying a probe electrode that is dipped into a μpool filled with a conductive nonvolatile fluid. Large magnitude of the AC harmonic load is observed to give rise to dynamic pull-in bandwidth in the frequency response characterized by large and uncontrollable vibrations of the microbeam. Operating near the primary frequency while selecting moderate AC voltage results in linear calibration curves while maintaining high sensitivity of the output voltage to the change in the rotation speed. The simulation results demonstrate the feasibility of the novel technique for sensing the induced vibrations to deliver measurements of the angular speed.
Development of Individually Addressable Micro-Mirror-Arrays for Space Applications
NASA Technical Reports Server (NTRS)
Dutta, Sanghamitra B.; Ewin, Audrey J.; Jhabvala, Murzy; Kotecki, Carl A.; Kuhn, Jonathan L.; Mott, D. Brent
2000-01-01
We have been developing a 32 x 32 prototype array of individually addressable Micro-Mirrors capable of operating at cryogenic temperature for Earth and Space Science applications. Micro-Mirror-Array technology has the potential to revolutionize imaging and spectroscopy systems for NASA's missions of the 21st century. They can be used as programmable slits for the Next Generation Space Telescope, as smart sensors for a steerable spectrometer, as neutral density filters for bright scene attenuation etc. The, entire fabrication process is carried out in the Detector Development Laboratory at NASA, GSFC. The fabrication process is low temperature compatible and involves integration of conventional CMOS technology and surface micro-machining used in MEMS. Aluminum is used as the mirror material and is built on a silicon substrate containing the CMOS address circuit. The mirrors are 100 microns x l00 microns in area and deflect by +/- 10 deg induced by electrostatic actuation between two parallel plate capacitors. A pair of thin aluminum torsion straps allow the mirrors to tilt. Finite-element-analysis and closed form solutions using electrostatic and mechanical torque for mirror operation were developed and the results were compared with laboratory performance. The results agree well both at room temperature and at cryogenic temperature. The development demonstrates the first cryogenic operation of two-dimensional Micro-Mirrors with bi-state operation. Larger arrays will be developed meeting requirements for different science applications. Theoretical analysis, fabrication process, laboratory test results and different science applications will be described in detail.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galambos, Paul C.
This is the latest in a series of LDRD's that we have been conducting with Florida State University/Florida A&M University (FSU/FAMU) under the campus executive program. This research builds on the earlier projects; ''Development of Highly Integrated Magnetically and Electrostatically Actuated Micropumps'' (SAND2003-4674) and ''Development of Magnetically and Electrostatically Driven Surface Micromachined Pumps'' (SAND2002-0704P). In this year's LDRD we designed 2nd generation of surface micromachined (SMM) gear and viscous pumps. Two SUMMiT{trademark} modules full of design variations of these pumps were fabricated and one SwIFT{trademark} module is still in fabrication. The SwIFT{trademark} fabrication process results in a transparent pump housingmore » cover that will enable visualization inside the pumps. Since the SwIFT{trademark} pumps have not been tested as they are still in fabrication, this report will focus on the 2nd generation SUMMiT{trademark} designs. Pump testing (pressure vs. flow) was conducted on several of the SUMMiT{trademark} designs resulting in the first pump curve for this class of SMM pumps. A pump curve was generated for the higher torque 2nd generation gear pump designed by Jason Hendrix of FSU. The pump maximum flow rate at zero head was 6.5 nl/s for a 30V, 30 Hz square wave signal. This level of flow rate would be more than adequate for our typical SMM SUMMiT{trademark} or SwIFT{trademark} channels which have typical volumes on the order of 50 pl.« less
NASA Astrophysics Data System (ADS)
Schneider, J.; Klein, A.; Mannweiler, C.; Schotten, H. D.
2011-08-01
In the future, sensors will enable a large variety of new services in different domains. Important application areas are service adaptations in fixed and mobile environments, ambient assisted living, home automation, traffic management, as well as management of smart grids. All these applications will share a common property, the usage of networked sensors and actuators. To ensure an efficient deployment of such sensor-actuator networks, concepts and frameworks for managing and distributing sensor data as well as for triggering actuators need to be developed. In this paper, we present an architecture for integrating sensors and actuators into the future Internet. In our concept, all sensors and actuators are connected via gateways to the Internet, that will be used as comprehensive transport medium. Additionally, an entity is needed for registering all sensors and actuators, and managing sensor data requests. We decided to use a hierarchical structure, comparable to the Domain Name Service. This approach realizes a cost-efficient architecture disposing of "plug and play" capabilities and accounting for privacy issues.
2015-05-11
Micromirror Device (DMD) is a microelectromechanical (MEMS) device. A DMD consists of millions of electrostatically actuated micro- mirrors (or pixels...digital micromirror device) were analyzed. We discussed the effort of developing such a prototype by Proc. of SPIE Vol. 9484 94840I-11 Downloaded...to Digital Micromirror Device (DMD) Technology”, (n.d.) Retrieved May 1, 2011, from http://www.ti.com/lit/an/dlpa008a/dlpa008a.pdf. [16
High stroke pixel for a deformable mirror
Miles, Robin R.; Papavasiliou, Alexandros P.
2005-09-20
A mirror pixel that can be fabricated using standard MEMS methods for a deformable mirror. The pixel is electrostatically actuated and is capable of the high deflections needed for spaced-based mirror applications. In one embodiment, the mirror comprises three layers, a top or mirror layer, a middle layer which consists of flexures, and a comb drive layer, with the flexures of the middle layer attached to the mirror layer and to the comb drive layer. The comb drives are attached to a frame via spring flexures. A number of these mirror pixels can be used to construct a large mirror assembly. The actuator for the mirror pixel may be configured as a crenellated beam with one end fixedly secured, or configured as a scissor jack. The mirror pixels may be used in various applications requiring high stroke adaptive optics.
On the Nonlinear Dynamics of a Tunable Shock Micro-switch
NASA Astrophysics Data System (ADS)
Azizi, Saber; Javaheri, Hamid; Ghanati, Parisa
2016-12-01
A tunable shock micro-switch based on piezoelectric excitation is proposed in this study. This model includes a clamped-clamped micro-beam sandwiched with two piezoelectric layers throughout the entire length. Actuation of the piezoelectric layers via a DC voltage leads to an initial axial force in the micro-beam and directly affects on its overall bending stiffness; accordingly enables two-side tuning of both the trigger time and threshold shock. The governing motion equation, in the presence of an electrostatic actuation and a shock wave, is derived using Hamilton's principle. We employ the finite element method based on the Galerkin technique to obtain the temporal and phase responses subjected to three different shock waves including half sine, triangular and rectangular forms. Subsequently, we investigate the effect of the piezoelectric excitations on the threshold shock amplitude and trigger time.
NASA Astrophysics Data System (ADS)
Gosai, Agnivo
The concomitant detection, monitoring and analysis of biomolecules have assumed utmost importance in the field of medical diagnostics as well as in different spheres of biotechnology research such as drug development, environmental hazard detection and biodefense. There is an increased demand for the modulation of the biological response for such detection / sensing schemes which will be facilitated by the sensitive and controllable transmission of external stimuli. Electrostatic actuation for the controlled release/capture of biomolecules through conformational transformations of bioreceptors provides an efficient and feasible mechanism to modulate biological response. In addition, electrostatic actuation mechanism has the advantage of allowing massively parallel schemes and measurement capabilities that could ultimately be essential for biomedical applications. Experiments have previously demonstrated the unbinding of thrombin from its aptamer in presence of small positive electrode potential whereas the complex remained associated in presence of small negative potentials / zero potential. However, the nanoscale physics/chemistry involved in this process is not clearly understood. In this thesis a combination of continuum mechanics based modeling and a variety of atomistic simulation techniques have been utilized to corroborate the aforementioned experimental observations. It is found that the computational approach can satisfactorily predict the dynamics of the electrically excited aptamer-thrombin complex as well as provide an analytical model to characterize the forced binding of the complex.
Initial Work Toward a Robotically Assisted EVA Glove
NASA Technical Reports Server (NTRS)
Rogers, J.; Peters, B.; McBryan, E.; Laske, E.
2016-01-01
The Space Suit RoboGlove is a device designed to provide additional grasp strength or endurance for an EVA crew member since gloved hand performance is a fraction of what the unencumbered human hand can achieve. There have been past efforts to approach this problem by employing novel materials and construction techniques to the glove design, as well as integrating powered assistance devices. This application of the NASA/GM RoboGlove technology uses a unique approach to integrate the robotic actuators and sensors into a Phase VI EVA glove. This design provides grasp augmentation to the glove user while active, but can also function as a normal glove when disabled. Care was taken to avoid adding excessive bulk to the glove or affecting tactility by choosing low-profile sensors and extrinsically locating the actuators. Conduits are used to guide robotic tendons from linear actuators, across the wrist, and to the fingers. The second generation of the SSRG includes updated electronics, sensors, and actuators to improve performance. The following discusses the electromechanical design, softgoods integration, and control system of the SSRG. It also presents test results from the first integration of a powered mobility element onto a space suit, the NASA Mark III. Early results show that sensor integration did not impact tactile feedback in the glove and the actuators show potential for reduction in grasp fatigue over time.
Design and fabrication of an IPMC-embedded tube for minimally invasive surgery applications
NASA Astrophysics Data System (ADS)
Liu, Jiayu; Wang, Yanjie; Zhao, Dongxu; Zhang, Chi; Chen, Hualing; Li, Dichen
2014-03-01
Minimally Invasive Surgery (MIS) is receiving much attention for a number of reasons, including less trauma, faster recovery and enhanced precision. The traditional robotic actuators do not have the capabilities required to fulfill the demand for new applications in MIS. Ionic Polymer-Metal Composite (IPMC), one of the most promising smart materials, has extensive desirable characteristics such as low actuation voltage, large bending deformation and high functionality. Compared with traditional actuators, IPMCs can mimic biological muscle and are highly promising for actuation in robotic surgery. In this paper, a new approach which involves molding and integrating IPMC actuators into a soft silicone tube to create an active actuating tube capable of multi-degree-of-freedom motion is presented. First, according to the structure and performance requirements of the actuating tube, the biaxial bending IPMC actuators fabricated by using solution casting method have been implemented. The silicone was cured at a suitable temperature to form a flexible tube using molds fabricated by 3D Printing technology. Then an assembly based fabrication process was used to mold or integrate biaxial bending IPMC actuators into the soft silicone material to create an active control tube. The IPMC-embedded tube can generate multi-degree-of-freedom motions by controlling each IPMC actuator. Furthermore, the basic performance of the actuators was analyzed, including the displacement and the response speed. Experimental results indicate that IPMC-embedded tubes are promising for applications in MIS.
Madanu, Sushma B; Barbel, Stanley I; Ward, Thomas
2016-06-01
In this paper, transverse vibrations of an electrostatically actuated thin flexible cantilever perturbed by low-speed air flow are studied using both experiments and numerical modeling. In the experiments, the dynamic characteristics of the cantilever are studied by supplying a DC voltage with an AC component for electrostatic forcing and a constant uniform air flow around the cantilever system for aerodynamic forcing. A range of control parameters leading to stable vibrations are established using a dimensionless operating parameter that is the ratio of the induced and the free stream velocities. Numerical results are validated with experimental data. Assuming the amplitude of vibrations are small, then a non-linear dynamic Euler-Bernoulli beam equation with viscous damping and gravitational effects is used to model the equation of motion. Aerodynamic forcing is modelled as a temporally sinusoidal and uniform force acting perpendicular to the beam length. The forcing amplitude is found to be proportional to the square of the air flow velocity. Numerical results strongly agree with the experiments predicting accurate vibration amplitude, displacement frequency, and quasi-periodic displacement of the cantilever tip.
Operating principles of an electrothermal vibrometer for optical switching applications
NASA Astrophysics Data System (ADS)
Pai, Min-fan; Tien, Norman C.
1999-09-01
A compact polysilicon surface-micromachined microactuator designed for optical switching applications is described. This actuator is fabricated using the foundry MUMPs process provided by Cronos Integrated Microsystems Inc. Actuated electrothermally, the microactuator allows fast switching speeds and can be operated with a low voltage square-wave signal. The design, operation mechanisms for this long-range and high frequency thermal actuation are described. A vertical micromirror integrated with this actuator can be operated with a 10.5 V, 20 kHz 15% duty-cycle pulse signal, achieving a lateral moving speed higher than 15.6 mm/sec. The optical switch has been operated to frequencies as high as 30 kHz.
Zhang, Yan; Lee, Dong-Weon
2010-05-01
An integrated system made up of a double-hot arm electro-thermal microactuator and a piezoresistor embedded at the base of the 'cold arm' is proposed. The electro-thermo-mechanical modeling and optimization is developed to elaborate the operation mechanism of the hybrid system through numerical simulations. For given materials, the geometry design mostly influences the performance of the sensor and actuator, which can be considered separately. That is because thermal expansion induced heating energy has less influence on the base area of the 'cold arm,' where is the maximum stress. The piezoresistor is positioned here for large sensitivity to monitor the in-plane movement of the system and characterize the actuator response precisely in real time. Force method is used to analyze the thermal induced mechanical expansion in the redundant structure. On the other hand, the integrated actuating mechanism is designed for high speed imaging. Based on the simulation results, the actuator operates at levels below 5 mA appearing to be very reliable, and the stress sensitivity is about 40 MPa per micron.
Application of EAP materials toward a refreshable Braille display
NASA Astrophysics Data System (ADS)
Di Spigna, N.; Chakraborti, P.; Yang, P.; Ghosh, T.; Franzon, P.
2009-03-01
The development of a multiline, refreshable Braille display will assist with the full inclusion and integration of blind people into society. The use of both polyvinylidene fluoride (PVDF) film planar bending mode actuators and silicone dielectric elastomer cylindrical tube actuators have been investigated for their potential use in a Braille cell. A liftoff process that allows for aggressive scaling of miniature bimorph actuators has been developed using standard semiconductor lithography techniques. The PVDF bimorphs have been demonstrated to provide enough displacement to raise a Braille dot using biases less than 1000V and operating at 10Hz. In addition, silicone tube actuators have also been demonstrated to achieve the necessary displacement, though requiring higher voltages. The choice of electrodes and prestrain conditions aimed at maximizing axial strain in tube actuators are discussed. Characterization techniques measuring actuation displacement and blocking forces appropriate for standard Braille cell specifications are presented. Finally, the integration of these materials into novel cell designs and the fabrication of a prototype Braille cell are discussed.
Bonora, Stefano; Jian, Yifan; Zhang, Pengfei; Zam, Azhar; Pugh, Edward N.; Zawadzki, Robert J.; Sarunic, Marinko V.
2015-01-01
Adaptive optics is rapidly transforming microscopy and high-resolution ophthalmic imaging. The adaptive elements commonly used to control optical wavefronts are liquid crystal spatial light modulators and deformable mirrors. We introduce a novel Multi-actuator Adaptive Lens that can correct aberrations to high order, and which has the potential to increase the spread of adaptive optics to many new applications by simplifying its integration with existing systems. Our method combines an adaptive lens with an imaged-based optimization control that allows the correction of images to the diffraction limit, and provides a reduction of hardware complexity with respect to existing state-of-the-art adaptive optics systems. The Multi-actuator Adaptive Lens design that we present can correct wavefront aberrations up to the 4th order of the Zernike polynomial characterization. The performance of the Multi-actuator Adaptive Lens is demonstrated in a wide field microscope, using a Shack-Hartmann wavefront sensor for closed loop control. The Multi-actuator Adaptive Lens and image-based wavefront-sensorless control were also integrated into the objective of a Fourier Domain Optical Coherence Tomography system for in vivo imaging of mouse retinal structures. The experimental results demonstrate that the insertion of the Multi-actuator Objective Lens can generate arbitrary wavefronts to correct aberrations down to the diffraction limit, and can be easily integrated into optical systems to improve the quality of aberrated images. PMID:26368169
NASA Astrophysics Data System (ADS)
Fifield, Leonard S.
Carbon nanotubes have attractive inherent properties that encourage the development of new functional materials and devices based on them. The use of single wall carbon nanotubes as electromechanical actuators takes advantage of the high mechanical strength, surface area and electrical conductivity intrinsic to these molecules. The work presented here investigates the mechanisms that have been discovered for actuation of carbon nanotube paper: electrostatic, quantum chemical charge injection, pneumatic and viscoelastic. A home-built apparatus for the measurement of actuation strain is developed and utilized in the investigation. An optical fiber switch, the first demonstrated macro-scale device based on the actuation of carbon nanotubes, is described and its performance evaluated. Also presented here is a new general process designed to modify the surface of carbon nanotubes in a non-covalent, non-destructive way. This method can be used to impart new functionalities to carbon nanotube samples for a variety of applications including sensing, solar energy conversion and chemical separation. The process described involves the achievement of large degrees of graphitic surface coverage with polycyclic aromatic hydrocarbons through the use of supercritical fluids. These molecules are bifunctional agents that anchor a desired chemical group to the aromatic surface of the carbon nanotubes without adversely disrupting the conjugated backbone that gives rise the attractive electronic and physical properties of the nanotubes. Both the nanotube functionalization work and the actuator work presented here emphasize how an understanding and control of nanoscale structure and phenomena can be of vital importance in achieving desired performance for active materials. Opportunities for new devices with improved function over current state-of-the-art can be envisioned and anticipated based on this understanding and control.
Electroactive polymer (EAP) actuators for planetary applications
NASA Astrophysics Data System (ADS)
Bar-Cohen, Yoseph; Leary, Sean P.; Shahinpoor, Mohsen; Harrison, Joycelyn S.; Smith, J.
1999-05-01
NASA is seeking to reduce the mass, size, consumed power, and cost of the instrumentation used in its future missions. An important element of many instruments and devices is the actuation mechanism and electroactive polymers (EAP) are offering an effective alternative to current actuators. In this study, two families of EAP materials were investigated, including bending ionomers and longitudinal electrostatically driven elastomers. These materials were demonstrated to effectively actuate manipulation devices and their performance is being enhanced in this on-going study. The recent observations are reported in this paper, include the operation of the bending-EAP at conditions that exceed the harsh environment on Mars, and identify the obstacles that its properties and characteristics are posing to using them as actuators. Analysis of the electrical characteristics of the ionomer EAP showed that it is a current driven material rather than voltage driven and the conductivity distribution on the surface of the material greatly influences the bending performance. An accurate equivalent circuit modeling of the ionomer EAP performance is essential for the design of effective drive electronics. The ionomer main limitations are the fact that it needs to be moist continuously and the process of electrolysis that takes place during activation. An effective coating technique using a sprayed polymer was developed extending its operation in air from a few minutes to about four months. The coating technique effectively forms the equivalent of a skin to protect the moisture content of the ionomer. In parallel to the development of the bending EAP, the development of computer control of actuated longitudinal EAP has been pursued. An EAP driven miniature robotic arm was constructed and it is controlled by a MATLAB code to drop and lift the arm and close and open EAP fingers of a 4-finger gripper.
On-Orbit 3-Dimensional Electrostatic Detumble for Generic Spacecraft Geometries
NASA Astrophysics Data System (ADS)
Bennett, Trevor J.
In recent years, there is a growing interest in active debris removal and on-orbit servicing of Earth orbiting assets. The growing need for such approaches is often exemplified by the Iridium-Kosmos collision in 2009 that generated thousands of debris fragments. There exists a variety of active debris removal and on-orbit servicing technologies in development. Conventional docking mechanisms and mechanical capture by actuated manipulators, exemplified by NASA's Restore-L mission, require slow target tumble rates or more aggressive circumnavigation rate matching. The tumble rate limitations can be overcome with flexible capture systems such nets, harpoons, or tethers yet these systems require complex deployment, towing, and/or interfacing strategies to avoid servicer and target damage. Alternatively, touchless methods overcome the tumble rate limitations by provide detumble control prior to a mechanical interface. This thesis explores electrostatic detumble technology to touchlessly reduce large target rotation rates of Geostationary satellites and debris. The technical challenges preceding flight implementation largely reside in the long-duration formation flying guidance, navigation, and control of a servicer spacecraft equipped with electrostatic charge transfer capability. Leveraging prior research into the electrostatic charging of spacecraft, electrostatic detumble control formulations are developed for both axisymmetric and generic target geometries. A novel relative position vector and associated relative orbit control approach is created to manage the long-duration proximity operations. Through detailed numerical simulations, the proposed detumble and relative motion control formulations demonstrate detumble of several thousand kilogram spacecraft tumbling at several degrees per second in only several days. The availability, either through modeling or sensing, of the relative attitude, relative position, and electrostatic potential are among key concerns with implementation of electrostatic detumble control on-orbit. Leveraging an extended Kalman filter scheme, the relative position information is readily obtained. In order to touchlessly acquire the target electrostatic potential, a nested two-time scale Kalman filter is employed to provide real-time estimates of both relative position and electrostatic potential while on-orbit. The culmination of the presented control formulations for generic spacecraft geometries, the proximity and formation flying control capability, and the availability of necessary state information provide significant contributions towards the viability of electrostatic detumble mission concepts.
Contract-Based Integration of Cyber-Physical Analyses
2014-10-14
for cyber-physical systems , 2013 [3] Torngren et al. Integrating viewpoints in the development of mechatronic products, 2013 [4] Rajhans et al...Conference on Embedded Software Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection of information is...failures 5 Analytic aspect of integration Sensor Sampling PID Controller Actuator Controller Communication bus Sensor board CPU Actuator board System Bin
Distributed structural control using multilayered piezoelectric actuators
NASA Technical Reports Server (NTRS)
Cudney, Harley H.; Inman, Daniel J.; Oshman, Yaakov
1990-01-01
A method of segmenting piezoelectric sensors and actuators is proposed which can preclude the currently experienced cancelation of sensor signals, or the reduction of actuator effectiveness, due to the integration of the property undergoing measurement or control. The segmentation method is demonstrated by a model developed for beam structures, to which multiple layers of piezoelectric materials are attached. A numerical study is undertaken of increasing active and passive damping of a beam using the segmented sensors and actuators over unsegmented sensors and actuators.
Development of a precision, wide-dynamic-range actuator for use in active optical systems
NASA Technical Reports Server (NTRS)
Lorell, K. R.; Aubrun, J-N.; Zacharie, D. F.; Perez, E. O.
1989-01-01
The design, operation, and performance of a wide-dynamic-range optical-quality actuator are discussed. The actuator uses a closed-loop control system to maintain accurate positioning and has an rms noise performance of 20 nm. A unique force offloading mechanism allows the actuator coil to dissipate less than 3 mW under quiescent conditions. The operation of an experimental segmented optical system that uses 18 of the actuators is examined to show how they are integrated into an actual system.
NASA Astrophysics Data System (ADS)
Scaduto, David A.; Lubinsky, Anthony R.; Rowlands, John A.; Kenmotsu, Hidenori; Nishimoto, Norihito; Nishino, Takeshi; Tanioka, Kenkichi; Zhao, Wei
2014-03-01
We have previously proposed SAPHIRE (scintillator avalanche photoconductor with high resolution emitter readout), a novel detector concept with potentially superior spatial resolution and low-dose performance compared with existing flat-panel imagers. The detector comprises a scintillator that is optically coupled to an amorphous selenium photoconductor operated with avalanche gain, known as high-gain avalanche rushing photoconductor (HARP). High resolution electron beam readout is achieved using a field emitter array (FEA). This combination of avalanche gain, allowing for very low-dose imaging, and electron emitter readout, providing high spatial resolution, offers potentially superior image quality compared with existing flat-panel imagers, with specific applications to fluoroscopy and breast imaging. Through the present collaboration, a prototype HARP sensor with integrated electrostatic focusing and nano- Spindt FEA readout technology has been fabricated. The integrated electron-optic focusing approach is more suitable for fabricating large-area detectors. We investigate the dependence of spatial resolution on sensor structure and operating conditions, and compare the performance of electrostatic focusing with previous technologies. Our results show a clear dependence of spatial resolution on electrostatic focusing potential, with performance approaching that of the previous design with external mesh-electrode. Further, temporal performance (lag) of the detector is evaluated and the results show that the integrated electrostatic focusing design exhibits comparable or better performance compared with the mesh-electrode design. This study represents the first technical evaluation and characterization of the SAPHIRE concept with integrated electrostatic focusing.
Easy Handling of Sensors and Actuators over TCP/IP Networks by Open Source Hardware/Software
Mejías, Andrés; Herrera, Reyes S.; Márquez, Marco A.; Calderón, Antonio José; González, Isaías; Andújar, José Manuel
2017-01-01
There are several specific solutions for accessing sensors and actuators present in any process or system through a TCP/IP network, either local or a wide area type like the Internet. The usage of sensors and actuators of different nature and diverse interfaces (SPI, I2C, analogue, etc.) makes access to them from a network in a homogeneous and secure way more complex. A framework, including both software and hardware resources, is necessary to simplify and unify networked access to these devices. In this paper, a set of open-source software tools, specifically designed to cover the different issues concerning the access to sensors and actuators, and two proposed low-cost hardware architectures to operate with the abovementioned software tools are presented. They allow integrated and easy access to local or remote sensors and actuators. The software tools, integrated in the free authoring tool Easy Java and Javascript Simulations (EJS) solve the interaction issues between the subsystem that integrates sensors and actuators into the network, called convergence subsystem in this paper, and the Human Machine Interface (HMI)—this one designed using the intuitive graphical system of EJS—located on the user’s computer. The proposed hardware architectures and software tools are described and experimental implementations with the proposed tools are presented. PMID:28067801
Easy Handling of Sensors and Actuators over TCP/IP Networks by Open Source Hardware/Software.
Mejías, Andrés; Herrera, Reyes S; Márquez, Marco A; Calderón, Antonio José; González, Isaías; Andújar, José Manuel
2017-01-05
There are several specific solutions for accessing sensors and actuators present in any process or system through a TCP/IP network, either local or a wide area type like the Internet. The usage of sensors and actuators of different nature and diverse interfaces (SPI, I2C, analogue, etc.) makes access to them from a network in a homogeneous and secure way more complex. A framework, including both software and hardware resources, is necessary to simplify and unify networked access to these devices. In this paper, a set of open-source software tools, specifically designed to cover the different issues concerning the access to sensors and actuators, and two proposed low-cost hardware architectures to operate with the abovementioned software tools are presented. They allow integrated and easy access to local or remote sensors and actuators. The software tools, integrated in the free authoring tool Easy Java and Javascript Simulations (EJS) solve the interaction issues between the subsystem that integrates sensors and actuators into the network, called convergence subsystem in this paper, and the Human Machine Interface (HMI)-this one designed using the intuitive graphical system of EJS-located on the user's computer. The proposed hardware architectures and software tools are described and experimental implementations with the proposed tools are presented.
Development of a Meso-Scale SMA-Based Torsion Actuator for Image-Guided Procedures.
Sheng, Jun; Gandhi, Dheeraj; Gullapalli, Rao; Simard, J Marc; Desai, Jaydev P
2017-02-01
This paper presents the design, modeling, and control of a meso-scale torsion actuator based on shape memory alloy (SMA) for image-guided surgical procedures. Developing a miniature torsion actuator is challenging, but it opens the possibility of significantly enhancing the robot agility and maneuverability. The proposed torsion actuator is bi-directionally actuated by a pair of antagonistic SMA torsion springs through alternate Joule heating and natural cooling. The torsion actuator is integrated into a surgical robot prototype to demonstrate its working performance in the humid environment under C-Arm CT image guidance.
Development of a Meso-Scale SMA-Based Torsion Actuator for Image-Guided Procedures
Sheng, Jun; Gandhi, Dheeraj; Gullapalli, Rao; Simard, J. Marc; Desai, Jaydev P.
2016-01-01
This paper presents the design, modeling, and control of a meso-scale torsion actuator based on shape memory alloy (SMA) for image-guided surgical procedures. Developing a miniature torsion actuator is challenging, but it opens the possibility of significantly enhancing the robot agility and maneuverability. The proposed torsion actuator is bi-directionally actuated by a pair of antagonistic SMA torsion springs through alternate Joule heating and natural cooling. The torsion actuator is integrated into a surgical robot prototype to demonstrate its working performance in the humid environment under C-Arm CT image guidance. PMID:28210189
Li, Cheng Guo; Lee, Kwang; Lee, Chang Yeol; Dangol, Manita; Jung, Hyungil
2012-08-28
A minimally invasive blood-extraction system is fabricated by the integration of an elastic self-recovery actuator and an ultrahigh-aspect-ratio microneedle. The simple elastic self-recovery actuator converts finger force to elastic energy to provide power for blood extraction and transport without requiring an external source of power. This device has potential utility in the biomedical field within the framework of complete micro-electromechanical systems. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Integration of fluidic jet actuators in composite structures
NASA Astrophysics Data System (ADS)
Schueller, Martin; Lipowski, Mathias; Schirmer, Eckart; Walther, Marco; Otto, Thomas; Geßner, Thomas; Kroll, Lothar
2015-04-01
Fluidic Actuated Flow Control (FAFC) has been introduced as a technology that influences the boundary layer by actively blowing air through slots or holes in the aircraft skin or wind turbine rotor blade. Modern wing structures are or will be manufactured using composite materials. In these state of the art systems, AFC actuators are integrated in a hybrid approach. The new idea is to directly integrate the active fluidic elements (such as SJAs and PJAs) and their components in the structure of the airfoil. Consequently, the integration of such fluidic devices must fit the manufacturing process and the material properties of the composite structure. The challenge is to integrate temperature-sensitive active elements and to realize fluidic cavities at the same time. The transducer elements will be provided for the manufacturing steps using roll-to-roll processes. The fluidic parts of the actuators will be manufactured using the MuCell® process that provides on the one hand the defined reproduction of the fluidic structures and, on the other hand, a high light weight index. Based on the first design concept, a demonstrator was developed in order to proof the design approach. The output velocity on the exit was measured using a hot-wire anemometer.
2005-01-01
sorption . In this regard, the length ( ) and 1530-437X/$20.00 © 2005 IEEE Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting...temperature. The beam’s resonant frequency shift re- sponse resulting from analyte sorption increases with increasing thickness of the polymer layer. At...pneumatic tubing used for all gas wetted parts was PFA . The chip mounted in the Kyocera package was sealed by positioning a Combo Lid (Chelsea Technology
Lateral-deflection-controlled friction force microscopy
NASA Astrophysics Data System (ADS)
Fukuzawa, Kenji; Hamaoka, Satoshi; Shikida, Mitsuhiro; Itoh, Shintaro; Zhang, Hedong
2014-08-01
Lateral-deflection-controlled dual-axis friction force microscopy (FFM) is presented. In this method, an electrostatic force generated with a probe-incorporated micro-actuator compensates for friction force in real time during probe scanning using feedback control. This equivalently large rigidity can eliminate apparent boundary width and lateral snap-in, which are caused by lateral probe deflection. The method can evolve FFM as a method for quantifying local frictional properties on the micro/nanometer-scale by overcoming essential problems to dual-axis FFM.
Effect of Dielectric Barrier Discharge Plasma Actuators on Non-equilibrium Hypersonic Flows
2014-10-28
goes into the kinetic energy of the electrons rather than heating of the surrounding gas.24 The examples of these include corona discharge and micro...Moreau, G. Artana, and G. Touchard, “Influence of a DC corona discharge on the airflow along an inclined flat plate,” J. Electrostat. 51–52, 300 306...10), 2554 2564 (2007). 42E. Moreau, G. Artana, and G. Touchard, “Surface corona discharge along an insulating flat plate in air applied to
Micromachined Resonators of High Q-factor Based on Atomic Layer Deposited Alumina
2009-01-01
control. These characteristics are appeal- ing for nano -scale mechanical devices. Previously, ALD Al2O3 has been used in MEMS as a protective coating [3...electrostatically actuated nano -membrane made of ALD Al2O3 has been demon- strated [5]. With an ALD hydrophobic coating , the ALD Al2O3 has been demonstrated as a... nano -devices made of ALD alumina coated with Cr metallic layer. Furthermore, the fabrication and characterization techniques developed here are
Electrostatics of crossed arrays of strips.
Danicki, Eugene
2010-07-01
The BIS-expansion method is widely applied in analysis of SAW devices. Its generalization is presented for two planar periodic systems of perfectly conducting strips arranged perpendicularly on both sides of a dielectric layer. The generalized method can be applied in the evaluation of capacitances of strips on printed circuits boards and certain microwave devices, but primarily it may help in evaluation of 2-D piezoelectric sensors and actuators, with row and column addressing their elements, and also piezoelectric bulk wave resonators.
Dielectric elastomer actuators used for pneumatic valve technology
NASA Astrophysics Data System (ADS)
Giousouf, Metin; Kovacs, Gabor
2013-10-01
Dielectric elastomer actuators have been investigated for applications in the field of pneumatic automation technology. We have developed different valve designs with stacked dielectric elastomer actuators and with integrated high voltage converters. The actuators were made using VHB-4910 material and a stacker machine for automated fabrication of the cylindrical actuators. Typical characteristics of pneumatic valves such as flow rate, power consumption and dynamic behaviour are presented. For valve construction the force and stroke parameters of the dielectric elastomer actuator have been measured. Further, benefits for valve applications using dielectric elastomers are shown as well as their potential operational area. Finally, challenges are discussed that are relevant for the use of elastomer actuators in valves for industrial applications.
Electro-Active Polymer (EAP) Actuators for Planetary Applications
NASA Technical Reports Server (NTRS)
Bar-Cohen, Y.; Leary, S.; Shahinpoor, M.; Harrison, J. O.; Smith, J.
1999-01-01
NASA is seeking to reduce the mass, size, consumed power, and cost of the instrumentation used in its future missions. An important element of many instruments and devices is the actuation mechanism and electroactive polymers (EAP) are offering an effective alternative to current actuators. In this study, two families of EAP materials were investigated, including bending ionomers and longitudinal electrostatically driven elastomers. These materials were demonstrated to effectively actuate manipulation devices and their performance is being enhanced in this on-going study. The recent observations are reported in this paper, include the operation of the bending-EAP at conditions that exceed the harsh environment on Mars, and identify the obstacles that its properties and characteristics are posing to using them as actuators. Analysis of the electrical characteristics of the ionomer EAP showed that it is a current driven material rather than voltage driven and the conductivity distribution on the surface of the material greatly influences the bending performance. An accurate equivalent circuit modeling of the ionomer EAP performance is essential for the design of effective drive electronics. The ionomer main limitations are the fact that it needs to be moist continuously and the process of electrolysis that takes place during activation. An effective coating technique using a sprayed polymer was developed extending its operation in air from a few minutes to about four months. The coating technique effectively forms the equivalent of a skin to protect the moisture content of the ionomer. In parallel to the development of the bending EAP, the development of computer control of actuated longitudinal EAP has been pursued. An EAP driven miniature robotic arm was constructed and it is controlled by a MATLAB code to drop and lift the arm and close and open EAP fingers of a 4-finger gripper. Keywords: Miniature Robotics, Electroactive Polymers, Electroactive Actuators, EAP Materials
Miniaturization of Planar Horn Motors
NASA Technical Reports Server (NTRS)
Sherrit, Stewart; Ostlund, Patrick N.; Chang, Zensheu; Bao, Xiaoqi; Bar-Cohen, Yoseph; Widholm, Scott E.; Badescu, Mircea
2012-01-01
There is a great need for compact, efficient motors for driving various mechanisms including robots or mobility platforms. A study is currently underway to develop a new type of piezoelectric actuators with significantly more strength, low mass, small footprint, and efficiency. The actuators/motors utilize piezoelectric actuated horns which have a very high power density and high electromechanical conversion efficiency. The horns are fabricated using our recently developed novel pre-stress flexures that make them thermally stable and increases their coupling efficiency. The monolithic design and integrated flexures that pre-stresses the piezoelectric stack eliminates the use of stress bolt. This design allows embedding solid-state motors and actuators in any structure so that the only macroscopically moving parts are the rotor or the linear translator. The developed actuator uses a stack/horn actuation and has a Barth motor configuration, which potentially generates very large torque and speeds that do not require gearing. Finite element modeling and design tools were investigated to determine the requirements and operation parameters and the results were used to design and fabricate a motor. This new design offers a highly promising actuation mechanism that can potentially be miniaturized and integrated into systems and structures. It can be configured in many shapes to operate as multi-degrees of freedom and multi-dimensional motors/actuators including unidirectional, bidirectional, 2D and 3D. In this manuscript, we are reporting the experimental measurements from a bench top design and the results from the efforts to miniaturize the design using 2x2x2 mm piezoelectric stacks integrated into thin plates that are of the order of3 x 3x 0.2 cm.
Band Excitation Kelvin probe force microscopy utilizing photothermal excitation
Collins, Liam; Jesse, Stephen; Balke, Nina; ...
2015-03-13
A multifrequency open loop Kelvin probe force microscopy (KPFM) approach utilizing photothermal as opposed to electrical excitation is developed. Photothermal band excitation (PthBE)-KPFM is implemented here in a grid mode on a model test sample comprising a metal-insulator junction with local charge-patterned regions. Unlike the previously described open loop BE-KPFM, which relies on capacitive actuation of the cantilever, photothermal actuation is shown to be highly sensitive to the electrostatic force gradient even at biases close to the contact potential difference (CPD). PthBE-KPFM is further shown to provide a more localized measurement of true CPD in comparison to the gold standardmore » ambient KPFM approach, amplitude modulated KPFM. In conclusion, PthBE-KPFM data contain information relating to local dielectric properties and electronic dissipation between tip and sample unattainable using conventional single frequency KPFM approaches.« less
Laminar composite structures for high power actuators
NASA Astrophysics Data System (ADS)
Hobosyan, M. A.; Martinez, P. M.; Zakhidov, A. A.; Haines, C. S.; Baughman, R. H.; Martirosyan, K. S.
2017-05-01
Twisted laminar composite structures for high power and large-stroke actuators based on coiled Multi Wall Carbon Nanotube (MWNT) composite yarns were crafted by integrating high-density Nanoenergetic Gas Generators (NGGs) into carbon nanotube sheets. The linear actuation force, resulting from the pneumatic force caused by expanding gases confined within the pores of laminar structures and twisted carbon nanotube yarns, can be further amplified by increasing NGG loading and yarns twist density, as well as selecting NGG compositions with high energy density and large-volume gas generation. Moreover, the actuation force and power can be tuned by the surrounding environment, such as to increase the actuation by combustion in ambient air. A single 300-μm-diameter integrated MWNT/NGG coiled yarn produced 0.7 MPa stress and a contractile specific work power of up to 4.7 kW/kg, while combustion front propagated along the yarn at a velocity up to 10 m/s. Such powerful yarn actuators can also be operated in a vacuum, enabling their potential use for deploying heavy loads in outer space, such as to unfold solar panels and solar sails.
Bardhan, Jaydeep P; Knepley, Matthew G; Anitescu, Mihai
2009-03-14
The importance of electrostatic interactions in molecular biology has driven extensive research toward the development of accurate and efficient theoretical and computational models. Linear continuum electrostatic theory has been surprisingly successful, but the computational costs associated with solving the associated partial differential equations (PDEs) preclude the theory's use in most dynamical simulations. Modern generalized-Born models for electrostatics can reproduce PDE-based calculations to within a few percent and are extremely computationally efficient but do not always faithfully reproduce interactions between chemical groups. Recent work has shown that a boundary-integral-equation formulation of the PDE problem leads naturally to a new approach called boundary-integral-based electrostatics estimation (BIBEE) to approximate electrostatic interactions. In the present paper, we prove that the BIBEE method can be used to rigorously bound the actual continuum-theory electrostatic free energy. The bounds are validated using a set of more than 600 proteins. Detailed numerical results are presented for structures of the peptide met-enkephalin taken from a molecular-dynamics simulation. These bounds, in combination with our demonstration that the BIBEE methods accurately reproduce pairwise interactions, suggest a new approach toward building a highly accurate yet computationally tractable electrostatic model.
NASA Astrophysics Data System (ADS)
Bardhan, Jaydeep P.; Knepley, Matthew G.; Anitescu, Mihai
2009-03-01
The importance of electrostatic interactions in molecular biology has driven extensive research toward the development of accurate and efficient theoretical and computational models. Linear continuum electrostatic theory has been surprisingly successful, but the computational costs associated with solving the associated partial differential equations (PDEs) preclude the theory's use in most dynamical simulations. Modern generalized-Born models for electrostatics can reproduce PDE-based calculations to within a few percent and are extremely computationally efficient but do not always faithfully reproduce interactions between chemical groups. Recent work has shown that a boundary-integral-equation formulation of the PDE problem leads naturally to a new approach called boundary-integral-based electrostatics estimation (BIBEE) to approximate electrostatic interactions. In the present paper, we prove that the BIBEE method can be used to rigorously bound the actual continuum-theory electrostatic free energy. The bounds are validated using a set of more than 600 proteins. Detailed numerical results are presented for structures of the peptide met-enkephalin taken from a molecular-dynamics simulation. These bounds, in combination with our demonstration that the BIBEE methods accurately reproduce pairwise interactions, suggest a new approach toward building a highly accurate yet computationally tractable electrostatic model.
Development of Fully-Integrated Micromagnetic Actuator Technologies
2015-07-13
nonexistent because of certain design and fabrication challenges— primarily the inability to integrate high-performance, permanent - magnet ( magnetically ... efficiency necessary for certain applications. To enable the development of high-performance magnetic actuator technologies, the original research plan...developed permanent - magnet materials in more complex microfabrication process flows Objective 2: Design, model, and optimize a novel multi- magnet
Microelectromechanical Systems for Aerodynamics Applications
NASA Technical Reports Server (NTRS)
Mehregany, Mehran; DeAnna, Russell G.; Reshotko, Eli
1996-01-01
Microelectromechanical systems (MEMS) embody the integration of sensors, actuators, and electronics on a single substrate using integrated circuit fabrication techniques and compatible micromachining processes. Silicon and its derivatives form the material base for the MEMS technology. MEMS devices, including micro-sensors and micro-actuators, are attractive because they can be made small (characteristic dimension about microns), be produced in large numbers with uniform performance, include electronics for high performance and sophisticated functionality, and be inexpensive. MEMS pressure sensors, wall-shear-stress sensors, and micromachined hot-wires are nearing application in aeronautics. MEMS actuators face a tougher challenge since they have to be scaled (up) to the physical phenomena that are being controlled. MEMS actuators are proposed, for example, for controlling the small structures in a turbulent boundary layer, for aircraft control, for cooling, and for mixing enhancement. Data acquisition or control logistics require integration of electronics along with the transducer elements with appropriate consideration of analog-to-digital conversion, multiplexing, and telemetry. Altogether, MEMS technology offers exciting opportunities for aerodynamics applications both in wind tunnels and in flight
Arab Hassani, Faezeh; Mogan, Roshini P; Gammad, Gil G L; Wang, Hao; Yen, Shih-Cheng; Thakor, Nitish V; Lee, Chengkuo
2018-04-24
Aging, neurologic diseases, and diabetes are a few risk factors that may lead to underactive bladder (UAB) syndrome. Despite all of the serious consequences of UAB, current solutions, the most common being ureteric catheterization, are all accompanied by serious shortcomings. The necessity of multiple catheterizations per day for a physically able patient not only reduces the quality of life with constant discomfort and pain but also can end up causing serious complications. Here, we present a bistable actuator to empty the bladder by incorporating shape memory alloy components integrated on flexible polyvinyl chloride sheets. The introduction of two compression and restoration phases for the actuator allows for repeated actuation for a more complete voiding of the bladder. The proposed actuator exhibits one of the highest reported voiding percentages of up to 78% of the bladder volume in an anesthetized rat after only 20 s of actuation. This amount of voiding is comparable to the common catheterization method, and its one time implantation onto the bladder rectifies the drawbacks of multiple catheterizations per day. Furthermore, the scaling of the device for animal models larger than rats can be easily achieved by adjusting the number of nitinol springs. For neurogenic UAB patients with degraded nerve function as well as degenerated detrusor muscle, we integrate a flexible triboelectric nanogenerator sensor with the actuator to detect the fullness of the bladder. The sensitivity of this sensor to the filling status of the bladder shows its capability for defining a self-control system in the future that would allow autonomous micturition.
Actuator concepts and mechatronics
NASA Astrophysics Data System (ADS)
Gilbert, Michael G.; Horner, Garnett C.
1998-06-01
Mechatronic design implies the consideration of integrated mechanical, electrical, and local control characteristics in electromechanical device design. In this paper, mechatronic development of actuation device concepts for active aircraft aerodynamic flow control are presented and discussed. The devices are intended to be embedded in aircraft aerodynamic surfaces to provide zero-net-momentum jets or additional flow-vorticity to control boundary layers and flow- separation. Two synthetic jet device prototypes and one vorticity-on-demand prototype currently in development are described in the paper. The aspects of actuation materials, design approaches to generating jets and vorticity, and the integration of miniaturized electronics are stressed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mouro, J.; Gualdino, A.; Chu, V.
2013-11-14
Thin-film silicon allows the fabrication of MEMS devices at low processing temperatures, compatible with monolithic integration in advanced electronic circuits, on large-area, low-cost, and flexible substrates. The most relevant thin-film properties for applications as MEMS structural layers are the deposition rate, electrical conductivity, and mechanical stress. In this work, n{sup +}-type doped hydrogenated amorphous and nanocrystalline silicon thin-films were deposited by RF-PECVD, and the influence of the hydrogen dilution in the reactive mixture, the RF-power coupled to the plasma, the substrate temperature, and the deposition pressure on the structural, electrical, and mechanical properties of the films was studied. Three differentmore » types of silicon films were identified, corresponding to three internal structures: (i) porous amorphous silicon, deposited at high rates and presenting tensile mechanical stress and low electrical conductivity, (ii) dense amorphous silicon, deposited at intermediate rates and presenting compressive mechanical stress and higher values of electrical conductivity, and (iii) nanocrystalline silicon, deposited at very low rates and presenting the highest compressive mechanical stress and electrical conductivity. These results show the combinations of electromechanical material properties available in silicon thin-films and thus allow the optimized selection of a thin silicon film for a given MEMS application. Four representative silicon thin-films were chosen to be used as structural material of electrostatically actuated MEMS microresonators fabricated by surface micromachining. The effect of the mechanical stress of the structural layer was observed to have a great impact on the device resonance frequency, quality factor, and actuation force.« less
Feng, Guo-Hua; Huang, Wei-Lun
2014-12-01
This paper presents a smart tuning-fork-shaped ionic polymer metal composite (IPMC) clamping actuator for biomedical applications. The two fingers of the actuator, which perform the clamping motion, can be electrically controlled through a unique electrode design on the IPMC material. The generated displacement or strain of the fingers can be sensed using an integrated soft strain-gage sensor. The IPMC actuator and associated soft strain gage were fabricated using a micromachining technique. A 13.5×4×2 mm(3) actuator was shaped from Nafion solution and a selectively grown metal electrode formed the active region. The strain gage consisted of patterned copper foil and polyethylene as a substrate. The relationship between the strain gage voltage output and the displacement at the front end of the actuator's fingers was characterized. The equivalent Young's modulus, 13.65 MPa, of the soft-strain-gage-integrated IPMC finger was analyzed. The produced clamping force exhibited a linear increasing rate of 1.07 mN/s, based on a dc driving voltage of 7 V. Using the developed actuator to clamp soft matter and simultaneously acquire its Young's modulus was achieved. This demonstrated the feasibility of the palpation function and the potential use of the actuator in minimally invasive surgery. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Huffman, James Douglas
2001-11-01
The most important issue facing the future business success of the Digital Micromirror Device or DMD™ produced by Texas Instruments is the cost of the actual device. As the business and consumer markets call for higher resolution displays, the array size will have to be increased to incorporate more pixels. The manufacturing costs associated with building these higher resolution displays follow an exponential relation with the number of pixels due to yield loss and reduced number of chips per silicon wafer. Each pixel is actuated by electrostatics that are provided by a memory cell that is built in the underlying silicon substrate. One way to decrease cost of the wafer is to change the memory cell architecture from a static random access configuration or SRAM to a dynamic random access configuration or DRAM. This change has the benefits of having fewer components per area and a lower metal density. This reduction in the component count and metal density has a dramatic effect on the yield of the memory array by reducing the particle sensitivity of the underlying cell. The main drawback to using a DRAM configuration in a display application is the light sensitivity of a charge storage device built in the silicon substrate. As the photons pass through the mechanical micromirrors and illuminate the DRAM cell, the effective electrostatic potential of the memory element used for the mirror actuation is reduced. This dissertation outlines the issues associated with the light sensitivity of a DRAM memory cell as the actuation element for a micromirror. The concept of charge depletion on a silicon capacitor due to recombination of photogenerated carriers is explored and experimentally verified. The effects of the reduced potential on the capacitor on the micromirror are also explored. Optical modeling is used to determine the incoming photon flux to determine the benefits of adding a charge recombination region as part of the DRAM memory cell. Several options are explored to reduce the effect of the incoming photons on the potential of the memory cell. The results will show that a 1T1C memory cell with N-type recombination regions and maximum light shielding is sufficient for a projector application.
Progress on Shape Memory Alloy Actuator Development for Active Clearance Control
NASA Technical Reports Server (NTRS)
DeCastro, Jonathan; Melcher, Kevin; Noebe, Ronald
2006-01-01
Results of a numerical analysis evaluating the feasibility of high-temperature shape memory alloys (HTSMA) for active clearance control actuation in the high-pressure turbine section of a modern turbofan engine has been conducted. The prototype actuator concept considered here consists of parallel HTSMA wires attached to the shroud that is located on the exterior of the turbine case. A transient model of an HTSMA actuator was used to evaluate active clearance control at various operating points in a test bed aircraft engine simulation. For the engine under consideration, each actuator must be designed to counteract loads from 380 to 2000 lbf and displace at least 0.033 in. Design results show that an actuator comprised of 10 wires 2 in. in length is adequate for control at critical engine operating points and still exhibit acceptable failsafe operability and cycle life. A proportional-integral-derivative (PID) controller with integrator windup protection was implemented to control clearance amidst engine transients during a normal mission. Simulation results show that the control system exhibits minimal variability in clearance control performance across the operating envelope. The final actuator design is sufficiently small to fit within the limited space outside the high-pressure turbine case and is shown to consume only small amounts of bleed air to adequately regulate temperature.
PVDF core-free actuator for Braille displays: design, fabrication process, and testing
NASA Astrophysics Data System (ADS)
Levard, Thomas; Diglio, Paul J.; Lu, Sheng-Guo; Gorny, Lee J.; Rahn, Christopher D.; Zhang, Q. M.
2011-04-01
Refreshable Braille displays require many, small diameter actuators to move the pins. The electrostrictive P(VDF-TrFECFE) terpolymer can provide the high strain and actuation force under modest electric fields that are required of this application. In this paper, we develop core-free tubular actuators and integrate them into a 3 × 2 Braille cell. The films are solution cast, stretched to 6 μm thick, electroded, laminated into a bilayer, rolled into a 2 mm diameter tube, bonded, and provided with top and bottom contacts. Experimental testing of 17 actuators demonstrates significant strains (up to 4%). A novel Braille cell is designed and fabricated using six of these actuators.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madanu, Sushma B.; Barbel, Stanley I.; Ward, Thomas
In this paper, transverse vibrations of an electrostatically actuated thin flexible cantilever perturbed by low-speed air flow are studied using both experiments and numerical modeling. In the experiments, the dynamic characteristics of the cantilever are studied by supplying a DC voltage with an AC component for electrostatic forcing and a constant uniform air flow around the cantilever system for aerodynamic forcing. A range of control parameters leading to stable vibrations are established using a dimensionless operating parameter that is the ratio of the induced and the free stream velocities. Numerical results are validated with experimental data. Assuming the amplitude ofmore » vibrations are small, then a non-linear dynamic Euler-Bernoulli beam equation with viscous damping and gravitational effects is used to model the equation of motion. Aerodynamic forcing is modelled as a temporally sinusoidal and uniform force acting perpendicular to the beam length. The forcing amplitude is found to be proportional to the square of the air flow velocity. Numerical results strongly agree with the experiments predicting accurate vibration amplitude, displacement frequency, and quasi-periodic displacement of the cantilever tip.« less
Characterization for the performance of capacitive switches activated by mechanical shock.
Younis, Mohammad I; Alsaleem, Fadi M; Miles, Ronald; Su, Quang
2007-01-01
This paper presents experimental and theoretical investigation of a new concept of switches (triggers) that are actuated at or beyond a specific level of mechanical shock or acceleration. The principle of operation of the switches is based on dynamic pull-in instability induced by the combined interaction between electrostatic and mechanical shock forces. These switches can be tuned to be activated at various shock and acceleration thresholds by adjusting the DC voltage bias. Two commercial off-the-shelf capacitive accelerometers operating in air are tested under mechanical shock and electrostatic loading. A single-degree-of-freedom model accounting for squeeze-film damping, electrostatic forces, and mechanical shock is utilized for the theoretical investigation. Good agreement is found between simulation results and experimental data. Our results indicate that designing these new switches to respond quasi-statically to mechanical shock makes them robust against variations in shock shape and duration. More importantly, quasi-static operation makes the switches insensitive to variations in damping conditions. This can be promising to lower the cost of packaging for these switches since they can operate in atmospheric pressure with no hermetic sealing or costly package required.
Dielectrophoretic behaviours of microdroplet sandwiched between LN substrates
Chen, Lipin; Li, Shaobei; Fan, Bolin; Yan, Wenbo; Wang, Donghui; Shi, Lihong; Chen, Hongjian; Ban, Dechao; Sun, Shihao
2016-01-01
We demonstrate a sandwich configuration for microfluidic manipulation in LiNbO3 platform based on photovoltaic effect, and the behaviours of dielectric microdroplet under this sandwich configuration are investigated. It is found that the microdroplet can generate in the form of liquid bridge inside the LiNbO3-based sandwich structure under the governing dielectrophoretic force, and the dynamic process of microdroplet generation highly depends on the substrate combinations. Dynamic features found for different combinations are explained by the different electrostatic field distribution basing on the finite-element simulation results. Moreover, the electrostatic field required by the microdroplet generation is estimated through meniscus evolution and it is found in good agreement with the simulated electrostatic field inside the sandwich gap. Several kinds of microdroplet manipulations are attempted in this work. We suggest that the local dielectrophoretic force acting on the microdroplet depends on the distribution of the accumulated irradiation dosage. Without using any additional pumping or jetting actuator, the microdroplet can be step-moved, deformed or patterned by the inconsecutive dot-irradiation scheme, as well as elastically stretched out and back or smoothly guided in a designed pass by the consecutive line-irradiation scheme. PMID:27383027
Characterization for the performance of capacitive switches activated by mechanical shock
Younis, Mohammad I.; Alsaleem, Fadi M; Miles, Ronald; Su, Quang
2009-01-01
This paper presents experimental and theoretical investigation of a new concept of switches (triggers) that are actuated at or beyond a specific level of mechanical shock or acceleration. The principle of operation of the switches is based on dynamic pull-in instability induced by the combined interaction between electrostatic and mechanical shock forces. These switches can be tuned to be activated at various shock and acceleration thresholds by adjusting the DC voltage bias. Two commercial off-the-shelf capacitive accelerometers operating in air are tested under mechanical shock and electrostatic loading. A single-degree-of-freedom model accounting for squeeze-film damping, electrostatic forces, and mechanical shock is utilized for the theoretical investigation. Good agreement is found between simulation results and experimental data. Our results indicate that designing these new switches to respond quasi-statically to mechanical shock makes them robust against variations in shock shape and duration. More importantly, quasi-static operation makes the switches insensitive to variations in damping conditions. This can be promising to lower the cost of packaging for these switches since they can operate in atmospheric pressure with no hermetic sealing or costly package required. PMID:21720493
NASA Astrophysics Data System (ADS)
Ganet, F.; Le, M. Q.; Capsal, J. F.; Lermusiaux, P.; Petit, L.; Millon, A.; Cottinet, P. J.
2015-12-01
The development of steerable guide wire or catheter designs has been strongly limited by the lack of enabling actuator technologies. This paper presents the properties of an electrostrive actuator technology for steerable actuation. By carefully tailoring material properties and the actuator design, which can be integrated in devices, this technology should realistically make it possible to obtain a steerable guide wire design with considerable latitude. Electromechanical characteristics are described, and their impact on a steerable design is discussed.
Numerical solution of boundary-integral equations for molecular electrostatics.
Bardhan, Jaydeep P
2009-03-07
Numerous molecular processes, such as ion permeation through channel proteins, are governed by relatively small changes in energetics. As a result, theoretical investigations of these processes require accurate numerical methods. In the present paper, we evaluate the accuracy of two approaches to simulating boundary-integral equations for continuum models of the electrostatics of solvation. The analysis emphasizes boundary-element method simulations of the integral-equation formulation known as the apparent-surface-charge (ASC) method or polarizable-continuum model (PCM). In many numerical implementations of the ASC/PCM model, one forces the integral equation to be satisfied exactly at a set of discrete points on the boundary. We demonstrate in this paper that this approach to discretization, known as point collocation, is significantly less accurate than an alternative approach known as qualocation. Furthermore, the qualocation method offers this improvement in accuracy without increasing simulation time. Numerical examples demonstrate that electrostatic part of the solvation free energy, when calculated using the collocation and qualocation methods, can differ significantly; for a polypeptide, the answers can differ by as much as 10 kcal/mol (approximately 4% of the total electrostatic contribution to solvation). The applicability of the qualocation discretization to other integral-equation formulations is also discussed, and two equivalences between integral-equation methods are derived.
A comparison of two multi-variable integrator windup protection schemes
NASA Technical Reports Server (NTRS)
Mattern, Duane
1993-01-01
Two methods are examined for limit and integrator wind-up protection for multi-input, multi-output linear controllers subject to actuator constraints. The methods begin with an existing linear controller that satisfies the specifications for the nominal, small perturbation, linear model of the plant. The controllers are formulated to include an additional contribution to the state derivative calculations. The first method to be examined is the multi-variable version of the single-input, single-output, high gain, Conventional Anti-Windup (CAW) scheme. Except for the actuator limits, the CAW scheme is linear. The second scheme to be examined, denoted the Modified Anti-Windup (MAW) scheme, uses a scalar to modify the magnitude of the controller output vector while maintaining the vector direction. The calculation of the scalar modifier is a nonlinear function of the controller outputs and the actuator limits. In both cases the constrained actuator is tracked. These two integrator windup protection methods are demonstrated on a turbofan engine control system with five measurements, four control variables, and four actuators. The closed-loop responses of the two schemes are compared and contrasted during limit operation. The issue of maintaining the direction of the controller output vector using the Modified Anti-Windup scheme is discussed and the advantages and disadvantages of both of the IWP methods are presented.
Shang, Weijian; Su, Hao; Li, Gang; Fischer, Gregory S.
2014-01-01
This paper presents a surgical master-slave tele-operation system for percutaneous interventional procedures under continuous magnetic resonance imaging (MRI) guidance. This system consists of a piezoelectrically actuated slave robot for needle placement with integrated fiber optic force sensor utilizing Fabry-Perot interferometry (FPI) sensing principle. The sensor flexure is optimized and embedded to the slave robot for measuring needle insertion force. A novel, compact opto-mechanical FPI sensor interface is integrated into an MRI robot control system. By leveraging the complementary features of pneumatic and piezoelectric actuation, a pneumatically actuated haptic master robot is also developed to render force associated with needle placement interventions to the clinician. An aluminum load cell is implemented and calibrated to close the impedance control loop of the master robot. A force-position control algorithm is developed to control the hybrid actuated system. Teleoperated needle insertion is demonstrated under live MR imaging, where the slave robot resides in the scanner bore and the user manipulates the master beside the patient outside the bore. Force and position tracking results of the master-slave robot are demonstrated to validate the tracking performance of the integrated system. It has a position tracking error of 0.318mm and sine wave force tracking error of 2.227N. PMID:25126446
Shang, Weijian; Su, Hao; Li, Gang; Fischer, Gregory S
2013-01-01
This paper presents a surgical master-slave tele-operation system for percutaneous interventional procedures under continuous magnetic resonance imaging (MRI) guidance. This system consists of a piezoelectrically actuated slave robot for needle placement with integrated fiber optic force sensor utilizing Fabry-Perot interferometry (FPI) sensing principle. The sensor flexure is optimized and embedded to the slave robot for measuring needle insertion force. A novel, compact opto-mechanical FPI sensor interface is integrated into an MRI robot control system. By leveraging the complementary features of pneumatic and piezoelectric actuation, a pneumatically actuated haptic master robot is also developed to render force associated with needle placement interventions to the clinician. An aluminum load cell is implemented and calibrated to close the impedance control loop of the master robot. A force-position control algorithm is developed to control the hybrid actuated system. Teleoperated needle insertion is demonstrated under live MR imaging, where the slave robot resides in the scanner bore and the user manipulates the master beside the patient outside the bore. Force and position tracking results of the master-slave robot are demonstrated to validate the tracking performance of the integrated system. It has a position tracking error of 0.318mm and sine wave force tracking error of 2.227N.
Mirrors Containing Biomimetic Shape-Control Actuators
NASA Technical Reports Server (NTRS)
Bar-Cohen, Yoseph; Mouroulis, Pantazis; Bao, Xiaoqi; Sherrit, Stewart
2003-01-01
Curved mirrors of a proposed type would comprise lightweight sheets or films containing integral, biologically inspired actuators for controlling their surface figures. These mirrors could be useful in such applications as collection of solar energy, focusing of radio beams, and (provided sufficient precision could be achieved) imaging. These mirrors were originally intended for use in outer space, but it should also be possible to develop terrestrial versions. Several prior NASA Tech Briefs articles have described a variety of approaches to the design of curved, lightweight mirrors containing integral shape-control actuators. The primary distinction between the present approach and the prior approaches lies in the actuator design concept, which involves shapes and movements reminiscent of those of a variety of small, multi-armed animals. The shape and movement of an actuator of this type can also be characterized as reminiscent of that of an umbrella. This concept can be further characterized as a derivative of that of multifinger grippers, the fingers of which are bimorph bending actuators (see Figure 1). The fingers of such actuators can be strips containing any of a variety of materials that have been investigated for use as actuators, including such electroactive polymers as ionomeric polymer/metal composites (IPMCs), ferroelectric polymers, and grafted elastomers. A mirror according to this proposal would be made from a sheet of one of the actuator composites mentioned above. The design would involve many variables, including the pre-curvature and stiffness of the mirror sheet, the required precision of figure control, the required range of variation in focal length (see Figure 2), the required precision of figure control for imaging or non-imaging use, the bending and twisting moments needed to effect the required deformations, and voltage-tomoment coefficients of the actuators, and the voltages accordingly required for actuation. A typical design would call for segmentation of the electrodes on the actuators so that voltages could be applied locally to effect local bending for fine adjustment of the surface figure.
Dynamic Docking Test System (DDTS) active table computer program NASA Advanced Docking System (NADS)
NASA Technical Reports Server (NTRS)
Gates, R. M.; Jantz, R. E.
1974-01-01
A computer program was developed to describe the three-dimensional motion of the Dynamic Docking Test System active table. The input consists of inertia and geometry data, actuator structural data, forcing function data, hydraulics data, servo electronics data, and integration control data. The output consists of table responses, actuator bending responses, and actuator responses.
Pixelized Device Control Actuators for Large Adaptive Optics
NASA Technical Reports Server (NTRS)
Knowles, Gareth J.; Bird, Ross W.; Shea, Brian; Chen, Peter
2009-01-01
A fully integrated, compact, adaptive space optic mirror assembly has been developed, incorporating new advances in ultralight, high-performance composite mirrors. The composite mirrors use Q-switch matrix architecture-based pixelized control (PMN-PT) actuators, which achieve high-performance, large adaptive optic capability, while reducing the weight of present adaptive optic systems. The self-contained, fully assembled, 11x11x4-in. (approx.= 28x28x10-cm) unit integrates a very-high-performance 8-in. (approx.=20-cm) optic, and has 8-kHz true bandwidth. The assembled unit weighs less than 15 pounds (=6.8 kg), including all mechanical assemblies, power electronics, control electronics, drive electronics, face sheet, wiring, and cabling. It requires just three wires to be attached (power, ground, and signal) for full-function systems integration, and uses a steel-frame and epoxied electronics. The three main innovations are: 1. Ultralightweight composite optics: A new replication method for fabrication of very thin composite 20-cm-diameter laminate face sheets with good as-fabricated optical figure was developed. The approach is a new mandrel resin surface deposition onto previously fabricated thin composite laminates. 2. Matrix (regenerative) power topology: Waveform correction can be achieved across an entire face sheet at 6 kHz, even for large actuator counts. In practice, it was found to be better to develop a quadrant drive, that is, four quadrants of 169 actuators behind the face sheet. Each quadrant has a single, small, regenerative power supply driving all 169 actuators at 8 kHz in effective parallel. 3. Q-switch drive architecture: The Q-switch innovation is at the heart of the matrix architecture, and allows for a very fast current draw into a desired actuator element in 120 counts of a MHz clock without any actuator coupling.
NASA Technical Reports Server (NTRS)
Kass, William J.; Andrews, Larry A.; Boney, Craig M.; Chow, Weng W.; Clements, James W.; Merson, John A.; Salas, F. Jim; Williams, Randy J.; Hinkle, Lane R.
1994-01-01
This paper reviews the status of the Laser Diode Ignition (LDI) program at Sandia National Labs. One watt laser diodes have been characterized for use with a single explosive actuator. Extensive measurements of the effect of electrostatic discharge (ESD) pulses on the laser diode optical output have been made. Characterization of optical fiber and connectors over temperature has been done. Multiple laser diodes have been packaged to ignite multiple explosive devices and an eight element laser diode array has been recently tested by igniting eight explosive devices at predetermined 100 ms intervals.
NASA Astrophysics Data System (ADS)
Shen, Ji; Linn, Marcia C.
2011-08-01
What trajectories do students follow as they connect their observations of electrostatic phenomena to atomic-level visualizations? We designed an electrostatics unit, using the knowledge integration framework to help students link observations and scientific ideas. We analyze how learners integrate ideas about charges, charged particles, energy, and observable events. We compare learning enactments in a typical school and a magnet school in the USA. We use pre-tests, post-tests, embedded notes, and delayed post-tests to capture the trajectories of students' knowledge integration. We analyze how visualizations help students grapple with abstract electrostatics concepts such as induction. We find that overall students gain more sophisticated ideas. They can interpret dynamic, interactive visualizations, and connect charge- and particle-based explanations to interpret observable events. Students continue to have difficulty in applying the energy-based explanation.
Powered glove with electro-pneumatic actuation unit for the disabled
NASA Astrophysics Data System (ADS)
Kawakami, Kosuke; Kumano, Shinichi; Moromugi, Shunji; Ishimatsu, Takakazu
2007-12-01
Authors have been developing a powered glove for people suffering from paralysis on their fingers to support their daily activity. Small air cylinders are used as actuators for this glove. Pneumatically-driven system has high advantages in case soft actuation is preferable. However, there are some problems to be solved in the pneumatically-driven system if the system is supposed to be used in our daily life. Huge air compressor is needed and solenoid valves emit loud sound for example. These problems are hurdles to commercialize the powered glove. To solve these problems authors have developed a new actuation unit by integrating an electric cylinder and an air cylinder. This actuation unit has advantages of both the electric actuation and the pneumatic actuation. Its advanced grip control ability has demonstrated through several experiments. The experimental results are reported in this paper.
NASA Technical Reports Server (NTRS)
DeCastro, Jonathan A.; Melcher, Kevin J.; Noebe, Ronald D.
2005-01-01
This paper describes results of a numerical analysis evaluating the feasibility of high-temperature shape memory alloys (HTSMA) for active clearance control actuation in the high-pressure turbine section of a modern turbofan engine. The prototype actuator concept considered here consists of parallel HTSMA wires attached to the shroud that is located on the exterior of the turbine case. A transient model of an HTSMA actuator was used to evaluate active clearance control at various operating points in a test bed aircraft engine simulation. For the engine under consideration, each actuator must be designed to counteract loads from 380 to 2000 lbf and displace at least 0.033 inches. Design results show that an actuator comprised of 10 wires 2 inches in length is adequate for control at critical engine operating points and still exhibits acceptable failsafe operability and cycle life. A proportional-integral-derivative (PID) controller with integrator windup protection was implemented to control clearance amidst engine transients during a normal mission. Simulation results show that the control system exhibits minimal variability in clearance control performance across the operating envelope. The final actuator design is sufficiently small to fit within the limited space outside the high-pressure turbine case and is shown to consume only small amounts of bleed air to adequately regulate temperature.
Fast Response, Open-Celled Porous, Shape Memory Effect Actuators with Integrated Attachments
NASA Technical Reports Server (NTRS)
Jardine, Andrew Peter (Inventor)
2015-01-01
This invention relates to the exploitation of porous foam articles exhibiting the Shape Memory Effect as actuators. Each foam article is composed of a plurality of geometric shapes, such that some geometric shapes can fit snugly into or around rigid mating connectors that attach the Shape Memory foam article intimately into the load path between a static structure and a moveable structure. The foam is open-celled, composed of a plurality of interconnected struts whose mean diameter can vary from approximately 50 to 500 microns. Gases and fluids flowing through the foam transfer heat rapidly with the struts, providing rapid Shape Memory Effect transformations. Embodiments of porous foam articles as torsional actuators and approximately planar structures are disposed. Simple, integral connection systems exploiting the ability to supply large loads to a structure, and that can also supply hot and cold gases and fluids to effect rapid actuation are also disposed.
Real-Time Adaptive Control Allocation Applied to a High Performance Aircraft
NASA Technical Reports Server (NTRS)
Davidson, John B.; Lallman, Frederick J.; Bundick, W. Thomas
2001-01-01
Abstract This paper presents the development and application of one approach to the control of aircraft with large numbers of control effectors. This approach, referred to as real-time adaptive control allocation, combines a nonlinear method for control allocation with actuator failure detection and isolation. The control allocator maps moment (or angular acceleration) commands into physical control effector commands as functions of individual control effectiveness and availability. The actuator failure detection and isolation algorithm is a model-based approach that uses models of the actuators to predict actuator behavior and an adaptive decision threshold to achieve acceptable false alarm/missed detection rates. This integrated approach provides control reconfiguration when an aircraft is subjected to actuator failure, thereby improving maneuverability and survivability of the degraded aircraft. This method is demonstrated on a next generation military aircraft Lockheed-Martin Innovative Control Effector) simulation that has been modified to include a novel nonlinear fluid flow control control effector based on passive porosity. Desktop and real-time piloted simulation results demonstrate the performance of this integrated adaptive control allocation approach.
Design of a Compact Actuation and Control System for Flexible Medical Robots.
Morimoto, Tania K; Hawkes, Elliot Wright; Okamura, Allison M
2017-07-01
Flexible medical robots can improve surgical procedures by decreasing invasiveness and increasing accessibility within the body. Using preoperative images, these robots can be designed to optimize a procedure for a particular patient. To minimize invasiveness and maximize biocompatibility, the actuation units of flexible medical robots should be placed fully outside the patient's body. In this letter, we present a novel, compact, lightweight, modular actuation, and control system for driving a class of these flexible robots, known as concentric tube robots. A key feature of the design is the use of three-dimensional printed waffle gears to enable compact control of two degrees of freedom within each module. We measure the precision and accuracy of a single actuation module and demonstrate the ability of an integrated set of three actuation modules to control six degrees of freedom. The integrated system drives a three-tube concentric tube robot to reach a final tip position that is on average less than 2 mm from a given target. In addition, we show a handheld manifestation of the device and present its potential applications.
Sensor-integrated polymer actuators for closed-loop drug delivery system
NASA Astrophysics Data System (ADS)
Xu, Han; Wang, Chunlei; Kulinsky, Lawrence; Zoval, Jim; Madou, Marc
2006-03-01
This work presents manufacturing and testing of a closed-loop drug delivery system where drug release is achieved by an electrochemical actuation of an array of polymeric valves on a set of drug reservoirs. The valves are based on bi-layer structures made of polypyrrole/gold in the shape of a flap that is hinged on one side of a valve seat. Drugs stored in the underlying chambers are released by bending the bi-layer flaps back with a small applied bias. These polymeric valves simultaneously function as both drug release components and biological/chemical sensors responding to a specific biological or environmental stimulus. The sensors may send signals to the control module to realize closed-loop control of the drug release. In this study a glucose sensor has been integrated with the polymeric actuators through immobilization of glucose oxidase(GOx) within polypyrrole(PPy) valves. Sensitivities per unit area of the integrated glucose sensor have been measured and compared before and after the actuation of the sensor/actuator PPy/DBS/GOx film. Other sensing parameters such as linear range and response time were discussed as well. Using an array of these sensor/actuator cells, the amount of released drug, e.g. insulin, can be precisely controlled according to the surrounding glucose concentration detected by the glucose sensor. Activation of these reservoirs can be triggered either by the signal from the sensor, or by the signal from the operator. This approach also serves as the initial step to use the proposed system as an implantable drug delivery platform in the future.
NASA Astrophysics Data System (ADS)
Pradeep, K. R.; Thomas, A. M.; Basker, V. T.
2018-03-01
Structural health monitoring (SHM) is an essential component of futuristic civil, mechanical and aerospace structures. It detects the damages in system or give warning about the degradation of structure by evaluating performance parameters. This is achieved by the integration of sensors and actuators into the structure. Study of damage detection process in piezoelectric sensor and actuator integrated sandwich cantilever beam is carried out in this paper. Possible skin-core debond at the root of the cantilever beam is simulated and compared with undamaged case. The beam is actuated using piezoelectric actuators and performance differences are evaluated using Polyvinylidene fluoride (PVDF) sensors. The methodology utilized is the voltage/strain response of the damaged versus undamaged beam against transient actuation. Finite element model of piezo-beam is simulated in ANSYSTM using 8 noded coupled field element, with nodal degrees of freedoms are translations in the x, y directions and voltage. An aluminium sandwich beam with a length of 800mm, thickness of core 22.86mm and thickness of skin 0.3mm is considered. Skin-core debond is simulated in the model as unmerged nodes. Reduction in the fundamental frequency of the damaged beam is found to be negligible. But the voltage response of the PVDF sensor under transient excitation shows significantly visible change indicating the debond. Piezo electric based damage detection system is an effective tool for the damage detection of aerospace and civil structural system having inaccessible/critical locations and enables online monitoring possibilities as the power requirement is minimal.
Core-free rolled actuators for Braille displays using P(VDF-TrFE-CFE)
NASA Astrophysics Data System (ADS)
Levard, Thomas; Diglio, Paul J.; Lu, Sheng-Guo; Rahn, Christopher D.; Zhang, Q. M.
2012-01-01
Refreshable Braille displays require many small diameter actuators to move the pins. The electrostrictive P(VDF-TrFE-CFE) terpolymer can provide the high strain and actuation force under modest electric fields that are required for this application. In this paper, we develop core-free tubular actuators and integrate them into a 3 × 2 Braille cell. The terpolymer films are solution cast, stretched to 6 μm thick, electroded, laminated into a bilayer, rolled into a 2 mm diameter tube, bonded, and provided with top and bottom contacts. Experimental testing of 17 actuators demonstrates significant strains (up to 4%) and blocking forces (1 N) at moderate electric fields (100 MV m-1). A novel Braille cell is designed and fabricated using six of these actuators.
Microsystem Cooler Development
NASA Technical Reports Server (NTRS)
Moran, Matthew E.; Wesolek, Danielle M.; Berhane, Bruk T.; Rebello, Keith J.
2004-01-01
A patented microsystem Stirling cooler is under development with potential application to electronics, sensors, optical and radio frequency (RF) systems, microarrays, and other microsystems. The microsystem Stirling cooler is most suited to volume-limited applications that require cooling below the ambient or sink temperature. Primary components of the planar device include: two diaphragm actuators that replace the pistons found in traditional-scale Stirling machines; and a micro-regenerator that stores and releases thermal energy to the working gas during the Stirling cycle. The use of diaphragms eliminates frictional losses and bypass leakage concerns associated with pistons, while permitting reversal of the hot and cold sides of the device during operation to allow precise temperature control. Three candidate microregenerators were custom fabricated for initial evaluation: two constructed of porous ceramic, and one made of multiple layers of nickel and photoresist in an offset grating pattern. An additional regenerator was prepared with a random stainless steel fiber matrix commonly used in existing Stirling machines for comparison to the custom fabricated regenerators. The candidate regenerators were tested in a piezoelectric-actuated test apparatus designed to simulate the Stirling refrigeration cycle. In parallel with the regenerator testing, electrostatically-driven comb-drive diaphragm actuators for the prototype device have been designed for deep reactive ion etching (DRIE) fabrication.
Technical Reliability Studies. EOS/ESD Technology Abstracts
1982-01-01
RESISTANT BIPOLAR TRANSISTOR DESIGN AND ITS APPLICATIONS TO LINEAR INTEGRATED CIRCUITS 16145 MODULE ELECTROSTATIC DISCHARGE SIMULATOR 15786 SOME...T.M. 16476 STATIC DISCHARGE MODELING TECHNIQUES FOR EVALUATION OF INTEGRATED (FET) CIRCUIT DESTRUCTION 16145 MODULE ELECTAOSTATIC DISCHARGE SIMULATOR...PLASTIC LSI CIRCUITS PRklE, L.A., II 16145 MODULE ELECTROSTATIC DISCHARGE SIMULATOR PRICE, R.D. 13455 EVALUATION OF PLASTIC LSI CIRCUITS PSHAENICH, A
Musclelike joint mechanism driven by dielectric elastomer actuator for robotic applications
NASA Astrophysics Data System (ADS)
Jung, Ho Sang; Cho, Kyeong Ho; Park, Jae Hyeong; Yang, Sang Yul; Kim, Youngeun; Kim, Kihyeon; Nguyen, Canh Toan; Phung, Hoa; Tien Hoang, Phi; Moon, Hyungpil; Koo, Ja Choon; Ryeol Choi, Hyouk
2018-07-01
The purpose of this study is to develop an artificial muscle actuator suitable for robotic applications, and to demonstrate the feasibility of applying this actuator to an arm mechanism, and controlling it delicately and smoothly like a human being. To accomplish this, we perform the procedures that integrate the soft actuator, called the single body dielectric elastomer actuator, which is very flexible and capable of high speed operation, and the displacement amplification mechanism called the sliding filament joint mechanism, which mimics the sliding filament model of human muscles. In this paper, we describe the characteristics and control method of the actuation system that consists of actuator, mechanism, and embedded controller, and show the experimental results of the closed-loop position and static stiffness control of the robotic arm application. Finally, based on the results, we evaluate the performance of this application.
Control of a flexible planar truss using proof mass actuators
NASA Technical Reports Server (NTRS)
Minas, Constantinos; Garcia, Ephrahim; Inman, Daniel J.
1989-01-01
A flexible structure was modeled and actively controlled by using a single space realizable linear proof mass actuator. The NASA/UVA/UB actuator was attached to a flexible planar truss structure at an optimal location and it was considered as both passive and active device. The placement of the actuator was specified by examining the eigenvalues of the modified model that included the actuator dynamics, and the frequency response functions of the modified system. The electronic stiffness of the actuator was specified, such that the proof mass actuator system was tuned to the fourth structural mode of the truss by using traditional vibration absorber design. The active control law was limited to velocity feedback by integrating of the signals of two accelerometers attached to the structure. The two lower modes of the closed-loop structure were placed further in the LHS of the complex plane. The theoretically predicted passive and active control law was experimentally verified.
Electrostatic adhesion for added functionality of composite structures
NASA Astrophysics Data System (ADS)
Heath, Callum J. C.; Bond, Ian P.; Potter, Kevin D.
2016-02-01
Electrostatic adhesion can be used as a means of reversible attachment. The incorporation of electrostatic adhesion into fibre reinforced polymer (FRP) composite structures could provide significant value added functionality. Imparting large potential differences (˜2 kV) across electrodes generates an attractive force, thus providing a means of attachment. This could be used as a reversible latching mechanism or as a means of controllable internal connectivity. Varying the connectivity for discrete elements of a substructure of a given design allows for control of internal load paths and moment of area of the cross section. This could facilitate variable stiffness (both in bending and torsion). Using a combination of existing fabrication techniques, functional electrodes have been integrated within a FRP. Copper polyimide thin film laminate material has been both co-cured with carbon fibre reinforced epoxy and bonded to PVC closed cell foam core material to provide a range of structural configurations with integrated electrodes. The ability of such integrated devices to confer variations in global bending stiffness of basic beam structures is investigated. Through the application of 4 kV across integrated electrostatic adhesive devices, a 112% increase in flexural stiffness has been demonstrated for a composite sandwich structure.
Piezoelectric Pulsed Microjets
2011-04-29
microjets presents new design capabilities [ 9 , 18, 19]. An actuator is developed and tested here that integrates these two subsystems together to produce... actuator during testing. A digital pressure gauge was placed in-line after the accumulator to monitor bias pressure during testing. A check valve is used...bled off from the hydraulic actuator without affecting the pressure maintained in the accumulator. Air is bled from the system via a bleed valve within
NASA Astrophysics Data System (ADS)
Herbuś, K.; Ociepka, P.
2017-08-01
In the work is analysed a sequential control system of a machine for separating and grouping work pieces for processing. Whereas, the area of the considered problem is related with verification of operation of an actuator system of an electro-pneumatic control system equipped with a PLC controller. Wherein to verification is subjected the way of operation of actuators in view of logic relationships assumed in the control system. The actuators of the considered control system were three drives of linear motion (pneumatic cylinders). And the logical structure of the system of operation of the control system is based on the signals flow graph. The tested logical structure of operation of the electro-pneumatic control system was implemented in the Automation Studio software of B&R company. This software is used to create programs for the PLC controllers. Next, in the FluidSIM software was created the model of the actuator system of the control system of a machine. To verify the created program for the PLC controller, simulating the operation of the created model, it was utilized the approach of integration these two programs using the tool for data exchange in the form of the OPC server.
A methodology for identification and control of electro-mechanical actuators
Tutunji, Tarek A.; Saleem, Ashraf
2015-01-01
Mechatronic systems are fully-integrated engineering systems that are composed of mechanical, electronic, and computer control sub-systems. These integrated systems use electro-mechanical actuators to cause the required motion. Therefore, the design of appropriate controllers for these actuators are an essential step in mechatronic system design. In this paper, a three-stage methodology for real-time identification and control of electro-mechanical actuator plants is presented, tested, and validated. First, identification models are constructed from experimental data to approximate the plants’ response. Second, the identified model is used in a simulation environment for the purpose of designing a suitable controller. Finally, the designed controller is applied and tested on the real plant through Hardware-in-the-Loop (HIL) environment. The described three-stage methodology provides the following practical contributions: • Establishes an easy-to-follow methodology for controller design of electro-mechanical actuators. • Combines off-line and on-line controller design for practical performance. • Modifies the HIL concept by using physical plants with computer control (rather than virtual plants with physical controllers). Simulated and experimental results for two case studies, induction motor and vehicle drive system, are presented in order to validate the proposed methodology. These results showed that electromechanical actuators can be identified and controlled using an easy-to-duplicate and flexible procedure. PMID:26150992
Challenges of extreme load hexapod design and modularization for large ground-based telescopes
NASA Astrophysics Data System (ADS)
Gloess, Rainer; Lula, Brian
2010-07-01
The hexapod is a parallel kinematic manipulator that is the minimum arrangement for independent control of six degrees of freedom. Advancing needs for hexapod performance, capacity and configurations have driven development of highly capable new actuator designs. This paper describes new compact hexapod design proposals for high load capacity, and corresponding hexapod actuator only mechanisms suitable for integration as structural motion elements in next-generation telescope designs. These actuators provide up to 90 000N load capability while preserving sub-micrometer positional capability and in-position stability. The design is optimized for low power dissipation and incorporates novel encoders direct manufactured with the nut flange to achieve more than 100000 increments per revolution. In the hexapod design we choose cardan joints for the actuator that have axis offsets to provide optimized stiffness. The additional computational requirements for offset axes are readily solved by advanced kinematic algorithms and modern hardware. The paper also describes the hexapod controller concept with individual actuator designs, which allows the integration of hexapod actuators into the main telescope structure to reduce mass and provide the telescope designer more design freedom in the incorporation of these types of motion systems. An adaptive software package was developed including collision control feature for real-time safety during hexapod movements.
A methodology for identification and control of electro-mechanical actuators.
Tutunji, Tarek A; Saleem, Ashraf
2015-01-01
Mechatronic systems are fully-integrated engineering systems that are composed of mechanical, electronic, and computer control sub-systems. These integrated systems use electro-mechanical actuators to cause the required motion. Therefore, the design of appropriate controllers for these actuators are an essential step in mechatronic system design. In this paper, a three-stage methodology for real-time identification and control of electro-mechanical actuator plants is presented, tested, and validated. First, identification models are constructed from experimental data to approximate the plants' response. Second, the identified model is used in a simulation environment for the purpose of designing a suitable controller. Finally, the designed controller is applied and tested on the real plant through Hardware-in-the-Loop (HIL) environment. The described three-stage methodology provides the following practical contributions: •Establishes an easy-to-follow methodology for controller design of electro-mechanical actuators.•Combines off-line and on-line controller design for practical performance.•Modifies the HIL concept by using physical plants with computer control (rather than virtual plants with physical controllers). Simulated and experimental results for two case studies, induction motor and vehicle drive system, are presented in order to validate the proposed methodology. These results showed that electromechanical actuators can be identified and controlled using an easy-to-duplicate and flexible procedure.
Sensors and actuators inherent in biological species
NASA Astrophysics Data System (ADS)
Taya, Minoru; Stahlberg, Rainer; Li, Fanghong; Zhao, Ying Joyce
2007-04-01
This paper addresses examples of sensing and active mechanisms inherent in some biological species where both plants and animals cases are discussed: mechanosensors and actuators in Venus Fly Trap and cucumber tendrils, chemosensors in insects, two cases of interactions between different kingdoms, (i) cotton plant smart defense system and (ii) bird-of-paradise flower and hamming bird interaction. All these cases lead us to recognize how energy-efficient and flexible the biological sensors and actuators are. This review reveals the importance of integration of sensing and actuation functions into an autonomous system if we make biomimetic design of a set of new autonomous systems which can sense and actuate under a number of different stimuli and threats.
Differential-damper topologies for actuators in rehabilitation robotics.
Tucker, Michael R; Gassert, Roger
2012-01-01
Differential-damper (DD) elements can provide a high bandwidth means for decoupling a high inertia, high friction, non-backdrivable actuator from its output and can enable high fidelity force control. In this paper, a port-based decomposition is used to analyze the energetic behavior of such actuators in various physical domains. The general concepts are then applied to a prototype DD actuator for illustration and discussion. It is shown that, within physical bounds, the output torque from a DD actuator can be controlled independently from the input speed. This concept holds the potential to be scaled up and integrated in a compact and lightweight package powerful enough for incorporation with a portable lower limb orthotic or prosthetic device.
Control of Tollmien-Schlichting instabilities by finite distributed wall actuation
NASA Astrophysics Data System (ADS)
Losse, Nikolas R.; King, Rudibert; Zengl, Marcus; Rist, Ulrich; Noack, Bernd R.
2011-06-01
Tollmien-Schlichting waves are one of the key mechanisms triggering the laminar-turbulent transition in a flat-plate boundary-layer flow. By damping these waves and thus delaying transition, skin friction drag can be significantly decreased. In this simulation study, a wall segment is actuated according to a control scheme based on a POD-Galerkin model driven extended Kalman filter for state estimation and a model predictive controller to dampen TS waves by negative superposition based on this information. The setup of the simulation is chosen to resemble actuation with a driven compliant wall, such as a membrane actuator. Most importantly, a method is proposed to integrate such a localized wall actuation into a Galerkin model.
On-demand Droplet Manipulation via Triboelectrification
NASA Astrophysics Data System (ADS)
Wang, Wei; Vahabi, Hamed; Cackovic, Matthew; Jiang, Rui; Kota, Arun
2017-11-01
Controlled manipulation of liquid droplets has attracted tremendous interest across different scientific fields over the past two decades. To date, a variety of external stimuli-mediated methods such as magnetic field, electric field, and light have been developed for manipulating droplets on surfaces. However, these methods usually have drawbacks such as complex fabrication of manipulation platform, low droplet motility, expensive actuation system and lack of precise control. In this work, we demonstrate the controlled manipulation of liquid droplet with both high (e.g., water) and low (e.g., n-hexadecane) dielectric strengths on a smooth, slippery surface via triboelectric effect. Our highly simple, facile and portable methodology enables on-demand, precise manipulation of droplets using solely the electrostatic attraction or repulsion force, which is exerted on the droplet by a simple charged actuator (e.g., Teflon film). We envision that our triboelectric effect enabled droplet manipulation methodology will open a new avenue for droplet based lab-on-a-chip systems, energy harvesting devices and biomedical applications.
A double torsion pendulum with two cascade soft degrees of freedom
NASA Astrophysics Data System (ADS)
Marconi, L.; Stanga, R.; Bassan, M.
2012-06-01
We report on a double torsion pendulum, where motion along two degrees of freedom (DoFs) is almost free. The Test Mass (TM) is enclosed in a replica of the LISA-Pathfinder electrostatic readout and actuation system. This apparatus is designed to perform extensive ground testing of undesired effects such as leakage of the readout noise from one DoF to another, or actuation cross talks with closed feedback loop. Such investigation is relevant to the noise budget of LISA and LISA-Pathfinder missions, as the TM will be sensitive to weak forces along all 6 degrees of freedom (DoFs). The instrument being developed in Firenze is capable of measuring the forces and stiffnesses acting simultaneously along the 2 soft DoFs. We have completed an upgrade of the apparatus to a definitive configuration and we report on both advances in the commissioning tests and on measurements of residual charge, with the first DoF released.
An Unconventional Inchworm Actuator Based on PZT/ERFs Control Technology
Liu, Guojun; Zhang, Yanyan; Liu, Jianfang; Li, Jianqiao; Tang, Chunxiu; Wang, Tengfei; Yang, Xuhao
2016-01-01
An unconventional inchworm actuator for precision positioning based on piezoelectric (PZT) actuation and electrorheological fluids (ERFs) control technology is presented. The actuator consists of actuation unit (PZT stack pump), fluid control unit (ERFs valve), and execution unit (hydraulic actuator). In view of smaller deformation of PZT stack, a new structure is designed for actuation unit, which integrates the advantages of two modes (namely, diaphragm type and piston type) of the volume changing of pump chamber. In order to improve the static shear yield strength of ERFs, a composite ERFs valve is designed, which adopts the series-parallel plate compound structure. The prototype of the inchworm actuator has been designed and manufactured in the lab. Systematic test results indicate that the displacement resolution of the unconventional inchworm actuator reaches 0.038 μm, and the maximum driving force and velocity are 42 N, 14.8 mm/s, respectively. The optimal working frequency for the maximum driving velocity is 120 Hz. The complete research and development processes further confirm the feasibility of developing a new type of inchworm actuator with high performance based on PZT actuation and ERFs control technology, which provides a reference for the future development of a new type of actuator. PMID:27022234
An Unconventional Inchworm Actuator Based on PZT/ERFs Control Technology.
Liu, Guojun; Zhang, Yanyan; Liu, Jianfang; Li, Jianqiao; Tang, Chunxiu; Wang, Tengfei; Yang, Xuhao
2016-01-01
An unconventional inchworm actuator for precision positioning based on piezoelectric (PZT) actuation and electrorheological fluids (ERFs) control technology is presented. The actuator consists of actuation unit (PZT stack pump), fluid control unit (ERFs valve), and execution unit (hydraulic actuator). In view of smaller deformation of PZT stack, a new structure is designed for actuation unit, which integrates the advantages of two modes (namely, diaphragm type and piston type) of the volume changing of pump chamber. In order to improve the static shear yield strength of ERFs, a composite ERFs valve is designed, which adopts the series-parallel plate compound structure. The prototype of the inchworm actuator has been designed and manufactured in the lab. Systematic test results indicate that the displacement resolution of the unconventional inchworm actuator reaches 0.038 μm, and the maximum driving force and velocity are 42 N, 14.8 mm/s, respectively. The optimal working frequency for the maximum driving velocity is 120 Hz. The complete research and development processes further confirm the feasibility of developing a new type of inchworm actuator with high performance based on PZT actuation and ERFs control technology, which provides a reference for the future development of a new type of actuator.
Fabrication of comb-drive actuators for straining nanostructured suspended graphene.
Goldsche, Matthias; Verbiest, G J; Khodkov, Tymofiy; Sonntag, Jens; von den Driesch, Nils; Buca, Dan; Stampfer, Christoph
2018-06-20
We report on the fabrication and characterization of an optimized comb-drive actuator design for strain-dependent transport measurements on suspended graphene. We fabricate devices from highly p-doped silicon using deep reactive ion etching with a chromium mask. Crucially, we implement a gold layer to reduce the device resistance from ≈51.6 kΩ to ≈236 Ω at room temperature in order to allow for strain-dependent transport measurements. The graphene is integrated by mechanically transferring it directly onto the actuator using a polymethylmethacrylate membrane. Importantly, the integrated graphene can be nanostructured afterwards to optimize device functionality. The minimum feature size of the structured suspended graphene is 30~nm, which allows for interesting device concepts such as mechanically-tunable nanoconstrictions. Finally, we characterize the fabricated devices by measuring the Raman spectrum as well as the a mechanical resonance frequency of an integrated graphene sheet for different strain values. © 2018 IOP Publishing Ltd.
Valve, explosive actuated, normally open, pyronetics model 1399
NASA Technical Reports Server (NTRS)
Avalos, E.
1971-01-01
Results of the tests to evaluate open valve, Model 1399 are reported for the the following tests: proof pressure leakage, actuation, disassembly, and burst pressure. It is concluded that the tests demonstrate the soundness of the structural integrity of the valve.
Nonlinear Tracking Control of a Conductive Supercoiled Polymer Actuator.
Luong, Tuan Anh; Cho, Kyeong Ho; Song, Min Geun; Koo, Ja Choon; Choi, Hyouk Ryeol; Moon, Hyungpil
2018-04-01
Artificial muscle actuators made from commercial nylon fishing lines have been recently introduced and shown as a new type of actuator with high performance. However, the actuators also exhibit significant nonlinearities, which make them difficult to control, especially in precise trajectory-tracking applications. In this article, we present a nonlinear mathematical model of a conductive supercoiled polymer (SCP) actuator driven by Joule heating for model-based feedback controls. Our efforts include modeling of the hysteresis behavior of the actuator. Based on nonlinear modeling, we design a sliding mode controller for SCP actuator-driven manipulators. The system with proposed control law is proven to be asymptotically stable using the Lyapunov theory. The control performance of the proposed method is evaluated experimentally and compared with that of a proportional-integral-derivative (PID) controller through one-degree-of-freedom SCP actuator-driven manipulators. Experimental results show that the proposed controller's performance is superior to that of a PID controller, such as the tracking errors are nearly 10 times smaller compared with those of a PID controller, and it is more robust to external disturbances such as sensor noise and actuator modeling error.
First Demonstration of Electrostatic Damping of Parametric Instability at Advanced LIGO
NASA Astrophysics Data System (ADS)
Blair, Carl; Gras, Slawek; Abbott, Richard; Aston, Stuart; Betzwieser, Joseph; Blair, David; DeRosa, Ryan; Evans, Matthew; Frolov, Valera; Fritschel, Peter; Grote, Hartmut; Hardwick, Terra; Liu, Jian; Lormand, Marc; Miller, John; Mullavey, Adam; O'Reilly, Brian; Zhao, Chunnong; Abbott, B. P.; Abbott, T. D.; Adams, C.; Adhikari, R. X.; Anderson, S. B.; Ananyeva, A.; Appert, S.; Arai, K.; Ballmer, S. W.; Barker, D.; Barr, B.; Barsotti, L.; Bartlett, J.; Bartos, I.; Batch, J. C.; Bell, A. S.; Billingsley, G.; Birch, J.; Biscans, S.; Biwer, C.; Bork, R.; Brooks, A. F.; Ciani, G.; Clara, F.; Countryman, S. T.; Cowart, M. J.; Coyne, D. C.; Cumming, A.; Cunningham, L.; Danzmann, K.; Da Silva Costa, C. F.; Daw, E. J.; DeBra, D.; DeSalvo, R.; Dooley, K. L.; Doravari, S.; Driggers, J. C.; Dwyer, S. E.; Effler, A.; Etzel, T.; Evans, T. M.; Factourovich, M.; Fair, H.; Fernández Galiana, A.; Fisher, R. P.; Fulda, P.; Fyffe, M.; Giaime, J. A.; Giardina, K. D.; Goetz, E.; Goetz, R.; Gray, C.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hall, E. D.; Hammond, G.; Hanks, J.; Hanson, J.; Harry, G. M.; Heintze, M. C.; Heptonstall, A. W.; Hough, J.; Izumi, K.; Jones, R.; Kandhasamy, S.; Karki, S.; Kasprzack, M.; Kaufer, S.; Kawabe, K.; Kijbunchoo, N.; King, E. J.; King, P. J.; Kissel, J. S.; Korth, W. Z.; Kuehn, G.; Landry, M.; Lantz, B.; Lockerbie, N. A.; Lundgren, A. P.; MacInnis, M.; Macleod, D. M.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martin, I. W.; Martynov, D. V.; Mason, K.; Massinger, T. J.; Matichard, F.; Mavalvala, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McIntyre, G.; McIver, J.; Mendell, G.; Merilh, E. L.; Meyers, P. M.; Mittleman, R.; Moreno, G.; Mueller, G.; Munch, J.; Nuttall, L. K.; Oberling, J.; Oppermann, P.; Oram, Richard J.; Ottaway, D. J.; Overmier, H.; Palamos, J. R.; Paris, H. R.; Parker, W.; Pele, A.; Penn, S.; Phelps, M.; Pierro, V.; Pinto, I.; Principe, M.; Prokhorov, L. G.; Puncken, O.; Quetschke, V.; Quintero, E. A.; Raab, F. J.; Radkins, H.; Raffai, P.; Reid, S.; Reitze, D. H.; Robertson, N. A.; Rollins, J. G.; Roma, V. J.; Romie, J. H.; Rowan, S.; Ryan, K.; Sadecki, T.; Sanchez, E. J.; Sandberg, V.; Savage, R. L.; Schofield, R. M. S.; Sellers, D.; Shaddock, D. A.; Shaffer, T. J.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sigg, D.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Sorazu, B.; Staley, A.; Strain, K. A.; Tanner, D. B.; Taylor, R.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Torrie, C. I.; Traylor, G.; Vajente, G.; Valdes, G.; van Veggel, A. A.; Vecchio, A.; Veitch, P. J.; Venkateswara, K.; Vo, T.; Vorvick, C.; Walker, M.; Ward, R. L.; Warner, J.; Weaver, B.; Weiss, R.; Weßels, P.; Willke, B.; Wipf, C. C.; Worden, J.; Wu, G.; Yamamoto, H.; Yancey, C. C.; Yu, Hang; Yu, Haocun; Zhang, L.; Zucker, M. E.; Zweizig, J.; LSC Instrument Authors
2017-04-01
Interferometric gravitational wave detectors operate with high optical power in their arms in order to achieve high shot-noise limited strain sensitivity. A significant limitation to increasing the optical power is the phenomenon of three-mode parametric instabilities, in which the laser field in the arm cavities is scattered into higher-order optical modes by acoustic modes of the cavity mirrors. The optical modes can further drive the acoustic modes via radiation pressure, potentially producing an exponential buildup. One proposed technique to stabilize parametric instability is active damping of acoustic modes. We report here the first demonstration of damping a parametrically unstable mode using active feedback forces on the cavity mirror. A 15 538 Hz mode that grew exponentially with a time constant of 182 sec was damped using electrostatic actuation, with a resulting decay time constant of 23 sec. An average control force of 0.03 nN was required to maintain the acoustic mode at its minimum amplitude.
Electrostatic Switching in Vertically Oriented Nanotubes for Nonvolatile Memory Applications
NASA Technical Reports Server (NTRS)
Kaul, Anupama B.; Khan, Paul; Jennings, Andrew T.; Greer, Julia R.; Megerian, Krikor G.; Allmen, Paul von
2009-01-01
We have demonstrated electrostatic switching in vertically oriented nanotubes or nanofibers, where a nanoprobe was used as the actuating electrode inside an SEM. When the nanoprobe was manipulated to be in close proximity to a single tube, switching voltages between 10 V - 40 V were observed, depending on the geometrical parameters. The turn-on transitions appeared to be much sharper than the turn-off transitions which were limited by the tube-to-probe contact resistances. In many cases, stiction forces at these dimensions were dominant, since the tube appeared stuck to the probe even after the voltage returned to 0 V, suggesting that such structures are promising for nonvolatile memory applications. The stiction effects, to some extent, can be adjusted by engineering the switch geometry appropriately. Nanoscale mechanical measurements were also conducted on the tubes using a custom-built anoindentor inside an SEM, from which preliminary material parameters, such as the elastic modulus, were extracted. The mechanical measurements also revealed that the tubes appear to be well adhered to the substrate. The material parameters gathered from the mechanical measurements were then used in developing an electrostatic model of the switch using a commercially available finite-element simulator. The calculated pull-in voltages appeared to be in agreement to the experimentally obtained switching voltages to first order.
Vertical Diaphragm Electrostatic Actuator for a High Density Ink Jet Printer Head
NASA Astrophysics Data System (ADS)
Norimatsu, Takayuki; Tanaka, Shuji; Esashi, Masayoshi
This paper describes the design, fabrication process and preliminary evaluation of an electrostatic ink jet printer head with vertical diaphragms in deep trenches. By adopting the novel structure where an ink cavity is surrounded by the vertical diaphragm, the footprint of each unit (40 μm × 500 μm) becomes approximately one fifth as small as that of a conventional one. Such small footprint is advantageous in cost, resolution and printing speed. To make the vertical diaphragms, a 0.5 μm thick sacrificial thermally-oxidized layer and a 4.5 μm thick poly-silicon layer are sequentially formed in deep-reactive-ion-etched trenches, and then the sacrificial layer is etched away by fluoric acid. The nozzles are fabricated on a Pyrex glass substrate by femtosecond laser ablation, and the nozzle outside is covered with a water repellant Au/Pt/Ti layer. Impedance measurement found that the electrostatic gaps were in contact or closely approaching. This could be because the diaphragms buckled by compressive stress induced in low pressure chemical vapor deposition (LPCVD). Ink ejection was tried using commercially-available blue ink, but failed. The nozzles were covered with the ink, because the water repellant finish of the nozzle outside was not good.
Soft Dielectric Elastomer Oscillators Driving Bioinspired Robots.
Henke, E-F Markus; Schlatter, Samuel; Anderson, Iain A
2017-12-01
Entirely soft robots with animal-like behavior and integrated artificial nervous systems will open up totally new perspectives and applications. To produce them, we must integrate control and actuation in the same soft structure. Soft actuators (e.g., pneumatic and hydraulic) exist but electronics are hard and stiff and remotely located. We present novel soft, electronics-free dielectric elastomer oscillators, which are able to drive bioinspired robots. As a demonstrator, we present a robot that mimics the crawling motion of the caterpillar, with an integrated artificial nervous system, soft actuators and without any conventional stiff electronic parts. Supplied with an external DC voltage, the robot autonomously generates all signals that are necessary to drive its dielectric elastomer actuators, and it translates an in-plane electromechanical oscillation into a crawling locomotion movement. Therefore, all functional and supporting parts are made of polymer materials and carbon. Besides the basic design of this first electronic-free, biomimetic robot, we present prospects to control the general behavior of such robots. The absence of conventional stiff electronics and the exclusive use of polymeric materials will provide a large step toward real animal-like robots, compliant human machine interfaces, and a new class of distributed, neuron-like internal control for robotic systems.
New Magnetic Microactuator Design Based on PDMS Elastomer and MEMS Technologies for Tactile Display.
Streque, Jeremy; Talbi, Abdelkrim; Pernod, Philippe; Preobrazhensky, Vladimir
2010-01-01
Highly efficient tactile display devices must fulfill technical requirements for tactile stimulation, all the while preserving the lightness and compactness needed for handheld operation. This paper focuses on the elaboration of highly integrated magnetic microactuators for tactile display devices. FEM simulation, conception, fabrication, and characterization of these microactuators are presented in this paper. The current demonstrator offers a 4 × 4 flexible microactuator array with a resolution of 2 mm. Each actuator is composed of a Poly (Dimethyl-Siloxane) (PDMS) elastomeric membrane, magnetically actuated by coil-magnet interaction. It represents a proof of concept for fully integrated MEMS tactile devices, with fair actuation forces provided for a power consumption up to 100 mW per microactuator. The prototypes are destined to provide both static and dynamic tactile sensations, with an optimized membrane geometry for actuation frequencies between DC and 350 Hz. On the basis of preliminary experiments, this display device can offer skin stimulations for various tactile stimuli for applications in the fields of Virtual Reality or Human-Computer Interaction (HCI). Moreover, the elastomeric material used in this device and its global compactness offer great advantages in matter of comfort of use and capabilities of integration in haptic devices.
Zhu, Kewu; Ng, Wai Kiong; Shen, Shoucang; Tan, Reginald B H; Heng, Paul W S
2008-11-01
To develop a device for simultaneous measurement of particle aerodynamic diameter and electrostatic charge of inhalation aerosols. An integrated system consisting of an add-on charge measurement device and a liquid impinger was developed to simultaneously determine particle aerodynamic diameter and electrostatic charge. The accuracy in charge measurement and fine particle fraction characterization of the new system was evaluated. The integrated system was then applied to analyze the electrostatic charges of a DPI formulation composed of salbutamol sulphate-Inhalac 230 dispersed using a Rotahaler. The charge measurement accuracy was comparable with the Faraday cage method, and incorporation of the charge measurement module had no effect on the performance of the liquid impinger. Salbutamol sulphate carried negative charges while the net charge of Inhalac 230 and un-dispersed salbutamol sulphate was found to be positive after being aerosolized from the inhaler. The instantaneous current signal was strong with small noise to signal ratio, and good reproducibility of charge to mass ratio was obtained for the DPI system investigated. A system for simultaneously measuring particle aerodynamic diameter and aerosol electrostatic charges has been developed, and the system provides a non-intrusive and reliable electrostatic charge characterization method for inhalation dosage forms.
Valve system incorporating single failure protection logic
Ryan, Rodger; Timmerman, Walter J. H.
1980-01-01
A valve system incorporating single failure protective logic. The system consists of a valve combination or composite valve which allows actuation or de-actuation of a device such as a hydraulic cylinder or other mechanism, integral with or separate from the valve assembly, by means of three independent input signals combined in a function commonly known as two-out-of-three logic. Using the input signals as independent and redundant actuation/de-actuation signals, a single signal failure, or failure of the corresponding valve or valve set, will neither prevent the desired action, nor cause the undesired action of the mechanism.
Fast-Response-Time Shape-Memory-Effect Foam Actuators
NASA Technical Reports Server (NTRS)
Jardine, Peter
2010-01-01
Bulk shape memory alloys, such as Nitinol or CuAlZn, display strong recovery forces undergoing a phase transformation after being strained in their martensitic state. These recovery forces are used for actuation. As the phase transformation is thermally driven, the response time of the actuation can be slow, as the heat must be passively inserted or removed from the alloy. Shape memory alloy TiNi torque tubes have been investigated for at least 20 years and have demonstrated high actuation forces [3,000 in.-lb (approximately equal to 340 N-m) torques] and are very lightweight. However, they are not easy to attach to existing structures. Adhesives will fail in shear at low-torque loads and the TiNi is not weldable, so that mechanical crimp fits have been generally used. These are not reliable, especially in vibratory environments. The TiNi is also slow to heat up, as it can only be heated indirectly using heater and cooling must be done passively. This has restricted their use to on-off actuators where cycle times of approximately one minute is acceptable. Self-propagating high-temperature synthesis (SHS) has been used in the past to make porous TiNi metal foams. Shape Change Technologies has been able to train SHS derived TiNi to exhibit the shape memory effect. As it is an open-celled material, fast response times were observed when the material was heated using hot and cold fluids. A methodology was developed to make the open-celled porous TiNi foams as a tube with integrated hexagonal ends, which then becomes a torsional actuator with fast response times. Under processing developed independently, researchers were able to verify torques of 84 in.-lb (approximately equal to 9.5 Nm) using an actuator weighing 1.3 oz (approximately equal to 37 g) with very fast (less than 1/16th of a second) initial response times when hot and cold fluids were used to facilitate heat transfer. Integrated structural connections were added as part of the net shape process, eliminating the need for welding, adhesives, or mechanical crimping. Inexpensive net-shape processing was used, which reduces the cost of the actuator by over a factor of 10 over nonporous TiNi made by hot drawing of tube or electrical discharge machining. By forming the alloy as an open-celled foam, the surface area for heat transfer is dramatically increased, allowing for much faster response times. The technology also allows for netshape fabrication of the actuator, which allows for structural connections to be integrated into the actuator material, making these actuators significantly less expensive. Commercial applications include actuators for concepts such as the variable area chevron and nozzle in jet aircraft. Lightweight tube or rod components can be supplied to interested parties.
Ground Based Investigation of Electrostatic Accelerometer in HUST
NASA Astrophysics Data System (ADS)
Bai, Y.; Zhou, Z.
2013-12-01
High-precision electrostatic accelerometers with six degrees of freedom (DOF) acceleration measurement were successfully used in CHAMP, GRACE and GOCE missions which to measure the Earth's gravity field. In our group, space inertial sensor based on the capacitance transducer and electrostatic control technique has been investigated for test of equivalence principle (TEPO), searching non-Newtonian force in micrometer range, and satellite Earth's field recovery. The significant techniques of capacitive position sensor with the noise level at 2×10-7pF/Hz1/2 and the μV/Hz1/2 level electrostatic actuator are carried out and all the six servo loop controls by using a discrete PID algorithm are realized in a FPGA device. For testing on ground, in order to compensate one g earth's gravity, the fiber torsion pendulum facility is adopt to measure the parameters of the electrostatic controlled inertial sensor such as the resolution, and the electrostatic stiffness, the cross couple between different DOFs. A short distance and a simple double capsule equipment the valid duration about 0.5 second is set up in our lab for the free fall tests of the engineering model which can directly verify the function of six DOF control. Meanwhile, high voltage suspension method is also realized and preliminary results show that the horizontal axis of acceleration noise is about 10-8m/s2/Hz1/2 level which limited mainly by the seismic noise. Reference: [1] Fen Gao, Ze-Bing Zhou, Jun Luo, Feasibility for Testing the Equivalence Principle with Optical Readout in Space, Chin. Phys. Lett. 28(8) (2011) 080401. [2] Z. Zhu, Z. B. Zhou, L. Cai, Y. Z. Bai, J. Luo, Electrostatic gravity gradiometer design for the advanced GOCE mission, Adv. Sp. Res. 51 (2013) 2269-2276. [3] Z B Zhou, L Liu, H B Tu, Y Z Bai, J Luo, Seismic noise limit for ground-based performance measurements of an inertial sensor using a torsion balance, Class. Quantum Grav. 27 (2010) 175012. [4] H B Tu, Y Z Bai, Z B Zhou, L Liu, L Cai, and J Luo, Performance measurements of an inertial sensor with a two-stage controlled torsion pendulum, Class Quantum. Grav. 27 (2010) 205016.
Yu, Yi-Kuo
2003-08-15
The exact analytical result for a class of integrals involving (associated) Legendre polynomials of complicated argument is presented. The method employed can in principle be generalized to integrals involving other special functions. This class of integrals also proves useful in the electrostatic problems in which dielectric spheres are involved, which is of importance in modeling the dynamics of biological macromolecules. In fact, with this solution, a more robust foundation is laid for the Generalized Born method in modeling the dynamics of biomolecules. c2003 Elsevier B.V. All rights reserved.
Stirling Microregenerators Fabricated and Tested
NASA Technical Reports Server (NTRS)
Moran, Matthew E.
2004-01-01
A mesoscale Stirling refrigerator patented by the NASA Glenn Research Center is currently under development. This refrigerator has a predicted efficiency of 30 percent of Carnot and potential uses in electronics, sensors, optical and radiofrequency systems, microarrays, and microsystems. The mesoscale Stirling refrigerator is most suited to volume-limited applications that require cooling below the ambient or sink temperature. Primary components of the planar device include two diaphragm actuators that replace the pistons found in traditional-scale Stirling machines and a microregenerator that stores and releases thermal energy to the working gas during the Stirling cycle. Diaphragms are used to eliminate frictional losses and bypass leakage concerns associated with pistons, while permitting reversal of the hot and cold sides of the device during operation to allow precise temperature control. Three candidate microregenerators were fabricated under NASA grants for initial evaluation: two constructed of porous ceramic, which were fabricated by Johns Hopkins Applied Physics Laboratory, and one made of multiple layers of nickel and photoresist, which was fabricated by Polar Thermal Technologies. The candidate regenerators are being tested by Johns Hopkins Applied Physics in a custom piezoelectric-actuated test apparatus designed to produce the Stirling refrigeration cycle. In parallel with the regenerator testing, Johns Hopkins is using deep reactive ion etching to fabricate electrostatically driven, comb-drive diaphragm actuators. These actuators will drive the Stirling cycle in the prototype device. The top photograph shows the porous ceramic microregenerators. Two microregenerators were fabricated with coarse pores and two with fine pores. The bottom photograph shows the test apparatus parts for evaluating the microregenerators, including the layered nickel-and-photoresist regenerator fabricated using LIGA techniques.
Hair-based sensors for micro-autonomous systems
NASA Astrophysics Data System (ADS)
Sadeghi, Mahdi M.; Peterson, Rebecca L.; Najafi, Khalil
2012-06-01
We seek to harness microelectromechanical systems (MEMS) technologies to build biomimetic devices for low-power, high-performance, robust sensors and actuators on micro-autonomous robot platforms. Hair is used abundantly in nature for a variety of functions including balance and inertial sensing, flow sensing and aerodynamic (air foil) control, tactile and touch sensing, insulation and temperature control, particle filtering, and gas/chemical sensing. Biological hairs, which are typically characterized by large surface/volume ratios and mechanical amplification of movement, can be distributed in large numbers over large areas providing unprecedented sensitivity, redundancy, and stability (robustness). Local neural transduction allows for space- and power-efficient signal processing. Moreover by varying the hair structure and transduction mechanism, the basic hair form can be used for a wide diversity of functions. In this paper, by exploiting a novel wafer-level, bubble-free liquid encapsulation technology, we make arrays of micro-hydraulic cells capable of electrostatic actuation and hydraulic amplification, which enables high force/high deflection actuation and extremely sensitive detection (sensing) at low power. By attachment of cilia (hair) to the micro-hydraulic cell, air flow sensors with excellent sensitivity (< few cm/s) and dynamic range (> 10 m/s) have been built. A second-generation design has significantly reduced the sensor response time while maintaining sensitivity of about 2 cm/s and dynamic range of more than 15 m/s. These sensors can be used for dynamic flight control of flying robots or for situational awareness in surveillance applications. The core biomimetic technologies developed are applicable to a broad range of sensors and actuators.
Fast Electromechanical Switches Based on Carbon Nanotubes
NASA Technical Reports Server (NTRS)
Kaul, Anupama; Wong, Eric; Epp, Larry
2008-01-01
Electrostatically actuated nanoelectromechanical switches based on carbon nanotubes have been fabricated and tested in a continuing effort to develop high-speed switches for a variety of stationary and portable electronic equipment. As explained below, these devices offer advantages over electrostatically actuated microelectromechanical switches, which, heretofore, have represented the state of the art of rapid, highly miniaturized electromechanical switches. Potential applications for these devices include computer memories, cellular telephones, communication networks, scientific instrumentation, and general radiation-hard electronic equipment. A representative device of the present type includes a single-wall carbon nanotube suspended over a trench about 130 nm wide and 20 nm deep in an electrically insulating material. The ends of the carbon nanotube are connected to metal electrodes, denoted the source and drain electrodes. At bottom of the trench is another metal electrode, denoted the pull electrode (see figure). In the off or open switch state, no voltage is applied, and the nanotube remains out of contact with the pull electrode. When a sufficiently large electric potential (switching potential) is applied between the pull electrode and either or both of the source and drain electrodes, the resulting electrostatic attraction bends and stretches the nanotube into contact with the pull electrode, thereby putting the switch into the "on" or "closed" state, in which substantial current (typically as much as hundreds of nanoamperes) is conducted. Devices of this type for use in initial experiments were fabricated on a thermally oxidized Si wafer, onto which Nb was sputter-deposited for use as the pull-electrode layer. Nb was chosen because its refractory nature would enable it to withstand the chemical and thermal conditions to be subsequently imposed for growing carbon nanotubes. A 200- nm-thick layer of SiO2 was formed on top of the Nb layer by plasma-enhanced chemical vapor deposition. In the device regions, the SiO2 layer was patterned to thin it to the 20-nm trench depth. The trenches were then patterned by electron- beam lithography and formed by reactive- ion etching of the pattern through the 20-nm-thick SiO2 to the Nb layer.
Active Control Technology at NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Antcliff, Richard R.; McGowan, Anna-Marie R.
2000-01-01
NASA Langley has a long history of attacking important technical Opportunities from a broad base of supporting disciplines. The research and development at Langley in this subject area range from the test tube to the test flight, The information covered here will range from the development of innovative new materials, sensors and actuators, to the incorporation of smart sensors and actuators in practical devices, to the optimization of the location of these devices, to, finally, a wide variety of applications of these devices utilizing Langley's facilities and expertise. Advanced materials are being developed for sensors and actuators, as well as polymers for integrating smart devices into composite structures. Contributions reside in three key areas: computational materials; advanced piezoelectric materials; and integrated composite structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dehoff, Ryan R; Love, Lonnie J; Lind, Randall F
This work explores the integration of miniaturized fluid power and additive manufacturing. Oak Ridge National Laboratory (ORNL) has been developing an approach to miniaturized fluidic actuation and control that enables high dexterity, low cost and a pathway towards energy efficiency. Previous work focused on mesoscale digital control valves (high pressure, low flow) and the integration of actuation and fluid passages directly with the structure, the primary application being fluid powered robotics. The fundamental challenge was part complexity. ORNL s new additive manufacturing technologies (e-beam, laser and ultrasonic deposition) enables freeform manufacturing using conventional metal alloys with excellent mechanical properties. Themore » combination of these two technologies, miniaturized fluid power and additive manufacturing, can enable a paradigm shift in fluid power, increasing efficiency while simultaneously reducing weight, size, complexity and cost. This paper focuses on the impact additive manufacturing can have on new forms of fluid power components and systems. We begin with a description of additive manufacturing processes, highlighting the strengths and weaknesses of each technology. Next we describe fundamental results of material characterization to understand the design and mechanical limits of parts made with the e-beam process. A novel design approach is introduced that enables integration of fluid powered actuation with mechanical structure. Finally, we describe a proof-of-principle demonstration: an anthropomorphic (human-like) hydraulically powered hand with integrated power supply and actuation.« less
NASA Astrophysics Data System (ADS)
Wilson, S. A.; Jourdain, R. P.; Owens, S.
2010-09-01
The projected force-displacement capability of piezoelectric ceramic films in the 20-50 µm thickness range suggests that they are well suited to many micro-fluidic and micro-pneumatic applications. Furthermore when they are configured as bending actuators and operated at ~ 1 V µm - 1 they do not necessarily conform to the high-voltage, very low-displacement piezoelectric stereotype. Even so they are rarely found today in commercial micro-electromechanical devices, such as micro-pumps and micro-valves, and the main barriers to making them much more widely available would appear to be processing incompatibilities rather than commercial desirability. In particular, the issues associated with integration of these devices into MEMS at the production level are highly significant and they have perhaps received less attention in the mainstream than they deserve. This paper describes a fabrication route based on ultra-precision ceramic machining and full-wafer bonding for cost-effective batch scale production of thick film PZT bimorph micro-actuators and their integration with MEMS. The resulting actuators are pre-stressed (ceramic in compression) which gives them added performance, they are true bimorphs with bi-directional capability and they exhibit full bulk piezoelectric ceramic properties. The devices are designed to integrate with ancillary systems components using transfer-bonding techniques. The work forms part of the European Framework 6 Project 'Q2M—Quality to Micro'.
Reliability considerations in the placement of control system components
NASA Technical Reports Server (NTRS)
Montgomery, R. C.
1983-01-01
This paper presents a methodology, along with applications to a grid type structure, for incorporating reliability considerations in the decision for actuator placement on large space structures. The method involves the minimization of a criterion that considers mission life and the reliability of the system components. It is assumed that the actuator gains are to be readjusted following failures, but their locations cannot be changed. The goal of the design is to suppress vibrations of the grid and the integral square of the grid modal amplitudes is used as a measure of performance of the control system. When reliability of the actuators is considered, a more pertinent measure is the expected value of the integral; that is, the sum of the squares of the modal amplitudes for each possible failure state considered, multiplied by the probability that the failure state will occur. For a given set of actuator locations, the optimal criterion may be graphed as a function of the ratio of the mean time to failure of the components and the design mission life or reservicing interval. The best location of the actuators is typically different for a short mission life than for a long one.
A force compliant surgical robotic tool with IPMC actuator and integrated sensing
NASA Astrophysics Data System (ADS)
Fu, Lixue; McDaid, Andrew J.; Aw, Kean C.
2013-08-01
A robotic surgical device, actuated by Ionic Polymer-metal Composite (IPMC), integrated with a strain gauge to achieve force control is proposed. Test results have proved the capabilities of this device to conduct surgical procedures. The recent growth of patient acceptance and demand for robotic aided surgery has stimulated the progress of research where in many applications the performance has been proven to surpass human surgeons. A new area which uses the inherently force compliant and back-drivable properties of polymers, IPMC in this case, has shown its potential to undertake precise surgical procedures in delicate environments of medical practice. This is because IPMCs have similar actuation characteristics to real biological systems ensuring the safety of the practice. Nevertheless, little has been done in developing IPMCs as a rotary joint actuators used as functional surgical devices. This research demonstrates the design of a single degree of freedom (1DOF) robotic surgical instrument with one joint mechanism actuated by IPMC with an embedded strain gauge as a feedback unit, and controlled by a scheduled gain PI controller. With the simplicity of the system it was proven to be able to cut to the desired controlled force and hence depth.
Designing components using smartMOVE electroactive polymer technology
NASA Astrophysics Data System (ADS)
Rosenthal, Marcus; Weaber, Chris; Polyakov, Ilya; Zarrabi, Al; Gise, Peter
2008-03-01
Designing components using SmartMOVE TM electroactive polymer technology requires an understanding of the basic operation principles and the necessary design tools for integration into actuator, sensor and energy generation applications. Artificial Muscle, Inc. is collaborating with OEMs to develop customized solutions for their applications using smartMOVE. SmartMOVE is an advanced and elegant way to obtain almost any kind of movement using dielectric elastomer electroactive polymers. Integration of this technology offers the unique capability to create highly precise and customized motion for devices and systems that require actuation. Applications of SmartMOVE include linear actuators for medical, consumer and industrial applications, such as pumps, valves, optical or haptic devices. This paper will present design guidelines for selecting a smartMOVE actuator design to match the stroke, force, power, size, speed, environmental and reliability requirements for a range of applications. Power supply and controller design and selection will also be introduced. An overview of some of the most versatile configuration options will be presented with performance comparisons. A case example will include the selection, optimization, and performance overview of a smartMOVE actuator for the cell phone camera auto-focus and proportional valve applications.
Soft Somatosensitive Actuators via Embedded 3D Printing.
Truby, Ryan L; Wehner, Michael; Grosskopf, Abigail K; Vogt, Daniel M; Uzel, Sebastien G M; Wood, Robert J; Lewis, Jennifer A
2018-04-01
Humans possess manual dexterity, motor skills, and other physical abilities that rely on feedback provided by the somatosensory system. Herein, a method is reported for creating soft somatosensitive actuators (SSAs) via embedded 3D printing, which are innervated with multiple conductive features that simultaneously enable haptic, proprioceptive, and thermoceptive sensing. This novel manufacturing approach enables the seamless integration of multiple ionically conductive and fluidic features within elastomeric matrices to produce SSAs with the desired bioinspired sensing and actuation capabilities. Each printed sensor is composed of an ionically conductive gel that exhibits both long-term stability and hysteresis-free performance. As an exemplar, multiple SSAs are combined into a soft robotic gripper that provides proprioceptive and haptic feedback via embedded curvature, inflation, and contact sensors, including deep and fine touch contact sensors. The multimaterial manufacturing platform enables complex sensing motifs to be easily integrated into soft actuating systems, which is a necessary step toward closed-loop feedback control of soft robots, machines, and haptic devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
High bandwidth piezoresistive force probes with integrated thermal actuation
Doll, Joseph C.; Pruitt, Beth L.
2012-01-01
We present high-speed force probes with on-chip actuation and sensing for the measurement of pN-scale forces at the microsecond time scale. We achieve a high resonant frequency in water (1–100 kHz) with requisite low spring constants (0.3–40 pN/nm) and low integrated force noise (1–100 pN) by targeting probe dimensions on the order of 300 nm thick, 1–2 μm wide and 30–200 μm long. Forces are measured using silicon piezoresistors while the probes are actuated thermally with an aluminum unimorph and silicon heater. The piezoresistive sensors are designed using open source numerical optimization code that incorporates constraints on operating temperature. Parylene passivation enables operation in ionic media and we demonstrate simultaneous actuation and sensing. The improved design and fabrication techniques that we describe enable a 10–20 fold improvement in force resolution or measurement bandwidth over prior piezoresistive cantilevers of comparable thickness. PMID:23175616
Another lesson from plants: the forward osmosis-based actuator.
Sinibaldi, Edoardo; Argiolas, Alfredo; Puleo, Gian Luigi; Mazzolai, Barbara
2014-01-01
Osmotic actuation is a ubiquitous plant-inspired actuation strategy that has a very low power consumption but is capable of generating effective movements in a wide variety of environmental conditions. In light of these features, we aimed to develop a novel, low-power-consumption actuator that is capable of generating suitable forces during a characteristic actuation time on the order of a few minutes. Based on the analysis of plant movements and on osmotic actuation modeling, we designed and fabricated a forward osmosis-based actuator with a typical size of 10 mm and a characteristic time of 2-5 minutes. To the best of our knowledge, this is the fastest osmotic actuator developed so far. Moreover, the achieved timescale can be compared to that of a typical plant cell, thanks to the integrated strategy that we pursued by concurrently addressing and solving design and material issues, as paradigmatically explained by the bioinspired approach. Our osmotic actuator produces forces above 20 N, while containing the power consumption (on the order of 1 mW). Furthermore, based on the agreement between model predictions and experimental observations, we also discuss the actuator performance (including power consumption, maximum force, energy density and thermodynamic efficiency) in relation to existing actuation technologies. In light of the achievements of the present study, the proposed osmotic actuator holds potential for effective exploitation in bioinspired robotics systems.
Another Lesson from Plants: The Forward Osmosis-Based Actuator
Sinibaldi, Edoardo; Argiolas, Alfredo; Puleo, Gian Luigi; Mazzolai, Barbara
2014-01-01
Osmotic actuation is a ubiquitous plant-inspired actuation strategy that has a very low power consumption but is capable of generating effective movements in a wide variety of environmental conditions. In light of these features, we aimed to develop a novel, low-power-consumption actuator that is capable of generating suitable forces during a characteristic actuation time on the order of a few minutes. Based on the analysis of plant movements and on osmotic actuation modeling, we designed and fabricated a forward osmosis-based actuator with a typical size of 10 mm and a characteristic time of 2–5 minutes. To the best of our knowledge, this is the fastest osmotic actuator developed so far. Moreover, the achieved timescale can be compared to that of a typical plant cell, thanks to the integrated strategy that we pursued by concurrently addressing and solving design and material issues, as paradigmatically explained by the bioinspired approach. Our osmotic actuator produces forces above 20 N, while containing the power consumption (on the order of 1 mW). Furthermore, based on the agreement between model predictions and experimental observations, we also discuss the actuator performance (including power consumption, maximum force, energy density and thermodynamic efficiency) in relation to existing actuation technologies. In light of the achievements of the present study, the proposed osmotic actuator holds potential for effective exploitation in bioinspired robotics systems. PMID:25020043
Kreienkamp, Amelia B.; Liu, Lucy Y.; Minkara, Mona S.; Knepley, Matthew G.; Bardhan, Jaydeep P.; Radhakrishnan, Mala L.
2013-01-01
We analyze and suggest improvements to a recently developed approximate continuum-electrostatic model for proteins. The model, called BIBEE/I (boundary-integral based electrostatics estimation with interpolation), was able to estimate electrostatic solvation free energies to within a mean unsigned error of 4% on a test set of more than 600 proteins—a significant improvement over previous BIBEE models. In this work, we tested the BIBEE/I model for its capability to predict residue-by-residue interactions in protein–protein binding, using the widely studied model system of trypsin and bovine pancreatic trypsin inhibitor (BPTI). Finding that the BIBEE/I model performs surprisingly less well in this task than simpler BIBEE models, we seek to explain this behavior in terms of the models’ differing spectral approximations of the exact boundary-integral operator. Calculations of analytically solvable systems (spheres and tri-axial ellipsoids) suggest two possibilities for improvement. The first is a modified BIBEE/I approach that captures the asymptotic eigenvalue limit correctly, and the second involves the dipole and quadrupole modes for ellipsoidal approximations of protein geometries. Our analysis suggests that fast, rigorous approximate models derived from reduced-basis approximation of boundary-integral equations might reach unprecedented accuracy, if the dipole and quadrupole modes can be captured quickly for general shapes. PMID:24466561
MEMS scanner with 2D tilt, piston, and focus motion
NASA Astrophysics Data System (ADS)
Lani, S.; Bayat, D.; Petremand, Y.; Regamey, Y.-J.; Onillon, E.; Pierer, J.; Grossmann, S.
2017-02-01
A MEMS scanner with a high level of motion freedom has been developed. It includes a 2D mechanical tilting capability of +/- 15°, a piston motion of 50μm and a focus/defocus control system of a 2mm diameter mirror. The tilt and piston motion is achieved with an electromagnetic actuation (moving magnet) and the focus control with a deformation of the reflective surface with pneumatic actuation. This required the fabrication of at least one channel on the compliant membrane and a closed cavity below the mirror surface and connected to an external pressure regulator (vacuum to several bars). The fabrication relies on 3 SOI wafers, 2 for forming the compliant membranes and the integrated channel, and 1 to form the cavity mirror. All wafers were then assembled by fusion bonding. Pneumatic actuation for focus control can be achieved from front or back side; function of packaging concept. A reflective coating can be added at the mirror surface depending of the application. The tilt and piston actuation is achieved by electromagnetic actuation for which a magnet is fixed on the moving part of the MEMS device. Finally the MEMS device is mounted on a ceramic PCB, containing the actuation micro-coils. Concept, fabrication, and testing of the devices will be presented. A case study for application in an endoscope with an integrated high power laser and a MEMS steering mechanism will be presented.
Micro-electro-mechanically switchable near infrared complementary metamaterial absorber
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pitchappa, Prakash; Pei Ho, Chong; Institute of Microelectronics
2014-05-19
We experimentally demonstrate a micro-electro-mechanically switchable near infrared complementary metamaterial absorber by integrating the metamaterial layer to be the out of plane movable microactuator. The metamaterial layer is electrostatically actuated by applying voltage across the suspended complementary metamaterial layer and the stationary bottom metallic reflector. Thus, the effective spacing between the metamaterial layer and bottom metal reflector is varied as a function of applied voltage. With the reduction of effective spacing between the metamaterial and reflector layers, a strong spectral blue shift in the peak absorption wavelength can be achieved. With spacing change of 300 nm, the spectral shift of 0.7 μmmore » in peak absorption wavelength was obtained for near infrared spectral region. The electro-optic switching performance of the device was characterized, and a striking switching contrast of 1500% was achieved at 2.1 μm. The reported micro-electro-mechanically tunable complementary metamaterial absorber device can potentially enable a wide range of high performance electro-optical devices, such as continuously tunable filters, modulators, and electro-optic switches that form the key components to facilitate future photonic circuit applications.« less
Gamma-ray irradiation of ohmic MEMS switches
NASA Astrophysics Data System (ADS)
Maciel, John J.; Lampen, James L.; Taylor, Edward W.
2012-10-01
Radio Frequency (RF) Microelectromechanical System (MEMS) switches are becoming important building blocks for a variety of military and commercial applications including switch matrices, phase shifters, electronically scanned antennas, switched filters, Automatic Test Equipment, instrumentation, cell phones and smart antennas. Low power consumption, large ratio of off-impedance to on-impedance, extreme linearity, low mass, small volume and the ability to be integrated with other electronics makes MEMS switches an attractive alternative to other mechanical and solid-state switches for a variety of space applications. Radant MEMS, Inc. has developed an electrostatically actuated broadband ohmic microswitch that has applications from DC through the microwave region. Despite the extensive earth based testing, little is known about the performance and reliability of these devices in space environments. To help fill this void, we have irradiated our commercial-off-the-shelf SPST, DC to 40 GHz MEMS switches with gamma-rays as an initial step to assessing static impact on RF performance. Results of Co-60 gamma-ray irradiation of the MEMS switches at photon energies ≥ 1.0 MeV to a total dose of ~ 118 krad(Si) did not show a statistically significant post-irradiation change in measured broadband, RF insertion loss, insertion phase, return loss and isolation.
Amplitude-Stabilized Oscillator for a Capacitance-Probe Electrometer
NASA Technical Reports Server (NTRS)
Blaes, Brent R.; Schaefer, Rembrandt T.
2012-01-01
A multichannel electrometer voltmeter that employs a mechanical resonator maintained in sustained amplitude-stabilized oscillation has been developed for the space-based measurement of an Internal Electrostatic Discharge Monitor (IESDM) sensor. The IESDM is new sensor technology targeted for integration into a Space Environmental Monitor (SEM) subsystem used for the characterization and monitoring of deep dielectric charging on spacecraft. Creating a stable oscillator from the mechanical resonator was achieved by employing magnetic induction for sensing the resonator s velocity, and forcing a current through a coil embedded in the resonator to produce a Lorentz actuation force that overcomes the resonator s dissipative losses. Control electronics employing an AGC loop provide conditions for stabilized, constant amplitude harmonic oscillation. The prototype resonator was composed of insulating FR4 printed-wireboard (PWB) material containing a flat, embedded, rectangular coil connected through flexure springs to a base PWB, and immersed in a magnetic field having two regions of opposite field direction generated by four neodymium block magnets. In addition to maintaining the mechanical movement needed for the electrometer s capacitor-probe transducer, this oscillator provides a reference signal for synchronous detection of the capacitor probe s output signal current so drift of oscillation frequency due to environmental effects is inconsequential.
MOSFET Switching Circuit Protects Shape Memory Alloy Actuators
NASA Technical Reports Server (NTRS)
Gummin, Mark A.
2011-01-01
A small-footprint, full surface-mount-component printed circuit board employs MOSFET (metal-oxide-semiconductor field-effect transistor) power switches to switch high currents from any input power supply from 3 to 30 V. High-force shape memory alloy (SMA) actuators generally require high current (up to 9 A at 28 V) to actuate. SMA wires (the driving element of the actuators) can be quickly overheated if power is not removed at the end of stroke, which can damage the wires. The new analog driver prevents overheating of the SMA wires in an actuator by momentarily removing power when the end limit switch is closed, thereby allowing complex control schemes to be adopted without concern for overheating. Either an integral pushbutton or microprocessor-controlled gate or control line inputs switch current to the actuator until the end switch line goes from logic high to logic low state. Power is then momentarily removed (switched off by the MOSFET). The analog driver is suited to use with nearly any SMA actuator.
NASA Technical Reports Server (NTRS)
Wilkie, W. Keats; Belvin, W. Keith; Park, K. C.
1996-01-01
A simple aeroelastic analysis of a helicopter rotor blade incorporating embedded piezoelectric fiber composite, interdigitated electrode blade twist actuators is described. The analysis consists of a linear torsion and flapwise bending model coupled with a nonlinear ONERA based unsteady aerodynamics model. A modified Galerkin procedure is performed upon the rotor blade partial differential equations of motion to develop a system of ordinary differential equations suitable for dynamics simulation using numerical integration. The twist actuation responses for three conceptual fullscale blade designs with realistic constraints on blade mass are numerically evaluated using the analysis. Numerical results indicate that useful amplitudes of nonresonant elastic twist, on the order of one to two degrees, are achievable under one-g hovering flight conditions for interdigitated electrode poling configurations. Twist actuation for the interdigitated electrode blades is also compared with the twist actuation of a conventionally poled piezoelectric fiber composite blade. Elastic twist produced using the interdigitated electrode actuators was found to be four to five times larger than that obtained with the conventionally poled actuators.
NASA Technical Reports Server (NTRS)
Wilkie, W. Keats; Park, K. C.
1996-01-01
A simple aeroelastic analysis of a helicopter rotor blade incorporating embedded piezoelectric fiber composite, interdigitated electrode blade twist actuators is described. The analysis consist of a linear torsion and flapwise bending model coupled with a nonlinear ONERA based unsteady aerodynamics model. A modified Galerkin procedure is performed upon the rotor blade partial differential equations of motion to develop a system of ordinary differential equations suitable for numerical integration. The twist actuation responses for three conceptual full-scale blade designs with realistic constraints on blade mass are numerically evaluated using the analysis. Numerical results indicate that useful amplitudes of nonresonant elastic twist, on the order of one to two degrees, are achievable under one-g hovering flight conditions for interdigitated electrode poling configurations. Twist actuation for the interdigitated electrode blades is also compared with the twist actuation of a conventionally poled piezoelectric fiber composite blade. Elastic twist produced using the interdigitated electrode actuators was found to be four to five times larger than that obtained with the conventionally poled actuators.
Dielectric elastomer actuators for octopus inspired suction cups.
Follador, M; Tramacere, F; Mazzolai, B
2014-09-25
Suction cups are often found in nature as attachment strategy in water. Nevertheless, the application of the artificial counterpart is limited by the dimension of the actuators and their usability in wet conditions. A novel design for the development of a suction cup inspired by octopus suckers is presented. The main focus of this research was on the modelling and characterization of the actuation unit, and a first prototype of the suction cup was realized as a proof of concept. The actuation of the suction cup is based on dielectric elastomer actuators. The presented device works in a wet environment, has an integrated actuation system, and is soft. The dimensions of the artificial suction cups are comparable to proximal octopus suckers, and the attachment mechanism is similar to the biological counterpart. The design approach proposed for the actuator allows the definition of the parameters for its development and for obtaining a desired pressure in water. The fabricated actuator is able to produce up to 6 kPa of pressure in water, reaching the maximum pressure in less than 300 ms.
Euler force actuation mechanism for siphon valving in compact disk-like microfluidic chips.
Deng, Yongbo; Fan, Jianhua; Zhou, Song; Zhou, Teng; Wu, Junfeng; Li, Yin; Liu, Zhenyu; Xuan, Ming; Wu, Yihui
2014-03-01
Based on the Euler force induced by the acceleration of compact disk (CD)-like microfluidic chip, this paper presents a novel actuation mechanism for siphon valving. At the preliminary stage of acceleration, the Euler force in the tangential direction of CD-like chip takes the primary place compared with the centrifugal force to function as the actuation of the flow, which fills the siphon and actuates the siphon valving. The Euler force actuation mechanism is demonstrated by the numerical solution of the phase-field based mathematical model for the flow in siphon valve. In addition, experimental validation is implemented in the polymethylmethacrylate-based CD-like microfluidic chip manufactured using CO2 laser engraving technique. To prove the application of the proposed Euler force actuation mechanism, whole blood separation and plasma extraction has been conducted using the Euler force actuated siphon valving. The newly introduced actuation mechanism overcomes the dependence on hydrophilic capillary filling of siphon by avoiding external manipulation or surface treatments of polymeric material. The sacrifice for highly integrated processing in pneumatic pumping technique is also prevented by excluding the volume-occupied compressed air chamber.
Elastomeric actuator devices for magnetic resonance imaging
NASA Technical Reports Server (NTRS)
Lichter, Matthew (Inventor); Wingert, Andreas (Inventor); Hafez, Moustapha (Inventor); Dubowsky, Steven (Inventor); Jolesz, Ferenc A. (Inventor); Kacher, Daniel F. (Inventor); Weiss, Peter (Inventor)
2008-01-01
The present invention is directed to devices and systems used in magnetic imaging environments that include an actuator device having an elastomeric dielectric film with at least two electrodes, and a frame attached to the actuator device. The frame can have a plurality of configurations including, such as, for example, at least two members that can be, but not limited to, curved beams, rods, plates, or parallel beams. These rigid members can be coupled to flexible members such as, for example, links wherein the frame provides an elastic restoring force. The frame preferably provides a linear actuation force characteristic over a displacement range. The linear actuation force characteristic is defined as .+-.20% and preferably 10% over a displacement range. The actuator further includes a passive element disposed between the flexible members to tune a stiffness characteristic of the actuator. The passive element can be a bi-stable element. The preferred embodiment actuator includes one or more layers of the elastomeric film integrated into the frame. The elastomeric film can be made of many elastomeric materials such as, for example, but not limited to, acrylic, silicone and latex.
Bardhan, Jaydeep P; Knepley, Matthew G
2011-09-28
We analyze the mathematically rigorous BIBEE (boundary-integral based electrostatics estimation) approximation of the mixed-dielectric continuum model of molecular electrostatics, using the analytically solvable case of a spherical solute containing an arbitrary charge distribution. Our analysis, which builds on Kirkwood's solution using spherical harmonics, clarifies important aspects of the approximation and its relationship to generalized Born models. First, our results suggest a new perspective for analyzing fast electrostatic models: the separation of variables between material properties (the dielectric constants) and geometry (the solute dielectric boundary and charge distribution). Second, we find that the eigenfunctions of the reaction-potential operator are exactly preserved in the BIBEE model for the sphere, which supports the use of this approximation for analyzing charge-charge interactions in molecular binding. Third, a comparison of BIBEE to the recent GBε theory suggests a modified BIBEE model capable of predicting electrostatic solvation free energies to within 4% of a full numerical Poisson calculation. This modified model leads to a projection-framework understanding of BIBEE and suggests opportunities for future improvements. © 2011 American Institute of Physics
Polymer-based actuators for virtual reality devices
NASA Astrophysics Data System (ADS)
Bolzmacher, Christian; Hafez, Moustapha; Benali Khoudja, Mohamed; Bernardoni, Paul; Dubowsky, Steven
2004-07-01
Virtual Reality (VR) is gaining more importance in our society. For many years, VR has been limited to the entertainment applications. Today, practical applications such as training and prototyping find a promising future in VR. Therefore there is an increasing demand for low-cost, lightweight haptic devices in virtual reality (VR) environment. Electroactive polymers seem to be a potential actuation technology that could satisfy these requirements. Dielectric polymers developed the past few years have shown large displacements (more than 300%). This feature makes them quite interesting for integration in haptic devices due to their muscle-like behaviour. Polymer actuators are flexible and lightweight as compared to traditional actuators. Using stacks with several layers of elatomeric film increase the force without limiting the output displacement. The paper discusses some design methods for a linear dielectric polymer actuator for VR devices. Experimental results of the actuator performance is presented.
Integrated piezoelectric actuators in deep drawing tools
NASA Astrophysics Data System (ADS)
Neugebauer, R.; Mainda, P.; Drossel, W.-G.; Kerschner, M.; Wolf, K.
2011-04-01
The production of car body panels are defective in succession of process fluctuations. Thus the produced car body panel can be precise or damaged. To reduce the error rate, an intelligent deep drawing tool was developed at the Fraunhofer Institute for Machine Tools and Forming Technology IWU in cooperation with Audi and Volkswagen. Mechatronic components in a closed-loop control is the main differentiating factor between an intelligent and a conventional deep drawing tool. In correlation with sensors for process monitoring, the intelligent tool consists of piezoelectric actuators to actuate the deep drawing process. By enabling the usage of sensors and actuators at the die, the forming tool transform to a smart structure. The interface between sensors and actuators will be realized with a closed-loop control. The content of this research will present the experimental results with the piezoelectric actuator. For the analysis a production-oriented forming tool with all automotive requirements were used. The disposed actuators are monolithic multilayer actuators of the piezo injector system. In order to achieve required force, the actuators are combined in a cluster. The cluster is redundant and economical. In addition to the detailed assembly structures, this research will highlight intensive analysis with the intelligent deep drawing tool.
Actuator and aerodynamic modeling for high-angle-of-attack aeroservoelasticity
NASA Technical Reports Server (NTRS)
Brenner, Martin J.
1993-01-01
Accurate prediction of airframe/actuation coupling is required by the imposing demands of modern flight control systems. In particular, for agility enhancement at high angle of attack and low dynamic pressure, structural integration characteristics such as hinge moments, effective actuator stiffness, and airframe/control surface damping can have a significant effect on stability predictions. Actuator responses are customarily represented with low-order transfer functions matched to actuator test data, and control surface stiffness is often modeled as a linear spring. The inclusion of the physical properties of actuation and its installation on the airframe is therefore addressed in this paper using detailed actuator models which consider the physical, electrical, and mechanical elements of actuation. The aeroservoelastic analysis procedure is described in which the actuators are modeled as detailed high-order transfer functions and as approximate low-order transfer functions. The impacts of unsteady aerodynamic modeling on aeroservoelastic stability are also investigated in this paper by varying the order of approximation, or number of aerodynamic lag states, in the analysis. Test data from a thrust-vectoring configuration of an F/A-18 aircraft are compared to predictions to determine the effects on accuracy as a function of modeling complexity.
Actuator and aerodynamic modeling for high-angle-of-attack aeroservoelasticity
NASA Technical Reports Server (NTRS)
Brenner, Martin J.
1993-01-01
Accurate prediction of airframe/actuation coupling is required by the imposing demands of modern flight control systems. In particular, for agility enhancement at high angle of attack and low dynamic pressure, structural integration characteristics such as hinge moments, effective actuator stiffness, and airframe/control surface damping can have a significant effect on stability predictions. Actuator responses are customarily represented with low-order transfer functions matched to actuator test data, and control surface stiffness is often modeled as a linear spring. The inclusion of the physical properties of actuation and its installation on the airframe is therefore addressed using detailed actuator models which consider the physical, electrical, and mechanical elements of actuation. The aeroservoelastic analysis procedure is described in which the actuators are modeled as detailed high-order transfer functions and as approximate low-order transfer functions. The impacts of unsteady aerodynamic modeling on aeroservoelastic stability are also investigated by varying the order of approximation, or number of aerodynamic lag states, in the analysis. Test data from a thrust-vectoring configuration of an F/A-l8 aircraft are compared to predictions to determine the effects on accuracy as a function of modeling complexity.
Kim, Seung-Won; Koh, Je-Sung; Lee, Jong-Gu; Ryu, Junghyun; Cho, Maenghyo; Cho, Kyu-Jin
2014-09-01
The Venus flytrap uses bistability, the structural characteristic of its leaf, to actuate the leaf's rapid closing motion for catching its prey. This paper presents a flytrap-inspired robot and novel actuation mechanism that exploits the structural characteristics of this structure and a developable surface. We focus on the concept of exploiting structural characteristics for actuation. Using shape memory alloy (SMA), the robot actuates artificial leaves made from asymmetrically laminated carbon fiber reinforced prepregs. We exploit two distinct structural characteristics of the leaves. First, the bistability acts as an implicit actuator enabling rapid morphing motion. Second, the developable surface has a kinematic constraint that constrains the curvature of the artificial leaf. Due to this constraint, the curved artificial leaf can be unbent by bending the straight edge orthogonal to the curve. The bending propagates from one edge to the entire surface and eventually generates an overall shape change. The curvature change of the artificial leaf is 18 m(-1) within 100 ms when closing. Experiments show that these actuation mechanisms facilitate the generation of a rapid and large morphing motion of the flytrap robot by one-way actuation of the SMA actuators at a local position.
Sum rules for the uniform-background model of an atomic-sharp metal corner
NASA Astrophysics Data System (ADS)
Streitenberger, P.
1994-04-01
Analytical results are derived for the electrostatic potential of an atomic-sharp 90° metal corner in the uniform-background model. The electrostatic potential at a free jellium edge and the jellium corner, respectively, is determined exactly in terms of the energy per electron of the uniform electron gas integrated over the background density. The surface energy, the edge formation energy and the derivative of the corner formation energy with respect to the background density are given as integrals over the electrostatic potential. The present approach represents a novel approach to such sum rules, inclusive of the Budd-Vannimenus sum rules for a free jellium surface, based on general properties of linear response functions.
NASA Technical Reports Server (NTRS)
Duyar, A.; Guo, T.-H.; Merrill, W.; Musgrave, J.
1992-01-01
In a previous study, Guo, Merrill and Duyar, 1990, reported a conceptual development of a fault detection and diagnosis system for actuation faults of the space shuttle main engine. This study, which is a continuation of the previous work, implements the developed fault detection and diagnosis scheme for the real time actuation fault diagnosis of the space shuttle main engine. The scheme will be used as an integral part of an intelligent control system demonstration experiment at NASA Lewis. The diagnosis system utilizes a model based method with real time identification and hypothesis testing for actuation, sensor, and performance degradation faults.
NASA Technical Reports Server (NTRS)
Jethwa, Dipan; Selmic, Rastko R.; Figueroa, Fernando
2008-01-01
This paper presents a concept of feedback control for smart actuators that are compatible with smart sensors, communication protocols, and a hierarchical Integrated System Health Management (ISHM) architecture developed by NASA s Stennis Space Center. Smart sensors and actuators typically provide functionalities such as automatic configuration, system condition awareness and self-diagnosis. Spacecraft and rocket test facilities are in the early stages of adopting these concepts. The paper presents a concept combining the IEEE 1451-based ISHM architecture with a transducer health monitoring capability to enhance the control process. A control system testbed for intelligent actuator control, with on-board ISHM capabilities, has been developed and implemented. Overviews of the IEEE 1451 standard, the smart actuator architecture, and control based on this architecture are presented.
NASA Technical Reports Server (NTRS)
Su, Ji (Inventor); Harrison, Joycelyn S. (Inventor)
2005-01-01
An electrostrictive polymer actuator comprises an electrostrictive polymer with a tailorable Poisson's ratio. The electrostrictive polymer is electroded on its upper and lower surfaces and bonded to an upper material layer. The assembly is rolled tightly and capped at its ends. In a membrane structure having a membrane, a supporting frame and a plurality of threads connecting the membrane to the frame, an actuator can be integrated into one or more of the plurality of threads. The electrostrictive polymer actuator displaces along its longitudinal axis, thereby affecting movement of the membrane surface.
Thermal microactuator dimension analysis
NASA Astrophysics Data System (ADS)
Azman, N. D.; Ong, N. R.; Aziz, M. H. A.; Alcain, J. B.; Haimi, W. M. W. N.; Sauli, Z.
2017-09-01
The focus of this study was to analyse the stress and thermal flow of thermal microactuator with different type of materials and parameter using COMSOL Multiphysics software. Simulations were conducted on the existing thermal actuator and integrated it to be more efficient, low cost and low power consumption. In this simulation, the U-shaped actuator was designed and five different materials of the microactuator were studied. The result showed that Si Polycrystalline was the most suitable material used to produce thermal actuator for commercialization.
Integrated hydraulic cooler and return rail in camless cylinder head
Marriott, Craig D [Clawson, MI; Neal, Timothy L [Ortonville, MI; Swain, Jeff L [Flushing, MI; Raimao, Miguel A [Colorado Springs, CO
2011-12-13
An engine assembly may include a cylinder head defining an engine coolant reservoir, a pressurized fluid supply, a valve actuation assembly, and a hydraulic fluid reservoir. The valve actuation assembly may be in fluid communication with the pressurized fluid supply and may include a valve member displaceable by a force applied by the pressurized fluid supply. The hydraulic fluid reservoir may be in fluid communication with the valve actuation assembly and in a heat exchange relation to the engine coolant reservoir.
Simple adaptive control for quadcopters with saturated actuators
NASA Astrophysics Data System (ADS)
Borisov, Oleg I.; Bobtsov, Alexey A.; Pyrkin, Anton A.; Gromov, Vladislav S.
2017-01-01
The stabilization problem for quadcopters with saturated actuators is considered. A simple adaptive output control approach is proposed. The control law "consecutive compensator" is augmented with the auxiliary integral loop and anti-windup scheme. Efficiency of the obtained regulator was confirmed by simulation of the quadcopter control problem.
SMART Layer and SMART Suitcase for structural health monitoring applications
NASA Astrophysics Data System (ADS)
Lin, Mark; Qing, Xinlin; Kumar, Amrita; Beard, Shawn J.
2001-06-01
Knowledge of integrity of in-service structures can greatly enhance their safety and reliability and lower structural maintenance cost. Current practices limit the extent of real-time knowledge that can be obtained from structures during inspection, are labor-intensive and thereby increase life-cycle costs. Utilization of distributed sensors integrated with the structure is a viable and cost-effective means of monitoring the structure and reducing inspection costs. Acellent Technologies is developing a novel system for actively and passively interrogating the health of a structure through an integrated network of sensors and actuators. Acellent's system comprises of SMART Layers, SMART Suitcase and diagnostic software. The patented SMART Layer is a thin dielectric film with an embedded network of distributed piezoelectric actuators/sensors that can be surface-mounted on metallic structures or embedded inside composite structures. The SMART Suitcase is a portable diagnostic unit designed with multiple sensor/actuator channels to interface with the SMART Layer, generate diagnostic signals from actuators and record measurements from the embedded sensors. With appropriate diagnostic software, Acellent's system can be used for monitoring structural condition and for detecting damage while the structures are in service. This paper enumerates on the SMART Layer and SMART Suitcase and their applicability to composite and metal structures.
Influence of adhesive rough surface contact on microswitches
NASA Astrophysics Data System (ADS)
Wu, Ling; Rochus, V.; Noels, L.; Golinval, J. C.
2009-12-01
Stiction is a major failure mode in microelectromechanical systems (MEMS). Undesirable stiction, which results from contact between surfaces, threatens the reliability of MEMS severely as it breaks the actuation function of MEMS switches, for example. Although it may be possible to avoid stiction by increasing restoring forces using high spring constants, it follows that the actuation voltage has also to be increased significantly, which reduces the efficiency. In our research, an electrostatic-structural analysis is performed to estimate the proper design range of the equivalent spring constant, which is the main factor of restoring force in MEMS switches. The upper limit of equivalent spring constant is evaluated based on the initial gap width, the dielectric thickness, and the expected actuation voltage. The lower limit is assessed on the value of adhesive forces between the two contacting rough surfaces. The MEMS devices studied here are assumed to work in a dry environment. In these operating conditions only the van der Waals forces have to be considered for adhesion. A statistical model is used to simulate the rough surface, and the Maugis's model is combined with Kim's expansion to calculate adhesive forces. In the resulting model, the critical value of the spring stiffness depends on the material and surface properties, such as the elastic modulus, surface energy, and surface roughness. The aim of this research is to propose simple rules for design purposes.
Wafer-level vacuum packaged resonant micro-scanning mirrors for compact laser projection displays
NASA Astrophysics Data System (ADS)
Hofmann, Ulrich; Oldsen, Marten; Quenzer, Hans-Joachim; Janes, Joachim; Heller, Martin; Weiss, Manfred; Fakas, Georgios; Ratzmann, Lars; Marchetti, Eleonora; D'Ascoli, Francesco; Melani, Massimiliano; Bacciarelli, Luca; Volpi, Emilio; Battini, Francesco; Mostardini, Luca; Sechi, Francesco; De Marinis, Marco; Wagner, Bernd
2008-02-01
Scanning laser projection using resonant actuated MEMS scanning mirrors is expected to overcome the current limitation of small display size of mobile devices like cell phones, digital cameras and PDAs. Recent progress in the development of compact modulated RGB laser sources enables to set up very small laser projection systems that become attractive not only for consumer products but also for automotive applications like head-up and dash-board displays. Within the last years continuous progress was made in increasing MEMS scanner performance. However, only little is reported on how mass-produceability of these devices and stable functionality even under harsh environmental conditions can be guaranteed. Automotive application requires stable MEMS scanner operation over a wide temperature range from -40° to +85°Celsius. Therefore, hermetic packaging of electrostatically actuated MEMS scanning mirrors becomes essential to protect the sensitive device against particle contamination and condensing moisture. This paper reports on design, fabrication and test of a resonant actuated two-dimensional micro scanning mirror that is hermetically sealed on wafer level. With resonant frequencies of 30kHz and 1kHz, an achievable Theta-D-product of 13mm.deg and low dynamic deformation <20nm RMS it targets Lissajous projection with SVGA-resolution. Inevitable reflexes at the vacuum package surface can be seperated from the projection field by permanent inclination of the micromirror.
Dielectric Elastomers for Fluidic and Biomedical Applications
NASA Astrophysics Data System (ADS)
McCoul, David James
Dielectric elastomers have demonstrated tremendous potential as high-strain electromechanical transducers for a myriad of novel applications across all engineering disciplines. Because their soft, viscoelastic mechanical properties are similar to those of living tissues, dielectric elastomers have garnered a strong foothold in a plethora of biomedical and biomimetic applications. Dielectric elastomers consist of a sheet of stretched rubber, or elastomer, coated on both sides with compliant electrode materials; application of a voltage generates an electrostatic pressure that deforms the elastomer. They can function as soft generators, sensors, or actuators, and this last function is the focus of this dissertation. Many design configurations are possible, such as stacks, minimum energy structures, interpenetrating polymer networks, shape memory dielectric elastomers, and others; dielectric elastomers are already being applied to many fields of biomedicine. The first part of the original research presented in this dissertation details a PDMS microfluidic system paired with a dielectric elastomer stack actuator of anisotropically prestrained VHB(TM) 4910 (3M(TM)) and single-walled carbon nanotubes. These electroactive microfluidic devices demonstrated active increases in microchannel width when 3 and 4 kV were applied. Fluorescence microscopy also indicated an accompanying increase in channel depth with actuation. The cross-sectional area strains at 3 and 4 kV were approximately 2.9% and 7.4%, respectively. The device was then interfaced with a syringe pump, and the pressure was measured upstream. Linear pressure-flow plots were developed, which showed decreasing fluidic resistance with actuation, from 0.192 psi/(microL/min) at 0 kV, to 0.160 and 0.157 psi/(microL/min) at 3 and 4 kV, respectively. This corresponds to an ~18% drop in fluidic resistance at 4 kV. Active de-clogging was tested in situ with the device by introducing ~50 microm diameter PDMS microbeads and other smaller particulate debris into the system. After a channel blockage was confirmed, three actuation attempts successfully cleared the blockage. Further tests indicated that the device were biocompatible with HeLa cells at 3 kV. To our knowledge this is the first pairing of dielectric elastomers with microfluidics in a non-electroosmotic context. Applications may include adaptive microfilters, micro-peristaltic pumps, and reduced-complexity lab-on-a-chip devices. Dielectric elastomers can also be adapted to manipulate fluidic systems on a larger scale. The second part of the dissertation research reports a novel low-profile, biomimetic dielectric elastomer tubular actuator capable of actively controlling hydraulic flow. The tubular actuator has been established as a reliable tunable valve, pinching a secondary silicone tube completely shut in the absence of a fluidic pressure bias or voltage, offering a high degree of resistance against fluidic flow, and able to open and completely remove this resistance to flow with an applied low power actuation voltage. The system demonstrates a rise in pressure of ~3.0 kPa when the dielectric elastomer valve is in the passive, unactuated state, and there is a quadratic fall in this pressure with increasing actuation voltage, until ~0 kPa is reached at 2.4 kV. The device is reliable for at least 2,000 actuation cycles for voltages at or below 2.2 kV. Furthermore, modeling of the actuator and fluidic system yields results consistent with the observed experimental dependence of intrasystem pressure on input flow rate, actuator prestretch, and actuation voltage. To our knowledge, this is the first actuator of its type that can control fluid flow by directly actuating the walls of a tube. Potential applications may include an implantable artificial sphincter, part of a peristaltic pump, or a computerized valve for fluidic or pneumatic control. The final part of the dissertation presents a novel dielectric elastomer band with integrated rigid elements for the treatment of chronic acid reflux disorders. This dielectric elastomer ring actuator consists of a two-layer stack of prestretched VHB(TM) 4905 with SWCNT electrodes. Its transverse prestretch was maintained by selective rigidification of the VHB(TM) using a UV-curable, solution-processable polymer network. The actuator exhibited a maximum vertical (circumferential) actuation strain of 25% at 3.4 kV in an 24.5 g weighted isotonic setup. It also exhibited the required passive force of 0.25 N and showed a maximum force drop of 0.11 N at 3.32 kV during isometric tests at 4.5 cm. Modeling was performed to determine the prestretches necessary to achieve maximum strain while simultaneously exerting the force of 0.25 N, which corresponds to a required pinching pressure of 3.35 kPa. Modeling also determined the spacing between and number of rigid elements required. The theoretical model curves were adjusted to account for the passive rigid elements, as well as for the addition of margins; the resulting plots agrees well with experiment. The performance of the DE band is comparable to that of living muscle, and this is the first application of dielectric elastomer actuators in the design of a medical implant for the treatment of gastrointestinal disorders. Related applications that could result from this technology are very low-profile linear peristaltic pumps, artificial intestines, an artificial urethra, and artificial blood vessels.
Material and fabrication strategies for artificial muscles (Conference Presentation)
NASA Astrophysics Data System (ADS)
Spinks, Geoffrey M.
2017-04-01
Soft robotic and wearable robotic devices seek to exploit polymer based artificial muscles and sensor materials to generate biomimetic movements and forces. A challenge is to integrate the active materials into a complex, three-dimensional device with integrated electronics, power supplies and support structures. Both 3D printing and textiles technologies offer attractive fabrication strategies, but require suitable functional materials. 3D printing of actuating hydrogels has been developed to produce simple devices, such as a prototype valve. Tough hydrogels based on interpenetrating networks of ionicially crosslinked alginate and covalently crosslinked polyacrylamide and poly(N-isopropylacrylamide) have been developed in a form suitable for extrusion printing with UV curing. Combined with UV-curable and extrudable rigid acrylated urethanes, the tough hydrogels can be 3D printed into composite materials or complex shapes with multiple different materials. An actuating valve was printed that operated thermally to open or close the flow path using 6 parallel hydrogel actuators. Textile processing methods such as knitting and weaving can be used to generate assemblies of actuating fibres. Low cost and high performance coiled fibres made from oriented polymers have been used for developing actuating textiles. Similarly, braiding methods have been developed to fabricate new forms of McKibben muscles that operate without any external apparatus, such as pumps, compressors or piping.
Shape Memory Alloy-Based Soft Gripper with Variable Stiffness for Compliant and Effective Grasping.
Wang, Wei; Ahn, Sung-Hoon
2017-12-01
Soft pneumatic actuators and motor-based mechanisms being concomitant with the cumbersome appendages have many challenges to making the independent robotic system with compact and lightweight configuration. Meanwhile, shape memory actuators have shown a promising alternative solution in many engineering applications ranging from artificial muscle to aerospace industry. However, one of the main limitations of such systems is their inherent softness resulting in a small actuation force, which prevents them from more effective applications. This issue can be solved by combining shape memory actuators and the mechanism of stiffness modulation. As a first, this study describes a shape memory alloy-based soft gripper composed of three identical fingers with variable stiffness for adaptive grasping in low stiffness state and effective holding in high stiffness state. Each finger with two hinges is fabricated through integrating soft composite actuator with stiffness changeable material where each hinge can approximately achieve a 55-fold changeable stiffness independently. Besides, each finger with two hinges can actively achieve multiple postures by both selectively changing the stiffness of hinges and actuating the relevant SMA wire. Based on these principles, the gripper is applicable for grasping objects with deformable shapes and varying shapes with a large range of weight where its maximum grasping force is increased to ∼10 times through integrating with the stiffness changeable mechanism. The final demonstration shows that the finger with desired shape-retained configurations enables the gripper to successfully pick up a frustum-shaped object.
One Single Graphene Oxide Film for Responsive Actuation.
Cheng, Huhu; Zhao, Fei; Xue, Jiangli; Shi, Gaoquan; Jiang, Lan; Qu, Liangti
2016-09-22
Graphene, because of its superior electrical/thermal conductivity, high surface area, excellent mechanical flexibility, and stability, is currently receiving significant attention and benefit to fabricate actuator devices. Here, a sole graphene oxide (GO) film responsive actuator with an integrated self-detecting sensor has been developed. The film exhibits an asymmetric surface structure on its two sides, creating a promising actuation ability triggered by multistimuli, such as moisture, thermals, and infrared light. Meanwhile, the built-in laser-writing reduced graphene oxide (rGO) sensor in the film can detect its own deformation in real time. Smart perceptual fingers in addition to rectangular-shaped and even four-legged walking robots have been developed based on the responsive GO film.
Synthesis and Development of Gold Polypyrrole Actuator for Underwater Application
NASA Astrophysics Data System (ADS)
Panda, S. K.; Bandopadhya, D.
2018-02-01
Electro-active polymer (EAP) such as Polypyrrole has gained much attention in the category of functional materials for fabrication of both active actuator and sensor. Particularly, PPy actuator has shown potential in fluid medium application because of high strain, large bending displacement and work density. This paper focuses on developing a low cost active actuator promising in delivering high performance in underwater environment. The proposed Au-pyrrole actuator is synthesized by adopting the layer-by-layer electrochemical polymerization technique and is fabricated as strip actuator from aqueous solution of Pyrrole and NaDBS in room temperature. In the follow-up, topographical analysis has been carried out using SEM and FESEM instruments showing surface morphology and surface integrity of chemical components of the structure. Several experiments have been conducted under DC input voltage evaluating performance effectiveness such as underwater bending displacement and tip force etc. This is observed that the actuator exhibits quite similar stress profile as of natural muscle, endowed with high modulus makes them effective in working nearly 10,000 cycles underwater environment. In addition, the bending displacement up to 5.4 mm with a low input voltage 1.3 V makes the actuator suitable for underwater micro-robotics applications.
Euler force actuation mechanism for siphon valving in compact disk-like microfluidic chips
Deng, Yongbo; Fan, Jianhua; Zhou, Song; Zhou, Teng; Wu, Junfeng; Li, Yin; Liu, Zhenyu; Xuan, Ming; Wu, Yihui
2014-01-01
Based on the Euler force induced by the acceleration of compact disk (CD)-like microfluidic chip, this paper presents a novel actuation mechanism for siphon valving. At the preliminary stage of acceleration, the Euler force in the tangential direction of CD-like chip takes the primary place compared with the centrifugal force to function as the actuation of the flow, which fills the siphon and actuates the siphon valving. The Euler force actuation mechanism is demonstrated by the numerical solution of the phase-field based mathematical model for the flow in siphon valve. In addition, experimental validation is implemented in the polymethylmethacrylate-based CD-like microfluidic chip manufactured using CO2 laser engraving technique. To prove the application of the proposed Euler force actuation mechanism, whole blood separation and plasma extraction has been conducted using the Euler force actuated siphon valving. The newly introduced actuation mechanism overcomes the dependence on hydrophilic capillary filling of siphon by avoiding external manipulation or surface treatments of polymeric material. The sacrifice for highly integrated processing in pneumatic pumping technique is also prevented by excluding the volume-occupied compressed air chamber. PMID:24753736
NASA Astrophysics Data System (ADS)
Rodgers, John P.; Bent, Aaron A.; Hagood, Nesbitt W.
1996-05-01
The primary objective of this work is to develop a standard methodology for characterizing structural actuation systems intended for operation in high electrical and mechanical loading environments. The designed set of tests evaluates the performance of the active materials system under realistic operating conditions. The tests are also used to characterize piezoelectric fiber composites which have been developed as an alternative to monolithic piezoceramic wafers for structural actuation applications. The performance of this actuator system has been improved using an interdigitated electrode pattern, which orients the primary component of the electric field into the plane of the structure, enabling the use of the primary piezoelectric effect along the active fibers. One possible application of this technology is in the integral twist actuation of helicopter rotor blades for higher harmonic control. This application requires actuators which can withstand the harsh rotor blade operating environment. This includes large numbers of electrical and mechanical cycles with considerable centripetal and bending loads. The characterization tests include standard active material tests as well as application-driven tests which evaluate the performance of the actuators during simulated operation. Test results for several actuator configurations are provided, including S2 glass- reinforced and E-glass laminated actuators. The study concludes that the interdigitated electrode piezoelectric fiber composite actuator has great potential for high loading applications.
An observer-based compensator for distributed delays
NASA Technical Reports Server (NTRS)
Luck, Rogelio; Ray, Asok
1990-01-01
This paper presents an algorithm for compensating delays that are distributed between the sensor(s), controller and actuator(s) within a control loop. This observer-based algorithm is specially suited to compensation of network-induced delays in integrated communication and control systems. The robustness of the algorithm relative to plant model uncertainties has been examined.
Bio-hybrid cell-based actuators for microsystems.
Carlsen, Rika Wright; Sitti, Metin
2014-10-15
As we move towards the miniaturization of devices to perform tasks at the nano and microscale, it has become increasingly important to develop new methods for actuation, sensing, and control. Over the past decade, bio-hybrid methods have been investigated as a promising new approach to overcome the challenges of scaling down robotic and other functional devices. These methods integrate biological cells with artificial components and therefore, can take advantage of the intrinsic actuation and sensing functionalities of biological cells. Here, the recent advancements in bio-hybrid actuation are reviewed, and the challenges associated with the design, fabrication, and control of bio-hybrid microsystems are discussed. As a case study, focus is put on the development of bacteria-driven microswimmers, which has been investigated as a targeted drug delivery carrier. Finally, a future outlook for the development of these systems is provided. The continued integration of biological and artificial components is envisioned to enable the performance of tasks at a smaller and smaller scale in the future, leading to the parallel and distributed operation of functional systems at the microscale. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A Shape Memory Alloy Based Cryogenic Thermal Conduction Switch
NASA Technical Reports Server (NTRS)
Notardonato, W. U.; Krishnan, V. B.; Singh, J. D.; Woodruff, T. R.; Vaidyanathan, R.
2005-01-01
Shape memory alloys (SMAs) can produce large strains when deformed (e.g., up to 8%). Heating results in a phase transformation and associated recovery of all the accumulated strain. This strain recovery can occur against large forces, resulting in their use as actuators. Thus an SMA element can integrate both sensory and actuation functions, by inherently sensing a change in temperature and actuating by undergoing a shape change as a result of a temperature-induced phase transformation. Two aspects of our work on cryogenic SMAs are addressed here. First - a shape memory alloy based cryogenic thermal conduction switch for operation between dewars of liquid methane and liquid oxygen in a common bulkhead arrangement is discussed. Such a switch integrates the sensor element and the actuator element and can be used to create a variable thermal sink to other cryogenic tanks for liquefaction, densification, and zero boil-off systems for advanced spaceport applications. Second - fabrication via arc-melting and subsequent materials testing of SMAs with cryogenic transformation temperatures for use in the aforementioned switch is discussed.
Dielectric Elastomer Actuated Systems and Methods
NASA Technical Reports Server (NTRS)
Dubowsky, Steven (Inventor); Hafez, Moustapha (Inventor); Lichter, Matthew (Inventor); Weiss, Peter (Inventor); Wingert, Andreas (Inventor)
2008-01-01
The system of the present invention includes an actuator having at least two electrodes, an elastomeric dielectric film disposed between the two electrodes, and a frame attached to the elastomeric dielectric film. The frame provides a linear actuation force characteristic over a displacement range. The displacement range is preferably the stroke of the actuator. The displacement range can be about 5 mm and greater. Further, the frame can include a plurality of configurations, for example, at least a rigid members coupled to a flexible member wherein the frame provides an elastic restoring force. In preferred embodiments, the rigid member can be, but is not limited to, curved beams, parallel beams, rods and plates. In a preferred embodiment the actuator can further include a passive element disposed between two flexible members such as, for example, links to tune a stiffness characteristic of the actuator. The passive element can be a bi-stable element. Further, the actuator can include a plurality of layers of the elastomeric dielectric film integrated into the frame. The elastomeric film can be made of different materials such as, for example, acrylic, silicone and latex.
Payne, Christopher J; Wamala, Isaac; Abah, Colette; Thalhofer, Thomas; Saeed, Mossab; Bautista-Salinas, Daniel; Horvath, Markus A; Vasilyev, Nikolay V; Roche, Ellen T; Pigula, Frank A; Walsh, Conor J
2017-09-01
Soft robotic devices have significant potential for medical device applications that warrant safe synergistic interaction with humans. This article describes the optimization of an implantable soft robotic system for heart failure whereby soft actuators wrapped around the ventricles are programmed to contract and relax in synchrony with the beating heart. Elastic elements integrated into the soft actuators provide recoiling function so as to aid refilling during the diastolic phase of the cardiac cycle. Improved synchronization with the biological system is achieved by incorporating the native ventricular pressure into the control system to trigger assistance and synchronize the device with the heart. A three-state electro-pneumatic valve configuration allows the actuators to contract at different rates to vary contraction patterns. An in vivo study was performed to test three hypotheses relating to mechanical coupling and temporal synchronization of the actuators and heart. First, that adhesion of the actuators to the ventricles improves cardiac output. Second, that there is a contraction-relaxation ratio of the actuators which generates optimal cardiac output. Third, that the rate of actuator contraction is a factor in cardiac output.
Review of current status of smart structures and integrated systems
NASA Astrophysics Data System (ADS)
Chopra, Inderjit
1996-05-01
A smart structure involves distributed actuators and sensors, and one or more microprocessors that analyze the responses from the sensors and use distributed-parameter control theory to command the actuators to apply localized strains to minimize system response. A smart structure has the capability to respond to a changing external environment (such as loads or shape change) as well as to a changing internal environment (such as damage or failure). It incorporates smart actuators that allow the alteration of system characteristics (such as stiffness or damping) as well as of system response (such as strain or shape) in a controlled manner. Many types of actuators and sensors are being considered, such as piezoelectric materials, shape memory alloys, electrostrictive materials, magnetostrictive materials, electro- rheological fluids and fiber optics. These can be integrated with main load-carrying structures by surface bonding or embedding without causing any significant changes in the mass or structural stiffness of the system. Numerous applications of smart structures technology to various physical systems are evolving to actively control vibration, noise, aeroelastic stability, damping, shape and stress distribution. Applications range from space systems, fixed-wing and rotary-wing aircraft, automotive, civil structures and machine tools. Much of the early development of smart structures methodology was driven by space applications such as vibration and shape control of large flexible space structures, but now wider applications are envisaged for aeronautical and other systems. Embedded or surface-bonded smart actuators on an airplane wing or helicopter blade will induce alteration of twist/camber of airfoil (shape change), that in turn will cause variation of lift distribution and may help to control static and dynamic aeroelastic problems. Applications of smart structures technology to aerospace and other systems are expanding rapidly. Major barriers are: actuator stroke, reliable data base of smart material characteristics, non-availability of robust distributed parameter control strategies, and non-existent mathematical modeling of smart systems. The objective of this paper is to review the state-of-the-art of smart actuators and sensors and integrated systems and point out the needs for future research.
NASA Astrophysics Data System (ADS)
Larkin, K.; Ghommem, M.; Abdelkefi, A.
2018-05-01
Capacitive-based sensing microelectromechanical (MEMS) and nanoelectromechanical (NEMS) gyroscopes have significant advantages over conventional gyroscopes, such as low power consumption, batch fabrication, and possible integration with electronic circuits. However, inadequacies in the modeling of these inertial sensors have presented issues of reliability and functionality of micro-/nano-scale gyroscopes. In this work, a micromechanical model is developed to represent the unique microstructure of nanocrystalline materials and simulate the response of micro-/nano-gyroscope comprising an electrostatically-actuated cantilever beam with a tip mass at the free end. Couple stress and surface elasticity theories are integrated into the classical Euler-Bernoulli beam model in order to derive a size-dependent model. This model is then used to investigate the influence of size-dependent effects on the static pull-in instability, the natural frequencies and the performance output of gyroscopes as the scale decreases from micro-to nano-scale. The simulation results show significant changes in the static pull-in voltage and the natural frequency as the scale of the system is decreased. However, the differential frequency between the two vibration modes of the gyroscope is observed to drastically decrease as the size of the gyroscope is reduced. As such, the frequency-based operation mode may not be an efficient strategy for nano-gyroscopes. The results show that a strong coupling between the surface elasticity and material structure takes place when smaller grain sizes and higher void percentages are considered.
A review of micro-contact physics for microelectromechanical systems (MEMS) metal contact switches
NASA Astrophysics Data System (ADS)
Toler, Benjamin F.; Coutu, Ronald A., Jr.; McBride, John W.
2013-10-01
Innovations in relevant micro-contact areas are highlighted, these include, design, contact resistance modeling, contact materials, performance and reliability. For each area the basic theory and relevant innovations are explored. A brief comparison of actuation methods is provided to show why electrostatic actuation is most commonly used by radio frequency microelectromechanical systems designers. An examination of the important characteristics of the contact interface such as modeling and material choice is discussed. Micro-contact resistance models based on plastic, elastic-plastic and elastic deformations are reviewed. Much of the modeling for metal contact micro-switches centers around contact area and surface roughness. Surface roughness and its effect on contact area is stressed when considering micro-contact resistance modeling. Finite element models and various approaches for describing surface roughness are compared. Different contact materials to include gold, gold alloys, carbon nanotubes, composite gold-carbon nanotubes, ruthenium, ruthenium oxide, as well as tungsten have been shown to enhance contact performance and reliability with distinct trade offs for each. Finally, a review of physical and electrical failure modes witnessed by researchers are detailed and examined.
NASA Astrophysics Data System (ADS)
Wissman, J.; Finkenauer, L.; Deseri, L.; Majidi, C.
2014-10-01
We introduce a dielectric elastomer actuator (DEA) composed of liquid-phase Gallium-Indium (GaIn) alloy electrodes embedded between layers of poly(dimethylsiloxane) (PDMS) and examine its mechanics using a specialized elastic shell theory. Residual stresses in the dielectric and sealing layers of PDMS cause the DEA to deform into a saddle-like geometry (Gaussian curvature K <0). Applying voltage Φ to the liquid metal electrodes induces electrostatic pressure (Maxwell stress) on the dielectric and relieves some of the residual stress. This reduces the longitudinal bending curvature and corresponding angle of deflection ϑ. Treating the elastomer as an incompressible, isotropic, NeoHookean solid, we develop a theory based on the principle of minimum potential energy to predict the principal curvatures as a function of Φ. Based on this theory, we predict a dependency of ϑ on Φ that is in strong agreement with experimental measurements performed on a GaIn-PDMS composite. By accurately modeling electromechanical coupling in a soft-matter DEA, this theory can inform improvements in design and fabrication.
Actuated polymer based dielectric mirror for visual spectral range applications
NASA Astrophysics Data System (ADS)
Vergara, Pedro P.; Lunardi, Leda
2017-08-01
Miniature dielectric mirrors are useful components for lasers, thin film beam splitters and high quality mirrors in optics. These mirrors usually made from rigid inorganic materials can achieve a reflectance of almost one hundred percent. Being structural components, as soon as fabricated their reflectance and/or bandwidth remains constant. Here it is presented a novel fabrication process of a dielectric mirror based on free standing polymer layers. By applying an electrostatic force between the top and the bottom layers the reflectance can be changed. The large difference between the polymers refractive index and the air allows to achieve a reflectance of more than 85% using only six pairs of nanolayers. Preliminary simulations indicate an actuation speed of less than 1ms. Experimental optical characterization of fabricated structures agrees well with simulation results. Furthermore, structures can be designed to reflect a particular set of colors and/or isolated by using color filters, so a color pixel is fabricated, where the reflectance for each isolated color can be voltage controlled. Potential applications include an active component in a reflective screen display.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wissman, J., E-mail: jwissman@andrew.cmu.edu; Finkenauer, L.; Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
We introduce a dielectric elastomer actuator (DEA) composed of liquid-phase Gallium-Indium (GaIn) alloy electrodes embedded between layers of poly(dimethylsiloxane) (PDMS) and examine its mechanics using a specialized elastic shell theory. Residual stresses in the dielectric and sealing layers of PDMS cause the DEA to deform into a saddle-like geometry (Gaussian curvature K<0). Applying voltage Φ to the liquid metal electrodes induces electrostatic pressure (Maxwell stress) on the dielectric and relieves some of the residual stress. This reduces the longitudinal bending curvature and corresponding angle of deflection ϑ. Treating the elastomer as an incompressible, isotropic, NeoHookean solid, we develop a theorymore » based on the principle of minimum potential energy to predict the principal curvatures as a function of Φ. Based on this theory, we predict a dependency of ϑ on Φ that is in strong agreement with experimental measurements performed on a GaIn-PDMS composite. By accurately modeling electromechanical coupling in a soft-matter DEA, this theory can inform improvements in design and fabrication.« less
Influence of Casimir-Lifshitz forces on actuation dynamics of MEMS
NASA Astrophysics Data System (ADS)
Broer, Wijnand; Palasantzas, George; Knoester, Jasper; Svetovoy, Vitaly
2013-03-01
Electromagnetic fluctuations generate forces between neutral bodies known as Casimir-Lifshitz forces, of which van der Waals forces are special cases, and which can become important in micromechanical systems (MEMS). For surface areas big enough but gaps small enough, the Casimir force can possibly draw and lock MEMS components together, an effect called stiction, causing device malfunction. Alternatively, stiction can also be exploited to add new functionalities to MEMS architecture. Here, using as inputs the measured frequency dependent dielectric response and surface roughness statistics from Atomic Force Microscopy (AFM) images, we perform the first realistic calculation of MEMS actuation. For our analysis the Casimir force is combined with the electrostatic force between rough surfaces to counterbalance the elastic restoring force. It is found that, even though surface roughness has an adverse effect on the availability of (stable) equilibria, it ensures that those stable equilibria can be reached more easily than in the case of flat surfaces. Hence our results can have significant implications on how to design MEM surfaces. The author would like this abstract to appear in a Casimir related session.
Air-bridge and Vertical CNT Switches for High Performance Switching Applications
NASA Technical Reports Server (NTRS)
Kaul, Anupama B.; Wong, Eric W.; Epp, Larry; Bronikowski, Michael J.; Hunt, BBrian D.
2006-01-01
Carbon nanotubes are attractive for switching applications since electrostatically-actuated CNT switches have low actuation voltages and power requirements, while allowing GHz switching speeds that stem from the inherently high elastic modulus and low mass of the CNT.Our first NEM structure, the air-bridge switch, consists of suspended single-walled nanotubes (SWNTs) that lie above a sputtered Nb base electrode, where contact to the CNTs is made using evaporated Au/Ti. Electrical measurements of these air-bridge devices show well-defined ON and OFF states as a dc bias of a few volts is applied between the CNT and the Nb-base electrode. The CNT air-bridge switches were measured to have switching times down to a few nanoseconds. Our second NEM structure, the vertical CNT switch, consists of nanotubes grown perpendicular to the substrate. Vertical multi-walled nanotubes (MWNTs) are grown directly on a heavily doped Si substrate, from 200 - 300 nm wide, approximately 1 micrometer deep nano-pockets, with Nb metal electrodes to result in the formation of a vertical single-pole-double-throw switch architecture.
NASA Astrophysics Data System (ADS)
Akiyama, Terunobu; Staufer, Urs; Rooij, Nico F. de
2002-06-01
A microfabricated, electrical connector is proposed for facilitating the mounting of atomic force microscopy (AFM) probes, which have an integrated sensor and/or actuator. Only a base chip, which acts as a socket, is permanently fixed onto a printed circuit board and electronically connected by standard wire bonding. The AFM chip, the “plug”, is flipped onto the base chip and pressed from the backside by a spring. Electrical contact with the eventual stress sensors, capacitive or piezoelectric sensor/actuators, is provided by contact bumps. These bumps of about 8 μm height are placed onto the base chip. They touch the pads on the AFM chip that were originally foreseen to be for wire bonding and thus provide the electrical contact. This connector schema was successfully used to register AFM images with piezoresistive cantilevers.
Structural Integration of Sensors/Actuators by Laser Beam Melting for Tailored Smart Components
NASA Astrophysics Data System (ADS)
Töppel, Thomas; Lausch, Holger; Brand, Michael; Hensel, Eric; Arnold, Michael; Rotsch, Christian
2018-03-01
Laser beam melting (LBM), an additive laser powder bed fusion technology, enables the structural integration of temperature-sensitive sensors and actuators in complex monolithic metallic structures. The objective is to embed a functional component inside a metal part without losing its functionality by overheating. The first part of this paper addresses the development of a new process chain for bonded embedding of temperature-sensitive sensor/actuator systems by LBM. These systems are modularly built and coated by a multi-material/multi-layer thermal protection system of ceramic and metallic compounds. The characteristic of low global heat input in LBM is utilized for the functional embedding. In the second part, the specific functional design and optimization for tailored smart components with embedded functionalities are addressed. Numerical and experimental validated results are demonstrated on a smart femoral hip stem.
Materials science. Materials that couple sensing, actuation, computation, and communication.
McEvoy, M A; Correll, N
2015-03-20
Tightly integrating sensing, actuation, and computation into composites could enable a new generation of truly smart material systems that can change their appearance and shape autonomously. Applications for such materials include airfoils that change their aerodynamic profile, vehicles with camouflage abilities, bridges that detect and repair damage, or robotic skins and prosthetics with a realistic sense of touch. Although integrating sensors and actuators into composites is becoming increasingly common, the opportunities afforded by embedded computation have only been marginally explored. Here, the key challenge is the gap between the continuous physics of materials and the discrete mathematics of computation. Bridging this gap requires a fundamental understanding of the constituents of such robotic materials and the distributed algorithms and controls that make these structures smart. Copyright © 2015, American Association for the Advancement of Science.
Contour mode resonators with acoustic reflectors
Olsson, Roy H [Albuquerque, NM; Fleming, James G [Albuquerque, NM; Tuck, Melanie R [Albuquerque, NM
2008-06-10
A microelectromechanical (MEM) resonator is disclosed which has a linear or ring-shaped acoustic resonator suspended above a substrate by an acoustic reflector. The acoustic resonator can be formed with a piezoelectric material (e.g. aluminum nitride, zinc oxide or PZT), or using an electrostatically-actuated material. The acoustic reflector (also termed an acoustic mirror) uses alternating sections of a relatively low acoustic impedance Z.sub.L material and a relatively high acoustic impedance Z.sub.H material to isolate the acoustic resonator from the substrate. The MEM resonator, which can be formed on a silicon substrate with conventional CMOS circuitry, has applications for forming oscillators, rf filters, and acoustic sensors.
Strategies for dynamic soft-landing in capacitive microelectromechanical switches
NASA Astrophysics Data System (ADS)
Jain, Ankit; Nair, Pradeep R.; Alam, Muhammad A.
2011-06-01
Electromechanical dielectric degradation associated with the hard landing of movable electrode is a technology-inhibiting reliability concern for capacitive RF-MEMS switches. In this letter, we propose two schemes for dynamic soft-landing that obviate the need for external feedback circuitry. Instead, the proposed resistive and capacitive braking schemes can reduce impact velocity significantly without compromising other performance characteristics like pull-in voltage and pull-in time. Resistive braking is achieved by inserting a resistance in series with the voltage source whereas capacitive braking requires patterning of the electrode or the dielectric. Our results have important implications to the design and optimization of reliability aware electrostatically actuated MEMS switches.
NASA Astrophysics Data System (ADS)
Davidovikj, D.; Bouwmeester, D.; van der Zant, H. S. J.; Steeneken, P. G.
2018-07-01
We report on the development of a pneumatically coupled graphene membrane system, comprising of two circular cavities connected by a narrow trench. Both cavities and the trench are covered by a thin few-layer graphene membrane to form a sealed dumbbell-shaped chamber. Local electrodes at the bottom of each cavity allow for actuation of each membrane separately, enabling electrical control and manipulation of the gas flow inside the channel. Using laser interferometry, we measure the displacement of each drum at atmospheric pressure as a function of the frequency of the electrostatic driving force and provide a proof-of-principle of using graphene membranes to pump attolitre quantities of gases at the nanoscale.
MEMS deformable mirror for wavefront correction of large telescopes
NASA Astrophysics Data System (ADS)
Manhart, Sigmund; Vdovin, Gleb; Collings, Neil; Sodnik, Zoran; Nikolov, Susanne; Hupfer, Werner
2017-11-01
A 50 mm diameter membrane mirror was designed and manufactured at TU Delft. It is made from bulk silicon by micromachining - a technology primarily used for micro-electromechanical systems (MEMS). The mirror unit is equipped with 39 actuator electrodes and can be electrostatically deformed to correct wavefront errors in optical imaging systems. Performance tests on the deformable mirror were carried out at Astrium GmbH using a breadboard setup with a wavefront sensor and a closed-loop control system. It was found that the deformable membrane mirror is well suited for correction of low order wavefront errors as they must be expected in lightweighted space telescopes.
Silicone-Rubber Microvalves Actuated by Paraffin
NASA Technical Reports Server (NTRS)
Svelha, Danielle; Feldman, Sabrina; Barsic, David
2004-01-01
Microvalves containing silicone-rubber seals actuated by heating and cooling of paraffin have been proposed for development as integral components of microfluidic systems. In comparison with other microvalves actuated by various means (electrostatic, electromagnetic, piezoelectric, pneumatic, and others), the proposed valves (1) would contain simpler structures that could be fabricated at lower cost and (2) could be actuated by simpler (and thus less expensive) control systems. Each valve according to the proposal would include a flow channel bounded on one side by a flat surface and on the other side by a curved surface defined by an arched-cross-section, elastic seal made of silicone rubber [polydimethylsilane (PDMS)]. The seal would be sized and shaped so that the elasticity of the PDMS would hold the channel open except when the seal was pressed down onto the flat surface to close the channel. The principle of actuation would exploit the fact that upon melting or freezing, the volume of a typical paraffin increases or decreases, respectively, by about 15 percent. In a valve according to the proposal, the seal face opposite that of the channel would be in contact with a piston-like plug of paraffin. In the case of a valve designed to be normally open at ambient temperature, one would use a paraffin having a melting temperature above ambient. The seal would be pushed against the flat surface to close the channel by heating the paraffin above its melting temperature. In the case of a valve designed to be normally closed at ambient temperature, one would use a paraffin having a melting temperature below ambient. The seal would be allowed to spring away from the flat surface to open the channel by cooling the paraffin below its melting temperature. The availability of paraffins that have melting temperatures from 70 to +80 C should make it possible to develop a variety of normally closed and normally open valves. The figure depicts examples of prototype normally open and normally closed valves according to the proposal. In each valve, an arch cross section defining a channel having dimensions of the order of tens of micrometers would be formed in a silicone-rubber sheet about 40 m thick. The silicone rubber sheet would be hermetically sealed to a lower glass plate that would define the sealing surface and to an upper glass plate containing a well. The well would be filled with paraffin and capped with a rigid restraining layer of epoxy. In the normally open valve, the paraffin would have a melting temperature above ambient (e.g., 40 C) and the wall of the well would be coated with a layer of titanium that would serve as an electric heater. In the normally closed valve, the paraffin would have a melting temperature below ambient (e.g.-5 C). Instead of a heater in the well, the normally closed valve would include a thermoelectric cooler on top of the epoxy cap.
An artificial muscle actuator for biomimetic underwater propulsors.
Yim, Woosoon; Lee, Joonsoo; Kim, Kwang J
2007-06-01
In this paper, we introduce the analytical framework of the modeling dynamic characteristics of a soft artificial muscle actuator for aquatic propulsor applications. The artificial muscle used for this underwater application is an ionic polymer-metal composite (IPMC) which can generate bending motion in aquatic environments. The inputs of the model are the voltages applied to multiple IPMCs, and the output can be either the shape of the actuators or the thrust force generated from the interaction between dynamic actuator motions and surrounding water. In order to determine the relationship between the input voltages and the bending moments, the simplified RC model is used, and the mechanical beam theory is used for the bending motion of IPMC actuators. Also, the hydrodynamic forces exerted on an actuator as it moves relative to the surrounding medium or water are added to the equations of motion to study the effect of actuator bending on the thrust force generation. The proposed method can be used for modeling the general bending type artificial muscle actuator in a single or segmented form operating in the water. The segmented design has more flexibility in controlling the shape of the actuator when compared with the single form, especially in generating undulatory waves. Considering an inherent nature of large deformations in the IPMC actuator, a large deflection beam model has been developed and integrated with the electrical RC model and hydrodynamic forces to develop the state space model of the actuator system. The model was validated against existing experimental data.
Ultrasensitive microfluidic solid-phase ELISA using an actuatable microwell-patterned PDMS chip.
Wang, Tanyu; Zhang, Mohan; Dreher, Dakota D; Zeng, Yong
2013-11-07
Quantitative detection of low abundance proteins is of significant interest for biological and clinical applications. Here we report an integrated microfluidic solid-phase ELISA platform for rapid and ultrasensitive detection of proteins with a wide dynamic range. Compared to the existing microfluidic devices that perform affinity capture and enzyme-based optical detection in a constant channel volume, the key novelty of our design is two-fold. First, our system integrates a microwell-patterned assay chamber that can be pneumatically actuated to significantly reduce the volume of chemifluorescent reaction, markedly improving the sensitivity and speed of ELISA. Second, monolithic integration of on-chip pumps and the actuatable assay chamber allow programmable fluid delivery and effective mixing for rapid and sensitive immunoassays. Ultrasensitive microfluidic ELISA was demonstrated for insulin-like growth factor 1 receptor (IGF-1R) across at least five orders of magnitude with an extremely low detection limit of 21.8 aM. The microwell-based solid-phase ELISA strategy provides an expandable platform for developing the next-generation microfluidic immunoassay systems that integrate and automate digital and analog measurements to further improve the sensitivity, dynamic ranges, and reproducibility of proteomic analysis.
Magnetic actuator for the control and mixing of magnetic bead-based reactions on-chip.
Berenguel-Alonso, Miguel; Granados, Xavier; Faraudo, Jordi; Alonso-Chamarro, Julián; Puyol, Mar
2014-10-01
While magnetic bead (MB)-based bioassays have been implemented in integrated devices, their handling on-chip is normally either not optimal--i.e. only trapping is achieved, with aggregation of the beads--or requires complex actuator systems. Herein, we describe a simple and low-cost magnetic actuator to trap and move MBs within a microfluidic chamber in order to enhance the mixing of a MB-based reaction. The magnetic actuator consists of a CD-shaped plastic unit with an arrangement of embedded magnets which, when rotating, generate the mixing. The magnetic actuator has been used to enhance the amplification reaction of an enzyme-linked fluorescence immunoassay to detect Escherichia coli O157:H7 whole cells, an enterohemorrhagic strain, which have caused several outbreaks in food and water samples. A 2.7-fold sensitivity enhancement was attained with a detection limit of 603 colony-forming units (CFU) /mL, when employing the magnetic actuator.
NASA Astrophysics Data System (ADS)
Kefauver, W. Neill; Carpenter, Bernie F.
1994-09-01
Creation of an antenna system that could autonomously adapt contours of reflecting surfaces to compensate for structural loads induced by a variable environment would maximize performance of space-based communication systems. Design of such a system requires the comprehensive development and integration of advanced actuator, sensor, and control technologies. As an initial step in this process, a test has been performed to assess the use of a shape memory alloy as a potential actuation technique. For this test, an existing, offset, cassegrain antenna system was retrofit with a subreflector equipped with shape memory alloy actuators for surface contour control. The impacts that the actuators had on both the subreflector contour and the antenna system patterns were measured. The results of this study indicate the potential for using shape memory alloy actuation techniques to adaptively control antenna performance; both variations in gain and beam steering capabilities were demonstrated. Future development effort is required to evolve this potential into a useful technology for satellite applications.
NASA Technical Reports Server (NTRS)
Kefauver, W. Neill; Carpenter, Bernie F.
1994-01-01
Creation of an antenna system that could autonomously adapt contours of reflecting surfaces to compensate for structural loads induced by a variable environment would maximize performance of space-based communication systems. Design of such a system requires the comprehensive development and integration of advanced actuator, sensor, and control technologies. As an initial step in this process, a test has been performed to assess the use of a shape memory alloy as a potential actuation technique. For this test, an existing, offset, cassegrain antenna system was retrofit with a subreflector equipped with shape memory alloy actuators for surface contour control. The impacts that the actuators had on both the subreflector contour and the antenna system patterns were measured. The results of this study indicate the potential for using shape memory alloy actuation techniques to adaptively control antenna performance; both variations in gain and beam steering capabilities were demonstrated. Future development effort is required to evolve this potential into a useful technology for satellite applications.
Fault tolerant linear actuator
Tesar, Delbert
2004-09-14
In varying embodiments, the fault tolerant linear actuator of the present invention is a new and improved linear actuator with fault tolerance and positional control that may incorporate velocity summing, force summing, or a combination of the two. In one embodiment, the invention offers a velocity summing arrangement with a differential gear between two prime movers driving a cage, which then drives a linear spindle screw transmission. Other embodiments feature two prime movers driving separate linear spindle screw transmissions, one internal and one external, in a totally concentric and compact integrated module.
A MEMS Micro-Translation Stage with Long Linear Translation
NASA Technical Reports Server (NTRS)
Ferguson, Cynthia K.; English, J. M.; Nordin, G. P.; Ashley, P. R.; Abushagur, M. A. G.
2004-01-01
A MEMS Micro-Translation Stage (MTS) actuator concept has been developed that is capable of traveling long distances, while maintaining low power, low voltage, and accuracy as required by many applications, including optical coupling. The Micro-Translation Stage (MTS) uses capacitive electrostatic forces in a linear motor application, with stationary stators arranged linearly on both sides of a channel, and matching rotors on a moveable shuttle. This creates a force that allows the shuttle to be pulled along the channel. It is designed to carry 100 micron-sized elements on the top surface, and can travel back and forth in the channel, either in a stepping fashion allowing many interim stops, or it can maintain constant adjustable speeds for a controlled scanning motion. The MTS travel range is limited only by the size of the fabrication wafer. Analytical modeling and simulations were performed based on the fabrication process, to assure the stresses, friction and electrostatic forces were acceptable to allow successful operation of this device. The translation forces were analyzed to be near 0.5 micron N, with a 300 micron N stop-to-stop time of 11.8 ms.
Conformal mapping for multiple terminals
Wang, Weimin; Ma, Wenying; Wang, Qiang; Ren, Hao
2016-01-01
Conformal mapping is an important mathematical tool that can be used to solve various physical and engineering problems in many fields, including electrostatics, fluid mechanics, classical mechanics, and transformation optics. It is an accurate and convenient way to solve problems involving two terminals. However, when faced with problems involving three or more terminals, which are more common in practical applications, existing conformal mapping methods apply assumptions or approximations. A general exact method does not exist for a structure with an arbitrary number of terminals. This study presents a conformal mapping method for multiple terminals. Through an accurate analysis of boundary conditions, additional terminals or boundaries are folded into the inner part of a mapped region. The method is applied to several typical situations, and the calculation process is described for two examples of an electrostatic actuator with three electrodes and of a light beam splitter with three ports. Compared with previously reported results, the solutions for the two examples based on our method are more precise and general. The proposed method is helpful in promoting the application of conformal mapping in analysis of practical problems. PMID:27830746
Industrial approach to piezoelectric damping of large fighter aircraft components
NASA Astrophysics Data System (ADS)
Simpson, John; Schweiger, Johannes
1998-06-01
Different concepts to damp structural vibrations of the vertical tail of fighter aircraft are reported. The various requirements for a vertical tail bias an integrated approach for the design. Several active vibrations suppression concepts had been investigated during the preparatory phase of a research program shared by Daimler-Benz Aerospace Military Aircraft (Dasa), Daimler-Benz Forschung (DBF) and Deutsche Forschungsandstalt fuer Luftund Raumfahrt (DLR). Now in the main phase of the programme, four concepts were finally chosen: two concepts with aerodynamic control surfaces and two concepts with piezoelectric components. One piezo concept approach will be described rigorously, the other concepts are briefly addressed. In the Dasa concept, thin surface piezo actuators are set out carefully to flatten the dynamic portion of the combined static and dynamic maximum bending moment loading case directly in the shell structure. The second piezo concept by DLR involves pre-loaded lead zirconate titanate (PZT)-block actuators at host structure fixtures. To this end a research apparatus was designed and built as a full scale simplified fin box with carbon fiber reinformed plastic skins and an aluminium stringer-rib substructure restrained by relevant aircraft fixtures. It constitutes a benchmark 3D-structural impedance. The engineering design incorporates 7kg of PZT surface actuators. The structural system then should be excited to more than 15mm tip displacement amplitude. This prepares the final step to total A/C integration. Typical analysis methods using cyclic thermal analogies adapted to induced load levels are compared. Commercial approaches leading onto basic state space model interpretation wrt. actuator sizing and positioning, structural integrity constraints, FE-validation and testing are described. Both piezoelectric strategies are aimed at straight open-loop performance related to concept weight penalty and input electric power. The required actuators, power and integration are then enhanced to specification standards. An adapted qualification program plan is used to improve analytical read across, specifications, manufacturing decisions, handling requirements. The next research goals are outlined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shahmansouri, M.; Alinejad, H.
2015-04-15
We give a theoretical investigation on the dynamics of nonlinear electrostatic waves in a strongly coupled dusty plasma with strong electrostatic interaction between dust grains in the presence of the polarization force (i.e., the force due to the polarized Debye sheath). Adopting a reductive perturbation method, we derived a three-dimensional Kadomtsev-Petviashvili equation that describes the evolution of weakly nonlinear electrostatic localized waves. The energy integral equation is used to study the existence domains of the localized structures. The analysis provides the localized structure existence region, in terms of the effects of strong interaction between the dust particles and polarization force.
Subsystem design in aircraft power distribution systems using optimization
NASA Astrophysics Data System (ADS)
Chandrasekaran, Sriram
2000-10-01
The research reported in this dissertation focuses on the development of optimization tools for the design of subsystems in a modern aircraft power distribution system. The baseline power distribution system is built around a 270V DC bus. One of the distinguishing features of this power distribution system is the presence of regenerative power from the electrically driven flight control actuators and structurally integrated smart actuators back to the DC bus. The key electrical components of the power distribution system are bidirectional switching power converters, which convert, control and condition electrical power between the sources and the loads. The dissertation is divided into three parts. Part I deals with the formulation of an optimization problem for a sample system consisting of a regulated DC-DC buck converter preceded by an input filter. The individual subsystems are optimized first followed by the integrated optimization of the sample system. It is shown that the integrated optimization provides better results than that obtained by integrating the individually optimized systems. Part II presents a detailed study of piezoelectric actuators. This study includes modeling, optimization of the drive amplifier and the development of a current control law for piezoelectric actuators coupled to a simple mechanical structure. Linear and nonlinear methods to study subsystem interaction and stability are studied in Part III. A multivariable impedance ratio criterion applicable to three phase systems is proposed. Bifurcation methods are used to obtain global stability characteristics of interconnected systems. The application of a nonlinear design methodology, widely used in power systems, to incrementally improve the robustness of a system to Hopf bifurcation instability is discussed.
Reconfigurable Array Antenna Using Microelectromechanical Systems (MEMS) Actuators
NASA Technical Reports Server (NTRS)
Simons, Rainee N.; Chun, Donghoon; Katehi, Linda P. B.
2001-01-01
The paper demonstrates a patch antenna integrated with a novel microelectromechanical systems (MEMS) actuator for reconfiguring the operating frequency. Experimental results demonstrate that the center frequency can be reconfigured by as much as 1.6 percent of the nominal operating frequency at K-Band In addition, a novel on-wafer antenna pattern measurement technique is demonstrated.
Droplet Microfluidics for Chip-Based Diagnostics
Kaler, Karan V. I. S.; Prakash, Ravi
2014-01-01
Droplet microfluidics (DMF) is a fluidic handling technology that enables precision control over dispensing and subsequent manipulation of droplets in the volume range of microliters to picoliters, on a micro-fabricated device. There are several different droplet actuation methods, all of which can generate external stimuli, to either actively or passively control the shape and positioning of fluidic droplets over patterned substrates. In this review article, we focus on the operation and utility of electro-actuation-based DMF devices, which utilize one or more micro-/nano-patterned substrates to facilitate electric field-based handling of chemical and/or biological samples. The underlying theory of DMF actuations, device fabrication methods and integration of optical and opto-electronic detectors is discussed in this review. Example applications of such electro-actuation-based DMF devices have also been included, illustrating the various actuation methods and their utility in conducting chip-based laboratory and clinical diagnostic assays. PMID:25490590
NASA Technical Reports Server (NTRS)
Holloway, Sidney E., III
1994-01-01
This paper describes the mechanical design, analysis, fabrication, testing, and lessons learned by developing a uniquely designed spaceflight-like actuator. The linear proof mass actuator (LPMA) was designed to attach to both a large space structure and a ground test model without modification. Previous designs lacked the power to perform in a terrestrial environment while other designs failed to produce the desired accelerations or frequency range for spaceflight applications. Thus, the design for a unique actuator was conceived and developed at NASA Langley Research Center. The basic design consists of four large mechanical parts (mass, upper housing, lower housing, and center support) and numerous smaller supporting components including an accelerometer, encoder, and four drive motors. Fabrication personnel were included early in the design phase of the LPMA as part of an integrated manufacturing process to alleviate potential difficulties in machining an already challenging design. Operating testing of the LPMA demonstrated that the actuator is capable of various types of load functions.
NASA Technical Reports Server (NTRS)
Holloway, S. E., III
1995-01-01
This paper describes the mechanical design, analysis, fabrication, testing, and lessons learned by developing a uniquely designed spaceflight-like actuator. The Linear Proof Mass Actuator (LPMA) was designed to attach to both a large space structure and a ground test model without modification. Previous designs lacked the power to perform in a terrestrial environment while other designs failed to produce the desired accelerations or frequency range for spaceflight applications. Thus, the design for a unique actuator was conceived and developed at NASA Langley Research Center. The basic design consists of four large mechanical parts (Mass, Upper Housing, Lower Housing, and Center Support) and numerous smaller supporting components including an accelerometer, encoder, and four drive motors. Fabrication personnel were included early in the design phase of the LPMA as part of an integrated manufacturing process to alleviate potential difficulties in machining an already challenging design. Operational testing of the LPMA demonstrated that the actuator is capable of various types of load functions.
Ionic electroactive polymer actuators as active microfluidic mixers
Meis, Catherine; Montazami, Reza; Hashemi, Nastaran
2015-11-06
On-chip sample processing is integral to the continued development of lab-on-a-chip devices for various applications. An active microfluidic mixer prototype is proposed using ionic electroactive polymer actuators (IEAPAs) as artificial cilia. A proof-of-concept experiment was performed in which the actuators were shown to produce localized flow pattern disruptions in the laminar flow regime. Suggestions for further engineering and optimization of a scaled-down, complete device are provided. Furthermore, the device in its current state of development necessitates further engineering, the use of IEAPAs addresses issues currently associated with the use of electromechanical actuators as active microfluidic mixers and may prove tomore » be a useful alternative to other similar materials.« less
NASA Astrophysics Data System (ADS)
Fulcrand, R.; Jugieu, D.; Escriba, C.; Bancaud, A.; Bourrier, D.; Boukabache, A.; Gué, A. M.
2009-10-01
A flexible microfluidic system embedding microelectromagnets has been designed, modeled and fabricated by using a photosensitive resin as structural material. The fabrication process involves the integration of micro-coils in a multilayer SU-8 microfluidic system by combining standard electroplating and dry films lamination. This technique offers numerous advantages in terms of integration, biocompatibility and chemical resistance. Various designs of micro-coils, including spiral, square or serpentine wires, have been simulated and experimentally tested. It has been established that thermal dissipation in micro-coils depends strongly on the number of turns and current density but remains compatible with biological applications. Real-time experimentations show that these micro-actuators are efficient in trapping magnetic micro-beads without any external field source or a permanent magnet and highlight that the size of microfluidic channels has been adequately designed for optimal trapping. Moreover, we trap magnetic beads in less than 2 s and release them instantaneously into the micro-channel. The actuation solely relies on electric fields, which are easier to control than standard magneto-fluidic modules.
NASA Astrophysics Data System (ADS)
Sebald, Thomas
2008-10-01
Electrostatic protection is an issue for all masks, whether during mask production, shipping, storage, handling or inspection and exposure. Up to now, only manual electrostatic field measurements, or expensive and elaborate analyses with Canary reticles have given hints about the risks of pattern damage by ESD events. A new test device is being introduced, which consists of electrostatic field sensors, integrated INSIDE a closed fused quartz housing which has the outside dimensions of a 6 inch mask. This device can be handled and used like a normal 6 inch reticle. It can be handled and processed while recording the electrostatic charges on the chrome patterns created by friction or field induction just as a reticle would "see" during normal processing.
NASA Astrophysics Data System (ADS)
Cosgrove, R. B.; Schultz, A.; Imamura, N.
2016-12-01
Although electrostatic equilibrium is always assumed in the ionosphere, there is no good theoretical or experimental justification for the assumption. In fact, recent theoretical investigations suggest that the electrostatic assumption may be grossly in error. If true, many commonly used modeling methods are placed in doubt. For example, the accepted method for calculating ionospheric conductance??field line integration??may be invalid. In this talk we briefly outline the theoretical research that places the electrostatic assumption in doubt, and then describe how comparison of ground magnetic field data with incoherent scatter radar (ISR) data can be used to test the electrostatic assumption in the ionosphere. We describe a recent experiment conducted for the purpose, where an array of magnetometers was temporalily installed under the Poker Flat AMISR.
Shape memory alloy-based biopsy device for active locomotive intestinal capsule endoscope.
Le, Viet Ha; Hernando, Leon-Rodriguez; Lee, Cheong; Choi, Hyunchul; Jin, Zhen; Nguyen, Kim Tien; Go, Gwangjun; Ko, Seong-Young; Park, Jong-Oh; Park, Sukho
2015-03-01
Recently, capsule endoscopes have been used for diagnosis in digestive organs. However, because a capsule endoscope does not have a locomotive function, its use has been limited to small tubular digestive organs, such as small intestine and esophagus. To address this problem, researchers have begun studying an active locomotive intestine capsule endoscope as a medical instrument for the whole gastrointestinal tract. We have developed a capsule endoscope with a small permanent magnet that is actuated by an electromagnetic actuation system, allowing active and flexible movement in the patient's gut environment. In addition, researchers have noted the need for a biopsy function in capsule endoscope for the definitive diagnosis of digestive diseases. Therefore, this paper proposes a novel robotic biopsy device for active locomotive intestine capsule endoscope. The proposed biopsy device has a sharp blade connected with a shape memory alloy actuator. The biopsy device measuring 12 mm in diameter and 3 mm in length was integrated into our capsule endoscope prototype, where the device's sharp blade was activated and exposed by the shape memory alloy actuator. Then the electromagnetic actuation system generated a specific motion of the capsule endoscope to extract the tissue sample from the intestines. The final biopsy sample tissue had a volume of about 6 mm(3), which is a sufficient amount for a histological analysis. Consequently, we proposed the working principle of the biopsy device and conducted an in-vitro biopsy test to verify the feasibility of the biopsy device integrated into the capsule endoscope prototype using the electro-magnetic actuation system. © IMechE 2015.
Light-Driven Polymeric Bimorph Actuators
NASA Technical Reports Server (NTRS)
Adamovsky, Gregory; Sarkisov, Sergey S.; Curley, Michael J.
2009-01-01
Light-driven polymeric bimorph actuators are being developed as alternatives to prior electrically and optically driven actuators in advanced, highly miniaturized devices and systems exemplified by microelectromechanical systems (MEMS), micro-electro-optical-mechanical systems (MEOMS), and sensor and actuator arrays in smart structures. These light-driven polymeric bimorph actuators are intended to satisfy a need for actuators that (1) in comparison with the prior actuators, are simpler and less power-hungry; (2) can be driven by low-power visible or mid-infrared light delivered through conventional optic fibers; and (3) are suitable for integration with optical sensors and multiple actuators of the same or different type. The immediate predecessors of the present light-driven polymeric bimorph actuators are bimorph actuators that exploit a photorestrictive effect in lead lanthanum zirconate titanate (PLZT) ceramics. The disadvantages of the PLZT-based actuators are that (1) it is difficult to shape the PLZT ceramics, which are hard and brittle; (2) for actuation, it is necessary to use ultraviolet light (wavelengths < 380 nm), which must be generated by use of high-power, high-pressure arc lamps or lasers; (3) it is difficult to deliver sufficient ultraviolet light through conventional optical fibers because of significant losses in the fibers; (4) the response times of the PLZT actuators are of the order of several seconds unacceptably long for typical applications; and (5) the maximum mechanical displacements of the PLZT-based actuators are limited to those characterized by low strains beyond which PLZT ceramics disintegrate because of their brittleness. The basic element of a light-driven bimorph actuator of the present developmental type is a cantilever beam comprising two layers, at least one of which is a polymer that exhibits a photomechanical effect (see figure). The dominant mechanism of the photomechanical effect is a photothermal one: absorption of light energy causes heating, which, in turn, causes thermal expansion.
Electromechanical actuation for thrust vector control applications
NASA Technical Reports Server (NTRS)
Roth, Mary Ellen
1990-01-01
The advanced launch system (ALS), is a launch vehicle that is designed to be cost-effective, highly reliable, and operationally efficient with a goal of reducing the cost per pound to orbit. An electromechanical actuation (EMA) system is being developed as an attractive alternative to the hydraulic systems. The controller will integrate 20 kHz resonant link power management and distribution (PMAD) technology and pulse population modulation (PPM) techniques to implement field-oriented vector control (FOVC) of a new advanced induction motor. The driver and the FOVC will be microprocessor controlled. For increased system reliability, a built-in test (BITE) capability will be included. This involves introducing testability into the design of a system such that testing is calibrated and exercised during the design, manufacturing, maintenance, and prelaunch activities. An actuator will be integrated with the motor controller for performance testing of the EMA thrust vector control (TVC) system. The EMA system and work proposed for the future are discussed.
High-Force Dielectric Electroactive Polymer (DEAP) membrane actuator
NASA Astrophysics Data System (ADS)
Hau, Steffen; York, Alexander; Seelecke, Stefan
2016-04-01
Energy efficiency, lightweight and scalability are key features for actuators in applications such as valves, pumps or any portable system. Dielectric electroactive Polymer (DEAP) technology is able to fulfill these requirements1 better than commonly used technology e.g. solenoids, but has limitations concerning force and stroke. However, the circular DEAP membrane actuator shows a potential increase in stroke in the mm range, when combined with an appropriate biasing mechanism2. Although, thus far, their force range is limited to the single-digit Newton range, or less3,4. This work describes how this force limit of DEAP membrane actuators can be pushed to the high double-digit Newton range and beyond. The concept for such an actuator consists of a stack of double-layered DEAPs membrane actuator combined with a biasing mechanism. These two components are combined in a novel way, which allows a compact design by integrating the biasing mechanism into the DEAP membrane actuator stack. Subsequently, the single components are manufactured, tested, and their force-displacement characteristic is documented. Utilizing this data allows assembling them into actuator systems for different applications. Two different actuators are assembled and tested (dimensions: 85x85x30mm3 (LxWxH)). The first one is able to lift 7.5kg. The second one can generate a force of 66N while acting against a spring load.
Piezoelectric-hydraulic pump based band brake actuation system for automotive transmission control
NASA Astrophysics Data System (ADS)
Kim, Gi-Woo; Wang, K. W.
2007-04-01
The actuation system of friction elements (such as band brakes) is essential for high quality operations in modern automotive automatic transmissions (in short, ATs). The current band brake actuation system consists of several hydraulic components, including the oil pump, the regulating valve and the control valves. In general, it has been recognized that the current AT band brake actuation system has many limitations. For example, the oil pump and valve body are relatively heavy and complex. Also, the oil pumps induce inherently large drag torque, which affects fuel economy. This research is to overcome these problems of the current system by exploring the utilization of a hybrid type piezo-hydraulic pump device for AT band brake control. This new actuating system integrates a piezo-hydraulic pump to the input of the band brake. Compared with the current systems, this new actuator features much simpler structure, smaller size, and lower weight. This paper describes the development, design and fabrication of the new stand-alone prototype actuator for AT band brake control. An analytical model is developed and validated using experimental data. Performance tests on the hardware and system simulations utilizing the validated model are performed to characterize the new prototype actuator. It is predicted that with increasing of accumulator pressure and driving frequency, the proposed prototype actuating system will satisfy the band brake requirement for AT shift control.
Devising Mobile Sensing and Actuation Infrastructure with Drones.
Bae, Mungyu; Yoo, Seungho; Jung, Jongtack; Park, Seongjoon; Kim, Kangho; Kim, Joon Yeop Lee; Kim, Hwangnam
2018-02-19
Vast applications and services have been enabled as the number of mobile or sensing devices with communication capabilities has grown. However, managing the devices, integrating networks or combining services across different networks has become a new problem since each network is not directly connected via back-end core networks or servers. The issue is and has been discussed especially in wireless sensor and actuator networks (WSAN). In such systems, sensors and actuators are tightly coupled, so when an independent WSAN needs to collaborate with other networks, it is difficult to adequately combine them into an integrated infrastructure. In this paper, we propose drone-as-a-gateway (DaaG), which uses drones as mobile gateways to interconnect isolated networks or combine independent services. Our system contains features that focus on the service being provided in the order of importance, different from an adaptive simple mobile sink system or delay-tolerant system. Our simulation results have shown that the proposed system is able to activate actuators in the order of importance of the service, which uses separate sensors' data, and it consumes almost the same time in comparison with other path-planning algorithms. Moreover, we have implemented DaaG and presented results in a field test to show that it can enable large-scale on-demand deployment of sensing and actuation infrastructure or the Internet of Things (IoT).
Devising Mobile Sensing and Actuation Infrastructure with Drones
Jung, Jongtack; Park, Seongjoon; Kim, Kangho; Lee, Joon Yeop
2018-01-01
Vast applications and services have been enabled as the number of mobile or sensing devices with communication capabilities has grown. However, managing the devices, integrating networks or combining services across different networks has become a new problem since each network is not directly connected via back-end core networks or servers. The issue is and has been discussed especially in wireless sensor and actuator networks (WSAN). In such systems, sensors and actuators are tightly coupled, so when an independent WSAN needs to collaborate with other networks, it is difficult to adequately combine them into an integrated infrastructure. In this paper, we propose drone-as-a-gateway (DaaG), which uses drones as mobile gateways to interconnect isolated networks or combine independent services. Our system contains features that focus on the service being provided in the order of importance, different from an adaptive simple mobile sink system or delay-tolerant system. Our simulation results have shown that the proposed system is able to activate actuators in the order of importance of the service, which uses separate sensors’ data, and it consumes almost the same time in comparison with other path-planning algorithms. Moreover, we have implemented DaaG and presented results in a field test to show that it can enable large-scale on-demand deployment of sensing and actuation infrastructure or the Internet of Things (IoT). PMID:29463064
NASA Astrophysics Data System (ADS)
Kurian, Priya C.; Gopinath, Anish; Shinoy, K. S.; Santhi, P.; Sundaramoorthy, K.; Sebastian, Baby; Jaya, B.; Namboodiripad, M. N.; Mookiah, T.
2017-12-01
Reusable Launch Vehicle-Technology Demonstrator (RLV-TD) is a system which has the ability to carry a payload from the earth's surface to the outer space more than once. The control actuation forms the major component of the control system and it actuates the control surfaces of the RLV-TD based on the control commands. Eight electro hydraulic actuators were used in RLV-TD for vectoring the control surfaces about their axes. A centralised Hydraulic Power Generating Unit (HPU) was used for powering the eight actuators located in two stages. The actuation system had to work for the longest ever duration of about 850 s for an Indian launch vehicle. High bandwidth requirement from autopilot was met by the servo design using the nonlinear mathematical model. Single Control Electronics which drive four electrohydraulic actuators was developed for each stage. High power electronics with soft start scheme was realized for driving the BLDC motor which is the prime mover for hydraulic pump. Many challenges arose due to single HPU for two stages, uncertainty of aero load, higher bandwidth requirements etc. and provisions were incorporated in the design to successfully overcome them. This paper describes the servo design and control electronics architecture of control actuation system.
Tunable Optical Assembly with Vibration Dampening
NASA Technical Reports Server (NTRS)
Shams, Qamar A.; Allison, Sidney G.; Fox, Robert L.
2008-01-01
Since their market introduction in 1995, fiber Bragg gratings (FBGs) have emerged as excellent means of measuring such parameters as strain and temperature. Distributed-grating sensing is particularly beneficial for such structural-health monitoring applications such as those of 'smart' structures or integrated vehicle health management in aerospace vehicles. Because of the variability of their output wavelengths, tunable lasers have become widely used as means of measuring FBGs. Several versions of a lightweight assembly for strain-tuning an FBG and dampening its vibrations have been constructed. The main components of such an assembly are one or more piezoelectric actuators, an optical fiber containing one or more Bragg grating(s), a Bragg-grating strain-measurement system, and a voltage source for actuation. The piezoelectric actuators are, more specifically, piezoceramic fiber composite actuators and, can be, still more specifically, of a type known in the art as macro-fiber composite (MFC) actuators. In fabrication of one version of the assembly, the optical fiber containing the Bragg grating(s) is sandwiched between the piezoelectric actuators along with an epoxy that is used to bond the optical fiber to both actuators, then the assembly is placed in a vacuum bag and kept there until the epoxy is cured. Bonding an FBG directly into an MFC actuator greatly reduces the complexity, relative to assemblies, that include piezoceramic fiber composite actuators, hinges, ferrules, and clamp blocks with setscrews. Unlike curved actuators, MFC actuators are used in a flat configuration and are less bulky. In addition, the MFC offers some vibration dampening and support for the optical fiber whereas, in a curved piezoelectric actuator assembly, the optical fiber is exposed, and there is nothing to keep the exposed portion from vibrating.
Feng, Guo-Hua; Huang, Wei-Lun
2016-01-01
This paper presents an innovative tuning fork-shaped ionic polymer metal composite (IPMC) actuator. With an integrated soft strain gauge and water supply mechanism (WSM), the surface strain of the actuator can be sensed in situ, and providing a continuous water supply maintains the water content inside the IPMC for long-term operation in air. The actuator was fabricated using a micromachining technique and plated with a nickel electrode. The device performance was experimentally characterized and compared with an actuator without a WSM. A large displacement of 1.5 mm was achieved for a 6 mm-long prong with 7-V dc actuation applied for 30 s. The measured current was analyzed using an electrochemical model. The results revealed that the faradaic current plays a crucial role during operation, particularly after 10 s. The measured strain confirms both the bending and axial strain generation during the open-and-close motion of the actuator prongs. Most of the water loss during device operation was due to evaporation rather than hydrolysis. The constructed WSM effectively maintained the water content inside the IPMC for long-term continuous operation. PMID:27023549
Feng, Guo-Hua; Huang, Wei-Lun
2016-03-25
This paper presents an innovative tuning fork-shaped ionic polymer metal composite (IPMC) actuator. With an integrated soft strain gauge and water supply mechanism (WSM), the surface strain of the actuator can be sensed in situ, and providing a continuous water supply maintains the water content inside the IPMC for long-term operation in air. The actuator was fabricated using a micromachining technique and plated with a nickel electrode. The device performance was experimentally characterized and compared with an actuator without a WSM. A large displacement of 1.5 mm was achieved for a 6 mm-long prong with 7-V dc actuation applied for 30 s. The measured current was analyzed using an electrochemical model. The results revealed that the faradaic current plays a crucial role during operation, particularly after 10 s. The measured strain confirms both the bending and axial strain generation during the open-and-close motion of the actuator prongs. Most of the water loss during device operation was due to evaporation rather than hydrolysis. The constructed WSM effectively maintained the water content inside the IPMC for long-term continuous operation.
NASA Astrophysics Data System (ADS)
Wickramasinghe, Viresh K.; Hagood, Nesbitt W.
2002-07-01
The primary objective of this work was to characterize the performance of the Active Fiber Composite (AFC) actuator material system for the Boeing Active Material Rotor (AMR) blade application. The AFCs were a new structural actuator system consisting of piezoceramic fibers embedded in an epoxy matrix and sandwiched between interdigitated electrodes to orient the driving electric field in the fiber direction to use the primary piezoelectric effect. These actuators were integrated directly into the blade spar laminate as active plies within the composite structure to perform structural actuation for vibration control in helicopters. Therefore, it was necessary to conduct extensive electromechanical material characterization to evaluate AFCs both as actuators and as structural components of the rotor blade. The characterization tests designed to extract important electromechanical properties under simulated blade operating conditions included stress-strain tests, free strain tests and actuation under tensile load tests. This paper presents the test results as well as the comprehensive testing process developed to evaluate the relevant AFC material properties. The results from this comprehensive performance characterization of the AFC material system supported the design and operation of the Boeing AMR blade scheduled for hover and forward flight wind tunnel tests.
Fast tunable blazed MEMS grating for external cavity lasers
NASA Astrophysics Data System (ADS)
Tormen, Maurizio; Niedermann, Philippe; Hoogerwerf, Arno; Shea, Herbert; Stanley, Ross
2017-11-01
Diffractive MEMS are interesting for a wide range of applications, including displays, scanners or switching elements. Their advantages are compactness, potentially high actuation speed and in the ability to deflect light at large angles. We have designed and fabricated deformable diffractive MEMS grating to be used as tuning elements for external cavity lasers. The resulting device is compact, has wide tunability and a high operating speed. The initial design is a planar grating where the beams are free-standing and attached to each other using leaf springs. Actuation is achieved through two electrostatic comb drives at either end of the grating. To prevent deformation of the free-standing grating, the device is 10 μm thick made from a Silicon on Insulator (SOI) wafer in a single mask process. At 100V a periodicity tuning of 3% has been measured. The first resonant mode of the grating is measured at 13.8 kHz, allowing high speed actuation. This combination of wide tunability and high operating speed represents state of the art in the domain of tunable MEMS filters. In order to improve diffraction efficiency and to expand the usable wavelength range, a blazed version of the deformable MEMS grating has been designed. A key issue is maintaining the mechanical properties of the original device while providing optically smooth blazed beams. Using a process based on anisotropic KOH etching, blazed gratings have been obtained and preliminary characterization is promising.
NASA Technical Reports Server (NTRS)
King, T. T.; Kletetschka, G.; Jah, M. A.; Li, M. J.; Jhabvala, M. D.; Wang, L. L.; Beamesderfer, M. A.; Kutyrev, A. S.; Silverberg, R. F.; Rapchun, D.;
2004-01-01
Two-dimensional MEMS microshutter arrays (MSA) have been fabricated at the NASA Goddard Space Flight Center (GSFC) for the James Webb Space Telescope (JWST) to enable cryogenic (approximately 35 K) spectrographic astronomy measurements in the near-infrared region. Functioning as a focal plane object selection device, the MSA is a 2-D programmable aperture mask with fine resolution, high efficiency and high contrast. The MSA are close- packed silicon nitride shutters (cell size of 100 x 200 microns) patterned with a torsion flexure to allow opening to 90 degrees. A layer of magnetic material is deposited onto each shutter to permit magnetic actuation. Two electrodes are deposited, one onto each shutter and another onto the support structure side-wall, permitting electrostatic latching and 2-D addressing. New techniques were developed to test MSA under mission-similar conditions (8 K less than or equal to T less than 300K). The magnetic rotisserie has proven to be an excellent tool for rapid characterization of MSA. Tests conducted with the magnetic rotisserie method include accelerated cryogenic lifetesting of unpackaged 128 x 64 MSA and parallel measurement of the magneto-mechanical stiffness of shutters in pathfinder test samples containing multiple MSA designs. Lifetest results indicate a logarithmic failure rate out to approximately 10(exp 6) shutter actuations. These results have increased our understanding of failure mechanisms and provide a means to predict the overall reliability of MSA devices.
Integral Twist Actuation of Helicopter Rotor Blades for Vibration Reduction
NASA Technical Reports Server (NTRS)
Shin, SangJoon; Cesnik, Carlos E. S.
2001-01-01
Active integral twist control for vibration reduction of helicopter rotors during forward flight is investigated. The twist deformation is obtained using embedded anisotropic piezocomposite actuators. An analytical framework is developed to examine integrally-twisted blades and their aeroelastic response during different flight conditions: frequency domain analysis for hover, and time domain analysis for forward flight. Both stem from the same three-dimensional electroelastic beam formulation with geometrical-exactness, and axe coupled with a finite-state dynamic inflow aerodynamics model. A prototype Active Twist Rotor blade was designed with this framework using Active Fiber Composites as the actuator. The ATR prototype blade was successfully tested under non-rotating conditions. Hover testing was conducted to evaluate structural integrity and dynamic response. In both conditions, a very good correlation was obtained against the analysis. Finally, a four-bladed ATR system is built and tested to demonstrate its concept in forward flight. This experiment was conducted at NASA Langley Tansonic Dynamics Tunnel and represents the first-of-a-kind Mach-scaled fully-active-twist rotor system to undergo forward flight test. In parallel, the impact upon the fixed- and rotating-system loads is estimated by the analysis. While discrepancies are found in the amplitude of the loads under actuation, the predicted trend of load variation with respect to its control phase correlates well. It was also shown, both experimentally and numerically, that the ATR blade design has the potential for hub vibratory load reduction of up to 90% using individual blade control actuation. Using the numerical framework, system identification is performed to estimate the harmonic transfer functions. The linear time-periodic system can be represented by a linear time-invariant system under the three modes of blade actuation: collective, longitudinal cyclic, and lateral cyclic. A vibration minimizing controller is designed based on this result, which implements classical disturbance rejection algorithm with some modifications. The controller is simulated numerically, and more than 90% of the 4P hub vibratory load is eliminated. By accomplishing the experimental and analytical steps described in this thesis, the present concept is found to be a viable candidate for future generation low-vibration helicopters. Also, the analytical framework is shown to be very appropriate for exploring active blade designs, aeroelastic behavior prediction, and as simulation tool for closed-loop controllers.
Monovalve with integrated fuel injector and port control valve, and engine using same
Milam, David M.
2002-01-01
Each cylinder of an internal combustion engine includes a combined gas exchange valve and fuel injector with a port control valve. The port control valve operates to open either an intake passage or an exhaust passage. The operation of the combined device is controlled by a pair of electrical actuators. The device is hydraulically actuated.
Actuated Hybrid Mirrors for Space Telescopes
NASA Technical Reports Server (NTRS)
Hickey, Gregory; Ealey, Mark; Redding, David
2010-01-01
This paper describes new, large, ultra-lightweight, replicated, actively controlled mirrors, for use in space telescopes. These mirrors utilize SiC substrates, with embedded solid-state actuators, bonded to Nanolaminate metal foil reflective surfaces. Called Actuated Hybrid Mirrors (AHMs), they use replication techniques for high optical quality as well as rapid, low cost manufacturing. They enable an Active Optics space telescope architecture that uses periodic image-based wavefront sensing and control to assure diffraction-limited performance, while relaxing optical system fabrication, integration and test requirements. The proposed International Space Station Observatory seeks to demonstrate this architecture in space.
Modular microfluidic valve structures based on reversible thermoresponsive ionogel actuators.
Benito-Lopez, Fernando; Antoñana-Díez, Marta; Curto, Vincenzo F; Diamond, Dermot; Castro-López, Vanessa
2014-09-21
This paper reports for the first time the use of a cross-linked poly(N-isopropylacrylamide) ionogel encapsulating the ionic liquid 1-ethyl-3-methylimidazolium ethyl sulphate as a thermoresponsive and modular microfluidic valve. The ionogel presents superior actuation behaviour to its equivalent hydrogel. Ionogel swelling and shrinking mechanisms and kinetics are investigated as well as the performance of the ionogel when integrated as a valve in a microfluidic device. The modular microfluidic valve demonstrates fully a reversible on-off behaviour without failure for up to eight actuation cycles and a pressure resistance of 1100 mbar.
Testing of an actively damped boring bar featuring structurally integrated PZT stack actuators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Redmond, J.; Barney, P.
This paper summarizes the results of cutting tests performed using an actively damped boring bar to minimize chatter in metal cutting. A commercially available 2 inch diameter boring bar was modified to incorporate PZT stack actuators for controlling tool bending vibrations encountered during metal removal. The extensional motion of the actuators induce bending moments in the host structure through a two-point preloaded mounting scheme. Cutting tests performed at various speeds and depths of cuts on a hardened steel workpiece illustrate the bar`s effectiveness toward eliminating chatter vibrations and improving workpiece surface finish.
Simulation of Strain Induced Pseudomagnetic Fields in Graphene Suspended on MEMS Chevron Actuators
NASA Astrophysics Data System (ADS)
Vutukuru, Mounika; Christopher, Jason; Bishop, David; Swan, Anna
Graphene has been shown to withstand remarkable levels of mechanical strain an order of magnitude larger than bulk crystalline materials. This exceptional stretchability of graphene allows for the direct tuning of fundamental material properties, as well as for the investigation of novel physics such as generation of strain induced pseudomagnetic fields. However, current methods for strain such as polymer elongation or pressurized wells do not integrate well into devices. We propose microelectromechanical (MEMS) Chevron actuators as a reliable platform for applying strain to graphene. In addition to their advantageous controllable output force, low input power and ease of integration into existing technologies, MEMS allow for different strain orientations to optimize pseudomagnetic field generation in graphene. Here, we model nonuniform strain in suspended graphene on Chevron actuators using COMSOL Multiphysics. By simulating the deformation of the graphene geometry under the device actuation, we explore the pseudomagnetic field map induced by numerically calculating the components of the strain tensor. Our models provide the theoretical framework with which experimental analysis is compared, and optimize our MEMS designs for further exploration of novel physics in graphene. The authors would like to thank NSF DMR 1411008 for their support on this project.
Electrically Driven Microengineered Bioinspired Soft Robots.
Shin, Su Ryon; Migliori, Bianca; Miccoli, Beatrice; Li, Yi-Chen; Mostafalu, Pooria; Seo, Jungmok; Mandla, Serena; Enrico, Alessandro; Antona, Silvia; Sabarish, Ram; Zheng, Ting; Pirrami, Lorenzo; Zhang, Kaizhen; Zhang, Yu Shrike; Wan, Kai-Tak; Demarchi, Danilo; Dokmeci, Mehmet R; Khademhosseini, Ali
2018-03-01
To create life-like movements, living muscle actuator technologies have borrowed inspiration from biomimetic concepts in developing bioinspired robots. Here, the development of a bioinspired soft robotics system, with integrated self-actuating cardiac muscles on a hierarchically structured scaffold with flexible gold microelectrodes is reported. Inspired by the movement of living organisms, a batoid-fish-shaped substrate is designed and reported, which is composed of two micropatterned hydrogel layers. The first layer is a poly(ethylene glycol) hydrogel substrate, which provides a mechanically stable structure for the robot, followed by a layer of gelatin methacryloyl embedded with carbon nanotubes, which serves as a cell culture substrate, to create the actuation component for the soft body robot. In addition, flexible Au microelectrodes are embedded into the biomimetic scaffold, which not only enhance the mechanical integrity of the device, but also increase its electrical conductivity. After culturing and maturation of cardiomyocytes on the biomimetic scaffold, they show excellent myofiber organization and provide self-actuating motions aligned with the direction of the contractile force of the cells. The Au microelectrodes placed below the cell layer further provide localized electrical stimulation and control of the beating behavior of the bioinspired soft robot. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Oguntosin, Victoria W; Mori, Yoshiki; Kim, Hyejong; Nasuto, Slawomir J; Kawamura, Sadao; Hayashi, Yoshikatsu
2017-01-01
We demonstrated the design, production, and functional properties of the Exoskeleton Actuated by the Soft Modules (EAsoftM). Integrating the 3D printed exoskeleton with passive joints to compensate gravity and with active joints to rotate the shoulder and elbow joints resulted in ultra-light system that could assist planar reaching motion by using the vision-based control law. The EAsoftM can support the reaching motion with compliance realized by the soft materials and pneumatic actuation. In addition, the vision-based control law has been proposed for the precise control over the target reaching motion within the millimeter scale. Aiming at rehabilitation exercise for individuals, typically soft actuators have been developed for relatively small motions, such as grasping motion, and one of the challenges has been to extend their use for a wider range reaching motion. The proposed EAsoftM presented one possible solution for this challenge by transmitting the torque effectively along the anatomically aligned with a human body exoskeleton. The proposed integrated systems will be an ideal solution for neurorehabilitation where affordable, wearable, and portable systems are required to be customized for individuals with specific motor impairments.
Oguntosin, Victoria W.; Mori, Yoshiki; Kim, Hyejong; Nasuto, Slawomir J.; Kawamura, Sadao; Hayashi, Yoshikatsu
2017-01-01
We demonstrated the design, production, and functional properties of the Exoskeleton Actuated by the Soft Modules (EAsoftM). Integrating the 3D printed exoskeleton with passive joints to compensate gravity and with active joints to rotate the shoulder and elbow joints resulted in ultra-light system that could assist planar reaching motion by using the vision-based control law. The EAsoftM can support the reaching motion with compliance realized by the soft materials and pneumatic actuation. In addition, the vision-based control law has been proposed for the precise control over the target reaching motion within the millimeter scale. Aiming at rehabilitation exercise for individuals, typically soft actuators have been developed for relatively small motions, such as grasping motion, and one of the challenges has been to extend their use for a wider range reaching motion. The proposed EAsoftM presented one possible solution for this challenge by transmitting the torque effectively along the anatomically aligned with a human body exoskeleton. The proposed integrated systems will be an ideal solution for neurorehabilitation where affordable, wearable, and portable systems are required to be customized for individuals with specific motor impairments. PMID:28736514
NASA Astrophysics Data System (ADS)
Gorecki, Christophe
2015-08-01
The early diagnosis of cancer is essential since it can be treated more effectively when detected earlier. Visual inspection followed by histological examination is, still today, the gold standard for clinicians. However, a large number of unnecessary surgical procedures are still performed. New diagnostics aids are emerging including the recent techniques of optical coherence tomography (OCT) which permits non-invasive 3D optical biopsies of biological tissues, improving patient's quality of life. Nevertheless, the existing bulk or fiber optics systems are expensive, only affordable at the hospital and thus, not sufficiently used by physicians or cancer's specialists as an early diagnosis tool. We developed two different microsystems based on Mirau interferometry and applied for swept source OCT imaging: one for dermatology and second for gastroenterology. In both cases the architecture is based tem based on spectrally tuned Mirau interferometry. The first configuration, developed in the frame of the European project VIAMOS, includes an active array of 4x4 Mirau interferometers. The matrix of Mirau reference mirrors is integrated on top of an electrostatic vertical comb-drive actuator. In second configuration, developed in the frame of Labex ACTION, we adapted VIAMOS technology to develop an OCT endomicroscope with a single-channel passive Mirau interferometer.
Enhancing Optical Forces in InP-Based Waveguides.
Aryaee Panah, Mohammad Esmail; Semenova, Elizaveta S; Lavrinenko, Andrei V
2017-06-08
Cantilever sensors are among the most important microelectromechanical systems (MEMS), which are usually actuated by electrostatic forces or piezoelectric elements. Although well-developed microfabrication technology has made silicon the prevailing material for MEMS, unique properties of other materials are overlooked in this context. Here we investigate optically induced forces exerted upon a semi-insulating InP waveguide suspended above a highly doped InP:Si substrate, in three different regimes: the epsilon-near-zero (ENZ), with excitation of surface plasmon polaritons (SPPs) and phonons excitation. An order of magnitude amplification of the force is observed when light is coupled to SPPs, and three orders of magnitude amplification is achieved in the phonon excitation regime. In the ENZ regime, the force is found to be repulsive and higher than that in a waveguide suspended above a dielectric substrate. Low losses in InP:Si result in a big propagation length. The induced deflection can be detected by measuring the phase change of the light when passing through the waveguide, which enables all-optical functioning, and paves the way towards integration and miniaturization of micro-cantilevers. In addition, tunability of the ENZ and the SPP excitation wavelength ranges, via adjusting the carrier concentration, provides an extra degree of freedom for designing MEMS devices.
An Atomic Force Microscope with Dual Actuation Capability for Biomolecular Experiments
NASA Astrophysics Data System (ADS)
Sevim, Semih; Shamsudhin, Naveen; Ozer, Sevil; Feng, Luying; Fakhraee, Arielle; Ergeneman, Olgaç; Pané, Salvador; Nelson, Bradley J.; Torun, Hamdi
2016-06-01
We report a modular atomic force microscope (AFM) design for biomolecular experiments. The AFM head uses readily available components and incorporates deflection-based optics and a piezotube-based cantilever actuator. Jetted-polymers have been used in the mechanical assembly, which allows rapid manufacturing. In addition, a FeCo-tipped electromagnet provides high-force cantilever actuation with vertical magnetic fields up to 0.55 T. Magnetic field calibration has been performed with a micro-hall sensor, which corresponds well with results from finite element magnetostatics simulations. An integrated force resolution of 1.82 and 2.98 pN, in air and in DI water, respectively was achieved in 1 kHz bandwidth with commercially available cantilevers made of Silicon Nitride. The controller and user interface are implemented on modular hardware to ensure scalability. The AFM can be operated in different modes, such as molecular pulling or force-clamp, by actuating the cantilever with the available actuators. The electromagnetic and piezoelectric actuation capabilities have been demonstrated in unbinding experiments of the biotin-streptavidin complex.
NASA Technical Reports Server (NTRS)
Jones, Gregory S.; Milholen, William E., II; Fell, Jared S.; Webb, Sandy R.; Cagle, C. Mark
2016-01-01
The application of a sweeping jet actuator to a circulation control system was initiated by a risk reduction series of experiments to optimize the authority of a single sweeping jet actuator. The sweeping jet design was integrated into the existing Fundamental Aerodynamic Subsonic Transonic- Modular Active Control (FAST-MAC) model by replacing the steady blowing system with an array of thirty-nine sweeping jet cartridges. A constant slot height to wing chord ratio was similar to the steady blowing configuration resulting in each actuator having a unique in size for the sweeping jet configuration. While this paper will describe the scaling and optimization of the actuators for future high Reynolds number applications, the major focus of this effort was to target the transonic flight regime by increasing the amplitude authority of the actuator. This was accomplished by modifying the diffuser of the sweeping jet actuator, and this paper highlights twelve different diffuser designs. The experimental portion of this work was completed in the NASA Langley National Transonic Facility.
An Atomic Force Microscope with Dual Actuation Capability for Biomolecular Experiments
Sevim, Semih; Shamsudhin, Naveen; Ozer, Sevil; Feng, Luying; Fakhraee, Arielle; Ergeneman, Olgaç; Pané, Salvador; Nelson, Bradley J.; Torun, Hamdi
2016-01-01
We report a modular atomic force microscope (AFM) design for biomolecular experiments. The AFM head uses readily available components and incorporates deflection-based optics and a piezotube-based cantilever actuator. Jetted-polymers have been used in the mechanical assembly, which allows rapid manufacturing. In addition, a FeCo-tipped electromagnet provides high-force cantilever actuation with vertical magnetic fields up to 0.55 T. Magnetic field calibration has been performed with a micro-hall sensor, which corresponds well with results from finite element magnetostatics simulations. An integrated force resolution of 1.82 and 2.98 pN, in air and in DI water, respectively was achieved in 1 kHz bandwidth with commercially available cantilevers made of Silicon Nitride. The controller and user interface are implemented on modular hardware to ensure scalability. The AFM can be operated in different modes, such as molecular pulling or force-clamp, by actuating the cantilever with the available actuators. The electromagnetic and piezoelectric actuation capabilities have been demonstrated in unbinding experiments of the biotin-streptavidin complex. PMID:27273214
Integrating Sensory/Actuation Systems in Agricultural Vehicles
Emmi, Luis; Gonzalez-de-Soto, Mariano; Pajares, Gonzalo; Gonzalez-de-Santos, Pablo
2014-01-01
In recent years, there have been major advances in the development of new and more powerful perception systems for agriculture, such as computer-vision and global positioning systems. Due to these advances, the automation of agricultural tasks has received an important stimulus, especially in the area of selective weed control where high precision is essential for the proper use of resources and the implementation of more efficient treatments. Such autonomous agricultural systems incorporate and integrate perception systems for acquiring information from the environment, decision-making systems for interpreting and analyzing such information, and actuation systems that are responsible for performing the agricultural operations. These systems consist of different sensors, actuators, and computers that work synchronously in a specific architecture for the intended purpose. The main contribution of this paper is the selection, arrangement, integration, and synchronization of these systems to form a whole autonomous vehicle for agricultural applications. This type of vehicle has attracted growing interest, not only for researchers but also for manufacturers and farmers. The experimental results demonstrate the success and performance of the integrated system in guidance and weed control tasks in a maize field, indicating its utility and efficiency. The whole system is sufficiently flexible for use in other agricultural tasks with little effort and is another important contribution in the field of autonomous agricultural vehicles. PMID:24577525
Integrating sensory/actuation systems in agricultural vehicles.
Emmi, Luis; Gonzalez-de-Soto, Mariano; Pajares, Gonzalo; Gonzalez-de-Santos, Pablo
2014-02-26
In recent years, there have been major advances in the development of new and more powerful perception systems for agriculture, such as computer-vision and global positioning systems. Due to these advances, the automation of agricultural tasks has received an important stimulus, especially in the area of selective weed control where high precision is essential for the proper use of resources and the implementation of more efficient treatments. Such autonomous agricultural systems incorporate and integrate perception systems for acquiring information from the environment, decision-making systems for interpreting and analyzing such information, and actuation systems that are responsible for performing the agricultural operations. These systems consist of different sensors, actuators, and computers that work synchronously in a specific architecture for the intended purpose. The main contribution of this paper is the selection, arrangement, integration, and synchronization of these systems to form a whole autonomous vehicle for agricultural applications. This type of vehicle has attracted growing interest, not only for researchers but also for manufacturers and farmers. The experimental results demonstrate the success and performance of the integrated system in guidance and weed control tasks in a maize field, indicating its utility and efficiency. The whole system is sufficiently flexible for use in other agricultural tasks with little effort and is another important contribution in the field of autonomous agricultural vehicles.
A rapid boundary integral equation technique for protein electrostatics
NASA Astrophysics Data System (ADS)
Grandison, Scott; Penfold, Robert; Vanden-Broeck, Jean-Marc
2007-06-01
A new boundary integral formulation is proposed for the solution of electrostatic field problems involving piecewise uniform dielectric continua. Direct Coulomb contributions to the total potential are treated exactly and Green's theorem is applied only to the residual reaction field generated by surface polarisation charge induced at dielectric boundaries. The implementation shows significantly improved numerical stability over alternative schemes involving the total field or its surface normal derivatives. Although strictly respecting the electrostatic boundary conditions, the partitioned scheme does introduce a jump artefact at the interface. Comparison against analytic results in canonical geometries, however, demonstrates that simple interpolation near the boundary is a cheap and effective way to circumvent this characteristic in typical applications. The new scheme is tested in a naive model to successfully predict the ground state orientation of biomolecular aggregates comprising the soybean storage protein, glycinin.
Active Control Technology at NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Antcliff, Richard R.; McGowan, Anna-Marie R.
2000-01-01
NASA Langley has a long history of attacking important technical opportunities from a broad base of supporting disciplines. The research and development at Langley in this subject area range from the test tube to the test flight. The information covered here will range from the development of innovative new materials, sensors and actuators, to the incorporation of smart sensors and actuators in practical devices, to the optimization of the location of these devices, to, finally, a wide variety of applications of these devices utilizing Langley's facilities and expertise. Advanced materials are being developed for sensors and actuators, as well as polymers for integrating smart devices into composite structures. Contributions reside in three key areas: computational materials; advanced piezoelectric materials; and integrated composite structures. The computational materials effort is focused on developing predictive tools for the efficient design of new materials with the appropriate combination of properties for next generation smart airframe systems. Research in the area of advanced piezoelectrics includes optimizing the efficiency, force output, use temperature, and energy transfer between the structure and device for both ceramic and polymeric materials. For structural health monitoring, advanced non-destructive techniques including fiber optics are being developed for detection of delaminations, cracks and environmental deterioration in aircraft structures. The computational materials effort is focused on developing predictive tools for the efficient design of new materials with the appropriate combination of properties for next generation smart airframe system. Innovative fabrication techniques processing structural composites with sensor and actuator integration are being developed.
Altman, Michael D.; Bardhan, Jaydeep P.; White, Jacob K.; Tidor, Bruce
2009-01-01
We present a boundary-element method (BEM) implementation for accurately solving problems in biomolecular electrostatics using the linearized Poisson–Boltzmann equation. Motivating this implementation is the desire to create a solver capable of precisely describing the geometries and topologies prevalent in continuum models of biological molecules. This implementation is enabled by the synthesis of four technologies developed or implemented specifically for this work. First, molecular and accessible surfaces used to describe dielectric and ion-exclusion boundaries were discretized with curved boundary elements that faithfully reproduce molecular geometries. Second, we avoided explicitly forming the dense BEM matrices and instead solved the linear systems with a preconditioned iterative method (GMRES), using a matrix compression algorithm (FFTSVD) to accelerate matrix-vector multiplication. Third, robust numerical integration methods were employed to accurately evaluate singular and near-singular integrals over the curved boundary elements. Finally, we present a general boundary-integral approach capable of modeling an arbitrary number of embedded homogeneous dielectric regions with differing dielectric constants, possible salt treatment, and point charges. A comparison of the presented BEM implementation and standard finite-difference techniques demonstrates that for certain classes of electrostatic calculations, such as determining absolute electrostatic solvation and rigid-binding free energies, the improved convergence properties of the BEM approach can have a significant impact on computed energetics. We also demonstrate that the improved accuracy offered by the curved-element BEM is important when more sophisticated techniques, such as non-rigid-binding models, are used to compute the relative electrostatic effects of molecular modifications. In addition, we show that electrostatic calculations requiring multiple solves using the same molecular geometry, such as charge optimization or component analysis, can be computed to high accuracy using the presented BEM approach, in compute times comparable to traditional finite-difference methods. PMID:18567005
Fabrication of the planar angular rotator using the CMOS process
NASA Astrophysics Data System (ADS)
Dai, Ching-Liang; Chang, Chien-Liu; Chen, Hung-Lin; Chang, Pei-Zen
2002-05-01
In this investigation we propose a novel planar angular rotator fabricated by the conventional complementary metal-oxide semiconductor (CMOS) process. Following the 0.6 μm single poly triple metal (SPTM) CMOS process, the device is completed by a simple maskless, post-process etching step. The rotor of the planar angular rotator rotates around its geometric center with electrostatic actuation. The proposed design adopts an intelligent mechanism including the slider-crank system to permit simultaneous motion. The CMOS planar angular rotator could be driven with driving voltages of around 40 V. The design proposed here has a shorter response time and longer life, without problems of friction and wear, compared to the more common planar angular micromotor.
Density functional theory study of the conformational space of an infinitely long polypeptide chain
NASA Astrophysics Data System (ADS)
Ireta, Joel; Scheffler, Matthias
2009-08-01
The backbone conformational space of infinitely long polyalanine is investigated with density-functional theory and mapping the potential energy surface in terms of (L, θ) cylindrical coordinates. A comparison of the obtained (L, θ) Ramachandran-like plot with results from an extended set of protein structures shows excellent conformity, with the exception of the polyproline II region. It is demonstrated the usefulness of infinitely long polypeptide models for investigating the influence of hydrogen bonding and its cooperative effect on the backbone conformations. The results imply that hydrogen bonding together with long-range electrostatics is the main actuator for most of the structures assumed by protein residues.
Stochastic resonance in micro/nano cantilever sensors
NASA Astrophysics Data System (ADS)
Singh, Priyanka; Yadava, R. D. S.
2018-05-01
In this paper we present a comparative study on the stochastic resonance in micro/nano cantilever resonators due to fluctuations in the fundamental frequency or the damping coefficient. Considering DC+AC electrostatic actuation in the presence of zero-mean Gaussian noise with exponential autocorrelation we analyze stochastic resonance behaviors for the frequency and the damping fluctuations separately, and compare the effects of stochastic resonance on Q-factor of the resonators for different levels of damping losses. It is found that even though the stochastic resonance occurs for both types of fluctuations, only the damping fluctuation produces right cooperative influence on the fundamental resonance that improves both the amplitude response and the quality factor of the resonator.
NASA Astrophysics Data System (ADS)
Su, John G.; Patterson, Pamela R.; Wu, Ming C.
2001-05-01
We have developed a novel wafer-scale single-crystalline silicon micromirror bonding process to fabricate optically flat micromirrors on polysilicon surface-micromachined 2D scanners. The electrostatically actuated 2D scanner has a mirror area of 450 micrometers x 450 micrometers and an optical scan angle of +/- +/-7.5 degree(s). Compared to micromirrors made with a standard polysilicon surface-micromachining process, the radius of curvature of the micromirror has been improved by 1 50 times from 1.8 cm to 265 cm, with surface roughness < 10 nm. Besides, single-crystalline honeycomb micromirrors derived from silicon on insulator (SOI) have been developed to reduce the mass of the bonded mirror.
Using Voice Coils to Actuate Modular Soft Robots: Wormbot, an Example.
Nemitz, Markus P; Mihaylov, Pavel; Barraclough, Thomas W; Ross, Dylan; Stokes, Adam A
2016-12-01
In this study, we present a modular worm-like robot, which utilizes voice coils as a new paradigm in soft robot actuation. Drive electronics are incorporated into the actuators, providing a significant improvement in self-sufficiency when compared with existing soft robot actuation modes such as pneumatics or hydraulics. The body plan of this robot is inspired by the phylum Annelida and consists of three-dimensional printed voice coil actuators, which are connected by flexible silicone membranes. Each electromagnetic actuator engages with its neighbor to compress or extend the membrane of each segment, and the sequence in which they are actuated results in an earthworm-inspired peristaltic motion. We find that a minimum of three segments is required for locomotion, but due to our modular design, robots of any length can be quickly and easily assembled. In addition to actuation, voice coils provide audio input and output capabilities. We demonstrate transmission of data between segments by high-frequency carrier waves and, using a similar mechanism, we note that the passing of power between coupled coils in neighboring modules-or from an external power source-is also possible. Voice coils are a convenient multifunctional alternative to existing soft robot actuators. Their self-contained nature and ability to communicate with each other are ideal for modular robotics, and the additional functionality of sound input/output and power transfer will become increasingly useful as soft robots begin the transition from early proof-of-concept systems toward fully functional and highly integrated robotic systems.
MODULAR MANIPULATOR FOR ROBOTICS APPLICATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joseph W. Geisinger, Ph.D.
ARM Automation, Inc. is developing a framework of modular actuators that can address the DOE's wide range of robotics needs. The objective of this effort is to demonstrate the effectiveness of this technology by constructing a manipulator from these actuators within a glovebox for Automated Plutonium Processing (APP). At the end of the project, the system of actuators was used to construct several different manipulator configurations, which accommodate common glovebox tasks such as repackaging. The modular nature and quickconnects of this system simplify installation into ''hot'' boxes and any potential modifications or repair therein. This work focused on the developmentmore » of self-contained robotic actuator modules including the embedded electronic controls for the purpose of building a manipulator system. Both of the actuators developed under this project contain the control electronics, sensors, motor, gear train, wiring, system communications and mechanical interfaces of a complete robotics servo device. Test actuators and accompanying DISC{trademark}s underwent validation testing at The University of Texas at Austin and ARM Automation, Inc. following final design and fabrication. The system also included custom links, an umbilical cord, an open architecture PC-based system controller, and operational software that permitted integration into a completely functional robotic manipulator system. The open architecture on which this system is based avoids proprietary interfaces and communication protocols which only serve to limit the capabilities and flexibility of automation equipment. The system was integrated and tested in the contractor's facility for intended performance and operations. The manipulator was tested using the full-scale equipment and process mock-ups. The project produced a practical and operational system including a quantitative evaluation of its performance and cost.« less
NASA Technical Reports Server (NTRS)
Koopmann, Gary H.; Lesieutre, George A.; Yoshikawa, Shoko; Chen, Weicheng; Fahnline, John B.; Pai, Suresh; Dershem, Brian
1996-01-01
In this presentation, the authors describe the design and fabrication processes for a PZT strain actuator that evolved during the initial stages of a research effort to synthesize and process intelligent, cost effective structures (SPICES). The actuator performance requirements were similar to those of conventional actuators, e.g., it had to be robust, highly efficient with adequate force and stroke, as lightweight as possible, and most importantly, affordable. Further, since the actuator was to be integrated within a composite structure, it had to be compatible with the host material and easily embeddable during the fabrication process. In control applications employing strain devices as actuators, a good bond between this actuator and host material is critical to their successful operation. This criterion is often difficult to achieve when attempting to join ceramics with metals or polymers with dissimilar properties such as Young's moduli, thermal expansion coefficients, etc. One unique feature of the actuator design that evolved in this project is that the need for direct bonding between the PZT ceramic and polymers was circumvented, i.e. the strain transfer to the host material was achieved via a frame surrounding the ceramic. Consequently, the frame material could be selected (or coated) for compatibility with the host material. A second feature is that the frame enclosed a co-fired, multilayered, PZT stack that was used to minimize the voltage requirements while maximizing the output strain.
Reliability, Maintainability, and Performance Issues in Hydraulic System Design
1977-06-01
the piston and control valve, typically between 0.85 and 0.95 for an integrally mounted valve In a practical hardware installation, the actuator ...around the null position due to internal leakage through the piston seal and in the control valve. A newly installed CH-47 swashplate control actuator ...except when the pump is installed in the manu- facturer’s own test
Light Actuation of Liquid by Optoelectrowetting
2005-06-01
liquid lenses with variable focal length [7]. Transport of liquid in droplet forms offers many advan- tages. It eliminates the need for pumps and...novel mechanism for light actuation of liquid droplets. This is realized by integrating a photoconductive material underneath the electrowetting ...optoelectrowetting 2.1. General concept Fig. 1(a) shows the general electrowetting mechanism. A droplet of polarizable liquid is placed on a substrate
Worcester 1 Inch Solenoid Actuated Gas Operated SCHe System Valves
DOE Office of Scientific and Technical Information (OSTI.GOV)
MISKA, C.R.
1 inch gas-operated full-port ball valves incorporate a solenoid and limit switches as integral parts of the actuator. These valves are normally open and fail safe to the open position (GOV-1*02 and 1*06 fail closed) to provide a flow path of helium gas to the MCO under helium purge and off-normal conditions when the MCO is isolated.
Worcester 1 Inch Solenoid Actuated Gas Operated SCHe System Valves
DOE Office of Scientific and Technical Information (OSTI.GOV)
VAN KATWIJK, C.
1 inch Gas-operated full-port ball valves incorporate a solenoid and limit switches as integral parts of the actuator. These valves are normally open and fail safe to the open position (GOV-1*02 and 1*06 fall closed) to provide a flow path of helium gas to the MCO under helium purge and off-normal conditions when the MCO is isolated.
Worcester 1 Inch Solenoid Actuated Gas Operated SCHe System Valves
DOE Office of Scientific and Technical Information (OSTI.GOV)
VAN KATWIJK, C.
1 inch Gas-operated full-port ball valves incorporate a solenoid and limit switches as integral parts of the actuator. These valves are normally open and fail safe to the open position (GOV-1*02 and 1*06 fail closed) to provide a flow path of helium gas to the MCO under helium purge and off-normal conditions when the MCO is isolated.
Engineered Muscle Actuators: Cells and Tissues
2007-01-10
tissue culture perfusion bioreactors The UNC group led the development of the final version of the integrated cell culture bioreactor . The system was...construct engineered in vitro from primary mammalian cells (C) The first demonstration of developmental improvements in engineered tendon constitutive...2007 Final Performance Report 1 Nov 2004 - 31 Oct 2006 4. TITLE AND SUBTITLE 5.. CONTRACT NUMBER Engineered Muscle Actuators: Cells and Tissues FA9550
NASA Technical Reports Server (NTRS)
Fink, R. A.; Ellis, R. C.
1996-01-01
The trend toward smaller satellites has challenged component manufacturers to reduce the size, weight, and cost of their products while maintaining high performance. Both a new stepper motor and a new harmonic drive were developed to meet this need. The resulting actuator embodies small angle stepper technology usually reserved for larger units and incorporates an integral approach to harmonic drive design. By product simplifications, costs were significantly reduced over prior designs.
Electromechanical actuation for thrust vector control applications
NASA Technical Reports Server (NTRS)
Roth, Mary Ellen
1990-01-01
At present, actuation systems for the Thrust Vector Control (TVC) for launch vehicles are hydraulic systems. The Advanced Launch System (ALS), a joint initiative between NASA and the Air Force, is a launch vehicle that is designed to be cost effective, highly reliable and operationally efficient with a goal of reducing the cost per pound to orbit. As part of this initiative, an electromechanical actuation system is being developed as an attractive alternative to the hydraulic systems used today. NASA-Lewis is developing and demonstrating an Induction Motor Controller Actuation System with a 40 hp peak rating. The controller will integrate 20 kHz resonant link Power Management and Distribution (PMAD) technology and Pulse Population Modulation (PPM) techniques to implement Field Oriented Vector Control (FOVC) of a new advanced induction motor. Through PPM, multiphase variable frequency, variable voltage waveforms can be synthesized from the 20 kHz source. FOVC shows that varying both the voltage and frequency and their ratio (V/F), permits independent control of both torque and speed while operating at maximum efficiency at any point on the torque-speed curve. The driver and the FOVC will be microprocessor controlled. For increased system reliability, a Built-in Test (BITE) capability will be included. This involves introducing testability into the design of a system such that testing is calibrated and exercised during the design, manufacturing, maintenance and prelaunch activities. An actuator will be integrated with the motor controller for performance testing of the EMA TVC system. The design and fabrication of the motor controller is being done by General Dynamics Space Systems Division. The University of Wisconsin-Madison will assist in the design of the advanced induction motor and in the implementation of the FOVC theory. A 75 hp electronically controlled dynamometer will be used to test the motor controller in all four quadrants of operation using flight type control algorithms. Integrated testing of the controller and actuator will be conducted at a facility yet to be named. The EMA system described above is discussed in detail.
A Prototype Actuator Concept for Membrane Boundary Vibration Control
NASA Technical Reports Server (NTRS)
Solter, Micah J.
2005-01-01
In conjunction with the research in ultra-lightweight deployable spacecraft and membrane structures is an underlying need for shape and vibration control. For thin film membrane structures, fundamental modes of vibration for the membrane can be excited through station keeping, attitude adjustments, orbital maneuvers, or contact with space junk or micrometeorites. In order to maintain structural integrity as well as surface shape contour, which may be essential for inflatable antennas, reflective surfaces, or solar sails; vibration damping is a necessary component. This paper discusses development of an actuator attached at the membrane boundary, containing two types of piezoelectric elements, which can be used to perform active control of vibration from the boundary of a membrane. The actuator is designed to control the membrane out-of-plane displacement and in-plane tension by varying the boundary conditions. Results from an initial experimental evaluation of the concept are presented with bench tests of the actuator alone, and with the actuator connected to a large membrane.
NASA Astrophysics Data System (ADS)
Wilkie, William Keats
1997-12-01
An aeroelastic model suitable for control law and preliminary structural design of composite helicopter rotor blades incorporating embedded anisotropic piezoelectric actuator laminae is developed. The aeroelasticity model consists of a linear, nonuniform beam representation of the blade structure, including linear piezoelectric actuation terms, coupled with a nonlinear, finite-state unsteady aerodynamics model. A Galerkin procedure and numerical integration in the time domain are used to obtain a soluti An aeroelastic model suitable for control law and preliminary structural design of composite helicopter rotor blades incorporating embedded anisotropic piezoelectric actuator laminae is developed. The aeroelasticity model consists of a linear, nonuniform beam representation of the blade structure, including linear piezoelectric actuation terms, coupled with a nonlinear, finite-state unsteady aerodynamics model. A Galerkin procedure and numerical integration in the time domain are used to obtain amited additional piezoelectric material mass, it is shown that blade twist actuation approaches which exploit in-plane piezoelectric free-stain anisotropies are capable of producing amplitudes of oscillatory blade twisting sufficient for rotor vibration reduction applications. The second study examines the effectiveness of using embedded piezoelectric actuator laminae to alleviate vibratory loads due to retreating blade stall. A 10 to 15 percent improvement in dynamic stall limited forward flight speed, and a 5 percent improvement in stall limited rotor thrust were numerically demonstrated for the active twist rotor blade relative to a conventional blade design. The active twist blades are also demonstrated to be more susceptible than the conventional blades to dynamic stall induced vibratory loads when not operating with twist actuation. This is the result of designing the active twist blades with low torsional stiffness in order to maximize piezoelectric twist authority. Determining the optimum tradeoff between blade torsional stiffness and piezoelectric twist actuation authority is the subject of the third study. For this investigation, a linearized hovering-flight eigenvalue analysis is developed. Linear optimal control theory is then utilized to develop an optimum active twist blade design in terms of reducing structural energy and control effort cost. The forward flight vibratory loads characteristics of the torsional stiffness optimized active twist blade are then examined using the nonlinear, forward flight aeroelastic analysis. The optimized active twist rotor blade is shown to have improved passive and active vibratory loads characteristics relative to the baseline active twist blades.
Design and Integration of an Actuated Nose Strake Control System
NASA Technical Reports Server (NTRS)
Flick, Bradley C.; Thomson, Michael P.; Regenie, Victoria A.; Wichman, Keith D.; Pahle, Joseph W.; Earls, Michael R.
1996-01-01
Aircraft flight characteristics at high angles of attack can be improved by controlling vortices shed from the nose. These characteristics have been investigated with the integration of the actuated nose strakes for enhanced rolling (ANSER) control system into the NASA F-18 High Alpha Research Vehicle. Several hardware and software systems were developed to enable performance of the research goals. A strake interface box was developed to perform actuator control and failure detection outside the flight control computer. A three-mode ANSER control law was developed and installed in the Research Flight Control System. The thrust-vectoring mode does not command the strakes. The strakes and thrust-vectoring mode uses a combination of thrust vectoring and strakes for lateral- directional control, and strake mode uses strakes only for lateral-directional control. The system was integrated and tested in the Dryden Flight Research Center (DFRC) simulation for testing before installation in the aircraft. Performance of the ANSER system was monitored in real time during the 89-flight ANSER flight test program in the DFRC Mission Control Center. One discrepancy resulted in a set of research data not being obtained. The experiment was otherwise considered a success with the majority of the research objectives being met.
NASA Astrophysics Data System (ADS)
Tang, Zhenghua; Lim, Chang-Keun; Palafox-Hernandez, J. Pablo; Drew, Kurt L. M.; Li, Yue; Swihart, Mark T.; Prasad, Paras N.; Walsh, Tiffany R.; Knecht, Marc R.
2015-08-01
Bio-molecular non-covalent interactions provide a powerful platform for material-specific self-organization in aqueous media. Here, we introduce a strategy that integrates a synthetic optically-responsive motif with a materials-binding peptide to enable remote actuation. Specifically, we linked a photoswitchable azobenzene moiety to either terminus of a Au-binding peptide. We employed these hybrid molecules as capping agents for synthesis of Au nanoparticles. Integrated experiments and molecular simulations showed that the hybrid molecules maintained both of their functions, i.e. binding to Au and optically-triggered reconfiguration. The azobenzene unit was optically switched reversibly between trans and cis states while adsorbed on the particle surface. Upon switching, the conformation of the peptide component of the molecule also changed. This highlights the interplay between the surface adsorption and conformational switching that will be pivotal to the creation of actuatable nanoparticle bio-interfaces, and paves the way toward multifunctional peptide hybrids that can produce stimuli responsive nanoassemblies.Bio-molecular non-covalent interactions provide a powerful platform for material-specific self-organization in aqueous media. Here, we introduce a strategy that integrates a synthetic optically-responsive motif with a materials-binding peptide to enable remote actuation. Specifically, we linked a photoswitchable azobenzene moiety to either terminus of a Au-binding peptide. We employed these hybrid molecules as capping agents for synthesis of Au nanoparticles. Integrated experiments and molecular simulations showed that the hybrid molecules maintained both of their functions, i.e. binding to Au and optically-triggered reconfiguration. The azobenzene unit was optically switched reversibly between trans and cis states while adsorbed on the particle surface. Upon switching, the conformation of the peptide component of the molecule also changed. This highlights the interplay between the surface adsorption and conformational switching that will be pivotal to the creation of actuatable nanoparticle bio-interfaces, and paves the way toward multifunctional peptide hybrids that can produce stimuli responsive nanoassemblies. Electronic supplementary information (ESI) available: Additional modeling analysis, QCM analysis, UV-vis and CD spectroscopy data. See DOI: 10.1039/C5NR02311D
NASA Astrophysics Data System (ADS)
Chan, Wilfred K.; Clingman, Dan J.; Amitay, Michael
2016-04-01
Piezoelectric materials have long been used for active flow control purposes in aerospace applications to increase the effectiveness of aerodynamic surfaces on aircraft, wind turbines, and more. Piezoelectric actuators are an appropriate choice due to their low mass, small dimensions, simplistic design, and frequency response. This investigation involves the development of piezoceramic-based actuators with two bimorphs placed in series. Here, the main desired characteristic was the achievable displacement amplitude at specific driving voltages and frequencies. A parametric study was performed, in which actuators with varying dimensions were fabricated and tested. These devices were actuated with a sinusoidal waveform, resulting in an oscillating platform on which to mount active flow control devices, such as dynamic vortex generators. The main quantification method consisted of driving these devices with different voltages and frequencies to determine their free displacement, blocking force, and frequency response. It was found that resonance frequency increased with shorter and thicker actuators, while free displacement increased with longer and thinner actuators. Integration of the devices into active flow control test modules is noted. In addition to physical testing, a quasi-static analytical model was developed and compared with experimental data, which showed close correlation for both free displacement and blocking force.
Integrated microelectronics for smart textiles.
Lauterbach, Christl; Glaser, Rupert; Savio, Domnic; Schnell, Markus; Weber, Werner
2005-01-01
The combination of textile fabrics with microelectronics will lead to completely new applications, thus achieving elements of ambient intelligence. The integration of sensor or actuator networks, using fabrics with conductive fibres as a textile motherboard enable the fabrication of large active areas. In this paper we describe an integration technology for the fabrication of a "smart textile" based on a wired peer-to-peer network of microcontrollers with integrated sensors or actuators. A self-organizing and fault-tolerant architecture is accomplished which detects the physical shape of the network. Routing paths are formed for data transmission, automatically circumventing defective or missing areas. The network architecture allows the smart textiles to be produced by reel-to-reel processes, cut into arbitrary shapes subsequently and implemented in systems at low installation costs. The possible applications are manifold, ranging from alarm systems to intelligent guidance systems, passenger recognition in car seats, air conditioning control in interior lining and smart wallpaper with software-defined light switches.
Micromechanical Characterization of Polysilicon Films through On-Chip Tests
Mirzazadeh, Ramin; Eftekhar Azam, Saeed; Mariani, Stefano
2016-01-01
When the dimensions of polycrystalline structures become comparable to the average grain size, some reliability issues can be reported for the moving parts of inertial microelectromechanical systems (MEMS). Not only the overall behavior of the device turns out to be affected by a large scattering, but also the sensitivity to imperfections gets enhanced. In this work, through on-chip tests, we experimentally investigate the behavior of thin polysilicon samples using standard electrostatic actuation/sensing. The discrepancy between the target and actual responses of each sample has then been exploited to identify: (i) the overall stiffness of the film and, according to standard continuum elasticity, a morphology-based value of its Young’s modulus; (ii) the relevant over-etch induced by the fabrication process. To properly account for the aforementioned stochastic features at the micro-scale, the identification procedure has been based on particle filtering. A simple analytical reduced-order model of the moving structure has been also developed to account for the nonlinearities in the electrical field, up to pull-in. Results are reported for a set of ten film samples of constant slenderness, and the effects of different actuation mechanisms on the identified micromechanical features are thoroughly discussed. PMID:27483268
Micromechanical Characterization of Polysilicon Films through On-Chip Tests.
Mirzazadeh, Ramin; Eftekhar Azam, Saeed; Mariani, Stefano
2016-07-28
When the dimensions of polycrystalline structures become comparable to the average grain size, some reliability issues can be reported for the moving parts of inertial microelectromechanical systems (MEMS). Not only the overall behavior of the device turns out to be affected by a large scattering, but also the sensitivity to imperfections gets enhanced. In this work, through on-chip tests, we experimentally investigate the behavior of thin polysilicon samples using standard electrostatic actuation/sensing. The discrepancy between the target and actual responses of each sample has then been exploited to identify: (i) the overall stiffness of the film and, according to standard continuum elasticity, a morphology-based value of its Young's modulus; (ii) the relevant over-etch induced by the fabrication process. To properly account for the aforementioned stochastic features at the micro-scale, the identification procedure has been based on particle filtering. A simple analytical reduced-order model of the moving structure has been also developed to account for the nonlinearities in the electrical field, up to pull-in. Results are reported for a set of ten film samples of constant slenderness, and the effects of different actuation mechanisms on the identified micromechanical features are thoroughly discussed.
Progress and opportunities in high-voltage microactuator powering technology towards one-chip MEMS
NASA Astrophysics Data System (ADS)
Mita, Yoshio; Hirakawa, Atsushi; Stefanelli, Bruno; Mori, Isao; Okamoto, Yuki; Morishita, Satoshi; Kubota, Masanori; Lebrasseur, Eric; Kaiser, Andreas
2018-04-01
In this paper, we address issues and solutions for micro-electro-mechanical-systems (MEMS) powering through semiconductor devices towards one-chip MEMS, especially those with microactuators that require high voltage (HV, which is more than 10 V, and is often over 100 V) for operation. We experimentally and theoretically demonstrated that the main reason why MEMS actuators need such HV is the tradeoff between resonant frequency and displacement amplitude. Indeed, the product of frequency and displacement is constant regardless of the MEMS design, but proportional to the input energy, which is the square of applied voltage in an electrostatic actuator. A comprehensive study on the principles of HV device technology and associated circuit technologies, especially voltage shifter circuits, was conducted. From the viewpoint of on-chip energy source, series-connected HV photovoltaic cells have been discussed. Isolation and electrical connection methods were identified to be key enabling technologies. Towards future rapid development of such autonomous devices, a technology to convert standard 5 V CMOS devices into HV circuits using SOI substrate and a MEMS postprocess is presented. HV breakdown experiments demonstrated this technology can hold over 700 to 1000 V, depending on the layout.
Externally resonated linear microvibromotor for microassembly
NASA Astrophysics Data System (ADS)
Saitou, Kazuhiro; Wou, Soungjin J.
1998-10-01
A new design of a linear micro vibromotor for on-substrate fine positioning of micro-scale components is presented where a micro linear slider is actuated by vibratory impacts exerted by micro cantilever impacters. These micro cantilever impacters are selectively resonated by shaking the entire substrate with a piezoelectric vibrator, requiring no need for built-in driving mechanisms such as electrostatic comb actuators as reported previously. This selective resonance of the micro cantilever impacters via an external vibration energy field provides with a very simple means of controlling forward and backward motion of the micro linear slider, facilitating assembly and disassembly of a micro component on a substrate. The double-V beam suspension design is employed in the micro cantilever impacters for larger displacement in the lateral direction while achieving higher stiffness in the transversal direction. An analytical model of the device is derived in order to obtain, through the Simulated Annealing algorithm, an optimal design which maximizes translation speed of the linear slider at desired external input frequencies. Prototypes of the externally-resonated linear micro vibromotor are fabricated using the three-layer polysilicon surface micro machining process provided by the MCNC MUMPS service.
NASA Astrophysics Data System (ADS)
Birkholz, M.; Ehwald, K.-E.; Basmer, T.; Kulse, P.; Reich, C.; Drews, J.; Genschow, D.; Haak, U.; Marschmeyer, S.; Matthus, E.; Schulz, K.; Wolansky, D.; Winkler, W.; Guschauski, T.; Ehwald, R.
2013-06-01
The progressive scaling in semiconductor technology allows for advanced miniaturization of intelligent systems like implantable biosensors for low-molecular weight analytes. A most relevant application would be the monitoring of glucose in diabetic patients, since no commercial solution is available yet for the continuous and drift-free monitoring of blood sugar levels. We report on a biosensor chip that operates via the binding competition of glucose and dextran to concanavalin A. The sensor is prepared as a fully embedded micro-electromechanical system and operates at GHz frequencies. Glucose concentrations derive from the assay viscosity as determined by the deflection of a 50 nm TiN actuator beam excited by quasi-electrostatic attraction. The GHz detection scheme does not rely on the resonant oscillation of the actuator and safely operates in fluidic environments. This property favorably combines with additional characteristics—(i) measurement times of less than a second, (ii) usage of biocompatible TiN for bio-milieu exposed parts, and (iii) small volume of less than 1 mm3—to qualify the sensor chip as key component in a continuous glucose monitor for the interstitial tissue.
Electrostatic capacitance and Faraday cage behavior of carbon nanotube forests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ya'akobovitz, A.; Department of Mechanical Engineering, Faculty of Engineering Sciences, Ben-Gurion University, Beer-Sheva; Bedewy, M.
2015-02-02
Understanding of the electrostatic properties of carbon nanotube (CNT) forests is essential to enable their integration in microelectronic and micromechanical devices. In this study, we sought to understand how the hierarchical geometry and morphology of CNT forests determines their capacitance. First, we find that at small gaps, solid micropillars have greater capacitance, yet at larger gaps the capacitance of the CNT forests is greater. The surface area of the CNT forest accessible to the electrostatic field was extracted by analysis of the measured capacitance, and, by relating the capacitance to the average density of CNTs in the forest, we findmore » that the penetration depth of the electrostatic field is on the order of several microns. Therefore, CNT forests can behave as a miniature Faraday cage. The unique electrostatic properties of CNT forests could therefore enable their use as long-range proximity sensors and as shielding elements for miniature electronic devices.« less
Electrostatic capacitance and Faraday cage behavior of carbon nanotube forests
NASA Astrophysics Data System (ADS)
Ya'akobovitz, A.; Bedewy, M.; Hart, A. J.
2015-02-01
Understanding of the electrostatic properties of carbon nanotube (CNT) forests is essential to enable their integration in microelectronic and micromechanical devices. In this study, we sought to understand how the hierarchical geometry and morphology of CNT forests determines their capacitance. First, we find that at small gaps, solid micropillars have greater capacitance, yet at larger gaps the capacitance of the CNT forests is greater. The surface area of the CNT forest accessible to the electrostatic field was extracted by analysis of the measured capacitance, and, by relating the capacitance to the average density of CNTs in the forest, we find that the penetration depth of the electrostatic field is on the order of several microns. Therefore, CNT forests can behave as a miniature Faraday cage. The unique electrostatic properties of CNT forests could therefore enable their use as long-range proximity sensors and as shielding elements for miniature electronic devices.
NASA Technical Reports Server (NTRS)
Dieudonne, J. E.
1972-01-01
A set of equations which transform position and angular orientation of the centroid of the payload platform of a six-degree-of-freedom motion simulator into extensions of the simulator's actuators has been derived and is based on a geometrical representation of the system. An iterative scheme, Newton-Raphson's method, has been successfully used in a real time environment in the calculation of the position and angular orientation of the centroid of the payload platform when the magnitude of the actuator extensions is known. Sufficient accuracy is obtained by using only one Newton-Raphson iteration per integration step of the real time environment.
Six-degree-of-freedom active vibration isolation using a Stewart platform mechanism
NASA Technical Reports Server (NTRS)
Geng, Zheng; Haynes, Leonard S.
1993-01-01
The design and control problems of a class of multidegree-of-freedom vibration isolation systems (VISs) based on a Stewart platform mechanism are studied. A prototype of a six-degree-of-freedom VIS for precision control of a wide range of space-based structures implemented in Intelligent Automation, Inc. is described. The feasibility of using a Stewart platform to achieve 6-degree-of-freedom vibration control in space applications is shown. A new Terfenol-D actuator characterized by significantly longer stroke than any commercially available Terfenol-D actuator and direct flux and strain sensors integral to the actuator is described.
Actuation stability test of the LISA pathfinder inertial sensor front-end electronics
NASA Astrophysics Data System (ADS)
Mance, Davor; Gan, Li; Weber, Bill; Weber, Franz; Zweifel, Peter
In order to limit the residual stray forces on the inertial sensor test mass in LISA pathfinder, √ it is required that the fluctuation of the test mass actuation voltage is within 2ppm/ Hz. The actuation voltage stability test on the flight hardware of the inertial sensor front-end electronics (IS FEE) is presented in this paper. This test is completed during the inertial sensor integration at EADS Astrium Friedrichshafen, Germany. The standard measurement method using voltmeter is not sufficient for verification, since the instrument low frequency √ fluctuation is higher than the 2ppm/ Hz requirement. In this test, by using the differential measurement method and the lock-in amplifier, the actuation stability performance is verified and the quality of the IS FEE hardware is confirmed by the test results.
NASA Technical Reports Server (NTRS)
2003-01-01
Topics covered include: Using Diffusion Bonding in Making Piezoelectric Actuators; Wireless Temperature-Monitoring System; Analog Binaural Circuits for Detecting and Locating Leaks; Mirrors Containing Biomimetic Shape-Control Actuators; Surface-Micromachined Planar Arrays of Thermopiles; Cascade Back-Propagation Learning in Neural Networks; Perovskite Superlattices as Tunable Microwave Devices; Rollable Thin-Shell Nanolaminate Mirrors; Flight Tests of a Ministick Controller in an F/A-18 Airplane; Piezoelectrically Actuated Shutter for High Vacuum; Bio-Inspired Engineering of Exploration Systems; Microscope Cells Containing Multiple Micromachined Wells; Electrophoretic Deposition for Fabricating Microbatteries; Integrated Arrays of Ion-Sensitive Electrodes; Model of Fluidized Bed Containing Reacting Solids and Gases; Membrane Mirrors With Bimorph Shape Actuators; Using Fractional Clock-Period Delays in Telemetry Arraying; Developing Generic Software for Spacecraft Avionics; Numerical Study of Pyrolysis of Biomass in Fluidized Beds; and Assessment of Models of Chemically Reacting Granular Flows.
Monolithic Flexure Pre-Stressed Ultrasonic Horns
NASA Technical Reports Server (NTRS)
Sherrit, Stewart (Inventor); Badescu, Mircea (Inventor); Allen, Phillip Grant (Inventor); Bao, Xiaoqi (Inventor); Bar-Cohen, Yoseph (Inventor)
2016-01-01
A monolithic ultrasonic horn where the horn, backing, and pre-stress structures are combined in a single monolithic piece is disclosed. Pre-stress is applied by external flexure structures. The provision of the external flexures has numerous advantages including the elimination of the need for a pre-stress bolt. The removal of the pre-stress bolt eliminates potential internal electric discharge points in the actuator. In addition, it reduces the chances of mechanical failure in the actuator stacks that result from the free surface in the hole of conventional ring stacks. In addition, the removal of the stress bolt and the corresponding reduction in the overall number of parts reduces the overall complexity of the resulting ultrasonic horn actuator and simplifies the ease of the design, fabrication and integration of the actuator of the present invention into other structures.
Monolithic Flexure Pre-Stressed Ultrasonic Horns
NASA Technical Reports Server (NTRS)
Bao, Xiaoqi (Inventor); Bar-Cohen, Yoseph (Inventor); Badescu, Mircea (Inventor); Allen, Phillip Grant (Inventor); Sherrit, Stewart (Inventor)
2015-01-01
A monolithic ultrasonic horn where the horn, backing, and pre-stress structures are combined in a single monolithic piece is disclosed. Pre-stress is applied by external flexure structures. The provision of the external flexures has numerous advantages including the elimination of the need for a pre-stress bolt. The removal of the pre-stress bolt eliminates potential internal electric discharge points in the actuator. In addition, it reduces the chances of mechanical failure in the actuator stacks that result from the free surface in the hole of conventional ring stacks. In addition, the removal of the stress bolt and the corresponding reduction in the overall number of parts reduces the overall complexity of the resulting ultrasonic horn actuator and simplifies the ease of the design, fabrication and integration of the actuator of the present invention into other structures.
Including diverging electrostatic potential in 3D-RISM theory: The charged wall case.
Vyalov, Ivan; Rocchia, Walter
2018-03-21
Although three-dimensional site-site molecular integral equations of liquids are a powerful tool of the modern theoretical chemistry, their applications to the problem of characterizing the electrical double layer originating at the solid-liquid interface with a macroscopic substrate are severely limited by the fact that an infinitely extended charged plane generates a divergent electrostatic potential. Such potentials cannot be treated within the standard 3D-Reference Interaction Site Model equation solution framework since it leads to functions that are not Fourier transformable. In this paper, we apply a renormalization procedure to overcome this obstacle. We then check the validity and numerical accuracy of the proposed computational scheme on the prototypical gold (111) surface in contact with water/alkali chloride solution. We observe that despite the proposed method requires, to achieve converged charge densities, a higher spatial resolution than that suited to the estimation of biomolecular solvation with either 3D-RISM or continuum electrostatics approaches, it still is computationally efficient. Introducing the electrostatic potential of an infinite wall, which is periodic in 2 dimensions, we avoid edge effects, permit a robust integration of Poisson's equation, and obtain the 3D electrostatic potential profile for the first time in such calculations. We show that the potential within the electrical double layer presents oscillations which are not grasped by the Debye-Hückel and Gouy-Chapman theories. This electrostatic potential deviates from its average of up to 1-2 V at small distances from the substrate along the lateral directions. Applications of this theoretical development are relevant, for example, for liquid scanning tunneling microscopy imaging.
Including diverging electrostatic potential in 3D-RISM theory: The charged wall case
NASA Astrophysics Data System (ADS)
Vyalov, Ivan; Rocchia, Walter
2018-03-01
Although three-dimensional site-site molecular integral equations of liquids are a powerful tool of the modern theoretical chemistry, their applications to the problem of characterizing the electrical double layer originating at the solid-liquid interface with a macroscopic substrate are severely limited by the fact that an infinitely extended charged plane generates a divergent electrostatic potential. Such potentials cannot be treated within the standard 3D-Reference Interaction Site Model equation solution framework since it leads to functions that are not Fourier transformable. In this paper, we apply a renormalization procedure to overcome this obstacle. We then check the validity and numerical accuracy of the proposed computational scheme on the prototypical gold (111) surface in contact with water/alkali chloride solution. We observe that despite the proposed method requires, to achieve converged charge densities, a higher spatial resolution than that suited to the estimation of biomolecular solvation with either 3D-RISM or continuum electrostatics approaches, it still is computationally efficient. Introducing the electrostatic potential of an infinite wall, which is periodic in 2 dimensions, we avoid edge effects, permit a robust integration of Poisson's equation, and obtain the 3D electrostatic potential profile for the first time in such calculations. We show that the potential within the electrical double layer presents oscillations which are not grasped by the Debye-Hückel and Gouy-Chapman theories. This electrostatic potential deviates from its average of up to 1-2 V at small distances from the substrate along the lateral directions. Applications of this theoretical development are relevant, for example, for liquid scanning tunneling microscopy imaging.