Analysis of the energy efficiency of an integrated ethanol processor for PEM fuel cell systems
NASA Astrophysics Data System (ADS)
Francesconi, Javier A.; Mussati, Miguel C.; Mato, Roberto O.; Aguirre, Pio A.
The aim of this work is to investigate the energy integration and to determine the maximum efficiency of an ethanol processor for hydrogen production and fuel cell operation. Ethanol, which can be produced from renewable feedstocks or agriculture residues, is an attractive option as feed to a fuel processor. The fuel processor investigated is based on steam reforming, followed by high- and low-temperature shift reactors and preferential oxidation, which are coupled to a polymeric fuel cell. Applying simulation techniques and using thermodynamic models the performance of the complete system has been evaluated for a variety of operating conditions and possible reforming reactions pathways. These models involve mass and energy balances, chemical equilibrium and feasible heat transfer conditions (Δ T min). The main operating variables were determined for those conditions. The endothermic nature of the reformer has a significant effect on the overall system efficiency. The highest energy consumption is demanded by the reforming reactor, the evaporator and re-heater operations. To obtain an efficient integration, the heat exchanged between the reformer outgoing streams of higher thermal level (reforming and combustion gases) and the feed stream should be maximized. Another process variable that affects the process efficiency is the water-to-fuel ratio fed to the reformer. Large amounts of water involve large heat exchangers and the associated heat losses. A net electric efficiency around 35% was calculated based on the ethanol HHV. The responsibilities for the remaining 65% are: dissipation as heat in the PEMFC cooling system (38%), energy in the flue gases (10%) and irreversibilities in compression and expansion of gases. In addition, it has been possible to determine the self-sufficient limit conditions, and to analyze the effect on the net efficiency of the input temperatures of the clean-up system reactors, combustion preheating, expander unit and crude ethanol as fuel.
NASA Astrophysics Data System (ADS)
Biset, S.; Nieto Deglioumini, L.; Basualdo, M.; Garcia, V. M.; Serra, M.
The aim of this work is to investigate which would be a good preliminary plantwide control structure for the process of Hydrogen production from bioethanol to be used in a proton exchange membrane (PEM) accounting only steady-state information. The objective is to keep the process under optimal operation point, that is doing energy integration to achieve the maximum efficiency. Ethanol, produced from renewable feedstocks, feeds a fuel processor investigated for steam reforming, followed by high- and low-temperature shift reactors and preferential oxidation, which are coupled to a polymeric fuel cell. Applying steady-state simulation techniques and using thermodynamic models the performance of the complete system with two different control structures have been evaluated for the most typical perturbations. A sensitivity analysis for the key process variables together with the rigorous operability requirements for the fuel cell are taking into account for defining acceptable plantwide control structure. This is the first work showing an alternative control structure applied to this kind of process.
Efficiency of a solid polymer fuel cell operating on ethanol
NASA Astrophysics Data System (ADS)
Ioannides, Theophilos; Neophytides, Stylianos
The efficiency of a solid polymer fuel cell (SPFC) system operating on ethanol fuel has been analyzed as a function of operating parameters focusing on vehicle and stationary applications. Two types of ethanol processors — employing either steam reforming or partial oxidation (POX) steps — have been considered and their performance has been investigated by thermodynamic analysis. SPFC operation has been analyzed by an available parametric model. It has been found that dilute ethanol-water mixtures (˜55% v/v EtOH) are the most suitable for stationary applications with a steam reformer (SR)-SPFC system. Regarding vehicle applications, pure ethanol (˜95% v/v EtOH) appears to be the best fuel with a POX-SPFC system. Efficiencies in the case of an ideal ethanol processor can be of the order of 60% under low load conditions and 30-35% at peak power, while efficiencies with an actual processor are 80-85% of the above values.
Fuel processing in integrated micro-structured heat-exchanger reactors
NASA Astrophysics Data System (ADS)
Kolb, G.; Schürer, J.; Tiemann, D.; Wichert, M.; Zapf, R.; Hessel, V.; Löwe, H.
Micro-structured fuel processors are under development at IMM for different fuels such as methanol, ethanol, propane/butane (LPG), gasoline and diesel. The target application are mobile, portable and small scale stationary auxiliary power units (APU) based upon fuel cell technology. The key feature of the systems is an integrated plate heat-exchanger technology which allows for the thermal integration of several functions in a single device. Steam reforming may be coupled with catalytic combustion in separate flow paths of a heat-exchanger. Reactors and complete fuel processors are tested up to the size range of 5 kW power output of a corresponding fuel cell. On top of reactor and system prototyping and testing, catalyst coatings are under development at IMM for numerous reactions such as steam reforming of LPG, ethanol and methanol, catalytic combustion of LPG and methanol, and for CO clean-up reactions, namely water-gas shift, methanation and the preferential oxidation of carbon monoxide. These catalysts are investigated in specially developed testing reactors. In selected cases 1000 h stability testing is performed on catalyst coatings at weight hourly space velocities, which are sufficiently high to meet the demands of future fuel processing reactors.
NASA Astrophysics Data System (ADS)
Tippawan, Phanicha; Arpornwichanop, Amornchai
2016-02-01
The hydrogen production process is known to be important to a fuel cell system. In this study, a carbon-free hydrogen production process is proposed by using a two-step ethanol-steam-reforming procedure, which consists of ethanol dehydrogenation and steam reforming, as a fuel processor in the solid oxide fuel cell (SOFC) system. An addition of CaO in the reformer for CO2 capture is also considered to enhance the hydrogen production. The performance of the SOFC system is analyzed under thermally self-sufficient conditions in terms of the technical and economic aspects. The simulation results show that the two-step reforming process can be run in the operating window without carbon formation. The addition of CaO in the steam reformer, which runs at a steam-to-ethanol ratio of 5, temperature of 900 K and atmospheric pressure, minimizes the presence of CO2; 93% CO2 is removed from the steam-reforming environment. This factor causes an increase in the SOFC power density of 6.62%. Although the economic analysis shows that the proposed fuel processor provides a higher capital cost, it offers a reducing active area of the SOFC stack and the most favorable process economics in term of net cost saving.
A fully reconfigurable photonic integrated signal processor
NASA Astrophysics Data System (ADS)
Liu, Weilin; Li, Ming; Guzzon, Robert S.; Norberg, Erik J.; Parker, John S.; Lu, Mingzhi; Coldren, Larry A.; Yao, Jianping
2016-03-01
Photonic signal processing has been considered a solution to overcome the inherent electronic speed limitations. Over the past few years, an impressive range of photonic integrated signal processors have been proposed, but they usually offer limited reconfigurability, a feature highly needed for the implementation of large-scale general-purpose photonic signal processors. Here, we report and experimentally demonstrate a fully reconfigurable photonic integrated signal processor based on an InP-InGaAsP material system. The proposed photonic signal processor is capable of performing reconfigurable signal processing functions including temporal integration, temporal differentiation and Hilbert transformation. The reconfigurability is achieved by controlling the injection currents to the active components of the signal processor. Our demonstration suggests great potential for chip-scale fully programmable all-optical signal processing.
76 FR 43489 - Deferral for CO2
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-20
.... 221320 Sewage treatment facilities. 562212 Solid waste landfills. Fermentation processes......... 325193... processors burning agricultural biomass residues, using fermentation processes, or producing/using biogas... treatment or manure management processes; CO 2 from fermentation during ethanol production or other...
Multi-fuel reformers for fuel cells used in transportation. Phase 1: Multi-fuel reformers
NASA Astrophysics Data System (ADS)
1994-05-01
DOE has established the goal, through the Fuel Cells in Transportation Program, of fostering the rapid development and commercialization of fuel cells as economic competitors for the internal combustion engine. Central to this goal is a safe feasible means of supplying hydrogen of the required purity to the vehicular fuel cell system. Two basic strategies are being considered: (1) on-board fuel processing whereby alternative fuels such as methanol, ethanol or natural gas stored on the vehicle undergo reformation and subsequent processing to produce hydrogen, and (2) on-board storage of pure hydrogen provided by stationary fuel processing plants. This report analyzes fuel processor technologies, types of fuel and fuel cell options for on-board reformation. As the Phase 1 of a multi-phased program to develop a prototype multi-fuel reformer system for a fuel cell powered vehicle, the objective of this program was to evaluate the feasibility of a multi-fuel reformer concept and to select a reforming technology for further development in the Phase 2 program, with the ultimate goal of integration with a DOE-designated fuel cell and vehicle configuration. The basic reformer processes examined in this study included catalytic steam reforming (SR), non-catalytic partial oxidation (POX) and catalytic partial oxidation (also known as Autothermal Reforming, or ATR). Fuels under consideration in this study included methanol, ethanol, and natural gas. A systematic evaluation of reforming technologies, fuels, and transportation fuel cell applications was conducted for the purpose of selecting a suitable multi-fuel processor for further development and demonstration in a transportation application.
NASA Technical Reports Server (NTRS)
Lund, D.
1998-01-01
This report presents a description of the tests performed, and the test data, for the AI METSAT Signal Processor Assembly P/N 1331670-2, S/N F05. The assembly was tested in accordance with AE-26754, "METSAT Signal Processor Scan Drive and Integration Procedure." The objective is to demonstrate functionality of the signal processor prior to instrument integration.
NASA Technical Reports Server (NTRS)
Lund, D.
1998-01-01
This report presents a description of tests performed, and the test data, for the A1 METSAT Signal Processor Assembly PN: 1331679-2, S/N F03. This assembly was tested in accordance with AE-26754, "METSAT Signal Processor Scan Drive Test and Integration Procedure." The objective is to demonstrate functionality of the signal processor prior to instrument integration.
NASA Technical Reports Server (NTRS)
Lund, D.
1998-01-01
This report presents a description of the tests performed, and the test data, for the A1 METSAT Signal Processor Assembly PN: 1331679-2, S/N F04. The assembly was tested in accordance with AE-26754, "METSAT Signal Processor Scan Drive Test and Integration Procedure." The objective is to demonstrate functionality of the signal processor prior to instrument integration.
Energy and exergy analysis of an ethanol reforming process for solid oxide fuel cell applications.
Tippawan, Phanicha; Arpornwichanop, Amornchai
2014-04-01
The fuel processor in which hydrogen is produced from fuels is an important unit in a fuel cell system. The aim of this study is to apply a thermodynamic concept to identify a suitable reforming process for an ethanol-fueled solid oxide fuel cell (SOFC). Three different reforming technologies, i.e., steam reforming, partial oxidation and autothermal reforming, are considered. The first and second laws of thermodynamics are employed to determine an energy demand and to describe how efficiently the energy is supplied to the reforming process. Effect of key operating parameters on the distribution of reforming products, such as H2, CO, CO2 and CH4, and the possibility of carbon formation in different ethanol reformings are examined as a function of steam-to-ethanol ratio, oxygen-to-ethanol ratio and temperatures at atmospheric pressure. Energy and exergy analysis are performed to identify the best ethanol reforming process for SOFC applications. Copyright © 2014 Elsevier Ltd. All rights reserved.
Stateless and stateful implementations of faithful execution
Pierson, Lyndon G; Witzke, Edward L; Tarman, Thomas D; Robertson, Perry J; Eldridge, John M; Campbell, Philip L
2014-12-16
A faithful execution system includes system memory, a target processor, and protection engine. The system memory stores a ciphertext including value fields and integrity fields. The value fields each include an encrypted executable instruction and the integrity fields each include an encrypted integrity value for determining whether a corresponding one of the value fields has been modified. The target processor executes plaintext instructions decoded from the ciphertext while the protection engine is coupled between the system memory and the target processor. The protection engine includes logic to retrieve the ciphertext from the system memory, decrypt the value fields into the plaintext instructions, perform an integrity check based on the integrity fields to determine whether any of the corresponding value fields have been modified, and provide the plaintext instructions to the target processor for execution.
Ultra-Reliable Digital Avionics (URDA) processor
NASA Astrophysics Data System (ADS)
Branstetter, Reagan; Ruszczyk, William; Miville, Frank
1994-10-01
Texas Instruments Incorporated (TI) developed the URDA processor design under contract with the U.S. Air Force Wright Laboratory and the U.S. Army Night Vision and Electro-Sensors Directorate. TI's approach couples advanced packaging solutions with advanced integrated circuit (IC) technology to provide a high-performance (200 MIPS/800 MFLOPS) modular avionics processor module for a wide range of avionics applications. TI's processor design integrates two Ada-programmable, URDA basic processor modules (BPM's) with a JIAWG-compatible PiBus and TMBus on a single F-22 common integrated processor-compatible form-factor SEM-E avionics card. A separate, high-speed (25-MWord/second 32-bit word) input/output bus is provided for sensor data. Each BPM provides a peak throughput of 100 MIPS scalar concurrent with 400-MFLOPS vector processing in a removable multichip module (MCM) mounted to a liquid-flowthrough (LFT) core and interfacing to a processor interface module printed wiring board (PWB). Commercial RISC technology coupled with TI's advanced bipolar complementary metal oxide semiconductor (BiCMOS) application specific integrated circuit (ASIC) and silicon-on-silicon packaging technologies are used to achieve the high performance in a miniaturized package. A Mips R4000-family reduced instruction set computer (RISC) processor and a TI 100-MHz BiCMOS vector coprocessor (VCP) ASIC provide, respectively, the 100 MIPS of a scalar processor throughput and 400 MFLOPS of vector processing throughput for each BPM. The TI Aladdim ASIC chipset was developed on the TI Aladdin Program under contract with the U.S. Army Communications and Electronics Command and was sponsored by the Advanced Research Projects Agency with technical direction from the U.S. Army Night Vision and Electro-Sensors Directorate.
NASA Technical Reports Server (NTRS)
1998-01-01
This report presents a description of the tests performed, and the test data, for the A2 METSAT Signal Processor Assembly PN: 1331120-2, S/N F03. The assembly was tested in accordance with AE-26754, "METSAT Signal Processor Scan Drive Test and Integration Procedure."
NASA Technical Reports Server (NTRS)
1998-01-01
This report presents a description of the tests performed, and the test data, for the A2 METSAT Signal Processor Assembly PN: 1331120-2, S/N F04. The assembly was tested in accordance with AE-26754, "METSAT Signal Processor Scan Drive Test and Integration Procedure."
Photorefractive Integrators and Correlators
1992-12-01
The use of photorefractive crystals as optically addressed time integrating spatial light modulators in acousto - optic signal processing applications...adaptive acousto - optic processor. These results demonstrated the feasibility of using photorefractives for such applications.... Photorefractive, Acousto - optic processor.
NASA Technical Reports Server (NTRS)
Mayer, Richard J.; Blinn, Thomas M.; Mayer, Paula S. D.; Ackley, Keith A.; Crump, Wes; Sanders, Les
1991-01-01
The design of the Framework Processor (FP) component of the Framework Programmable Software Development Platform (FFP) is described. The FFP is a project aimed at combining effective tool and data integration mechanisms with a model of the software development process in an intelligent integrated software development environment. Guided by the model, this Framework Processor will take advantage of an integrated operating environment to provide automated support for the management and control of the software development process so that costly mistakes during the development phase can be eliminated.
Fuel ethanol production: process design trends and integration opportunities.
Cardona, Carlos A; Sánchez, Oscar J
2007-09-01
Current fuel ethanol research and development deals with process engineering trends for improving biotechnological production of ethanol. In this work, the key role that process design plays during the development of cost-effective technologies is recognized through the analysis of major trends in process synthesis, modeling, simulation and optimization related to ethanol production. Main directions in techno-economical evaluation of fuel ethanol processes are described as well as some prospecting configurations. The most promising alternatives for compensating ethanol production costs by the generation of valuable co-products are analyzed. Opportunities for integration of fuel ethanol production processes and their implications are underlined. Main ways of process intensification through reaction-reaction, reaction-separation and separation-separation processes are analyzed in the case of bioethanol production. Some examples of energy integration during ethanol production are also highlighted. Finally, some concluding considerations on current and future research tendencies in fuel ethanol production regarding process design and integration are presented.
NASA Astrophysics Data System (ADS)
Xie, Yiwei; Geng, Zihan; Zhuang, Leimeng; Burla, Maurizio; Taddei, Caterina; Hoekman, Marcel; Leinse, Arne; Roeloffzen, Chris G. H.; Boller, Klaus-J.; Lowery, Arthur J.
2017-12-01
Integrated optical signal processors have been identified as a powerful engine for optical processing of microwave signals. They enable wideband and stable signal processing operations on miniaturized chips with ultimate control precision. As a promising application, such processors enables photonic implementations of reconfigurable radio frequency (RF) filters with wide design flexibility, large bandwidth, and high-frequency selectivity. This is a key technology for photonic-assisted RF front ends that opens a path to overcoming the bandwidth limitation of current digital electronics. Here, the recent progress of integrated optical signal processors for implementing such RF filters is reviewed. We highlight the use of a low-loss, high-index-contrast stoichiometric silicon nitride waveguide which promises to serve as a practical material platform for realizing high-performance optical signal processors and points toward photonic RF filters with digital signal processing (DSP)-level flexibility, hundreds-GHz bandwidth, MHz-band frequency selectivity, and full system integration on a chip scale.
Rectangular Array Of Digital Processors For Planning Paths
NASA Technical Reports Server (NTRS)
Kemeny, Sabrina E.; Fossum, Eric R.; Nixon, Robert H.
1993-01-01
Prototype 24 x 25 rectangular array of asynchronous parallel digital processors rapidly finds best path across two-dimensional field, which could be patch of terrain traversed by robotic or military vehicle. Implemented as single-chip very-large-scale integrated circuit. Excepting processors on edges, each processor communicates with four nearest neighbors along paths representing travel to north, south, east, and west. Each processor contains delay generator in form of 8-bit ripple counter, preset to 1 of 256 possible values. Operation begins with choice of processor representing starting point. Transmits signals to nearest neighbor processors, which retransmits to other neighboring processors, and process repeats until signals propagated across entire field.
Xu, Youjie; Zhang, Meng; Roozeboom, Kraig; Wang, Donghai
2018-02-01
Four integrated designs were proposed to boost cellulosic ethanol titer and yield. Results indicated co-fermentation of corn flour with hydrolysate liquor from saccharified corn stover was the best integration scheme and able to boost ethanol titers from 19.9 to 123.2 g/L with biomass loading of 8% and from 36.8 to 130.2 g/L with biomass loadings of 16%, respectively, while meeting the minimal ethanol distillation requirement of 40 g/L and achieving high ethanol yields of above 90%. These results indicated integration of first and second generation ethanol production could significantly accelerate the commercialization of cellulosic biofuel production. Co-fermentation of starchy substrate with hydrolysate liquor from saccharified biomass is able to significantly enhance ethanol concentration to reduce energy cost for distillation without sacrificing ethanol yields. This novel method could be extended to any pretreatment of biomass from low to high pH pretreatment as demonstrated in this study. Copyright © 2017 Elsevier Ltd. All rights reserved.
DFT algorithms for bit-serial GaAs array processor architectures
NASA Technical Reports Server (NTRS)
Mcmillan, Gary B.
1988-01-01
Systems and Processes Engineering Corporation (SPEC) has developed an innovative array processor architecture for computing Fourier transforms and other commonly used signal processing algorithms. This architecture is designed to extract the highest possible array performance from state-of-the-art GaAs technology. SPEC's architectural design includes a high performance RISC processor implemented in GaAs, along with a Floating Point Coprocessor and a unique Array Communications Coprocessor, also implemented in GaAs technology. Together, these data processors represent the latest in technology, both from an architectural and implementation viewpoint. SPEC has examined numerous algorithms and parallel processing architectures to determine the optimum array processor architecture. SPEC has developed an array processor architecture with integral communications ability to provide maximum node connectivity. The Array Communications Coprocessor embeds communications operations directly in the core of the processor architecture. A Floating Point Coprocessor architecture has been defined that utilizes Bit-Serial arithmetic units, operating at very high frequency, to perform floating point operations. These Bit-Serial devices reduce the device integration level and complexity to a level compatible with state-of-the-art GaAs device technology.
Next Generation Space Telescope Integrated Science Module Data System
NASA Technical Reports Server (NTRS)
Schnurr, Richard G.; Greenhouse, Matthew A.; Jurotich, Matthew M.; Whitley, Raymond; Kalinowski, Keith J.; Love, Bruce W.; Travis, Jeffrey W.; Long, Knox S.
1999-01-01
The Data system for the Next Generation Space Telescope (NGST) Integrated Science Module (ISIM) is the primary data interface between the spacecraft, telescope, and science instrument systems. This poster includes block diagrams of the ISIM data system and its components derived during the pre-phase A Yardstick feasibility study. The poster details the hardware and software components used to acquire and process science data for the Yardstick instrument compliment, and depicts the baseline external interfaces to science instruments and other systems. This baseline data system is a fully redundant, high performance computing system. Each redundant computer contains three 150 MHz power PC processors. All processors execute a commercially available real time multi-tasking operating system supporting, preemptive multi-tasking, file management and network interfaces. These six processors in the system are networked together. The spacecraft interface baseline is an extension of the network, which links the six processors. The final selection for Processor busses, processor chips, network interfaces, and high-speed data interfaces will be made during mid 2002.
Ethanol fermentation integrated with PDMS composite membrane: An effective process.
Fu, Chaohui; Cai, Di; Hu, Song; Miao, Qi; Wang, Yong; Qin, Peiyong; Wang, Zheng; Tan, Tianwei
2016-01-01
The polydimethylsiloxane (PDMS) membrane, prepared in water phase, was investigated in separation ethanol from model ethanol/water mixture and fermentation-pervaporation integrated process. Results showed that the PDMS membrane could effectively separate ethanol from model solution. When integrated with batch ethanol fermentation, the ethanol productivity was enhanced compared with conventional process. Fed-batch and continuous ethanol fermentation with pervaporation were also performed and studied. 396.2-663.7g/m(2)h and 332.4-548.1g/m(2)h of total flux with separation factor of 8.6-11.7 and 8-11.6, were generated in the fed-batch and continuous fermentation with pervaporation scenario, respectively. At the same time, high titre ethanol production of ∼417.2g/L and ∼446.3g/L were also achieved on the permeate side of membrane in the two scenarios, respectively. The integrated process was environmental friendly and energy saving, and has a promising perspective in long-terms operation. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sitaraman, Hariswaran; Grout, Ray W
This work investigates novel algorithm designs and optimization techniques for restructuring chemistry integrators in zero and multidimensional combustion solvers, which can then be effectively used on the emerging generation of Intel's Many Integrated Core/Xeon Phi processors. These processors offer increased computing performance via large number of lightweight cores at relatively lower clock speeds compared to traditional processors (e.g. Intel Sandybridge/Ivybridge) used in current supercomputers. This style of processor can be productively used for chemistry integrators that form a costly part of computational combustion codes, in spite of their relatively lower clock speeds. Performance commensurate with traditional processors is achieved heremore » through the combination of careful memory layout, exposing multiple levels of fine grain parallelism and through extensive use of vendor supported libraries (Cilk Plus and Math Kernel Libraries). Important optimization techniques for efficient memory usage and vectorization have been identified and quantified. These optimizations resulted in a factor of ~ 3 speed-up using Intel 2013 compiler and ~ 1.5 using Intel 2017 compiler for large chemical mechanisms compared to the unoptimized version on the Intel Xeon Phi. The strategies, especially with respect to memory usage and vectorization, should also be beneficial for general purpose computational fluid dynamics codes.« less
Brancoli, Pedro; Ferreira, Jorge A; Bolton, Kim; Taherzadeh, Mohammad J
2018-02-01
Integrating the cultivation of edible filamentous fungi in the thin stillage from ethanol production is presently being considered. This integration can increase the ethanol yield while simultaneously producing a new value-added protein-rich biomass that can be used for animal feed. This study uses life cycle assessment to determine the change in greenhouse gas (GHG) emissions when integrating the cultivation of filamentous fungi in ethanol production. The result shows that the integration performs better than the current scenario when the fungal biomass is used as cattle feed for system expansion and when energy allocation is used. It performs worse if the biomass is used as fish feed. Hence, integrating the cultivation of filamentous fungi in 1st generation ethanol plants combined with proper use of the fungi can lead to a reduction of GHG emissions which, considering the number of existing ethanol plants, can have a significant global impact. Copyright © 2017 Elsevier Ltd. All rights reserved.
Assessing the environmental sustainability of ethanol from integrated biorefineries
Falano, Temitope; Jeswani, Harish K; Azapagic, Adisa
2014-01-01
This paper considers the life cycle environmental sustainability of ethanol produced in integrated biorefineries together with chemicals and energy. Four types of second-generation feedstocks are considered: wheat straw, forest residue, poplar, and miscanthus. Seven out of 11 environmental impacts from ethanol are negative, including greenhouse gas (GHG) emissions, when the system is credited for the co-products, indicating environmental savings. Ethanol from poplar is the best and straw the worst option for most impacts. Land use change from forest to miscanthus increases the GHG emissions several-fold. For poplar, the effect is opposite: converting grassland to forest reduces the emissions by three-fold. Compared to fossil and first-generation ethanol, ethanol from integrated biorefineries is more sustainable for most impacts, with the exception of wheat straw. Pure ethanol saves up to 87% of GHG emissions compared to petrol per MJ of fuel. However, for the current 5% ethanol–petrol blends, the savings are much smaller (<3%). Therefore, unless much higher blends become widespread, the contribution of ethanol from integrated biorefineries to the reduction of GHG emissions will be insignificant. Yet, higher ethanol blends would lead to an increase in some impacts, notably terrestrial and freshwater toxicity as well as eutrophication for some feedstocks. PMID:24478110
NASA Astrophysics Data System (ADS)
Yang, Mei; Jiao, Fengjun; Li, Shulian; Li, Hengqiang; Chen, Guangwen
2015-08-01
A self-sustained, complete and miniaturized methanol fuel processor has been developed based on modular integration and microreactor technology. The fuel processor is comprised of one methanol oxidative reformer, one methanol combustor and one two-stage CO preferential oxidation unit. Microchannel heat exchanger is employed to recover heat from hot stream, miniaturize system size and thus achieve high energy utilization efficiency. By optimized thermal management and proper operation parameter control, the fuel processor can start up in 10 min at room temperature without external heating. A self-sustained state is achieved with H2 production rate of 0.99 Nm3 h-1 and extremely low CO content below 25 ppm. This amount of H2 is sufficient to supply a 1 kWe proton exchange membrane fuel cell. The corresponding thermal efficiency of whole processor is higher than 86%. The size and weight of the assembled reactors integrated with microchannel heat exchangers are 1.4 L and 5.3 kg, respectively, demonstrating a very compact construction of the fuel processor.
Multi-petascale highly efficient parallel supercomputer
Asaad, Sameh; Bellofatto, Ralph E.; Blocksome, Michael A.; Blumrich, Matthias A.; Boyle, Peter; Brunheroto, Jose R.; Chen, Dong; Cher, Chen -Yong; Chiu, George L.; Christ, Norman; Coteus, Paul W.; Davis, Kristan D.; Dozsa, Gabor J.; Eichenberger, Alexandre E.; Eisley, Noel A.; Ellavsky, Matthew R.; Evans, Kahn C.; Fleischer, Bruce M.; Fox, Thomas W.; Gara, Alan; Giampapa, Mark E.; Gooding, Thomas M.; Gschwind, Michael K.; Gunnels, John A.; Hall, Shawn A.; Haring, Rudolf A.; Heidelberger, Philip; Inglett, Todd A.; Knudson, Brant L.; Kopcsay, Gerard V.; Kumar, Sameer; Mamidala, Amith R.; Marcella, James A.; Megerian, Mark G.; Miller, Douglas R.; Miller, Samuel J.; Muff, Adam J.; Mundy, Michael B.; O'Brien, John K.; O'Brien, Kathryn M.; Ohmacht, Martin; Parker, Jeffrey J.; Poole, Ruth J.; Ratterman, Joseph D.; Salapura, Valentina; Satterfield, David L.; Senger, Robert M.; Smith, Brian; Steinmacher-Burow, Burkhard; Stockdell, William M.; Stunkel, Craig B.; Sugavanam, Krishnan; Sugawara, Yutaka; Takken, Todd E.; Trager, Barry M.; Van Oosten, James L.; Wait, Charles D.; Walkup, Robert E.; Watson, Alfred T.; Wisniewski, Robert W.; Wu, Peng
2015-07-14
A Multi-Petascale Highly Efficient Parallel Supercomputer of 100 petaOPS-scale computing, at decreased cost, power and footprint, and that allows for a maximum packaging density of processing nodes from an interconnect point of view. The Supercomputer exploits technological advances in VLSI that enables a computing model where many processors can be integrated into a single Application Specific Integrated Circuit (ASIC). Each ASIC computing node comprises a system-on-chip ASIC utilizing four or more processors integrated into one die, with each having full access to all system resources and enabling adaptive partitioning of the processors to functions such as compute or messaging I/O on an application by application basis, and preferably, enable adaptive partitioning of functions in accordance with various algorithmic phases within an application, or if I/O or other processors are underutilized, then can participate in computation or communication nodes are interconnected by a five dimensional torus network with DMA that optimally maximize the throughput of packet communications between nodes and minimize latency.
Integrated versus stand-alone second generation ethanol production from sugarcane bagasse and trash.
Dias, Marina O S; Junqueira, Tassia L; Cavalett, Otávio; Cunha, Marcelo P; Jesus, Charles D F; Rossell, Carlos E V; Maciel Filho, Rubens; Bonomi, Antonio
2012-01-01
Ethanol production from lignocellulosic materials is often conceived considering independent, stand-alone production plants; in the Brazilian scenario, where part of the potential feedstock (sugarcane bagasse) for second generation ethanol production is already available at conventional first generation production plants, an integrated first and second generation production process seems to be the most obvious option. In this study stand-alone second generation ethanol production from surplus sugarcane bagasse and trash is compared with conventional first generation ethanol production from sugarcane and with integrated first and second generation; simulations were developed to represent the different technological scenarios, which provided data for economic and environmental analysis. Results show that the integrated first and second generation ethanol production process from sugarcane leads to better economic results when compared with the stand-alone plant, especially when advanced hydrolysis technologies and pentoses fermentation are included. Copyright © 2011 Elsevier Ltd. All rights reserved.
Gutiérrez, Luis F; Sánchez, Oscar J; Cardona, Carlos A
2009-02-01
In this paper, integration possibilities for production of biodiesel and bioethanol using a single source of biomass as a feedstock (oil palm) were explored through process simulation. The oil extracted from Fresh Fruit Bunches was considered as the feedstock for biodiesel production. An extractive reaction process is proposed for transesterification reaction using in situ produced ethanol, which is obtained from two types of lignocellulosic residues of palm industry (Empty Fruit Bunches and Palm Press Fiber). Several ways of integration were analyzed. The integration of material flows between ethanol and biodiesel production lines allowed a reduction in unit energy costs down to 3.4%, whereas the material and energy integration leaded to 39.8% decrease of those costs. The proposed integrated configuration is an important option when the technology for ethanol production from biomass reaches such a degree of maturity that its production costs be comparable with those of grain or cane ethanol.
Cheung, Kit; Schultz, Simon R; Luk, Wayne
2015-01-01
NeuroFlow is a scalable spiking neural network simulation platform for off-the-shelf high performance computing systems using customizable hardware processors such as Field-Programmable Gate Arrays (FPGAs). Unlike multi-core processors and application-specific integrated circuits, the processor architecture of NeuroFlow can be redesigned and reconfigured to suit a particular simulation to deliver optimized performance, such as the degree of parallelism to employ. The compilation process supports using PyNN, a simulator-independent neural network description language, to configure the processor. NeuroFlow supports a number of commonly used current or conductance based neuronal models such as integrate-and-fire and Izhikevich models, and the spike-timing-dependent plasticity (STDP) rule for learning. A 6-FPGA system can simulate a network of up to ~600,000 neurons and can achieve a real-time performance of 400,000 neurons. Using one FPGA, NeuroFlow delivers a speedup of up to 33.6 times the speed of an 8-core processor, or 2.83 times the speed of GPU-based platforms. With high flexibility and throughput, NeuroFlow provides a viable environment for large-scale neural network simulation.
Cheung, Kit; Schultz, Simon R.; Luk, Wayne
2016-01-01
NeuroFlow is a scalable spiking neural network simulation platform for off-the-shelf high performance computing systems using customizable hardware processors such as Field-Programmable Gate Arrays (FPGAs). Unlike multi-core processors and application-specific integrated circuits, the processor architecture of NeuroFlow can be redesigned and reconfigured to suit a particular simulation to deliver optimized performance, such as the degree of parallelism to employ. The compilation process supports using PyNN, a simulator-independent neural network description language, to configure the processor. NeuroFlow supports a number of commonly used current or conductance based neuronal models such as integrate-and-fire and Izhikevich models, and the spike-timing-dependent plasticity (STDP) rule for learning. A 6-FPGA system can simulate a network of up to ~600,000 neurons and can achieve a real-time performance of 400,000 neurons. Using one FPGA, NeuroFlow delivers a speedup of up to 33.6 times the speed of an 8-core processor, or 2.83 times the speed of GPU-based platforms. With high flexibility and throughput, NeuroFlow provides a viable environment for large-scale neural network simulation. PMID:26834542
Optical linear algebra processors - Architectures and algorithms
NASA Technical Reports Server (NTRS)
Casasent, David
1986-01-01
Attention is given to the component design and optical configuration features of a generic optical linear algebra processor (OLAP) architecture, as well as the large number of OLAP architectures, number representations, algorithms and applications encountered in current literature. Number-representation issues associated with bipolar and complex-valued data representations, high-accuracy (including floating point) performance, and the base or radix to be employed, are discussed, together with case studies on a space-integrating frequency-multiplexed architecture and a hybrid space-integrating and time-integrating multichannel architecture.
Green Secure Processors: Towards Power-Efficient Secure Processor Design
NASA Astrophysics Data System (ADS)
Chhabra, Siddhartha; Solihin, Yan
With the increasing wealth of digital information stored on computer systems today, security issues have become increasingly important. In addition to attacks targeting the software stack of a system, hardware attacks have become equally likely. Researchers have proposed Secure Processor Architectures which utilize hardware mechanisms for memory encryption and integrity verification to protect the confidentiality and integrity of data and computation, even from sophisticated hardware attacks. While there have been many works addressing performance and other system level issues in secure processor design, power issues have largely been ignored. In this paper, we first analyze the sources of power (energy) increase in different secure processor architectures. We then present a power analysis of various secure processor architectures in terms of their increase in power consumption over a base system with no protection and then provide recommendations for designs that offer the best balance between performance and power without compromising security. We extend our study to the embedded domain as well. We also outline the design of a novel hybrid cryptographic engine that can be used to minimize the power consumption for a secure processor. We believe that if secure processors are to be adopted in future systems (general purpose or embedded), it is critically important that power issues are considered in addition to performance and other system level issues. To the best of our knowledge, this is the first work to examine the power implications of providing hardware mechanisms for security.
Olofsson, Johanna; Barta, Zsolt; Börjesson, Pål; Wallberg, Ola
2017-01-01
Cellulase enzymes have been reported to contribute with a significant share of the total costs and greenhouse gas emissions of lignocellulosic ethanol production today. A potential future alternative to purchasing enzymes from an off-site manufacturer is to integrate enzyme and ethanol production, using microorganisms and part of the lignocellulosic material as feedstock for enzymes. This study modelled two such integrated process designs for ethanol from logging residues from spruce production, and compared it to an off-site case based on existing data regarding purchased enzymes. Greenhouse gas emissions and primary energy balances were studied in a life-cycle assessment, and cost performance in a techno-economic analysis. The base case scenario suggests that greenhouse gas emissions per MJ of ethanol could be significantly lower in the integrated cases than in the off-site case. However, the difference between the integrated and off-site cases is reduced with alternative assumptions regarding enzyme dosage and the environmental impact of the purchased enzymes. The comparison of primary energy balances did not show any significant difference between the cases. The minimum ethanol selling price, to reach break-even costs, was from 0.568 to 0.622 EUR L -1 for the integrated cases, as compared to 0.581 EUR L -1 for the off-site case. An integrated process design could reduce greenhouse gas emissions from lignocellulose-based ethanol production, and the cost of an integrated process could be comparable to purchasing enzymes produced off-site. This study focused on the environmental and economic assessment of an integrated process, and in order to strengthen the comparison to the off-site case, more detailed and updated data regarding industrial off-site enzyme production are especially important.
PHANTOM: Practical Oblivious Computation in a Secure Processor
2014-05-16
Utilizing Multiple FPGAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 6 Implementation on the HC-2ex 50 6.1 Integration with a RISC -V...development of Phantom, Mohit also contributed to the code base, in particular with regard to the integration between the ORAM controller and the RISC -V...well. v Tremendous thanks is owed to the team that developed the RISC -V processor Phantom is using: among other contributors, this includes
Assessing the environmental sustainability of ethanol from integrated biorefineries.
Falano, Temitope; Jeswani, Harish K; Azapagic, Adisa
2014-06-01
This paper considers the life cycle environmental sustainability of ethanol produced in integrated biorefineries together with chemicals and energy. Four types of second-generation feedstocks are considered: wheat straw, forest residue, poplar, and miscanthus. Seven out of 11 environmental impacts from ethanol are negative, including greenhouse gas (GHG) emissions, when the system is credited for the co-products, indicating environmental savings. Ethanol from poplar is the best and straw the worst option for most impacts. Land use change from forest to miscanthus increases the GHG emissions several-fold. For poplar, the effect is opposite: converting grassland to forest reduces the emissions by three-fold. Compared to fossil and first-generation ethanol, ethanol from integrated biorefineries is more sustainable for most impacts, with the exception of wheat straw. Pure ethanol saves up to 87% of GHG emissions compared to petrol per MJ of fuel. However, for the current 5% ethanol-petrol blends, the savings are much smaller (<3%). Therefore, unless much higher blends become widespread, the contribution of ethanol from integrated biorefineries to the reduction of GHG emissions will be insignificant. Yet, higher ethanol blends would lead to an increase in some impacts, notably terrestrial and freshwater toxicity as well as eutrophication for some feedstocks. © 2014 The Authors. Biotechnology Journal published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Design of an integrated fuel processor for residential PEMFCs applications
NASA Astrophysics Data System (ADS)
Seo, Yu Taek; Seo, Dong Joo; Jeong, Jin Hyeok; Yoon, Wang Lai
KIER has been developing a novel fuel processing system to provide hydrogen rich gas to residential PEMFCs system. For the effective design of a compact hydrogen production system, each unit process for steam reforming and water gas shift, has a steam generator and internal heat exchangers which are thermally and physically integrated into a single packaged hardware system. The newly designed fuel processor (prototype II) showed a thermal efficiency of 78% as a HHV basis with methane conversion of 89%. The preferential oxidation unit with two staged cascade reactors, reduces, the CO concentration to below 10 ppm without complicated temperature control hardware, which is the prerequisite CO limit for the PEMFC stack. After we achieve the initial performance of the fuel processor, partial load operation was carried out to test the performance and reliability of the fuel processor at various loads. The stability of the fuel processor was also demonstrated for three successive days with a stable composition of product gas and thermal efficiency. The CO concentration remained below 10 ppm during the test period and confirmed the stable performance of the two-stage PrOx reactors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schell, Daniel J.; Dowe, Nancy; Chapeaux, Alexandre
This study explored integrated conversion of corn stover to ethanol and highlights techniques for accurate yield calculations. Acid pretreated corn stover (PCS) produced in a pilot-scale reactor was enzymatically hydrolyzed and the resulting sugars were fermented to ethanol by the glucose–xylose fermenting bacteria, Zymomonas mobilis 8b. The calculations account for high solids operation and oligomeric sugars produced during pretreatment, enzymatic hydrolysis, and fermentation, which, if not accounted for, leads to overestimating ethanol yields. The calculations are illustrated for enzymatic hydrolysis and fermentation of PCS at 17.5% and 20.0% total solids achieving 80.1% and 77.9% conversion of cellulose and xylan tomore » ethanol and ethanol titers of 63 g/L and 69 g/L, respectively. In the future, these techniques, including the TEA results, will be applied to fully integrated pilot-scale runs.« less
Schell, Daniel J.; Dowe, Nancy; Chapeaux, Alexandre; ...
2016-01-19
This study explored integrated conversion of corn stover to ethanol and highlights techniques for accurate yield calculations. Acid pretreated corn stover (PCS) produced in a pilot-scale reactor was enzymatically hydrolyzed and the resulting sugars were fermented to ethanol by the glucose–xylose fermenting bacteria, Zymomonas mobilis 8b. The calculations account for high solids operation and oligomeric sugars produced during pretreatment, enzymatic hydrolysis, and fermentation, which, if not accounted for, leads to overestimating ethanol yields. The calculations are illustrated for enzymatic hydrolysis and fermentation of PCS at 17.5% and 20.0% total solids achieving 80.1% and 77.9% conversion of cellulose and xylan tomore » ethanol and ethanol titers of 63 g/L and 69 g/L, respectively. In the future, these techniques, including the TEA results, will be applied to fully integrated pilot-scale runs.« less
Integrating a Natural Language Message Pre-Processor with UIMA
2008-01-01
Carnegie Mellon Language Technologies Institute NL Message Preprocessing with UIMA Copyright © 2008, Carnegie Mellon. All Rights Reserved...Integrating a Natural Language Message Pre-Processor with UIMA Eric Nyberg, Eric Riebling, Richard C. Wang & Robert Frederking Language Technologies Institute...with UIMA 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER
Optical backplane interconnect switch for data processors and computers
NASA Technical Reports Server (NTRS)
Hendricks, Herbert D.; Benz, Harry F.; Hammer, Jacob M.
1989-01-01
An optoelectronic integrated device design is reported which can be used to implement an all-optical backplane interconnect switch. The switch is sized to accommodate an array of processors and memories suitable for direct replacement into the basic avionic multiprocessor backplane. The optical backplane interconnect switch is also suitable for direct replacement of the PI bus traffic switch and at the same time, suitable for supporting pipelining of the processor and memory. The 32 bidirectional switchable interconnects are configured with broadcast capability for controls, reconfiguration, and messages. The approach described here can handle a serial interconnection of data processors or a line-to-link interconnection of data processors. An optical fiber demonstration of this approach is presented.
Comparative techno-economic assessment and LCA of selected integrated sugarcane-based biorefineries.
Gnansounou, Edgard; Vaskan, Pavel; Pachón, Elia Ruiz
2015-11-01
This work addresses the economic and environmental performance of integrated biorefineries based on sugarcane juice and residues. Four multiproduct scenarios were considered; two from sugar mills and the others from ethanol distilleries. They are integrated biorefineries producing first (1G) and second (2G) generation ethanol, sugar, molasses (for animal feed) and electricity in the context of Brazil. The scenarios were analysed and compared using techno-economic value-based approach and LCA methodology. The results show that the best economic configuration is provided by a scenario with largest ethanol production while the best environmental performance is presented by a scenario with full integration sugar - 1G2G ethanol production. Copyright © 2015 Elsevier Ltd. All rights reserved.
Transient Finite Element Computations on a Variable Transputer System
NASA Technical Reports Server (NTRS)
Smolinski, Patrick J.; Lapczyk, Ireneusz
1993-01-01
A parallel program to analyze transient finite element problems was written and implemented on a system of transputer processors. The program uses the explicit time integration algorithm which eliminates the need for equation solving, making it more suitable for parallel computations. An interprocessor communication scheme was developed for arbitrary two dimensional grid processor configurations. Several 3-D problems were analyzed on a system with a small number of processors.
Ethanol and thermotolerance in the bioconversion of xylose by yeasts
Thomas W. Jeffries; Yong-Su Jin
2000-01-01
The mechanisms underlying ethanol and heat tolerance are complex. Many different genes are involved, and the exact basis is not fully understood. The integrity of cytoplasmic and mitochondrial membranes is critical to maintain proton gradients for metabolic energy and nutrient uptake. Heat and ethanol stress adversely affect membrane integrity. These factors are...
NASA Astrophysics Data System (ADS)
Hayakawa, Hitoshi; Ogawa, Makoto; Shibata, Tadashi
2005-04-01
A very large scale integrated circuit (VLSI) architecture for a multiple-instruction-stream multiple-data-stream (MIMD) associative processor has been proposed. The processor employs an architecture that enables seamless switching from associative operations to arithmetic operations. The MIMD element is convertible to a regular central processing unit (CPU) while maintaining its high performance as an associative processor. Therefore, the MIMD associative processor can perform not only on-chip perception, i.e., searching for the vector most similar to an input vector throughout the on-chip cache memory, but also arithmetic and logic operations similar to those in ordinary CPUs, both simultaneously in parallel processing. Three key technologies have been developed to generate the MIMD element: associative-operation-and-arithmetic-operation switchable calculation units, a versatile register control scheme within the MIMD element for flexible operations, and a short instruction set for minimizing the memory size for program storage. Key circuit blocks were designed and fabricated using 0.18 μm complementary metal-oxide-semiconductor (CMOS) technology. As a result, the full-featured MIMD element is estimated to be 3 mm2, showing the feasibility of an 8-parallel-MIMD-element associative processor in a single chip of 5 mm× 5 mm.
2014-01-01
Background Sugarcane is an attractive feedstock for ethanol production, especially if the lignocellulosic fraction can also be treated in second generation (2G) ethanol plants. However, the profitability of 2G ethanol is affected by the processing conditions, operating costs and market prices. This study focuses on the minimum ethanol selling price (MESP) and maximum profitability of ethanol production in an integrated first and second generation (1G + 2G) sugarcane-to-ethanol plant. The feedstock used was sugarcane juice, bagasse and leaves. The lignocellulosic fraction was hydrolysed with enzymes. Yields were assumed to be 95% of the theoretical for each of the critical steps in the process (steam pretreatment, enzymatic hydrolysis (EH), fermentation, solid/liquid separation, anaerobic digestion) in order to obtain the best conditions possible for ethanol production, to assess the lowest production costs. Techno-economic analysis was performed for various combinations of process options (for example use of pentoses, addition of leaves), EH conditions (water-insoluble solids (WIS) and residence time), operating cost (enzymes) and market factors (wholesale prices of electricity and ethanol, cost of the feedstock). Results The greatest reduction in 2G MESP was achieved when using the pentoses for the production of ethanol rather than biogas. This was followed, in decreasing order, by higher enzymatic hydrolysis efficiency (EHE), by increasing the WIS to 30% and by a short residence time (48 hours) in the EH. The addition of leaves was found to have a slightly negative impact on 1G + 2G MESP, but the effect on 2G MESP was negligible. Sugarcane price significantly affected 1G + 2G MESP, while the price of leaves had a much lower impact. Net present value (NPV) analysis of the most interesting case showed that integrated 1G + 2G ethanol production including leaves could be more profitable than 1G ethanol, despite the fact that the MESP was higher than in 1G ethanol production. Conclusions A combined 1G + 2G ethanol plant could potentially outperform a 1G plant in terms of NPV, depending on market wholesale prices of ethanol and electricity. Therefore, although it is more expensive than 1G ethanol production, 2G ethanol production can make the integrated 1G + 2G process more profitable. PMID:24559312
Macrelli, Stefano; Galbe, Mats; Wallberg, Ola
2014-02-21
Sugarcane is an attractive feedstock for ethanol production, especially if the lignocellulosic fraction can also be treated in second generation (2G) ethanol plants. However, the profitability of 2G ethanol is affected by the processing conditions, operating costs and market prices. This study focuses on the minimum ethanol selling price (MESP) and maximum profitability of ethanol production in an integrated first and second generation (1G + 2G) sugarcane-to-ethanol plant. The feedstock used was sugarcane juice, bagasse and leaves. The lignocellulosic fraction was hydrolysed with enzymes. Yields were assumed to be 95% of the theoretical for each of the critical steps in the process (steam pretreatment, enzymatic hydrolysis (EH), fermentation, solid/liquid separation, anaerobic digestion) in order to obtain the best conditions possible for ethanol production, to assess the lowest production costs. Techno-economic analysis was performed for various combinations of process options (for example use of pentoses, addition of leaves), EH conditions (water-insoluble solids (WIS) and residence time), operating cost (enzymes) and market factors (wholesale prices of electricity and ethanol, cost of the feedstock). The greatest reduction in 2G MESP was achieved when using the pentoses for the production of ethanol rather than biogas. This was followed, in decreasing order, by higher enzymatic hydrolysis efficiency (EHE), by increasing the WIS to 30% and by a short residence time (48 hours) in the EH. The addition of leaves was found to have a slightly negative impact on 1G + 2G MESP, but the effect on 2G MESP was negligible. Sugarcane price significantly affected 1G + 2G MESP, while the price of leaves had a much lower impact. Net present value (NPV) analysis of the most interesting case showed that integrated 1G + 2G ethanol production including leaves could be more profitable than 1G ethanol, despite the fact that the MESP was higher than in 1G ethanol production. A combined 1G + 2G ethanol plant could potentially outperform a 1G plant in terms of NPV, depending on market wholesale prices of ethanol and electricity. Therefore, although it is more expensive than 1G ethanol production, 2G ethanol production can make the integrated 1G + 2G process more profitable.
Integrated, Continuous Emulsion Creamer.
Cochrane, Wesley G; Hackler, Amber L; Cavett, Valerie J; Price, Alexander K; Paegel, Brian M
2017-12-19
Automated and reproducible sample handling is a key requirement for high-throughput compound screening and currently demands heavy reliance on expensive robotics in screening centers. Integrated droplet microfluidic screening processors are poised to replace robotic automation by miniaturizing biochemical reactions to the droplet scale. These processors must generate, incubate, and sort droplets for continuous droplet screening, passively handling millions of droplets with complete uniformity, especially during the key step of sample incubation. Here, we disclose an integrated microfluidic emulsion creamer that packs ("creams") assay droplets by draining away excess oil through microfabricated drain channels. The drained oil coflows with creamed emulsion and then reintroduces the oil to disperse the droplets at the circuit terminus for analysis. Creamed emulsion assay incubation time dispersion was 1.7%, 3-fold less than other reported incubators. The integrated, continuous emulsion creamer (ICEcreamer) was used to miniaturize and optimize measurements of various enzymatic activities (phosphodiesterase, kinase, bacterial translation) under multiple- and single-turnover conditions. Combining the ICEcreamer with current integrated microfluidic DNA-encoded library bead processors eliminates potentially cumbersome instrumentation engineering challenges and is compatible with assays of diverse target class activities commonly investigated in drug discovery.
Integration, Development and Performance of the 500 TFLOPS Heterogeneous Cluster (Condor)
2012-08-01
PlayStation 3 for High Performance Cluster Computing” LAPACK Working Note 185, 2007. [ 4 ] Feng, W., X. Feng, and R. Ge, “Green Supercomputing Comes of...CONFERENCE PAPER (Post Print) 3. DATES COVERED (From - To) JUN 2010 – MAY 2013 4 . TITLE AND SUBTITLE INTEGRATION, DEVELOPMENT AND PERFORMANCE OF...and streaming processing; the PlayStation 3 uses the IBM Cell BE processor, which adopts the multi-processor, single-instruction-multiple- data (SIMD
Integración automatizada de las ecuaciones de Lagrange en el movimiento orbital.
NASA Astrophysics Data System (ADS)
Abad, A.; San Juan, J. F.
The new techniques of algebraic manipulation, especially the Poisson Series Processor, permit the analytical integration of the more and more complex problems of celestial mechanics. The authors are developing a new Poisson Series Processor, PSPC, and they use it to solve the Lagrange equation of the orbital motion. They integrate the Lagrange equation by using the stroboscopic method, and apply it to the main problem of the artificial satellite theory.
Zymomonas pentose-sugar fermenting strains and uses thereof
Zhang, Min [Lakewood, CO; Chou, Yat-Chen [Golden, CO; Howe, William [Golden, CO; Eddy, Christine [Golden, CO; Evans, Kent [Littleton, CO; Mohagheghi, Ali [Northglenn, CO
2007-05-29
Disclosed in the present invention is a Zymomonas integrant and derivatives of these integrants that posses the ability to ferment pentose into ethanol. The genetic sequences encoding for the pentose-fermenting enzymes are integrated into the Zymomonas in a two-integration event of homologous recombination and transposition. Each operon includes more than one pentose-reducing enzyme encoding sequence. The integrant in some embodiments includes enzyme sequences encoding xylose isomerase, xylulokinase, transketolase and transketolase. The Zymomonas integrants are highly stable, and retain activity for producing the pentose-fermenting enzyme for between 80 to 160 generations. The integrants are also resistant to acetate inhibition, as the integrants demonstrate efficient ethanol production even in the presence of 8 up to 16 grams acetate per liter media. These stably integrated sequences provide a unique Zymomonas that may then be used for the efficient conversion of pentose sugars (xylose, arabinose) to ethanol. Method of using the Zymomonas integrants and derivatives thereof in production of ethanol from cellulosic feedstock is also disclosed. The invention also provides a method for preparing a Zymomonas integrant as part of the present invention. The host Zymomonas strain found particularly useful in the creation of these compositions and methods is Zymomonas mobilis 31821.
Detailed description of the HP-9825A HFRMP trajectory processor (TRAJ)
NASA Technical Reports Server (NTRS)
Kindall, S. M.; Wilson, S. W.
1979-01-01
The computer code for the trajectory processor of the HP-9825A High Fidelity Relative Motion Program is described in detail. The processor is a 12-degrees-of-freedom trajectory integrator which can be used to generate digital and graphical data describing the relative motion of the Space Shuttle Orbiter and a free-flying cylindrical payload. Coding standards and flow charts are given and the computational logic is discussed.
Simulink/PARS Integration Support
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vacaliuc, B.; Nakhaee, N.
2013-12-18
The state of the art for signal processor hardware has far out-paced the development tools for placing applications on that hardware. In addition, signal processors are available in a variety of architectures, each uniquely capable of handling specific types of signal processing efficiently. With these processors becoming smaller and demanding less power, it has become possible to group multiple processors, a heterogeneous set of processors, into single systems. Different portions of the desired problem set can be assigned to different processor types as appropriate. As software development tools do not keep pace with these processors, especially when multiple processors ofmore » different types are used, a method is needed to enable software code portability among multiple processors and multiple types of processors along with their respective software environments. Sundance DSP, Inc. has developed a software toolkit called “PARS”, whose objective is to provide a framework that uses suites of tools provided by different vendors, along with modeling tools and a real time operating system, to build an application that spans different processor types. The software language used to express the behavior of the system is a very high level modeling language, “Simulink”, a MathWorks product. ORNL has used this toolkit to effectively implement several deliverables. This CRADA describes this collaboration between ORNL and Sundance DSP, Inc.« less
Ultrasound assisted extraction of polysaccharides from hazelnut skin.
Yılmaz, Tuncay; Tavman, Şebnem
2016-03-01
In this study ultrasound assisted extraction (UAE) of polysaccharides from hazelnut skin has been studied. Optimum sonication time has been evaluated depending on responses such as amount of carbohydrate and dried sample and thermogravimetric analysis. Chemical and structural properties of extracted material have been determined by Fourier transform spectroscopy attenuated-total reflectance (FTIR-ATR) spectroscopy. Pretreated hazelnut skin powders were extracted in distilled water. Mixture was sonicated by ultrasonic processor probe for 15, 30, 45, 60, 90, and 120 min. The results of UAE showed that maximum ethanol insoluble extracts in 60 min and the highest dry matter content could be obtained in 120 min extraction. Although total carbohydrate content of ethanol insoluble dry extract decreased with time, total carbohydrate in ethanol soluble fraction increased. Polysaccharides extracted from hazelnut skin were assumed to be pectic polysaccharide according to the literature survey of FTIR analysis result. Application time of UAE has an important effect on extraction of polysaccharide from hazelnut skin. This affect could be summarized by enhancing extraction yield up to critical level. Decrease of the yield in ethanol insoluble part could be explained by polymer decomposition. Most suitable model was hyperbolic model by having the lowest root mean square error and the highest R(2) values. © The Author(s) 2015.
A light hydrocarbon fuel processor producing high-purity hydrogen
NASA Astrophysics Data System (ADS)
Löffler, Daniel G.; Taylor, Kyle; Mason, Dylan
This paper discusses the design process and presents performance data for a dual fuel (natural gas and LPG) fuel processor for PEM fuel cells delivering between 2 and 8 kW electric power in stationary applications. The fuel processor resulted from a series of design compromises made to address different design constraints. First, the product quality was selected; then, the unit operations needed to achieve that product quality were chosen from the pool of available technologies. Next, the specific equipment needed for each unit operation was selected. Finally, the unit operations were thermally integrated to achieve high thermal efficiency. Early in the design process, it was decided that the fuel processor would deliver high-purity hydrogen. Hydrogen can be separated from other gases by pressure-driven processes based on either selective adsorption or permeation. The pressure requirement made steam reforming (SR) the preferred reforming technology because it does not require compression of combustion air; therefore, steam reforming is more efficient in a high-pressure fuel processor than alternative technologies like autothermal reforming (ATR) or partial oxidation (POX), where the combustion occurs at the pressure of the process stream. A low-temperature pre-reformer reactor is needed upstream of a steam reformer to suppress coke formation; yet, low temperatures facilitate the formation of metal sulfides that deactivate the catalyst. For this reason, a desulfurization unit is needed upstream of the pre-reformer. Hydrogen separation was implemented using a palladium alloy membrane. Packed beds were chosen for the pre-reformer and reformer reactors primarily because of their low cost, relatively simple operation and low maintenance. Commercial, off-the-shelf balance of plant (BOP) components (pumps, valves, and heat exchangers) were used to integrate the unit operations. The fuel processor delivers up to 100 slm hydrogen >99.9% pure with <1 ppm CO, <3 ppm CO 2. The thermal efficiency is better than 67% operating at full load. This fuel processor has been integrated with a 5-kW fuel cell producing electricity and hot water.
Electrical Prototype Power Processor for the 30-cm Mercury electric propulsion engine
NASA Technical Reports Server (NTRS)
Biess, J. J.; Frye, R. J.
1978-01-01
An Electrical Prototpye Power Processor has been designed to the latest electrical and performance requirements for a flight-type 30-cm ion engine and includes all the necessary power, command, telemetry and control interfaces for a typical electric propulsion subsystem. The power processor was configured into seven separate mechanical modules that would allow subassembly fabrication, test and integration into a complete power processor unit assembly. The conceptual mechanical packaging of the electrical prototype power processor unit demonstrated the relative location of power, high voltage and control electronic components to minimize electrical interactions and to provide adequate thermal control in a vacuum environment. Thermal control was accomplished with a heat pipe simulator attached to the base of the modules.
Schell, Daniel J; Dowe, Nancy; Chapeaux, Alexandre; Nelson, Robert S; Jennings, Edward W
2016-04-01
Accurate mass balance and conversion data from integrated operation is needed to fully elucidate the economics of biofuel production processes. This study explored integrated conversion of corn stover to ethanol and highlights techniques for accurate yield calculations. Acid pretreated corn stover (PCS) produced in a pilot-scale reactor was enzymatically hydrolyzed and the resulting sugars were fermented to ethanol by the glucose-xylose fermenting bacteria, Zymomonas mobilis 8b. The calculations presented here account for high solids operation and oligomeric sugars produced during pretreatment, enzymatic hydrolysis, and fermentation, which, if not accounted for, leads to overestimating ethanol yields. The calculations are illustrated for enzymatic hydrolysis and fermentation of PCS at 17.5% and 20.0% total solids achieving 80.1% and 77.9% conversion of cellulose and xylan to ethanol and ethanol titers of 63g/L and 69g/L, respectively. These procedures will be employed in the future and the resulting information used for techno-economic analysis. Copyright © 2016 Elsevier Ltd. All rights reserved.
Jiang, Chao; Zhang, Hongyan; Wang, Jia; Wang, Yaru; He, Heng; Liu, Rui; Zhou, Fangyuan; Deng, Jialiang; Li, Pengcheng; Luo, Qingming
2011-11-01
Laser speckle imaging (LSI) is a noninvasive and full-field optical imaging technique which produces two-dimensional blood flow maps of tissues from the raw laser speckle images captured by a CCD camera without scanning. We present a hardware-friendly algorithm for the real-time processing of laser speckle imaging. The algorithm is developed and optimized specifically for LSI processing in the field programmable gate array (FPGA). Based on this algorithm, we designed a dedicated hardware processor for real-time LSI in FPGA. The pipeline processing scheme and parallel computing architecture are introduced into the design of this LSI hardware processor. When the LSI hardware processor is implemented in the FPGA running at the maximum frequency of 130 MHz, up to 85 raw images with the resolution of 640×480 pixels can be processed per second. Meanwhile, we also present a system on chip (SOC) solution for LSI processing by integrating the CCD controller, memory controller, LSI hardware processor, and LCD display controller into a single FPGA chip. This SOC solution also can be used to produce an application specific integrated circuit for LSI processing.
Cheng, Li-Fang; Chen, Tung-Chien; Chen, Liang-Gee
2012-01-01
Most of the abnormal cardiac events such as myocardial ischemia, acute myocardial infarction (AMI) and fatal arrhythmia can be diagnosed through continuous electrocardiogram (ECG) analysis. According to recent clinical research, early detection and alarming of such cardiac events can reduce the time delay to the hospital, and the clinical outcomes of these individuals can be greatly improved. Therefore, it would be helpful if there is a long-term ECG monitoring system with the ability to identify abnormal cardiac events and provide realtime warning for the users. The combination of the wireless body area sensor network (BASN) and the on-sensor ECG processor is a possible solution for this application. In this paper, we aim to design and implement a digital signal processor that is suitable for continuous ECG monitoring and alarming based on the continuous wavelet transform (CWT) through the proposed architectures--using both programmable RISC processor and application specific integrated circuits (ASIC) for performance optimization. According to the implementation results, the power consumption of the proposed processor integrated with an ASIC for CWT computation is only 79.4 mW. Compared with the single-RISC processor, about 91.6% of the power reduction is achieved.
Power processor for a 20CM ion thruster
NASA Technical Reports Server (NTRS)
Biess, J. J.; Schoenfeld, A. D.; Cohen, E.
1973-01-01
A power processor breadboard for the JPL 20CM Ion Engine was designed, fabricated, and tested to determine compliance with the electrical specification. The power processor breadboard used the silicon-controlled rectifier (SCR) series resonant inverter as the basic power stage to process all the power to the ion engine. The breadboard power processor was integrated with the JPL 20CM ion engine and complete testing was performed. The integration tests were performed without any silicon-controlled rectifier failure. This demonstrated the ruggedness of the series resonant inverter in protecting the switching elements during arcing in the ion engine. A method of fault clearing the ion engine and returning back to normal operation without elaborate sequencing and timing control logic was evolved. In this method, the main vaporizer was turned off and the discharge current limit was reduced when an overload existed on the screen/accelerator supply. After the high voltage returned to normal, both the main vaporizer and the discharge were returned to normal.
Leiro, José M; Piazzon, Carla; Domínguez, Berta; Mallo, Natalia; Lamas, Jesús
2012-05-15
Microsporidia are a large diverse group of intracellular parasites now considered as fungi. They are particularly prevalent in fish and are recognized as important opportunistic parasites in humans. Although the mode of transmission of microsporidia has not been fully clarified, the consumption and manipulation of infected fish may be a risk factor for humans. Comparative analysis of rDNA sequence revealed that the microsporidians used in the present study had 99-100% identity with anglerfish microsporidians of the genus Spraguea and very low identity with microsporidians that infect humans. Microsporidian spores were exposed to different physical and chemical treatments: freezing at -20°C for 24-78 h, heating at 60°C for 5-15 min, microwaving at 700 W, 2.45 GHz for 15-60s, and treatment with ethanol at concentrations of between 1 and 70% for 15 min. The viability of the spores after each treatment was evaluated by two methods: a) haemocytometer counts, measuring the extrusion of the polar filament in control and treated spores, and b) a fluorometric method, testing the membrane integrity by propidium iodide exclusion. The results of both methods were concordant. Spores were inactivated by freezing at -20°C for more than 48 h, by heating to 60°C for 10 min and by microwaving at 750 W, for 20s. Exposure to 70% ethanol for 15 min also inactivated microsporidian spores. The results suggest that both freezing and heating are effective treatments for destroying microsporidian spores in European white anglerfish, and that 70% ethanol could be used by fish processors to disinfect their hands and the utensils used in processing fish. The fluorometric method can be used as an alternative to haemocytometer counts in disinfection studies aimed at establishing strategies for inactivating and reducing the viability and the potential infectivity of microsporidians present in fish or in the environment. Copyright © 2012 Elsevier B.V. All rights reserved.
7 CFR 252.4 - Application to participate and agreement.
Code of Federal Regulations, 2010 CFR
2010-01-01
... integrity, business ethics and performance. In addition, the processors must demonstrate their ability to sell end products under NCP by submitting supporting documentation such as written intent to purchase... purchased, the processor shall invoice the recipient agency at the net case price which shall reflect the...
Signal processor for processing ultrasonic receiver signals
Fasching, George E.
1980-01-01
A signal processor is provided which uses an analog integrating circuit in conjunction with a set of digital counters controlled by a precision clock for sampling timing to provide an improved presentation of an ultrasonic transmitter/receiver signal. The signal is sampled relative to the transmitter trigger signal timing at precise times, the selected number of samples are integrated and the integrated samples are transferred and held for recording on a strip chart recorder or converted to digital form for storage. By integrating multiple samples taken at precisely the same time with respect to the trigger for the ultrasonic transmitter, random noise, which is contained in the ultrasonic receiver signal, is reduced relative to the desired useful signal.
Alternative Water Processor Test Development
NASA Technical Reports Server (NTRS)
Pickering, Karen D.; Mitchell, Julie L.; Adam, Niklas M.; Barta, Daniel; Meyer, Caitlin E.; Pensinger, Stuart; Vega, Leticia M.; Callahan, Michael R.; Flynn, Michael; Wheeler, Ray;
2013-01-01
The Next Generation Life Support Project is developing an Alternative Water Processor (AWP) as a candidate water recovery system for long duration exploration missions. The AWP consists of biological water processor (BWP) integrated with a forward osmosis secondary treatment system (FOST). The basis of the BWP is a membrane aerated biological reactor (MABR), developed in concert with Texas Tech University. Bacteria located within the MABR metabolize organic material in wastewater, converting approximately 90% of the total organic carbon to carbon dioxide. In addition, bacteria convert a portion of the ammonia-nitrogen present in the wastewater to nitrogen gas, through a combination of nitrification and denitrification. The effluent from the BWP system is low in organic contaminants, but high in total dissolved solids. The FOST system, integrated downstream of the BWP, removes dissolved solids through a combination of concentration-driven forward osmosis and pressure driven reverse osmosis. The integrated system is expected to produce water with a total organic carbon less than 50 mg/l and dissolved solids that meet potable water requirements for spaceflight. This paper describes the test definition, the design of the BWP and FOST subsystems, and plans for integrated testing.
Alternative Water Processor Test Development
NASA Technical Reports Server (NTRS)
Pickering, Karen D.; Mitchell, Julie; Vega, Leticia; Adam, Niklas; Flynn, Michael; Wjee (er. Rau); Lunn, Griffin; Jackson, Andrew
2012-01-01
The Next Generation Life Support Project is developing an Alternative Water Processor (AWP) as a candidate water recovery system for long duration exploration missions. The AWP consists of biological water processor (BWP) integrated with a forward osmosis secondary treatment system (FOST). The basis of the BWP is a membrane aerated biological reactor (MABR), developed in concert with Texas Tech University. Bacteria located within the MABR metabolize organic material in wastewater, converting approximately 90% of the total organic carbon to carbon dioxide. In addition, bacteria convert a portion of the ammonia-nitrogen present in the wastewater to nitrogen gas, through a combination of nitrogen and denitrification. The effluent from the BWP system is low in organic contaminants, but high in total dissolved solids. The FOST system, integrated downstream of the BWP, removes dissolved solids through a combination of concentration-driven forward osmosis and pressure driven reverse osmosis. The integrated system is expected to produce water with a total organic carbon less than 50 mg/l and dissolved solids that meet potable water requirements for spaceflight. This paper describes the test definition, the design of the BWP and FOST subsystems, and plans for integrated testing.
The computational structural mechanics testbed architecture. Volume 2: The interface
NASA Technical Reports Server (NTRS)
Felippa, Carlos A.
1988-01-01
This is the third set of five volumes which describe the software architecture for the Computational Structural Mechanics Testbed. Derived from NICE, an integrated software system developed at Lockheed Palo Alto Research Laboratory, the architecture is composed of the command language CLAMP, the command language interpreter CLIP, and the data manager GAL. Volumes 1, 2, and 3 (NASA CR's 178384, 178385, and 178386, respectively) describe CLAMP and CLIP and the CLIP-processor interface. Volumes 4 and 5 (NASA CR's 178387 and 178388, respectively) describe GAL and its low-level I/O. CLAMP, an acronym for Command Language for Applied Mechanics Processors, is designed to control the flow of execution of processors written for NICE. Volume 3 describes the CLIP-Processor interface and related topics. It is intended only for processor developers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tao, L.; Schell, D.; Davis, R.
2014-04-01
For the DOE Bioenergy Technologies Office, the annual State of Technology (SOT) assessment is an essential activity for quantifying the benefits of biochemical platform research. This assessment has historically allowed the impact of research progress achieved through targeted Bioenergy Technologies Office funding to be quantified in terms of economic improvements within the context of a fully integrated cellulosic ethanol production process. As such, progress toward the ultimate 2012 goal of demonstrating cost-competitive cellulosic ethanol technology can be tracked. With an assumed feedstock cost for corn stover of $58.50/ton this target has historically been set at $1.41/gal ethanol for conversion costsmore » only (exclusive of feedstock) and $2.15/gal total production cost (inclusive of feedstock) or minimum ethanol selling price (MESP). This year, fully integrated cellulosic ethanol production data generated by National Renewable Energy Laboratory (NREL) researchers in their Integrated Biorefinery Research Facility (IBRF) successfully demonstrated performance commensurate with both the FY 2012 SOT MESP target of $2.15/gal (2007$, $58.50/ton feedstock cost) and the conversion target of $1.41/gal through core research and process improvements in pretreatment, enzymatic hydrolysis, and fermentation.« less
SPROC: A multiple-processor DSP IC
NASA Technical Reports Server (NTRS)
Davis, R.
1991-01-01
A large, single-chip, multiple-processor, digital signal processing (DSP) integrated circuit (IC) fabricated in HP-Cmos34 is presented. The innovative architecture is best suited for analog and real-time systems characterized by both parallel signal data flows and concurrent logic processing. The IC is supported by a powerful development system that transforms graphical signal flow graphs into production-ready systems in minutes. Automatic compiler partitioning of tasks among four on-chip processors gives the IC the signal processing power of several conventional DSP chips.
Comparison of the CENTRM resonance processor to the NITAWL resonance processor in SCALE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hollenbach, D.F.; Petrie, L.M.
1998-01-01
This report compares the MTAWL and CENTRM resonance processors in the SCALE code system. The cases examined consist of the International OECD/NEA Criticality Working Group Benchmark 20 problem. These cases represent fuel pellets partially dissolved in a borated solution. The assumptions inherent to the Nordheim Integral Treatment, used in MTAWL, are not valid for these problems. CENTRM resolves this limitation by explicitly calculating a problem dependent point flux from point cross sections, which is then used to create group cross sections.
Acousto-optic time- and space-integrating spotlight-mode SAR processor
NASA Astrophysics Data System (ADS)
Haney, Michael W.; Levy, James J.; Michael, Robert R., Jr.
1993-09-01
The technical approach and recent experimental results for the acousto-optic time- and space- integrating real-time SAR image formation processor program are reported. The concept overcomes the size and power consumption limitations of electronic approaches by using compact, rugged, and low-power analog optical signal processing techniques for the most computationally taxing portions of the SAR imaging problem. Flexibility and performance are maintained by the use of digital electronics for the critical low-complexity filter generation and output image processing functions. The results include a demonstration of the processor's ability to perform high-resolution spotlight-mode SAR imaging by simultaneously compensating for range migration and range/azimuth coupling in the analog optical domain, thereby avoiding a highly power-consuming digital interpolation or reformatting operation usually required in all-electronic approaches.
Automatic Generation of Cycle-Approximate TLMs with Timed RTOS Model Support
NASA Astrophysics Data System (ADS)
Hwang, Yonghyun; Schirner, Gunar; Abdi, Samar
This paper presents a technique for automatically generating cycle-approximate transaction level models (TLMs) for multi-process applications mapped to embedded platforms. It incorporates three key features: (a) basic block level timing annotation, (b) RTOS model integration, and (c) RTOS overhead delay modeling. The inputs to TLM generation are application C processes and their mapping to processors in the platform. A processor data model, including pipelined datapath, memory hierarchy and branch delay model is used to estimate basic block execution delays. The delays are annotated to the C code, which is then integrated with a generated SystemC RTOS model. Our abstract RTOS provides dynamic scheduling and inter-process communication (IPC) with processor- and RTOS-specific pre-characterized timing. Our experiments using a MP3 decoder and a JPEG encoder show that timed TLMs, with integrated RTOS models, can be automatically generated in less than a minute. Our generated TLMs simulated three times faster than real-time and showed less than 10% timing error compared to board measurements.
Chen, Jingwen; Zhang, Hongman; Wei, Ping; Zhang, Lin; Huang, He
2014-02-01
The effects of by-products from ethanol fermentation and hydrolysates of lignocelluloses on ethanol diffusion through polydimethylsiloxane (PDMS) membranes with/without silicalite-1 were investigated. A pervaporation process was integrated with lignocellulosic fermentation to concentrate bioethanol using bare PDMS membranes. Results showed that yeasts, solid particles, and salts increased ethanol flux and selectivity through the membranes (PDMS with/without silicalite-1), whereas glucose exerted negative effects on the performance. On bare PDMS membrane, the performance was not obviously affected by the existence of aliphatic acids. However, on PDMS-silicalite-1 membrane, a remarkable decrease in ethanol selectivity and a rapid growth of total flux in the presence of aliphatic acids were observed. These phenomena were due to the interaction of acids with silanol (Si-OH) groups to break the dense membrane surface. On the PDMS membranes with/without silicalite-1, degradation products of lignocellulosic hydrolysates such as furfural and hydroxyacetone slightly influenced separation performance. These results revealed that an integrated process can effectively eliminate product inhibition, improve ethanol productivity, and enhance the glucose conversion rate.
Design methodology for integrated downstream separation systems in an ethanol biorefinery
NASA Astrophysics Data System (ADS)
Mohammadzadeh Rohani, Navid
Energy security and environmental concerns have been the main drivers for a historic shift to biofuel production in transportation fuel industry. Biofuels should not only offer environmental advantages over the petroleum fuels they replace but also should be economically sustainable and viable. The so-called second generation biofuels such as ethanol which is the most produced biofuel are mostly derived from lignocellulosic biomasses. These biofuels are more difficult to produce than the first generation ones mainly due to recalcitrance of the feedstocks in extracting their sugar contents. Costly pre-treatment and fractionation stages are required to break down lignocellulosic feedstocks into their constituent elements. On the other hand the mixture produced in fermentation step in a biorefinery contains very low amount of product which makes the subsequent separation step more difficult and more energy consuming. In an ethanol biorefinery, the dilute fermentation broth requires huge operating cost in downstream separation for recovery of the product in a conventional distillation technique. Moreover, the non-ideal nature of ethanol-water mixture which forms an iseotrope at almost 95 wt%, hinders the attainment of the fuel grade ethanol (99.5 wt%). Therefore, an additional dehydration stage is necessary to purify the ethanol from its azeotropic composition to fuel-grade purity. In order to overcome the constraint pertaining to vapor-liquid equilibrium of ethanol-water separation, several techniques have been investigated and proposed in the industry. These techniques such as membrane-based technologies, extraction and etc. have not only sought to produce a pure fuel-grade ethanol but have also aimed at decreasing the energy consumption of this energy-intensive separation. Decreasing the energy consumption of an ethanol biorefinery is of paramount importance in improving its overall economics and in facilitating the way to displacing petroleum transportation fuel and obtaining energy security. On the other hand, Process Integration (PI) as defined by Natural Resource Canada as the combination of activities which aim at improving process systems, their unit operations and their interactions in order to maximize the efficiency of using water, energy and raw materials can also help biorefineries lower their energy consumptions and improve their economics. Energy integration techniques such as pinch analysis adopted by different industries over the years have ensured using heat sources within a plant to supply the demand internally and decrease the external utility consumption. Therefore, adopting energy integration can be one of the ways biorefinery technology owners can consider in their process development as well as their business model in order to improve their overall economics. The objective of this thesis is to propose a methodology for designing integrated downstream separation in a biorefinery. This methodology is tested in an ethanol biorefinery case study. Several alternative separation techniques are evaluated in their energy consumption and economics in three different scenarios; stand-alone without energy integration, stand-alone with internal energy integration and integrated-with Kraft. The energy consumptions and capital costs of separation techniques are assessed in each scenario and the cost and benefit of integration are determined and finally the best alternative is found through techno-economic metrics. Another advantage of this methodology is the use of a graphical tool which provides insights on decreasing energy consumption by modifying the process condition. The pivot point of this work is the use of a novel energy integration method called Bridge analysis. This systematic method which originally is intended for retrofit situation is used here for integration with Kraft process. Integration potentials are identified through this method and savings are presented for each design. In stand-alone with internal integration scenario, the conventional pinch method is used for energy analysis. The results reveal the importance of energy integration in reducing energy consumption. They also show that in an ethanol biorefinery, by adopting energy integration in the conventional distillation separation, we can achieve greater energy saving compared to other alternative techniques. This in turn suggests that new alternative technologies which imply big risks for the company might not be an option for reducing the energy consumption as long as an internal and external integration is incorporated in the business model of an ethanol biorefinery. It is also noteworthy that the methodology developed in this work can be extended as a future work to include a whole biorefinery system. (Abstract shortened by UMI.).
A fully integrated mixed-signal neural processor for implantable multichannel cortical recording.
Sodagar, Amir M; Wise, Kensall D; Najafi, Khalil
2007-06-01
A 64-channel neural processor has been developed for use in an implantable neural recording microsystem. In the Scan Mode, the processor is capable of detecting neural spikes by programmable positive, negative, or window thresholding. Spikes are tagged with their associated channel addresses and formed into 18-bit data words that are sent serially to the external host. In the Monitor Mode, two channels can be selected and viewed at high resolution for studies where the entire signal is of interest. The processor runs from a 3-V supply and a 2-MHz clock, with a channel scan rate of 64 kS/s and an output bit rate of 2 Mbps.
A wideband software reconfigurable modem
NASA Astrophysics Data System (ADS)
Turner, J. H., Jr.; Vickers, H.
A wideband modem is described which provides signal processing capability for four Lx-band signals employing QPSK, MSK and PPM waveforms and employs a software reconfigurable architecture for maximum system flexibility and graceful degradation. The current processor uses a 2901 and two 8086 microprocessors per channel and performs acquisition, tracking, and data demodulation for JITDS, GPS, IFF and TACAN systems. The next generation processor will be implemented using a VHSIC chip set employing a programmable complex array vector processor module, a GP computer module, customized gate array modules, and a digital array correlator. This integrated processor has application to a wide number of diverse system waveforms, and will bring the benefits of VHSIC technology insertion into avionic antijam communications systems.
NASA Astrophysics Data System (ADS)
Liu, Fenglai; Kong, Jing
2018-07-01
Unique technical challenges and their solutions for implementing semi-numerical Hartree-Fock exchange on the Phil Processor are discussed, especially concerning the single- instruction-multiple-data type of processing and small cache size. Benchmark calculations on a series of buckyball molecules with various Gaussian basis sets on a Phi processor and a six-core CPU show that the Phi processor provides as much as 12 times of speedup with large basis sets compared with the conventional four-center electron repulsion integration approach performed on the CPU. The accuracy of the semi-numerical scheme is also evaluated and found to be comparable to that of the resolution-of-identity approach.
A hybrid process integrating vapor stripping with vapor compression and vapor permeation membrane separation, termed Membrane Assisted Vapor Stripping (MAVS), was evaluated for recovery and dehydration of ethanol from aqueous solution as an alternative to conventional distillatio...
Efficient ethanol recovery from fermentation broths with integrated distillation-membrane process
The energy demand of distillation-molecular sieve systems for ethanol recovery/dehydration can be significant, particularly for dilute solutions. An alternative process integrating vapor stripping (like a beer still) with vapor compression and a vapor permeation membrane separati...
Electric prototype power processor for a 30cm ion thruster
NASA Technical Reports Server (NTRS)
Biess, J. J.; Inouye, L. Y.; Schoenfeld, A. D.
1977-01-01
An electrical prototype power processor unit was designed, fabricated and tested with a 30 cm mercury ion engine for primary space propulsion. The power processor unit used the thyristor series resonant inverter as the basic power stage for the high power beam and discharge supplies. A transistorized series resonant inverter processed the remaining power for the low power outputs. The power processor included a digital interface unit to process all input commands and internal telemetry signals so that electric propulsion systems could be operated with a central computer system. The electrical prototype unit included design improvement in the power components such as thyristors, transistors, filters and resonant capacitors, and power transformers and inductors in order to reduce component weight, to minimize losses, and to control the component temperature rise. A design analysis for the electrical prototype is also presented on the component weight, losses, part count and reliability estimate. The electrical prototype was tested in a thermal vacuum environment. Integration tests were performed with a 30 cm ion engine and demonstrated operational compatibility. Electromagnetic interference data was also recorded on the design to provide information for spacecraft integration.
Samak, Geetha; Gangwar, Ruchika; Meena, Avtar S; Rao, Roshan G; Shukla, Pradeep K; Manda, Bhargavi; Narayanan, Damodaran; Jaggar, Jonathan H; Rao, RadhaKrishna
2016-12-13
Ethanol is metabolized into acetaldehyde in most tissues. In this study, we investigated the synergistic effect of ethanol and acetaldehyde on the tight junction integrity in Caco-2 cell monolayers. Expression of alcohol dehydrogenase sensitized Caco-2 cells to ethanol-induced tight junction disruption and barrier dysfunction, whereas aldehyde dehydrogenase attenuated acetaldehyde-induced tight junction disruption. Ethanol up to 150 mM did not affect tight junction integrity or barrier function, but it dose-dependently increased acetaldehyde-mediated tight junction disruption and barrier dysfunction. Src kinase and MLCK inhibitors blocked this synergistic effect of ethanol and acetaldehyde on tight junction. Ethanol and acetaldehyde caused a rapid and synergistic elevation of intracellular calcium. Calcium depletion by BAPTA or Ca 2+ -free medium blocked ethanol and acetaldehyde-induced barrier dysfunction and tight junction disruption. Diltiazem and selective knockdown of TRPV6 or Ca V 1.3 channels, by shRNA blocked ethanol and acetaldehyde-induced tight junction disruption and barrier dysfunction. Ethanol and acetaldehyde induced a rapid and synergistic increase in reactive oxygen species by a calcium-dependent mechanism. N-acetyl-L-cysteine and cyclosporine A, blocked ethanol and acetaldehyde-induced barrier dysfunction and tight junction disruption. These results demonstrate that ethanol and acetaldehyde synergistically disrupt tight junctions by a mechanism involving calcium, oxidative stress, Src kinase and MLCK.
Jin, Mingjie; Liu, Yanping; da Costa Sousa, Leonardo; Dale, Bruce E; Balan, Venkatesh
2017-08-01
High enzyme loading and low productivity are two major issues impeding low cost ethanol production from lignocellulosic biomass. This work applied rapid bioconversion with integrated recycle technology (RaBIT) and extractive ammonia (EA) pretreatment for conversion of corn stover (CS) to ethanol at high solids loading. Enzymes were recycled via recycling unhydrolyzed solids. Enzymatic hydrolysis with recycled enzymes and fermentation with recycled yeast cells were studied. Both enzymatic hydrolysis time and fermentation time were shortened to 24 h. Ethanol productivity was enhanced by two times and enzyme loading was reduced by 30%. Glucan and xylan conversions reached as high as 98% with an enzyme loading of as low as 8.4 mg protein per g glucan. The overall ethanol yield was 227 g ethanol/kg EA-CS (191 g ethanol/kg untreated CS). Biotechnol. Bioeng. 2017;114: 1713-1720. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Software-defined reconfigurable microwave photonics processor.
Pérez, Daniel; Gasulla, Ivana; Capmany, José
2015-06-01
We propose, for the first time to our knowledge, a software-defined reconfigurable microwave photonics signal processor architecture that can be integrated on a chip and is capable of performing all the main functionalities by suitable programming of its control signals. The basic configuration is presented and a thorough end-to-end design model derived that accounts for the performance of the overall processor taking into consideration the impact and interdependencies of both its photonic and RF parts. We demonstrate the model versatility by applying it to several relevant application examples.
Reconfigurable lattice mesh designs for programmable photonic processors.
Pérez, Daniel; Gasulla, Ivana; Capmany, José; Soref, Richard A
2016-05-30
We propose and analyse two novel mesh design geometries for the implementation of tunable optical cores in programmable photonic processors. These geometries are the hexagonal and the triangular lattice. They are compared here to a previously proposed square mesh topology in terms of a series of figures of merit that account for metrics that are relevant to on-chip integration of the mesh. We find that that the hexagonal mesh is the most suitable option of the three considered for the implementation of the reconfigurable optical core in the programmable processor.
NASA Technical Reports Server (NTRS)
Kindall, S. M.
1980-01-01
The computer code for the trajectory processor (#TRAJ) of the high fidelity relative motion program is described. The #TRAJ processor is a 12-degrees-of-freedom trajectory integrator (6 degrees of freedom for each of two vehicles) which can be used to generate digital and graphical data describing the relative motion of the Space Shuttle Orbiter and a free-flying cylindrical payload. A listing of the code, coding standards and conventions, detailed flow charts, and discussions of the computational logic are included.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhichao; Dunn, Jennifer B.; Wang, Michael Q.
Corn ethanol, a first-generation biofuel, is the predominant biofuel in the United States. In 2013, the total U.S. ethanol fuel production was 13.3 billion gallons, over 95% of which was produced from corn (RFA, 2014). The 2013 total renewable fuel mandate was 16.6 billion gallons according to the Energy Independence and Security Act (EISA) (U.S. Congress, 2007). Furthermore, until 2020, corn ethanol will make up a large portion of the renewable fuel volume mandated by Renewable Fuels Standard (RFS2). For the GREET1_2014 release, the corn ethanol pathway was subject to updates reflecting changes in corn agriculture and at corn ethanolmore » plants. In the latter case, we especially focused on the incorporation of corn oil as a corn ethanol plant co-product. Section 2 covers these updates. In addition, GREET now includes options to integrate corn grain and corn stover ethanol production on the field and at the biorefinery. These changes are the focus of Section 3.« less
Chu, Qiulu; Li, Xin; Ma, Bin; Xu, Yong; Ouyang, Jia; Zhu, Junjun; Yu, Shiyuan; Yong, Qiang
2012-11-01
An integrated process of enzymatic hydrolysis and fermentation was investigated for high ethanol production. The combination of enzymatic hydrolysis at low substrate loading, liquid fermentation of high sugars concentration and solid state fermentation of enzymatic hydrolysis residue was beneficial for conversion of steam explosion pretreated corn stover to ethanol. The results suggested that low substrate loading hydrolysis caused a high enzymatic hydrolysis yield; the liquid fermentation of about 200g/L glucose by Saccharomyces cerevisiae provided a high ethanol concentration which could significantly decrease cost of the subsequent ethanol distillation. A solid state fermentation of enzymatic hydrolysis residue was combined, which was available to enhance ethanol production and cellulose-to-ethanol conversion. The results of solid state fermentation demonstrated that the solid state fermentation process accompanied by simultaneous saccharification and fermentation. Copyright © 2012 Elsevier Ltd. All rights reserved.
Nair, Erika L; Sousa, Rhonda; Wannagot, Shannon
Guidelines established by the AAA currently recommend behavioral testing when fitting frequency modulated (FM) systems to individuals with cochlear implants (CIs). A protocol for completing electroacoustic measures has not yet been validated for personal FM systems or digital modulation (DM) systems coupled to CI sound processors. In response, some professionals have used or altered the AAA electroacoustic verification steps for fitting FM systems to hearing aids when fitting FM systems to CI sound processors. More recently steps were outlined in a proposed protocol. The purpose of this research is to review and compare the electroacoustic test measures outlined in a 2013 article by Schafer and colleagues in the Journal of the American Academy of Audiology titled "A Proposed Electroacoustic Test Protocol for Personal FM Receivers Coupled to Cochlear Implant Sound Processors" to the AAA electroacoustic verification steps for fitting FM systems to hearing aids when fitting DM systems to CI users. Electroacoustic measures were conducted on 71 CI sound processors and Phonak Roger DM systems using a proposed protocol and an adapted AAA protocol. Phonak's recommended default receiver gain setting was used for each CI sound processor manufacturer and adjusted if necessary to achieve transparency. Electroacoustic measures were conducted on Cochlear and Advanced Bionics (AB) sound processors. In this study, 28 Cochlear Nucleus 5/CP810 sound processors, 26 Cochlear Nucleus 6/CP910 sound processors, and 17 AB Naida CI Q70 sound processors were coupled in various combinations to Phonak Roger DM dedicated receivers (25 Phonak Roger 14 receivers-Cochlear dedicated receiver-and 9 Phonak Roger 17 receivers-AB dedicated receiver) and 20 Phonak Roger Inspiro transmitters. Employing both the AAA and the Schafer et al protocols, electroacoustic measurements were conducted with the Audioscan Verifit in a clinical setting on 71 CI sound processors and Phonak Roger DM systems to determine transparency and verify FM advantage, comparing speech inputs (65 dB SPL) in an effort to achieve equal outputs. If transparency was not achieved at Phonak's recommended default receiver gain, adjustments were made to the receiver gain. The integrity of the signal was monitored with the appropriate manufacturer's monitor earphones. Using the AAA hearing aid protocol, 50 of the 71 CI sound processors achieved transparency, and 59 of the 71 CI sound processors achieved transparency when using the proposed protocol at Phonak's recommended default receiver gain. After the receiver gain was adjusted, 3 of 21 CI sound processors still did not meet transparency using the AAA protocol, and 2 of 12 CI sound processors still did not meet transparency using the Schafer et al proposed protocol. Both protocols were shown to be effective in taking reliable electroacoustic measurements and demonstrate transparency. Both protocols are felt to be clinically feasible and to address the needs of populations that are unable to reliably report regarding the integrity of their personal DM systems. American Academy of Audiology
The energy demand of distillation-molecular sieve systems for ethanol recovery/dehydration can be significant, particularly for dilute solutions. An alternative hybrid process integrating vapor stripping (like a beer still) with vapor compression and a vapor permeation membrane s...
Bechara, Rami; Gomez, Adrien; Saint-Antonin, Valérie; Schweitzer, Jean-Marc; Maréchal, François
2016-08-01
The application of methodologies for the optimal design of integrated processes has seen increased interest in literature. This article builds on previous works and applies a systematic methodology to an integrated first and second generation ethanol production plant with power cogeneration. The methodology breaks into process simulation, heat integration, thermo-economic evaluation, exergy efficiency vs. capital costs, multi-variable, evolutionary optimization, and process selection via profitability maximization. Optimization generated Pareto solutions with exergy efficiency ranging between 39.2% and 44.4% and capital costs from 210M$ to 390M$. The Net Present Value was positive for only two scenarios and for low efficiency, low hydrolysis points. The minimum cellulosic ethanol selling price was sought to obtain a maximum NPV of zero for high efficiency, high hydrolysis alternatives. The obtained optimal configuration presented maximum exergy efficiency, hydrolyzed bagasse fraction, capital costs and ethanol production rate, and minimum cooling water consumption and power production rate. Copyright © 2016 Elsevier Ltd. All rights reserved.
Power processor for a 30cm ion thruster
NASA Technical Reports Server (NTRS)
Biess, J. J.; Inouye, L. Y.
1974-01-01
A thermal vacuum power processor for the NASA Lewis 30cm Mercury Ion Engine was designed, fabricated and tested to determine compliance with electrical specifications. The power processor breadboard used the silicon controlled rectifier (SCR) series resonant inverter as the basic power stage to process all the power to an ion engine. The power processor includes a digital interface unit to process all input commands and internal telemetry signals so that operation is compatible with a central computer system. The breadboard was tested in a thermal vacuum environment. Integration tests were performed with the ion engine and demonstrate operational compatibility and reliable operation without any component failures. Electromagnetic interference data were also recorded on the design to provide information on the interaction with total spacecraft.
Conjugate-Gradient Algorithms For Dynamics Of Manipulators
NASA Technical Reports Server (NTRS)
Fijany, Amir; Scheid, Robert E.
1993-01-01
Algorithms for serial and parallel computation of forward dynamics of multiple-link robotic manipulators by conjugate-gradient method developed. Parallel algorithms have potential for speedup of computations on multiple linked, specialized processors implemented in very-large-scale integrated circuits. Such processors used to stimulate dynamics, possibly faster than in real time, for purposes of planning and control.
Novel Robotic Tools for Piping Inspection and Repair
2015-01-14
was selected due to its small size, and peripheral capability. The SoM measures 50mm x 44mm. The SoM processor is an ARM Cortex -A8 running at720MHz...designing an embedded computing system from scratch. The SoM is a single integrated module which contains the processor , RAM, power management, and
Fast Neural Solution Of A Nonlinear Wave Equation
NASA Technical Reports Server (NTRS)
Barhen, Jacob; Toomarian, Nikzad
1996-01-01
Neural algorithm for simulation of class of nonlinear wave phenomena devised. Numerically solves special one-dimensional case of Korteweg-deVries equation. Intended to be executed rapidly by neural network implemented as charge-coupled-device/charge-injection device, very-large-scale integrated-circuit analog data processor of type described in "CCD/CID Processors Would Offer Greater Precision" (NPO-18972).
Toshiba TDF-500 High Resolution Viewing And Analysis System
NASA Astrophysics Data System (ADS)
Roberts, Barry; Kakegawa, M.; Nishikawa, M.; Oikawa, D.
1988-06-01
A high resolution, operator interactive, medical viewing and analysis system has been developed by Toshiba and Bio-Imaging Research. This system provides many advanced features including high resolution displays, a very large image memory and advanced image processing capability. In particular, the system provides CRT frame buffers capable of update in one frame period, an array processor capable of image processing at operator interactive speeds, and a memory system capable of updating multiple frame buffers at frame rates whilst supporting multiple array processors. The display system provides 1024 x 1536 display resolution at 40Hz frame and 80Hz field rates. In particular, the ability to provide whole or partial update of the screen at the scanning rate is a key feature. This allows multiple viewports or windows in the display buffer with both fixed and cine capability. To support image processing features such as windowing, pan, zoom, minification, filtering, ROI analysis, multiplanar and 3D reconstruction, a high performance CPU is integrated into the system. This CPU is an array processor capable of up to 400 million instructions per second. To support the multiple viewer and array processors' instantaneous high memory bandwidth requirement, an ultra fast memory system is used. This memory system has a bandwidth capability of 400MB/sec and a total capacity of 256MB. This bandwidth is more than adequate to support several high resolution CRT's and also the fast processing unit. This fully integrated approach allows effective real time image processing. The integrated design of viewing system, memory system and array processor are key to the imaging system. It is the intention to describe the architecture of the image system in this paper.
Data processing techniques used with MST radars: A review
NASA Technical Reports Server (NTRS)
Rastogi, P. K.
1983-01-01
The data processing methods used in high power radar probing of the middle atmosphere are examined. The radar acts as a spatial filter on the small scale refractivity fluctuations in the medium. The characteristics of the received signals are related to the statistical properties of these fluctuations. A functional outline of the components of a radar system is given. Most computation intensive tasks are carried out by the processor. The processor computes a statistical function of the received signals, simultaneously for a large number of ranges. The slow fading of atmospheric signals is used to reduce the data input rate to the processor by coherent integration. The inherent range resolution of the radar experiments can be improved significant with the use of pseudonoise phase codes to modulate the transmitted pulses and a corresponding decoding operation on the received signals. Commutability of the decoding and coherent integration operations is used to obtain a significant reduction in computations. The limitations of the processors are outlined. At the next level of data reduction, the measured function is parameterized by a few spectral moments that can be related to physical processes in the medium. The problems encountered in estimating the spectral moments in the presence of strong ground clutter, external interference, and noise are discussed. The graphical and statistical analysis of the inferred parameters are outlined. The requirements for special purpose processors for MST radars are discussed.
Parallel network simulations with NEURON.
Migliore, M; Cannia, C; Lytton, W W; Markram, Henry; Hines, M L
2006-10-01
The NEURON simulation environment has been extended to support parallel network simulations. Each processor integrates the equations for its subnet over an interval equal to the minimum (interprocessor) presynaptic spike generation to postsynaptic spike delivery connection delay. The performance of three published network models with very different spike patterns exhibits superlinear speedup on Beowulf clusters and demonstrates that spike communication overhead is often less than the benefit of an increased fraction of the entire problem fitting into high speed cache. On the EPFL IBM Blue Gene, almost linear speedup was obtained up to 100 processors. Increasing one model from 500 to 40,000 realistic cells exhibited almost linear speedup on 2,000 processors, with an integration time of 9.8 seconds and communication time of 1.3 seconds. The potential for speed-ups of several orders of magnitude makes practical the running of large network simulations that could otherwise not be explored.
NASA Technical Reports Server (NTRS)
Mulloth, Lila; LeVan, Douglas
2002-01-01
The current CO2 removal technology of NASA is very energy intensive and contains many non-optimized subsystems. This paper discusses the concept of a next-generation, membrane integrated, adsorption processor for CO2 removal nd compression in closed-loop air revitalization systems. This processor will use many times less power than NASA's current CO2 removal technology and will be capable of maintaining a lower CO2 concentration in the cabin than that can be achieved by the existing CO2 removal systems. The compact, consolidated, configuration of gas dryer, CO2 separator, and CO2 compressor will allow continuous recycling of humid air in the cabin and supply of compressed CO2 to the reduction unit for oxygen recovery. The device has potential application to the International Space Station and future, long duration, transit, and planetary missions.
Parallel Network Simulations with NEURON
Migliore, M.; Cannia, C.; Lytton, W.W; Markram, Henry; Hines, M. L.
2009-01-01
The NEURON simulation environment has been extended to support parallel network simulations. Each processor integrates the equations for its subnet over an interval equal to the minimum (interprocessor) presynaptic spike generation to postsynaptic spike delivery connection delay. The performance of three published network models with very different spike patterns exhibits superlinear speedup on Beowulf clusters and demonstrates that spike communication overhead is often less than the benefit of an increased fraction of the entire problem fitting into high speed cache. On the EPFL IBM Blue Gene, almost linear speedup was obtained up to 100 processors. Increasing one model from 500 to 40,000 realistic cells exhibited almost linear speedup on 2000 processors, with an integration time of 9.8 seconds and communication time of 1.3 seconds. The potential for speed-ups of several orders of magnitude makes practical the running of large network simulations that could otherwise not be explored. PMID:16732488
Multisensor data fusion for integrated maritime surveillance
NASA Astrophysics Data System (ADS)
Premji, A.; Ponsford, A. M.
1995-01-01
A prototype Integrated Coastal Surveillance system has been developed on Canada's East Coast to provide effective surveillance out to and beyond the 200 nautical mile Exclusive Economic Zone. The system has been designed to protect Canada's natural resources, and to monitor and control the coastline for smuggling, drug trafficking, and similar illegal activity. This paper describes the Multiple Sensor - Multiple Target data fusion system that has been developed. The fusion processor has been developed around the celebrated Multiple Hypothesis Tracking algorithm which accommodates multiple targets, new targets, false alarms, and missed detections. This processor performs four major functions: plot-to-track association to form individual radar tracks; fusion of radar tracks with secondary sensor reports; track identification and tagging using secondary reports; and track level fusion to form common tracks. Radar data from coherent and non-coherent radars has been used to evaluate the performance of the processor. This paper presents preliminary results.
Color sensor and neural processor on one chip
NASA Astrophysics Data System (ADS)
Fiesler, Emile; Campbell, Shannon R.; Kempem, Lother; Duong, Tuan A.
1998-10-01
Low-cost, compact, and robust color sensor that can operate in real-time under various environmental conditions can benefit many applications, including quality control, chemical sensing, food production, medical diagnostics, energy conservation, monitoring of hazardous waste, and recycling. Unfortunately, existing color sensor are either bulky and expensive or do not provide the required speed and accuracy. In this publication we describe the design of an accurate real-time color classification sensor, together with preprocessing and a subsequent neural network processor integrated on a single complementary metal oxide semiconductor (CMOS) integrated circuit. This one-chip sensor and information processor will be low in cost, robust, and mass-producible using standard commercial CMOS processes. The performance of the chip and the feasibility of its manufacturing is proven through computer simulations based on CMOS hardware parameters. Comparisons with competing methodologies show a significantly higher performance for our device.
Method and system to estimate variables in an integrated gasification combined cycle (IGCC) plant
Kumar, Aditya; Shi, Ruijie; Dokucu, Mustafa
2013-09-17
System and method to estimate variables in an integrated gasification combined cycle (IGCC) plant are provided. The system includes a sensor suite to measure respective plant input and output variables. An extended Kalman filter (EKF) receives sensed plant input variables and includes a dynamic model to generate a plurality of plant state estimates and a covariance matrix for the state estimates. A preemptive-constraining processor is configured to preemptively constrain the state estimates and covariance matrix to be free of constraint violations. A measurement-correction processor may be configured to correct constrained state estimates and a constrained covariance matrix based on processing of sensed plant output variables. The measurement-correction processor is coupled to update the dynamic model with corrected state estimates and a corrected covariance matrix. The updated dynamic model may be configured to estimate values for at least one plant variable not originally sensed by the sensor suite.
Cao, Tian-Shu; Chi, Zhe; Liu, Guang-Lei; Chi, Zhen-Ming
2014-01-01
It has been reported that trehalose plays an important role in stress tolerance in yeasts. Therefore, in order to construct a stably recombinant Saccharomyces sp. W0 with higher ethanol tolerance, the TPS1 gene encoding 6-phosphate-trehalose synthase cloned from Saccharomycopsis fibuligera A11 was ligated into the 18S rDNA integration vector pMIRSC11 and integrated into chromosomal DNA of Saccharomyces sp. W0. The transformant Z8 obtained had the content of 6.23 g of trehalose/100 g of cell dry weight, while Saccharomyces sp. W0 only contained 4.05 g of trehalose/100 g of cell dry weight. The transformant Z8 also had higher ethanol tolerance (cell survival was 25.1 % at 18 ml of ethanol/100 ml of solution) and trehalose-6-phosphate synthase (Tps1) activity (1.3 U/mg) and produced more ethanol (16.4 ml of ethanol/100 ml of medium) than Saccharomyces sp. W0 (cell survival was 12.1 % at 18 ml of ethanol/100 ml of solution, Tps1 activity was 0.8 U/mg and the produced ethanol concentration was 14.2 ml of ethanol/100 ml of medium) under the same conditions. The results show that trehalose indeed can play an important role in ethanol tolerance and ethanol production by Saccharomyces sp. W0.
Process design and optimization of novel wheat-based continuous bioethanol production system.
Arifeen, Najmul; Wang, Ruohang; Kookos, Ioannis K; Webb, Colin; Koutinas, Apostolis A
2007-01-01
A novel design of a wheat-based biorefinery for bioethanol production, including wheat milling, gluten extraction as byproduct, fungal submerged fermentation for enzyme production, starch hydrolysis, fungal biomass autolysis for nutrient regeneration, yeast fermentation with recycling integrated with a pervaporation membrane for ethanol concentration, and fuel-grade ethanol purification by pressure swing distillation (PSD), was optimized in continuous mode using the equation-based software General Algebraic Modelling System (GAMS). The novel wheat biorefining strategy could result in a production cost within the range of dollars 0.96-0.50 gal(-1) ethanol (dollars 0.25-0.13 L(-1) ethanol) when the production capacity of the plant is within the range of 10-33.5 million gal y(-1) (37.85-126.8 million L y(-1)). The production of value-added byproducts (e.g., bran-rich pearlings, gluten, pure yeast cells) was identified as a crucial factor for improving the economics of fuel ethanol production from wheat. Integration of yeast fermentation with pervaporation membrane could result in the concentration of ethanol in the fermentation outlet stream (up to 40 mol %). The application of a PSD system that consisted of a low-pressure and a high-pressure column and employing heat integration between the high- and low-pressure columns resulted in reduced operating cost (up to 44%) for fuel-grade ethanol production.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohta, Kazuyoshi; Beall, D.S.; Mejia, J.P.
1991-04-01
Zymomonas mobilis genes for pyruvate decarboxylase (pdc) and alcohol dehydrogenase II (adhB) were integrated into the Escherichia coli chromosome within or near the pyruvate formate-lyase gene (pfl). Integration improved the stability of the Z. mobilis genes in E. coli, but further selection was required to increase expression. Spontaneous mutants were selected for resistance to high levels of chloramphenicol that also expressed high levels of the Z. mobilis genes. Analogous mutants were selected for increased expression of alcohol dehydrogenase on aldehyde indicator plates. These mutants were functionally equivalent to the previous plasmid-based strains for the fermentation of xylose and glucose tomore » ethanol. Ethanol concentrations of 54.4 and 41.6 g/liter were obtained from 10% glucose and 8% xylose, respectively. The efficiency of conversion exceeded theoretical limits (0.51 g of ethanol/g of sugar) on the basis of added sugars because of the additional production of ethanol from the catabolism of complex nutrients. Further mutations were introduced to inactivate succinate production (frd) and to block homologous recombination (recA).« less
Embedded Data Processor and Portable Computer Technology testbeds
NASA Technical Reports Server (NTRS)
Alena, Richard; Liu, Yuan-Kwei; Goforth, Andre; Fernquist, Alan R.
1993-01-01
Attention is given to current activities in the Embedded Data Processor and Portable Computer Technology testbed configurations that are part of the Advanced Data Systems Architectures Testbed at the Information Sciences Division at NASA Ames Research Center. The Embedded Data Processor Testbed evaluates advanced microprocessors for potential use in mission and payload applications within the Space Station Freedom Program. The Portable Computer Technology (PCT) Testbed integrates and demonstrates advanced portable computing devices and data system architectures. The PCT Testbed uses both commercial and custom-developed devices to demonstrate the feasibility of functional expansion and networking for portable computers in flight missions.
SPAR improved structural-fluid dynamic analysis capability
NASA Technical Reports Server (NTRS)
Pearson, M. L.
1985-01-01
The results of a study whose objective was to improve the operation of the SPAR computer code by improving efficiency, user features, and documentation is presented. Additional capability was added to the SPAR arithmetic utility system, including trigonometric functions, numerical integration, interpolation, and matrix combinations. Improvements were made in the EIG processor. A processor was created to compute and store principal stresses in table-format data sets. An additional capability was developed and incorporated into the plot processor which permits plotting directly from table-format data sets. Documentation of all these features is provided in the form of updates to the SPAR users manual.
Integrated rate isolation sensor
NASA Technical Reports Server (NTRS)
Brady, Tye (Inventor); Henderson, Timothy (Inventor); Phillips, Richard (Inventor); Zimpfer, Doug (Inventor); Crain, Tim (Inventor)
2012-01-01
In one embodiment, a system for providing fault-tolerant inertial measurement data includes a sensor for measuring an inertial parameter and a processor. The sensor has less accuracy than a typical inertial measurement unit (IMU). The processor detects whether a difference exists between a first data stream received from a first inertial measurement unit and a second data stream received from a second inertial measurement unit. Upon detecting a difference, the processor determines whether at least one of the first or second inertial measurement units has failed by comparing each of the first and second data streams to the inertial parameter.
Integral Fast Reactor fuel pin processor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levinskas, D.
1993-01-01
This report discusses the pin processor which receives metal alloy pins cast from recycled Integral Fast Reactor (IFR) fuel and prepares them for assembly into new IFR fuel elements. Either full length as-cast or precut pins are fed to the machine from a magazine, cut if necessary, and measured for length, weight, diameter and deviation from straightness. Accepted pins are loaded into cladding jackets located in a magazine, while rejects and cutting scraps are separated into trays. The magazines, trays, and the individual modules that perform the different machine functions are assembled and removed using remote manipulators and master-slaves.
Integral Fast Reactor fuel pin processor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levinskas, D.
1993-03-01
This report discusses the pin processor which receives metal alloy pins cast from recycled Integral Fast Reactor (IFR) fuel and prepares them for assembly into new IFR fuel elements. Either full length as-cast or precut pins are fed to the machine from a magazine, cut if necessary, and measured for length, weight, diameter and deviation from straightness. Accepted pins are loaded into cladding jackets located in a magazine, while rejects and cutting scraps are separated into trays. The magazines, trays, and the individual modules that perform the different machine functions are assembled and removed using remote manipulators and master-slaves.
Advanced computer architecture specification for automated weld systems
NASA Technical Reports Server (NTRS)
Katsinis, Constantine
1994-01-01
This report describes the requirements for an advanced automated weld system and the associated computer architecture, and defines the overall system specification from a broad perspective. According to the requirements of welding procedures as they relate to an integrated multiaxis motion control and sensor architecture, the computer system requirements are developed based on a proven multiple-processor architecture with an expandable, distributed-memory, single global bus architecture, containing individual processors which are assigned to specific tasks that support sensor or control processes. The specified architecture is sufficiently flexible to integrate previously developed equipment, be upgradable and allow on-site modifications.
Stanford Hardware Development Program
NASA Technical Reports Server (NTRS)
Peterson, A.; Linscott, I.; Burr, J.
1986-01-01
Architectures for high performance, digital signal processing, particularly for high resolution, wide band spectrum analysis were developed. These developments are intended to provide instrumentation for NASA's Search for Extraterrestrial Intelligence (SETI) program. The real time signal processing is both formal and experimental. The efficient organization and optimal scheduling of signal processing algorithms were investigated. The work is complemented by efforts in processor architecture design and implementation. A high resolution, multichannel spectrometer that incorporates special purpose microcoded signal processors is being tested. A general purpose signal processor for the data from the multichannel spectrometer was designed to function as the processing element in a highly concurrent machine. The processor performance required for the spectrometer is in the range of 1000 to 10,000 million instructions per second (MIPS). Multiple node processor configurations, where each node performs at 100 MIPS, are sought. The nodes are microprogrammable and are interconnected through a network with high bandwidth for neighboring nodes, and medium bandwidth for nodes at larger distance. The implementation of both the current mutlichannel spectrometer and the signal processor as Very Large Scale Integration CMOS chip sets was commenced.
Support for RESTOR, EMIST, and CHREC Space Processor
NASA Technical Reports Server (NTRS)
Shea, Bradley Franklin
2014-01-01
The goal of this project was to provide support for three different projects including RESTOR, CHREC Space Processor, and EMIST. LabVIEW software was written to verify tags in an excel spreadsheet, testing preparation was accomplished for CHREC, and full payload integration was completed for EMIST. All of these projects will contribute to advanced exploration in space and provide valuable experience.
Proton exchange membrane fuel cell technology for transportation applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swathirajan, S.
1996-04-01
Proton Exchange Membrane (PEM) fuel cells are extremely promising as future power plants in the transportation sector to achieve an increase in energy efficiency and eliminate environmental pollution due to vehicles. GM is currently involved in a multiphase program with the US Department of Energy for developing a proof-of-concept hybrid vehicle based on a PEM fuel cell power plant and a methanol fuel processor. Other participants in the program are Los Alamos National Labs, Dow Chemical Co., Ballard Power Systems and DuPont Co., In the just completed phase 1 of the program, a 10 kW PEM fuel cell power plantmore » was built and tested to demonstrate the feasibility of integrating a methanol fuel processor with a PEM fuel cell stack. However, the fuel cell power plant must overcome stiff technical and economic challenges before it can be commercialized for light duty vehicle applications. Progress achieved in phase I on the use of monolithic catalyst reactors in the fuel processor, managing CO impurity in the fuel cell stack, low-cost electrode-membrane assembles, and on the integration of the fuel processor with a Ballard PEM fuel cell stack will be presented.« less
Parallel algorithms for quantum chemistry. I. Integral transformations on a hypercube multiprocessor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whiteside, R.A.; Binkley, J.S.; Colvin, M.E.
1987-02-15
For many years it has been recognized that fundamental physical constraints such as the speed of light will limit the ultimate speed of single processor computers to less than about three billion floating point operations per second (3 GFLOPS). This limitation is becoming increasingly restrictive as commercially available machines are now within an order of magnitude of this asymptotic limit. A natural way to avoid this limit is to harness together many processors to work on a single computational problem. In principle, these parallel processing computers have speeds limited only by the number of processors one chooses to acquire. Themore » usefulness of potentially unlimited processing speed to a computationally intensive field such as quantum chemistry is obvious. If these methods are to be applied to significantly larger chemical systems, parallel schemes will have to be employed. For this reason we have developed distributed-memory algorithms for a number of standard quantum chemical methods. We are currently implementing these on a 32 processor Intel hypercube. In this paper we present our algorithm and benchmark results for one of the bottleneck steps in quantum chemical calculations: the four index integral transformation.« less
Heat integrated ethanol dehydration flowsheets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hutahaean, L.S.; Shen, W.H.; Brunt, V. Van
1995-04-01
zA theoretical evaluation of heat-integrated heterogeneous-azeotropic ethanol-water distillation flowsheets is presented. Simulations of two column flowsheets using several different hydrocarbon entrainers reveal a region of potential heat integration and substantial reduction in operating energy. In this paper, methods for comparing hydrocarbon entrainers are shown. Two aspects of entrainers are related to operating and capital costs. The binary azeotropic composition of the entrainer-ethanol mixture is related to the energy requirements of the flowsheet. A temperature difference in the azeotrophic column is related to the size of the column and overall process staging requirements. Although the hydrophobicity of an entrainer is essentialmore » for specification of staging in the dehydration column, no substantial increase in operating energy results from an entrainer that has a higher water content. Likewise, liquid-liquid equilibria between several entrainer-ethanol-water mixtures have no substantial effect on either staging or operation. Rather, increasing the alcohol content of the entrainer-ethanol azeotrope limits its recovery in the dehydration column, and increases the recycle and reflux streams. These effects both contribute to increasing the separation energy requirements and reducing the region of potential heat integration. A cost comparison with a multieffect extractive distillation flowsheet reveals that the costs are comparable; however, the extractive distillation flowsheet is more cost effective as operating costs increase.« less
Efficient Load Balancing and Data Remapping for Adaptive Grid Calculations
NASA Technical Reports Server (NTRS)
Oliker, Leonid; Biswas, Rupak
1997-01-01
Mesh adaption is a powerful tool for efficient unstructured- grid computations but causes load imbalance among processors on a parallel machine. We present a novel method to dynamically balance the processor workloads with a global view. This paper presents, for the first time, the implementation and integration of all major components within our dynamic load balancing strategy for adaptive grid calculations. Mesh adaption, repartitioning, processor assignment, and remapping are critical components of the framework that must be accomplished rapidly and efficiently so as not to cause a significant overhead to the numerical simulation. Previous results indicated that mesh repartitioning and data remapping are potential bottlenecks for performing large-scale scientific calculations. We resolve these issues and demonstrate that our framework remains viable on a large number of processors.
Integrated strategic and tactical biomass-biofuel supply chain optimization.
Lin, Tao; Rodríguez, Luis F; Shastri, Yogendra N; Hansen, Alan C; Ting, K C
2014-03-01
To ensure effective biomass feedstock provision for large-scale biofuel production, an integrated biomass supply chain optimization model was developed to minimize annual biomass-ethanol production costs by optimizing both strategic and tactical planning decisions simultaneously. The mixed integer linear programming model optimizes the activities range from biomass harvesting, packing, in-field transportation, stacking, transportation, preprocessing, and storage, to ethanol production and distribution. The numbers, locations, and capacities of facilities as well as biomass and ethanol distribution patterns are key strategic decisions; while biomass production, delivery, and operating schedules and inventory monitoring are key tactical decisions. The model was implemented to study Miscanthus-ethanol supply chain in Illinois. The base case results showed unit Miscanthus-ethanol production costs were $0.72L(-1) of ethanol. Biorefinery related costs accounts for 62% of the total costs, followed by biomass procurement costs. Sensitivity analysis showed that a 50% reduction in biomass yield would increase unit production costs by 11%. Copyright © 2014 Elsevier Ltd. All rights reserved.
Yang, Xinchao; Wang, Ke; Wang, Huijun; Zhang, Jianhua; Mao, Zhonggui
2016-11-01
An process of integrated ethanol-methane fermentation with improved economics has been studied extensively in recent years, where the process water used for a subsequent fermentation of carbohydrate biomass is recycled. This paper presents a systematic study of the ethanol fermentation characteristics of recycled process water. Compared with tap water, fermentation time was shortened by 40% when mixed water was employed. However, while the maximal ethanol production rate increased from 1.07g/L/h to 2.01g/L/h, ethanol production was not enhanced. Cell number rose from 0.6×10(8) per mL in tap water to 1.6×10(8) per mL in mixed water but although biomass increased, cell morphology was not affected. Furthermore, the use of mixed water increased the glycerol yield but decreased that of acetic acid, and the final pH with mixed water was higher than when using tap water. Copyright © 2016 Elsevier Ltd. All rights reserved.
Nair, Ramkumar B; Taherzadeh, Mohammad J
2016-12-01
The aim of the present work was to study the integration of edible ascomycetes filamentous fungi into the existing sugar- or molasses-to-ethanol processes, to grow on vinasse or stillage and produce ethanol and protein-rich fungal biomass. Two fungal strains, Neurospora intermedia and Aspergillus oryzae were examined in shake flasks and airlift-bioreactors, resulting in reduction of vinasse COD by 34% and viscosity by 21%. Utilization of glycerol and sugars were observed, yielding 202.4 or 222.8g dry fungal biomass of N. intermedia or A. oryzae respectively, per liter of vinasse. Integration of the current process at an existing ethanol facility producing about 100,000m 3 of ethanol per year could produce around 200,000-250,000tons of dry fungal biomass (40-45% protein) together with about 8800-12,600m 3 extra ethanol (8.8-12.6% of production-rate improvement). Copyright © 2016 Elsevier Ltd. All rights reserved.
NEXT Single String Integration Test Results
NASA Technical Reports Server (NTRS)
Soulas, George C.; Patterson, Michael J.; Pinero, Luis; Herman, Daniel A.; Snyder, Steven John
2010-01-01
As a critical part of NASA's Evolutionary Xenon Thruster (NEXT) test validation process, a single string integration test was performed on the NEXT ion propulsion system. The objectives of this test were to verify that an integrated system of major NEXT ion propulsion system elements meets project requirements, to demonstrate that the integrated system is functional across the entire power processor and xenon propellant management system input ranges, and to demonstrate to potential users that the NEXT propulsion system is ready for transition to flight. Propulsion system elements included in this system integration test were an engineering model ion thruster, an engineering model propellant management system, an engineering model power processor unit, and a digital control interface unit simulator that acted as a test console. Project requirements that were verified during this system integration test included individual element requirements ; integrated system requirements, and fault handling. This paper will present the results of these tests, which include: integrated ion propulsion system demonstrations of performance, functionality and fault handling; a thruster re-performance acceptance test to establish baseline performance: a risk-reduction PMS-thruster integration test: and propellant management system calibration checks.
The energy demand of distillation-based systems for ethanol recovery and dehydration can be significant, particularly for dilute solutions [1]. An alternative separation process integrating vapor stripping with a vapor compression step and a vapor permeation membrane separation ...
Real-time phase correlation based integrated system for seizure detection
NASA Astrophysics Data System (ADS)
Romaine, James B.; Delgado-Restituto, Manuel; Leñero-Bardallo, Juan A.; Rodríguez-Vázquez, Ángel
2017-05-01
This paper reports a low area, low power, integer-based digital processor for the calculation of phase synchronization between two neural signals. The processor calculates the phase-frequency content of a signal by identifying the specific time periods associated with two consecutive minima. The simplicity of this phase-frequency content identifier allows for the digital processor to utilize only basic digital blocks, such as registers, counters, adders and subtractors, without incorporating any complex multiplication and or division algorithms. In fact, the processor, fabricated in a 0.18μm CMOS process, only occupies an area of 0.0625μm2 and consumes 12.5nW from a 1.2V supply voltage when operated at 128kHz. These low-area, low-power features make the proposed processor a valuable computing element in closed loop neural prosthesis for the treatment of neural diseases, such as epilepsy, or for extracting functional connectivity maps between different recording sites in the brain.
2001-06-19
Queue Get Put The MutexQ module provides primitive queue operations which synchronize access to the queues and ensure queue structure integrity...interface provides for synchronous data rates ranging from 64 Kbps to 1.536 Mbps, while an RS-232 interface accommodates asynchronous data up to...interface VME Communications processor 57 and 8-channel serial I/O board. This board set provides a 68040 processor and 8-channels of synchronous
A unified approach to VLSI layout automation and algorithm mapping on processor arrays
NASA Technical Reports Server (NTRS)
Venkateswaran, N.; Pattabiraman, S.; Srinivasan, Vinoo N.
1993-01-01
Development of software tools for designing supercomputing systems is highly complex and cost ineffective. To tackle this a special purpose PAcube silicon compiler which integrates different design levels from cell to processor arrays has been proposed. As a part of this, we present in this paper a novel methodology which unifies the problems of Layout Automation and Algorithm Mapping.
New Dimensions in Microarchitecture Harnessing 3D Integration Technologies (BRIEFING CHARTS)
2007-03-06
Quad Core Bandwidth and Latency Boundaries General Purpose Processor Loads Latency limited Ba nd w id th li m ite dProcessor load trade -off between I...delay No= number of ckts at 1V do= ckt delay at 1V From “3D Intergration ” Special Topic Sessionl W. Haensch, ISSCC ‘07, 2/07 11 DARPA MTS March 6, 2007
Dormancy and Recovery Testing for Biological Wastewater Processors
NASA Technical Reports Server (NTRS)
Hummerick, Mary F.; Coutts, Janelle L.; Lunn, Griffin M.; Spencer, LaShelle; Khodadad, Christina L.; Birmele, Michele N.; Frances, Someliz; Wheeler, Raymond
2015-01-01
Resource recovery and recycling waste streams to usable water via biological water processors is a plausible component of an integrated water purification system. Biological processing as a pretreatment can reduce the load of organic carbon and nitrogen compounds entering physiochemical systems downstream. Aerated hollow fiber membrane bioreactors, have been proposed and studied for a number of years as an approach for treating wastewater streams for space exploration.
Junyong Zhu; Ronald Sabo; Xiaolin Luo
2011-01-01
This study demonstrates the feasibility of integrating the production of nano-fibrillated cellulose (NFC), a potentially highly valuable biomaterial, with sugar/biofuel (ethanol) from wood fibers. Commercial cellulase enzymes were used to fractionate the less recalcitrant amorphous cellulose from a bleached Kraft eucalyptus pulp, resulting in a highly crystalline and...
A hybrid process integrating vapor stripping with vapor compression and vapor permeation membrane separation, termed Membrane Assisted Vapor Stripping (MAVS), was evaluated for recovery and dehydration of ethanol and/or 1-butanol from aqueous solution as an alternative to convent...
Integrating a Hypernymic Proposition Interpreter into a Semantic Processor for Biomedical Texts
Fiszman, Marcelo; Rindflesch, Thomas C.; Kilicoglu, Halil
2003-01-01
Semantic processing provides the potential for producing high quality results in natural language processing (NLP) applications in the biomedical domain. In this paper, we address a specific semantic phenomenon, the hypernymic proposition, and concentrate on integrating the interpretation of such predications into a more general semantic processor in order to improve overall accuracy. A preliminary evaluation assesses the contribution of hypernymic propositions in providing more specific semantic predications and thus improving effectiveness in retrieving treatment propositions in MEDLINE abstracts. Finally, we discuss the generalization of this methodology to additional semantic propositions as well as other types of biomedical texts. PMID:14728170
Real-time, interactive animation of deformable two- and three-dimensional objects
Desbrun, Mathieu; Schroeder, Peter; Meyer, Mark; Barr, Alan H.
2003-06-03
A method of updating in real-time the locations and velocities of mass points of a two- or three-dimensional object represented by a mass-spring system. A modified implicit Euler integration scheme is employed to determine the updated locations and velocities. In an optional post-integration step, the updated locations are corrected to preserve angular momentum. A processor readable medium and a network server each tangibly embodying the method are also provided. A system comprising a processor in combination with the medium, and a system comprising the server in combination with a client for accessing the server over a computer network, are also provided.
You, Shengping; Chang, Hongxing; Yin, Qingdian; Qi, Wei; Wang, Mengfan; Su, Rongxin; He, Zhimin
2017-12-01
Whey powder, a by-product of dairy industry, is an attractive raw material for value-added products. In this study, utilization of whey powder as substrate for low-cost preparation of β-galactosidase as main product and ethanol as by-product were investigated by a litre-scale integrated strategy, encompassing fermentation, isolation, permeabilization and spray drying. Firstly, through development of low-cost industrial culture and fed-batch strategies by Kluyveromyces lactis, 119.30U/mL β-galactosidase activity and 16.96mg/mL by-product ethanol were achieved. Afterward, an up-dated mathematic model for the recycling permeabilization was established successfully and 30.4g cells sediment isolated from 5L fermentation broth were permeabilized completely by distilled ethanol from broth supernatant. Then β-galactosidase product with 5.15U/mg from protection of gum acacia by spray drying was obtained. Furthermore, by-product ethanol with 31.08% (v/v) was achieved after permeabilization. Therefore, the integrated strategy using whey powder as substrate is a feasible candidate for industrial-scale implementation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Scalable ion-photon quantum interface based on integrated diffractive mirrors
NASA Astrophysics Data System (ADS)
Ghadimi, Moji; Blūms, Valdis; Norton, Benjamin G.; Fisher, Paul M.; Connell, Steven C.; Amini, Jason M.; Volin, Curtis; Hayden, Harley; Pai, Chien-Shing; Kielpinski, David; Lobino, Mirko; Streed, Erik W.
2017-12-01
Quantum networking links quantum processors through remote entanglement for distributed quantum information processing and secure long-range communication. Trapped ions are a leading quantum information processing platform, having demonstrated universal small-scale processors and roadmaps for large-scale implementation. Overall rates of ion-photon entanglement generation, essential for remote trapped ion entanglement, are limited by coupling efficiency into single mode fibers and scaling to many ions. Here, we show a microfabricated trap with integrated diffractive mirrors that couples 4.1(6)% of the fluorescence from a 174Yb+ ion into a single mode fiber, nearly triple the demonstrated bulk optics efficiency. The integrated optic collects 5.8(8)% of the π transition fluorescence, images the ion with sub-wavelength resolution, and couples 71(5)% of the collected light into the fiber. Our technology is suitable for entangling multiple ions in parallel and overcomes mode quality limitations of existing integrated optical interconnects.
Miniature Fuel Processors for Portable Fuel Cell Power Supplies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holladay, Jamie D.; Jones, Evan O.; Palo, Daniel R.
2003-06-02
Miniature and micro-scale fuel processors are discussed. The enabling technologies for these devices are the novel catalysts and the micro-technology-based designs. The novel catalyst allows for methanol reforming at high gas hourly space velocities of 50,000 hr-1 or higher, while maintaining a carbon monoxide levels at 1% or less. The micro-technology-based designs enable the devices to be extremely compact and lightweight. The miniature fuel processors can nominally provide between 25-50 watts equivalent of hydrogen which is ample for soldier or personal portable power supplies. The integrated processors have a volume less than 50 cm3, a mass less than 150 grams,more » and thermal efficiencies of up to 83%. With reasonable assumptions on fuel cell efficiencies, anode gas and water management, parasitic power loss, etc., the energy density was estimated at 1700 Whr/kg. The miniature processors have been demonstrated with a carbon monoxide clean-up method and a fuel cell stack. The micro-scale fuel processors have been designed to provide up to 0.3 watt equivalent of power with efficiencies over 20%. They have a volume of less than 0.25 cm3 and a mass of less than 1 gram.« less
Computer-Aided Fabrication of Integrated Circuits
1989-09-30
baseline CMOS process. One result of this effort was the identification of several residual bugs in the PATRAN graphics processor . The vendor promises...virtual memory. The internal Nubus architecture uses a 32-bit LISP processor running at 10 megahertz (100 ns clock period). An ethernet controller is...For different patterns, we need different masks for the photo step, and for dif- ferent micro -structures of the wafers, we need different etching
Temporal integration in nasal lateralization of ethanol.
Wise, Paul M; Canty, Thomas M; Wysocki, Charles J
2006-03-01
Two experiments examined the trade-off between concentration and stimulus duration in nasal lateralization of n-ethyl alcohol. In nasal lateralization, a common measure of irritation threshold, subjects receive chemical vapor in one nostril and clean air in the other. Subjects try to determine which nostril received the chemical. Within experimental runs, subjects received fixed concentrations (1650-5000 ppm) of ethanol, and duration was varied to find the shortest, lateralizable stimulus. In Experiment 1, a small group of subjects was tested intensively to obtain stable individual data. In Experiment 2, a larger group was studied using more rapid methods. In both cases, subjects could lateralize increasingly weaker concentrations with longer stimulus presentations. Hence integration occurred. However, more than a twofold increase in duration was required to compensate for a twofold decrease in concentration to maintain threshold lateralization. These results suggest that an imperfect, mass-integrator model can describe short-term integration of nasal lateralization of ethanol.
Tanimura, Ayumi; Kikukawa, Minako; Yamaguchi, Shino; Kishino, Shigenobu; Ogawa, Jun; Shima, Jun
2015-04-22
Consolidated bioprocessing (CBP), which integrates enzyme production, saccharification and fermentation into a one-step process, is a promising strategy for cost-effective ethanol production from starchy biomass. To gain insights into starch-based ethanol production using CBP, an extensive screening was undertaken to identify naturally occurring yeasts that produce ethanol without the addition of any amylases. Three yeast strains were capable of producing a significant amount of ethanol. Quantitative assays revealed that Scheffersomyces shehatae JCM 18690 was the strain showing the highest ethanol production ability. This strain was able to utilize starch directly, and the ethanol concentration reached 9.21 g/L. We attribute the ethanol-producing ability of this strain to the high levels of glucoamylase activity, fermentation potential and ethanol stress tolerance. This study strongly suggests the possibility of starch-based ethanol production by consolidated bioprocessing using natural yeasts such as S. shehatae JCM 18690.
Tanimura, Ayumi; Kikukawa, Minako; Yamaguchi, Shino; Kishino, Shigenobu; Ogawa, Jun; Shima, Jun
2015-01-01
Consolidated bioprocessing (CBP), which integrates enzyme production, saccharification and fermentation into a one-step process, is a promising strategy for cost-effective ethanol production from starchy biomass. To gain insights into starch-based ethanol production using CBP, an extensive screening was undertaken to identify naturally occurring yeasts that produce ethanol without the addition of any amylases. Three yeast strains were capable of producing a significant amount of ethanol. Quantitative assays revealed that Scheffersomyces shehatae JCM 18690 was the strain showing the highest ethanol production ability. This strain was able to utilize starch directly, and the ethanol concentration reached 9.21 g/L. We attribute the ethanol-producing ability of this strain to the high levels of glucoamylase activity, fermentation potential and ethanol stress tolerance. This study strongly suggests the possibility of starch-based ethanol production by consolidated bioprocessing using natural yeasts such as S. shehatae JCM 18690. PMID:25901788
Cresci, Gail A; Glueck, Bryan; McMullen, Megan R; Xin, Wei; Allende, Daniella; Nagy, Laura E
2017-09-01
Impaired gut-liver axis is a potential factor contributing to alcoholic liver disease. Ethanol depletes intestinal integrity and causes gut dysbiosis. Butyrate, a fermentation byproduct of gut microbiota, is altered negatively following chronic ethanol exposure. This study aimed to determine whether prophylactic tributyrin could protect the intestinal barrier and liver in mice during combined chronic-binge ethanol exposure. C57BL/6J mice exposed to 5% v/v ethanol-containing diet for 10 days received a single ethanol gavage (5 g/kg) 9 h before euthanasia. Control mice were isocalorically pair-fed maltose dextrin for ethanol. Diets were supplemented (5 mM) with tributyrin or glycerol. Intestine and liver disease activity was assessed histologically. Protein and mRNA expression of tight junction (TJ) proteins, toll-like receptors, and tumor necrosis factor-alpha were assessed. Caco-2 monolayers with or without ethanol exposure and/or sodium butyrate were used to test butyrate's direct effects on intestinal integrity. Chronic-binge ethanol feeding impaired intestinal TJ protein co-localization staining; however, tributyrin co-treatment mitigated these effects. Ethanol depleted TJ and transepithelial electrical resistance in Caco-2 monolayers, but butyrate co-treatment reduced these effects. Hepatic toll-like receptor mRNA expression and tumor necrosis factor-alpha protein expression was induced by ethanol; however, the response was significantly dampened in mice co-treated with tributyrin. Tributyrin altered localization of both neutrophils and single hepatocyte death: Leukocytes and apoptotic hepatocytes localized predominantly around the portal tract in ethanol-only treated mice, whereas localization predominated around the central vein in ethanol-tributyrin mice. Prophylactic tributyrin supplementation mitigated effects of combined chronic-binge ethanol exposure on disruption of intestinal TJ localization and intestinal permeability and liver injury. © 2017 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.
Autonomous, agile micro-satellites and supporting technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Breitfeller, E; Dittman, M D; Gaughan, R J
1999-07-19
This paper updates the on-going effort at Lawrence Livermore National Laboratory to develop autonomous, agile micro-satellites (MicroSats). The objective of this development effort is to develop MicroSats weighing only a few tens of kilograms, that are able to autonomously perform precision maneuvers and can be used telerobotically in a variety of mission modes. The required capabilities include satellite rendezvous, inspection, proximity-operations, docking, and servicing. The MicroSat carries an integrated proximity-operations sensor-suite incorporating advanced avionics. A new self-pressurizing propulsion system utilizing a miniaturized pump and non-toxic mono-propellant hydrogen peroxide was successfully tested. This system can provide a nominal 25 kg MicroSatmore » with 200-300 m/s delta-v including a warm-gas attitude control system. The avionics is based on the latest PowerPC processor using a CompactPCI bus architecture, which is modular, high-performance and processor-independent. This leverages commercial-off-the-shelf (COTS) technologies and minimizes the effects of future changes in processors. The MicroSat software development environment uses the Vx-Works real-time operating system (RTOS) that provides a rapid development environment for integration of new software modules, allowing early integration and test. We will summarize results of recent integrated ground flight testing of our latest non-toxic pumped propulsion MicroSat testbed vehicle operated on our unique dynamic air-rail.« less
Processor farming in two-level analysis of historical bridge
NASA Astrophysics Data System (ADS)
Krejčí, T.; Kruis, J.; Koudelka, T.; Šejnoha, M.
2017-11-01
This contribution presents a processor farming method in connection with a multi-scale analysis. In this method, each macro-scopic integration point or each finite element is connected with a certain meso-scopic problem represented by an appropriate representative volume element (RVE). The solution of a meso-scale problem provides then effective parameters needed on the macro-scale. Such an analysis is suitable for parallel computing because the meso-scale problems can be distributed among many processors. The application of the processor farming method to a real world masonry structure is illustrated by an analysis of Charles bridge in Prague. The three-dimensional numerical model simulates the coupled heat and moisture transfer of one half of arch No. 3. and it is a part of a complex hygro-thermo-mechanical analysis which has been developed to determine the influence of climatic loading on the current state of the bridge.
Control structures for high speed processors
NASA Technical Reports Server (NTRS)
Maki, G. K.; Mankin, R.; Owsley, P. A.; Kim, G. M.
1982-01-01
A special processor was designed to function as a Reed Solomon decoder with throughput data rate in the Mhz range. This data rate is significantly greater than is possible with conventional digital architectures. To achieve this rate, the processor design includes sequential, pipelined, distributed, and parallel processing. The processor was designed using a high level language register transfer language. The RTL can be used to describe how the different processes are implemented by the hardware. One problem of special interest was the development of dependent processes which are analogous to software subroutines. For greater flexibility, the RTL control structure was implemented in ROM. The special purpose hardware required approximately 1000 SSI and MSI components. The data rate throughput is 2.5 megabits/second. This data rate is achieved through the use of pipelined and distributed processing. This data rate can be compared with 800 kilobits/second in a recently proposed very large scale integration design of a Reed Solomon encoder.
Integrated High-Speed Torque Control System for a Robotic Joint
NASA Technical Reports Server (NTRS)
Davis, Donald R. (Inventor); Radford, Nicolaus A. (Inventor); Permenter, Frank Noble (Inventor); Valvo, Michael C. (Inventor); Askew, R. Scott (Inventor)
2013-01-01
A control system for achieving high-speed torque for a joint of a robot includes a printed circuit board assembly (PCBA) having a collocated joint processor and high-speed communication bus. The PCBA may also include a power inverter module (PIM) and local sensor conditioning electronics (SCE) for processing sensor data from one or more motor position sensors. Torque control of a motor of the joint is provided via the PCBA as a high-speed torque loop. Each joint processor may be embedded within or collocated with the robotic joint being controlled. Collocation of the joint processor, PIM, and high-speed bus may increase noise immunity of the control system, and the localized processing of sensor data from the joint motor at the joint level may minimize bus cabling to and from each control node. The joint processor may include a field programmable gate array (FPGA).
A GaAs vector processor based on parallel RISC microprocessors
NASA Astrophysics Data System (ADS)
Misko, Tim A.; Rasset, Terry L.
A vector processor architecture based on the development of a 32-bit microprocessor using gallium arsenide (GaAs) technology has been developed. The McDonnell Douglas vector processor (MVP) will be fabricated completely from GaAs digital integrated circuits. The MVP architecture includes a vector memory of 1 megabyte, a parallel bus architecture with eight processing elements connected in parallel, and a control processor. The processing elements consist of a reduced instruction set CPU (RISC) with four floating-point coprocessor units and necessary memory interface functions. This architecture has been simulated for several benchmark programs including complex fast Fourier transform (FFT), complex inner product, trigonometric functions, and sort-merge routine. The results of this study indicate that the MVP can process a 1024-point complex FFT at a speed of 112 microsec (389 megaflops) while consuming approximately 618 W of power in a volume of approximately 0.1 ft-cubed.
A high-speed digital signal processor for atmospheric radar, part 7.3A
NASA Technical Reports Server (NTRS)
Brosnahan, J. W.; Woodard, D. M.
1984-01-01
The Model SP-320 device is a monolithic realization of a complex general purpose signal processor, incorporating such features as a 32-bit ALU, a 16-bit x 16-bit combinatorial multiplier, and a 16-bit barrel shifter. The SP-320 is designed to operate as a slave processor to a host general purpose computer in applications such as coherent integration of a radar return signal in multiple ranges, or dedicated FFT processing. Presently available is an I/O module conforming to the Intel Multichannel interface standard; other I/O modules will be designed to meet specific user requirements. The main processor board includes input and output FIFO (First In First Out) memories, both with depths of 4096 W, to permit asynchronous operation between the source of data and the host computer. This design permits burst data rates in excess of 5 MW/s.
PLUM: Parallel Load Balancing for Adaptive Unstructured Meshes
NASA Technical Reports Server (NTRS)
Oliker, Leonid; Biswas, Rupak; Saini, Subhash (Technical Monitor)
1998-01-01
Mesh adaption is a powerful tool for efficient unstructured-grid computations but causes load imbalance among processors on a parallel machine. We present a novel method called PLUM to dynamically balance the processor workloads with a global view. This paper presents the implementation and integration of all major components within our dynamic load balancing strategy for adaptive grid calculations. Mesh adaption, repartitioning, processor assignment, and remapping are critical components of the framework that must be accomplished rapidly and efficiently so as not to cause a significant overhead to the numerical simulation. A data redistribution model is also presented that predicts the remapping cost on the SP2. This model is required to determine whether the gain from a balanced workload distribution offsets the cost of data movement. Results presented in this paper demonstrate that PLUM is an effective dynamic load balancing strategy which remains viable on a large number of processors.
MAP3D: a media processor approach for high-end 3D graphics
NASA Astrophysics Data System (ADS)
Darsa, Lucia; Stadnicki, Steven; Basoglu, Chris
1999-12-01
Equator Technologies, Inc. has used a software-first approach to produce several programmable and advanced VLIW processor architectures that have the flexibility to run both traditional systems tasks and an array of media-rich applications. For example, Equator's MAP1000A is the world's fastest single-chip programmable signal and image processor targeted for digital consumer and office automation markets. The Equator MAP3D is a proposal for the architecture of the next generation of the Equator MAP family. The MAP3D is designed to achieve high-end 3D performance and a variety of customizable special effects by combining special graphics features with high performance floating-point and media processor architecture. As a programmable media processor, it offers the advantages of a completely configurable 3D pipeline--allowing developers to experiment with different algorithms and to tailor their pipeline to achieve the highest performance for a particular application. With the support of Equator's advanced C compiler and toolkit, MAP3D programs can be written in a high-level language. This allows the compiler to successfully find and exploit any parallelism in a programmer's code, thus decreasing the time to market of a given applications. The ability to run an operating system makes it possible to run concurrent applications in the MAP3D chip, such as video decoding while executing the 3D pipelines, so that integration of applications is easily achieved--using real-time decoded imagery for texturing 3D objects, for instance. This novel architecture enables an affordable, integrated solution for high performance 3D graphics.
Tingling, Joseph D.; Bake, Shameena; Holgate, Rhonda; Rawlings, Jeremy; Nagsuk, Phillips P.; Chandrasekharan, Jayashree; Schneider, Sarah L.; Miranda, Rajesh C.
2013-01-01
Background Ethanol is a potent teratogen. Its adverse neural effects are partly mediated by disrupting fetal neurogenesis. The teratogenic process is poorly understood, and vulnerable neurogenic stages have not been identified. Identifying these is a prerequisite for therapeutic interventions to mitigate effects of teratogen exposures. Methods We used flow cytometry and qRT-PCR to screen fetal mouse-derived neurosphere cultures for ethanol-sensitive neural stem cell (NSC) subpopulations, to study NSC renewal and differentiation. The identity of vulnerable NSC populations was validated in vivo, using a maternal ethanol exposure model. Finally, the effect of ethanol exposure on the ability of vulnerable NSC subpopulations to integrate into the fetal neurogenic environment was assessed following ultrasound guided, adoptive transfer. Results Ethanol decreased NSC mRNAs for c-kit, Musashi-1and GFAP. The CD24+ NSC population, specifically the CD24+CD15+ double-positive subpopulation, was selectively decreased by ethanol. Maternal ethanol exposure also resulted in decreased fetal forebrain CD24 expression. Ethanol pre-exposed CD24+ cells exhibited increased proliferation, and deficits in cell-autonomous and cue-directed neuronal differentiation, and following orthotopic transplantation into naïve fetuses, were unable to integrate into neurogenic niches. CD24depleted cells retained neurosphere regeneration capacity, but following ethanol exposure, generated increased numbers of CD24+ cells relative to controls. Conclusions Neuronal lineage committed CD24+ cells exhibit specific vulnerability, and ethanol exposure persistently impairs this population’s cell-autonomous differentiation capacity. CD24+ cells may additionally serve as quorum sensors within neurogenic niches; their loss, leading to compensatory NSC activation, perhaps depleting renewal capacity. These data collectively advance a mechanistic hypothesis for teratogenesis leading to microencephaly. PMID:23894503
HEP - A semaphore-synchronized multiprocessor with central control. [Heterogeneous Element Processor
NASA Technical Reports Server (NTRS)
Gilliland, M. C.; Smith, B. J.; Calvert, W.
1976-01-01
The paper describes the design concept of the Heterogeneous Element Processor (HEP), a system tailored to the special needs of scientific simulation. In order to achieve high-speed computation required by simulation, HEP features a hierarchy of processes executing in parallel on a number of processors, with synchronization being largely accomplished by hardware. A full-empty-reserve scheme of synchronization is realized by zero-one-valued hardware semaphores. A typical system has, besides the control computer and the scheduler, an algebraic module, a memory module, a first-in first-out (FIFO) module, an integrator module, and an I/O module. The architecture of the scheduler and the algebraic module is examined in detail.
Prototype Focal-Plane-Array Optoelectronic Image Processor
NASA Technical Reports Server (NTRS)
Fang, Wai-Chi; Shaw, Timothy; Yu, Jeffrey
1995-01-01
Prototype very-large-scale integrated (VLSI) planar array of optoelectronic processing elements combines speed of optical input and output with flexibility of reconfiguration (programmability) of electronic processing medium. Basic concept of processor described in "Optical-Input, Optical-Output Morphological Processor" (NPO-18174). Performs binary operations on binary (black and white) images. Each processing element corresponds to one picture element of image and located at that picture element. Includes input-plane photodetector in form of parasitic phototransistor part of processing circuit. Output of each processing circuit used to modulate one picture element in output-plane liquid-crystal display device. Intended to implement morphological processing algorithms that transform image into set of features suitable for high-level processing; e.g., recognition.
Error recovery in shared memory multiprocessors using private caches
NASA Technical Reports Server (NTRS)
Wu, Kun-Lung; Fuchs, W. Kent; Patel, Janak H.
1990-01-01
The problem of recovering from processor transient faults in shared memory multiprocesses systems is examined. A user-transparent checkpointing and recovery scheme using private caches is presented. Processes can recover from errors due to faulty processors by restarting from the checkpointed computation state. Implementation techniques using checkpoint identifiers and recovery stacks are examined as a means of reducing performance degradation in processor utilization during normal execution. This cache-based checkpointing technique prevents rollback propagation, provides rapid recovery, and can be integrated into standard cache coherence protocols. An analytical model is used to estimate the relative performance of the scheme during normal execution. Extensions to take error latency into account are presented.
An integrative analysis of ethanol tolerance and withdrawal in zebrafish (Danio rerio)
Tran, Steven; Chatterjee, Diptendu; Gerlai, Robert
2014-01-01
The zebrafish is emerging as a popular animal model for alcohol (ethanol or EtOH) addiction due to its simplicity and practical advantages. Two phenomena associated with ethanol addiction are the development of tolerance and withdrawal. Using a multi-level approach in the current study, we characterize ethanol tolerance and withdrawal in zebrafish. We first investigate the temporal trajectory of ethanol concentration in the zebrafish brain in response to an acute exposure and during withdrawal. We report that ethanol concentrations approach a steady state within 60 minutes of exposure to 0.50% and 1.00% v/v ethanol and rapidly decline and return to zero within 60 minutes following withdrawal from chronic ethanol exposure (0.50% v/v). We characterize the changes associated with ethanol tolerance and withdrawal in zebrafish by focusing on 3 domains relevant to ethanol addiction: motor patterns, physiological responses (i.e. cortisol levels), and neurochemical alterations. The use of multiple domains of investigation allowed an in-depth analysis of ethanol induced changes in zebrafish. PMID:24598276
Fang, Wai-Chi; Huang, Kuan-Ju; Chou, Chia-Ching; Chang, Jui-Chung; Cauwenberghs, Gert; Jung, Tzyy-Ping
2014-01-01
This is a proposal for an efficient very-large-scale integration (VLSI) design, 16-channel on-line recursive independent component analysis (ORICA) processor ASIC for real-time EEG system, implemented with TSMC 40 nm CMOS technology. ORICA is appropriate to be used in real-time EEG system to separate artifacts because of its highly efficient and real-time process features. The proposed ORICA processor is composed of an ORICA processing unit and a singular value decomposition (SVD) processing unit. Compared with previous work [1], this proposed ORICA processor has enhanced effectiveness and reduced hardware complexity by utilizing a deeper pipeline architecture, shared arithmetic processing unit, and shared registers. The 16-channel random signals which contain 8-channel super-Gaussian and 8-channel sub-Gaussian components are used to analyze the dependence of the source components, and the average correlation coefficient is 0.95452 between the original source signals and extracted ORICA signals. Finally, the proposed ORICA processor ASIC is implemented with TSMC 40 nm CMOS technology, and it consumes 15.72 mW at 100 MHz operating frequency.
Integrated pest management for certified organic production in Oklahoma
USDA-ARS?s Scientific Manuscript database
Integrated pest management (IPM) and sustainable agriculture are basic precepts within the organic crop production philosophy. The establishment of federal guidelines for organic certification in 2002 provided a structure for producers and processors to market certified organic foods. The guidelin...
1985-12-01
Office of Scientific Research , and Air Force Space Division are sponsoring research for the development of a high speed DFT processor. This DFT...to the arithmetic circuitry through a master/slave 11-15 %v OPR ONESHOT OUTPUT OUTPUT .., ~ INITIALIZATION COLUMN’ 00 N DONE CUTRPLANE PLAtNE Figure...Since the TSP is an NP-complete problem, many mathematicians, operations researchers , computer scientists and the like have proposed heuristic
A Qualitative Security Analysis of a New Class of 3-D Integrated Crypto Co-processors
2012-01-01
and mobile phones, lottery ticket vending machines , and various electronic payment systems. The main reason for their use in such applications is that...military applications such as secure communication links. However, the proliferation of Automated Teller Machines (ATMs) in the ’80s introduced them to...commercial applications. Today many popular consumer devices have cryptographic processors in them, for example, smart- cards for pay-TV access machines
Ethanol fuel improves pitfall traps through rapid sinking and death of captured orthopterans.
Szinwelski, N; Yotoko, K S C; Solar, R; Seleme, L R; Sperber, C F
2013-08-01
The choice of killing solutions for pitfall traps can influence sampling and is highly dependent on the objectives of each study. It is becoming increasingly common, however, and is more environmentally friendly, to use the same organisms to extract information for different kinds of studies. The killing solution should, therefore, be able to sample local active organisms, as well as maintain the integrity of their organs, tissues, and macromolecules. In a previous work, we showed that using ethanol fuel as a killing solution maintains the integrity of the specimens and enhances the Orthoptera richness and abundance of samples. In the current study, we evaluated two explanations for this pattern. We set up a field experiment to test whether ethanol fuel is attractive for orthopterans, and we investigated in the laboratory whether individuals of Gryllus sp. sink or die faster in ethanol fuel than in other killing solutions. Our results allowed us to refute the hypotheses of attraction caused by ethanol fuel and showed that the higher sampling efficiency of ethanol fuel is directly linked to the specimens sinking and dying faster than in other killing solutions. Thus, in addition to taxonomic, anatomical, and molecular studies, we recommend ethanol fuel for sampling organisms active in the litter in ecological studies.
Adverse effects associated with ethanol catheter lock solutions: a systematic review.
Mermel, Leonard A; Alang, Neha
2014-10-01
Antimicrobial lock therapy has been widely utilized internationally for the prevention and management of intravascular catheter-related bloodstream infections. One of the agents commonly utilized for lock therapy is ethanol. However, a systematic review of adverse events associated with ethanol locks has not been published. PubMed was searched to collect articles published from May 2003 through March 2014. The bibliographies of relevant articles were also reviewed. In vitro studies of the mechanical properties of catheters after ethanol immersion have revealed changes predominantly in polyurethane catheters and to a lesser extent in silicone and Carbothane catheters. An elution of polymers from polyurethane and Carbothane catheters has been observed at the ethanol concentrations used in ethanol lock therapy. Ethanol above a concentration of 28% leads to plasma protein precipitation. Ethanol locks were associated with catheter occlusion in 11 studies and independently increased the risk of thrombosis compared with heparin lock in a randomized trial. Six studies noted abnormalities in catheter integrity, including one case leading to catheter embolization. Of note, five of these studies involved silicone catheters. Ethanol lock use was associated with systemic side effects in 10 studies and possible side effects in one additional study. Four studies noted liver function test abnormalities, predominantly transaminase elevation, related to ethanol lock use. However, a prospective study did not find any difference in the risk of doubling the transaminase level above the normal range during use of ethanol locks compared with not using an ethanol lock. The use of ethanol locks has been associated with structural changes in catheters, as well as the elution of molecules from the catheter polymers. Clinical studies have revealed systemic toxicity, increased catheter occlusion and breaches in catheter integrity. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
NASA Technical Reports Server (NTRS)
Gooder, S. T.
1977-01-01
System tests were performed in which Integrally Regulated Solar Arrays (IRSA's) were used to directly power the beam and accelerator loads of a 30-cm-diameter, electron bombardment, mercury ion thruster. The remaining thruster loads were supplied from conventional power-processing circuits. This combination of IRSA's and conventional circuits formed a hybrid power processor. Thruster performance was evaluated at 3/4- and 1-A beam currents with both the IRSA-hybrid and conventional power processors and was found to be identical for both systems. Power processing is significantly more efficient with the hybrid system. System dynamics and IRSA response to thruster arcs are also examined.
Multichannel photonic Hilbert transformers based on complex modulated integrated Bragg gratings.
Cheng, Rui; Chrostowski, Lukas
2018-03-01
Multichannel photonic Hilbert transformers (MPHTs) are reported. The devices are based on single compact spiral integrated Bragg gratings on silicon with coupling coefficients precisely modulated by the phase of each grating period. MPHTs with up to nine wavelength channels and a single-channel bandwidth of up to ∼625 GHz are achieved. The potential of the devices for multichannel single-sideband signal generation is suggested. The work offers a new possibility of utilizing wavelength as an extra degree of freedom in designing radio-frequency photonic signal processors. Such multichannel processors are expected to possess improved capacities and a potential to greatly benefit current widespread wavelength division multiplexed systems.
GASP-PL/I Simulation of Integrated Avionic System Processor Architectures. M.S. Thesis
NASA Technical Reports Server (NTRS)
Brent, G. A.
1978-01-01
A development study sponsored by NASA was completed in July 1977 which proposed a complete integration of all aircraft instrumentation into a single modular system. Instead of using the current single-function aircraft instruments, computers compiled and displayed inflight information for the pilot. A processor architecture called the Team Architecture was proposed. This is a hardware/software approach to high-reliability computer systems. A follow-up study of the proposed Team Architecture is reported. GASP-PL/1 simulation models are used to evaluate the operating characteristics of the Team Architecture. The problem, model development, simulation programs and results at length are presented. Also included are program input formats, outputs and listings.
Integrated optical circuits for numerical computation
NASA Technical Reports Server (NTRS)
Verber, C. M.; Kenan, R. P.
1983-01-01
The development of integrated optical circuits (IOC) for numerical-computation applications is reviewed, with a focus on the use of systolic architectures. The basic architecture criteria for optical processors are shown to be the same as those proposed by Kung (1982) for VLSI design, and the advantages of IOCs over bulk techniques are indicated. The operation and fabrication of electrooptic grating structures are outlined, and the application of IOCs of this type to an existing 32-bit, 32-Mbit/sec digital correlator, a proposed matrix multiplier, and a proposed pipeline processor for polynomial evaluation is discussed. The problems arising from the inherent nonlinearity of electrooptic gratings are considered. Diagrams and drawings of the application concepts are provided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Tyler Barratt; Urrea, Jorge Mario
2012-06-01
The aim of the Authenticating Cache architecture is to ensure that machine instructions in a Read Only Memory (ROM) are legitimate from the time the ROM image is signed (immediately after compilation) to the time they are placed in the cache for the processor to consume. The proposed architecture allows the detection of ROM image modifications during distribution or when it is loaded into memory. It also ensures that modified instructions will not execute in the processor-as the cache will not be loaded with a page that fails an integrity check. The authenticity of the instruction stream can also bemore » verified in this architecture. The combination of integrity and authenticity assurance greatly improves the security profile of a system.« less
Lambert, Jason C.; Zhou, Zhanxiang; Wang, Lipeng; Song, Zhenyuan; McClain, Craig J.; Kang, Y. James
2004-01-01
Intestinal-derived endotoxins are importantly involved in alcohol-induced liver injury. Disruption of intestinal barrier function and endotoxemia are common features associated with liver inflammation and injury due to acute ethanol exposure. Zinc has been shown to inhibit acute alcohol-induced liver injury. This study was designed to determine the inhibitory effect of zinc on alcohol-induced endotoxemia and whether the inhibition is mediated by metallothionein (MT) or is independent of MT. MT knockout (MT-KO) mice were administered three oral doses of zinc sulfate (2.5 mg zinc ion/kg body weight) every 12 hours before being administered a single dose of ethanol (6 g/kg body weight) by gavage. Ethanol administration caused liver injury as determined by increased serum transaminases, parenchymal fat accumulation, necrotic foci, and an elevation of tumor necrosis factor (TNF-α). Increased plasma endotoxin levels were detected in ethanol-treated animals whose small intestinal structural integrity was compromised as determined by microscopic examination. Zinc supplementation significantly inhibited acute ethanol-induced liver injury and suppressed hepatic TNF-α production in association with decreased circulating endotoxin levels and a significant protection of small intestine structure. As expected, MT levels remained undetectable in the MT-KO mice under the zinc treatment. These results thus demonstrate that zinc preservation of intestinal structural integrity is associated with suppression of endotoxemia and liver injury induced by acute exposure to ethanol and the zinc protection is independent of MT. PMID:15161632
Demonstration of two-qubit algorithms with a superconducting quantum processor.
DiCarlo, L; Chow, J M; Gambetta, J M; Bishop, Lev S; Johnson, B R; Schuster, D I; Majer, J; Blais, A; Frunzio, L; Girvin, S M; Schoelkopf, R J
2009-07-09
Quantum computers, which harness the superposition and entanglement of physical states, could outperform their classical counterparts in solving problems with technological impact-such as factoring large numbers and searching databases. A quantum processor executes algorithms by applying a programmable sequence of gates to an initialized register of qubits, which coherently evolves into a final state containing the result of the computation. Building a quantum processor is challenging because of the need to meet simultaneously requirements that are in conflict: state preparation, long coherence times, universal gate operations and qubit readout. Processors based on a few qubits have been demonstrated using nuclear magnetic resonance, cold ion trap and optical systems, but a solid-state realization has remained an outstanding challenge. Here we demonstrate a two-qubit superconducting processor and the implementation of the Grover search and Deutsch-Jozsa quantum algorithms. We use a two-qubit interaction, tunable in strength by two orders of magnitude on nanosecond timescales, which is mediated by a cavity bus in a circuit quantum electrodynamics architecture. This interaction allows the generation of highly entangled states with concurrence up to 94 per cent. Although this processor constitutes an important step in quantum computing with integrated circuits, continuing efforts to increase qubit coherence times, gate performance and register size will be required to fulfil the promise of a scalable technology.
Cochlear implant microphone location affects speech recognition in diffuse noise.
Kolberg, Elizabeth R; Sheffield, Sterling W; Davis, Timothy J; Sunderhaus, Linsey W; Gifford, René H
2015-01-01
Despite improvements in cochlear implants (CIs), CI recipients continue to experience significant communicative difficulty in background noise. Many potential solutions have been proposed to help increase signal-to-noise ratio in noisy environments, including signal processing and external accessories. To date, however, the effect of microphone location on speech recognition in noise has focused primarily on hearing aid users. The purpose of this study was to (1) measure physical output for the T-Mic as compared with the integrated behind-the-ear (BTE) processor mic for various source azimuths, and (2) to investigate the effect of CI processor mic location for speech recognition in semi-diffuse noise with speech originating from various source azimuths as encountered in everyday communicative environments. A repeated-measures, within-participant design was used to compare performance across listening conditions. A total of 11 adults with Advanced Bionics CIs were recruited for this study. Physical acoustic output was measured on a Knowles Experimental Mannequin for Acoustic Research (KEMAR) for the T-Mic and BTE mic, with broadband noise presented at 0 and 90° (directed toward the implant processor). In addition to physical acoustic measurements, we also assessed recognition of sentences constructed by researchers at Texas Instruments, the Massachusetts Institute of Technology, and the Stanford Research Institute (TIMIT sentences) at 60 dBA for speech source azimuths of 0, 90, and 270°. Sentences were presented in a semi-diffuse restaurant noise originating from the R-SPACE 8-loudspeaker array. Signal-to-noise ratio was determined individually to achieve approximately 50% correct in the unilateral implanted listening condition with speech at 0°. Performance was compared across the T-Mic, 50/50, and the integrated BTE processor mic. The integrated BTE mic provided approximately 5 dB attenuation from 1500-4500 Hz for signals presented at 0° as compared with 90° (directed toward the processor). The T-Mic output was essentially equivalent for sources originating from 0 and 90°. Mic location also significantly affected sentence recognition as a function of source azimuth, with the T-Mic yielding the highest performance for speech originating from 0°. These results have clinical implications for (1) future implant processor design with respect to mic location, (2) mic settings for implant recipients, and (3) execution of advanced speech testing in the clinic. American Academy of Audiology.
Yang, Xinchao; Wang, Ke; Zhang, Jianhua; Tang, Lei; Mao, Zhonggui
2016-11-01
Recently, the integrated ethanol-methane fermentation process has been studied to prevent wastewater pollution. However, when the anaerobic digestion reaction runs poorly, acetic acid will accumulate in the recycling water. In this paper, we studied the effect of low concentration of acetic acid (≤25 mM) on ethanol fermentation at different initial pH values (4.2, 5.2 or 6.2). At an initial pH of 4.2, ethanol yields increased by 3.0% and glycerol yields decreased by 33.6% as the acetic acid concentration was increased from 0 to 25 mM. Raising the concentration of acetic acid to 25 mM increased the buffering capacity of the medium without obvious effects on biomass production in the cassava medium. Acetic acid was metabolized by Saccharomyces cerevisiae for the reason that the final concentration of acetic acid was 38.17% lower than initial concentration at pH 5.2 when 25 mM acetic acid was added. These results confirmed that a low concentration of acetic acid in the process stimulated ethanol fermentation. Thus, reducing the acetic acid concentration to a controlled low level is more advantageous than completely removing it.
Challenge of biofuel: filling the tank without emptying the stomach?
NASA Astrophysics Data System (ADS)
Rajagopal, D.; Sexton, S. E.; Roland-Holst, D.; Zilberman, D.
2007-10-01
Biofuels have become a leading alternative to fossil fuel because they can be produced domestically by many countries, require only minimal changes to retail distribution and end-use technologies, are a partial response to global climate change, and because they have the potential to spur rural development. Production of biofuel has increased most rapidly for corn ethanol, in part because of government subsidies; yet, corn ethanol offers at most a modest contribution to society's climate change goals and only a marginally positive net energy balance. Current biofuels pose long-run consequences for the provision of food and environmental amenities. In the short run, however, when gasoline supply and demand are inelastic, they serve as a buffer supply of energy, helping to reduce prices. Employing a conceptual model and with back-of-the-envelope estimates of wealth transfers resulting from biofuel production, we find that ethanol subsidies pay for themselves. Adoption of second-generation technologies may make biofuels more beneficial to society. The large-scale production of new types of crops dedicated to energy is likely to induce structural change in agriculture and change the sources, levels, and variability of farm incomes. The socio-economic impact of biofuel production will largely depend on how well the process of technology adoption by farmers and processors is understood and managed. The confluence of agricultural policy with environmental and energy policies is expected.
Recombinant cells that highly express chromosomally-integrated heterologous genes
Ingram, L.O.; Ohta, Kazuyoshi; Wood, B.E.
1998-10-13
Recombinant host cells are obtained that comprise (A) a heterologous, polypeptide-encoding polynucleotide segment, stably integrated into a chromosome, which is under transcriptional control of an endogenous promoter and (B) a mutation that effects increased expression of the heterologous segment, resulting in enhanced production by the host cells of each polypeptide encoded by that segment, relative to production of each polypeptide by the host cells in the absence of the mutation. The increased expression thus achieved is retained in the absence of conditions that select for cells displaying such increased expression. When the integrated segment comprises, for example, ethanol-production genes from an efficient ethanol producer like Zymomonas mobilis, recombinant Escherichia coli and other enteric bacterial cells within the present invention are capable of converting a wide range of biomass-derived sugars efficiently to ethanol. 13 figs.
Recombinant cells that highly express chromosomally-integrated heterologous genes
Ingram, Lonnie O.; Ohta, Kazuyoshi; Wood, Brent E.
1998-01-01
Recombinant host cells are obtained that comprise (A) a heterologous, polypeptide-encoding polynucleotide segment, stably integrated into a chromosome, which is under transcriptional control of an endogenous promoter and (B) a mutation that effects increased expression of the heterologous segment, resulting in enhanced production by the host cells of each polypeptide encoded by that segment, relative to production of each polypeptide by the host cells in the absence of the mutation. The increased expression thus achieved is retained in the absence of conditions that select for cells displaying such increased expression. When the integrated segment comprises, for example, ethanol-production genes from an efficient ethanol producer like Zymomonas mobilis, recombinant Escherichia coli and other enteric bacterial cells within the present invention are capable of converting a wide range of biomass-derived sugars efficiently to ethanol.
Recombinant cells that highly express chromosomally-integrated heterologous gene
Ingram, Lonnie O.; Ohta, Kazuyoshi; Wood, Brent E.
2007-03-20
Recombinant host cells are obtained that comprise (A) a heterologous, polypeptide-encoding polynucleotide segment, stably integrated into a chromosome, which is under transcriptional control of an endogenous promoter and (B) a mutation that effects increased expression of the heterologous segment, resulting in enhanced production by the host cells of each polypeptide encoded by that segment, relative to production of each polypeptide by the host cells in the absence of the mutation. The increased expression thus achieved is retained in the absence of conditions that select for cells displaying such increased expression. When the integrated segment comprises, for example, ethanol-production genes from an efficient ethanol producer like Zymomonas mobilis, recombinant Escherichia coli and other enteric bacterial cells within the present invention are capable of converting a wide range of biomass-derived sugars efficiently to ethanol.
Recombinant cells that highly express chromosomally-integrated heterologous genes
Ingram, Lonnie O.; Ohta, Kazuyoshi; Wood, Brent E.
2000-08-22
Recombinant host cells are obtained that comprise (A) a heterologous, polypeptide-encoding polynucleotide segment, stably integrated into a chromosome, which is under transcriptional control of an endogenous promoter and (B) a mutation that effects increased expression of the heterologous segment, resulting in enhanced production by the host cells of each polypeptide encoded by that segment, relative to production of each polypeptide by the host cells in the absence of the mutation. The increased expression thus achieved is retained in the absence of conditions that select for cells displaying such increased expression. When the integrated segment comprises, for example, ethanol-production genes from an efficient ethanol producer like Zymomonas mobilis, recombinant Escherichia coli and other enteric bacterial cells within the present invention are capable of converting a wide range of biomass-derived sugars efficiently to ethanol.
Thermal Hotspots in CPU Die and It's Future Architecture
NASA Astrophysics Data System (ADS)
Wang, Jian; Hu, Fu-Yuan
Owing to the increasing core frequency and chip integration and the limited die dimension, the power densities in CPU chip have been increasing fastly. The high temperature on chip resulted by power densities threats the processor's performance and chip's reliability. This paper analyzed the thermal hotspots in die and their properties. A new architecture of function units in die - - hot units distributed architecture is suggested to cope with the problems of high power densities for future processor chip.
Tyagi, Neelam; Bose, Abhijit; Chetty, Indrin J
2004-09-01
We have parallelized the Dose Planning Method (DPM), a Monte Carlo code optimized for radiotherapy class problems, on distributed-memory processor architectures using the Message Passing Interface (MPI). Parallelization has been investigated on a variety of parallel computing architectures at the University of Michigan-Center for Advanced Computing, with respect to efficiency and speedup as a function of the number of processors. We have integrated the parallel pseudo random number generator from the Scalable Parallel Pseudo-Random Number Generator (SPRNG) library to run with the parallel DPM. The Intel cluster consisting of 800 MHz Intel Pentium III processor shows an almost linear speedup up to 32 processors for simulating 1 x 10(8) or more particles. The speedup results are nearly linear on an Athlon cluster (up to 24 processors based on availability) which consists of 1.8 GHz+ Advanced Micro Devices (AMD) Athlon processors on increasing the problem size up to 8 x 10(8) histories. For a smaller number of histories (1 x 10(8)) the reduction of efficiency with the Athlon cluster (down to 83.9% with 24 processors) occurs because the processing time required to simulate 1 x 10(8) histories is less than the time associated with interprocessor communication. A similar trend was seen with the Opteron Cluster (consisting of 1400 MHz, 64-bit AMD Opteron processors) on increasing the problem size. Because of the 64-bit architecture Opteron processors are capable of storing and processing instructions at a faster rate and hence are faster as compared to the 32-bit Athlon processors. We have validated our implementation with an in-phantom dose calculation study using a parallel pencil monoenergetic electron beam of 20 MeV energy. The phantom consists of layers of water, lung, bone, aluminum, and titanium. The agreement in the central axis depth dose curves and profiles at different depths shows that the serial and parallel codes are equivalent in accuracy.
Design and implementation of highly parallel pipelined VLSI systems
NASA Astrophysics Data System (ADS)
Delange, Alphonsus Anthonius Jozef
A methodology and its realization as a prototype CAD (Computer Aided Design) system for the design and analysis of complex multiprocessor systems is presented. The design is an iterative process in which the behavioral specifications of the system components are refined into structural descriptions consisting of interconnections and lower level components etc. A model for the representation and analysis of multiprocessor systems at several levels of abstraction and an implementation of a CAD system based on this model are described. A high level design language, an object oriented development kit for tool design, a design data management system, and design and analysis tools such as a high level simulator and graphics design interface which are integrated into the prototype system and graphics interface are described. Procedures for the synthesis of semiregular processor arrays, and to compute the switching of input/output signals, memory management and control of processor array, and sequencing and segmentation of input/output data streams due to partitioning and clustering of the processor array during the subsequent synthesis steps, are described. The architecture and control of a parallel system is designed and each component mapped to a module or module generator in a symbolic layout library, compacted for design rules of VLSI (Very Large Scale Integration) technology. An example of the design of a processor that is a useful building block for highly parallel pipelined systems in the signal/image processing domains is given.
De Ceulaer, Geert; Bestel, Julie; Mülder, Hans E; Goldbeck, Felix; de Varebeke, Sebastien Pierre Janssens; Govaerts, Paul J
2016-05-01
Roger is a digital adaptive multi-channel remote microphone technology that wirelessly transmits a speaker's voice directly to a hearing instrument or cochlear implant sound processor. Frequency hopping between channels, in combination with repeated broadcast, avoids interference issues that have limited earlier generation FM systems. This study evaluated the benefit of the Roger Pen transmitter microphone in a multiple talker network (MTN) for cochlear implant users in a simulated noisy conversation setting. Twelve post-lingually deafened adult Advanced Bionics CII/HiRes 90K recipients were recruited. Subjects used a Naida CI Q70 processor with integrated Roger 17 receiver. The test environment simulated four people having a meal in a noisy restaurant, one the CI user (listener), and three companions (talkers) talking non-simultaneously in a diffuse field of multi-talker babble. Speech reception thresholds (SRTs) were determined without the Roger Pen, with one Roger Pen, and with three Roger Pens in an MTN. Using three Roger Pens in an MTN improved the SRT by 14.8 dB over using no Roger Pen, and by 13.1 dB over using a single Roger Pen (p < 0.0001). The Roger Pen in an MTN provided statistically and clinically significant improvement in speech perception in noise for Advanced Bionics cochlear implant recipients. The integrated Roger 17 receiver made it easy for users of the Naida CI Q70 processor to take advantage of the Roger system. The listening advantage and ease of use should encourage more clinicians to recommend and fit Roger in adult cochlear implant patients.
NASA Astrophysics Data System (ADS)
Varady, M. J.; McLeod, L.; Meacham, J. M.; Degertekin, F. L.; Fedorov, A. G.
2007-09-01
Portable fuel cells are an enabling technology for high efficiency and ultra-high density distributed power generation, which is essential for many terrestrial and aerospace applications. A key element of fuel cell power sources is the fuel processor, which should have the capability to efficiently reform liquid fuels and produce high purity hydrogen that is consumed by the fuel cells. To this end, we are reporting on the development of two novel MEMS hydrogen generators with improved functionality achieved through an innovative process organization and system integration approach that exploits the advantages of transport and catalysis on the micro/nano scale. One fuel processor design utilizes transient, reverse-flow operation of an autothermal MEMS microreactor with an intimately integrated, micromachined ultrasonic fuel atomizer and a Pd/Ag membrane for in situ hydrogen separation from the product stream. The other design features a simpler, more compact planar structure with the atomized fuel ejected directly onto the catalyst layer, which is coupled to an integrated hydrogen selective membrane.
Partial Automated Alignment and Integration System
NASA Technical Reports Server (NTRS)
Kelley, Gary Wayne (Inventor)
2014-01-01
The present invention is a Partial Automated Alignment and Integration System (PAAIS) used to automate the alignment and integration of space vehicle components. A PAAIS includes ground support apparatuses, a track assembly with a plurality of energy-emitting components and an energy-receiving component containing a plurality of energy-receiving surfaces. Communication components and processors allow communication and feedback through PAAIS.
High coherence plane breaking packaging for superconducting qubits.
Bronn, Nicholas T; Adiga, Vivekananda P; Olivadese, Salvatore B; Wu, Xian; Chow, Jerry M; Pappas, David P
2018-04-01
We demonstrate a pogo pin package for a superconducting quantum processor specifically designed with a nontrivial layout topology (e.g., a center qubit that cannot be accessed from the sides of the chip). Two experiments on two nominally identical superconducting quantum processors in pogo packages, which use commercially available parts and require modest machining tolerances, are performed at low temperature (10 mK) in a dilution refrigerator and both found to behave comparably to processors in standard planar packages with wirebonds where control and readout signals come in from the edges. Single- and two-qubit gate errors are also characterized via randomized benchmarking, exhibiting similar error rates as in standard packages, opening the possibility of integrating pogo pin packaging with extensible qubit architectures.
High coherence plane breaking packaging for superconducting qubits
NASA Astrophysics Data System (ADS)
Bronn, Nicholas T.; Adiga, Vivekananda P.; Olivadese, Salvatore B.; Wu, Xian; Chow, Jerry M.; Pappas, David P.
2018-04-01
We demonstrate a pogo pin package for a superconducting quantum processor specifically designed with a nontrivial layout topology (e.g., a center qubit that cannot be accessed from the sides of the chip). Two experiments on two nominally identical superconducting quantum processors in pogo packages, which use commercially available parts and require modest machining tolerances, are performed at low temperature (10 mK) in a dilution refrigerator and both found to behave comparably to processors in standard planar packages with wirebonds where control and readout signals come in from the edges. Single- and two-qubit gate errors are also characterized via randomized benchmarking, exhibiting similar error rates as in standard packages, opening the possibility of integrating pogo pin packaging with extensible qubit architectures.
NASA Astrophysics Data System (ADS)
Thi, Minh Do; Volka, Karel
2010-07-01
A feasibility study has been undertaken to assess the suitability of a commercially available SERS substrate for monitoring of self-assembling deposition process. Monolayer self-assembly of 4-mercaptobenzoic acid on SERS active substrate Klarite™ from absolute and acidified ethanol was studied and compared with deposition on SPR substrate from absolute ethanol. Changes in integral intensity of the phenyl bands at 1587 and 1076 cm -1 and ethanol band at 1451 cm -1 allow to follow structural changes in the monolayer. Stability of the monolayer assembled from acidified ethanol in contrast to the pure ethanol was demonstrated.
USDA-ARS?s Scientific Manuscript database
Grain sorghum is a potential feedstock for fuel ethanol production due to its high starch content, which is equivalent to that of corn, and has been successfully used in several commercial corn ethanol plants in the United States. Some sorghum grain varieties contain significant levels of surface wa...
Modifying Yeast Tolerance to Inhibitory Conditions of Ethanol Production Processes
Caspeta, Luis; Castillo, Tania; Nielsen, Jens
2015-01-01
Saccharomyces cerevisiae strains having a broad range of substrate utilization, rapid substrate consumption, and conversion to ethanol, as well as good tolerance to inhibitory conditions are ideal for cost-competitive ethanol production from lignocellulose. A major drawback to directly design S. cerevisiae tolerance to inhibitory conditions of lignocellulosic ethanol production processes is the lack of knowledge about basic aspects of its cellular signaling network in response to stress. Here, we highlight the inhibitory conditions found in ethanol production processes, the targeted cellular functions, the key contributions of integrated -omics analysis to reveal cellular stress responses according to these inhibitors, and current status on design-based engineering of tolerant and efficient S. cerevisiae strains for ethanol production from lignocellulose. PMID:26618154
NASA Astrophysics Data System (ADS)
Elbaz, Reouven; Torres, Lionel; Sassatelli, Gilles; Guillemin, Pierre; Bardouillet, Michel; Martinez, Albert
The bus between the System on Chip (SoC) and the external memory is one of the weakest points of computer systems: an adversary can easily probe this bus in order to read private data (data confidentiality concern) or to inject data (data integrity concern). The conventional way to protect data against such attacks and to ensure data confidentiality and integrity is to implement two dedicated engines: one performing data encryption and another data authentication. This approach, while secure, prevents parallelizability of the underlying computations. In this paper, we introduce the concept of Block-Level Added Redundancy Explicit Authentication (BL-AREA) and we describe a Parallelized Encryption and Integrity Checking Engine (PE-ICE) based on this concept. BL-AREA and PE-ICE have been designed to provide an effective solution to ensure both security services while allowing for full parallelization on processor read and write operations and optimizing the hardware resources. Compared to standard encryption which ensures only confidentiality, we show that PE-ICE additionally guarantees code and data integrity for less than 4% of run-time performance overhead.
Advanced digital SAR processing study
NASA Technical Reports Server (NTRS)
Martinson, L. W.; Gaffney, B. P.; Liu, B.; Perry, R. P.; Ruvin, A.
1982-01-01
A highly programmable, land based, real time synthetic aperture radar (SAR) processor requiring a processed pixel rate of 2.75 MHz or more in a four look system was designed. Variations in range and azimuth compression, number of looks, range swath, range migration and SR mode were specified. Alternative range and azimuth processing algorithms were examined in conjunction with projected integrated circuit, digital architecture, and software technologies. The advaced digital SAR processor (ADSP) employs an FFT convolver algorithm for both range and azimuth processing in a parallel architecture configuration. Algorithm performace comparisons, design system design, implementation tradeoffs and the results of a supporting survey of integrated circuit and digital architecture technologies are reported. Cost tradeoffs and projections with alternate implementation plans are presented.
Integrated 3-D vision system for autonomous vehicles
NASA Astrophysics Data System (ADS)
Hou, Kun M.; Shawky, Mohamed; Tu, Xiaowei
1992-03-01
Nowadays, autonomous vehicles have become a multidiscipline field. Its evolution is taking advantage of the recent technological progress in computer architectures. As the development tools became more sophisticated, the trend is being more specialized, or even dedicated architectures. In this paper, we will focus our interest on a parallel vision subsystem integrated in the overall system architecture. The system modules work in parallel, communicating through a hierarchical blackboard, an extension of the 'tuple space' from LINDA concepts, where they may exchange data or synchronization messages. The general purpose processing elements are of different skills, built around 40 MHz i860 Intel RISC processors for high level processing and pipelined systolic array processors based on PLAs or FPGAs for low-level processing.
Compact time- and space-integrating SAR processor: design and development status
NASA Astrophysics Data System (ADS)
Haney, Michael W.; Levy, James J.; Christensen, Marc P.; Michael, Robert R., Jr.; Mock, Michael M.
1994-06-01
Progress toward a flight demonstration of the acousto-optic time- and space- integrating real-time SAR image formation processor program is reported. The concept overcomes the size and power consumption limitations of electronic approaches by using compact, rugged, and low-power analog optical signal processing techniques for the most computationally taxing portions of the SAR imaging problem. Flexibility and performance are maintained by the use of digital electronics for the critical low-complexity filter generation and output image processing functions. The results reported include tests of a laboratory version of the concept, a description of the compact optical design that will be implemented, and an overview of the electronic interface and controller modules of the flight-test system.
Nair, Ramkumar B; Kalif, Mahdi; Ferreira, Jorge A; Taherzadeh, Mohammad J; Lennartsson, Patrik R
2017-12-01
The use of hot-water (100°C) from the 1st generation ethanol plants for mild-temperature lignocellulose pretreatment can possibly cut down the operational (energy) cost of 2nd generation ethanol process, in an integrated model. Dilute-sulfuric and -phosphoric acid pretreatment at 100°C was carried out for wheat bran and whole-stillage fibers. Pretreatment time and acid type influenced the release of sugars from wheat bran, while acid-concentration was found significant for whole-stillage fibers. Pretreatment led up-to 300% improvement in the glucose yield compared to only-enzymatically treated substrates. The pretreated substrates were 191-344% and 115-300% richer in lignin and glucan, respectively. Fermentation using Neurospora intermedia, showed 81% and 91% ethanol yields from wheat bran and stillage-fibers, respectively. Sawdust proved to be a highly recalcitrant substrate for mild-temperature pretreatment with only 22% glucose yield. Both wheat bran and whole-stillage are potential substrates for pretreatment using waste heat from the 1st generation process for 2nd generation ethanol. Copyright © 2017 Elsevier Ltd. All rights reserved.
Suitability of anaerobic digestion effluent as process water for corn fuel ethanol fermentation.
Wang, Ke; Zhang, Jian-Hua; Liu, Pei; Mao, Zhong-Gui
2014-01-01
A corn fuel ethanol plant integrated with anaerobic digestion treatment of thin stillage increases the net energy balance. Furthermore, the anaerobic digestion effluent (ADE) can be reused as a potential substitute for process water in the ethanol fermentation. In this study, the suitability of ADE as process water for corn ethanol fermentation was investigated by analyzing the potential inhibitory components in the ADE. It was found that ammonium influenced the growth and metabolism of Saccharomyces cerevisiae. Maximum ethanol production was obtained when the concentration of ammonium nitrogen was 200 mg/L, and ammonium could replace urea as the nitrogen source for S. cerevisiae under this concentration. In the ethanol fermentation with a higher concentration of ammonium, more glycerol was produced, thereby resulting in the decrease of ethanol production. In addition, components except ammonium in the ADE caused no inhibition to ethanol production. These results suggest that ADE could be reused as process water for corn ethanol fermentation without negative effect when ammonium concentration is well controlled.
Integrative strategies to identify candidate genes in rodent models of human alcoholism.
Treadwell, Julie A
2006-01-01
The search for genes underlying alcohol-related behaviours in rodent models of human alcoholism has been ongoing for many years with only limited success. Recently, new strategies that integrate several of the traditional approaches have provided new insights into the molecular mechanisms underlying ethanol's actions in the brain. We have used alcohol-preferring C57BL/6J (B6) and alcohol-avoiding DBA/2J (D2) genetic strains of mice in an integrative strategy combining high-throughput gene expression screening, genetic segregation analysis, and mapping to previously published quantitative trait loci to uncover candidate genes for the ethanol-preference phenotype. In our study, 2 genes, retinaldehyde binding protein 1 (Rlbp1) and syntaxin 12 (Stx12), were found to be strong candidates for ethanol preference. Such experimental approaches have the power and the potential to greatly speed up the laborious process of identifying candidate genes for the animal models of human alcoholism.
1993-01-01
Deoxyribose nucleicacid DPP: Digital Post-Processor DREO Detence Research Establishment Ottawa RF: Radio Frequency TeO2 : tellurium dioxide TIC: Time... TeO2 is 620 m/s, a device with a 100-As aperture device is 62-mm long. To take advantage of the full interaction time of these Bragg cells, the whole...INCLUDED IN THE DIGITAL POST-PROCESSOR HARDWARE Characteristics of Bandwidth Center Frequency Bragg Cell glass (bulk 100 MHz 150 MHz interaction) iNbO3
A Deficit in Face-Voice Integration in Developing Vervet Monkeys Exposed to Ethanol during Gestation
Zangenehpour, Shahin; Javadi, Pasha; Ervin, Frank R.; Palmour, Roberta M.; Ptito, Maurice
2014-01-01
Children with fetal alcohol spectrum disorders display behavioural and intellectual impairments that strongly implicate dysfunction within the frontal cortex. Deficits in social behaviour and cognition are amongst the most pervasive outcomes of prenatal ethanol exposure. Our naturalistic vervet monkey model of fetal alcohol exposure (FAE) provides an unparalleled opportunity to study the neurobehavioral outcomes of prenatal ethanol exposure in a controlled experimental setting. Recent work has revealed a significant reduction of the neuronal population in the frontal lobes of these monkeys. We used an intersensory matching procedure to investigate audiovisual perception of socially relevant stimuli in young FAE vervet monkeys. Here we show a domain-specific deficit in audiovisual integration of socially relevant stimuli. When FAE monkeys were shown a pair of side-by-side videos of a monkey concurrently presenting two different calls along with a single audio track matching the content of one of the calls, they were not able to match the correct video to the single audio track. This was manifest by their average looking time being equally spent towards both the matching and non-matching videos. However, a group of normally developing monkeys exhibited a significant preference for the non-matching video. This inability to integrate and thereby discriminate audiovisual stimuli was confined to the integration of faces and voices as revealed by the monkeys' ability to match a dynamic face to a complex tone or a black-and-white checkerboard to a pure tone, presumably based on duration and/or onset-offset synchrony. Together, these results suggest that prenatal ethanol exposure negatively affects a specific domain of audiovisual integration. This deficit is confined to the integration of information that is presented by the face and the voice and does not affect more elementary aspects of sensory integration. PMID:25470725
Zangenehpour, Shahin; Javadi, Pasha; Ervin, Frank R; Palmour, Roberta M; Ptito, Maurice
2014-01-01
Children with fetal alcohol spectrum disorders display behavioural and intellectual impairments that strongly implicate dysfunction within the frontal cortex. Deficits in social behaviour and cognition are amongst the most pervasive outcomes of prenatal ethanol exposure. Our naturalistic vervet monkey model of fetal alcohol exposure (FAE) provides an unparalleled opportunity to study the neurobehavioral outcomes of prenatal ethanol exposure in a controlled experimental setting. Recent work has revealed a significant reduction of the neuronal population in the frontal lobes of these monkeys. We used an intersensory matching procedure to investigate audiovisual perception of socially relevant stimuli in young FAE vervet monkeys. Here we show a domain-specific deficit in audiovisual integration of socially relevant stimuli. When FAE monkeys were shown a pair of side-by-side videos of a monkey concurrently presenting two different calls along with a single audio track matching the content of one of the calls, they were not able to match the correct video to the single audio track. This was manifest by their average looking time being equally spent towards both the matching and non-matching videos. However, a group of normally developing monkeys exhibited a significant preference for the non-matching video. This inability to integrate and thereby discriminate audiovisual stimuli was confined to the integration of faces and voices as revealed by the monkeys' ability to match a dynamic face to a complex tone or a black-and-white checkerboard to a pure tone, presumably based on duration and/or onset-offset synchrony. Together, these results suggest that prenatal ethanol exposure negatively affects a specific domain of audiovisual integration. This deficit is confined to the integration of information that is presented by the face and the voice and does not affect more elementary aspects of sensory integration.
Scalable Multiprocessor for High-Speed Computing in Space
NASA Technical Reports Server (NTRS)
Lux, James; Lang, Minh; Nishimoto, Kouji; Clark, Douglas; Stosic, Dorothy; Bachmann, Alex; Wilkinson, William; Steffke, Richard
2004-01-01
A report discusses the continuing development of a scalable multiprocessor computing system for hard real-time applications aboard a spacecraft. "Hard realtime applications" signifies applications, like real-time radar signal processing, in which the data to be processed are generated at "hundreds" of pulses per second, each pulse "requiring" millions of arithmetic operations. In these applications, the digital processors must be tightly integrated with analog instrumentation (e.g., radar equipment), and data input/output must be synchronized with analog instrumentation, controlled to within fractions of a microsecond. The scalable multiprocessor is a cluster of identical commercial-off-the-shelf generic DSP (digital-signal-processing) computers plus generic interface circuits, including analog-to-digital converters, all controlled by software. The processors are computers interconnected by high-speed serial links. Performance can be increased by adding hardware modules and correspondingly modifying the software. Work is distributed among the processors in a parallel or pipeline fashion by means of a flexible master/slave control and timing scheme. Each processor operates under its own local clock; synchronization is achieved by broadcasting master time signals to all the processors, which compute offsets between the master clock and their local clocks.
Developing infrared array controller with software real time operating system
NASA Astrophysics Data System (ADS)
Sako, Shigeyuki; Miyata, Takashi; Nakamura, Tomohiko; Motohara, Kentaro; Uchimoto, Yuka Katsuno; Onaka, Takashi; Kataza, Hirokazu
2008-07-01
Real-time capabilities are required for a controller of a large format array to reduce a dead-time attributed by readout and data transfer. The real-time processing has been achieved by dedicated processors including DSP, CPLD, and FPGA devices. However, the dedicated processors have problems with memory resources, inflexibility, and high cost. Meanwhile, a recent PC has sufficient resources of CPUs and memories to control the infrared array and to process a large amount of frame data in real-time. In this study, we have developed an infrared array controller with a software real-time operating system (RTOS) instead of the dedicated processors. A Linux PC equipped with a RTAI extension and a dual-core CPU is used as a main computer, and one of the CPU cores is allocated to the real-time processing. A digital I/O board with DMA functions is used for an I/O interface. The signal-processing cores are integrated in the OS kernel as a real-time driver module, which is composed of two virtual devices of the clock processor and the frame processor tasks. The array controller with the RTOS realizes complicated operations easily, flexibly, and at a low cost.
Replication of Space-Shuttle Computers in FPGAs and ASICs
NASA Technical Reports Server (NTRS)
Ferguson, Roscoe C.
2008-01-01
A document discusses the replication of the functionality of the onboard space-shuttle general-purpose computers (GPCs) in field-programmable gate arrays (FPGAs) and application-specific integrated circuits (ASICs). The purpose of the replication effort is to enable utilization of proven space-shuttle flight software and software-development facilities to the extent possible during development of software for flight computers for a new generation of launch vehicles derived from the space shuttles. The replication involves specifying the instruction set of the central processing unit and the input/output processor (IOP) of the space-shuttle GPC in a hardware description language (HDL). The HDL is synthesized to form a "core" processor in an FPGA or, less preferably, in an ASIC. The core processor can be used to create a flight-control card to be inserted into a new avionics computer. The IOP of the GPC as implemented in the core processor could be designed to support data-bus protocols other than that of a multiplexer interface adapter (MIA) used in the space shuttle. Hence, a computer containing the core processor could be tailored to communicate via the space-shuttle GPC bus and/or one or more other buses.
Development of compact fuel processor for 2 kW class residential PEMFCs
NASA Astrophysics Data System (ADS)
Seo, Yu Taek; Seo, Dong Joo; Jeong, Jin Hyeok; Yoon, Wang Lai
Korea Institute of Energy Research (KIER) has been developing a novel fuel processing system to provide hydrogen rich gas to residential polymer electrolyte membrane fuel cells (PEMFCs) cogeneration system. For the effective design of a compact hydrogen production system, the unit processes of steam reforming, high and low temperature water gas shift, steam generator and internal heat exchangers are thermally and physically integrated into a packaged hardware system. Several prototypes are under development and the prototype I fuel processor showed thermal efficiency of 73% as a HHV basis with methane conversion of 81%. Recently tested prototype II has been shown the improved performance of thermal efficiency of 76% with methane conversion of 83%. In both prototypes, two-stage PrOx reactors reduce CO concentration less than 10 ppm, which is the prerequisite CO limit condition of product gas for the PEMFCs stack. After confirming the initial performance of prototype I fuel processor, it is coupled with PEMFC single cell to test the durability and demonstrated that the fuel processor is operated for 3 days successfully without any failure of fuel cell voltage. Prototype II fuel processor also showed stable performance during the durability test.
A case study for the real-time experimental evaluation of the VIPER microprocessor
NASA Astrophysics Data System (ADS)
Carreno, Victor A.; Angellatta, Rob K.
1991-09-01
An experiment to evaluate the applicability of the Verifiable Integrated Processor for Enhanced Reliability (VIPER) microprocessor to real time control is described. The VIPER microprocessor was invented by the Royal Signals and Radar Establishment (RSRE), U.K., and is an example of the use of formal mathematical methods for developing electronic digital systems with a high degree of assurance on the system design and implementation correctness. The experiment consisted of selecting a control law, writing the control law algorithm for the VIPER processor, and providing real time, dynamic inputs into the processor and monitoring the outputs. The control law selected and coded for the VIPER processor was the yaw damper function of an automatic landing program for a 737 aircraft. The mechanisms for interfacing the VIPER Single Board Computer to the VAX host are described. Results include run time experiences, performance evaluation, and comparison of VIPER and FORTRAN yaw damper algorithm output for accuracy estimation.
Embedded Palmprint Recognition System Using OMAP 3530
Shen, Linlin; Wu, Shipei; Zheng, Songhao; Ji, Zhen
2012-01-01
We have proposed in this paper an embedded palmprint recognition system using the dual-core OMAP 3530 platform. An improved algorithm based on palm code was proposed first. In this method, a Gabor wavelet is first convolved with the palmprint image to produce a response image, where local binary patterns are then applied to code the relation among the magnitude of wavelet response at the ccentral pixel with that of its neighbors. The method is fully tested using the public PolyU palmprint database. While palm code achieves only about 89% accuracy, over 96% accuracy is achieved by the proposed G-LBP approach. The proposed algorithm was then deployed to the DSP processor of OMAP 3530 and work together with the ARM processor for feature extraction. When complicated algorithms run on the DSP processor, the ARM processor can focus on image capture, user interface and peripheral control. Integrated with an image sensing module and central processing board, the designed device can achieve accurate and real time performance. PMID:22438721
Embedded palmprint recognition system using OMAP 3530.
Shen, Linlin; Wu, Shipei; Zheng, Songhao; Ji, Zhen
2012-01-01
We have proposed in this paper an embedded palmprint recognition system using the dual-core OMAP 3530 platform. An improved algorithm based on palm code was proposed first. In this method, a Gabor wavelet is first convolved with the palmprint image to produce a response image, where local binary patterns are then applied to code the relation among the magnitude of wavelet response at the central pixel with that of its neighbors. The method is fully tested using the public PolyU palmprint database. While palm code achieves only about 89% accuracy, over 96% accuracy is achieved by the proposed G-LBP approach. The proposed algorithm was then deployed to the DSP processor of OMAP 3530 and work together with the ARM processor for feature extraction. When complicated algorithms run on the DSP processor, the ARM processor can focus on image capture, user interface and peripheral control. Integrated with an image sensing module and central processing board, the designed device can achieve accurate and real time performance.
A case study for the real-time experimental evaluation of the VIPER microprocessor
NASA Technical Reports Server (NTRS)
Carreno, Victor A.; Angellatta, Rob K.
1991-01-01
An experiment to evaluate the applicability of the Verifiable Integrated Processor for Enhanced Reliability (VIPER) microprocessor to real time control is described. The VIPER microprocessor was invented by the Royal Signals and Radar Establishment (RSRE), U.K., and is an example of the use of formal mathematical methods for developing electronic digital systems with a high degree of assurance on the system design and implementation correctness. The experiment consisted of selecting a control law, writing the control law algorithm for the VIPER processor, and providing real time, dynamic inputs into the processor and monitoring the outputs. The control law selected and coded for the VIPER processor was the yaw damper function of an automatic landing program for a 737 aircraft. The mechanisms for interfacing the VIPER Single Board Computer to the VAX host are described. Results include run time experiences, performance evaluation, and comparison of VIPER and FORTRAN yaw damper algorithm output for accuracy estimation.
NASA Astrophysics Data System (ADS)
Yokoyama, Yoshiaki; Kim, Minseok; Arai, Hiroyuki
At present, when using space-time processing techniques with multiple antennas for mobile radio communication, real-time weight adaptation is necessary. Due to the progress of integrated circuit technology, dedicated processor implementation with ASIC or FPGA can be employed to implement various wireless applications. This paper presents a resource and performance evaluation of the QRD-RLS systolic array processor based on fixed-point CORDIC algorithm with FPGA. In this paper, to save hardware resources, we propose the shared architecture of a complex CORDIC processor. The required precision of internal calculation, the circuit area for the number of antenna elements and wordlength, and the processing speed will be evaluated. The resource estimation provides a possible processor configuration with a current FPGA on the market. Computer simulations assuming a fading channel will show a fast convergence property with a finite number of training symbols. The proposed architecture has also been implemented and its operation was verified by beamforming evaluation through a radio propagation experiment.
Software-Reconfigurable Processors for Spacecraft
NASA Technical Reports Server (NTRS)
Farrington, Allen; Gray, Andrew; Bell, Bryan; Stanton, Valerie; Chong, Yong; Peters, Kenneth; Lee, Clement; Srinivasan, Jeffrey
2005-01-01
A report presents an overview of an architecture for a software-reconfigurable network data processor for a spacecraft engaged in scientific exploration. When executed on suitable electronic hardware, the software performs the functions of a physical layer (in effect, acts as a software radio in that it performs modulation, demodulation, pulse-shaping, error correction, coding, and decoding), a data-link layer, a network layer, a transport layer, and application-layer processing of scientific data. The software-reconfigurable network processor is undergoing development to enable rapid prototyping and rapid implementation of communication, navigation, and scientific signal-processing functions; to provide a long-lived communication infrastructure; and to provide greatly improved scientific-instrumentation and scientific-data-processing functions by enabling science-driven in-flight reconfiguration of computing resources devoted to these functions. This development is an extension of terrestrial radio and network developments (e.g., in the cellular-telephone industry) implemented in software running on such hardware as field-programmable gate arrays, digital signal processors, traditional digital circuits, and mixed-signal application-specific integrated circuits (ASICs).
The design of an adaptive predictive coder using a single-chip digital signal processor
NASA Astrophysics Data System (ADS)
Randolph, M. A.
1985-01-01
A speech coding processor architecture design study has been performed in which Texas Instruments TMS32010 has been selected from among three commercially available digital signal processing integrated circuits and evaluated in an implementation study of real-time Adaptive Predictive Coding (APC). The TMS32010 has been compared with AR&T Bell Laboratories DSP I and Nippon Electric Co. PD7720 and was found to be most suitable for a single chip implementation of APC. A preliminary design system based on TMS32010 has been performed, and several of the hardware and software design issues are discussed. Particular attention was paid to the design of an external memory controller which permits rapid sequential access of external RAM. As a result, it has been determined that a compact hardware implementation of the APC algorithm is feasible based of the TSM32010. Originator-supplied keywords include: vocoders, speech compression, adaptive predictive coding, digital signal processing microcomputers, speech processor architectures, and special purpose processor.
Software design and implementation of ship heave motion monitoring system based on MBD method
NASA Astrophysics Data System (ADS)
Yu, Yan; Li, Yuhan; Zhang, Chunwei; Kang, Won-Hee; Ou, Jinping
2015-03-01
Marine transportation plays a significant role in the modern transport sector due to its advantage of low cost, large capacity. It is being attached enormous importance to all over the world. Nowadays the related areas of product development have become an existing hot spot. DSP signal processors feature micro volume, low cost, high precision, fast processing speed, which has been widely used in all kinds of monitoring systems. But traditional DSP code development process is time-consuming, inefficiency, costly and difficult. MathWorks company proposed Model-based Design (MBD) to overcome these defects. By calling the target board modules in simulink library to compile and generate the corresponding code for the target processor. And then automatically call DSP integrated development environment CCS for algorithm validation on the target processor. This paper uses the MDB to design the algorithm for the ship heave motion monitoring system. It proves the effectiveness of the MBD run successfully on the processor.
NASA Technical Reports Server (NTRS)
Bartram, Peter N.
1989-01-01
The current Life Sciences Laboratory Equipment (LSLE) microcomputer for life sciences experiment data acquisition is now obsolete. Among the weaknesses of the current microcomputer are small memory size, relatively slow analog data sampling rates, and the lack of a bulk data storage device. While life science investigators normally prefer data to be transmitted to Earth as it is taken, this is not always possible. No down-link exists for experiments performed in the Shuttle middeck region. One important aspect of a replacement microcomputer is provision for in-flight storage of experimental data. The Write Once, Read Many (WORM) optical disk was studied because of its high storage density, data integrity, and the availability of a space-qualified unit. In keeping with the goals for a replacement microcomputer based upon commercially available components and standard interfaces, the system studied includes a Small Computer System Interface (SCSI) for interfacing the WORM drive. The system itself is designed around the STD bus, using readily available boards. Configurations examined were: (1) master processor board and slave processor board with the SCSI interface; (2) master processor with SCSI interface; (3) master processor with SCSI and Direct Memory Access (DMA); (4) master processor controlling a separate STD bus SCSI board; and (5) master processor controlling a separate STD bus SCSI board with DMA.
Nair, Ramkumar B; Kabir, Maryam M; Lennartsson, Patrik R; Taherzadeh, Mohammad J; Horváth, Ilona Sárvári
2018-01-01
Integration of wheat straw for a biorefinery-based energy generation process by producing ethanol and biogas together with the production of high-protein fungal biomass (suitable for feed application) was the main focus of the present study. An edible ascomycete fungal strain Neurospora intermedia was used for the ethanol fermentation and subsequent biomass production from dilute phosphoric acid (0.7 to 1.2% w/v) pretreated wheat straw. At optimum pretreatment conditions, an ethanol yield of 84 to 90% of the theoretical maximum, based on glucan content of substrate straw, was observed from fungal fermentation post the enzymatic hydrolysis process. The biogas production from the pretreated straw slurry showed an improved methane yield potential up to 162% increase, as compared to that of the untreated straw. Additional biogas production, using the syrup, a waste stream obtained post the ethanol fermentation, resulted in a combined total energy output of 15.8 MJ/kg wheat straw. Moreover, using thin stillage (a waste stream from the first-generation wheat-based ethanol process) as a co-substrate to the biogas process resulted in an additional increase by about 14 to 27% in the total energy output as compared to using only wheat straw-based substrates. ᅟ.
Linke, Bettina; Schröder, Kersten; Arter, Juliane; Gasperazzo, Tatiana; Woehlecke, Holger; Ehwald, Rudolf
2010-09-01
Here we report that dehydrated ethanol is an excellent medium for both in situ preservation of nucleic acids and cell disruption of plant and yeast cells. Cell disruption was strongly facilitated by prior dehydration of the ethanol using dehydrated zeolite. Following removal of ethanol, nucleic acids were extracted from the homogenate pellet using denaturing buffers. The method provided DNA and RNA of high yield and integrity. Whereas cell wall disruption was essential for extraction of DNA and large RNA molecules, smaller molecules such as tRNAs could be selectively extracted from undisrupted, ethanol-treated yeast cells. Our results demonstrate the utility of absolute ethanol for sample fixation, cell membrane and cell wall disruption, as well as preservation of nucleic acids during sample storage.
Falletta, Ermelinda; Rossi, Michele; Teles, Joaquim Henrique; Della Pina, Cristina
2016-03-19
Upon addition of gold to silicalite-1 pellets (a MFI-type zeolite), the vapor phase oxidation of ethanol could be addressed to acetaldehyde or acetic acid formation. By optimizing the catalyst composition and reaction conditions, the conversion of ethanol could be tuned to acetaldehyde with 97% selectivity at 71% conversion or to acetic acid with 78% selectivity at total conversion. Considering that unloaded silicalite-1 was found to catalyze the dehydration of ethanol to diethylether or ethene, a green approach for the integrated production of four important chemicals is herein presented. This is based on renewable ethanol as a reagent and a modular catalytic process.
Process for producing ethanol from syngas
Krause, Theodore R; Rathke, Jerome W; Chen, Michael J
2013-05-14
The invention provides a method for producing ethanol, the method comprising establishing an atmosphere containing methanol forming catalyst and ethanol forming catalyst; injecting syngas into the atmosphere at a temperature and for a time sufficient to produce methanol; and contacting the produced methanol with additional syngas at a temperature and for a time sufficient to produce ethanol. The invention also provides an integrated system for producing methanol and ethanol from syngas, the system comprising an atmosphere isolated from the ambient environment; a first catalyst to produce methanol from syngas wherein the first catalyst resides in the atmosphere; a second catalyst to product ethanol from methanol and syngas, wherein the second catalyst resides in the atmosphere; a conduit for introducing syngas to the atmosphere; and a device for removing ethanol from the atmosphere. The exothermicity of the method and system obviates the need for input of additional heat from outside the atmosphere.
Ye, Guangying; Zeng, Defu; Zhang, Shuaishuai; Fan, Meishan; Zhang, Hongdan; Xie, Jun
2018-06-01
Various mixing ratios of alkali pretreated sugarcane bagasse and starch-rich waste Dioscorea composita hemls extracted residue (DER) were evaluated via simultaneous saccharification and fermentation (SSF) with 12% (w/w) solid loading, and the mixture ratio of 1:1 achieved the highest ethanol concentration and yield. When the solid loading was increased from 12% to 32%, the ethanol concentration was increased to 72.04 g/L, whereas the ethanol yield was reduced from 84.40% to 73.71%. With batch feeding and the addition of 0.1% (w/v) Tween 80, the final ethanol concentration and yield of SSF at 34% loading were 82.83 g/L and 77.22%, respectively. Due to the integration with existing starch-based ethanol industry, the co-fermentation is expected to be a competitive alternative form for cellulosic ethanol production. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Krainak, Michael; Merritt, Scott
2016-01-01
Integrated photonics generally is the integration of multiple lithographically defined photonic and electronic components and devices (e.g. lasers, detectors, waveguides passive structures, modulators, electronic control and optical interconnects) on a single platform with nanometer-scale feature sizes. The development of photonic integrated circuits permits size, weight, power and cost reductions for spacecraft microprocessors, optical communication, processor buses, advanced data processing, and integrated optic science instrument optical systems, subsystems and components. This is particularly critical for small spacecraft platforms. We will give an overview of some NASA applications for integrated photonics.
The computational structural mechanics testbed architecture. Volume 1: The language
NASA Technical Reports Server (NTRS)
Felippa, Carlos A.
1988-01-01
This is the first set of five volumes which describe the software architecture for the Computational Structural Mechanics Testbed. Derived from NICE, an integrated software system developed at Lockheed Palo Alto Research Laboratory, the architecture is composed of the command language CLAMP, the command language interpreter CLIP, and the data manager GAL. Volumes 1, 2, and 3 (NASA CR's 178384, 178385, and 178386, respectively) describe CLAMP and CLIP, and the CLIP-processor interface. Volumes 4 and 5 (NASA CR's 178387 and 178388, respectively) describe GAL and its low-level I/O. CLAMP, an acronym for Command Language for Applied Mechanics Processors, is designed to control the flow of execution of processors written for NICE. Volume 1 presents the basic elements of the CLAMP language and is intended for all users.
Database interfaces on NASA's heterogeneous distributed database system
NASA Technical Reports Server (NTRS)
Huang, Shou-Hsuan Stephen
1987-01-01
The purpose of Distributed Access View Integrated Database (DAVID) interface module (Module 9: Resident Primitive Processing Package) is to provide data transfer between local DAVID systems and resident Data Base Management Systems (DBMSs). The result of current research is summarized. A detailed description of the interface module is provided. Several Pascal templates were constructed. The Resident Processor program was also developed. Even though it is designed for the Pascal templates, it can be modified for templates in other languages, such as C, without much difficulty. The Resident Processor itself can be written in any programming language. Since Module 5 routines are not ready yet, there is no way to test the interface module. However, simulation shows that the data base access programs produced by the Resident Processor do work according to the specifications.
The computational structural mechanics testbed architecture. Volume 2: Directives
NASA Technical Reports Server (NTRS)
Felippa, Carlos A.
1989-01-01
This is the second of a set of five volumes which describe the software architecture for the Computational Structural Mechanics Testbed. Derived from NICE, an integrated software system developed at Lockheed Palo Alto Research Laboratory, the architecture is composed of the command language (CLAMP), the command language interpreter (CLIP), and the data manager (GAL). Volumes 1, 2, and 3 (NASA CR's 178384, 178385, and 178386, respectively) describe CLAMP and CLIP and the CLIP-processor interface. Volumes 4 and 5 (NASA CR's 178387 and 178388, respectively) describe GAL and its low-level I/O. CLAMP, an acronym for Command Language for Applied Mechanics Processors, is designed to control the flow of execution of processors written for NICE. Volume 2 describes the CLIP directives in detail. It is intended for intermediate and advanced users.
Companion Chip: Building a Segregated Hardware Architecture
NASA Astrophysics Data System (ADS)
Pareaud, Thomas; Houelle, Alain; Vaucher, Niolas; Albinet, Mathieu; Honvault, Christophe
2011-08-01
Partitioning is a more and more mature concept in Space industry. It aims at assuring that some error propagation modes are not possible. This paper gives an overview of an analysis conducted in the frame of a research and technology study performed in 2010/2011. The "Java Companion Chip" study addresses an interesting approach to partitioning using hardware concepts: a SoC architecture integrates a master processor, a companion chip and additional hardware functions aiming at enforcing the time and space segregation between the master processor and the slave one.This paper discusses the benefits and the main challenges of the proposed approach. In addition, it presents an application of these concepts to a case study: a Leon/Java processor architecture able to concurrently execute native and Java applications.
Implementation of 4-way Superscalar Hash MIPS Processor Using FPGA
NASA Astrophysics Data System (ADS)
Sahib Omran, Safaa; Fouad Jumma, Laith
2018-05-01
Due to the quick advancements in the personal communications systems and wireless communications, giving data security has turned into a more essential subject. This security idea turns into a more confounded subject when next-generation system requirements and constant calculation speed are considered in real-time. Hash functions are among the most essential cryptographic primitives and utilized as a part of the many fields of signature authentication and communication integrity. These functions are utilized to acquire a settled size unique fingerprint or hash value of an arbitrary length of message. In this paper, Secure Hash Algorithms (SHA) of types SHA-1, SHA-2 (SHA-224, SHA-256) and SHA-3 (BLAKE) are implemented on Field-Programmable Gate Array (FPGA) in a processor structure. The design is described and implemented using a hardware description language, namely VHSIC “Very High Speed Integrated Circuit” Hardware Description Language (VHDL). Since the logical operation of the hash types of (SHA-1, SHA-224, SHA-256 and SHA-3) are 32-bits, so a Superscalar Hash Microprocessor without Interlocked Pipelines (MIPS) processor are designed with only few instructions that were required in invoking the desired Hash algorithms, when the four types of hash algorithms executed sequentially using the designed processor, the total time required equal to approximately 342 us, with a throughput of 4.8 Mbps while the required to execute the same four hash algorithms using the designed four-way superscalar is reduced to 237 us with improved the throughput to 5.1 Mbps.
Metabolic engineering for improved production of ethanol by Corynebacterium glutamicum.
Jojima, Toru; Noburyu, Ryoji; Sasaki, Miho; Tajima, Takahisa; Suda, Masako; Yukawa, Hideaki; Inui, Masayuki
2015-02-01
Recombinant Corynebacterium glutamicum harboring genes for pyruvate decarboxylase (pdc) and alcohol dehydrogenase (adhB) can produce ethanol under oxygen deprivation. We investigated the effects of elevating the expression levels of glycolytic genes, as well as pdc and adhB, on ethanol production. Overexpression of four glycolytic genes (pgi, pfkA, gapA, and pyk) in C. glutamicum significantly increased the rate of ethanol production. Overexpression of tpi, encoding triosephosphate isomerase, further enhanced productivity. Elevated expression of pdc and adhB increased ethanol yield, but not the rate of production. Fed-batch fermentation using an optimized strain resulted in ethanol production of 119 g/L from 245 g/L glucose with a yield of 95% of the theoretical maximum. Further metabolic engineering, including integration of the genes for xylose and arabinose metabolism, enabled consumption of glucose, xylose, and arabinose, and ethanol production (83 g/L) at a yield of 90 %. This study demonstrated that C. glutamicum has significant potential for the production of cellulosic ethanol.
Dutta, Abhijit; Dowe, Nancy; Ibsen, Kelly N; Schell, Daniel J; Aden, Andy
2010-01-01
Numerous routes are being explored to lower the cost of cellulosic ethanol production and enable large-scale production. One critical area is the development of robust cofermentative organisms to convert the multiple, mixed sugars found in biomass feedstocks to ethanol at high yields and titers without the need for processing to remove inhibitors. Until such microorganisms are commercialized, the challenge is to design processes that exploit the current microorganisms' strengths. This study explored various process configurations tailored to take advantage of the specific capabilities of three microorganisms, Z. mobilis 8b, S. cerevisiae, and S. pastorianus. A technoeconomic study, based on bench-scale experimental data generated by integrated process testing, was completed to understand the resulting costs of the different process configurations. The configurations included whole slurry fermentation with a coculture, and separate cellulose simultaneous saccharification and fermentation (SSF) and xylose fermentations with none, some or all of the water to the SSF replaced with the fermented liquor from the xylose fermentation. The difference between the highest and lowest ethanol cost for the different experimental process configurations studied was $0.27 per gallon ethanol. Separate fermentation of solid and liquor streams with recycle of fermented liquor to dilute the solids gave the lowest ethanol cost, primarily because this option achieved the highest concentrations of ethanol after fermentation. Further studies, using methods similar to ones employed here, can help understand and improve the performance and hence the economics of integrated processes involving enzymes and fermentative microorganisms.
Space Tug Avionics Definition Study. Volume 5: Cost and Programmatics
NASA Technical Reports Server (NTRS)
1975-01-01
The baseline avionics system features a central digital computer that integrates the functions of all the space tug subsystems by means of a redundant digital data bus. The central computer consists of dual central processor units, dual input/output processors, and a fault tolerant memory, utilizing internal redundancy and error checking. Three electronically steerable phased arrays provide downlink transmission from any tug attitude directly to ground or via TDRS. Six laser gyros and six accelerometers in a dodecahedron configuration make up the inertial measurement unit. Both a scanning laser radar and a TV system, employing strobe lamps, are required as acquisition and docking sensors. Primary dc power at a nominal 28 volts is supplied from dual lightweight, thermally integrated fuel cells which operate from propellant grade reactants out of the main tanks.
Cochlear Implant Microphone Location Affects Speech Recognition in Diffuse Noise
Kolberg, Elizabeth R.; Sheffield, Sterling W.; Davis, Timothy J.; Sunderhaus, Linsey W.; Gifford, René H.
2015-01-01
Background Despite improvements in cochlear implants (CIs), CI recipients continue to experience significant communicative difficulty in background noise. Many potential solutions have been proposed to help increase signal-to-noise ratio in noisy environments, including signal processing and external accessories. To date, however, the effect of microphone location on speech recognition in noise has focused primarily on hearing aid users. Purpose The purpose of this study was to (1) measure physical output for the T-Mic as compared with the integrated behind-the-ear(BTE) processor mic for various source azimuths, and (2) to investigate the effect of CI processor mic location for speech recognition in semi-diffuse noise with speech originating from various source azimuths as encountered in everyday communicative environments. Research Design A repeated-measures, within-participant design was used to compare performance across listening conditions. Study Sample A total of 11 adults with Advanced Bionics CIs were recruited for this study. Data Collection and Analysis Physical acoustic output was measured on a Knowles Experimental Mannequin for Acoustic Research (KEMAR) for the T-Mic and BTE mic, with broadband noise presented at 0 and 90° (directed toward the implant processor). In addition to physical acoustic measurements, we also assessed recognition of sentences constructed by researchers at Texas Instruments, the Massachusetts Institute of Technology, and the Stanford Research Institute (TIMIT sentences) at 60 dBA for speech source azimuths of 0, 90, and 270°. Sentences were presented in a semi-diffuse restaurant noise originating from the R-SPACE 8-loudspeaker array. Signal-to-noise ratio was determined individually to achieve approximately 50% correct in the unilateral implanted listening condition with speech at 0°. Performance was compared across the T-Mic, 50/50, and the integrated BTE processor mic. Results The integrated BTE mic provided approximately 5 dB attenuation from 1500–4500 Hz for signals presented at 0° as compared with 90° (directed toward the processor). The T-Mic output was essentially equivalent for sources originating from 0 and 90°. Mic location also significantly affected sentence recognition as a function of source azimuth, with the T-Mic yielding the highest performance for speech originating from 0°. Conclusions These results have clinical implications for (1) future implant processor design with respect to mic location, (2) mic settings for implant recipients, and (3) execution of advanced speech testing in the clinic. PMID:25597460
Maranduba, Henrique Leonardo; Robra, Sabine; Nascimento, Iracema Andrade; da Cruz, Rosenira Serpa; Rodrigues, Luciano Brito; de Almeida Neto, José Adolfo
2015-10-01
Despite environmental benefits of algal-biofuels, the energy-intensive systems for producing microalgae-feedstock may result in high GHG emissions. Trying to overcome energy-costs, this research analyzed the biodiesel production system via dry-route, based on Chlorella vulgaris cultivated in raceways, by comparing the GHG-footprints of diverse microalgae-biodiesel scenarios. These involved: the single system of biomass production (C0); the application of pyrolysis on the residual microalgal biomass (cake) from the oil extraction process (C1); the same as C0, with anaerobic cake co-digested with cattle manure (C2); the same conditions as in C1 and C2, by integrating in both cases (respectively C3 and C4), the microalgae cultivation with an autonomous ethanol distillery. The reduction of GHG emissions in scenarios with no such integration (C1 and C2), compared to CO, was insignificant (0.53% and 4.67%, respectively), whereas in the scenarios with integration with ethanol production system, the improvements were 53.57% for C3 and 63.84% for C4. Copyright © 2015 Elsevier Ltd. All rights reserved.
A low-temperature ZnO nanowire ethanol gas sensor prepared on plastic substrate
NASA Astrophysics Data System (ADS)
Lin, Chih-Hung; Chang, Shoou-Jinn; Hsueh, Ting-Jen
2016-09-01
In this work, a low-temperature ZnO nanowire ethanol gas sensor was prepared on plastic substrate. The operating temperature of the ZnO nanowire ethanol gas sensor was reduced to room temperature using ultraviolet illumination. The experimental results indicate a favorable sensor response at low temperature, with the best response at 60 °C. The results also reveal that the ZnO nanowire ethanol gas sensor can be easily integrated into portable products, whose waste heat can improve sensor response and achieve energy savings, while energy consumption can be further reduced by solar irradiation.
Supercritical carbon dioxide-based sterilization of decellularized heart valves.
Hennessy, Ryan S; Jana, Soumen; Tefft, Brandon J; Helder, Meghana R; Young, Melissa D; Hennessy, Rebecca R; Stoyles, Nicholas J; Lerman, Amir
2017-02-01
The goal of this research project encompasses finding the most efficient and effective method of decellularized tissue sterilization. Aortic tissue grafts have been utilized to repair damaged or diseased valves. Although, the tissues for grafting are collected aseptically, it does not eradicate the risk of contamination nor disease transfer. Thus, sterilization of grafts is mandatory. Several techniques have been applied to sterilize grafts; however, each technique shows drawbacks. In this study, we compared several sterilization techniques: supercritical carbon dioxide, electrolyzed water, gamma radiation, ethanol-peracetic acid, and hydrogen peroxide for impact on the sterility and mechanical integrity of porcine decellularized aortic valves. Valve sterility was characterized by histology, microbe culture, and electron microscopy. Uniaxial tensile testing was conducted on the valve cusps along their circumferential orientation to study these sterilization techniques on their integrity. Ethanol-peracetic acid and supercritical carbon dioxide treated valves were found to be sterile. The tensile strength of supercritical carbon dioxide treated valves (4.28 ± 0.22 MPa) was higher to those valves treated with electrolyzed water, gamma radiation, ethanol-peracetic acid and hydrogen peroxide (1.02 ± 0.15, 1.25 ± 0.25, 3.53 ± 0.41 and 0.37 ± 0.04 MPa, respectively). Superior sterility and integrity were found in the decellularized porcine aortic valves with supercritical carbon dioxide sterilization. This sterilization technique may hold promise for other decellularized soft tissues. Sterilization of grafts is essential. Supercritical carbon dioxide, electrolyzed water, gamma radiation, ethanol-peracetic acid, and hydrogen peroxide techniques were compared for impact on sterility and mechanical integrity of porcine decellularized aortic valves. Ethanol-peracetic acid and supercritical carbon dioxide treated valves were found to be sterile using histology, microbe culture and electron microscopy assays. The cusp tensile properties of supercritical carbon dioxide treated valves were higher compared to valves treated with other techniques. Superior sterility and integrity was found in the decellularized valves treated with supercritical carbon dioxide sterilization. This sterilization technique may hold promise for other decellularized soft tissues.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinez, A.; York, S.W.; Yomano, L.P.
1999-10-01
Previous studies have shown an unexpectedly high nutrient requirement for efficient ethanol production by ethanologenic recombinants of Escherichia coli B such as LY01 which contain chromosomally integrated Zymomonas mobilis genes (pdc, adhB) encoding the ethanol pathway. The basis for this requirement has been identified as a media-dependent effect on the expression of the Z. mobilis genes rather than a nutritional limitation. Ethanol production was substantially increased without additional nutrients simply by increasing the level of pyruvate decarboxylase activity. This was accomplished by adding a multicopy plasmid containing pdc alone (but not adhB alone) to strain LY01, and by adding multicopymore » plasmids which express pdc and adhB from strong promoters. New strong promoters were isolated from random fragments of Z. mobilis DNA and characterized but were not used to construct integrated biocatalysts. These promoters contained regions resembling recognition sites for 3 different E. coli sigma factors: {sigma}{sup 70}, {sigma}{sup 38}, and {sigma}{sup 28}. The most effective plasmid-based promoters for fermentation were recognized by multiple sigma factors, expressed both pdc and adhB at high levels, and produced ethanol efficiently while allowing up to 80% reduction in complex nutrients as compared to LY01. The ability to utilize multiple sigma factors may be advantageous to maintain the high levels of PDC and ADH needed for efficient ethanol production throughout batch fermentation.« less
An Overview of the Toxicity of Naphthalene, EDB and Ethanol
This presentation is a short summary of information on the toxicity and carcinogenicity of naphthalene and 1,2-dibromoethane (EDB) that is available in the EPA Integrated Risk Information System (IRIS) and information on the toxicity of ethanol available from the Health, Environm...
The energy demand of distillation-based systems for ethanol recovery and dehydration can be significant, particularly for dilute solutions. An alternative separation process integrating vapor stripping with a vapor compression step and a vapor permeation membrane separation step...
BIOFUEL AND BIOENERGY PRODUCTION FROM SUGAR BEETS
A design spreadsheet model for sizing and analyzing the integrated ethanol and biogas production system, a prototype of the ethanol and biogas production system in the laboratory that has been tested and documented with performance data, and a design and operating manual for t...
The energy demand of distillation-based systems for ethanol recovery and dehydration can be significant, particularly for dilute solutions. An alternative separation process integrating vapor stripping with a vapor compression step and a vapor permeation membrane separation step,...
Han, Jeehoon; Luterbacher, Jeremy S; Alonso, David Martin; Dumesic, James A; Maravelias, Christos T
2015-04-01
The work develops a strategy for the production of ethanol from lignocellulosic biomass. In this strategy, the cellulose and hemicellulose fractions are simultaneously converted to sugars using a γ-valerolactone (GVL) solvent containing a dilute acid catalyst. To effectively recover GVL for reuse as solvent and biomass-derived lignin for heat and power generation, separation subsystems, including a novel CO2-based extraction for the separation of sugars from GVL, lignin and humins have been designed. The sugars are co-fermented by yeast to produce ethanol. Furthermore, heat integration to reduce utility requirements is performed. It is shown that this strategy leads to high ethanol yields and the total energy requirements could be satisfied by burning the lignin. The integrated strategy using corn stover feedstock leads to a minimum selling price of $5 per gallon of gasoline equivalent, which suggests that it is a promising alternative to current biofuels production approaches. Copyright © 2015 Elsevier Ltd. All rights reserved.
Two-dimensional optoelectronic interconnect-processor and its operational bit error rate
NASA Astrophysics Data System (ADS)
Liu, J. Jiang; Gollsneider, Brian; Chang, Wayne H.; Carhart, Gary W.; Vorontsov, Mikhail A.; Simonis, George J.; Shoop, Barry L.
2004-10-01
Two-dimensional (2-D) multi-channel 8x8 optical interconnect and processor system were designed and developed using complementary metal-oxide-semiconductor (CMOS) driven 850-nm vertical-cavity surface-emitting laser (VCSEL) arrays and the photodetector (PD) arrays with corresponding wavelengths. We performed operation and bit-error-rate (BER) analysis on this free-space integrated 8x8 VCSEL optical interconnects driven by silicon-on-sapphire (SOS) circuits. Pseudo-random bit stream (PRBS) data sequence was used in operation of the interconnects. Eye diagrams were measured from individual channels and analyzed using a digital oscilloscope at data rates from 155 Mb/s to 1.5 Gb/s. Using a statistical model of Gaussian distribution for the random noise in the transmission, we developed a method to compute the BER instantaneously with the digital eye-diagrams. Direct measurements on this interconnects were also taken on a standard BER tester for verification. We found that the results of two methods were in the same order and within 50% accuracy. The integrated interconnects were investigated in an optoelectronic processing architecture of digital halftoning image processor. Error diffusion networks implemented by the inherently parallel nature of photonics promise to provide high quality digital halftoned images.
Li, Jihong; Li, Shizhong; Han, Bing; Yu, Menghui; Li, Guangming; Jiang, Yan
2013-11-29
Sweet sorghum is regarded as a very promising energy crop for ethanol production because it not only supplies grain and sugar, but also offers lignocellulosic resource. Cost-competitive ethanol production requires bioconversion of all carbohydrates in stalks including of both sucrose and lignocellulose hydrolyzed into fermentable sugars. However, it is still a main challenge to reduce ethanol production cost and improve feasibility of industrial application. An integration of the different operations within the whole process is a potential solution. An integrated process combined advanced solid-state fermentation technology (ASSF) and alkaline pretreatment was presented in this work. Soluble sugars in sweet sorghum stalks were firstly converted into ethanol by ASSF using crushed stalks directly. Then, the operation combining ethanol distillation and alkaline pretreatment was performed in one distillation-reactor simultaneously. The corresponding investigation indicated that the addition of alkali did not affect the ethanol recovery. The effect of three alkalis, NaOH, KOH and Ca(OH)2 on pretreatment were investigated. The results indicated the delignification of lignocellulose by NaOH and KOH was more significant than that by Ca(OH)2, and the highest removal of xylan was caused by NaOH. Moreover, an optimized alkali loading of 10% (w/w DM) NaOH was determined. Under this favorable pretreatment condition, enzymatic hydrolysis of sweet sorghum bagasse following pretreatment was investigated. 92.0% of glucan and 53.3% of xylan conversion were obtained at enzyme loading of 10 FPU/g glucan. The fermentation of hydrolyzed slurry was performed using an engineered stain, Zymomonas mobilis TSH-01. A mass balance of the overall process was calculated, and 91.9 kg was achieved from one tonne of fresh sweet sorghum stalk. A low energy-consumption integrated technology for ethanol production from sweet sorghum stalks was presented in this work. Energy consumption for raw materials preparation and pretreatment were reduced or avoided in our process. Based on this technology, the recalcitrance of lignocellulose was destructed via a cost-efficient process and all sugars in sweet sorghum stalks lignocellulose were hydrolysed into fermentable sugars. Bioconversion of fermentable sugars released from sweet sorghum bagasse into different products except ethanol, such as butanol, biogas, and chemicals was feasible to operate under low energy-consumption conditions.
2013-01-01
Background Sweet sorghum is regarded as a very promising energy crop for ethanol production because it not only supplies grain and sugar, but also offers lignocellulosic resource. Cost-competitive ethanol production requires bioconversion of all carbohydrates in stalks including of both sucrose and lignocellulose hydrolyzed into fermentable sugars. However, it is still a main challenge to reduce ethanol production cost and improve feasibility of industrial application. An integration of the different operations within the whole process is a potential solution. Results An integrated process combined advanced solid-state fermentation technology (ASSF) and alkaline pretreatment was presented in this work. Soluble sugars in sweet sorghum stalks were firstly converted into ethanol by ASSF using crushed stalks directly. Then, the operation combining ethanol distillation and alkaline pretreatment was performed in one distillation-reactor simultaneously. The corresponding investigation indicated that the addition of alkali did not affect the ethanol recovery. The effect of three alkalis, NaOH, KOH and Ca(OH)2 on pretreatment were investigated. The results indicated the delignification of lignocellulose by NaOH and KOH was more significant than that by Ca(OH)2, and the highest removal of xylan was caused by NaOH. Moreover, an optimized alkali loading of 10% (w/w DM) NaOH was determined. Under this favorable pretreatment condition, enzymatic hydrolysis of sweet sorghum bagasse following pretreatment was investigated. 92.0% of glucan and 53.3% of xylan conversion were obtained at enzyme loading of 10 FPU/g glucan. The fermentation of hydrolyzed slurry was performed using an engineered stain, Zymomonas mobilis TSH-01. A mass balance of the overall process was calculated, and 91.9 kg was achieved from one tonne of fresh sweet sorghum stalk. Conclusions A low energy-consumption integrated technology for ethanol production from sweet sorghum stalks was presented in this work. Energy consumption for raw materials preparation and pretreatment were reduced or avoided in our process. Based on this technology, the recalcitrance of lignocellulose was destructed via a cost-efficient process and all sugars in sweet sorghum stalks lignocellulose were hydrolysed into fermentable sugars. Bioconversion of fermentable sugars released from sweet sorghum bagasse into different products except ethanol, such as butanol, biogas, and chemicals was feasible to operate under low energy-consumption conditions. PMID:24286508
Computationally Efficient Modeling and Simulation of Large Scale Systems
NASA Technical Reports Server (NTRS)
Jain, Jitesh (Inventor); Koh, Cheng-Kok (Inventor); Balakrishnan, Vankataramanan (Inventor); Cauley, Stephen F (Inventor); Li, Hong (Inventor)
2014-01-01
A system for simulating operation of a VLSI interconnect structure having capacitive and inductive coupling between nodes thereof, including a processor, and a memory, the processor configured to perform obtaining a matrix X and a matrix Y containing different combinations of passive circuit element values for the interconnect structure, the element values for each matrix including inductance L and inverse capacitance P, obtaining an adjacency matrix A associated with the interconnect structure, storing the matrices X, Y, and A in the memory, and performing numerical integration to solve first and second equations.
2007-12-11
Implemented both carrier and code phase tracking loop for performance evaluation of a minimum power beam forming algorithm and null steering algorithm...4 Antennal Antenna2 Antenna K RF RF RF ct, Ct~2 ChKx1 X2 ....... Xk A W ~ ~ =Z, x W ,=1 Fig. 5. Schematics of a K-element antenna array spatial...adaptive processor Antennal Antenna K A N-i V/ ( Vil= .i= VK Fig. 6. Schematics of a K-element antenna array space-time adaptive processor Two additional
NASA Astrophysics Data System (ADS)
Olivier, Chomette; Armante, Raymond; Crevoisier, Cyril; Delahaye, Thibault; Edouart, Dimitri; Gibert, Fabien; Nahan, Frédéric; Tellier, Yoann
2018-04-01
The MEthane Remote sensing Lidar missioN (MERLIN), currently in phase C, is a joint cooperation between France and Germany on the development of a spatial Integrated Path Differential Absorption (IPDA) LIDAR (LIght Detecting And Ranging) to conduct global observations of atmospheric methane. This presentation will focus on the status of a LIDAR mission data simulator and processor developed at LMD (Laboratoire de Météorologie Dynamique), Ecole Polytechnique, France, for MERLIN to assess the performances in realistic observational situations.
RAMA: A file system for massively parallel computers
NASA Technical Reports Server (NTRS)
Miller, Ethan L.; Katz, Randy H.
1993-01-01
This paper describes a file system design for massively parallel computers which makes very efficient use of a few disks per processor. This overcomes the traditional I/O bottleneck of massively parallel machines by storing the data on disks within the high-speed interconnection network. In addition, the file system, called RAMA, requires little inter-node synchronization, removing another common bottleneck in parallel processor file systems. Support for a large tertiary storage system can easily be integrated in lo the file system; in fact, RAMA runs most efficiently when tertiary storage is used.
2010-03-01
DATES COVERED (From - To) October 2008 – October 2009 4 . TITLE AND SUBTITLE PERFORMANCE AND POWER OPTIMIZATION FOR COGNITIVE PROCESSOR DESIGN USING...Computations 2 2.2 Cognitive Models and Algorithms for Intelligent Text Recognition 4 2.2.1 Brain-State-in-a-Box Neural Network Model. 4 2.2.2...The ASIC-style design and synthesis flow for FPU 8 Figure 4 : Screen shots of the final layouts 10 Figure 5: Projected performance and power roadmap
Cache-based error recovery for shared memory multiprocessor systems
NASA Technical Reports Server (NTRS)
Wu, Kun-Lung; Fuchs, W. Kent; Patel, Janak H.
1989-01-01
A multiprocessor cache-based checkpointing and recovery scheme for of recovering from transient processor errors in a shared-memory multiprocessor with private caches is presented. New implementation techniques that use checkpoint identifiers and recovery stacks to reduce performance degradation in processor utilization during normal execution are examined. This cache-based checkpointing technique prevents rollback propagation, provides for rapid recovery, and can be integrated into standard cache coherence protocols. An analytical model is used to estimate the relative performance of the scheme during normal execution. Extensions that take error latency into account are presented.
Field to fuel: developing sustainable biorefineries.
Jenkins, Robin; Alles, Carina
2011-06-01
Life-cycle assessment (LCA) can be used as a scientific decision support technique to quantify the environmental implications of various biorefinery process, feedstock, and integration options. The goal of DuPont's integrated corn biorefinery (ICBR) project, a cost-share project with the United States Department of Energy, was to demonstrate the feasibility of a cellulosic ethanol biorefinery concept. DuPont used LCA to guide research and development to the most sustainable cellulosic ethanol biorefinery design in its ICBR project and will continue to apply LCA in support of its ongoing effort with joint venture partners. Cellulosic ethanol is a biofuel which has the potential to provide a sustainable solution to the nation's growing concerns around energy supply and climate change. A successful biorefinery begins with sustainable removal of biomass from the field. Michigan State University (MSU) used LCA to estimate the environmental performance of corn grain, corn stover, and the corn cob portion of the stover, grown under various farming practices for several corn growing locations in the United States Corn Belt. In order to benchmark the future technology options for producing cellulosic ethanol with existing technologies, LCA results for fossil energy consumption and greenhouse gas (GHG) emissions are compared to alternative ethanol processes and conventional gasoline. Preliminary results show that the DuPont ICBR outperforms gasoline and other ethanol technologies in the life-cycle impact categories considered here.
Compact propane fuel processor for auxiliary power unit application
NASA Astrophysics Data System (ADS)
Dokupil, M.; Spitta, C.; Mathiak, J.; Beckhaus, P.; Heinzel, A.
With focus on mobile applications a fuel cell auxiliary power unit (APU) using liquefied petroleum gas (LPG) is currently being developed at the Centre for Fuel Cell Technology (Zentrum für BrennstoffzellenTechnik, ZBT gGmbH). The system is consisting of an integrated compact and lightweight fuel processor and a low temperature PEM fuel cell for an electric power output of 300 W. This article is presenting the current status of development of the fuel processor which is designed for a nominal hydrogen output of 1 k Wth,H2 within a load range from 50 to 120%. A modular setup was chosen defining a reformer/burner module and a CO-purification module. Based on the performance specifications, thermodynamic simulations, benchmarking and selection of catalysts the modules have been developed and characterised simultaneously and then assembled to the complete fuel processor. Automated operation results in a cold startup time of about 25 min for nominal load and carbon monoxide output concentrations below 50 ppm for steady state and dynamic operation. Also fast transient response of the fuel processor at load changes with low fluctuations of the reformate gas composition have been achieved. Beside the development of the main reactors the transfer of the fuel processor to an autonomous system is of major concern. Hence, concepts for packaging have been developed resulting in a volume of 7 l and a weight of 3 kg. Further a selection of peripheral components has been tested and evaluated regarding to the substitution of the laboratory equipment.
Shear viscosity of binary mixtures: The Gay-Berne potential
NASA Astrophysics Data System (ADS)
Khordad, R.
2012-05-01
The Gay-Berne (GB) potential model is an interesting and useful model to study the real systems. Using the potential model, we intend to examine the thermodynamical properties of some anisotropic binary mixtures in two different phases, liquid and gas. For this purpose, we apply the integral equation method and solve numerically the Percus-Yevick (PY) integral equation. Then, we obtain the expansion coefficients of correlation functions to calculate the thermodynamical properties. Finally, we compare our results with the available experimental data [e.g., HFC-125 + propane, R-125/143a, methanol + toluene, benzene + methanol, cyclohexane + ethanol, benzene + ethanol, carbon tetrachloride + ethyl acetate, and methanol + ethanol]. The results show that the GB potential model is capable for predicting the thermodynamical properties of binary mixtures with acceptable accuracy.
Multipurpose silicon photonics signal processor core.
Pérez, Daniel; Gasulla, Ivana; Crudgington, Lee; Thomson, David J; Khokhar, Ali Z; Li, Ke; Cao, Wei; Mashanovich, Goran Z; Capmany, José
2017-09-21
Integrated photonics changes the scaling laws of information and communication systems offering architectural choices that combine photonics with electronics to optimize performance, power, footprint, and cost. Application-specific photonic integrated circuits, where particular circuits/chips are designed to optimally perform particular functionalities, require a considerable number of design and fabrication iterations leading to long development times. A different approach inspired by electronic Field Programmable Gate Arrays is the programmable photonic processor, where a common hardware implemented by a two-dimensional photonic waveguide mesh realizes different functionalities through programming. Here, we report the demonstration of such reconfigurable waveguide mesh in silicon. We demonstrate over 20 different functionalities with a simple seven hexagonal cell structure, which can be applied to different fields including communications, chemical and biomedical sensing, signal processing, multiprocessor networks, and quantum information systems. Our work is an important step toward this paradigm.Integrated optical circuits today are typically designed for a few special functionalities and require complex design and development procedures. Here, the authors demonstrate a reconfigurable but simple silicon waveguide mesh with different functionalities.
NASA Technical Reports Server (NTRS)
Wright, Mary A.; Regelbrugge, Marc E.; Felippa, Carlos A.
1989-01-01
This is the fourth of a set of five volumes which describe the software architecture for the Computational Structural Mechanics Testbed. Derived from NICE, an integrated software system developed at Lockheed Palo Alto Research Laboratory, the architecture is composed of the command language CLAMP, the command language interpreter CLIP, and the data manager GAL. Volumes 1, 2, and 3 (NASA CR's 178384, 178385, and 178386, respectively) describe CLAMP and CLIP and the CLIP-processor interface. Volumes 4 and 5 (NASA CR's 178387 and 178388, respectively) describe GAL and its low-level I/O. CLAMP, an acronym for Command Language for Applied Mechanics Processors, is designed to control the flow of execution of processors written for NICE. Volume 4 describes the nominal-record data management component of the NICE software. It is intended for all users.
Parallel optical information, concept, and response evolver: POINCARE
NASA Astrophysics Data System (ADS)
Caulfield, H. John; Caulfield, Kimberly
1991-08-01
It is now possible to build a nonlinear adaptive system which will incorporate many of the properties of the human mind, such as true originality in such skills as reasoning by analogy and reasoning by retrodiction, including literally unpredictable thoughts; and development of individual styles, personalities, expertise, etc. Like humans, these optical processors will have a rich `subconscious'' experience. Like humans, they will be clonable, but clones will develop differently as they experience the world differently, make different decisions, develop different habits, etc. In short, powerful optical processors with some of the properties normally associated with human intelligence can be made. This approach can result in a powerful optical processor with those properties. A demonstration chosen for simplicity of implementation is suggested. This could be the first computer of any type which uses quantum indeterminacy in an integral and important way.
Montooth, Kristi L; Siebenthall, Kyle T; Clark, Andrew G
2006-10-01
Drosophila melanogaster has evolved the ability to tolerate and utilize high levels of ethanol and acetic acid encountered in its rotting-fruit niche. Investigation of this phenomenon has focused on ethanol catabolism, particularly by the enzyme alcohol dehydrogenase. Here we report that survival under ethanol and acetic acid stress in D. melanogaster from high- and low-latitude populations is an integrated consequence of toxin catabolism and alteration of physical properties of cellular membranes by ethanol. Metabolic detoxification contributed to differences in ethanol tolerance between populations and acclimation temperatures via changes in both alcohol dehydrogenase and acetyl-CoA synthetase mRNA expression and enzyme activity. Independent of changes in ethanol catabolism, rapid thermal shifts that change membrane fluidity had dramatic effects on ethanol tolerance. Cold temperature treatments upregulated phospholipid metabolism genes and enhanced acetic acid tolerance, consistent with the predicted effects of restoring membrane fluidity. Phospholipase D was expressed at high levels in all treatments that conferred enhanced ethanol tolerance, suggesting that this lipid-mediated signaling enzyme may enhance tolerance by sequestering ethanol in membranes as phophatidylethanol. These results reveal new candidate genes underlying toxin tolerance and membrane adaptation to temperature in Drosophila and provide insight into how interactions between these phenotypes may underlie the maintenance of latitudinal clines in ethanol tolerance.
Biodiesel from corn distillers dried grains with solubles: preparation, evaluation and properties
USDA-ARS?s Scientific Manuscript database
Corn distillers’ dried grains with solubles (DDGS) is a co-product of dry-grind ethanol fermentation and represents a low-cost feedstock with potential to improve process economics and logistics of biodiesel manufacture through integration of biodiesel and ethanol production. Oil extracted from DDGS...
Assessment of in situ butanol recovery by vacuum during acetone butanol ethanol (ABE) fermentation
USDA-ARS?s Scientific Manuscript database
Butanol fermentation is product limiting due to butanol toxicity to microbial cells. Butanol (boiling point: 118 deg C) boils at a greater temperature than water (boiling point: 100 deg C) and application of vacuum technology to integrated acetone-butanol-ethanol (ABE) fermentation and recovery may ...
Teaching Green Engineering: The Case of Ethanol Lifecycle Analysis
ERIC Educational Resources Information Center
Vallero, Daniel A.; Braiser, Chris
2008-01-01
Lifecycle assessment (LCA) is a valuable tool in teaching green engineering and has been used to assess biofuels, including ethanol. An undergraduate engineering course at Duke University has integrated LCA with other interactive teaching techniques to enhance awareness and to inform engineering decision making related to societal issues, such as…
USDA-ARS?s Scientific Manuscript database
A simultaneous saccharification fermentation (SSF) system was studied for ethanol production in flour industrial sweetpotato (ISP) feedstocks (lines: white DM02-180 and purple NC-413) as an integrated cost saving process, and to examine the feasibility of extracting anthocyanins from flour purple IS...
A biosensor based on graphite epoxy composite electrode for aspartame and ethanol detection.
Kirgöz, Ulkü Anik; Odaci, Dilek; Timur, Suna; Merkoçi, Arben; Alegret, Salvador; Beşün, Nurgün; Telefoncu, Azmi
2006-06-16
A gelatin membrane with carboxyl esterase and alcohol oxidase was subsequently integrated onto the surface of a graphite epoxy composite electrode (GECE). The developed biosensors showed linearity in the range of 2.5-400 microM for aspartame and 2.5-25 microM for ethanol with response times of 170 and 70s for each analyte, respectively. The resulting bienzyme biosensor was used for aspartame detection in diet coke samples and ethanol detection in beer and wine samples. From the obtained results, it can be concluded that the developed biosensor is a selective, practical and economic tool for aspartame and ethanol detection in real samples.
Complementary Split-Ring Resonator-Loaded Microfluidic Ethanol Chemical Sensor.
Salim, Ahmed; Lim, Sungjoon
2016-10-28
In this paper, a complementary split-ring resonator (CSRR)-loaded patch is proposed as a microfluidic ethanol chemical sensor. The primary objective of this chemical sensor is to detect ethanol's concentration. First, two tightly coupled concentric CSRRs loaded on a patch are realized on a Rogers RT/Duroid 5870 substrate, and then a microfluidic channel engraved on polydimethylsiloxane (PDMS) is integrated for ethanol chemical sensor applications. The resonant frequency of the structure before loading the microfluidic channel is 4.72 GHz. After loading the microfluidic channel, the 550 MHz shift in the resonant frequency is ascribed to the dielectric perturbation phenomenon when the ethanol concentration is varied from 0% to 100%. In order to assess the sensitivity range of our proposed sensor, various concentrations of ethanol are tested and analyzed. Our proposed sensor exhibits repeatability and successfully detects 10% ethanol as verified by the measurement set-up. It has created headway to a miniaturized, non-contact, low-cost, reliable, reusable, and easily fabricated design using extremely small liquid volumes.
Enzymatic hydrolysis and fermentation of corn for fuel alcohol
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mullins, J.T.
1985-01-01
The integration of enzyme saccharification with fermentation reduces the total time required to produce acceptable levels of ethanol. The use of a more concentrated mash (84.8 L total mash/bu corn) results in a 26.6% increase in ethanol productivity and a 21.4% increase in beer ethanol concentration compared to standard corn mash (96.6 L total mash/bu corn). Thus, the energy requirement and cost of distillation can be reduced. The addition of waste cola syrup at 30 g invert sugar/L total mash gave a 19% increase in ethanol concentration in the final beer and required only a small increase in period ofmore » fermentation. Surplus laundry starch can replace 30-50% of the weight of corn normally used in fermentation without influencing ethanol production or the time required for fermentation. Both of these waste materials reduce the unit cost of ethanol and demonstrate the value of such substances in ethanol systems.« less
Wang, Xiahui; Tsang, Yiu Fai; Li, Yuhao; Ma, Xiubing; Cui, Shouqing; Zhang, Tian-Ao; Hu, Jiajun; Gao, Min-Tian
2017-11-01
In this study, it was found that the type of phenolic acids derived from rice straw was the major factor affecting ethanol fermentation by Pichia stipitis. The aim of this study was to investigate the inhibitory effect of phenolic acids on ethanol fermentation with rice straw. Different cellulases produced different ratios of free phenolic acids to soluble conjugated phenolic acids, resulting in different fermentation efficiencies. Free phenolic acids exhibited much higher inhibitory effect than conjugated phenolic acids. The flow cytometry results indicated that the damage to cell membranes was the primary mechanism of inhibition of ethanol fermentation by phenolic acids. The removal of free phenolic acids from the hydrolysates increased ethanol productivity by 2.0-fold, indicating that the free phenolic acids would be the major inhibitors formed during saccharification. The integrated process for ethanol and phenolic acids may constitute a new strategy for the production of low-cost ethanol. Copyright © 2017 Elsevier Ltd. All rights reserved.
Advanced Avionics and Processor Systems for a Flexible Space Exploration Architecture
NASA Technical Reports Server (NTRS)
Keys, Andrew S.; Adams, James H.; Smith, Leigh M.; Johnson, Michael A.; Cressler, John D.
2010-01-01
The Advanced Avionics and Processor Systems (AAPS) project, formerly known as the Radiation Hardened Electronics for Space Environments (RHESE) project, endeavors to develop advanced avionic and processor technologies anticipated to be used by NASA s currently evolving space exploration architectures. The AAPS project is a part of the Exploration Technology Development Program, which funds an entire suite of technologies that are aimed at enabling NASA s ability to explore beyond low earth orbit. NASA s Marshall Space Flight Center (MSFC) manages the AAPS project. AAPS uses a broad-scoped approach to developing avionic and processor systems. Investment areas include advanced electronic designs and technologies capable of providing environmental hardness, reconfigurable computing techniques, software tools for radiation effects assessment, and radiation environment modeling tools. Near-term emphasis within the multiple AAPS tasks focuses on developing prototype components using semiconductor processes and materials (such as Silicon-Germanium (SiGe)) to enhance a device s tolerance to radiation events and low temperature environments. As the SiGe technology will culminate in a delivered prototype this fiscal year, the project emphasis shifts its focus to developing low-power, high efficiency total processor hardening techniques. In addition to processor development, the project endeavors to demonstrate techniques applicable to reconfigurable computing and partially reconfigurable Field Programmable Gate Arrays (FPGAs). This capability enables avionic architectures the ability to develop FPGA-based, radiation tolerant processor boards that can serve in multiple physical locations throughout the spacecraft and perform multiple functions during the course of the mission. The individual tasks that comprise AAPS are diverse, yet united in the common endeavor to develop electronics capable of operating within the harsh environment of space. Specifically, the AAPS tasks for the Federal fiscal year of 2010 are: Silicon-Germanium (SiGe) Integrated Electronics for Extreme Environments, Modeling of Radiation Effects on Electronics, Radiation Hardened High Performance Processors (HPP), and and Reconfigurable Computing.
Extending the granularity of representation and control for the MIL-STD CAIS 1.0 node model
NASA Technical Reports Server (NTRS)
Rogers, Kathy L.
1986-01-01
The Common APSE (Ada 1 Program Support Environment) Interface Set (CAIS) (DoD85) node model provides an excellent baseline for interfaces in a single-host development environment. To encompass the entire spectrum of computing, however, the CAIS model should be extended in four areas. It should provide the interface between the engineering workstation and the host system throughout the entire lifecycle of the system. It should provide a basis for communication and integration functions needed by distributed host environments. It should provide common interfaces for communications mechanisms to and among target processors. It should provide facilities for integration, validation, and verification of test beds extending to distributed systems on geographically separate processors with heterogeneous instruction set architectures (ISAS). Additions to the PROCESS NODE model to extend the CAIS into these four areas are proposed.
NASA Astrophysics Data System (ADS)
Barr, David; Basden, Alastair; Dipper, Nigel; Schwartz, Noah; Vick, Andy; Schnetler, Hermine
2014-08-01
We present wavefront reconstruction acceleration of high-order AO systems using an Intel Xeon Phi processor. The Xeon Phi is a coprocessor providing many integrated cores and designed for accelerating compute intensive, numerical codes. Unlike other accelerator technologies, it allows virtually unchanged C/C++ to be recompiled to run on the Xeon Phi, giving the potential of making development, upgrade and maintenance faster and less complex. We benchmark the Xeon Phi in the context of AO real-time control by running a matrix vector multiply (MVM) algorithm. We investigate variability in execution time and demonstrate a substantial speed-up in loop frequency. We examine the integration of a Xeon Phi into an existing RTC system and show that performance improvements can be achieved with limited development effort.
[Spectroscopic analysis of the interaction of ethanol and acid phosphatase from wheat germ].
Xu, Dong-mei; Liu, Guang-shen; Wang, Li-ming; Liu, Wei-ping
2004-11-01
Conformational and activity changes of acid phosphatase from wheat germ in ethanol solutions of different concentrations were measured by fluorescence spectra and differential UV-absorption spectra. The effect of ethanol on kinetics of acid phosphatase was determined by using the double reciprocal plot. The results indicate the ethanol has a significant effect on the activity and conformation of acid phosphatase. The activity of acid phosphatase decreased linearly with increasing the concentration of ethanol. Differential UV-absorption spectra of the enzyme denatured in ethanol solutions showed two positive peaks at 213 and 234 nm, respectively. The peaks on the differential UV-absorption spectra suggested that the conformation of enzyme molecule changed from orderly structure to out-of-order crispation. The fluorescence emission peak intensity of the enzyme gradually strengthened with increasing ethanol concentration, which is in concordance with the conformational change of the microenvironments of tyrosine and tryptophan residues. The results indicate that the expression of the enzyme activity correlates with the stability and integrity of the enzyme conformation to a great degree. Ethanol is uncompetitive inhibitor of acid phosphatase.
Yuan, Fang; Lei, Yonghong; Wang, Qiurong; Esberg, Lucy B; Huang, Zaixing; Scott, Glenda I; Li, Xue; Ren, Jun
2015-03-18
Light to moderate drinking confers cardioprotection although it remains unclear with regards to the role of moderate drinking on cardiac function in obesity. This study was designed to examine the impact of moderate ethanol intake on myocardial function in high fat diet intake-induced obesity and the mechanism(s) involved with a focus on mitochondrial integrity. C57BL/6 mice were fed low or high fat diet for 16 weeks prior to ethanol challenge (1g/kg/d for 3 days). Cardiac contractile function, intracellular Ca(2+) homeostasis, myocardial histology, and mitochondrial integrity [aconitase activity and the mitochondrial proteins SOD1, UCP-2 and PPARγ coactivator 1α (PGC-1α)] were assessed 24h after the final ethanol challenge. Fat diet intake compromised cardiomyocyte contractile and intracellular Ca(2+) properties (depressed peak shortening and maximal velocities of shortening/relengthening, prolonged duration of relengthening, dampened intracellular Ca(2+) rise and clearance without affecting duration of shortening). Although moderate ethanol challenge failed to alter cardiomyocyte mechanical property under low fat diet intake, it accentuated high fat diet intake-induced changes in cardiomyocyte contractile function and intracellular Ca(2+) handling. Moderate ethanol challenge failed to affect fat diet intake-induced cardiac hypertrophy as evidenced by H&E staining. High fat diet intake reduced myocardial aconitase activity, downregulated levels of mitochondrial protein UCP-2, PGC-1α, SOD1 and interrupted intracellular Ca(2+) regulatory proteins, the effect of which was augmented by moderate ethanol challenge. Neither high fat diet intake nor moderate ethanol challenge affected protein or mRNA levels as well as phosphorylation of Akt and GSK3β in mouse hearts. Taken together, our data revealed that moderate ethanol challenge accentuated high fat diet-induced cardiac contractile and intracellular Ca(2+) anomalies as well as mitochondrial injury. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
1986-06-30
features of computer aided design systems and statistical quality control procedures that are generic to chip sets and processes. RADIATION HARDNESS -The...System PSP Programmable Signal Processor SSI Small Scale Integration ." TOW Tube Launched, Optically Tracked, Wire Guided TTL Transistor Transitor Logic
Park, Hyong Seok; Choi, Hee Jung; Kim, Myoung-Dong; Kim, Kyoung Heon
2013-09-02
Supercritical carbon dioxide (SC-CO2) was used to inactivate Bacillus cereus spores inside biofilms, which were grown on stainless steel. SC-CO2 treatment was tested using various conditions, such as pressure treatment (10-30 MPa), temperature (35-60°C), and time (10-120 min). B. cereus vegetative cells in the biofilm were completely inactivated by treatment with SC-CO2 at 10 MPa and at 35°C for 5 min. However, SC-CO2 alone did not inactivate spores in biofilm even after the treatment time was extended to 120 min. When ethanol was used as a cosolvent with SC-CO2 in the SC-CO2 treatment using only 2-10 ml of ethanol in 100ml of SC-CO2 vessel for 60-90 min of treatment time at 10 MPa and 60°C, B. cereus spores in the biofilm were found to be completely inactivated in the colony-forming test. We also assessed the viability of SC-CO2-treated bacterial spores and vegetative cells in the biofilm by staining with SYTO 9 and propidium iodide. The membrane integrity of the vegetative cells was completely lost, while the integrity of the membrane was still maintained in most spores. However, when SC-CO2 along with ethanol was used, both vegetative cells and spores lost their membrane integrity, indicating that the use of ethanol as a cosolvent with SC-CO2 is efficient in inactivating the bacterial spores in the biofilm. © 2013.
Nishimura, Hiroto; Tan, Li; Sun, Zhao-Yong; Tang, Yue-Qin; Kida, Kenji; Morimura, Shigeru
2016-02-01
Waste paper can serve as a feedstock for ethanol production due to being rich in cellulose and not requiring energy-intensive thermophysical pretreatment. In this study, an efficient process was developed to convert waste paper to ethanol. To accelerate enzymatic saccharification, pH of waste paper slurry was adjusted to 4.5-5.0 with H2SO4. Presaccharification and simultaneous saccharification and fermentation (PSSF) with enzyme loading of 40 FPU/g waste paper achieved an ethanol yield of 91.8% and productivity of 0.53g/(Lh) with an ethanol concentration of 32g/L. Fed-batch PSSF was used to decrease enzyme loading to 13 FPU/g waste paper by feeding two separate batches of waste paper slurry. Feeding with 20% w/w waste paper slurry increased ethanol concentration to 41.8g/L while ethanol yield decreased to 83.8%. To improve the ethanol yield, presaccharification was done prior to feeding and resulted in a higher ethanol concentration of 45.3g/L, a yield of 90.8%, and productivity of 0.54g/(Lh). Ethanol fermentation recovered 33.2% of the energy in waste paper as ethanol. The biochemical methane potential of the stillage eluted from ethanol fermentation was 270.5mL/g VTS and 73.0% of the energy in the stillage was recovered as methane. Integrating ethanol fermentation with methane fermentation, recovered a total of 80.4% of the energy in waste paper as ethanol and methane. Copyright © 2015 Elsevier Ltd. All rights reserved.
Implementation and Assessment of Advanced Analog Vector-Matrix Processor
NASA Technical Reports Server (NTRS)
Gary, Charles K.; Bualat, Maria G.; Lum, Henry, Jr. (Technical Monitor)
1994-01-01
This paper discusses the design and implementation of an analog optical vecto-rmatrix coprocessor with a throughput of 128 Mops for a personal computer. Vector matrix calculations are inherently parallel, providing a promising domain for the use of optical calculators. However, to date, digital optical systems have proven too cumbersome to replace electronics, and analog processors have not demonstrated sufficient accuracy in large scale systems. The goal of the work described in this paper is to demonstrate a viable optical coprocessor for linear operations. The analog optical processor presented has been integrated with a personal computer to provide full functionality and is the first demonstration of an optical linear algebra processor with a throughput greater than 100 Mops. The optical vector matrix processor consists of a laser diode source, an acoustooptical modulator array to input the vector information, a liquid crystal spatial light modulator to input the matrix information, an avalanche photodiode array to read out the result vector of the vector matrix multiplication, as well as transport optics and the electronics necessary to drive the optical modulators and interface to the computer. The intent of this research is to provide a low cost, highly energy efficient coprocessor for linear operations. Measurements of the analog accuracy of the processor performing 128 Mops are presented along with an assessment of the implications for future systems. A range of noise sources, including cross-talk, source amplitude fluctuations, shot noise at the detector, and non-linearities of the optoelectronic components are measured and compared to determine the most significant source of error. The possibilities for reducing these sources of error are discussed. Also, the total error is compared with that expected from a statistical analysis of the individual components and their relation to the vector-matrix operation. The sufficiency of the measured accuracy of the processor is compared with that required for a range of typical problems. Calculations resolving alloy concentrations from spectral plume data of rocket engines are implemented on the optical processor, demonstrating its sufficiency for this problem. We also show how this technology can be easily extended to a 100 x 100 10 MHz (200 Cops) processor.
Parallel implementation of an adaptive and parameter-free N-body integrator
NASA Astrophysics Data System (ADS)
Pruett, C. David; Ingham, William H.; Herman, Ralph D.
2011-05-01
Previously, Pruett et al. (2003) [3] described an N-body integrator of arbitrarily high order M with an asymptotic operation count of O(MN). The algorithm's structure lends itself readily to data parallelization, which we document and demonstrate here in the integration of point-mass systems subject to Newtonian gravitation. High order is shown to benefit parallel efficiency. The resulting N-body integrator is robust, parameter-free, highly accurate, and adaptive in both time-step and order. Moreover, it exhibits linear speedup on distributed parallel processors, provided that each processor is assigned at least a handful of bodies. Program summaryProgram title: PNB.f90 Catalogue identifier: AEIK_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEIK_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC license, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 3052 No. of bytes in distributed program, including test data, etc.: 68 600 Distribution format: tar.gz Programming language: Fortran 90 and OpenMPI Computer: All shared or distributed memory parallel processors Operating system: Unix/Linux Has the code been vectorized or parallelized?: The code has been parallelized but has not been explicitly vectorized. RAM: Dependent upon N Classification: 4.3, 4.12, 6.5 Nature of problem: High accuracy numerical evaluation of trajectories of N point masses each subject to Newtonian gravitation. Solution method: Parallel and adaptive extrapolation in time via power series of arbitrary degree. Running time: 5.1 s for the demo program supplied with the package.
USDA-ARS?s Scientific Manuscript database
An industrial ethanol-producing Saccharomyces cerevisiae strain with genes needed for xylose-fermentation integrated into its genome was used to obtain haploids and diploid isogenic strains. The isogenic strains were more effective in metabolizing xylose than their parental strain (p < 0.05) and abl...
Energy analysis results confirmed that abandoned rice fields provide a good opportunity for Japan to fulfill its E-3 target by producing ethanol from high-yield rice feedstock. However, to be a viable alternative, a biofuel should not only provide a net energy gain and reduce the...
Sweet sorghum biorefinery for production of fuel ethanol and value-added co-products
USDA-ARS?s Scientific Manuscript database
An integrated process has been developed for a sweet-sorghum biorefinery in which all carbohydrate components of the feedstock were used for production of fuel ethanol and industrial chemicals. In the first step, the juice was extracted from the stalks. The resulted straw (bagasse) then was pretreat...
Evaluation of UV-C mutagenized Scheffersomyces stipitis strains for ethanol production
USDA-ARS?s Scientific Manuscript database
We evaluated fermentation capabilities of five strains of Scheffersomyces stipitis (WT-2-1, WT-1-11, 14-2-6, 22-1-1, and 22-1-12) that had been produced by UV-C mutagenesis and selection for improved xylose fermentation to ethanol using an integrated automated robotic work cell. They were incubated ...
Silva, Luiziana Ferreira; Taciro, Marilda Keico; Raicher, Gil; Piccoli, Rosane Aparecida Moniz; Mendonça, Thatiane Teixeira; Lopes, Mateus Schreiner Garcez; Gomez, José Gregório Cabrera
2014-11-01
Polyhydroxyalkanoates (PHA) are biodegradable and biocompatible bacterial thermoplastic polymers that can be obtained from renewable resources. The high impact of the carbon source in the final cost of this polymer has been one of the major limiting factors for PHA production and agricultural residues, mainly lignocellulosic materials, have gained attention to overcome this problem. In Brazil, production of 2nd generation ethanol from the glucose fraction, derived from sugarcane bagasse hydrolysate has been studied. The huge amounts of remaining xylose will create an opportunity for the development of other bioprocesses, generating new products to be introduced into a biorefinery model. Although PHA production from sucrose integrated to a 1G ethanol and sugar mill has been proposed in the past, the integration of the process of 2G ethanol in the context of a biorefinery will provide enormous amounts of xylose, which could be applied to produce PHA, establishing a second-generation of PHA production process. Those aspects and perspectives are presented in this article. Copyright © 2014 Elsevier B.V. All rights reserved.
2012-01-01
Background The commercialization of second-generation bioethanol has not been realized due to several factors, including poor biomass utilization and high production cost. It is generally accepted that the most important parameters in reducing the production cost are the ethanol yield and the ethanol concentration in the fermentation broth. Agricultural residues contain large amounts of hemicellulose, and the utilization of xylose is thus a plausible way to improve the concentration and yield of ethanol during fermentation. Most naturally occurring ethanol-fermenting microorganisms do not utilize xylose, but a genetically modified yeast strain, TMB3400, has the ability to co-ferment glucose and xylose. However, the xylose uptake rate is only enhanced when the glucose concentration is low. Results Separate hydrolysis and co-fermentation of steam-pretreated wheat straw (SPWS) combined with wheat-starch hydrolysate feed was performed in two separate processes. The average yield of ethanol and the xylose consumption reached 86% and 69%, respectively, when the hydrolysate of the enzymatically hydrolyzed (18.5% WIS) unwashed SPWS solid fraction and wheat-starch hydrolysate were fed to the fermentor after 1 h of fermentation of the SPWS liquid fraction. In the other configuration, fermentation of the SPWS hydrolysate (7.0% WIS), resulted in an average ethanol yield of 93% from fermentation based on glucose and xylose and complete xylose consumption when wheat-starch hydrolysate was included in the feed. Increased initial cell density in the fermentation (from 5 to 20 g/L) did not increase the ethanol yield, but improved and accelerated xylose consumption in both cases. Conclusions Higher ethanol yield has been achieved in co-fermentation of xylose and glucose in SPWS hydrolysate when wheat-starch hydrolysate was used as feed, then in co-fermentation of the liquid fraction of SPWS fed with the mixed hydrolysates. Integration of first-generation and second-generation processes also increases the ethanol concentration, resulting in a reduction in the cost of the distillation step, thus improving the process economics. PMID:22410131
Digital Parallel Processor Array for Optimum Path Planning
NASA Technical Reports Server (NTRS)
Kremeny, Sabrina E. (Inventor); Fossum, Eric R. (Inventor); Nixon, Robert H. (Inventor)
1996-01-01
The invention computes the optimum path across a terrain or topology represented by an array of parallel processor cells interconnected between neighboring cells by links extending along different directions to the neighboring cells. Such an array is preferably implemented as a high-speed integrated circuit. The computation of the optimum path is accomplished by, in each cell, receiving stimulus signals from neighboring cells along corresponding directions, determining and storing the identity of a direction along which the first stimulus signal is received, broadcasting a subsequent stimulus signal to the neighboring cells after a predetermined delay time, whereby stimulus signals propagate throughout the array from a starting one of the cells. After propagation of the stimulus signal throughout the array, a master processor traces back from a selected destination cell to the starting cell along an optimum path of the cells in accordance with the identity of the directions stored in each of the cells.
NASA Technical Reports Server (NTRS)
Felippa, Carlos A.
1989-01-01
This is the fifth of a set of five volumes which describe the software architecture for the Computational Structural Mechanics Testbed. Derived from NICE, an integrated software system developed at Lockheed Palo Alto Research Laboratory, the architecture is composed of the command language (CLAMP), the command language interpreter (CLIP), and the data manager (GAL). Volumes 1, 2, and 3 (NASA CR's 178384, 178385, and 178386, respectively) describe CLAMP and CLIP and the CLIP-processor interface. Volumes 4 and 5 (NASA CR's 178387 and 178388, respectively) describe GAL and its low-level I/O. CLAMP, an acronym for Command Language for Applied Mechanics Processors, is designed to control the flow of execution of processors written for NICE. Volume 5 describes the low-level data management component of the NICE software. It is intended only for advanced programmers involved in maintenance of the software.
Metal membrane-type 25-kW methanol fuel processor for fuel-cell hybrid vehicle
NASA Astrophysics Data System (ADS)
Han, Jaesung; Lee, Seok-Min; Chang, Hyuksang
A 25-kW on-board methanol fuel processor has been developed. It consists of a methanol steam reformer, which converts methanol to hydrogen-rich gas mixture, and two metal membrane modules, which clean-up the gas mixture to high-purity hydrogen. It produces hydrogen at rates up to 25 N m 3/h and the purity of the product hydrogen is over 99.9995% with a CO content of less than 1 ppm. In this fuel processor, the operating condition of the reformer and the metal membrane modules is nearly the same, so that operation is simple and the overall system construction is compact by eliminating the extensive temperature control of the intermediate gas streams. The recovery of hydrogen in the metal membrane units is maintained at 70-75% by the control of the pressure in the system, and the remaining 25-30% hydrogen is recycled to a catalytic combustion zone to supply heat for the methanol steam-reforming reaction. The thermal efficiency of the fuel processor is about 75% and the inlet air pressure is as low as 4 psi. The fuel processor is currently being integrated with 25-kW polymer electrolyte membrane fuel-cell (PEMFC) stack developed by the Hyundai Motor Company. The stack exhibits the same performance as those with pure hydrogen, which proves that the maximum power output as well as the minimum stack degradation is possible with this fuel processor. This fuel-cell 'engine' is to be installed in a hybrid passenger vehicle for road testing.
Parallel evolution of image processing tools for multispectral imagery
NASA Astrophysics Data System (ADS)
Harvey, Neal R.; Brumby, Steven P.; Perkins, Simon J.; Porter, Reid B.; Theiler, James P.; Young, Aaron C.; Szymanski, John J.; Bloch, Jeffrey J.
2000-11-01
We describe the implementation and performance of a parallel, hybrid evolutionary-algorithm-based system, which optimizes image processing tools for feature-finding tasks in multi-spectral imagery (MSI) data sets. Our system uses an integrated spatio-spectral approach and is capable of combining suitably-registered data from different sensors. We investigate the speed-up obtained by parallelization of the evolutionary process via multiple processors (a workstation cluster) and develop a model for prediction of run-times for different numbers of processors. We demonstrate our system on Landsat Thematic Mapper MSI , covering the recent Cerro Grande fire at Los Alamos, NM, USA.
A miniature on-chip multi-functional ECG signal processor with 30 µW ultra-low power consumption.
Liu, Xin; Zheng, Yuan Jin; Phyu, Myint Wai; Zhao, Bin; Je, Minkyu; Yuan, Xiao Jun
2010-01-01
In this paper, a miniature low-power Electrocardiogram (ECG) signal processing application specific integrated circuit (ASIC) chip is proposed. This chip provides multiple critical functions for ECG analysis using a systematic wavelet transform algorithm and a novel SRAM-based ASIC architecture, while achieves low cost and high performance. Using 0.18 µm CMOS technology and 1 V power supply, this ASIC chip consumes only 29 µW and occupies an area of 3 mm(2). This on-chip ECG processor is highly suitable for reliable real-time cardiac status monitoring applications.
A network control concept for the 30/20 GHz communication system baseband processor
NASA Technical Reports Server (NTRS)
Sabourin, D. J.; Hay, R. E.
1982-01-01
The architecture and system design for a satellite-switched TDMA communication system employing on-board processing was developed by Motorola for NASA's Lewis Research Center. The system design is based on distributed processing techniques that provide extreme flexibility in the selection of a network control protocol without impacting the satellite or ground terminal hardware. A network control concept that includes system synchronization and allows burst synchronization to occur within the system operational requirement is described. This concept integrates the tracking and control links with the communication links via the baseband processor, resulting in an autonomous system operational approach.
Processor Would Find Best Paths On Map
NASA Technical Reports Server (NTRS)
Eberhardt, Silvio P.
1990-01-01
Proposed very-large-scale integrated (VLSI) circuit image-data processor finds path of least cost from specified origin to any destination on map. Cost of traversal assigned to each picture element of map. Path of least cost from originating picture element to every other picture element computed as path that preserves as much as possible of signal transmitted by originating picture element. Dedicated microprocessor at each picture element stores cost of traversal and performs its share of computations of paths of least cost. Least-cost-path problem occurs in research, military maneuvers, and in planning routes of vehicles.
Supercritical carbon dioxide-based sterilization of decellularized heart valves
Hennessy, Ryan S.; Jana, Soumen; Tefft, Brandon J.; Helder, Meghana R.; Young, Melissa D.; Hennessy, Rebecca R.; Stoyles, Nicholas J.; Lerman, Amir
2017-01-01
Objective The goal of this research project encompasses finding the most efficient and effective method of decellularized tissue sterilization. Background Aortic tissue grafts have been utilized to repair damaged or diseased valves. Although, the tissues for grafting are collected aseptically, it does not eradicate the risk of contamination nor disease transfer. Thus, sterilization of grafts is mandatory. Several techniques have been applied to sterilize grafts; however, each technique shows drawbacks. In this study, we compared several sterilization techniques: supercritical carbon dioxide, electrolyzed water, gamma radiation, ethanol-peracetic acid, and hydrogen peroxide for impact on the sterility and mechanical integrity of porcine decellularized aortic valves. Methods Valve sterility was characterized by histology, microbe culture, and electron microscopy. Uniaxial tensile testing was conducted on the valve cusps along their circumferential orientation to study these sterilization techniques on their integrity. Results Ethanol-peracetic acid and supercritical carbon dioxide treated valves were found to be sterile. The tensile strength of supercritical carbon dioxide treated valves (4.28 ± 0.22 MPa) was higher to those valves treated with electrolyzed water, gamma radiation, ethanol-peracetic acid and hydrogen peroxide (1.02 ± 0.15, 1.25 ± 0.25, 3.53 ± 0.41 and 0.37 ± 0.04 MPa, respectively). Conclusions Superior sterility and integrity were found in the decellularized porcine aortic valves with supercritical carbon dioxide sterilization. This sterilization technique may hold promise for other decellularized soft tissues. Summary Sterilization of grafts is essential. Supercritical carbon dioxide, electrolyzed water, gamma radiation, ethanol-peracetic acid, and hydrogen peroxide techniques were compared for impact on sterility and mechanical integrity of porcine decellularized aortic valves. Ethanol-peracetic acid and supercritical carbon dioxide treated valves were found to be sterile using histology, microbe culture and electron microscopy assays. The cusp tensile properties of supercritical carbon dioxide treated valves were higher compared to valves treated with other techniques. Superior sterility and integrity was found in the decellularized valves treated with supercritical carbon dioxide sterilization. This sterilization technique may hold promise for other decellularized soft tissues. PMID:28337488
Choi, Yun-Nam; Park, Jong Moon
2016-08-01
This study demonstrates that increased NADPH production can improve biomass and ethanol production in cyanobacteria. We over-expressed the endogenous zwf gene, which encodes glucose-6-phosphate dehydrogenase of pentose phosphate pathway, in the model cyanobacterium Synechocystis sp. PCC 6803. zwf over-expression resulted in increased NADPH production, and promoted biomass production compared to the wild type in both autotrophic and mixotrophic conditions. Ethanol production pathway including NADPH-dependent alcohol dehydrogenase was also integrated with and without zwf over-expression. Excessive NADPH production by zwf over-expression could improve both biomass and ethanol production in the autotrophic conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Petersen, Abdul M; Haigh, Kate; Görgens, Johann F
2014-01-01
Flow sheet options for integrating ethanol production from spent sulfite liquor (SSL) into the acid-based sulfite pulping process at the Sappi Saiccor mill (Umkomaas, South Africa) were investigated, including options for generation of thermal and electrical energy from onsite bio-wastes, such as bark. Processes were simulated with Aspen Plus® for mass- and energy-balances, followed by an estimation of the economic viability and environmental impacts. Various concentration levels of the total dissolved solids in magnesium oxide-based SSL, which currently fuels a recovery boiler, prior to fermentation was considered, together with return of the fermentation residues (distillation bottoms) to the recovery boiler after ethanol separation. The generation of renewable thermal and electrical energy from onsite bio-wastes were also included in the energy balance of the combined pulping-ethanol process, in order to partially replace coal consumption. The bio-energy supplementations included the combustion of bark for heat and electricity generation and the bio-digestion of the calcium oxide SSL to produce methane as additional energy source. Ethanol production from SSL at the highest substrate concentration was the most economically feasible when coal was used for process energy. However this solution did not provide any savings in greenhouse gas (GHG) emissions for the concentration-fermentation-distillation process. Maximizing the use of renewable energy sources to partially replace coal consumption yielded a satisfactory economic performance, with a minimum ethanol selling price of 0.83 US$/l , and a drastic reduction in the overall greenhouse gas emissions for the entire facility. High substrate concentrations and conventional distillation should be used when considering integrating ethanol production at sulfite pulping mills. Bio-wastes generated onsite should be utilized at their maximum potential for energy generation in order to maximize the GHG emissions reduction.
NASA Astrophysics Data System (ADS)
Warner, E. S.; Zhang, Y.; Newmark, R. L.
2012-12-01
Biofuels represent an opportunity for domestic fuel production from renewable energy sources with potential environmental and social benefits such as reducing greenhouse gas (GHG) and promoting rural development. However, as demand for biofuel continues to increase worldwide, concerns about land competition between food and fuel, excessive water usage and other unintended environmental consequences have grown. Through a comparative study between US corn ethanol and Brazilian sugarcane ethanol, we examine the energy, land, water and GHG performance of the two largest industrial fuel ethanol production systems in the world. Our comparisons include current and potential future systems with improved agronomic practices, crop yields, ethanol conversion processes, and utilization of agricultural residues. Our results suggest that the average water footprints of US corn ethanol and Brazilian sugarcane ethanol are fairly close (108 and 110 m3/GJ of ethanol, respectively) while the variations can range from 50 to 250 m3/GJ for sugarcane ethanol and 50 to380 m3/GJ for corn ethanol. Results emphasize the need to examine the water footprint within the context of local and regional climatic variability, water availability, competing uses (e.g. agricultural, industrial, and municipal water needs) and other ecosystem constraints. Research is under way (at the National Renewable Energy Laboratory and other institutions) to develop models to analyze water supply and demand at the watershed-scale for current and future biomass production, and to understand the tradeoffs among water supply, demand and quality due to more intensive agricultural practices and expansion of biofuels. Land use efficiency metrics, with regards to life cycle GHG emissions (without land use change) savings through gasoline displacement with ethanol, illustrate the progression of the biofuel industry and the importance of maximizing bioenergy production by utilizing both the crops and the residues. A recent average sugarcane ethanol system producing ethanol and electricity can save about 13 Mg CO2eq/ha of land compared to 12 in the early 2000s, while a recent average corn ethanol system saves about 6.2 Mg CO2eq/ha compared to near zero GHG savings in the early 2000s. The net energy balance (i.e., energy produced minus energy consumed) per ha for a recent average sugarcane ethanol system producing both ethanol and electricity is about 160 GJ/ha compared to 140 GJ/ha in early 2000s, while the recent average corn ethanol system achieves a net energy production of about 90 GJ/ha compares to only 30 GJ/ha in the early 2000s. The land use efficiency of corn and sugarcane ethanol systems, especially future systems, can vary depending on factors such as the assumed technologies, the suite of co-products produced, field practices, and technological learning. For example, projected future (2020) advanced sugarcane ethanol systems could save 22 Mg CO2eq/ha while an advanced corn ethanol system using integrated gasification of corn stover for electricity production could save 9.3Mg CO2eq/ha. Future advanced sugarcane ethanol systems could produce 210 GJ of net energy/ha while an advanced corn ethanol system using integrated gasification of corn stover for electricity production could achieve 110 GJ/ha.
Buaban, Benchaporn; Inoue, Hiroyuki; Yano, Shinichi; Tanapongpipat, Sutipa; Ruanglek, Vasimon; Champreda, Verawat; Pichyangkura, Rath; Rengpipat, Sirirat; Eurwilaichitr, Lily
2010-07-01
Sugarcane bagasse is one of the most promising agricultural by-products for conversion to biofuels. Here, ethanol fermentation from bagasse has been achieved using an integrated process combining mechanical pretreatment by ball milling, with enzymatic hydrolysis and fermentation. Ball milling for 2 h was sufficient for nearly complete cellulose structural transformation to an accessible amorphous form. The pretreated cellulosic residues were hydrolyzed by a crude enzyme preparation from Penicillium chrysogenum BCC4504 containing cellulase activity combined with Aspergillus flavus BCC7179 preparation containing complementary beta-glucosidase activity. Saccharification yields of 84.0% and 70.4% for glucose and xylose, respectively, were obtained after hydrolysis at 45 degrees C, pH 5 for 72 h, which were slightly higher than those obtained with a commercial enzyme mixture containing Acremonium cellulase and Optimash BG. A high conversion yield of undetoxified pretreated bagasse (5%, w/v) hydrolysate to ethanol was attained by separate hydrolysis and fermentation processes using Pichia stipitis BCC15191, at pH 5.5, 30 degrees C for 24 h resulting in an ethanol concentration of 8.4 g/l, corresponding to a conversion yield of 0.29 g ethanol/g available fermentable sugars. Comparable ethanol conversion efficiency was obtained by a simultaneous saccharification and fermentation process which led to production of 8.0 g/l ethanol after 72 h fermentation under the same conditions. This study thus demonstrated the potential use of a simple integrated process with minimal environmental impact with the use of promising alternative on-site enzymes and yeast for the production of ethanol from this potent lignocellulosic biomass. 2009. Published by Elsevier B.V.
Energy efficiency of acetone, butanol, and ethanol (ABE) recovery by heat-integrated distillation.
Grisales Diaz, Victor Hugo; Olivar Tost, Gerard
2018-03-01
Acetone, butanol, and ethanol (ABE) is an alternative biofuel. However, the energy requirement of ABE recovery by distillation is considered elevated (> 15.2 MJ fuel/Kg-ABE), due to the low concentration of ABE from fermentation broths (between 15 and 30 g/l). In this work, to reduce the energy requirements of ABE recovery, four processes of heat-integrated distillation were proposed. The energy requirements and economic evaluations were performed using the fermentation broths of several biocatalysts. Energy requirements of the processes with four distillation columns and three distillation columns were similar (between 7.7 and 11.7 MJ fuel/kg-ABE). Double-effect system (DED) with four columns was the most economical process (0.12-0.16 $/kg-ABE). ABE recovery from dilute solutions by DED achieved energy requirements between 6.1 and 8.7 MJ fuel/kg-ABE. Vapor compression distillation (VCD) reached the lowest energy consumptions (between 4.7 and 7.3 MJ fuel/kg-ABE). Energy requirements for ABE recovery DED and VCD were lower than that for integrated reactors. The energy requirements of ABE production were between 1.3- and 2.0-fold higher than that for alternative biofuels (ethanol or isobutanol). However, the energy efficiency of ABE production was equivalent than that for ethanol and isobutanol (between 0.71 and 0.76) because of hydrogen production in ABE fermentation.
Schmer, Marty R.; Vogel, Kenneth P.; Varvel, Gary E.; Follett, Ronald F.; Mitchell, Robert B.; Jin, Virginia L.
2014-01-01
Low-carbon biofuel sources are being developed and evaluated in the United States and Europe to partially offset petroleum transport fuels. Current and potential biofuel production systems were evaluated from a long-term continuous no-tillage corn (Zea mays L.) and switchgrass (Panicum virgatum L.) field trial under differing harvest strategies and nitrogen (N) fertilizer intensities to determine overall environmental sustainability. Corn and switchgrass grown for bioenergy resulted in near-term net greenhouse gas (GHG) reductions of −29 to −396 grams of CO2 equivalent emissions per megajoule of ethanol per year as a result of direct soil carbon sequestration and from the adoption of integrated biofuel conversion pathways. Management practices in switchgrass and corn resulted in large variation in petroleum offset potential. Switchgrass, using best management practices produced 3919±117 liters of ethanol per hectare and had 74±2.2 gigajoules of petroleum offsets per hectare which was similar to intensified corn systems (grain and 50% residue harvest under optimal N rates). Co-locating and integrating cellulosic biorefineries with existing dry mill corn grain ethanol facilities improved net energy yields (GJ ha−1) of corn grain ethanol by >70%. A multi-feedstock, landscape approach coupled with an integrated biorefinery would be a viable option to meet growing renewable transportation fuel demands while improving the energy efficiency of first generation biofuels. PMID:24594783
Francisco Rodríguez y Silva; Juan Ramón Molina Martínez; Miguel Ángel Herrera Machuca; Jesús Mª Rodríguez Leal
2013-01-01
Progress made in recent years in fire science, particularly as applied to forest fire protection, coupled with the increased power offered by mathematical processors integrated into computers, has led to important developments in the field of dynamic and static simulation of forest fires. Furthermore, and similarly, econometric models applied to economic...
Smart Sensors: Why and when the origin was and why and where the future will be
NASA Astrophysics Data System (ADS)
Corsi, C.
2013-12-01
Smart Sensors is a technique developed in the 70's when the processing capabilities, based on readout integrated with signal processing, was still far from the complexity needed in advanced IR surveillance and warning systems, because of the enormous amount of noise/unwanted signals emitted by operating scenario especially in military applications. The Smart Sensors technology was kept restricted within a close military environment exploding in applications and performances in the 90's years thanks to the impressive improvements in the integrated signal read-out and processing achieved by CCD-CMOS technologies in FPA. In fact the rapid advances of "very large scale integration" (VLSI) processor technology and mosaic EO detector array technology allowed to develop new generations of Smart Sensors with much improved signal processing by integrating microcomputers and other VLSI signal processors. inside the sensor structure achieving some basic functions of living eyes (dynamic stare, non-uniformity compensation, spatial and temporal filtering). New and future technologies (Nanotechnology, Bio-Organic Electronics, Bio-Computing) are lightning a new generation of Smart Sensors extending the Smartness from the Space-Time Domain to Spectroscopic Functional Multi-Domain Signal Processing. History and future forecasting of Smart Sensors will be reported.
Analog Ranging Modem Code Processor and Generator
DOT National Transportation Integrated Search
1974-05-01
The report details technical development efforts to implement an analog ranging modem using recently developed linear integrated circuits where possible. The breadboard hardware is capable of acquiring frequency and phase of a weak signal in a high n...
Engineering scalable fault-tolerant quantum computation
NASA Astrophysics Data System (ADS)
Kimchi-Schwartz, Mollie; Danna, Rosenberg; Kim, David; Yoder, Jonilyn; Kjaergaard, Morten; Das, Rabindra; Grover, Jeff; Gustavsson, Simon; Oliver, William
Recent demonstrations of quantum protocols comprising on the order of 5-10 superconducting qubits are foundational to the future development of quantum information processors. A next critical step in the development of resilient quantum processors will be the integration of coherent quantum circuits with a hardware platform that is amenable to extending the system size to hundreds of qubits and beyond. In this talk, we will discuss progress toward integrating coherent superconducting qubits with signal routing via the third dimension. This research was funded in part by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA) and by the Assistant Secretary of Defense for Research & Engineering under Air Force Contract No. FA8721-05-C-0002. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of ODNI, IARPA, or the US Government.
Microscopy imaging system and method employing stimulated raman spectroscopy as a contrast mechanism
Xie, Xiaoliang Sunney [Lexington, MA; Freudiger, Christian [Boston, MA; Min, Wei [Cambridge, MA
2011-09-27
A microscopy imaging system includes a first light source for providing a first train of pulses at a first center optical frequency .omega..sub.1, a second light source for providing a second train of pulses at a second center optical frequency .omega..sub.2, a modulator system, an optical detector, and a processor. The modulator system is for modulating a beam property of the second train of pulses at a modulation frequency f of at least 100 kHz. The optical detector is for detecting an integrated intensity of substantially all optical frequency components of the first train of pulses from the common focal volume by blocking the second train of pulses being modulated. The processor is for detecting, a modulation at the modulation frequency f, of the integrated intensity of the optical frequency components of the first train of pulses to provide a pixel of an image for the microscopy imaging system.
Smart-Pixel Array Processors Based on Optimal Cellular Neural Networks for Space Sensor Applications
NASA Technical Reports Server (NTRS)
Fang, Wai-Chi; Sheu, Bing J.; Venus, Holger; Sandau, Rainer
1997-01-01
A smart-pixel cellular neural network (CNN) with hardware annealing capability, digitally programmable synaptic weights, and multisensor parallel interface has been under development for advanced space sensor applications. The smart-pixel CNN architecture is a programmable multi-dimensional array of optoelectronic neurons which are locally connected with their local neurons and associated active-pixel sensors. Integration of the neuroprocessor in each processor node of a scalable multiprocessor system offers orders-of-magnitude computing performance enhancements for on-board real-time intelligent multisensor processing and control tasks of advanced small satellites. The smart-pixel CNN operation theory, architecture, design and implementation, and system applications are investigated in detail. The VLSI (Very Large Scale Integration) implementation feasibility was illustrated by a prototype smart-pixel 5x5 neuroprocessor array chip of active dimensions 1380 micron x 746 micron in a 2-micron CMOS technology.
Evaluation of the Intel iWarp parallel processor for space flight applications
NASA Technical Reports Server (NTRS)
Hine, Butler P., III; Fong, Terrence W.
1993-01-01
The potential of a DARPA-sponsored advanced processor, the Intel iWarp, for use in future SSF Data Management Systems (DMS) upgrades is evaluated through integration into the Ames DMS testbed and applications testing. The iWarp is a distributed, parallel computing system well suited for high performance computing applications such as matrix operations and image processing. The system architecture is modular, supports systolic and message-based computation, and is capable of providing massive computational power in a low-cost, low-power package. As a consequence, the iWarp offers significant potential for advanced space-based computing. This research seeks to determine the iWarp's suitability as a processing device for space missions. In particular, the project focuses on evaluating the ease of integrating the iWarp into the SSF DMS baseline architecture and the iWarp's ability to support computationally stressing applications representative of SSF tasks.
NASA Technical Reports Server (NTRS)
Jacklin, S. A.; Leyland, J. A.; Warmbrodt, W.
1985-01-01
Modern control systems must typically perform real-time identification and control, as well as coordinate a host of other activities related to user interaction, online graphics, and file management. This paper discusses five global design considerations which are useful to integrate array processor, multimicroprocessor, and host computer system architectures into versatile, high-speed controllers. Such controllers are capable of very high control throughput, and can maintain constant interaction with the nonreal-time or user environment. As an application example, the architecture of a high-speed, closed-loop controller used to actively control helicopter vibration is briefly discussed. Although this system has been designed for use as the controller for real-time rotorcraft dynamics and control studies in a wind tunnel environment, the controller architecture can generally be applied to a wide range of automatic control applications.
Compact gasoline fuel processor for passenger vehicle APU
NASA Astrophysics Data System (ADS)
Severin, Christopher; Pischinger, Stefan; Ogrzewalla, Jürgen
Due to the increasing demand for electrical power in today's passenger vehicles, and with the requirements regarding fuel consumption and environmental sustainability tightening, a fuel cell-based auxiliary power unit (APU) becomes a promising alternative to the conventional generation of electrical energy via internal combustion engine, generator and battery. It is obvious that the on-board stored fuel has to be used for the fuel cell system, thus, gasoline or diesel has to be reformed on board. This makes the auxiliary power unit a complex integrated system of stack, air supply, fuel processor, electrics as well as heat and water management. Aside from proving the technical feasibility of such a system, the development has to address three major barriers:start-up time, costs, and size/weight of the systems. In this paper a packaging concept for an auxiliary power unit is presented. The main emphasis is placed on the fuel processor, as good packaging of this large subsystem has the strongest impact on overall size. The fuel processor system consists of an autothermal reformer in combination with water-gas shift and selective oxidation stages, based on adiabatic reactors with inter-cooling. The configuration was realized in a laboratory set-up and experimentally investigated. The results gained from this confirm a general suitability for mobile applications. A start-up time of 30 min was measured, while a potential reduction to 10 min seems feasible. An overall fuel processor efficiency of about 77% was measured. On the basis of the know-how gained by the experimental investigation of the laboratory set-up a packaging concept was developed. Using state-of-the-art catalyst and heat exchanger technology, the volumes of these components are fixed. However, the overall volume is higher mainly due to mixing zones and flow ducts, which do not contribute to the chemical or thermal function of the system. Thus, the concept developed mainly focuses on minimization of those component volumes. Therefore, the packaging utilizes rectangular catalyst bricks and integrates flow ducts into the heat exchangers. A concept is presented with a 25 l fuel processor volume including thermal isolation for a 3 kW el auxiliary power unit. The overall size of the system, i.e. including stack, air supply and auxiliaries can be estimated to 44 l.
2011-01-01
Background As the supply of starch grain and sugar cane, currently the main feedstocks for bioethanol production, become limited, lignocelluloses will be sought as alternative materials for bioethanol production. Production of cellulosic ethanol is still cost-inefficient because of the low final ethanol concentration and the addition of nutrients. We report the use of simultaneous saccharification and cofermentation (SSCF) of lignocellulosic residues from commercial furfural production (furfural residue, FR) and corn kernels to compare different nutritional media. The final ethanol concentration, yield, number of live yeast cells, and yeast-cell death ratio were investigated to evaluate the effectiveness of integrating cellulosic and starch ethanol. Results Both the ethanol yield and number of live yeast cells increased with increasing corn-kernel concentration, whereas the yeast-cell death ratio decreased in SSCF of FR and corn kernels. An ethanol concentration of 73.1 g/L at 120 h, which corresponded to a 101.1% ethanol yield based on FR cellulose and corn starch, was obtained in SSCF of 7.5% FR and 14.5% corn kernels with mineral-salt medium. SSCF could simultaneously convert cellulose into ethanol from both corn kernels and FR, and SSCF ethanol yield was similar between the organic and mineral-salt media. Conclusions Starch ethanol promotes cellulosic ethanol by providing important nutrients for fermentative organisms, and in turn cellulosic ethanol promotes starch ethanol by providing cellulosic enzymes that convert the cellulosic polysaccharides in starch materials into additional ethanol. It is feasible to produce ethanol in SSCF of FR and corn kernels with mineral-salt medium. It would be cost-efficient to produce ethanol in SSCF of high concentrations of water-insoluble solids of lignocellulosic materials and corn kernels. Compared with prehydrolysis and fed-batch strategy using lignocellulosic materials, addition of starch hydrolysates to cellulosic ethanol production is a more suitable method to improve the final ethanol concentration. PMID:21801455
DOE Office of Scientific and Technical Information (OSTI.GOV)
Margaritis, A.; Bajpai, P.
1982-04-01
This article examines the potential of Jerusalem artichoke as a source for ethanol and single-cell protein SCP. In addition, experimental results are presented on batch fermentation kinetics employing two strains of Kluyveromyces marxianus and one strain of Saccharomyces rosei grown on the extract derived from the tubers of Jerusalem artichoke. Of the three cultures examined, Kluyveromyces marxianus UCD (FST) 55-82 was found to be the best producer of ethanol grown in a simple medium at 35 degrees C. The ethanol production was found to be growth-associated having a mu max = 0.41/h and the ethanol and biomass yields were determinedmore » to be Y p/s = 0.45 (88% of the theoretical) and Y x/s = 0.04 with 92% of the original sugars utilized. On the basis of carbohydrate yields of Jerusalem artichoke reported in the literature and these batch kinetic studies with Kluyveromyces marxianus, the calculated ethanol yields were found to range from 1400 kg ethanol/acre/yr to a maximum of 2700 kg ethanol/acre/yr. The SCP yields for Kluyveromyces marxianus were calculated to range between 130 to 250 kg dry wt cell/acre/yr. The potential for developing an integrated process to produce ethanol and SCP is also discussed. (Refs. 27).« less
Design and implementation of a high performance network security processor
NASA Astrophysics Data System (ADS)
Wang, Haixin; Bai, Guoqiang; Chen, Hongyi
2010-03-01
The last few years have seen many significant progresses in the field of application-specific processors. One example is network security processors (NSPs) that perform various cryptographic operations specified by network security protocols and help to offload the computation intensive burdens from network processors (NPs). This article presents a high performance NSP system architecture implementation intended for both internet protocol security (IPSec) and secure socket layer (SSL) protocol acceleration, which are widely employed in virtual private network (VPN) and e-commerce applications. The efficient dual one-way pipelined data transfer skeleton and optimised integration scheme of the heterogenous parallel crypto engine arrays lead to a Gbps rate NSP, which is programmable with domain specific descriptor-based instructions. The descriptor-based control flow fragments large data packets and distributes them to the crypto engine arrays, which fully utilises the parallel computation resources and improves the overall system data throughput. A prototyping platform for this NSP design is implemented with a Xilinx XC3S5000 based FPGA chip set. Results show that the design gives a peak throughput for the IPSec ESP tunnel mode of 2.85 Gbps with over 2100 full SSL handshakes per second at a clock rate of 95 MHz.
Ok, Seung-Ho; Lee, Yong-Hwan; Shim, Jae Hoon; Lim, Sung Kyu; Moon, Byungin
2017-02-22
Recently, stereo matching processors have been adopted in real-time embedded systems such as intelligent robots and autonomous vehicles, which require minimal hardware resources and low power consumption. Meanwhile, thanks to the through-silicon via (TSV), three-dimensional (3D) stacking technology has emerged as a practical solution to achieving the desired requirements of a high-performance circuit. In this paper, we present the benefits of 3D stacking and process technology scaling on stereo matching processors. We implemented 2-tier 3D-stacked stereo matching processors with GlobalFoundries 130-nm and Nangate 45-nm process design kits and compare them with their two-dimensional (2D) counterparts to identify comprehensive design benefits. In addition, we examine the findings from various analyses to identify the power benefits of 3D-stacked integrated circuit (IC) and device technology advancements. From experiments, we observe that the proposed 3D-stacked ICs, compared to their 2D IC counterparts, obtain 43% area, 13% power, and 14% wire length reductions. In addition, we present a logic partitioning method suitable for a pipeline-based hardware architecture that minimizes the use of TSVs.
The Impact of 3D Stacking and Technology Scaling on the Power and Area of Stereo Matching Processors
Ok, Seung-Ho; Lee, Yong-Hwan; Shim, Jae Hoon; Lim, Sung Kyu; Moon, Byungin
2017-01-01
Recently, stereo matching processors have been adopted in real-time embedded systems such as intelligent robots and autonomous vehicles, which require minimal hardware resources and low power consumption. Meanwhile, thanks to the through-silicon via (TSV), three-dimensional (3D) stacking technology has emerged as a practical solution to achieving the desired requirements of a high-performance circuit. In this paper, we present the benefits of 3D stacking and process technology scaling on stereo matching processors. We implemented 2-tier 3D-stacked stereo matching processors with GlobalFoundries 130-nm and Nangate 45-nm process design kits and compare them with their two-dimensional (2D) counterparts to identify comprehensive design benefits. In addition, we examine the findings from various analyses to identify the power benefits of 3D-stacked integrated circuit (IC) and device technology advancements. From experiments, we observe that the proposed 3D-stacked ICs, compared to their 2D IC counterparts, obtain 43% area, 13% power, and 14% wire length reductions. In addition, we present a logic partitioning method suitable for a pipeline-based hardware architecture that minimizes the use of TSVs. PMID:28241437
2013-01-01
Background Current methods of ethanol production from lignocelluloses generate a mixture of sugars, primarily glucose and xylose; the fermentation cells are always exposed to stresses like high temperature and low nutritional conditions that affect their growth and productivity. Stress-tolerant strains capable of using both glucose and xylose to produce ethanol with high yield are highly desirable. Results A recombinant Zymomonas mobilis (Z. mobilis) designated as HYMX was constructed by integrating seven genes (Pfu-sHSP, yfdZ, metB, xylA, xylB, tktA and talB) into the genome of Z. mobilis CP4 (CP4) via Tn5 transposon in the present study. The small heat shock protein gene (Pfu-sHSP) from Pyrococcus furious (P. furious) was used to increase the heat-tolerance, the yfdZ and metB genes from E. coli were used to decrease the nutritional requirement. To overcome the bottleneck of CP4 being unable to use pentose, xylose catabolic genes (xylA, xylB, tktA and talB) from E. coli were integrated into CP4 also for construction of the xylose utilizing metabolic pathway. Conclusions The genomic integration confers on Z. mobilis the ability to grow in medium containing xylose as the only carbon source, and to grow in simple chemical defined medium without addition of amino acid. The HYMX demonstrated not only the high tolerance to unfavorable stresses like high temperature and low nutrient, but also the capability of converting both glucose and xylose to ethanol with high yield at high temperature. What’s more, these genetic characteristics were stable up to 100 generations on nonselective medium. Although significant improvements were achieved, yeast extract is needed for ethanol production. PMID:23635356
USDA-ARS?s Scientific Manuscript database
Acetone butanol ethanol (ABE) was produced in an integrated continuous fermentation and product recovery system using a microbial strain Clostridium beijerinckii BA101 for ABE production and fermentation gases (CO2 and H2) for product removal by gas stripping. This represents a continuation of our ...
USDA-ARS?s Scientific Manuscript database
In this study, we evaluated the capacity of recombinant industrial Saccharomyces cerevisiae YRH 396 and YRH 400 strains to ferment sugars from oat hull and soybean hull hydrolysates into ethanol and xylitol. The strains were genetically modified by chromosomal integration of Pichia stipitis XYLI/XYL...
Simulation of a 250 kW diesel fuel processor/PEM fuel cell system
NASA Astrophysics Data System (ADS)
Amphlett, J. C.; Mann, R. F.; Peppley, B. A.; Roberge, P. R.; Rodrigues, A.; Salvador, J. P.
Polymer-electrolyte membrane (PEM) fuel cell systems offer a potential power source for utility and mobile applications. Practical fuel cell systems use fuel processors for the production of hydrogen-rich gas. Liquid fuels, such as diesel or other related fuels, are attractive options as feeds to a fuel processor. The generation of hydrogen gas for fuel cells, in most cases, becomes the crucial design issue with respect to weight and volume in these applications. Furthermore, these systems will require a gas clean-up system to insure that the fuel quality meets the demands of the cell anode. The endothermic nature of the reformer will have a significant affect on the overall system efficiency. The gas clean-up system may also significantly effect the overall heat balance. To optimize the performance of this integrated system, therefore, waste heat must be used effectively. Previously, we have concentrated on catalytic methanol-steam reforming. A model of a methanol steam reformer has been previously developed and has been used as the basis for a new, higher temperature model for liquid hydrocarbon fuels. Similarly, our fuel cell evaluation program previously led to the development of a steady-state electrochemical fuel cell model (SSEM). The hydrocarbon fuel processor model and the SSEM have now been incorporated in the development of a process simulation of a 250 kW diesel-fueled reformer/fuel cell system using a process simulator. The performance of this system has been investigated for a variety of operating conditions and a preliminary assessment of thermal integration issues has been carried out. This study demonstrates the application of a process simulation model as a design analysis tool for the development of a 250 kW fuel cell system.
Wang, Dianlong; Xi, Jiang; Ai, Ping; Yu, Liang; Zhai, Hong; Yan, Shuiping; Zhang, Yanlin
2016-05-01
Pretreatment with ozone combined with aqueous ammonia was used to recover residual organic carbon from recalcitrant solid digestate for ethanol production after anaerobic digestion (AD) of rice straw. Methane yield of AD at mesophilic and thermophilic conditions, and ethanol production of solid digestate were investigated. The results showed that the methane yield at thermophilic temperature was 72.2% higher than that at mesophilic temperature under the same conditions of 24days and 17% solid concentration. And also the ethanol production efficiency of solid digestate after thermophilic process was 24.3% higher than that of solid digestate after mesophilic process. In this study, the optimal conditions for integrated methane and ethanol processes were determined as 55°C, 17% solid concentration and 24days. 58.6% of glucose conversion, 142.8g/kg of methane yield and 65.2g/kg of ethanol yield were achieved, and the highest net energy balance was calculated as 6416kJ/kg. Copyright © 2016 Elsevier Ltd. All rights reserved.
Complementary Split-Ring Resonator-Loaded Microfluidic Ethanol Chemical Sensor
Salim, Ahmed; Lim, Sungjoon
2016-01-01
In this paper, a complementary split-ring resonator (CSRR)-loaded patch is proposed as a microfluidic ethanol chemical sensor. The primary objective of this chemical sensor is to detect ethanol’s concentration. First, two tightly coupled concentric CSRRs loaded on a patch are realized on a Rogers RT/Duroid 5870 substrate, and then a microfluidic channel engraved on polydimethylsiloxane (PDMS) is integrated for ethanol chemical sensor applications. The resonant frequency of the structure before loading the microfluidic channel is 4.72 GHz. After loading the microfluidic channel, the 550 MHz shift in the resonant frequency is ascribed to the dielectric perturbation phenomenon when the ethanol concentration is varied from 0% to 100%. In order to assess the sensitivity range of our proposed sensor, various concentrations of ethanol are tested and analyzed. Our proposed sensor exhibits repeatability and successfully detects 10% ethanol as verified by the measurement set-up. It has created headway to a miniaturized, non-contact, low-cost, reliable, reusable, and easily fabricated design using extremely small liquid volumes. PMID:27801842
Design and Implementation of an Integrated Screen-Oriented Text Editing and Formatting System.
1980-06-01
AD-AG92 180 NAVAL POSTGRADUATE SCHOOL MONTEREY CA F/G V/2 DESIGN AND IMPLEMENTATION OF AN INTEGRATED SCREEN-ORIENTED TEXT--ETC(, JUN 80 L A TALMAGE...1963-A wI NAVAL POSTGRADUATE SCHOOL Monterey, California 0 THESISA DESIGN AND IMPLEMENTATION OF AN INTEGRATED SCREEN-ORIENTED TEXT EDITING AND...processors are described. The state-of-the-art in text processing is examined. Design and implementation considerations in developing an interactive
Yebo, Nebiyu A; Lommens, Petra; Hens, Zeger; Baets, Roel
2010-05-24
Optical structures fabricated on silicon-on-insulator technology provide a convenient platform for the implementation of highly compact, versatile and low cost devices. In this work, we demonstrate the promise of this technology for integrated low power and low cost optical gas sensing. A room temperature ethanol vapor sensor is demonstrated using a ZnO nanoparticle film as a coating on an SOI micro-ring resonator of 5 microm in radius. The local coating on the ring resonators is prepared from colloidal suspensions of ZnO nanoparticles of around 3 nm diameter. The porous nature of the coating provides a large surface area for gas adsorption. The ZnO refractive index change upon vapor adsorption shifts the microring resonance through evanescent field interaction. Ethanol vapor concentrations down to 100 ppm are detected with this sensing configuration and a detection limit below 25 ppm is estimated.
Patrick, Kennerly S.; Corbin, Timothy R.; Murphy, Cristina E.
2014-01-01
We review the pharmaceutical science of ethylphenidate (EPH) in the contexts of drug discovery; drug interactions; biomarker for dl-methylphenidate (MPH)-ethanol exposure; potentiation of dl-MPH abuse liability; contemporary “designer drug”; pertinence to the newer transdermal and chiral switch MPH formulations; as well as problematic internal standard. d-EPH selectively targets the dopamine transporter while d-MPH exhibits equipotent actions at dopamine and norepinephrine transporters. This selectivity carries implications for the advancement of tailored attention-deficit/hyperactivity disorder (ADHD) pharmacotherapy in the era of genome-based diagnostics. Abuse of dl-MPH often involves ethanol co-abuse. Carboxylesterase 1 enantioselectively transesterifies l-MPH with ethanol to yield l-EPH accompanied by significantly increased early exposure to d-MPH and rapid potentiation of euphoria. The pharmacokinetic component of this drug interaction can largely be avoided using dexmethylphenidate (dexMPH). This notwithstanding, maximal potentiated euphoria occurs following dexMPH-ethanol. C57BL/6 mice model dl-MPH-ethanol interactions: An otherwise depressive dose of ethanol synergistically increases dl-MPH stimulation; A sub-stimulatory dose of dl-MPH potentiates a low, stimulatory dose of ethanol; Ethanol elevates blood, brain and urinary d-MPH concentrations while forming l-EPH. Integration of EPH preclinical neuropharmacology with clinical studies of MPH-ethanol interactions provides a translational approach toward advancement of ADHD personalized medicine and management of comorbid alcohol use disorder. PMID:25303048
Patrick, Kennerly S; Corbin, Timothy R; Murphy, Cristina E
2014-12-01
We review the pharmaceutical science of ethylphenidate (EPH) in the contexts of drug discovery, drug interactions, biomarker for dl-methylphenidate (MPH)-ethanol exposure, potentiation of dl-MPH abuse liability, contemporary "designer drug," pertinence to the newer transdermal and chiral switch MPH formulations, as well as problematic internal standard. d-EPH selectively targets the dopamine transporter, whereas d-MPH exhibits equipotent actions at dopamine and norepinephrine transporters. This selectivity carries implications for the advancement of tailored attention-deficit/hyperactivity disorder (ADHD) pharmacotherapy in the era of genome-based diagnostics. Abuse of dl-MPH often involves ethanol coabuse. Carboxylesterase 1 enantioselectively transesterifies l-MPH with ethanol to yield l-EPH accompanied by significantly increased early exposure to d-MPH and rapid potentiation of euphoria. The pharmacokinetic component of this drug interaction can largely be avoided using dexmethylphenidate (dexMPH). This notwithstanding, maximal potentiated euphoria occurs following dexMPH-ethanol. C57BL/6 mice model dl-MPH-ethanol interactions: an otherwise depressive dose of ethanol synergistically increases dl-MPH stimulation; a substimulatory dose of dl-MPH potentiates a low, stimulatory dose of ethanol; ethanol elevates blood, brain, and urinary d-MPH concentrations while forming l-EPH. Integration of EPH preclinical neuropharmacology with clinical studies of MPH-ethanol interactions provides a translational approach toward advancement of ADHD personalized medicine and management of comorbid alcohol use disorder. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
An integrated autonomous rendezvous and docking system architecture using Centaur modern avionics
NASA Technical Reports Server (NTRS)
Nelson, Kurt
1991-01-01
The avionics system for the Centaur upper stage is in the process of being modernized with the current state-of-the-art in strapdown inertial guidance equipment. This equipment includes an integrated flight control processor with a ring laser gyro based inertial guidance system. This inertial navigation unit (INU) uses two MIL-STD-1750A processors and communicates over the MIL-STD-1553B data bus. Commands are translated into load activation through a Remote Control Unit (RCU) which incorporates the use of solid state relays. Also, a programmable data acquisition system replaces separate multiplexer and signal conditioning units. This modern avionics suite is currently being enhanced through independent research and development programs to provide autonomous rendezvous and docking capability using advanced cruise missile image processing technology and integrated GPS navigational aids. A system concept was developed to combine these technologies in order to achieve a fully autonomous rendezvous, docking, and autoland capability. The current system architecture and the evolution of this architecture using advanced modular avionics concepts being pursued for the National Launch System are discussed.
NASA Astrophysics Data System (ADS)
Lippert, Ross A.; Predescu, Cristian; Ierardi, Douglas J.; Mackenzie, Kenneth M.; Eastwood, Michael P.; Dror, Ron O.; Shaw, David E.
2013-10-01
In molecular dynamics simulations, control over temperature and pressure is typically achieved by augmenting the original system with additional dynamical variables to create a thermostat and a barostat, respectively. These variables generally evolve on timescales much longer than those of particle motion, but typical integrator implementations update the additional variables along with the particle positions and momenta at each time step. We present a framework that replaces the traditional integration procedure with separate barostat, thermostat, and Newtonian particle motion updates, allowing thermostat and barostat updates to be applied infrequently. Such infrequent updates provide a particularly substantial performance advantage for simulations parallelized across many computer processors, because thermostat and barostat updates typically require communication among all processors. Infrequent updates can also improve accuracy by alleviating certain sources of error associated with limited-precision arithmetic. In addition, separating the barostat, thermostat, and particle motion update steps reduces certain truncation errors, bringing the time-average pressure closer to its target value. Finally, this framework, which we have implemented on both general-purpose and special-purpose hardware, reduces software complexity and improves software modularity.
Recovery Act: Pilot Integrated Cellulosic Biorefinery Operations to Fuel Ethanol
DOE Office of Scientific and Technical Information (OSTI.GOV)
Javers, Jeremy
DOE EE002875 Technical Report Public Release. The objective was to leverage ICM’s pre-existing corn to ethanol pilot plant to build and to commission a fully functional pilot integrated cellulosic biorefinery. ICM’s Integrated Biorefinery (IBR) project was designed to achieve four major objectives. These primary goals were achieved during the performance period from December 2009 – August 2015. The design and construction phase took place from December 2009 until August 2011, with an increase in budget of nearly 4 million dollars. This increased cost was offset by operational changes, so the amount spent for the overall project increased by less thanmore » $500,000. There were three 1,000-hour performance test conducted, which produced cellulosic feedstock.« less
Iterative algorithms for tridiagonal matrices on a WSI-multiprocessor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gajski, D.D.; Sameh, A.H.; Wisniewski, J.A.
1982-01-01
With the rapid advances in semiconductor technology, the construction of Wafer Scale Integration (WSI)-multiprocessors consisting of a large number of processors is now feasible. We illustrate the implementation of some basic linear algebra algorithms on such multiprocessors.
Thiele, Todd E.; Navarro, Montserrat
2013-01-01
This review provides an overview of an animal model of binge-like ethanol drinking that has come to be called “drinking in the dark” (DID), a procedure that promotes high levels of ethanol drinking and pharmacologically relevant blood ethanol concentrations (BECs) in ethanol-preferring strains of mice. Originally described by Rhodes et al. (2005), the most common variation of the DID procedure, using singly housed mice, involves replacing the water bottle with a bottle containing 20% ethanol for 2 to 4 hours, beginning 3 hours into the dark cycle. Using this procedure, high ethanol drinking strains of mice (e.g., C57BL/6J) typically consume enough ethanol to achieve BECs greater than 100 mg/dL and to exhibit behavioral evidence of intoxication. This limited access procedure takes advantage of the time in the animal’s dark cycle in which the levels of ingestive behaviors are high, yet high ethanol intake does not appear to stem from caloric need. Mice have the choice of drinking or avoiding the ethanol solution, eliminating the stressful conditions that are inherent in other models of binge-like ethanol exposure in which ethanol is administered by the experimenter, and in some cases, potentially painful. The DID procedure is a high throughput approach that does not require extensive training or the inclusion of sweet compounds to motivate high levels of ethanol intake. The high throughput nature of the DID procedure makes it useful for rapid screening of pharmacological targets that are protective against binge-like drinking and for identifying strains of mice that exhibit binge-like drinking behavior. Additionally, the simplicity of DID procedures allows for easy integration into other paradigms, such as prenatal ethanol exposure and adolescent ethanol drinking. It is suggested that the DID model is a useful tool for studying the neurobiology and genetics underlying binge-like ethanol drinking, and may be useful for studying the transition to ethanol dependence. PMID:24275142
A Future Accelerated Cognitive Distributed Hybrid Testbed for Big Data Science Analytics
NASA Astrophysics Data System (ADS)
Halem, M.; Prathapan, S.; Golpayegani, N.; Huang, Y.; Blattner, T.; Dorband, J. E.
2016-12-01
As increased sensor spectral data volumes from current and future Earth Observing satellites are assimilated into high-resolution climate models, intensive cognitive machine learning technologies are needed to data mine, extract and intercompare model outputs. It is clear today that the next generation of computers and storage, beyond petascale cluster architectures, will be data centric. They will manage data movement and process data in place. Future cluster nodes have been announced that integrate multiple CPUs with high-speed links to GPUs and MICS on their backplanes with massive non-volatile RAM and access to active flash RAM disk storage. Active Ethernet connected key value store disk storage drives with 10Ge or higher are now available through the Kinetic Open Storage Alliance. At the UMBC Center for Hybrid Multicore Productivity Research, a future state-of-the-art Accelerated Cognitive Computer System (ACCS) for Big Data science is being integrated into the current IBM iDataplex computational system `bluewave'. Based on the next gen IBM 200 PF Sierra processor, an interim two node IBM Power S822 testbed is being integrated with dual Power 8 processors with 10 cores, 1TB Ram, a PCIe to a K80 GPU and an FPGA Coherent Accelerated Processor Interface card to 20TB Flash Ram. This system is to be updated to the Power 8+, an NVlink 1.0 with the Pascal GPU late in 2016. Moreover, the Seagate 96TB Kinetic Disk system with 24 Ethernet connected active disks is integrated into the ACCS storage system. A Lightweight Virtual File System developed at the NASA GSFC is installed on bluewave. Since remote access to publicly available quantum annealing computers is available at several govt labs, the ACCS will offer an in-line Restricted Boltzmann Machine optimization capability to the D-Wave 2X quantum annealing processor over the campus high speed 100 Gb network to Internet 2 for large files. As an evaluation test of the cognitive functionality of the architecture, the following studies utilizing all the system components will be presented; (i) a near real time climate change study generating CO2 fluxes and (ii) a deep dive capability into an 8000 x8000 pixel image pyramid display and (iii) Large dense and sparse eigenvalue decomposition.
NASA Astrophysics Data System (ADS)
Yoon, Yong-Kyu; Park, Jung-Hwan; Lee, Jeong-Woo; Prausnitz, Mark R.; Allen, Mark G.
2011-02-01
Transdermal drug delivery can be enabled by various methods that increase the permeability of the skin's outer barrier of stratum corneum, including skin exposure to heat and chemical enhancers, such as ethanol. Combining these approaches for the first time, in this study we designed a microdevice consisting of an array of microchambers filled with ethanol that is vaporized using an integrated microheater and ejected through a micronozzle contacting the skin surface. In this way, we hypothesize that the hot ethanol vapor can increase skin permeability upon contacting the skin surface. The tapered micronozzle and the microchamber designed for this application were realized using proximity-mode inclined rotational ultraviolet lithography, which facilitates easy fabrication of complex three-dimensional structures, convenient integration with other functional layers, low fabrication cost, and mass production. The resulting device had a micronozzle with an orifice inner and outer diameter of 220 and 320 µm, respectively, and an extruded height of 250 µm. When the microchamber was filled with an ethanol gel and activated, the resulting ethanol vapor jet increased the permeability of human cadaver epidermis to a model compound, calcein, by approximately 17 times, which is attributed to thermal and chemical disruption of stratum corneum structure. This thermal microjet system can serve as a tool not only for transdermal drug delivery, but also for a variety of biomedical applications.
Fair Oaks Dairy Farms Cellulosic Ethanol Technology Review Summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrew Wold; Robert Divers
2011-06-23
At Fair Oaks Dairy, dried manure solids (''DMS'') are currently used as a low value compost. United Power was engaged to evaluate the feasibility of processing these DMS into ethanol utilizing commercially available cellulosic biofuels conversion platforms. The Fair Oaks Dairy group is transitioning their traditional ''manure to methane'' mesophilic anaerobic digester platform to an integrated bio-refinery centered upon thermophilic digestion. Presently, the Digested Manure Solids (DMS) are used as a low value soil amendment (compost). United Power evaluated the feasibility of processing DMS into higher value ethanol utilizing commercially available cellulosic biofuels conversion platforms. DMS was analyzed and overmore » 100 potential technology providers were reviewed and evaluated. DMS contains enough carbon to be suitable as a biomass feedstock for conversion into ethanol by gasification technology, or as part of a conversion process that would include combined heat and power. In the first process, 100% of the feedstock is converted into ethanol. In the second process, the feedstock is combusted to provide heat to generate electrical power supporting other processes. Of the 100 technology vendors evaluated, a short list of nine technology providers was developed. From this, two vendors were selected as finalists (one was an enzymatic platform and one was a gasification platform). Their selection was based upon the technical feasibility of their systems, engineering expertise, experience in commercial or pilot scale operations, the ability or willingness to integrate the system into the Fair Oaks Biorefinery, the know-how or experience in producing bio-ethanol, and a clear path to commercial development.« less
Ethanol Microsensors with a Readout Circuit Manufactured Using the CMOS-MEMS Technique
Yang, Ming-Zhi; Dai, Ching-Liang
2015-01-01
The design and fabrication of an ethanol microsensor integrated with a readout circuit on-a-chip using the complementary metal oxide semiconductor (CMOS)-microelectro-mechanical system (MEMS) technique are investigated. The ethanol sensor is made up of a heater, a sensitive film and interdigitated electrodes. The sensitive film is tin dioxide that is prepared by the sol-gel method. The heater is located under the interdigitated electrodes, and the sensitive film is coated on the interdigitated electrodes. The sensitive film needs a working temperature of 220 °C. The heater is employed to provide the working temperature of sensitive film. The sensor generates a change in capacitance when the sensitive film senses ethanol gas. A readout circuit is used to convert the capacitance variation of the sensor into the output frequency. Experiments show that the sensitivity of the ethanol sensor is 0.9 MHz/ppm. PMID:25594598
Ethanol microsensors with a readout circuit manufactured using the CMOS-MEMS technique.
Yang, Ming-Zhi; Dai, Ching-Liang
2015-01-14
The design and fabrication of an ethanol microsensor integrated with a readout circuit on-a-chip using the complementary metal oxide semiconductor (CMOS)-microelectro -mechanical system (MEMS) technique are investigated. The ethanol sensor is made up of a heater, a sensitive film and interdigitated electrodes. The sensitive film is tin dioxide that is prepared by the sol-gel method. The heater is located under the interdigitated electrodes, and the sensitive film is coated on the interdigitated electrodes. The sensitive film needs a working temperature of 220 °C. The heater is employed to provide the working temperature of sensitive film. The sensor generates a change in capacitance when the sensitive film senses ethanol gas. A readout circuit is used to convert the capacitance variation of the sensor into the output frequency. Experiments show that the sensitivity of the ethanol sensor is 0.9 MHz/ppm.
NASA Astrophysics Data System (ADS)
Sato, André G.; Silva, Gabriel C. D.; Paganin, Valdecir A.; Biancolli, Ana L. G.; Ticianelli, Edson A.
2015-10-01
Although ethanol can be directly employed as fuel on polymer-electrolyte fuel cells (PEMFC), its low oxidation kinetics in the anode and the crossover to the cathode lead to a substantial reduction of energy conversion efficiency. However, when fuel cell driven vehicles are considered, the system may include an on board steam reformer for converting ethanol into hydrogen, but the hydrogen produced contains carbon monoxide, which limits applications in PEMFCs. Here, we present a system consisting of an ethanol dehydrogenation catalytic reactor for producing hydrogen, which is supplied to a PEMFC to generate electricity for electric motors. A liquid by-product effluent from the reactor can be used as fuel for an integrated internal combustion engine, or catalytically recycled to extract more hydrogen molecules. Power densities comparable to those of a PEMFC operating with pure hydrogen are attained by using the hydrogen rich stream produced by the ethanol dehydrogenation reactor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aristos Aristidou Natureworks); Robert Kean; Tom Schechinger
2007-10-01
The two main objectives of this project were: 1) to develop and test technologies to harvest, transport, store, and separate corn stover to supply a clean raw material to the bioproducts industry, and 2) engineer fermentation systems to meet performance targets for lactic acid and ethanol manufacturers. Significant progress was made in testing methods to harvest corn stover in a “single pass” harvest mode (collect corn grain and stover at the same time). This is technically feasible on small scale, but additional equipment refinements will be needed to facilitate cost effective harvest on a larger scale. Transportation models were developed,more » which indicate that at a corn stover yield of 2.8 tons/acre and purchase price of $35/ton stover, it would be unprofitable to transport stover more than about 25 miles; thus suggesting the development of many regional collection centers. Therefore, collection centers should be located within about 30 miles of the farm, to keep transportation costs to an acceptable level. These collection centers could then potentially do some preprocessing (to fractionate or increase bulk density) and/or ship the biomass by rail or barge to the final customers. Wet storage of stover via ensilage was tested, but no clear economic advantages were evident. Wet storage eliminates fire risk, but increases the complexity of component separation and may result in a small loss of carbohydrate content (fermentation potential). A study of possible supplier-producer relationships, concluded that a “quasi-vertical” integration model would be best suited for new bioproducts industries based on stover. In this model, the relationship would involve a multiyear supply contract (processor with purchase guarantees, producer group with supply guarantees). Price will likely be fixed or calculated based on some formula (possibly a cost plus). Initial quality requirements will be specified (but subject to refinement).Producers would invest in harvest/storage/transportation equipment and the processor would build and operate the plant. Pilot fermentation studies demonstrated dramatic improvements in yields and rates with optimization of batch fermentor parameters. Demonstrated yields and rates are approaching those necessary for profitable commercial operation for production of ethanol or lactic acid. The ability of the biocatalyst to adapt to biomass hydrolysate (both biomass sugars and toxins in the hydrolysate) was demonstrated and points towards ultimate successful commercialization of the technology. However, some of this work will need to be repeated and possibly extended to adapt the final selected biocatalyst for the specific commercial hydrolysate composition. The path from corn stover in the farm field to final products, involves a number of steps. Each of these steps has options, problems, and uncertainties; thus creating a very complex multidimensional obstacle to successful commercial development. Through the tasks of this project, the technical and commercial uncertainties of many of these steps have been addressed; thus providing for a clearer understanding of paths forward and commercial viability of a corn stover-based biorefinery.« less
Holo-Chidi video concentrator card
NASA Astrophysics Data System (ADS)
Nwodoh, Thomas A.; Prabhakar, Aditya; Benton, Stephen A.
2001-12-01
The Holo-Chidi Video Concentrator Card is a frame buffer for the Holo-Chidi holographic video processing system. Holo- Chidi is designed at the MIT Media Laboratory for real-time computation of computer generated holograms and the subsequent display of the holograms at video frame rates. The Holo-Chidi system is made of two sets of cards - the set of Processor cards and the set of Video Concentrator Cards (VCCs). The Processor cards are used for hologram computation, data archival/retrieval from a host system, and for higher-level control of the VCCs. The VCC formats computed holographic data from multiple hologram computing Processor cards, converting the digital data to analog form to feed the acousto-optic-modulators of the Media lab's Mark-II holographic display system. The Video Concentrator card is made of: a High-Speed I/O (HSIO) interface whence data is transferred from the hologram computing Processor cards, a set of FIFOs and video RAM used as buffer for data for the hololines being displayed, a one-chip integrated microprocessor and peripheral combination that handles communication with other VCCs and furnishes the card with a USB port, a co-processor which controls display data formatting, and D-to-A converters that convert digital fringes to analog form. The co-processor is implemented with an SRAM-based FPGA with over 500,000 gates and controls all the signals needed to format the data from the multiple Processor cards into the format required by Mark-II. A VCC has three HSIO ports through which up to 500 Megabytes of computed holographic data can flow from the Processor Cards to the VCC per second. A Holo-Chidi system with three VCCs has enough frame buffering capacity to hold up to thirty two 36Megabyte hologram frames at a time. Pre-computed holograms may also be loaded into the VCC from a host computer through the low- speed USB port. Both the microprocessor and the co- processor in the VCC can access the main system memory used to store control programs and data for the VCC. The Card also generates the control signals used by the scanning mirrors of Mark-II. In this paper we discuss the design of the VCC and its implementation in the Holo-Chidi system.
Design and Test of a 65nm CMOS Front-End with Zero Dead Time for Next Generation Pixel Detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaioni, L.; Braga, D.; Christian, D.
This work is concerned with the experimental characterization of a synchronous analog processor with zero dead time developed in a 65 nm CMOS technology, conceived for pixel detectors at the HL-LHC experiment upgrades. It includes a low noise, fast charge sensitive amplifier with detector leakage compensation circuit, and a compact, single ended comparator able to correctly process hits belonging to two consecutive bunch crossing periods. A 2-bit Flash ADC is exploited for digital conversion immediately after the preamplifier. A description of the circuits integrated in the front-end processor and the initial characterization results are provided
NASA Astrophysics Data System (ADS)
Pleros, Nikos; Maniotis, Pavlos; Alexoudi, Theonitsa; Fitsios, Dimitris; Vagionas, Christos; Papaioannou, Sotiris; Vyrsokinos, K.; Kanellos, George T.
2014-03-01
The processor-memory performance gap, commonly referred to as "Memory Wall" problem, owes to the speed mismatch between processor and electronic RAM clock frequencies, forcing current Chip Multiprocessor (CMP) configurations to consume more than 50% of the chip real-estate for caching purposes. In this article, we present our recent work spanning from Si-based integrated optical RAM cell architectures up to complete optical cache memory architectures for Chip Multiprocessor configurations. Moreover, we discuss on e/o router subsystems with up to Tb/s routing capacity for cache interconnection purposes within CMP configurations, currently pursued within the FP7 PhoxTrot project.
[Writing disorder using a word processor: role of the left hand].
Lemesle, M; Sieroff, E; Virat-Brassaud, M E; Graule-Petot, A; Giroud, M; Dumas, R
1999-12-01
A young female secretary developed a writing disorder, exclusively expressed when using a word processor, following an ischemic vascular event involving the insula and the right posterior parietal region. There was no disturbance of laterality. The neurological examination, completed by neuropsychological tests eliminated any persistent phasic or gnostic disorders. The analysis of the text produced revealed abnormalities leading to the conclusion that the left hand was responsible for all the errors observed. A sensorimotor integration disorder produced a melokinetic apraxia which appeared to be the cause of the writing disorder which would have most likely remained unknown had the subject not been a secretary.
Special-purpose computing for dense stellar systems
NASA Astrophysics Data System (ADS)
Makino, Junichiro
2007-08-01
I'll describe the current status of the GRAPE-DR project. The GRAPE-DR is the next-generation hardware for N-body simulation. Unlike the previous GRAPE hardwares, it is programmable SIMD machine with a large number of simple processors integrated into a single chip. The GRAPE-DR chip consists of 512 simple processors and operates at the clock speed of 500 MHz, delivering the theoretical peak speed of 512/226 Gflops (single/double precision). As of August 2006, the first prototype board with the sample chip successfully passed the test we prepared. The full GRAPE-DR system will consist of 4096 chips, reaching the theoretical peak speed of 2 Pflops.
Systems Biology Analysis of Zymomonas mobilis ZM4 Ethanol Stress Responses
Yang, Shihui; Pan, Chongle; Tschaplinski, Timothy J.; Hurst, Gregory B.; Engle, Nancy L.; Zhou, Wen; Dam, PhuongAn; Xu, Ying; Rodriguez, Miguel; Dice, Lezlee; Johnson, Courtney M.; Davison, Brian H.; Brown, Steven D.
2013-01-01
Background Zymomonas mobilis ZM4 is a capable ethanologenic bacterium with high ethanol productivity and ethanol tolerance. Previous studies indicated that several stress-related proteins and changes in the ZM4 membrane lipid composition may contribute to ethanol tolerance. However, the molecular mechanisms of its ethanol stress response have not been elucidated fully. Methodology/Principal Findings In this study, ethanol stress responses were investigated using systems biology approaches. Medium supplementation with an initial 47 g/L (6% v/v) ethanol reduced Z. mobilis ZM4 glucose consumption, growth rate and ethanol productivity compared to that of untreated controls. A proteomic analysis of early exponential growth identified about one thousand proteins, or approximately 55% of the predicted ZM4 proteome. Proteins related to metabolism and stress response such as chaperones and key regulators were more abundant in the early ethanol stress condition. Transcriptomic studies indicated that the response of ZM4 to ethanol is dynamic, complex and involves many genes from all the different functional categories. Most down-regulated genes were related to translation and ribosome biogenesis, while the ethanol-upregulated genes were mostly related to cellular processes and metabolism. Transcriptomic data were used to update Z. mobilis ZM4 operon models. Furthermore, correlations among the transcriptomic, proteomic and metabolic data were examined. Among significantly expressed genes or proteins, we observe higher correlation coefficients when fold-change values are higher. Conclusions Our study has provided insights into the responses of Z. mobilis to ethanol stress through an integrated “omics” approach for the first time. This systems biology study elucidated key Z. mobilis ZM4 metabolites, genes and proteins that form the foundation of its distinctive physiology and its multifaceted response to ethanol stress. PMID:23874800
Integration of succinic acid and ethanol production within a corn or barley biorefinery
USDA-ARS?s Scientific Manuscript database
Production of succinic acid from glucose by Escherichia coli strain AFP184 was studied in a batch fermentor. The bases used for pH control included NaOH, KOH, NH4OH, and Na2CO3. The yield of succinic acid without and with carbon dioxide supplied by an adjacent ethanol fermentor using either corn or ...
USDA-ARS?s Scientific Manuscript database
Environmentally friendly control measures for soil-borne plant pathogens are needed that are effective in different soils when applied alone or as components of an integrated disease control strategy. Ethanol extracts of Serratia marcescens N4-5 when applied as a cucumber seed treatment effectively ...
Integrated Optic Signal Processors for Wideband Radar Systems.
1980-05-01
md Identify by block number) Modules The general objecti1e-6ithis research oxogram-is to explore the potential of integrated acoustooptic’tec lol...and D activities. The major objectives of this research are to (Continued on ex Pae’ D ’’OR 1473k EDITION OF I NOV S5 IS OUSOLtTE 71 . ~- " SET~Y...CLASSIFICATION OF THIS PAGE (When bae Entered) SECURITY CLASSIFICATION OF THIS PAGE(When Data ihtered) carry out research on integrated acoustooptic
Extremely Fast Numerical Integration of Ocean Surface Wave Dynamics
2007-09-30
sub-processor must be added as shown in the blue box of Fig. 1. We first consider the Kadomtsev - Petviashvili (KP) equation ηt + coηx +αηηx + βη ...analytic integration of the so-called “soliton equations ,” I have discovered how the GFT can be used to solved higher order equations for which study...analytical study and extremely fast numerical integration of the extended nonlinear Schroedinger equation for fully three dimensional wave motion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vrana, D.L.; Meagher, M.M.; Hutkins, R.W.
1993-10-01
A pervaporation apparatus was designed and tested in an effort to develop an integrated fermentation and product recovery process for acetone-butanol-ethanol(ABE) fermentation. A crossflow membrane module able to accommodate flat sheet hydrophobic membranes was used for the experiments. Permeate vapors were collected under vacuum and condensed in a dry ice/ethanol cold trap. The apparatus containing polytetrafluoroethylene membranes was tested using butanol-water and model solutions of ABE products. Parameters such as product concentration, component effect, temperature, and permeate side pressure were examined. 25 refs., 3 figs., 5 tabs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Margaritis, A.; Bajpai, P.
1982-04-01
This article examines the potential of Jerusalem artichoke as a source for ethanol and single-cell protein SCP. In addition, experimental results are presented on batch fermentation kinetics employing two strains of Kluyveromyces marxianus and one strain of Saccharomyces rosei grown in the extract derived from the tubers of Jeusalem artichoke. Of the three cultures examined, Kluyveromyces marxianus UCD (EST) 55-82 was found to be the best producer of ethanol grown in a simple medium at 35/sup 0/C. The ethanol production was found to be growth-associated haveing a ..mu../sub max/ = 0.41 h/sup -1/ and the ethanol and biomass yields weremore » determined to be Y/sub p///sub = 0.45 (88% of the theoretical) and Y/sub x///sub s/ = 0.04 with 92% of the original sugars utilized. On the basis of carbohydrate yields of Jerusalem artichoke reported in the literature and these batch kinetic studies with K. marxianus, the calculated ethanol yields were found to range from 1400 kg ethanol acre/sup -1/ yr /sup -1/ to a maximum of 2700 kg ethanol acre/sup -1/ yr/sup -1/. The SCP yields for K. marxianus were calculated to range between 130 to 250 kg dry wt cell acre/sup -1/ yr/sup -1/. The potential for developing an integrated process to produce ethanol and SCP is also discussed.« less
Process engineering economics of bioethanol production.
Galbe, Mats; Sassner, Per; Wingren, Anders; Zacchi, Guido
2007-01-01
This work presents a review of studies on the process economics of ethanol production from lignocellulosic materials published since 1996. Our objective was to identify the most costly process steps and the impact of various parameters on the final production cost, e.g. plant capacity, raw material cost, and overall product yield, as well as process configuration. The variation in estimated ethanol production cost is considerable, ranging from about 0.13 to 0.81 US$ per liter ethanol. This can be explained to a large extent by actual process differences and variations in the assumptions underlying the techno-economic evaluations. The most important parameters for the economic outcome are the feedstock cost, which varied between 30 and 90 US$ per metric ton in the papers studied, and the plant capacity, which influences the capital cost. To reduce the ethanol production cost it is necessary to reach high ethanol yields, as well as a high ethanol concentration during fermentation, to be able to decrease the energy required for distillation and other downstream process steps. Improved pretreatment methods, enhanced enzymatic hydrolysis with cheaper and more effective enzymes, as well as improved fermentation systems present major research challenges if we are to make lignocellulose-based ethanol production competitive with sugar- and starch-based ethanol. Process integration, either internally or externally with other types of plants, e.g. heat and power plants, also offers a way of reducing the final ethanol production cost.
Lorenz, Mario; Brade, Jennifer; Diamond, Lisa; Sjölie, Daniel; Busch, Marc; Tscheligi, Manfred; Klimant, Philipp; Heyde, Christoph-E; Hammer, Niels
2018-04-23
Virtual Reality (VR) is used for a variety of applications ranging from entertainment to psychological medicine. VR has been demonstrated to influence higher order cognitive functions and cortical plasticity, with implications on phobia and stroke treatment. An integral part for successful VR is a high sense of presence - a feeling of 'being there' in the virtual scenario. The underlying cognitive and perceptive functions causing presence in VR scenarios are however not completely known. It is evident that the brain function is influenced by drugs, such as ethanol, potentially confounding cortical plasticity, also in VR. As ethanol is ubiquitous and forms part of daily life, understanding the effects of ethanol on presence and user experience, the attitudes and emotions about using VR applications, is important. This exploratory study aims at contributing towards an understanding of how low-dose ethanol intake influences presence, user experience and their relationship in a validated VR context. It was found that low-level ethanol consumption did influence presence and user experience, but on a minimal level. In contrast, correlations between presence and user experience were strongly influenced by low-dose ethanol. Ethanol consumption may consequently alter cognitive and perceptive functions related to the connections between presence and user experience.
Automatic detection, tracking and sensor integration
NASA Astrophysics Data System (ADS)
Trunk, G. V.
1988-06-01
This report surveys the state of the art of automatic detection, tracking, and sensor integration. In the area of detection, various noncoherent integrators such as the moving window integrator, feedback integrator, two-pole filter, binary integrator, and batch processor are discussed. Next, the three techniques for controlling false alarms, adapting thresholds, nonparametric detectors, and clutter maps are presented. In the area of tracking, a general outline is given of a track-while-scan system, and then a discussion is presented of the file system, contact-entry logic, coordinate systems, tracking filters, maneuver-following logic, tracking initiating, track-drop logic, and correlation procedures. Finally, in the area of multisensor integration the problems of colocated-radar integration, multisite-radar integration, radar-IFF integration, and radar-DF bearing strobe integration are treated.
NASA Astrophysics Data System (ADS)
Karstedt, Jörg; Ogrzewalla, Jürgen; Severin, Christopher; Pischinger, Stefan
In this work, the concept development, system layout, component simulation and the overall DOE system optimization of a HT-PEM fuel cell APU with a net electric power output of 4.5 kW and an onboard methane fuel processor are presented. A highly integrated system layout has been developed that enables fast startup within 7.5 min, a closed system water balance and high fuel processor efficiencies of up to 85% due to the recuperation of the anode offgas burner heat. The integration of the system battery into the load management enhances the transient electric performance and the maximum electric power output of the APU system. Simulation models of the carbon monoxide influence on HT-PEM cell voltage, the concentration and temperature profiles within the autothermal reformer (ATR) and the CO conversion rates within the watergas shift stages (WGSs) have been developed. They enable the optimization of the CO concentration in the anode gas of the fuel cell in order to achieve maximum system efficiencies and an optimized dimensioning of the ATR and WGS reactors. Furthermore a DOE optimization of the global system parameters cathode stoichiometry, anode stoichiometry, air/fuel ratio and steam/carbon ratio of the fuel processing system has been performed in order to achieve maximum system efficiencies for all system operating points under given boundary conditions.
Parallelization of a Monte Carlo particle transport simulation code
NASA Astrophysics Data System (ADS)
Hadjidoukas, P.; Bousis, C.; Emfietzoglou, D.
2010-05-01
We have developed a high performance version of the Monte Carlo particle transport simulation code MC4. The original application code, developed in Visual Basic for Applications (VBA) for Microsoft Excel, was first rewritten in the C programming language for improving code portability. Several pseudo-random number generators have been also integrated and studied. The new MC4 version was then parallelized for shared and distributed-memory multiprocessor systems using the Message Passing Interface. Two parallel pseudo-random number generator libraries (SPRNG and DCMT) have been seamlessly integrated. The performance speedup of parallel MC4 has been studied on a variety of parallel computing architectures including an Intel Xeon server with 4 dual-core processors, a Sun cluster consisting of 16 nodes of 2 dual-core AMD Opteron processors and a 200 dual-processor HP cluster. For large problem size, which is limited only by the physical memory of the multiprocessor server, the speedup results are almost linear on all systems. We have validated the parallel implementation against the serial VBA and C implementations using the same random number generator. Our experimental results on the transport and energy loss of electrons in a water medium show that the serial and parallel codes are equivalent in accuracy. The present improvements allow for studying of higher particle energies with the use of more accurate physical models, and improve statistics as more particles tracks can be simulated in low response time.
Integrated Payload Data Handling Systems Using Software Partitioning
NASA Astrophysics Data System (ADS)
Taylor, Alun; Hann, Mark; Wishart, Alex
2015-09-01
An integrated Payload Data Handling System (I-PDHS) is one in which multiple instruments share a central payload processor for their on-board data processing tasks. This offers a number of advantages over the conventional decentralised architecture. Savings in payload mass and power can be realised because the total processing resource is matched to the requirements, as opposed to the decentralised architecture here the processing resource is in effect the sum of all the applications. Overall development cost can be reduced using a common processor. At individual instrument level the potential benefits include a standardised application development environment, and the opportunity to run the instrument data handling application on a fully redundant and more powerful processing platform [1]. This paper describes a joint program by SCISYS UK Limited, Airbus Defence and Space, Imperial College London and RAL Space to implement a realistic demonstration of an I-PDHS using engineering models of flight instruments (a magnetometer and camera) and a laboratory demonstrator of a central payload processor which is functionally representative of a flight design. The objective is to raise the Technology Readiness Level of the centralised data processing technique by address the key areas of task partitioning to prevent fault propagation and the use of a common development process for the instrument applications. The project is supported by a UK Space Agency grant awarded under the National Space Technology Program SpaceCITI scheme. [1].
Azarov, Alexey V.; Woodward, Donald J.
2013-01-01
The goal of this study was to clarify similar and distinctly different parameters of fluid intake during early phases of ethanol and water choice drinking in alcohol preferring P-rat vs. non-selected Wistar and Sprague Dawley (SD) rats. Precision information on the drinking amounts and timing is needed to analyze micro-behavioral components of the acquisition of ethanol intake and to enable a search for its causal activity patterns within individual CNS circuits. The experiment followed the standard ethanol-drinking test used in P-rat selective breeding, with access to water, then 10% ethanol (10E) as sole fluids, and next to ethanol / water choice. The novelty of the present approach was to eliminate confounding prandial elevations of fluid intake, by time-separating daily food from fluid access. P-rat higher initial intakes of water and 10E as sole fluids suggest adaptations to ethanol-induced dehydration in P vs. Wistar and SD rats. P-rat starting and overall ethanol intake during the choice period were the highest. The absolute extent of ethanol intake elevation during choice period was greatest in Wistar and their final intake levels approached those of P-rat, contrary to the hypothesis that selection would produce the strongest elevation of ethanol intake. The total daily fluid during ethanol / water choice period was strikingly similar between P, Wistar and SD rats. This supports the hypothesis for a universal system that gauges the overall intake volume by titrating and integrating ethanol and water drinking fluctuations, and indicates a stable daily level of total fluid as a main regulated parameter of fluid intake across the three lines in choice conditions. The present findings indicate that a stable daily level of total fluid comprises an independent physiological limit for daily ethanol intake. Ethanol drinking, in turn, stays under the ceiling of this limit, driven by a parallel mechanism of ethanol / water choice. PMID:24095933
Yuan, W J; Chang, B L; Ren, J G; Liu, J P; Bai, F W; Li, Y Y
2012-01-01
Developing an innovative process for ethanol fermentation from Jerusalem artichoke tubers under very high gravity (VHG) conditions. A consolidated bioprocessing (CBP) strategy that integrated inulinase production, saccharification of inulin contained in Jerusalem artichoke tubers and ethanol production from sugars released from inulin by the enzyme was developed with the inulinase-producing yeast Kluyveromyces marxianus Y179 and fed-batch operation. The impact of inoculum age, aeration, the supplementation of pectinase and nutrients on the ethanol fermentation performance of the CBP system was studied. Although inulinase activities increased with the extension of the seed incubation time, its contribution to ethanol production was negligible because vigorously growing yeast cells harvested earlier carried out ethanol fermentation more efficiently. Thus, the overnight incubation that has been practised in ethanol production from starch-based feedstocks is recommended. Aeration facilitated the fermentation process, but compromised ethanol yield because of the negative Crabtree effect of the species, and increases the risk of contamination under industrial conditions. Therefore, nonaeration conditions are preferred for the CBP system. Pectinase supplementation reduced viscosity of the fermentation broth and improved ethanol production performance, particularly under high gravity conditions, but the enzyme cost should be carefully balanced. Medium optimization was performed, and ethanol concentration as high as 94·2 g l(-1) was achieved when 0·15 g l(-1) K(2) HPO(4) was supplemented, which presents a significant progress in ethanol production from Jerusalem artichoke tubers. A CBP system using K. marxianus is suitable for efficient ethanol production from Jerusalem artichoke tubers under VHG conditions. Jerusalem artichoke tubers are an alternative to grain-based feedstocks for ethanol production. The high ethanol concentration achieved using K. marxianus with the CBP system not only saves energy consumption for ethanol distillation, but also significantly reduces the amount of waste distillage discharged from the distillation system. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.
Decentralized Multisensory Information Integration in Neural Systems.
Zhang, Wen-Hao; Chen, Aihua; Rasch, Malte J; Wu, Si
2016-01-13
How multiple sensory cues are integrated in neural circuitry remains a challenge. The common hypothesis is that information integration might be accomplished in a dedicated multisensory integration area receiving feedforward inputs from the modalities. However, recent experimental evidence suggests that it is not a single multisensory brain area, but rather many multisensory brain areas that are simultaneously involved in the integration of information. Why many mutually connected areas should be needed for information integration is puzzling. Here, we investigated theoretically how information integration could be achieved in a distributed fashion within a network of interconnected multisensory areas. Using biologically realistic neural network models, we developed a decentralized information integration system that comprises multiple interconnected integration areas. Studying an example of combining visual and vestibular cues to infer heading direction, we show that such a decentralized system is in good agreement with anatomical evidence and experimental observations. In particular, we show that this decentralized system can integrate information optimally. The decentralized system predicts that optimally integrated information should emerge locally from the dynamics of the communication between brain areas and sheds new light on the interpretation of the connectivity between multisensory brain areas. To extract information reliably from ambiguous environments, the brain integrates multiple sensory cues, which provide different aspects of information about the same entity of interest. Here, we propose a decentralized architecture for multisensory integration. In such a system, no processor is in the center of the network topology and information integration is achieved in a distributed manner through reciprocally connected local processors. Through studying the inference of heading direction with visual and vestibular cues, we show that the decentralized system can integrate information optimally, with the reciprocal connections between processers determining the extent of cue integration. Our model reproduces known multisensory integration behaviors observed in experiments and sheds new light on our understanding of how information is integrated in the brain. Copyright © 2016 Zhang et al.
Decentralized Multisensory Information Integration in Neural Systems
Zhang, Wen-hao; Chen, Aihua
2016-01-01
How multiple sensory cues are integrated in neural circuitry remains a challenge. The common hypothesis is that information integration might be accomplished in a dedicated multisensory integration area receiving feedforward inputs from the modalities. However, recent experimental evidence suggests that it is not a single multisensory brain area, but rather many multisensory brain areas that are simultaneously involved in the integration of information. Why many mutually connected areas should be needed for information integration is puzzling. Here, we investigated theoretically how information integration could be achieved in a distributed fashion within a network of interconnected multisensory areas. Using biologically realistic neural network models, we developed a decentralized information integration system that comprises multiple interconnected integration areas. Studying an example of combining visual and vestibular cues to infer heading direction, we show that such a decentralized system is in good agreement with anatomical evidence and experimental observations. In particular, we show that this decentralized system can integrate information optimally. The decentralized system predicts that optimally integrated information should emerge locally from the dynamics of the communication between brain areas and sheds new light on the interpretation of the connectivity between multisensory brain areas. SIGNIFICANCE STATEMENT To extract information reliably from ambiguous environments, the brain integrates multiple sensory cues, which provide different aspects of information about the same entity of interest. Here, we propose a decentralized architecture for multisensory integration. In such a system, no processor is in the center of the network topology and information integration is achieved in a distributed manner through reciprocally connected local processors. Through studying the inference of heading direction with visual and vestibular cues, we show that the decentralized system can integrate information optimally, with the reciprocal connections between processers determining the extent of cue integration. Our model reproduces known multisensory integration behaviors observed in experiments and sheds new light on our understanding of how information is integrated in the brain. PMID:26758843
Carbon Dioxide Reduction Post-Processing Sub-System Development
NASA Technical Reports Server (NTRS)
Abney, Morgan B.; Miller, Lee A.; Greenwood, Zachary; Barton, Katherine
2012-01-01
The state-of-the-art Carbon Dioxide (CO2) Reduction Assembly (CRA) on the International Space Station (ISS) facilitates the recovery of oxygen from metabolic CO2. The CRA utilizes the Sabatier process to produce water with methane as a byproduct. The methane is currently vented overboard as a waste product. Because the CRA relies on hydrogen for oxygen recovery, the loss of methane ultimately results in a loss of oxygen. For missions beyond low earth orbit, it will prove essential to maximize oxygen recovery. For this purpose, NASA is exploring an integrated post-processor system to recover hydrogen from CRA methane. The post-processor, called a Plasma Pyrolysis Assembly (PPA) partially pyrolyzes methane to recover hydrogen with acetylene as a byproduct. In-flight operation of post-processor will require a Methane Purification Assembly (MePA) and an Acetylene Separation Assembly (ASepA). Recent efforts have focused on the design, fabrication, and testing of these components. The results and conclusions of these efforts will be discussed as well as future plans.
Design of an Ada expert system shell for the VHSIC avionic modular flight processor
NASA Technical Reports Server (NTRS)
Fanning, F. Jesse
1992-01-01
The Embedded Computer System Expert System Shell (ES Shell) is an Ada-based expert system shell developed at the Avionics Laboratory for use on the VHSIC Avionic Modular Processor (VAMP) running under the Ada Avionics Real-Time Software (AARTS) Operating System. The ES Shell provides the interface between the expert system and the avionics environment, and controls execution of the expert system. Testing of the ES Shell in the Avionics Laboratory's Integrated Test Bed (ITB) has demonstrated its ability to control a non-deterministic software application executing on the VAMP's which can control the ITB's real-time closed-loop aircraft simulation. The results of these tests and the conclusions reached in the design and development of the ES Shell have played an important role in the formulation of the requirements for a production-quality expert system inference engine, an ingredient necessary for the successful use of expert systems on the VAMP embedded avionic flight processor.
Coupling of a 2.5 kW steam reformer with a 1 kW el PEM fuel cell
NASA Astrophysics Data System (ADS)
Mathiak, J.; Heinzel, A.; Roes, J.; Kalk, Th.; Kraus, H.; Brandt, H.
The University of Duisburg-Essen has developed a compact multi-fuel steam reformer suitable for natural gas, propane and butane. This steam reformer was combined with a polymer electrolyte membrane fuel cell (PEM FC) and a system test of the process chain was performed. The fuel processor comprises a prereformer step, a primary reformer, water gas shift reactors, a steam generator, internal heat exchangers in order to achieve an optimised heat integration and an external burner for heat supply as well as a preferential oxidation step (PROX) as CO purification. The fuel processor is designed to deliver a thermal hydrogen power output from 500 W to 2.5 kW. The PEM fuel cell stack provides about 1 kW electrical power. In the following paper experimental results of measurements of the single components PEM fuel cell and fuel processor as well as results of the coupling of both to form a process chain are presented.
Software Reviews Since Acquisition Reform - The Artifact Perspective
2004-01-01
Risk Management OLD NEW Slide 13Acquisition of Software Intensive Systems 2004 – Peter Hantos Single, basic software paradigm Single processor Low...software risk mitigation related trade-offs must be done together Integral Software Engineering Activities Process Maturity and Quality Frameworks Quality
1998-01-01
The blending of oxygenates, such as fuel ethanol and methyl tertiary butyl ether (MTBE), into motor gasoline has increased dramatically in the last few years because of the oxygenated and reformulated gasoline programs. Because of the significant role oxygenates now have in petroleum product markets, the Short-Term Integrated Forecasting System (STIFS) was revised to include supply and demand balances for fuel ethanol and MTBE. The STIFS model is used for producing forecasts in the Short-Term Energy Outlook. A review of the historical data sources and forecasting methodology for oxygenate production, imports, inventories, and demand is presented in this report.
European Science Notes Information Bulletin Reports on Current European/ Middle Eastern Science
1989-03-01
Palo-Oceanography, Marine Geophysics, Marine Environmental Geology, and Petrology of the Oceanic Crust. The spe- cific concerns of each of these...integration To compute numerically the expected value of an over the fermion fields, leaving an integral over the gauge operator, the configuration space...ethrough the machine (one space point per processor).In the gauge field theories of elementary particles, This is appropriate for generating gauge field
Intelligent systems technology infrastructure for integrated systems
NASA Technical Reports Server (NTRS)
Lum, Henry, Jr.
1991-01-01
Significant advances have occurred during the last decade in intelligent systems technologies (a.k.a. knowledge-based systems, KBS) including research, feasibility demonstrations, and technology implementations in operational environments. Evaluation and simulation data obtained to date in real-time operational environments suggest that cost-effective utilization of intelligent systems technologies can be realized for Automated Rendezvous and Capture applications. The successful implementation of these technologies involve a complex system infrastructure integrating the requirements of transportation, vehicle checkout and health management, and communication systems without compromise to systems reliability and performance. The resources that must be invoked to accomplish these tasks include remote ground operations and control, built-in system fault management and control, and intelligent robotics. To ensure long-term evolution and integration of new validated technologies over the lifetime of the vehicle, system interfaces must also be addressed and integrated into the overall system interface requirements. An approach for defining and evaluating the system infrastructures including the testbed currently being used to support the on-going evaluations for the evolutionary Space Station Freedom Data Management System is presented and discussed. Intelligent system technologies discussed include artificial intelligence (real-time replanning and scheduling), high performance computational elements (parallel processors, photonic processors, and neural networks), real-time fault management and control, and system software development tools for rapid prototyping capabilities.
Multimedia architectures: from desktop systems to portable appliances
NASA Astrophysics Data System (ADS)
Bhaskaran, Vasudev; Konstantinides, Konstantinos; Natarajan, Balas R.
1997-01-01
Future desktop and portable computing systems will have as their core an integrated multimedia system. Such a system will seamlessly combine digital video, digital audio, computer animation, text, and graphics. Furthermore, such a system will allow for mixed-media creation, dissemination, and interactive access in real time. Multimedia architectures that need to support these functions have traditionally required special display and processing units for the different media types. This approach tends to be expensive and is inefficient in its use of silicon. Furthermore, such media-specific processing units are unable to cope with the fluid nature of the multimedia market wherein the needs and standards are changing and system manufacturers may demand a single component media engine across a range of products. This constraint has led to a shift towards providing a single-component multimedia specific computing engine that can be integrated easily within desktop systems, tethered consumer appliances, or portable appliances. In this paper, we review some of the recent architectural efforts in developing integrated media systems. We primarily focus on two efforts, namely the evolution of multimedia-capable general purpose processors and a more recent effort in developing single component mixed media co-processors. Design considerations that could facilitate the migration of these technologies to a portable integrated media system also are presented.
Determination of 13C/12C Isotope Ratio in Alcohols of Different Origin by 1н Nuclei NMR-Spectroscopy
NASA Astrophysics Data System (ADS)
Dzhimak, S. S.; Basov, A. A.; Buzko, V. Yu.; Kopytov, G. F.; Kashaev, D. V.; Shashkov, D. I.; Shlapakov, M. S.; Baryshev, M. G.
2017-02-01
A new express method of indirect assessment of 13C/12C isotope ratio on 1H nuclei is developed to verify the authenticity of ethanol origin in alcohol-water-based fluids and assess the facts of various alcoholic beverages falsification. It is established that in water-based alcohol-containing systems, side satellites for the signals of ethanol methyl and methylene protons in the NMR spectra on 1H nuclei, correspond to the protons associated with 13C nuclei. There is a direct correlation between the intensities of the signals of ethanol methyl and methylene protons' 1H- NMR and their side satellites, therefore, the data obtained can be used to assess 13C/12C isotope ratio in water-based alcohol-containing systems. The analysis of integrated intensities of main and satellite signals of methyl and methylene protons of ethanol obtained by NMR on 1H nuclei makes it possible to differentiate between ethanol of synthetic and natural origin. Furthermore, the method proposed made it possible to differentiate between wheat and corn ethanol.
NASA Astrophysics Data System (ADS)
Hellwinckel, C. M.; Phillips, J.
2011-12-01
Over the past 10 years, commodity grain prices have doubled, and world commodity prices have reached their highest levels in over 30 years. The rise in prices culminated in the food price spikes of 2008 and 2011, where food riots erupted in 40 countries. Although studies have pointed to a number of factors leading to the increased food prices, the ethanol industry, whether deservingly or not, is seen as the major factor behind the price spikes. Several recent studies have contributed to the poor public opinion of ethanol by concluding that ethanol is neither a net energy source nor a net reducer of carbon emissions. The impact of these research reports combined with recent spikes in commodity prices has led to fierce political efforts to reduce or eliminate subsidies for ethanol. Opponents of ethanol subsidization won a significant battle with Congress recently voting to eliminate federal blender's tax credits and ethanol import tariffs. If another sharp spike in commodity prices occurs in the near future, some have speculated that ethanol production mandates could be scaled back or eliminated. In the span of less than three years the expected role of ethanol in the agricultural sector has gone from one of rapid growth and longevity, to one of which the societal benefits are being strongly questioned. In light of the rapidly changing expectations regarding the future of ethanol, we believe it is an appropriate time to evaluate the landuse and carbon implications of a scaling down of ethanol production and investigating permanent managed pasture as an alternative land use that could provide carbon benefits. Various USDA programs to promote conservation of, or conversion to, permanent pasture or grassland exist primarily based on the value of decreasing the potential for soil erosion as well as improving water quality. Although grazing systems have long been associated with land degradation in the arid and semi-arid west, new management approaches utilizing some form of rotational grazing are believed to reverse degradation and potentially lead to soil and pasture improvement if well managed, with implications for soil carbon storage. As the debate over societal subsidization of ethanol continues, the scientific communities should prepare for a potential drawdown of ethanol, and be aware of the potential land use impacts. An integrated biogeophysical socioeconomic model is used to evaluate three levels of potential reductions in ethanol production along with the possibility of conversion of non-profitable cropland to pasture management. The integrated model (POLYSYS) is driven by data on economics, terrestrial carbon dynamics, remotely-sensed land cover, and energy consumption. Preliminary results indicate that up to 10 million hectares of cropland could convert to pastureland, reducing agricultural land use emissions by nearly 10 teragrams carbon equivalent (TgCeq), a 36% decline in agricultural land use carbon equivalent emissions.
Modeling the effects of pelleting on the logistics of distillers grains shipping.
Rosentrater, Kurt A; Kongar, Elif
2009-12-01
The energy security needs of energy importing nations continue to escalate. It is clear that biofuels can help meet some of the increasing need for energy. Theoretically, these can be produced from a variety of biological materials, including agricultural residues (such as corn stover and wheat straw), perennial grasses, legumes, algae, and other biological materials. Currently, however, the most heavily utilized material is corn starch. Industrial fuel ethanol production in the US primarily uses corn, because it is readily converted into fuel at a relatively low cost compared to other biomass sources. The production of corn-based ethanol in the US is dramatically increasing. As the industry continues to grow, the amount of byproducts and coproducts also increases. At the moment, the nonfermentable residues (which are dried and sold as distillers dried grains with solubles--DDGS) are utilized only as livestock feed. The sale of coproducts provides ethanol processors with a substantial revenue source and significantly increases the profitability of the production process. Even though these materials are used to feed animals in local markets, as the size and scope of the industry continues to grow, the need to ship large quantities of coproducts grows as well. This includes both domestic as well as international transportation. Value-added processing options offer the potential to increase the sustainability of each ethanol plant, and thus the industry overall. However, implementation of new technologies will be dependent upon how their costs interact with current processing costs and the logistics of coproduct deliveries. The objective of this study was to examine some of these issues by developing a computer model to determine potential cost ramifications of using various alternative technologies during ethanol processing. This paper focuses specifically on adding a densification unit operation (i.e., pelleting) to produce value-added DDGS at a fuel ethanol manufacturing plant. We have examined the economic implications of pelleting DDGS for varying DDGS production rates (100-1000 tons/d) and pelleting rates (0-100%), for a series of DDGS sales prices ($50-$200/ton). As the proportion of pelleting increases, the cost of transporting DDGS to distant markets drastically declines, because the rail cars can be filled to capacity. For example, at a DDGS sales price of $50/ton, 100% pelleting will reduce shipping costs (both direct and indirect) by 89% compared to shipping the DDGS in bulk form (i.e., no pelleting), whereas at a DDGS sales price of $200/ton, it will reduce costs by over 96%. It is clear that the sustainability of the ethanol industry can be improved by implementing pelleting technology for the coproducts, especially at those plants that ship their DDGS via rail.
Ohno, Takashi; Hattori, Youichiro; Komine, Rie; Ae, Takako; Mizuguchi, Sumito; Arai, Katsuharu; Saeki, Takeo; Suzuki, Tatsunori; Hosono, Kanako; Hayashi, Izumi; Oh-Hashi, Yoshio; Kurihara, Yukiko; Kurihara, Hiroki; Amagase, Kikuko; Okabe, Susumu; Saigenji, Katsunori; Majima, Masataka
2008-01-01
The gastrointestinal tract is known to be rich in neural systems, among which afferent neurons are reported to exhibit protective actions. We tested whether an endogenous neuropeptide, calcitonin gene-related peptide (CGRP), can prevent gastric mucosal injury elicited by ethanol and enhance healing of acetic acid-induced ulcer using CGRP knockout mice (CGRP(-/-)). The stomach was perfused with 1.6 mmol/L capsaicin or 1 mol/L NaCl, and gastric mucosal injury elicited by 50% ethanol was estimated. Levels of CGRP in the perfusate were determined by enzyme immunoassay. Gastric ulcers were induced by serosal application of absolute acetic acid. Capsaicin inhibited injured area dose-dependently. Fifty percent ethanol containing capsaicin immediately increased intragastric levels of CGRP in wild-type (WT) mice, although 50% ethanol alone did not. The protective action of capsaicin against ethanol was completely abolished in CGRP(-/-). Preperfusion with 1 mol/L NaCl increased CGRP release and reduced mucosal damage during ethanol perfusion. However, 1 mol/L NaCl was not effective in CGRP(-/-). Healing of ulcer elicited by acetic acid in CGRP(-/-) mice was markedly delayed, compared with that in WT. In WT, granulation tissues were formed at the base of ulcers, and substantial neovascularization was induced, whereas those were poor in CGRP(-/-). Expression of vascular endothelial growth factor was more markedly reduced in CGRP(-/-) than in WT. CGRP has a preventive action on gastric mucosal injury and a proangiogenic activity to enhance ulcer healing. These results indicate that the CGRP-dependent pathway is a good target for regulating gastric mucosal protection and maintaining gastric mucosal integrity.
The Advanced Communication Technology Satellite and ISDN
NASA Technical Reports Server (NTRS)
Lowry, Peter A.
1996-01-01
This paper depicts the Advanced Communication Technology Satellite (ACTS) system as a global central office switch. The ground portion of the system is the collection of earth stations or T1-VSAT's (T1 very small aperture terminals). The control software for the T1-VSAT's resides in a single CPU. The software consists of two modules, the modem manager and the call manager. The modem manager (MM) controls the RF modem portion of the T1-VSAT. It processes the orderwires from the satellite or from signaling generated by the call manager (CM). The CM controls the Recom Laboratories MSPs by receiving signaling messages from the stacked MSP shelves ro units and sending appropriate setup commands to them. There are two methods used to setup and process calls in the CM; first by dialing up a circuit using a standard telephone handset or, secondly by using an external processor connected to the CPU's second COM port, by sending and receiving signaling orderwires. It is the use of the external processor which permits the ISDN (Integrated Services Digital Network) Signaling Processor to implement ISDN calls. In August 1993, the initial testing of the ISDN Signaling Processor was carried out at ACTS System Test at Lockheed Marietta, Princeton, NJ using the spacecraft in its test configuration on the ground.
NASA Astrophysics Data System (ADS)
Hayashi, Akihiro; Wada, Yasutaka; Watanabe, Takeshi; Sekiguchi, Takeshi; Mase, Masayoshi; Shirako, Jun; Kimura, Keiji; Kasahara, Hironori
Heterogeneous multicores have been attracting much attention to attain high performance keeping power consumption low in wide spread of areas. However, heterogeneous multicores force programmers very difficult programming. The long application program development period lowers product competitiveness. In order to overcome such a situation, this paper proposes a compilation framework which bridges a gap between programmers and heterogeneous multicores. In particular, this paper describes the compilation framework based on OSCAR compiler. It realizes coarse grain task parallel processing, data transfer using a DMA controller, power reduction control from user programs with DVFS and clock gating on various heterogeneous multicores from different vendors. This paper also evaluates processing performance and the power reduction by the proposed framework on a newly developed 15 core heterogeneous multicore chip named RP-X integrating 8 general purpose processor cores and 3 types of accelerator cores which was developed by Renesas Electronics, Hitachi, Tokyo Institute of Technology and Waseda University. The framework attains speedups up to 32x for an optical flow program with eight general purpose processor cores and four DRP(Dynamically Reconfigurable Processor) accelerator cores against sequential execution by a single processor core and 80% of power reduction for the real-time AAC encoding.
Zhang, Zhen; Ma, Cheng; Zhu, Rong
2017-08-23
Artificial Neural Networks (ANNs), including Deep Neural Networks (DNNs), have become the state-of-the-art methods in machine learning and achieved amazing success in speech recognition, visual object recognition, and many other domains. There are several hardware platforms for developing accelerated implementation of ANN models. Since Field Programmable Gate Array (FPGA) architectures are flexible and can provide high performance per watt of power consumption, they have drawn a number of applications from scientists. In this paper, we propose a FPGA-based, granularity-variable neuromorphic processor (FBGVNP). The traits of FBGVNP can be summarized as granularity variability, scalability, integrated computing, and addressing ability: first, the number of neurons is variable rather than constant in one core; second, the multi-core network scale can be extended in various forms; third, the neuron addressing and computing processes are executed simultaneously. These make the processor more flexible and better suited for different applications. Moreover, a neural network-based controller is mapped to FBGVNP and applied in a multi-input, multi-output, (MIMO) real-time, temperature-sensing and control system. Experiments validate the effectiveness of the neuromorphic processor. The FBGVNP provides a new scheme for building ANNs, which is flexible, highly energy-efficient, and can be applied in many areas.
Zhang, Zhen; Zhu, Rong
2017-01-01
Artificial Neural Networks (ANNs), including Deep Neural Networks (DNNs), have become the state-of-the-art methods in machine learning and achieved amazing success in speech recognition, visual object recognition, and many other domains. There are several hardware platforms for developing accelerated implementation of ANN models. Since Field Programmable Gate Array (FPGA) architectures are flexible and can provide high performance per watt of power consumption, they have drawn a number of applications from scientists. In this paper, we propose a FPGA-based, granularity-variable neuromorphic processor (FBGVNP). The traits of FBGVNP can be summarized as granularity variability, scalability, integrated computing, and addressing ability: first, the number of neurons is variable rather than constant in one core; second, the multi-core network scale can be extended in various forms; third, the neuron addressing and computing processes are executed simultaneously. These make the processor more flexible and better suited for different applications. Moreover, a neural network-based controller is mapped to FBGVNP and applied in a multi-input, multi-output, (MIMO) real-time, temperature-sensing and control system. Experiments validate the effectiveness of the neuromorphic processor. The FBGVNP provides a new scheme for building ANNs, which is flexible, highly energy-efficient, and can be applied in many areas. PMID:28832522
Acceleration of spiking neural network based pattern recognition on NVIDIA graphics processors.
Han, Bing; Taha, Tarek M
2010-04-01
There is currently a strong push in the research community to develop biological scale implementations of neuron based vision models. Systems at this scale are computationally demanding and generally utilize more accurate neuron models, such as the Izhikevich and the Hodgkin-Huxley models, in favor of the more popular integrate and fire model. We examine the feasibility of using graphics processing units (GPUs) to accelerate a spiking neural network based character recognition network to enable such large scale systems. Two versions of the network utilizing the Izhikevich and Hodgkin-Huxley models are implemented. Three NVIDIA general-purpose (GP) GPU platforms are examined, including the GeForce 9800 GX2, the Tesla C1060, and the Tesla S1070. Our results show that the GPGPUs can provide significant speedup over conventional processors. In particular, the fastest GPGPU utilized, the Tesla S1070, provided a speedup of 5.6 and 84.4 over highly optimized implementations on the fastest central processing unit (CPU) tested, a quadcore 2.67 GHz Xeon processor, for the Izhikevich and the Hodgkin-Huxley models, respectively. The CPU implementation utilized all four cores and the vector data parallelism offered by the processor. The results indicate that GPUs are well suited for this application domain.
Unrean, Pornkamol; Khajeeram, Sutamat; Laoteng, Kobkul
2016-03-01
An integrative simultaneous saccharification and fermentation (SSF) modeling is a useful guiding tool for rapid process optimization to meet the techno-economic requirement of industrial-scale lignocellulosic ethanol production. In this work, we have developed the SSF model composing of a metabolic network of a Saccharomyces cerevisiae cell associated with fermentation kinetics and enzyme hydrolysis model to quantitatively capture dynamic responses of yeast cell growth and fermentation during SSF. By using model-based design of feeding profiles for substrate and yeast cell in the fed-batch SSF process, an efficient ethanol production with high titer of up to 65 g/L and high yield of 85 % of theoretical yield was accomplished. The ethanol titer and productivity was increased by 47 and 41 %, correspondingly, in optimized fed-batch SSF as compared to batch process. The developed integrative SSF model is, therefore, considered as a promising approach for systematic design of economical and sustainable SSF bioprocessing of lignocellulose.
MEMS-based fuel cells with integrated catalytic fuel processor and method thereof
Jankowski, Alan F [Livermore, CA; Morse, Jeffrey D [Martinez, CA; Upadhye, Ravindra S [Pleasanton, CA; Havstad, Mark A [Davis, CA
2011-08-09
Described herein is a means to incorporate catalytic materials into the fuel flow field structures of MEMS-based fuel cells, which enable catalytic reforming of a hydrocarbon based fuel, such as methane, methanol, or butane. Methods of fabrication are also disclosed.
Multi-gigabit optical interconnects for next-generation on-board digital equipment
NASA Astrophysics Data System (ADS)
Venet, Norbert; Favaro, Henri; Sotom, Michel; Maignan, Michel; Berthon, Jacques
2017-11-01
Parallel optical interconnects are experimentally assessed as a technology that may offer the high-throughput data communication capabilities required to the next-generation on-board digital processing units. An optical backplane interconnect was breadboarded, on the basis of a digital transparent processor that provides flexible connectivity and variable bandwidth in telecom missions with multi-beam antenna coverage. The unit selected for the demonstration required that more than tens of Gbit/s be supported by the backplane. The demonstration made use of commercial parallel optical link modules at 850 nm wavelength, with 12 channels running at up to 2.5 Gbit/s. A flexible optical fibre circuit was developed so as to route board-to-board connections. It was plugged to the optical transmitter and receiver modules through 12-fibre MPO connectors. BER below 10-14 and optical link budgets in excess of 12 dB were measured, which would enable to integrate broadcasting. Integration of the optical backplane interconnect was successfully demonstrated by validating the overall digital processor functionality.
NASA Technical Reports Server (NTRS)
Boriakoff, Valentin
1994-01-01
The goal of this project was the feasibility study of a particular architecture of a digital signal processing machine operating in real time which could do in a pipeline fashion the computation of the fast Fourier transform (FFT) of a time-domain sampled complex digital data stream. The particular architecture makes use of simple identical processors (called inner product processors) in a linear organization called a systolic array. Through computer simulation the new architecture to compute the FFT with systolic arrays was proved to be viable, and computed the FFT correctly and with the predicted particulars of operation. Integrated circuits to compute the operations expected of the vital node of the systolic architecture were proven feasible, and even with a 2 micron VLSI technology can execute the required operations in the required time. Actual construction of the integrated circuits was successful in one variant (fixed point) and unsuccessful in the other (floating point).
Multi-gigabit optical interconnects for next-generation on-board digital equipment
NASA Astrophysics Data System (ADS)
Venet, Norbert; Favaro, Henri; Sotom, Michel; Maignan, Michel; Berthon, Jacques
2004-06-01
Parallel optical interconnects are experimentally assessed as a technology that may offer the high-throughput data communication capabilities required to the next-generation on-board digital processing units. An optical backplane interconnect was breadboarded, on the basis of a digital transparent processor that provides flexible connectivity and variable bandwidth in telecom missions with multi-beam antenna coverage. The unit selected for the demonstration required that more than tens of Gbit/s be supported by the backplane. The demonstration made use of commercial parallel optical link modules at 850 nm wavelength, with 12 channels running at up to 2.5 Gbit/s. A flexible optical fibre circuit was developed so as to route board-to-board connections. It was plugged to the optical transmitter and receiver modules through 12-fibre MPO connectors. BER below 10-14 and optical link budgets in excess of 12 dB were measured, which would enable to integrate broadcasting. Integration of the optical backplane interconnect was successfully demonstrated by validating the overall digital processor functionality.
Adaptive Signal Processing Testbed: VME-based DSP board market survey
NASA Astrophysics Data System (ADS)
Ingram, Rick E.
1992-04-01
The Adaptive Signal Processing Testbed (ASPT) is a real-time multiprocessor system utilizing digital signal processor technology on VMEbus based printed circuit boards installed on a Sun workstation. The ASPT has specific requirements, particularly as regards to the signal excision application, with respect to interfacing with current and planned data generation equipment, processing of the data, storage to disk of final and intermediate results, and the development tools for applications development and integration into the overall EW/COM computing environment. A prototype ASPT was implemented using three VME-C-30 boards from Applied Silicon. Experience gained during the prototype development led to the conclusions that interprocessor communications capability is the most significant contributor to overall ASPT performance. In addition, the host involvement should be minimized. Boards using different processors were evaluated with respect to the ASPT system requirements, pricing, and availability. Specific recommendations based on various priorities are made as well as recommendations concerning the integration and interaction of various tools developed during the prototype implementation.
Development of an Ion Thruster and Power Processor for New Millennium's Deep Space 1 Mission
NASA Technical Reports Server (NTRS)
Sovey, James S.; Hamley, John A.; Haag, Thomas W.; Patterson, Michael J.; Pencil, Eric J.; Peterson, Todd T.; Pinero, Luis R.; Power, John L.; Rawlin, Vincent K.; Sarmiento, Charles J.;
1997-01-01
The NASA Solar Electric Propulsion Technology Applications Readiness Program (NSTAR) will provide a single-string primary propulsion system to NASA's New Millennium Deep Space 1 Mission which will perform comet and asteroid flybys in the years 1999 and 2000. The propulsion system includes a 30-cm diameter ion thruster, a xenon feed system, a power processing unit, and a digital control and interface unit. A total of four engineering model ion thrusters, three breadboard power processors, and a controller have been built, integrated, and tested. An extensive set of development tests has been completed along with thruster design verification tests of 2000 h and 1000 h. An 8000 h Life Demonstration Test is ongoing and has successfully demonstrated more than 6000 h of operation. In situ measurements of accelerator grid wear are consistent with grid lifetimes well in excess of the 12,000 h qualification test requirement. Flight hardware is now being assembled in preparation for integration, functional, and acceptance tests.
Compact time- and space-integrating SAR processor: performance analysis
NASA Astrophysics Data System (ADS)
Haney, Michael W.; Levy, James J.; Michael, Robert R., Jr.; Christensen, Marc P.
1995-06-01
Progress made during the previous 12 months toward the fabrication and test of a flight demonstration prototype of the acousto-optic time- and space-integrating real-time SAR image formation processor is reported. Compact, rugged, and low-power analog optical signal processing techniques are used for the most computationally taxing portions of the SAR imaging problem to overcome the size and power consumption limitations of electronic approaches. Flexibility and performance are maintained by the use of digital electronics for the critical low-complexity filter generation and output image processing functions. The results reported for this year include tests of a laboratory version of the RAPID SAR concept on phase history data generated from real SAR high-resolution imagery; a description of the new compact 2D acousto-optic scanner that has a 2D space bandwidth product approaching 106 sports, specified and procured for NEOS Technologies during the last year; and a design and layout of the optical module portion of the flight-worthy prototype.
NASA Astrophysics Data System (ADS)
Nitadori, Keigo; Makino, Junichiro; Hut, Piet
2006-12-01
The main performance bottleneck of gravitational N-body codes is the force calculation between two particles. We have succeeded in speeding up this pair-wise force calculation by factors between 2 and 10, depending on the code and the processor on which the code is run. These speed-ups were obtained by writing highly fine-tuned code for x86_64 microprocessors. Any existing N-body code, running on these chips, can easily incorporate our assembly code programs. In the current paper, we present an outline of our overall approach, which we illustrate with one specific example: the use of a Hermite scheme for a direct N2 type integration on a single 2.0 GHz Athlon 64 processor, for which we obtain an effective performance of 4.05 Gflops, for double-precision accuracy. In subsequent papers, we will discuss other variations, including the combinations of N log N codes, single-precision implementations, and performance on other microprocessors.
Hybrid fuel cell/diesel generation total energy system, part 2
NASA Astrophysics Data System (ADS)
Blazek, C. F.
1982-11-01
Meeting the Goldstone Deep Space Communications Complex (DGSCC) electrical and thermal requirements with the existing system was compared with using fuel cells. Fuel cell technology selection was based on a 1985 time frame for installation. The most cost-effective fuel feedstock for fuel cell application was identified. Fuels considered included diesel oil, natural gas, methanol and coal. These fuel feedstocks were considered not only on the cost and efficiency of the fuel conversion process, but also on complexity and integration of the fuel processor on system operation and thermal energy availability. After a review of fuel processor technology, catalytic steam reformer technology was selected based on the ease of integration and the economics of hydrogen production. The phosphoric acid fuel cell was selected for application at the GDSCC due to its commercial readiness for near term application. Fuel cell systems were analyzed for both natural gas and methanol feedstock. The subsequent economic analysis indicated that a natural gas fueled system was the most cost effective of the cases analyzed.
Hybrid fuel cell/diesel generation total energy system, part 2
NASA Technical Reports Server (NTRS)
Blazek, C. F.
1982-01-01
Meeting the Goldstone Deep Space Communications Complex (DGSCC) electrical and thermal requirements with the existing system was compared with using fuel cells. Fuel cell technology selection was based on a 1985 time frame for installation. The most cost-effective fuel feedstock for fuel cell application was identified. Fuels considered included diesel oil, natural gas, methanol and coal. These fuel feedstocks were considered not only on the cost and efficiency of the fuel conversion process, but also on complexity and integration of the fuel processor on system operation and thermal energy availability. After a review of fuel processor technology, catalytic steam reformer technology was selected based on the ease of integration and the economics of hydrogen production. The phosphoric acid fuel cell was selected for application at the GDSCC due to its commercial readiness for near term application. Fuel cell systems were analyzed for both natural gas and methanol feedstock. The subsequent economic analysis indicated that a natural gas fueled system was the most cost effective of the cases analyzed.
Parallel/Vector Integration Methods for Dynamical Astronomy
NASA Astrophysics Data System (ADS)
Fukushima, Toshio
1999-01-01
This paper reviews three recent works on the numerical methods to integrate ordinary differential equations (ODE), which are specially designed for parallel, vector, and/or multi-processor-unit(PU) computers. The first is the Picard-Chebyshev method (Fukushima, 1997a). It obtains a global solution of ODE in the form of Chebyshev polynomial of large (> 1000) degree by applying the Picard iteration repeatedly. The iteration converges for smooth problems and/or perturbed dynamics. The method runs around 100-1000 times faster in the vector mode than in the scalar mode of a certain computer with vector processors (Fukushima, 1997b). The second is a parallelization of a symplectic integrator (Saha et al., 1997). It regards the implicit midpoint rules covering thousands of timesteps as large-scale nonlinear equations and solves them by the fixed-point iteration. The method is applicable to Hamiltonian systems and is expected to lead an acceleration factor of around 50 in parallel computers with more than 1000 PUs. The last is a parallelization of the extrapolation method (Ito and Fukushima, 1997). It performs trial integrations in parallel. Also the trial integrations are further accelerated by balancing computational load among PUs by the technique of folding. The method is all-purpose and achieves an acceleration factor of around 3.5 by using several PUs. Finally, we give a perspective on the parallelization of some implicit integrators which require multiple corrections in solving implicit formulas like the implicit Hermitian integrators (Makino and Aarseth, 1992), (Hut et al., 1995) or the implicit symmetric multistep methods (Fukushima, 1998), (Fukushima, 1999).
Custom large scale integrated circuits for spaceborne SAR processors
NASA Technical Reports Server (NTRS)
Tyree, V. C.
1978-01-01
The application of modern LSI technology to the development of a time-domain azimuth correlator for SAR processing is discussed. General design requirements for azimuth correlators for missions such as SEASAT-A, Venus orbital imaging radar (VOIR), and shuttle imaging radar (SIR) are summarized. Several azimuth correlator architectures that are suitable for implementation using custom LSI devices are described. Technical factors pertaining to selection of appropriate LSI technologies are discussed, and the maturity of alternative technologies for spacecraft applications are reported in the context of expected space mission launch dates. The preliminary design of a custom LSI time-domain azimuth correlator device (ACD) being developed for use in future SAR processors is detailed.
Computer program documentation for the patch subsampling processor
NASA Technical Reports Server (NTRS)
Nieves, M. J.; Obrien, S. O.; Oney, J. K. (Principal Investigator)
1981-01-01
The programs presented are intended to provide a way to extract a sample from a full-frame scene and summarize it in a useful way. The sample in each case was chosen to fill a 512-by-512 pixel (sample-by-line) image since this is the largest image that can be displayed on the Integrated Multivariant Data Analysis and Classification System. This sample size provides one megabyte of data for manipulation and storage and contains about 3% of the full-frame data. A patch image processor computes means for 256 32-by-32 pixel squares which constitute the 512-by-512 pixel image. Thus, 256 measurements are available for 8 vegetation indexes over a 100-mile square.
Newman, D M; Hawley, R W; Goeckel, D L; Crawford, R D; Abraham, S; Gallagher, N C
1993-05-10
An efficient storage format was developed for computer-generated holograms for use in electron-beam lithography. This method employs run-length encoding and Lempel-Ziv-Welch compression and succeeds in exposing holograms that were previously infeasible owing to the hologram's tremendous pattern-data file size. These holograms also require significant computation; thus the algorithm was implemented on a parallel computer, which improved performance by 2 orders of magnitude. The decompression algorithm was integrated into the Cambridge electron-beam machine's front-end processor.Although this provides much-needed ability, some hardware enhancements will be required in the future to overcome inadequacies in the current front-end processor that result in a lengthy exposure time.
Interdisciplinary education in optics and photonics based on microcontrollers
NASA Astrophysics Data System (ADS)
Dreßler, Paul; Wielage, Heinz-Hermann; Haiss, Ulrich; Vauderwange, Oliver; Curticapean, Dan
2014-07-01
Not only is the number of new devices constantly increasing, but so is their application complexity and power. Most of their applications are in optics, photonics, acoustic and mobile devices. Working speed and functionality is achieved in most of media devices by strategic use of digital signal processors and microcontrollers of the new generation. Considering all these premises of media development dynamics, the authors present how to integrate microcontrollers and digital signal processors in the curricula of media technology lectures by using adequate content. This also includes interdisciplinary content that consists of using the acquired knowledge in media software. These entries offer a deeper understanding of photonics, acoustics and media engineering.
Arranging computer architectures to create higher-performance controllers
NASA Technical Reports Server (NTRS)
Jacklin, Stephen A.
1988-01-01
Techniques for integrating microprocessors, array processors, and other intelligent devices in control systems are reviewed, with an emphasis on the (re)arrangement of components to form distributed or parallel processing systems. Consideration is given to the selection of the host microprocessor, increasing the power and/or memory capacity of the host, multitasking software for the host, array processors to reduce computation time, the allocation of real-time and non-real-time events to different computer subsystems, intelligent devices to share the computational burden for real-time events, and intelligent interfaces to increase communication speeds. The case of a helicopter vibration-suppression and stabilization controller is analyzed as an example, and significant improvements in computation and throughput rates are demonstrated.
Superconducting Qubit with Integrated Single Flux Quantum Controller Part I: Theory and Fabrication
NASA Astrophysics Data System (ADS)
Beck, Matthew; Leonard, Edward, Jr.; Thorbeck, Ted; Zhu, Shaojiang; Howington, Caleb; Nelson, Jj; Plourde, Britton; McDermott, Robert
As the size of quantum processors grow, so do the classical control requirements. The single flux quantum (SFQ) Josephson digital logic family offers an attractive route to proximal classical control of multi-qubit processors. Here we describe coherent control of qubits via trains of SFQ pulses. We discuss the fabrication of an SFQ-based pulse generator and a superconducting transmon qubit on a single chip. Sources of excess microwave loss stemming from the complex multilayer fabrication of the SFQ circuit are discussed. We show how to mitigate this loss through judicious choice of process workflow and appropriate use of sacrificial protection layers. Present address: IBM T.J. Watson Research Center.
System for detecting special nuclear materials
Jandel, Marian; Rusev, Gencho Yordanov; Taddeucci, Terry Nicholas
2015-07-14
The present disclosure includes a radiological material detector having a convertor material that emits one or more photons in response to a capture of a neutron emitted by a radiological material; a photon detector arranged around the convertor material and that produces an electrical signal in response to a receipt of a photon; and a processor connected to the photon detector, the processor configured to determine the presence of a radiological material in response to a predetermined signature of the electrical signal produced at the photon detector. One or more detectors described herein can be integrated into a detection system that is suited for use in port monitoring, treaty compliance, and radiological material management activities.
Beyond core count: a look at new mainstream computing platforms for HEP workloads
NASA Astrophysics Data System (ADS)
Szostek, P.; Nowak, A.; Bitzes, G.; Valsan, L.; Jarp, S.; Dotti, A.
2014-06-01
As Moore's Law continues to deliver more and more transistors, the mainstream processor industry is preparing to expand its investments in areas other than simple core count. These new interests include deep integration of on-chip components, advanced vector units, memory, cache and interconnect technologies. We examine these moving trends with parallelized and vectorized High Energy Physics workloads in mind. In particular, we report on practical experience resulting from experiments with scalable HEP benchmarks on the Intel "Ivy Bridge-EP" and "Haswell" processor families. In addition, we examine the benefits of the new "Haswell" microarchitecture and its impact on multiple facets of HEP software. Finally, we report on the power efficiency of new systems.
Integral process assessment of sugarcane agricultural crop residues conversion to ethanol.
Manfredi, Adriana Paola; Ballesteros, Ignacio; Sáez, Felicia; Perotti, Nora Inés; Martínez, María Alejandra; Negro, María José
2018-07-01
This work focuses a whole process assessment on post-harvesting sugarcane residues for 2G ethanol production by different saccharification-fermentation conditions at high solids loading, performed after steam explosion, alkaline and acidic pretreatments. Carbohydrate recoveries and enzymatic digestibility results showed that alkali and steam explosion pretreatments were effective for the biomass assayed. Due to a significant improvement (60%) of the glucose released by combining hemicellulases and cellulases only after the NaOH pretreatment, the most favorable process settled comprised an alkali-based pretreatment followed by a pre-saccharification and simultaneous saccharification and fermentation (PSSF). The produced ethanol reached 4.8% (w/w) as a result of an 80% conversion of the glucose from the pretreated biomass. Finally, an ethanol concentration of 3.2% (w/w) was obtained by means of a steam explosion followed by PSSF, representing a suitable start point to further develop a low environmental impact alternative for ethanol production. Copyright © 2018 Elsevier Ltd. All rights reserved.
Xylose-fermenting Pichia stipitis by genome shuffling for improved ethanol production.
Shi, Jun; Zhang, Min; Zhang, Libin; Wang, Pin; Jiang, Li; Deng, Huiping
2014-03-01
Xylose fermentation is necessary for the bioconversion of lignocellulose to ethanol as fuel, but wild-type Saccharomyces cerevisiae strains cannot fully metabolize xylose. Several efforts have been made to obtain microbial strains with enhanced xylose fermentation. However, xylose fermentation remains a serious challenge because of the complexity of lignocellulosic biomass hydrolysates. Genome shuffling has been widely used for the rapid improvement of industrially important microbial strains. After two rounds of genome shuffling, a genetically stable, high-ethanol-producing strain was obtained. Designated as TJ2-3, this strain could ferment xylose and produce 1.5 times more ethanol than wild-type Pichia stipitis after fermentation for 96 h. The acridine orange and propidium iodide uptake assays showed that the maintenance of yeast cell membrane integrity is important for ethanol fermentation. This study highlights the importance of genome shuffling in P. stipitis as an effective method for enhancing the productivity of industrial strains. © 2013 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
Establishment and assessment of a novel cleaner production process of corn grain fuel ethanol.
Wang, Ke; Zhang, Jianhua; Tang, Lei; Zhang, Hongjian; Zhang, Guiying; Yang, Xizhao; Liu, Pei; Mao, Zhonggui
2013-11-01
An integrated corn ethanol-methane fermentation system was proposed to solve the problem of stillage handling, where thin stillage was treated by anaerobic digestion and then reused to make mash for the following ethanol fermentation. This system was evaluated at laboratory and pilot scale. Anaerobic digestion of thin stillage ran steadily with total chemical oxygen demand removal efficiency of 98% at laboratory scale and 97% at pilot scale. Ethanol production was not influenced by recycling anaerobic digestion effluent at laboratory and pilot scale. Compared with dried distillers' grains with solubles produced in conventional process, dried distillers' grains in the proposed system exhibited higher quality because of increased protein concentration and decreased salts concentration. Energetic assessment indicated that application of this novel process enhanced the net energy balance ratio from 1.26 (conventional process) to 1.76. In conclusion, the proposed system possessed technical advantage over the conventional process for corn fuel ethanol production. Copyright © 2013 Elsevier Ltd. All rights reserved.
Block Copolymer Membranes for Biofuel Purification
NASA Astrophysics Data System (ADS)
Evren Ozcam, Ali; Balsara, Nitash
2012-02-01
Purification of biofuels such as ethanol is a matter of considerable concern as they are produced in complex multicomponent fermentation broths. Our objective is to design pervaporation membranes for concentrating ethanol from dilute aqueous mixtures. Polystyrene-b-polydimethylsiloxane-b-polystyrene block copolymers were synthesized by anionic polymerization. The polydimethylsiloxane domains provide ethanol-transporting pathways, while the polystyrene domains provide structural integrity for the membrane. The morphology of the membranes is governed by the composition of the block copolymer while the size of the domains is governed by the molecular weight of the block copolymer. Pervaporation data as a function of these two parameters will be presented.
Vaz, Sílvio
2017-03-17
Concepts such as biorefinery and green chemistry focus on the usage of biomass, as with the oil value chain. However, it can cause less negative impact on the environment. A biorefinery based on sugarcane (Saccharum spp.) as feedstock is an example, because it can integrate into the same physical space, of processes for obtaining biofuels (ethanol), chemicals (from sugars or ethanol), electricity, and heat.The use of sugarcane as feedstock for biorefineries is dictated by its potential to supply sugars, ethanol, natural polymers or macromolecules, organic matter, and other compounds and materials. By means of conversion processes (chemical, biochemical, and thermochemical), sugarcane biomass can be transformed into high-value bioproducts to replace petrochemicals, as a bioeconomy model.
FPGA-based distributed computing microarchitecture for complex physical dynamics investigation.
Borgese, Gianluca; Pace, Calogero; Pantano, Pietro; Bilotta, Eleonora
2013-09-01
In this paper, we present a distributed computing system, called DCMARK, aimed at solving partial differential equations at the basis of many investigation fields, such as solid state physics, nuclear physics, and plasma physics. This distributed architecture is based on the cellular neural network paradigm, which allows us to divide the differential equation system solving into many parallel integration operations to be executed by a custom multiprocessor system. We push the number of processors to the limit of one processor for each equation. In order to test the present idea, we choose to implement DCMARK on a single FPGA, designing the single processor in order to minimize its hardware requirements and to obtain a large number of easily interconnected processors. This approach is particularly suited to study the properties of 1-, 2- and 3-D locally interconnected dynamical systems. In order to test the computing platform, we implement a 200 cells, Korteweg-de Vries (KdV) equation solver and perform a comparison between simulations conducted on a high performance PC and on our system. Since our distributed architecture takes a constant computing time to solve the equation system, independently of the number of dynamical elements (cells) of the CNN array, it allows us to reduce the elaboration time more than other similar systems in the literature. To ensure a high level of reconfigurability, we design a compact system on programmable chip managed by a softcore processor, which controls the fast data/control communication between our system and a PC Host. An intuitively graphical user interface allows us to change the calculation parameters and plot the results.
Canter, Christina E.; Dunn, Jennifer B.; Han, Jeongwoo; ...
2015-08-18
Here, a biorefinery may produce multiple fuels from more than one feedstock. The ability of these fuels to qualify as one of the four types of biofuels under the US Renewable Fuel Standard and to achieve a low carbon intensity score under California’s Low Carbon Fuel Standard can be strongly influenced by the approach taken to their life cycle analysis (LCA). For example, in facilities that may co-produce corn grain and corn stover ethanol, the ethanol production processes can share the combined heat and power (CHP) that is produced from the lignin and liquid residues from stover ethanol production. Wemore » examine different LCA approaches to corn grain and stover ethanol production considering different approaches to CHP treatment. In the baseline scenario, CHP meets the energy demands of stover ethanol production first, with additional heat and electricity generated sent to grain ethanol production. The resulting greenhouse gas (GHG) emissions for grain and stover ethanol are 57 and 25 g-CO 2eq/MJ, respectively, corresponding to a 40 and 74% reduction compared to the GHG emissions of gasoline. We illustrate that emissions depend on allocation of burdens of CHP production and corn farming, along with the facility capacities. Co-product handling techniques can strongly influence LCA results and should therefore be transparently documented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Canter, Christina E.; Dunn, Jennifer B.; Han, Jeongwoo
Here, a biorefinery may produce multiple fuels from more than one feedstock. The ability of these fuels to qualify as one of the four types of biofuels under the US Renewable Fuel Standard and to achieve a low carbon intensity score under California’s Low Carbon Fuel Standard can be strongly influenced by the approach taken to their life cycle analysis (LCA). For example, in facilities that may co-produce corn grain and corn stover ethanol, the ethanol production processes can share the combined heat and power (CHP) that is produced from the lignin and liquid residues from stover ethanol production. Wemore » examine different LCA approaches to corn grain and stover ethanol production considering different approaches to CHP treatment. In the baseline scenario, CHP meets the energy demands of stover ethanol production first, with additional heat and electricity generated sent to grain ethanol production. The resulting greenhouse gas (GHG) emissions for grain and stover ethanol are 57 and 25 g-CO 2eq/MJ, respectively, corresponding to a 40 and 74% reduction compared to the GHG emissions of gasoline. We illustrate that emissions depend on allocation of burdens of CHP production and corn farming, along with the facility capacities. Co-product handling techniques can strongly influence LCA results and should therefore be transparently documented.« less
Extractive Fermentation of Sugarcane Juice to Produce High Yield and Productivity of Bioethanol
NASA Astrophysics Data System (ADS)
Rofiqah, U.; Widjaja, T.; Altway, A.; Bramantyo, A.
2017-04-01
Ethanol production by batch fermentation requires a simple process and it is widely used. Batch fermentation produces ethanol with low yield and productivity due to the accumulation of ethanol in which poisons microorganisms in the fermenter. Extractive fermentation technique is applied to solve the microorganism inhibition problem by ethanol. Extractive fermentation technique can produce ethanol with high yield and productivity. In this process raffinate still, contains much sugar because conversion in the fermentation process is not perfect. Thus, to enhance ethanol yield and productivity, recycle system is applied by returning the raffinate from the extraction process to the fermentation process. This raffinate also contains ethanol which would inhibit the performance of microorganisms in producing ethanol during the fermentation process. Therefore, this study aims to find the optimum condition for the amount of solvent to broth ratio (S: B) and recycle to fresh feed ratio (R: F) which enter the fermenter to produce high yield and productivity. This research was carried out by experiment. In the experiment, sugarcane juice was fermented using Zymomonasmobilis mutant. The fermentation broth was extracted using amyl alcohol. The process was integrated with the recycle system by varying the recycle ratio. The highest yield and productivity is 22.3901% and 103.115 g / L.h respectively, obtained in a process that uses recycle to fresh feed ratio (R: F) of 50:50 and solvents to both ratio of 1.
Evaluation of UV-C mutagenized Scheffersomyces stipitis strains for ethanol production.
Geiger, Melanie; Gibbons, Jaimie; West, Thomas; Hughes, Stephen R; Gibbons, William
2012-12-01
We evaluated fermentation capabilities of five strains of Scheffersomyces stipitis (WT-2-1, WT-1-11, 14-2-6, 22-1-1, and 22-1-12) that had been produced by UV-C mutagenesis and selection for improved xylose fermentation to ethanol using an integrated automated robotic work cell. They were incubated under both facultative and anaerobic conditions to evaluate ethanol production on glucose, xylose, cellobiose, and a combination of all three sugars. The medium contained 50 g/L total sugar and 5 g/L yeast extract. The strains performed significantly better under facultative compared with anaerobic conditions. As expected, glucose was the most readily fermented sugar with ~100% fermentation efficiency (FE) under facultative conditions but only 5% to 16% FE anaerobically. Xylose utilization was 20% to 40% FE under facultative conditions but 9% to 25% FE anaerobically. Cellobiose was the least fermented sugar, at 18% to 27% FE facultatively and 8% to 11% anaerobically. Similar trends occurred in the sugar mixture. Under facultative conditions, strain 22-1-12 produced 19.6 g/L ethanol on glucose, but strain 14-2-6 performed best on xylose (4.5 g/L ethanol) and the sugar combination (8.0 g/L ethanol). Ethanol titers from glucose under anaerobic conditions were again highest with strain 22-1-12, but none of the strains produced ethanol from xylose. Future trials will evaluate nutrient addition to boost microaerophilic xylose fermentation.
2010-01-01
Emerging Biodiesel, Electricity, Ethanol, Hydrogen, Methanol, Natural Gas, Propane, Ultra-Low Sulfur Diesel Biobutanol, Biogas , Biomass-to- Liquids...Ethanol Corn grain (starch), sugar cane (sugar), (cellulosic) grass, wood, crop residues, newspapers Biogas Animal manure, sewage, and municipal...Electric 7 Radio Frequency 2 Biofuel 5 Electric 3 Nuclear 9 Waste 6 Biobutanol 3 Generators Wood Derived Fuels 5 Biogas 3 Petroleum
Dong, Tao; Knoshaug, Eric P.; Davis, Ryan; ...
2016-01-18
Here, the development of an integrated biorefinery process capable of producing multiple products is crucial for commercialization of microalgal biofuel production. Dilute acid pretreatment has been demonstrated as an efficient approach to utilize algal biomass more fully, by hydrolyzing microalgal carbohydrates into fermentable sugars, while making the lipids more extractable, and a protein fraction available for other products. Previously, we have shown that sugar-rich liquor could be separated from solid residue by solid-liquid separation (SLS) to produce ethanol via fermentation. However, process modeling has revealed that approximately 37% of the soluble sugars were lost in the solid cake after themore » SLS. Herein, a Combined Algal Processing (CAP) approach with a simplified configuration has been developed to improve the total energy yield. In CAP, whole algal slurry after acid pretreatment is directly used for ethanol fermentation. The ethanol and microalgal lipids can be sequentially recovered from the fermentation broth by thermal treatment and solvent extraction. Almost all the monomeric fermentable sugars can be utilized for ethanol production without compromising the lipid recovery. The techno-economic analysis (TEA) indicates that the CAP can reduce microalgal biofuel cost by $0.95 per gallon gasoline equivalent (GGE), which is a 9% reduction compared to the previous biorefinery scenario.« less
Status report of the end-to-end ASKAP software system: towards early science operations
NASA Astrophysics Data System (ADS)
Guzman, Juan Carlos; Chapman, Jessica; Marquarding, Malte; Whiting, Matthew
2016-08-01
The Australian SKA Pathfinder (ASKAP) is a novel centimetre radio synthesis telescope currently in the commissioning phase and located in the midwest region of Western Australia. It comprises of 36 x 12 m diameter reflector antennas each equipped with state-of-the-art and award winning Phased Array Feeds (PAF) technology. The PAFs provide a wide, 30 square degree field-of-view by forming up to 36 separate dual-polarisation beams at once. This results in a high data rate: 70 TB of correlated visibilities in an 8-hour observation, requiring custom-written, high-performance software running in dedicated High Performance Computing (HPC) facilities. The first six antennas equipped with first-generation PAF technology (Mark I), named the Boolardy Engineering Test Array (BETA) have been in use since 2014 as a platform to test PAF calibration and imaging techniques, and along the way it has been producing some great science results. Commissioning of the ASKAP Array Release 1, that is the first six antennas with second-generation PAFs (Mark II) is currently under way. An integral part of the instrument is the Central Processor platform hosted at the Pawsey Supercomputing Centre in Perth, which executes custom-written software pipelines, designed specifically to meet the ASKAP imaging requirements of wide field of view and high dynamic range. There are three key hardware components of the Central Processor: The ingest nodes (16 x node cluster), the fast temporary storage (1 PB Lustre file system) and the processing supercomputer (200 TFlop system). This High-Performance Computing (HPC) platform is managed and supported by the Pawsey support team. Due to the limited amount of data generated by BETA and the first ASKAP Array Release, the Central Processor platform has been running in a more "traditional" or user-interactive mode. But this is about to change: integration and verification of the online ingest pipeline starts in early 2016, which is required to support the full 300 MHz bandwidth for Array Release 1; followed by the deployment of the real-time data processing components. In addition to the Central Processor, the first production release of the CSIRO ASKAP Science Data Archive (CASDA) has also been deployed in one of the Pawsey Supercomputing Centre facilities and it is integrated to the end-to-end ASKAP data flow system. This paper describes the current status of the "end-to-end" data flow software system from preparing observations to data acquisition, processing and archiving; and the challenges of integrating an HPC facility as a key part of the instrument. It also shares some lessons learned since the start of integration activities and the challenges ahead in preparation for the start of the Early Science program.
A multi-threaded version of MCFM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, John M.; Ellis, R. Keith; Giele, Walter T.
We report on our findings modifying MCFM using OpenMP to implement multi-threading. By using OpenMP, the modified MCFM will execute on any processor, automatically adjusting to the number of available threads. We then modified the integration routine VEGAS to distribute the event evaluation over the threads, while combining all events at the end of every iteration to optimize the numerical integration. Furthermore, we took special care so that the results of the Monte Carlo integration were independent of the number of threads used, to facilitate the validation of the OpenMP version of MCFM.
Single-step ethanol production from lignocellulose using novel extremely thermophilic bacteria.
Svetlitchnyi, Vitali A; Kensch, Oliver; Falkenhan, Doris A; Korseska, Svenja G; Lippert, Nadine; Prinz, Melanie; Sassi, Jamaleddine; Schickor, Anke; Curvers, Simon
2013-02-28
Consolidated bioprocessing (CBP) of lignocellulosic biomass to ethanol using thermophilic bacteria provides a promising solution for efficient lignocellulose conversion without the need for additional cellulolytic enzymes. Most studies on the thermophilic CBP concentrate on co-cultivation of the thermophilic cellulolytic bacterium Clostridium thermocellum with non-cellulolytic thermophilic anaerobes at temperatures of 55°C-60°C. We have specifically screened for cellulolytic bacteria growing at temperatures >70°C to enable direct conversion of lignocellulosic materials into ethanol. Seven new strains of extremely thermophilic anaerobic cellulolytic bacteria of the genus Caldicellulosiruptor and eight new strains of extremely thermophilic xylanolytic/saccharolytic bacteria of the genus Thermoanaerobacter isolated from environmental samples exhibited fast growth at 72°C, extensive lignocellulose degradation and high yield ethanol production on cellulose and pretreated lignocellulosic biomass. Monocultures of Caldicellulosiruptor strains degraded up to 89-97% of the cellulose and hemicellulose polymers in pretreated biomass and produced up to 72 mM ethanol on cellulose without addition of exogenous enzymes. In dual co-cultures of Caldicellulosiruptor strains with Thermoanaerobacter strains the ethanol concentrations rose 2- to 8.2-fold compared to cellulolytic monocultures. A co-culture of Caldicellulosiruptor DIB 087C and Thermoanaerobacter DIB 097X was particularly effective in the conversion of cellulose to ethanol, ethanol comprising 34.8 mol% of the total organic products. In contrast, a co-culture of Caldicellulosiruptor saccharolyticus DSM 8903 and Thermoanaerobacter mathranii subsp. mathranii DSM 11426 produced only low amounts of ethanol. The newly discovered Caldicellulosiruptor sp. strain DIB 004C was capable of producing unexpectedly large amounts of ethanol from lignocellulose in fermentors. The established co-cultures of new Caldicellulosiruptor strains with new Thermoanaerobacter strains underline the importance of using specific strain combinations for high ethanol yields. These co-cultures provide an efficient CBP pathway for ethanol production and represent an ideal starting point for development of a highly integrated commercial ethanol production process.
Development and fabrication of a solar cell junction processing system
NASA Technical Reports Server (NTRS)
Banker, S.
1982-01-01
Development of a pulsed electron beam subsystem, wafer transport system, and ion implanter are discussed. A junction processing system integration and cost analysis are reviewed. Maintenance of the electron beam processor and the experimental test unit of the non-mass analyzed ion implanter is reviewed.
Parashar, Archana; Jin, Yiqiong; Mason, Beth; Chae, Michael; Bressler, David C
2016-03-01
This study proposes a novel alternative for utilization of whey permeate, a by-product stream from the dairy industry, in wheat fermentation for ethanol production using Saccharomyces cerevisiae. Whey permeates were hydrolyzed using enzymes to release fermentable sugars. Hydrolyzed whey permeates were integrated into wheat fermentation as a co-substrate or to partially replace process water. Cold starch hydrolysis-based simultaneous saccharification and fermentation was done as per the current industrial protocol for commercial wheat-to-ethanol production. Ethanol production was not affected; ethanol yield efficiency did not change when up to 10% of process water was replaced. Lactic acid bacteria in whey permeate did not negatively affect the co-fermentation or reduce ethanol yield. Whey permeate could be effectively stored for up to 4 wk at 4 °C with little change in lactose and lactic acid content. Considering the global abundance and nutrient value of whey permeate, the proposed strategy could improve economics of the dairy and biofuel sectors, and reduce environmental pollution. Furthermore, our research may be applied to fermentation strategies designed to produce value-added products other than ethanol. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Azarov, Alexey V; Woodward, Donald J
2014-01-17
The goal of this study was to clarify similar and distinctly different parameters of fluid intake during early phases of ethanol and water choice drinking in alcohol preferring P-rat vs. non-selected Wistar and Sprague Dawley (SD) rats. Precision information on the drinking amounts and timing is needed to analyze micro-behavioral components of the acquisition of ethanol intake and to enable a search for its causal activity patterns within individual CNS circuits. The experiment followed the standard ethanol-drinking test used in P-rat selective breeding, with access to water, then 10% ethanol (10E) as sole fluids, and next to ethanol/water choice. The novelty of the present approach was to eliminate confounding prandial elevations of fluid intake, by time-separating daily food from fluid access. P-rat higher initial intakes of water and 10E as sole fluids suggest adaptations to ethanol-induced dehydration in P vs. Wistar and SD rats. P-rat starting and overall ethanol intake during the choice period were the highest. The absolute extent of ethanol intake elevation during choice period was greatest in Wistar and their final intake levels approached those of P-rat, contrary to the hypothesis that selection would produce the strongest elevation of ethanol intake. The total daily fluid during ethanol/water choice period was strikingly similar between P, Wistar and SD rats. This supports the hypothesis for a universal system that gauges the overall intake volume by titrating and integrating ethanol and water drinking fluctuations, and indicates a stable daily level of total fluid as a main regulated parameter of fluid intake across the three lines in choice conditions. The present findings indicate that a stable daily level of total fluid comprises an independent physiological limit for daily ethanol intake. Ethanol drinking, in turn, stays under the ceiling of this limit, driven by a parallel mechanism of ethanol/water choice. © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Gan, Chee Kwan; Challacombe, Matt
2003-05-01
Recently, early onset linear scaling computation of the exchange-correlation matrix has been achieved using hierarchical cubature [J. Chem. Phys. 113, 10037 (2000)]. Hierarchical cubature differs from other methods in that the integration grid is adaptive and purely Cartesian, which allows for a straightforward domain decomposition in parallel computations; the volume enclosing the entire grid may be simply divided into a number of nonoverlapping boxes. In our data parallel approach, each box requires only a fraction of the total density to perform the necessary numerical integrations due to the finite extent of Gaussian-orbital basis sets. This inherent data locality may be exploited to reduce communications between processors as well as to avoid memory and copy overheads associated with data replication. Although the hierarchical cubature grid is Cartesian, naive boxing leads to irregular work loads due to strong spatial variations of the grid and the electron density. In this paper we describe equal time partitioning, which employs time measurement of the smallest sub-volumes (corresponding to the primitive cubature rule) to load balance grid-work for the next self-consistent-field iteration. After start-up from a heuristic center of mass partitioning, equal time partitioning exploits smooth variation of the density and grid between iterations to achieve load balance. With the 3-21G basis set and a medium quality grid, equal time partitioning applied to taxol (62 heavy atoms) attained a speedup of 61 out of 64 processors, while for a 110 molecule water cluster at standard density it achieved a speedup of 113 out of 128. The efficiency of equal time partitioning applied to hierarchical cubature improves as the grid work per processor increases. With a fine grid and the 6-311G(df,p) basis set, calculations on the 26 atom molecule α-pinene achieved a parallel efficiency better than 99% with 64 processors. For more coarse grained calculations, superlinear speedups are found to result from reduced computational complexity associated with data parallelism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vydyanathan, Naga; Krishnamoorthy, Sriram; Sabin, Gerald M.
2009-08-01
Complex parallel applications can often be modeled as directed acyclic graphs of coarse-grained application-tasks with dependences. These applications exhibit both task- and data-parallelism, and combining these two (also called mixedparallelism), has been shown to be an effective model for their execution. In this paper, we present an algorithm to compute the appropriate mix of task- and data-parallelism required to minimize the parallel completion time (makespan) of these applications. In other words, our algorithm determines the set of tasks that should be run concurrently and the number of processors to be allocated to each task. The processor allocation and scheduling decisionsmore » are made in an integrated manner and are based on several factors such as the structure of the taskgraph, the runtime estimates and scalability characteristics of the tasks and the inter-task data communication volumes. A locality conscious scheduling strategy is used to improve inter-task data reuse. Evaluation through simulations and actual executions of task graphs derived from real applications as well as synthetic graphs shows that our algorithm consistently generates schedules with lower makespan as compared to CPR and CPA, two previously proposed scheduling algorithms. Our algorithm also produces schedules that have lower makespan than pure taskand data-parallel schedules. For task graphs with known optimal schedules or lower bounds on the makespan, our algorithm generates schedules that are closer to the optima than other scheduling approaches.« less
A Cost Effective System Design Approach for Critical Space Systems
NASA Technical Reports Server (NTRS)
Abbott, Larry Wayne; Cox, Gary; Nguyen, Hai
2000-01-01
NASA-JSC required an avionics platform capable of serving a wide range of applications in a cost-effective manner. In part, making the avionics platform cost effective means adhering to open standards and supporting the integration of COTS products with custom products. Inherently, operation in space requires low power, mass, and volume while retaining high performance, reconfigurability, scalability, and upgradability. The Universal Mini-Controller project is based on a modified PC/104-Plus architecture while maintaining full compatibility with standard COTS PC/104 products. The architecture consists of a library of building block modules, which can be mixed and matched to meet a specific application. A set of NASA developed core building blocks, processor card, analog input/output card, and a Mil-Std-1553 card, have been constructed to meet critical functions and unique interfaces. The design for the processor card is based on the PowerPC architecture. This architecture provides an excellent balance between power consumption and performance, and has an upgrade path to the forthcoming radiation hardened PowerPC processor. The processor card, which makes extensive use of surface mount technology, has a 166 MHz PowerPC 603e processor, 32 Mbytes of error detected and corrected RAM, 8 Mbytes of Flash, and I Mbytes of EPROM, on a single PC/104-Plus card. Similar densities have been achieved with the quad channel Mil-Std-1553 card and the analog input/output cards. The power management built into the processor and its peripheral chip allows the power and performance of the system to be adjusted to meet the requirements of the application, allowing another dimension to the flexibility of the Universal Mini-Controller. Unique mechanical packaging allows the Universal Mini-Controller to accommodate standard COTS and custom oversized PC/104-Plus cards. This mechanical packaging also provides thermal management via conductive cooling of COTS boards, which are typically designed for convection cooling methods.
Ethanol generation, oxidation and energy production in a cooperative bioelectrochemical system.
Pagnoncelli, Kamila C; Pereira, Andressa R; Sedenho, Graziela C; Bertaglia, Thiago; Crespilho, Frank N
2018-08-01
Integrating in situ biofuel production and energy conversion into a single system ensures the production of more robust networks as well as more renewable technologies. For this purpose, identifying and developing new biocatalysts is crucial. Herein, is reported a bioelectrochemical system consisting of alcohol dehydrogenase (ADH) and Saccharomyces cerevisiae, wherein both function cooperatively for ethanol production and its bioelectrochemical oxidation. Here, it is shown that it is possible to produce ethanol and use it as a biofuel in a tandem manner. The strategy is to employ flexible carbon fibres (FCF) electrode that could adsorb both the enzyme and the yeast cells. Glucose is used as a substrate for the yeast for the production of ethanol, while the enzyme is used to catalyse the oxidation of ethanol to acetaldehyde. Regarding the generation of reliable electricity based on electrochemical systems, the biosystem proposed in this study operates at a low temperature and ethanol production is proportional to the generated current. With further optimisation of electrode design, we envision the use of the cooperative biofuel cell for energy conversion and management of organic compounds. Copyright © 2018 Elsevier B.V. All rights reserved.
Pedretti, Kevin
2008-11-18
A compute processor allocator architecture for allocating compute processors to run applications in a multiple processor computing apparatus is distributed among a subset of processors within the computing apparatus. Each processor of the subset includes a compute processor allocator. The compute processor allocators can share a common database of information pertinent to compute processor allocation. A communication path permits retrieval of information from the database independently of the compute processor allocators.
Liu, Bing-Feng; Xie, Guo-Jun; Wang, Rui-Qing; Xing, De-Feng; Ding, Jie; Zhou, Xu; Ren, Hong-Yu; Ma, Chao; Ren, Nan-Qi
2015-01-01
Integrating hydrogen-producing bacteria with complementary capabilities, dark-fermentative bacteria (DFB) and photo-fermentative bacteria (PFB), is a promising way to completely recover bioenergy from waste biomass. However, the current coupled models always suffer from complicated pretreatment of the effluent from dark-fermentation or imbalance between dark and photo-fermentation, respectively. In this work, an integrated dark and photo-fermentative reactor (IDPFR) was developed to completely convert an organic substrate into bioenergy. In the IDPFR, Ethanoligenens harbinese B49 and Rhodopseudomonas faecalis RLD-53 were separated by a membrane into dark and photo chambers, while the acetate produced by E. harbinese B49 in the dark chamber could freely pass through the membrane into the photo chamber and serve as a carbon source for R. faecalis RLD-53. The hydrogen yield increased with increasing working volume of the photo chamber, and reached 3.38 mol H2/mol glucose at the dark-to-photo chamber ratio of 1:4. Hydrogen production by the IDPFR was also significantly affected by phosphate buffer concentration, glucose concentration, and ratio of dark-photo bacteria. The maximum hydrogen yield (4.96 mol H2/mol glucose) was obtained at a phosphate buffer concentration of 20 mmol/L, a glucose concentration of 8 g/L, and a ratio of dark to photo bacteria of 1:20. As the glucose and acetate were used up by E. harbinese B49 and R. faecalis RLD-53, ethanol produced by E. harbinese B49 was the sole end-product in the effluent from the IDPFR, and the ethanol concentration was 36.53 mmol/L with an ethanol yield of 0.82 mol ethanol/mol glucose. The results indicated that the IDPFR not only circumvented complex pretreatments on the effluent in the two-stage process, but also overcame the imbalance of growth and metabolic rate between DFB and PFB in the co-culture process, and effectively enhanced cooperation between E. harbinense B49 and R. faecalis RLD-53. Moreover, simultaneous hydrogen and ethanol production were achieved by coupling E. harbinese B49 and R. faecalis RLD-53 in the IDPFR. According to stoichiometry, the hydrogen and ethanol production efficiencies were 82.67% and 82.19%, respectively. Therefore, IDPFR was an effective strategy for coupling DFB and PFB to fulfill efficient energy recovery from waste biomass.
Integration of sustainability into process simulaton of a dairy process
USDA-ARS?s Scientific Manuscript database
Life cycle analysis, a method used to quantify the energy and environmental flows of a process or product on the environment, is increasingly utilized by food processors to develop strategies to lessen the carbon footprint of their operations. In the case of the milk supply chain, the method requir...
Burbank works on the EPIC in the Node 2
2012-02-28
ISS030-E-114433 (29 Feb. 2012) --- In the International Space Station?s Destiny laboratory, NASA astronaut Dan Burbank, Expedition 30 commander, upgrades Multiplexer/Demultiplexer (MDM) computers and Portable Computer System (PCS) laptops and installs the Enhanced Processor & Integrated Communications (EPIC) hardware in the Payload 1 (PL-1) MDM.
Dataflow Integration and Simulation Techniques for DSP System Design Tools
2007-01-01
Lebak, M. Richards , and D. Campbell, “VSIPL: An object-based open standard API for vector, signal, and image processing,” in Proceedings of the...Inc., document Version 0.98a. [56] P. Marwedel and G. Goossens , Eds., Code Generation for Embedded Processors. Kluwer Academic Publishers, 1995. [57
The next generation of microbiological testing of poultry
USDA-ARS?s Scientific Manuscript database
Microbiological testing of food products is a common practice of food processors to ensure compliance with food safety criteria. Sampling on its own is of limited value, but when applied regularly at different stages of the food chain, microbiology testing can be an integral part of a quality contr...
Virtualization for Cost-Effective Teaching of Assembly Language Programming
ERIC Educational Resources Information Center
Cadenas, José O.; Sherratt, R. Simon; Howlett, Des; Guy, Chris G.; Lundqvist, Karsten O.
2015-01-01
This paper describes a virtual system that emulates an ARM-based processor machine, created to replace a traditional hardware-based system for teaching assembly language. The virtual system proposed here integrates, in a single environment, all the development tools necessary to deliver introductory or advanced courses on modern assembly language…
Temperature-Adaptive Circuits on Reconfigurable Analog Arrays
NASA Technical Reports Server (NTRS)
Stoica, Adrian; Zebulum, Ricardo S.; Keymeulen, Didier; Ramesham, Rajeshuni; Neff, Joseph; Katkoori, Srinivas
2006-01-01
Demonstration of a self-reconfigurable Integrated Circuit (IC) that would operate under extreme temperature (-180 C and 120 C) and radiation (300krad), without the protection of thermal controls and radiation shields. Self-Reconfigurable Electronics platform: a) Evolutionary Processor (EP) to run reconfiguration mechanism; b) Reconfigurable chip (FPGA, FPAA, etc).
Liu, Shiguang; Yeh, Tzu-Hsuan; Singh, Vijay P.; Shiva, Sruti; Krauland, Lindsay; Li, Huanan; Zhang, Pili; Kharbanda, Kusum; Ritov, Vladimir; Monga, Satdarshan P. S.; Scott, Donald K.; Eagon, Patricia K.; Behari, Jaideep
2011-01-01
The liver plays a central role in ethanol metabolism and oxidative stress is implicated in alcohol-mediated liver injury. β-Catenin regulates hepatic metabolic zonation and adaptive response to oxidative stress. We hypothesized that β-catenin regulates the hepatic response to ethanol ingestion. Female liver-specific β-catenin knockout (KO) mice and wild type (WT) littermates were fed the Lieber-Decarli liquid diet (5% ethanol) in a pair-wise fashion. Liver histology, biochemistry, and gene expression studies were performed. Plasma alcohol and ammonia levels were measured using standard assays. Ethanol-fed KO mice exhibited systemic toxicity and early mortality. KO mice exhibited severe macrovesicular steatosis and five to six-fold higher serum ALT and AST levels. KO mice had modest increase in hepatic oxidative stress, lower expression of mitochondrial superoxide dismutase (SOD-2), and lower citrate synthase activity, the first step in the tricarboxylic acid cycle. N-Acetyl cysteine (NAC) did not prevent ethanol-induced mortality in KO mice. In WT livers, β-catenin was found to co-precipitate with FoxO3, the upstream regulator of SOD-2. Hepatic alcohol dehydrogenase and aldehyde dehydrogenase activities and expression were lower in KO mice. Hepatic cytochrome P450 2E1 protein levels were upregulated in ethanol-fed WT mice but were nearly undetectable in KO mice. These changes in ethanol-metabolizing enzymes were associated with 30-fold higher blood alcohol levels in KO mice. Conclusion β-catenin is essential for hepatic ethanol metabolism and plays a protective role in alcohol-mediated liver steatosis. Our results strongly suggest that integration of these functions by β-catenin is critical for adaptation to ethanol ingestion in vivo. PMID:22031168
Risher, Mary-Louise; Fleming, Rebekah L; Boutros, Nathalie; Semenova, Svetlana; Wilson, Wilkie A; Levin, Edward D; Markou, Athina; Swartzwelder, H Scott; Acheson, Shawn K
2013-01-01
Adolescence is not only a critical period of late-stage neurological development in humans, but is also a period in which ethanol consumption is often at its highest. Given the prevalence of ethanol use during this vulnerable developmental period we assessed the long-term effects of chronic intermittent ethanol (CIE) exposure during adolescence, compared to adulthood, on performance in the radial-arm maze (RAM) and operant food-reinforced responding in male rats. Male Sprague Dawley rats were exposed to CIE (or saline) and then allowed to recover. Animals were then trained in either the RAM task or an operant task using fixed- and progressive- ratio schedules. After baseline testing was completed all animals received an acute ethanol challenge while blood ethanol levels (BECs) were monitored in a subset of animals. CIE exposure during adolescence, but not adulthood decreased the amount of time that animals spent in the open portions of the RAM arms (reminiscent of deficits in risk-reward integration) and rendered animals more susceptible to the acute effects of an ethanol challenge on working memory tasks. The operant food reinforced task showed that these effects were not due to altered food motivation or to differential sensitivity to the nonspecific performance-disrupting effects of ethanol. However, CIE pre-treated animals had lower BEC levels than controls during the acute ethanol challenges indicating persistent pharmacokinetic tolerance to ethanol after the CIE treatment. There was little evidence of enduring effects of CIE alone on traditional measures of spatial and working memory. These effects indicate that adolescence is a time of selective vulnerability to the long-term effects of repeated ethanol exposure on neurobehavioral function and acute ethanol sensitivity. The positive and negative findings reported here help to further define the nature and extent of the impairments observed after adolescent CIE and provide direction for future research.
Integrated Short Range, Low Bandwidth, Wearable Communications Networking Technologies
2012-04-30
Only (FOUO) Table of Contents Introduction 7 Research Discussions 7 1 Specifications 8 2 SAN Radio 9 2.1 R.F. Design Improvements 9 2.1.1 LNA...Characterization and Verification Testing 26 2.2 Digital Design Improvements 26 2.2.1 Improve Processor Access to Memory Resources 26 2.2.2...integrated and tested . A hybrid architecture of the automatic gain control (AGC) was designed to Page 7 of 116 For Official Use Only (FOUO
A Preliminary Data Model for Orbital Flight Dynamics in Shuttle Mission Control
NASA Technical Reports Server (NTRS)
ONeill, John; Shalin, Valerie L.
2000-01-01
The Orbital Flight Dynamics group in Shuttle Mission Control is investigating new user interfaces in a project called RIOTS [RIOTS 2000]. Traditionally, the individual functions of hardware and software guide the design of displays, which results in an aggregated, if not integrated interface. The human work system has then been designed and trained to navigate, operate and integrate the processors and displays. The aim of RIOTS is to reduce the cognitive demands of the flight controllers by redesigning the user interface to support the work of the flight controller. This document supports the RIOTS project by defining a preliminary data model for Orbital Flight Dynamics. Section 2 defines an information-centric perspective. An information-centric approach aims to reduce the cognitive workload of the flight controllers by reducing the need for manual integration of information across processors and displays. Section 3 describes the Orbital Flight Dynamics domain. Section 4 defines the preliminary data model for Orbital Flight Dynamics. Section 5 examines the implications of mapping the data model to Orbital Flight Dynamics current information systems. Two recurring patterns are identified in the Orbital Flight Dynamics work the iteration/rework cycle and the decision-making/information integration/mirroring role relationship. Section 6 identifies new requirements on Orbital Flight Dynamics work and makes recommendations based on changing the information environment, changing the implementation of the data model, and changing the two recurring patterns.
Reduze - Feynman integral reduction in C++
NASA Astrophysics Data System (ADS)
Studerus, C.
2010-07-01
Reduze is a computer program for reducing Feynman integrals to master integrals employing a Laporta algorithm. The program is written in C++ and uses classes provided by the GiNaC library to perform the simplifications of the algebraic prefactors in the system of equations. Reduze offers the possibility to run reductions in parallel. Program summaryProgram title:Reduze Catalogue identifier: AEGE_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGE_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions:: yes No. of lines in distributed program, including test data, etc.: 55 433 No. of bytes in distributed program, including test data, etc.: 554 866 Distribution format: tar.gz Programming language: C++ Computer: All Operating system: Unix/Linux Number of processors used: The number of processors is problem dependent. More than one possible but not arbitrary many. RAM: Depends on the complexity of the system. Classification: 4.4, 5 External routines: CLN ( http://www.ginac.de/CLN/), GiNaC ( http://www.ginac.de/) Nature of problem: Solving large systems of linear equations with Feynman integrals as unknowns and rational polynomials as prefactors. Solution method: Using a Gauss/Laporta algorithm to solve the system of equations. Restrictions: Limitations depend on the complexity of the system (number of equations, number of kinematic invariants). Running time: Depends on the complexity of the system.
CanOpen on RASTA: The Integration of the CanOpen IP Core in the Avionics Testbed
NASA Astrophysics Data System (ADS)
Furano, Gianluca; Guettache, Farid; Magistrati, Giorgio; Tiotto, Gabriele; Ortega, Carlos Urbina; Valverde, Alberto
2013-08-01
This paper presents the work done within the ESA Estec Data Systems Division, targeting the integration of the CanOpen IP Core with the existing Reference Architecture Test-bed for Avionics (RASTA). RASTA is the reference testbed system of the ESA Avionics Lab, designed to integrate the main elements of a typical Data Handling system. It aims at simulating a scenario where a Mission Control Center communicates with on-board computers and systems through a TM/TC link, thus providing the data management through qualified processors and interfaces such as Leon2 core processors, CAN bus controllers, MIL-STD-1553 and SpaceWire. This activity aims at the extension of the RASTA with two boards equipped with HurriCANe controller, acting as CANOpen slaves. CANOpen software modules have been ported on the RASTA system I/O boards equipped with Gaisler GR-CAN controller and acts as master communicating with the CCIPC boards. CanOpen serves as upper application layer for based on CAN defined within the CAN-in-Automation standard and can be regarded as the definitive standard for the implementation of CAN-based systems solutions. The development and integration of CCIPC performed by SITAEL S.p.A., is the first application that aims to bring the CANOpen standard for space applications. The definition of CANOpen within the European Cooperation for Space Standardization (ECSS) is under development.
NASA Astrophysics Data System (ADS)
Nishiura, Daisuke; Furuichi, Mikito; Sakaguchi, Hide
2015-09-01
The computational performance of a smoothed particle hydrodynamics (SPH) simulation is investigated for three types of current shared-memory parallel computer devices: many integrated core (MIC) processors, graphics processing units (GPUs), and multi-core CPUs. We are especially interested in efficient shared-memory allocation methods for each chipset, because the efficient data access patterns differ between compute unified device architecture (CUDA) programming for GPUs and OpenMP programming for MIC processors and multi-core CPUs. We first introduce several parallel implementation techniques for the SPH code, and then examine these on our target computer architectures to determine the most effective algorithms for each processor unit. In addition, we evaluate the effective computing performance and power efficiency of the SPH simulation on each architecture, as these are critical metrics for overall performance in a multi-device environment. In our benchmark test, the GPU is found to produce the best arithmetic performance as a standalone device unit, and gives the most efficient power consumption. The multi-core CPU obtains the most effective computing performance. The computational speed of the MIC processor on Xeon Phi approached that of two Xeon CPUs. This indicates that using MICs is an attractive choice for existing SPH codes on multi-core CPUs parallelized by OpenMP, as it gains computational acceleration without the need for significant changes to the source code.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krityakierne, Tipaluck; Akhtar, Taimoor; Shoemaker, Christine A.
This paper presents a parallel surrogate-based global optimization method for computationally expensive objective functions that is more effective for larger numbers of processors. To reach this goal, we integrated concepts from multi-objective optimization and tabu search into, single objective, surrogate optimization. Our proposed derivative-free algorithm, called SOP, uses non-dominated sorting of points for which the expensive function has been previously evaluated. The two objectives are the expensive function value of the point and the minimum distance of the point to previously evaluated points. Based on the results of non-dominated sorting, P points from the sorted fronts are selected as centersmore » from which many candidate points are generated by random perturbations. Based on surrogate approximation, the best candidate point is subsequently selected for expensive evaluation for each of the P centers, with simultaneous computation on P processors. Centers that previously did not generate good solutions are tabu with a given tenure. We show almost sure convergence of this algorithm under some conditions. The performance of SOP is compared with two RBF based methods. The test results show that SOP is an efficient method that can reduce time required to find a good near optimal solution. In a number of cases the efficiency of SOP is so good that SOP with 8 processors found an accurate answer in less wall-clock time than the other algorithms did with 32 processors.« less
Sequence information signal processor for local and global string comparisons
Peterson, John C.; Chow, Edward T.; Waterman, Michael S.; Hunkapillar, Timothy J.
1997-01-01
A sequence information signal processing integrated circuit chip designed to perform high speed calculation of a dynamic programming algorithm based upon the algorithm defined by Waterman and Smith. The signal processing chip of the present invention is designed to be a building block of a linear systolic array, the performance of which can be increased by connecting additional sequence information signal processing chips to the array. The chip provides a high speed, low cost linear array processor that can locate highly similar global sequences or segments thereof such as contiguous subsequences from two different DNA or protein sequences. The chip is implemented in a preferred embodiment using CMOS VLSI technology to provide the equivalent of about 400,000 transistors or 100,000 gates. Each chip provides 16 processing elements, and is designed to provide 16 bit, two's compliment operation for maximum score precision of between -32,768 and +32,767. It is designed to provide a comparison between sequences as long as 4,194,304 elements without external software and between sequences of unlimited numbers of elements with the aid of external software. Each sequence can be assigned different deletion and insertion weight functions. Each processor is provided with a similarity measure device which is independently variable. Thus, each processor can contribute to maximum value score calculation using a different similarity measure.
NASA Astrophysics Data System (ADS)
Palo, Daniel R.; Holladay, Jamie D.; Rozmiarek, Robert T.; Guzman-Leong, Consuelo E.; Wang, Yong; Hu, Jianli; Chin, Ya-Huei; Dagle, Robert A.; Baker, Eddie G.
A 15-W e portable power system is being developed for the US Army that consists of a hydrogen-generating fuel reformer coupled to a proton-exchange membrane fuel cell. In the first phase of this project, a methanol steam reformer system was developed and demonstrated. The reformer system included a combustor, two vaporizers, and a steam reforming reactor. The device was demonstrated as a thermally independent unit over the range of 14-80 W t output. Assuming a 14-day mission life and an ultimate 1-kg fuel processor/fuel cell assembly, a base case was chosen to illustrate the expected system performance. Operating at 13 W e, the system yielded a fuel processor efficiency of 45% (LHV of H 2 out/LHV of fuel in) and an estimated net efficiency of 22% (assuming a fuel cell efficiency of 48%). The resulting energy density of 720 Wh/kg is several times the energy density of the best lithium-ion batteries. Some immediate areas of improvement in thermal management also have been identified, and an integrated fuel processor is under development. The final system will be a hybrid, containing a fuel reformer, a fuel cell, and a rechargeable battery. The battery will provide power for start-up and added capacity for times of peak power demand.
Parallel processors and nonlinear structural dynamics algorithms and software
NASA Technical Reports Server (NTRS)
Belytschko, Ted
1990-01-01
Techniques are discussed for the implementation and improvement of vectorization and concurrency in nonlinear explicit structural finite element codes. In explicit integration methods, the computation of the element internal force vector consumes the bulk of the computer time. The program can be efficiently vectorized by subdividing the elements into blocks and executing all computations in vector mode. The structuring of elements into blocks also provides a convenient way to implement concurrency by creating tasks which can be assigned to available processors for evaluation. The techniques were implemented in a 3-D nonlinear program with one-point quadrature shell elements. Concurrency and vectorization were first implemented in a single time step version of the program. Techniques were developed to minimize processor idle time and to select the optimal vector length. A comparison of run times between the program executed in scalar, serial mode and the fully vectorized code executed concurrently using eight processors shows speed-ups of over 25. Conjugate gradient methods for solving nonlinear algebraic equations are also readily adapted to a parallel environment. A new technique for improving convergence properties of conjugate gradients in nonlinear problems is developed in conjunction with other techniques such as diagonal scaling. A significant reduction in the number of iterations required for convergence is shown for a statically loaded rigid bar suspended by three equally spaced springs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palo, Daniel R.; Holladay, Jamelyn D.; Rozmiarek, Robert T.
A 15-We portable power system is being developed for the US Army, comprised of a hydrogen-generating fuel reformer coupled to a hydrogen-converting fuel cell. As a first phase of this project, a methanol steam reformer system was developed and demonstrated. The reformer system included a combustor, two vaporizers, and a steam-reforming reactor. The device was demonstrated as a thermally independent unit over the range of 14 to 80 Wt output. Assuming a 14-day mission life and an ultimate 1-kg fuel processor/fuel cell assembly, a base case was chosen to illustrate the expected system performance. Operating at 13 We, the systemmore » yielded a fuel processor efficiency of 45% (LHV of H2 out/LHV of fuel in) and an estimated net efficiency of 22% (assuming a fuel cell efficiency of 48%). The resulting energy density of 720 W-hr/kg is several times the energy density of the best lithium-ion batteries. Some immediate areas of improvement in thermal management also have been identified and an integrated fuel processor is under development. The final system will be a hybrid, containing a fuel reformer, fuel cell, and rechargeable battery. The battery will provide power for startup and added capacity for times of peak power demand.« less
Increasing the electric efficiency of a fuel cell system by recirculating the anodic offgas
NASA Astrophysics Data System (ADS)
Heinzel, A.; Roes, J.; Brandt, H.
The University of Duisburg-Essen and the Center for Fuel Cell Technology (ZBT Duisburg GmbH) have developed a compact multi-fuel steam reformer suitable for natural gas, propane and butane. Fuel processor prototypes based on this concept were built up in the power range from 2.5 to 12.5 kW thermal hydrogen power for different applications and different industrial partners. The fuel processor concept contains all the necessary elements, a prereformer step, a primary reformer, water gas shift reactors, a steam generator, internal heat exchangers, in order to achieve an optimised heat integration and an external burner for heat supply as well as a preferential oxidation step (PrOx) as CO purification. One of the built fuel processors is designed to deliver a thermal hydrogen power output of 2.5 kW according to a PEM fuel cell stack providing about 1 kW electrical power and achieves a thermal efficiency of about 75% (LHV basis after PrOx), while the CO content of the product gas is below 20 ppm. This steam reformer has been combined with a 1 kW PEM fuel cell. Recirculating the anodic offgas results in a significant efficiency increase for the fuel processor. The gross efficiency of the combined system was already clearly above 30% during the first tests. Further improvements are currently investigated and developed at the ZBT.
Chung, King; Nelson, Lance; Teske, Melissa
2012-09-01
The purpose of this study was to investigate whether a multichannel adaptive directional microphone and a modulation-based noise reduction algorithm could enhance cochlear implant performance in reverberant noise fields. A hearing aid was modified to output electrical signals (ePreprocessor) and a cochlear implant speech processor was modified to receive electrical signals (eProcessor). The ePreprocessor was programmed to flat frequency response and linear amplification. Cochlear implant listeners wore the ePreprocessor-eProcessor system in three reverberant noise fields: 1) one noise source with variable locations; 2) three noise sources with variable locations; and 3) eight evenly spaced noise sources from 0° to 360°. Listeners' speech recognition scores were tested when the ePreprocessor was programmed to omnidirectional microphone (OMNI), omnidirectional microphone plus noise reduction algorithm (OMNI + NR), and adaptive directional microphone plus noise reduction algorithm (ADM + NR). They were also tested with their own cochlear implant speech processor (CI_OMNI) in the three noise fields. Additionally, listeners rated overall sound quality preferences on recordings made in the noise fields. Results indicated that ADM+NR produced the highest speech recognition scores and the most preferable rating in all noise fields. Factors requiring attention in the hearing aid-cochlear implant integration process are discussed. Copyright © 2012 Elsevier B.V. All rights reserved.
Malati, P; Mehrotra, P; Minoofar, P; Mackie, D M; Sumner, J J; Ganguli, R
2015-10-01
A membrane-integrated proton exchange membrane fuel cell that enables in situ fermentation of sugar to ethanol, diffusion-driven separation of ethanol, and its catalytic oxidation in a single continuous process is reported. The fuel cell consists of a fermentation chamber coupled to a direct ethanol fuel cell. The anode and fermentation chambers are separated by a reverse osmosis (RO) membrane. Ethanol generated from fermented biomass in the fermentation chamber diffuses through the RO membrane into a glucose solution contained in the DEFC anode chamber. The glucose solution is osmotically neutral to the biomass solution in the fermentation chamber preventing the anode chamber from drying out. The fuel cell sustains >1.3 mW cm(-2) at 47°C with high discharge capacity. No separate purification or dilution is necessary, resulting in an efficient and portable system for direct conversion of fermenting biomass to electricity. Copyright © 2015 Elsevier Ltd. All rights reserved.
Matsushika, Akinori; Inoue, Hiroyuki; Murakami, Katsuji; Takimura, Osamu; Sawayama, Shigeki
2009-04-01
In this study, five recombinant Saccharomyces cerevisiae strains were compared for their xylose-fermenting ability. The most efficient xylose-to-ethanol fermentation was found by using the industrial strain MA-R4, in which the genes for xylose reductase and xylitol dehydrogenase from Pichia stipitis along with an endogenous xylulokinase gene were expressed by chromosomal integration of the flocculent yeast strain IR-2. The MA-R4 strain rapidly converted xylose to ethanol with a low xylitol yield. Furthermore, the MA-R4 strain had the highest ethanol production when fermenting not only a mixture of glucose and xylose, but also mixed sugars in the detoxified hydrolysate of wood chips. These results collectively suggest that MA-R4 may be a suitable recombinant strain for further study into large-scale ethanol production from mixed sugars present in lignocellulosic hydrolysates.
Wang, Pin-Mei; Zheng, Dao-Qiong; Chi, Xiao-Qin; Li, Ou; Qian, Chao-Dong; Liu, Tian-Zhe; Zhang, Xiao-Yang; Du, Feng-Guang; Sun, Pei-Yong; Qu, Ai-Min; Wu, Xue-Chang
2014-01-01
The protective effect and the mechanisms of trehalose accumulation in industrial Saccharomyces cerevisiae strains were investigated during ethanol fermentation. The engineered strains with more intercellular trehalose achieved significantly higher fermentation rates and ethanol yields than their wild strain ZS during very high gravity (VHG) fermentation, while their performances were not different during regular fermentation. The VHG fermentation performances of these strains were consistent with their growth capacity under osmotic stress and ethanol stress, the key stress factors during VHG fermentation. These results suggest that trehalose accumulation is more important for VHG fermentation of industrial yeast strains than regular one. The differences in membrane integrity and antioxidative capacity of these strains indicated the possible mechanisms of trehalose as a protectant under VHG condition. Therefore, trehalose metabolic engineering may be a useful strategy for improving the VHG fermentation performance of industrial yeast strains. Copyright © 2013 Elsevier Ltd. All rights reserved.
Cai, Di; Wang, Yong; Chen, Changjing; Qin, Peiyong; Miao, Qi; Zhang, Changwei; Li, Ping; Tan, Tianwei
2016-07-01
In this study, sweet sorghum juice (SSJ) was used as the substrate in a simplified ABE fermentation-gas stripping integration process without nutrients supplementation. The sweet sorghum bagasse (SSB) after squeezing the fermentable juice was used as the immobilized carrier. The results indicated that the productivity of ABE fermentation process was improved by gas stripping integration. A total 24g/L of ABE solvents was obtained from 59.6g/L of initial sugar after 80h of fermentation with gas stripping. Then, long-term of fed-batch fermentation with continuous gas stripping was further performed. 112.9g/L of butanol, 44.1g/L of acetone, 9.5g/L of ethanol (total 166.5g/L of ABE) was produced in overall 312h of fermentation. At the same time, concentrated ABE product was obtained in the condensate of gas stripping. Copyright © 2016 Elsevier Ltd. All rights reserved.
An integrated process for the extraction of fuel and chemicals from marine macroalgal biomass
NASA Astrophysics Data System (ADS)
Trivedi, Nitin; Baghel, Ravi S.; Bothwell, John; Gupta, Vishal; Reddy, C. R. K.; Lali, Arvind M.; Jha, Bhavanath
2016-07-01
We describe an integrated process that can be applied to biomass of the green seaweed, Ulva fasciata, to allow the sequential recovery of four economically important fractions; mineral rich liquid extract (MRLE), lipid, ulvan, and cellulose. The main benefits of our process are: a) its simplicity and b) the consistent yields obtained from the residual biomass after each successive extraction step. For example, dry Ulva biomass yields ~26% of its starting mass as MRLE, ~3% as lipid, ~25% as ulvan, and ~11% as cellulose, with the enzymatic hydrolysis and fermentation of the final cellulose fraction under optimized conditions producing ethanol at a competitive 0.45 g/g reducing sugar. These yields are comparable to those obtained by direct processing of the individual components from primary biomass. We propose that this integration of ethanol production and chemical feedstock recovery from macroalgal biomass could substantially enhance the sustainability of marine biomass use.
Environmental Control and Life Support Systems Testing Facility at MSFC
NASA Technical Reports Server (NTRS)
2001-01-01
The Marshall Space Flight Center (MSFC) is responsible for designing and building the life support systems that will provide the crew of the International Space Station (ISS) a comfortable environment in which to live and work. Scientists and engineers at the MSFC are working together to provide the ISS with systems that are safe, efficient, and cost-effective. These compact and powerful systems are collectively called the Environmental Control and Life Support Systems, or simply, ECLSS. This photograph shows the Urine Processor Assembly (UPA) which utilizes the Vapor Compression Distillation (VCD) technology. The VCD is used for integrated testing of the entire Water Recovery System (WRS) and development testing of the Urine Processor Assembly. The UPA accepts and processes pretreated crewmember urine to allow it to be processed along with other wastewaters in the Water Processor Assembly (WPA). The WPA removes free gas, organic, and nonorganic constituents before the water goes through a series of multifiltration beds for further purification. Product water quality is monitored primarily through conductivity measurements. Unacceptable water is sent back through the WPA for reprocessing. Clean water is sent to a storage tank.
Low-voltage analog front-end processor design for ISFET-based sensor and H+ sensing applications
NASA Astrophysics Data System (ADS)
Chung, Wen-Yaw; Yang, Chung-Huang; Peng, Kang-Chu; Yeh, M. H.
2003-04-01
This paper presents a modular-based low-voltage analog-front-end processor design in a 0.5mm double-poly double-metal CMOS technology for Ion Sensitive Field Effect Transistor (ISFET)-based sensor and H+ sensing applications. To meet the potentiometric response of the ISFET that is proportional to various H+ concentrations, the constant-voltage and constant current (CVCS) testing configuration has been used. Low-voltage design skills such as bulk-driven input pair, folded-cascode amplifier, bootstrap switch control circuits have been designed and integrated for 1.5V supply and nearly rail-to-rail analog to digital signal processing. Core modules consist of an 8-bit two-step analog-digital converter and bulk-driven pre-amplifiers have been developed in this research. The experimental results show that the proposed circuitry has an acceptable linearity to 0.1 pH-H+ sensing conversions with the buffer solution in the range of pH2 to pH12. The processor has a potential usage in battery-operated and portable healthcare devices and environmental monitoring applications.
Catalioto, Rose-Marie; Festa, Carla; Triolo, Antonio; Altamura, Maria; Maggi, Carlo Alberto; Giuliani, Sandro
2009-02-01
The present study investigates the effects of ethanol and hydrogen peroxide (H(2)O(2)) on the barrier function and prostaglandin E(2) (PGE(2)) release in differentiated Caco-2 cells. Epithelial barrier integrity was estimated by measuring transepithelial electrical resistance (TEER), the transport of reference compounds and lactate dehydrogenase leakage, the PGE(2) release by enzyme immunoassay. Ethanol and H(2)O(2) decreased TEER and increased the transport of lucifer yellow without affecting that of propranolol and phenylalanine. Only the effects of ethanol were accompanied by PGE(2) production and were reversible without causing long-term cytotoxicity. The cyclooxygenase-2 inhibitor, NS-398, prevented the effect of ethanol on both PGE(2) release and TEER, while inhibition of both cyclooxygenase-2 and tyrosine kinase drastically compromised cell viability and TEER recovery. Hepatocyte growth factor, keratinocyte growth factor or insulin prevented the effect of ethanol on cell permeability, but not on PGE(2) release. Their combination prevented the effect of H(2)O(2). In conclusion, ethanol and H(2)O(2) increased paracellular permeability in differentiated Caco-2 cells without affecting transcellular and active transport. Cyclooxygenase-2 stimulated PGE(2) release mediated the reversible effect of ethanol on tight junctions and, meanwhile, contributed to cell survival. Growth factors, normally present in the intestine, exerted a selective protective effect toward paracellular permeability increase induced by irritants.
Some issues related to simulation of the tracking and communications computer network
NASA Technical Reports Server (NTRS)
Lacovara, Robert C.
1989-01-01
The Communications Performance and Integration branch of the Tracking and Communications Division has an ongoing involvement in the simulation of its flight hardware for Space Station Freedom. Specifically, the communication process between central processor(s) and orbital replaceable units (ORU's) is simulated with varying degrees of fidelity. The results of investigations into three aspects of this simulation effort are given. The most general area involves the use of computer assisted software engineering (CASE) tools for this particular simulation. The second area of interest is simulation methods for systems of mixed hardware and software. The final area investigated is the application of simulation methods to one of the proposed computer network protocols for space station, specifically IEEE 802.4.
Towards an Analogue Neuromorphic VLSI Instrument for the Sensing of Complex Odours
NASA Astrophysics Data System (ADS)
Ab Aziz, Muhammad Fazli; Harun, Fauzan Khairi Che; Covington, James A.; Gardner, Julian W.
2011-09-01
Almost all electronic nose instruments reported today employ pattern recognition algorithms written in software and run on digital processors, e.g. micro-processors, microcontrollers or FPGAs. Conversely, in this paper we describe the analogue VLSI implementation of an electronic nose through the design of a neuromorphic olfactory chip. The modelling, design and fabrication of the chip have already been reported. Here a smart interface has been designed and characterised for thisneuromorphic chip. Thus we can demonstrate the functionality of the a VLSI neuromorphic chip, producing differing principal neuron firing patterns to real sensor response data. Further work is directed towards integrating 9 separate neuromorphic chips to create a large neuronal network to solve more complex olfactory problems.
Some issues related to simulation of the tracking and communications computer network
NASA Astrophysics Data System (ADS)
Lacovara, Robert C.
1989-12-01
The Communications Performance and Integration branch of the Tracking and Communications Division has an ongoing involvement in the simulation of its flight hardware for Space Station Freedom. Specifically, the communication process between central processor(s) and orbital replaceable units (ORU's) is simulated with varying degrees of fidelity. The results of investigations into three aspects of this simulation effort are given. The most general area involves the use of computer assisted software engineering (CASE) tools for this particular simulation. The second area of interest is simulation methods for systems of mixed hardware and software. The final area investigated is the application of simulation methods to one of the proposed computer network protocols for space station, specifically IEEE 802.4.
The 30-cm ion thruster power processor
NASA Technical Reports Server (NTRS)
Herron, B. G.; Hopper, D. J.
1978-01-01
A power processor unit for powering and controlling the 30 cm Mercury Electron-Bombardment Ion Thruster was designed, fabricated, and tested. The unit uses a unique and highly efficient transistor bridge inverter power stage in its implementation. The system operated from a 200 to 400 V dc input power bus, provides 12 independently controllable and closely regulated dc power outputs, and has an overall power conditioning capacity of 3.5 kW. Protective circuitry was incorporated as an integral part of the design to assure failure-free operation during transient and steady-state load faults. The implemented unit demonstrated an electrical efficiency between 91.5 and 91.9 at its nominal rated load over the 200 to 400 V dc input bus range.
XVis: Visualization for the Extreme-Scale Scientific-Computation Ecosystem: Mid-year report FY17 Q2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moreland, Kenneth D.; Pugmire, David; Rogers, David
The XVis project brings together the key elements of research to enable scientific discovery at extreme scale. Scientific computing will no longer be purely about how fast computations can be performed. Energy constraints, processor changes, and I/O limitations necessitate significant changes in both the software applications used in scientific computation and the ways in which scientists use them. Components for modeling, simulation, analysis, and visualization must work together in a computational ecosystem, rather than working independently as they have in the past. This project provides the necessary research and infrastructure for scientific discovery in this new computational ecosystem by addressingmore » four interlocking challenges: emerging processor technology, in situ integration, usability, and proxy analysis.« less
XVis: Visualization for the Extreme-Scale Scientific-Computation Ecosystem: Year-end report FY17.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moreland, Kenneth D.; Pugmire, David; Rogers, David
The XVis project brings together the key elements of research to enable scientific discovery at extreme scale. Scientific computing will no longer be purely about how fast computations can be performed. Energy constraints, processor changes, and I/O limitations necessitate significant changes in both the software applications used in scientific computation and the ways in which scientists use them. Components for modeling, simulation, analysis, and visualization must work together in a computational ecosystem, rather than working independently as they have in the past. This project provides the necessary research and infrastructure for scientific discovery in this new computational ecosystem by addressingmore » four interlocking challenges: emerging processor technology, in situ integration, usability, and proxy analysis.« less
XVis: Visualization for the Extreme-Scale Scientific-Computation Ecosystem. Mid-year report FY16 Q2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moreland, Kenneth D.; Sewell, Christopher; Childs, Hank
The XVis project brings together the key elements of research to enable scientific discovery at extreme scale. Scientific computing will no longer be purely about how fast computations can be performed. Energy constraints, processor changes, and I/O limitations necessitate significant changes in both the software applications used in scientific computation and the ways in which scientists use them. Components for modeling, simulation, analysis, and visualization must work together in a computational ecosystem, rather than working independently as they have in the past. This project provides the necessary research and infrastructure for scientific discovery in this new computational ecosystem by addressingmore » four interlocking challenges: emerging processor technology, in situ integration, usability, and proxy analysis.« less
XVis: Visualization for the Extreme-Scale Scientific-Computation Ecosystem: Year-end report FY15 Q4.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moreland, Kenneth D.; Sewell, Christopher; Childs, Hank
The XVis project brings together the key elements of research to enable scientific discovery at extreme scale. Scientific computing will no longer be purely about how fast computations can be performed. Energy constraints, processor changes, and I/O limitations necessitate significant changes in both the software applications used in scientific computation and the ways in which scientists use them. Components for modeling, simulation, analysis, and visualization must work together in a computational ecosystem, rather than working independently as they have in the past. This project provides the necessary research and infrastructure for scientific discovery in this new computational ecosystem by addressingmore » four interlocking challenges: emerging processor technology, in situ integration, usability, and proxy analysis.« less
Advanced On-Board Processor (AOP). [for future spacecraft applications
NASA Technical Reports Server (NTRS)
1973-01-01
Advanced On-board Processor the (AOP) uses large scale integration throughout and is the most advanced space qualified computer of its class in existence today. It was designed to satisfy most spacecraft requirements which are anticipated over the next several years. The AOP design utilizes custom metallized multigate arrays (CMMA) which have been designed specifically for this computer. This approach provides the most efficient use of circuits, reduces volume, weight, assembly costs and provides for a significant increase in reliability by the significant reduction in conventional circuit interconnections. The required 69 CMMA packages are assembled on a single multilayer printed circuit board which together with associated connectors constitutes the complete AOP. This approach also reduces conventional interconnections thus further reducing weight, volume and assembly costs.
Effective Vectorization with OpenMP 4.5
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huber, Joseph N.; Hernandez, Oscar R.; Lopez, Matthew Graham
This paper describes how the Single Instruction Multiple Data (SIMD) model and its extensions in OpenMP work, and how these are implemented in different compilers. Modern processors are highly parallel computational machines which often include multiple processors capable of executing several instructions in parallel. Understanding SIMD and executing instructions in parallel allows the processor to achieve higher performance without increasing the power required to run it. SIMD instructions can significantly reduce the runtime of code by executing a single operation on large groups of data. The SIMD model is so integral to the processor s potential performance that, if SIMDmore » is not utilized, less than half of the processor is ever actually used. Unfortunately, using SIMD instructions is a challenge in higher level languages because most programming languages do not have a way to describe them. Most compilers are capable of vectorizing code by using the SIMD instructions, but there are many code features important for SIMD vectorization that the compiler cannot determine at compile time. OpenMP attempts to solve this by extending the C++/C and Fortran programming languages with compiler directives that express SIMD parallelism. OpenMP is used to pass hints to the compiler about the code to be executed in SIMD. This is a key resource for making optimized code, but it does not change whether or not the code can use SIMD operations. However, in many cases critical functions are limited by a poor understanding of how SIMD instructions are actually implemented, as SIMD can be implemented through vector instructions or simultaneous multi-threading (SMT). We have found that it is often the case that code cannot be vectorized, or is vectorized poorly, because the programmer does not have sufficient knowledge of how SIMD instructions work.« less
QERx- A Faster than Real-Time Emulator for Space Processors
NASA Astrophysics Data System (ADS)
Carvalho, B.; Pidgeon, A.; Robinson, P.
2012-08-01
Developing software for space systems is challenging. Especially because, in order to be sure it can cope with the harshness of the environment and the imperative requirements and constrains imposed by the platform were it will run, it needs to be tested exhaustively. Software Validation Facilities (SVF) are known to the industry and developers, and provide the means to run the On-Board Software (OBSW) in a realistic environment, allowing the development team to debug and test the software.But the challenge is to be able to keep up with the performance of the new processors (LEON2 and LEON3), which need to be emulated within the SVF. Such processor emulators are also used in Operational Simulators, used to support mission preparation and train mission operators. These simulators mimic the satellite and its behaviour, as realistically as possible. For test/operational efficiency reasons and because they will need to interact with external systems, both these uses cases require the processor emulators to provide real-time, or faster, performance.It is known to the industry that the performance of previously available emulators is not enough to cope with the performance of the new processors available in the market. SciSys approached this problem with dynamic translation technology trying to keep costs down by avoiding a hardware solution and keeping the integration flexibility of full software emulation.SciSys presented “QERx: A High Performance Emulator for Software Validation and Simulations” [1], in a previous DASIA event. Since then that idea has evolved and QERx has been successfully validated. SciSys is now presenting QERx as a product that can be tailored to fit different emulation needs. This paper will present QERx latest developments and current status.
A Low-Power Wearable Stand-Alone Tongue Drive System for People With Severe Disabilities.
Jafari, Ali; Buswell, Nathanael; Ghovanloo, Maysam; Mohsenin, Tinoosh
2018-02-01
This paper presents a low-power stand-alone tongue drive system (sTDS) used for individuals with severe disabilities to potentially control their environment such as computer, smartphone, and wheelchair using their voluntary tongue movements. A low-power local processor is proposed, which can perform signal processing to convert raw magnetic sensor signals to user-defined commands, on the sTDS wearable headset, rather than sending all raw data out to a PC or smartphone. The proposed sTDS significantly reduces the transmitter power consumption and subsequently increases the battery life. Assuming the sTDS user issues one command every 20 ms, the proposed local processor reduces the data volume that needs to be wirelessly transmitted by a factor of 64, from 9.6 to 0.15 kb/s. The proposed processor consists of three main blocks: serial peripheral interface bus for receiving raw data from magnetic sensors, external magnetic interference attenuation to attenuate external magnetic field from the raw magnetic signal, and a machine learning classifier for command detection. A proof-of-concept prototype sTDS has been implemented with a low-power IGLOO-nano field programmable gate array (FPGA), bluetooth low energy, battery and magnetic sensors on a headset, and tested. At clock frequency of 20 MHz, the processor takes 6.6 s and consumes 27 nJ for detecting a command with a detection accuracy of 96.9%. To further reduce power consumption, an application-specified integrated circuit processor for the sTDS is implemented at the postlayout level in 65-nm CMOS technology with 1-V power supply, and it consumes 0.43 mW, which is 10 lower than FPGA power consumption and occupies an area of only 0.016 mm.
Maehara, Larissa; Pereira, Sandra C; Silva, Adilson J; Farinas, Cristiane S
2018-02-01
The efficient use of renewable lignocellulosic feedstocks to obtain biofuels and other bioproducts is a key requirement for a sustainable biobased economy. This requires novel and effective strategies to reduce the cost contribution of the cellulolytic enzymatic cocktails needed to convert the carbohydrates into simple sugars, in order to make large-scale commercial processes economically competitive. Here, we propose the use of the whole solid-state fermentation (SSF) medium of mixed filamentous fungi as an integrated one-pot strategy for on-site enzyme production, biomass hydrolysis, and ethanol production. Ten different individual and mixed cultivations of commonly used industrial filamentous fungi (Aspergillus niger, Aspergillus oryzae, Trichoderma harzianum, and Trichoderma reesei) were performed under SSF and the whole media (without the extraction step) were used in the hydrolysis of pretreated sugarcane bagasse. The cocultivation of T. reesei with A. oryzae increased the amount of glucose released by around 50%, compared with individual cultivations. The release of glucose and reducing sugars achieved using the whole SSF medium was around 3-fold higher than obtained with the enzyme extract. The addition of soybean protein (0.5% w/w) during the hydrolysis reaction further significantly improved the saccharification performance by blocking the lignin and avoiding unproductive adsorption of enzymes. The results of the alcoholic fermentation validated the overall integrated process, with a volumetric ethanol productivity of 4.77 g/L.h, representing 83.5% of the theoretical yield. These findings demonstrate the feasibility of the proposed one-pot integrated strategy using the whole SSF medium of mixed filamentous fungi for on-site enzymes production, biomass hydrolysis, and ethanol production. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 2018. © 2018 American Institute of Chemical Engineers.
Banerjee, Goutami; Car, Suzana; Liu, Tongjun; Williams, Daniel L; Meza, Sarynna López; Walton, Jonathan D; Hodge, David B
2012-04-01
Alkaline hydrogen peroxide (AHP) has several attractive features as a pretreatment in the lignocellulosic biomass-to-ethanol pipeline. Here, the feasibility of scaling-up the AHP process and integrating it with enzymatic hydrolysis and fermentation was studied. Corn stover (1 kg) was subjected to AHP pretreatment, hydrolyzed enzymatically, and the resulting sugars fermented to ethanol. The AHP pretreatment was performed at 0.125 g H(2) O(2) /g biomass, 22°C, and atmospheric pressure for 48 h with periodic pH readjustment. The enzymatic hydrolysis was performed in the same reactor following pH neutralization of the biomass slurry and without washing. After 48 h, glucose and xylose yields were 75% and 71% of the theoretical maximum. Sterility was maintained during pretreatment and enzymatic hydrolysis without the use of antibiotics. During fermentation using a glucose- and xylose-utilizing strain of Saccharomyces cerevisiae, all of the Glc and 67% of the Xyl were consumed in 120 h. The final ethanol titer was 13.7 g/L. Treatment of the enzymatic hydrolysate with activated carbon prior to fermentation had little effect on Glc fermentation but markedly improved utilization of Xyl, presumably due to the removal of soluble aromatic inhibitors. The results indicate that AHP is readily scalable and can be integrated with enzyme hydrolysis and fermentation. Compared to other leading pretreatments for lignocellulosic biomass, AHP has potential advantages with regard to capital costs, process simplicity, feedstock handling, and compatibility with enzymatic deconstruction and fermentation. Biotechnol. Bioeng. 2012; 109:922-931. © 2011 Wiley Periodicals, Inc. Copyright © 2011 Wiley Periodicals, Inc.
Catalytic wet oxidation: mathematical modeling of multicompound destruction.
Yang, J; Hand, D W; Hokanson, D R; Crittenden, J C; Oman, E J
2003-01-01
A mathematical model of a three-phase catalytic reactor, CatReac, was developed for analysis and optimization of a catalytic oxidation reactor that is used in the International Space Station potable water processor. The packed-bed catalytic reactor, known as the volatile reactor assembly (VRA), is operated as a three-phase reactor and contains a proprietary catalyst, a pure-oxygen gas phase, and the contaminated water. The contaminated water being fed to the VRA primarily consists of acetic acid, acetone, ethanol, 1-propanol, 2-propanol, and propionic acid ranging in concentration from 1 to 10 mg/L. The Langmuir-Hinshelwood Hougen-Watson (L-H) (Hougen, 1943) expression was used to describe the surface reaction rate for these compounds. Single and multicompound short-column experiments were used to determine the L-H rate parameters and calibrate the model. The model was able to predict steady-state multicomponent effluent profiles for short and full-scale reactor experiments.
Ethanol and other oxygenateds from low grade carbonaceous resources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joo, O.S.; Jung, K.D.; Han, S.H.
1995-12-31
Anhydrous ethanol and other oxygenates of C2 up can be produced quite competitively from low grade carbonaceous resources in high yield via gasification, methanol synthesis, carbonylation of methanol an hydrogenation consecutively. Gas phase carbonylation of methanol to form methyl acetate is the key step for the whole process. Methyl acetate can be produced very selectively in one step gas phase reaction on a fixed bed column reactor with GHSV over 5,000. The consecutive hydrogenation of methyl or ethyl acetate produce anhydrous ethanol in high purity. It is also attempted to co-produce methanol and DME in IGCC, in which low grademore » carbonaceous resources are used as energy sources, and the surplus power and pre-power gas can be stored in liquid form of methanol and DME during base load time. Further integration of C2 up oxygenate production with IGCC can improve its economics. The attempt of above extensive technology integration can generate significant industrial profitability as well as reduce the environmental complication related with massive energy consumption.« less
Designing industrial yeasts for the consolidated bioprocessing of starchy biomass to ethanol
Favaro, Lorenzo; Jooste, Tania; Basaglia, Marina; Rose, Shaunita H.; Saayman, Maryna; Görgens, Johann F.; Casella, Sergio; van Zyl, Willem H.
2013-01-01
Consolidated bioprocessing (CBP), which integrates enzyme production, saccharification and fermentation into a one step process, is a promising strategy for the effective ethanol production from cheap lignocellulosic and starchy materials. CBP requires a highly engineered microbial strain able to both hydrolyze biomass with enzymes produced on its own and convert the resulting simple sugars into high-titer ethanol. Recently, heterologous production of cellulose and starch-degrading enzymes has been achieved in yeast hosts, which has realized direct processing of biomass to ethanol. However, essentially all efforts aimed at the efficient heterologous expression of saccharolytic enzymes in yeast have involved laboratory strains and much of this work has to be transferred to industrial yeasts that provide the fermentation capacity and robustness desired for large scale bioethanol production. Specifically, the development of an industrial CBP amylolytic yeast would allow the one-step processing of low-cost starchy substrates into ethanol. This article gives insight in the current knowledge and achievements on bioethanol production from starchy materials with industrial engineered S. cerevisiae strains. PMID:22989992
Liu, Zhi-Hua; Chen, Hong-Zhang
2017-01-01
The simultaneous saccharification and fermentation (SSF) of corn stover biomass for ethanol production was performed by integrating steam explosion (SE) pretreatment, hydrolysis and fermentation. Higher SE pretreatment severity and two-step size reduction increased the specific surface area, swollen volume and water holding capacity of steam exploded corn stover (SECS) and hence facilitated the efficiency of hydrolysis and fermentation. The ethanol production and yield in SSF increased with the decrease of particle size and post-washing of SECS prior to fermentation to remove the inhibitors. Under the SE conditions of 1.5MPa and 9min using 2.0cm particle size, glucan recovery and conversion to glucose by enzymes were 86.2% and 87.2%, respectively. The ethanol concentration and yield were 45.0g/L and 85.6%, respectively. With this two-step size reduction and post-washing strategy, the water utilization efficiency, sugar recovery and conversion, and ethanol concentration and yield by the SSF process were improved. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ji, Shi-Qi; Wang, Bing; Lu, Ming; Li, Fu-Li
2016-01-01
Brown algae are promising feedstocks for biofuel production with inherent advantages of no structural lignin, high growth rate, and no competition for land and fresh water. However, it is difficult for one microorganism to convert all components of brown algae with different oxidoreduction potentials to ethanol. Defluviitalea phaphyphila Alg1 is the first characterized thermophilic bacterium capable of direct utilization of brown algae. Defluviitalea phaphyphila Alg1 can simultaneously utilize mannitol, glucose, and alginate to produce ethanol, and high ethanol yields of 0.47 g/g-mannitol, 0.44 g/g-glucose, and 0.3 g/g-alginate were obtained. A rational redox balance system under obligate anaerobic condition in fermenting brown algae was revealed in D. phaphyphila Alg1 through genome and redox analysis. The excess reducing equivalents produced from mannitol metabolism were equilibrated by oxidizing forces from alginate assimilation. Furthermore, D. phaphyphila Alg1 can directly utilize unpretreated kelp powder, and 10 g/L of ethanol was accumulated within 72 h with an ethanol yield of 0.25 g/g-kelp. Microscopic observation further demonstrated the deconstruction process of brown algae cell by D. phaphyphila Alg1. The integrated biomass deconstruction system of D. phaphyphila Alg1, as well as its high ethanol yield, provided us an excellent alternative for brown algae bioconversion at elevated temperature.
Jiang, Dong; Hao, Mengmeng; Fu, Jingying; Tian, Guangjin; Ding, Fangyu
2017-09-14
Global warming and increasing concentration of atmospheric greenhouse gas (GHG) have prompted considerable interest in the potential role of energy plant biomass. Cassava-based fuel ethanol is one of the most important bioenergy and has attracted much attention in both developed and developing countries. However, the development of cassava-based fuel ethanol is still faced with many uncertainties, including raw material supply, net energy potential, and carbon emission mitigation potential. Thus, an accurate estimation of these issues is urgently needed. This study provides an approach to estimate energy saving and carbon emission mitigation potentials of cassava-based fuel ethanol through LCA (life cycle assessment) coupled with a biogeochemical process model-GEPIC (GIS-based environmental policy integrated climate) model. The results indicate that the total potential of cassava yield on marginal land in China is 52.51 million t; the energy ratio value varies from 0.07 to 1.44, and the net energy surplus of cassava-based fuel ethanol in China is 92,920.58 million MJ. The total carbon emission mitigation from cassava-based fuel ethanol in China is 4593.89 million kgC. Guangxi, Guangdong, and Fujian are identified as target regions for large-scale development of cassava-based fuel ethanol industry. These results can provide an operational approach and fundamental data for scientific research and energy planning.
Ismail, Ku Syahidah Ku; Sakamoto, Takatoshi; Hatanaka, Haruyo; Hasunuma, Tomohisa; Kondo, Akihiko
2013-01-10
Production of ethanol from xylose at high temperature would be an economical approach since it reduces risk of contamination and allows both the saccharification and fermentation steps in SSF to be running at elevated temperature. Eight recombinant xylose-utilizing Saccharomyces cerevisiae strains developed from industrial strains were constructed and subjected to high-temperature fermentation at 38 °C. The best performing strain was sun049T, which produced up to 15.2 g/L ethanol (63% of the theoretical production), followed by sun048T and sun588T, both with 14.1 g/L ethanol produced. Via transcriptomic analysis, expression profiling of the top three best ethanol producing strains compared to a negative control strain, sun473T, led to the discovery of genes in common that were regulated in the same direction. Identification of the 20 most highly up-regulated and the 20 most highly down-regulated genes indicated that the cells regulate their central metabolism and maintain the integrity of the cell walls in response to high temperature. We also speculate that cross-protection in the cells occurs, allowing them to maintain ethanol production at higher concentration under heat stress than the negative controls. This report provides further transcriptomics information in the interest of producing a robust microorganism for high-temperature ethanol production utilizing xylose. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Jiang, Dong; Hao, Mengmeng; Fu, Jingying; Tian, Guangjin; Ding, Fangyu
2017-09-01
Global warming and increasing concentration of atmospheric greenhouse gas (GHG) have prompted considerable interest in the potential role of energy plant biomass. Cassava-based fuel ethanol is one of the most important bioenergy and has attracted much attention in both developed and developing countries. However, the development of cassava-based fuel ethanol is still faced with many uncertainties, including raw material supply, net energy potential, and carbon emission mitigation potential. Thus, an accurate estimation of these issues is urgently needed. This study provides an approach to estimate energy saving and carbon emission mitigation potentials of cassava-based fuel ethanol through LCA (life cycle assessment) coupled with a biogeochemical process model—GEPIC (GIS-based environmental policy integrated climate) model. The results indicate that the total potential of cassava yield on marginal land in China is 52.51 million t; the energy ratio value varies from 0.07 to 1.44, and the net energy surplus of cassava-based fuel ethanol in China is 92,920.58 million MJ. The total carbon emission mitigation from cassava-based fuel ethanol in China is 4593.89 million kgC. Guangxi, Guangdong, and Fujian are identified as target regions for large-scale development of cassava-based fuel ethanol industry. These results can provide an operational approach and fundamental data for scientific research and energy planning.
Effect of ethanol treatment on physiological and quality attributes of fresh-cut eggplant.
Hu, Wenzhong; Jiang, Aili; Tian, Mixia; Liu, Chenghui; Wang, Yanying
2010-06-01
Fresh-cut eggplants, as other vegetables, have relatively short shelf life because of the large amount of tissue disruption and increased metabolism. There is a very rapid onset of enzymatic browning and tissue softening with consequent decrease in sensorial and nutritional quality. To reduce respiration and maintain the quality, various treatments have been applied to find the optimum conditions that provide more fresh and natural fresh-cut produce after minimal processing. The objective of this study was to investigate the effects of ethanol vapour treatment on physiological and quality attributes of fresh-cut eggplant during the extension of shelf life. The fresh-cut eggplant treated with ethanol vapour showed that respiration rate and occurrence of enzymatic browning were reduced, and higher total phenol content was maintained during 8 days of storage at 10 degrees C. The polyphenol oxidase and peroxidase in fresh-cut eggplant were also inhibited significantly by ethanol treatment. The ethanol treatment reduced the weight loss and maintained the integrity of cell membranes, as confirmed by the low value of electrolyte leakage. The ethanol treatment applied for fresh-cut eggplant was a practical approach to reduce the activity of physiological metabolism and maintain the fresh quality of fresh-cut eggplant. The experimental results revealed that ethanol treatment was effective for extending the shelf life of fresh-cut eggplant as a cheap, environmentally acceptable method. Copyright (c) 2010 Society of Chemical Industry.
MULTI-CORE AND OPTICAL PROCESSOR RELATED APPLICATIONS RESEARCH AT OAK RIDGE NATIONAL LABORATORY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barhen, Jacob; Kerekes, Ryan A; ST Charles, Jesse Lee
2008-01-01
High-speed parallelization of common tasks holds great promise as a low-risk approach to achieving the significant increases in signal processing and computational performance required for next generation innovations in reconfigurable radio systems. Researchers at the Oak Ridge National Laboratory have been working on exploiting the parallelization offered by this emerging technology and applying it to a variety of problems. This paper will highlight recent experience with four different parallel processors applied to signal processing tasks that are directly relevant to signal processing required for SDR/CR waveforms. The first is the EnLight Optical Core Processor applied to matched filter (MF) correlationmore » processing via fast Fourier transform (FFT) of broadband Dopplersensitive waveforms (DSW) using active sonar arrays for target tracking. The second is the IBM CELL Broadband Engine applied to 2-D discrete Fourier transform (DFT) kernel for image processing and frequency domain processing. And the third is the NVIDIA graphical processor applied to document feature clustering. EnLight Optical Core Processor. Optical processing is inherently capable of high-parallelism that can be translated to very high performance, low power dissipation computing. The EnLight 256 is a small form factor signal processing chip (5x5 cm2) with a digital optical core that is being developed by an Israeli startup company. As part of its evaluation of foreign technology, ORNL's Center for Engineering Science Advanced Research (CESAR) had access to a precursor EnLight 64 Alpha hardware for a preliminary assessment of capabilities in terms of large Fourier transforms for matched filter banks and on applications related to Doppler-sensitive waveforms. This processor is optimized for array operations, which it performs in fixed-point arithmetic at the rate of 16 TeraOPS at 8-bit precision. This is approximately 1000 times faster than the fastest DSP available today. The optical core performs the matrix-vector multiplications, where the nominal matrix size is 256x256. The system clock is 125MHz. At each clock cycle, 128K multiply-and-add operations per second (OPS) are carried out, which yields a peak performance of 16 TeraOPS. IBM Cell Broadband Engine. The Cell processor is the extraordinary resulting product of 5 years of sustained, intensive R&D collaboration (involving over $400M investment) between IBM, Sony, and Toshiba. Its architecture comprises one multithreaded 64-bit PowerPC processor element (PPE) with VMX capabilities and two levels of globally coherent cache, and 8 synergistic processor elements (SPEs). Each SPE consists of a processor (SPU) designed for streaming workloads, local memory, and a globally coherent direct memory access (DMA) engine. Computations are performed in 128-bit wide single instruction multiple data streams (SIMD). An integrated high-bandwidth element interconnect bus (EIB) connects the nine processors and their ports to external memory and to system I/O. The Applied Software Engineering Research (ASER) Group at the ORNL is applying the Cell to a variety of text and image analysis applications. Research on Cell-equipped PlayStation3 (PS3) consoles has led to the development of a correlation-based image recognition engine that enables a single PS3 to process images at more than 10X the speed of state-of-the-art single-core processors. NVIDIA Graphics Processing Units. The ASER group is also employing the latest NVIDIA graphical processing units (GPUs) to accelerate clustering of thousands of text documents using recently developed clustering algorithms such as document flocking and affinity propagation.« less
Missile signal processing common computer architecture for rapid technology upgrade
NASA Astrophysics Data System (ADS)
Rabinkin, Daniel V.; Rutledge, Edward; Monticciolo, Paul
2004-10-01
Interceptor missiles process IR images to locate an intended target and guide the interceptor towards it. Signal processing requirements have increased as the sensor bandwidth increases and interceptors operate against more sophisticated targets. A typical interceptor signal processing chain is comprised of two parts. Front-end video processing operates on all pixels of the image and performs such operations as non-uniformity correction (NUC), image stabilization, frame integration and detection. Back-end target processing, which tracks and classifies targets detected in the image, performs such algorithms as Kalman tracking, spectral feature extraction and target discrimination. In the past, video processing was implemented using ASIC components or FPGAs because computation requirements exceeded the throughput of general-purpose processors. Target processing was performed using hybrid architectures that included ASICs, DSPs and general-purpose processors. The resulting systems tended to be function-specific, and required custom software development. They were developed using non-integrated toolsets and test equipment was developed along with the processor platform. The lifespan of a system utilizing the signal processing platform often spans decades, while the specialized nature of processor hardware and software makes it difficult and costly to upgrade. As a result, the signal processing systems often run on outdated technology, algorithms are difficult to update, and system effectiveness is impaired by the inability to rapidly respond to new threats. A new design approach is made possible three developments; Moore's Law - driven improvement in computational throughput; a newly introduced vector computing capability in general purpose processors; and a modern set of open interface software standards. Today's multiprocessor commercial-off-the-shelf (COTS) platforms have sufficient throughput to support interceptor signal processing requirements. This application may be programmed under existing real-time operating systems using parallel processing software libraries, resulting in highly portable code that can be rapidly migrated to new platforms as processor technology evolves. Use of standardized development tools and 3rd party software upgrades are enabled as well as rapid upgrade of processing components as improved algorithms are developed. The resulting weapon system will have a superior processing capability over a custom approach at the time of deployment as a result of a shorter development cycles and use of newer technology. The signal processing computer may be upgraded over the lifecycle of the weapon system, and can migrate between weapon system variants enabled by modification simplicity. This paper presents a reference design using the new approach that utilizes an Altivec PowerPC parallel COTS platform. It uses a VxWorks-based real-time operating system (RTOS), and application code developed using an efficient parallel vector library (PVL). A quantification of computing requirements and demonstration of interceptor algorithm operating on this real-time platform are provided.
USDA-ARS?s Scientific Manuscript database
This chapter provides process economic details on production of butanol from lignocellulosic biomass and glycerol in integrated bioreactors where numerous unit operations are combined. In order to compare various processes, economic evaluations were performed using SuperPro Designer Software (versio...
Parallel Multi-Step/Multi-Rate Integration of Two-Time Scale Dynamic Systems
NASA Technical Reports Server (NTRS)
Chang, Johnny T.; Ploen, Scott R.; Sohl, Garett. A,; Martin, Bryan J.
2004-01-01
Increasing demands on the fidelity of simulations for real-time and high-fidelity simulations are stressing the capacity of modern processors. New integration techniques are required that provide maximum efficiency for systems that are parallelizable. However many current techniques make assumptions that are at odds with non-cascadable systems. A new serial multi-step/multi-rate integration algorithm for dual-timescale continuous state systems is presented which applies to these systems, and is extended to a parallel multi-step/multi-rate algorithm. The superior performance of both algorithms is demonstrated through a representative example.
NASA Technical Reports Server (NTRS)
Krosel, S. M.; Milner, E. J.
1982-01-01
The application of Predictor corrector integration algorithms developed for the digital parallel processing environment are investigated. The algorithms are implemented and evaluated through the use of a software simulator which provides an approximate representation of the parallel processing hardware. Test cases which focus on the use of the algorithms are presented and a specific application using a linear model of a turbofan engine is considered. Results are presented showing the effects of integration step size and the number of processors on simulation accuracy. Real time performance, interprocessor communication, and algorithm startup are also discussed.
Yeow, Jianwei; Wang, Ivy; Zhang, Hongfang; Song, Hao; Jiang, Rongrong
2013-01-01
A major challenge in bioethanol fermentation is the low tolerance of the microbial host towards the end product bioethanol. Here we report to improve the ethanol tolerance of E. coli from the transcriptional level by engineering its global transcription factor cAMP receptor protein (CRP), which is known to regulate over 400 genes in E. coli. Three ethanol tolerant CRP mutants (E1– E3) were identified from error-prone PCR libraries. The best ethanol-tolerant strain E2 (M59T) had the growth rate of 0.08 h−1 in 62 g/L ethanol, higher than that of the control at 0.06 h−1. The M59T mutation was then integrated into the genome to create variant iE2. When exposed to 150 g/l ethanol, the survival of iE2 after 15 min was about 12%, while that of BW25113 was <0.01%. Quantitative real-time reverse transcription PCR analysis (RT-PCR) on 444 CRP-regulated genes using OpenArray® technology revealed that 203 genes were differentially expressed in iE2 in the absence of ethanol, whereas 92 displayed differential expression when facing ethanol stress. These genes belong to various functional groups, including central intermediary metabolism (aceE, acnA, sdhD, sucA), iron ion transport (entH, entD, fecA, fecB), and general stress response (osmY, rpoS). Six up-regulated and twelve down-regulated common genes were found in both iE2 and E2 under ethanol stress, whereas over one hundred common genes showed differential expression in the absence of ethanol. Based on the RT-PCR results, entA, marA or bhsA was knocked out in iE2 and the resulting strains became more sensitive towards ethanol. PMID:23469036
Heaton, Marieta Barrow; Paiva, Michael; Siler-Marsiglio, Kendra
2011-01-01
Background This study investigated ethanol influences on intracellular events which predispose developing neurons toward apoptosis, and the capacity of the antioxidant α-tocopherol (vitamin E) and the neurotrophin brain-derived neurotrophic factor (BDNF) to modulate these effects. Assessments were made of the following: (1) ethanol-induced translocation of the pro-apoptotic Bax protein to the mitochondrial membrane, a key upstream event in the initiation of apoptotic cell death; (2) disruption of the mitochondrial membrane potential (MMP) as a result of ethanol exposure, an important process in triggering the apoptotic cascade; and (3) generation of damaging reactive oxygen species (ROS) as a function of ethanol exposure. Methods These interactions were investigated in cultured postnatal day 8 neonatal rat cerebellar granule cells, a population vulnerable to developmental ethanol exposure in vivo and in vitro. Bax mitochondrial translocation was analyzed via subcellular fractionation followed by Western blot, and mitochondrial membrane integrity was determined using the lipophilic dye, JC-1, which exhibits potential-dependent accumulation in the mitochondrial membrane as a function of the MMP. Results Brief ethanol exposure in these preparations precipitated Bax translocation, but both vitamin E and BDNF reduced this effect to control levels. Ethanol treatment also resulted in a disturbance of the MMP, and this effect was blunted by the antioxidant and the neurotrophin. ROS generation was enhanced by a short ethanol exposure in these cells, but the production of these harmful free radicals was diminished to control levels by co-treatment with either vitamin E or BDNF. Conclusions These results indicate that both antioxidants and neurotrophic factors have the potential to ameliorate ethanol neurotoxicity, and suggest possible interventions which could be implemented in preventing or lessening the severity of the damaging effects of ethanol in the developing central nervous system seen in the fetal alcohol syndrome (FAS). PMID:21332533
1982-10-01
class queueing system with a preemptive -resume priority service discipline, as depicted in Figure 4.2. Concerning a SPLICLAN configuration a node can...processor can be modeled as a single resource, multi-class queueing system with a preemptive -resume priority structure as the one given in Figure 4.2. An...LOCAL AREA NETWORK DESIGN IN SUPPORT OF STOCK POINT LOGISTICS INTEGRATED COMMUNICATIONS ENVIRONMENT (SPLICE) by Ioannis Th. Mastrocostopoulos October
Integrated Optical Synthetic Aperture Radar Processor.
1987-09-01
acoustooptic cell was employed to input each radar return into a time-and-space integrating optical architecture comprised of several lenses, a CCD area array...acoustooptic cell and parallel rib waveguide structure. During the course of the literature survey, we became aware of an elegant and poten- tially profound...wave.) scatterer at (f , A(t) is the far-field pattern of the antenna. From the geometry of Si. 1. R can be written as [I-2R,/c - nT1 r(t) = A(nT) rectj
1996-01-01
INTENSIFICATION (AI2) ATD AERIAL SCOUT SENSORS INTEGRATION (ASSI) BISTATIC RADAR FOR WEAPONS LOCATION (BRWL) ATD CLOSE IN MAN PORTABLE MINE DETECTOR (CIMMD...MS IV PE & LINE #: 1X428010.D107 HI Operations/Support DESCRIPTION: The AN/TTC-39A Circuit Switch is a 744 line mobile , automatic ...SYNOPSIS: AN/TTC-39 IS A MOBILE , AUTOMATIC , MODULAR ELECTRONIC CIRCUIT SWITCH UNDER PROCESSOR CONTROL WITH INTEGRAL COMSEC AND MULTIPLEX EQUIPMENT. AN/TTC
Read All about It: Motivate Your Students with These Exercises
ERIC Educational Resources Information Center
Tuttle, Harry Grover
2007-01-01
Educators at elementary, middle, and high school levels will find that integrating digital tools and resources--many commonly used by students in their "out of school" lives--can be a springboard to creativity and new skills. In this article, the author describes how word processors, presentation software and hardware, mind-mapping applications,…
1987-05-01
workload (beyond that of say an equivalent academic or corporate technical libary ) for the Defense Department libraries. Figure 9 illustrates the range...summer. The hardware configuration for the system is as follows: " Digital Equipment Corporation VAX 11/750 central processor with 6 mega- bytes of real
78 FR 26332 - 36(b)(1) Arms Sales Notification
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-06
... Department of Defense is publishing the unclassified text of a section 36(b)(1) arms sales notification. This... type of mission. 2. The AN/ALE-47 Counter-Measures Dispensing System (CMDS) is an integrated, threat... multiple Optical Sensor Converter (OSC) units, a Computer Processor (CP) and a Control Indicator (CI). The...
Debugging and Analysis of Large-Scale Parallel Programs
1989-09-01
Przybylski, T. Riordan , C. Rowen, and D. Van’t Hof, "A CMOS RISC Processor with Integrated System Functions," In Proc. of the 1986 COMPCON. IEEE, March 1986...Sequencers," Communications of the ACM, 22(2):115-123, 1979. 115 [Richardson, 1988] Rick Richardson, "Dhrystone 2.1 Benchmark," Usenet Distribution
NASA Technical Reports Server (NTRS)
Gilliland, M. G.; Rougelot, R. S.; Schumaker, R. A.
1966-01-01
Video signal processor uses special-purpose integrated circuits with nonsaturating current mode switching to accept texture and color information from a digital computer in a visual spaceflight simulator and to combine these, for display on color CRT with analog information concerning fading.
2009-12-24
Networks Silicon-Photonic Clos Networks for Global On-Chip Communication Ajay Joshi* Christopher Batten? Yong-Jin Kwon! Scott Beamer! Imran Shamim ...4th edition, 2007. •A\\ [13] A Joshi, C Batten, Y Kwon, S Beamer, Imran Shamim , Krste Asanovic, and Vladimir Sto- janovic. Silicon-photonic clos
Image processing using Gallium Arsenide (GaAs) technology
NASA Technical Reports Server (NTRS)
Miller, Warner H.
1989-01-01
The need to increase the information return from space-borne imaging systems has increased in the past decade. The use of multi-spectral data has resulted in the need for finer spatial resolution and greater spectral coverage. Onboard signal processing will be necessary in order to utilize the available Tracking and Data Relay Satellite System (TDRSS) communication channel at high efficiency. A generally recognized approach to the increased efficiency of channel usage is through data compression techniques. The compression technique implemented is a differential pulse code modulation (DPCM) scheme with a non-uniform quantizer. The need to advance the state-of-the-art of onboard processing was recognized and a GaAs integrated circuit technology was chosen. An Adaptive Programmable Processor (APP) chip set was developed which is based on an 8-bit slice general processor. The reason for choosing the compression technique for the Multi-spectral Linear Array (MLA) instrument is described. Also a description is given of the GaAs integrated circuit chip set which will demonstrate that data compression can be performed onboard in real time at data rate in the order of 500 Mb/s.
DeepX: Deep Learning Accelerator for Restricted Boltzmann Machine Artificial Neural Networks.
Kim, Lok-Won
2018-05-01
Although there have been many decades of research and commercial presence on high performance general purpose processors, there are still many applications that require fully customized hardware architectures for further computational acceleration. Recently, deep learning has been successfully used to learn in a wide variety of applications, but their heavy computation demand has considerably limited their practical applications. This paper proposes a fully pipelined acceleration architecture to alleviate high computational demand of an artificial neural network (ANN) which is restricted Boltzmann machine (RBM) ANNs. The implemented RBM ANN accelerator (integrating network size, using 128 input cases per batch, and running at a 303-MHz clock frequency) integrated in a state-of-the art field-programmable gate array (FPGA) (Xilinx Virtex 7 XC7V-2000T) provides a computational performance of 301-billion connection-updates-per-second and about 193 times higher performance than a software solution running on general purpose processors. Most importantly, the architecture enables over 4 times (12 times in batch learning) higher performance compared with a previous work when both are implemented in an FPGA device (XC2VP70).
A frequency and sensitivity tunable microresonator array for high-speed quantum processor readout
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whittaker, J. D., E-mail: jwhittaker@dwavesys.com; Swenson, L. J.; Volkmann, M. H.
Superconducting microresonators have been successfully utilized as detection elements for a wide variety of applications. With multiplexing factors exceeding 1000 detectors per transmission line, they are the most scalable low-temperature detector technology demonstrated to date. For high-throughput applications, fewer detectors can be coupled to a single wire but utilize a larger per-detector bandwidth. For all existing designs, fluctuations in fabrication tolerances result in a non-uniform shift in resonance frequency and sensitivity, which ultimately limits the efficiency of bandwidth utilization. Here, we present the design, implementation, and initial characterization of a superconducting microresonator readout integrating two tunable inductances per detector. Wemore » demonstrate that these tuning elements provide independent control of both the detector frequency and sensitivity, allowing us to maximize the transmission line bandwidth utilization. Finally, we discuss the integration of these detectors in a multilayer fabrication stack for high-speed readout of the D-Wave quantum processor, highlighting the use of control and routing circuitry composed of single-flux-quantum loops to minimize the number of control wires at the lowest temperature stage.« less
Schiavone, Marion; Formosa-Dague, Cécile; Elsztein, Carolina; Teste, Marie-Ange; Martin-Yken, Helene; De Morais, Marcos A.; Dague, Etienne
2016-01-01
ABSTRACT A wealth of biochemical and molecular data have been reported regarding ethanol toxicity in the yeast Saccharomyces cerevisiae. However, direct physical data on the effects of ethanol stress on yeast cells are almost nonexistent. This lack of information can now be addressed by using atomic force microscopy (AFM) technology. In this report, we show that the stiffness of glucose-grown yeast cells challenged with 9% (vol/vol) ethanol for 5 h was dramatically reduced, as shown by a 5-fold drop of Young's modulus. Quite unexpectedly, a mutant deficient in the Msn2/Msn4 transcription factor, which is known to mediate the ethanol stress response, exhibited a low level of stiffness similar to that of ethanol-treated wild-type cells. Reciprocally, the stiffness of yeast cells overexpressing MSN2 was about 35% higher than that of the wild type but was nevertheless reduced 3- to 4-fold upon exposure to ethanol. Based on these and other data presented herein, we postulated that the effect of ethanol on cell stiffness may not be mediated through Msn2/Msn4, even though this transcription factor appears to be a determinant in the nanomechanical properties of the cell wall. On the other hand, we found that as with ethanol, the treatment of yeast with the antifungal amphotericin B caused a significant reduction of cell wall stiffness. Since both this drug and ethanol are known to alter, albeit by different means, the fluidity and structure of the plasma membrane, these data led to the proposition that the cell membrane contributes to the biophysical properties of yeast cells. IMPORTANCE Ethanol is the main product of yeast fermentation but is also a toxic compound for this process. Understanding the mechanism of this toxicity is of great importance for industrial applications. While most research has focused on genomic studies of ethanol tolerance, we investigated the effects of ethanol at the biophysical level and found that ethanol causes a strong reduction of the cell wall rigidity (or stiffness). We ascribed this effect to the action of ethanol perturbing the cell membrane integrity and hence proposed that the cell membrane contributes to the cell wall nanomechanical properties. PMID:27235439
Schiavone, Marion; Formosa-Dague, Cécile; Elsztein, Carolina; Teste, Marie-Ange; Martin-Yken, Helene; De Morais, Marcos A; Dague, Etienne; François, Jean M
2016-08-01
A wealth of biochemical and molecular data have been reported regarding ethanol toxicity in the yeast Saccharomyces cerevisiae However, direct physical data on the effects of ethanol stress on yeast cells are almost nonexistent. This lack of information can now be addressed by using atomic force microscopy (AFM) technology. In this report, we show that the stiffness of glucose-grown yeast cells challenged with 9% (vol/vol) ethanol for 5 h was dramatically reduced, as shown by a 5-fold drop of Young's modulus. Quite unexpectedly, a mutant deficient in the Msn2/Msn4 transcription factor, which is known to mediate the ethanol stress response, exhibited a low level of stiffness similar to that of ethanol-treated wild-type cells. Reciprocally, the stiffness of yeast cells overexpressing MSN2 was about 35% higher than that of the wild type but was nevertheless reduced 3- to 4-fold upon exposure to ethanol. Based on these and other data presented herein, we postulated that the effect of ethanol on cell stiffness may not be mediated through Msn2/Msn4, even though this transcription factor appears to be a determinant in the nanomechanical properties of the cell wall. On the other hand, we found that as with ethanol, the treatment of yeast with the antifungal amphotericin B caused a significant reduction of cell wall stiffness. Since both this drug and ethanol are known to alter, albeit by different means, the fluidity and structure of the plasma membrane, these data led to the proposition that the cell membrane contributes to the biophysical properties of yeast cells. Ethanol is the main product of yeast fermentation but is also a toxic compound for this process. Understanding the mechanism of this toxicity is of great importance for industrial applications. While most research has focused on genomic studies of ethanol tolerance, we investigated the effects of ethanol at the biophysical level and found that ethanol causes a strong reduction of the cell wall rigidity (or stiffness). We ascribed this effect to the action of ethanol perturbing the cell membrane integrity and hence proposed that the cell membrane contributes to the cell wall nanomechanical properties. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Evaluation of Gene Modification Strategies for the Development of Low-Alcohol-Wine Yeasts
Kutyna, D. R.; Solomon, M. R.; Black, C. A.; Borneman, A.; Henschke, P. A.; Pretorius, I. S.; Chambers, P. J.
2012-01-01
Saccharomyces cerevisiae has evolved a highly efficient strategy for energy generation which maximizes ATP energy production from sugar. This adaptation enables efficient energy generation under anaerobic conditions and limits competition from other microorganisms by producing toxic metabolites, such as ethanol and CO2. Yeast fermentative and flavor capacity forms the biotechnological basis of a wide range of alcohol-containing beverages. Largely as a result of consumer demand for improved flavor, the alcohol content of some beverages like wine has increased. However, a global trend has recently emerged toward lowering the ethanol content of alcoholic beverages. One option for decreasing ethanol concentration is to use yeast strains able to divert some carbon away from ethanol production. In the case of wine, we have generated and evaluated a large number of gene modifications that were predicted, or known, to impact ethanol formation. Using the same yeast genetic background, 41 modifications were assessed. Enhancing glycerol production by increasing expression of the glyceraldehyde-3-phosphate dehydrogenase gene, GPD1, was the most efficient strategy to lower ethanol concentration. However, additional modifications were needed to avoid negatively affecting wine quality. Two strains carrying several stable, chromosomally integrated modifications showed significantly lower ethanol production in fermenting grape juice. Strain AWRI2531 was able to decrease ethanol concentrations from 15.6% (vol/vol) to 13.2% (vol/vol), whereas AWRI2532 lowered ethanol content from 15.6% (vol/vol) to 12% (vol/vol) in both Chardonnay and Cabernet Sauvignon juices. Both strains, however, produced high concentrations of acetaldehyde and acetoin, which negatively affect wine flavor. Further modifications of these strains allowed reduction of these metabolites. PMID:22729542
Stein, Eric D; White, Bryan P; Mazor, Raphael D; Miller, Peter E; Pilgrim, Erik M
2013-01-01
Molecular methods, such as DNA barcoding, have the potential to enhance biomonitoring programs worldwide. Altering routinely used sample preservation methods to protect DNA from degradation may pose a potential impediment to application of DNA barcoding and metagenomics for biomonitoring using benthic macroinvertebrates. Using higher volumes or concentrations of ethanol, requirements for shorter holding times, or the need to include additional filtering may increase cost and logistical constraints to existing biomonitoring programs. To address this issue we evaluated the efficacy of various ethanol-based sample preservation methods at maintaining DNA integrity. We evaluated a series of methods that were minimally modified from typical field protocols in order to identify an approach that can be readily incorporated into existing monitoring programs. Benthic macroinvertebrates were collected from a minimally disturbed stream in southern California, USA and subjected to one of six preservation treatments. Ten individuals from five taxa were selected from each treatment and processed to produce DNA barcodes from the mitochondrial gene cytochrome c oxidase I (COI). On average, we obtained successful COI sequences (i.e. either full or partial barcodes) for between 93-99% of all specimens across all six treatments. As long as samples were initially preserved in 95% ethanol, successful sequencing of COI barcodes was not affected by a low dilution ratio of 2∶1, transfer to 70% ethanol, presence of abundant organic matter, or holding times of up to six months. Barcoding success varied by taxa, with Leptohyphidae (Ephemeroptera) producing the lowest barcode success rate, most likely due to poor PCR primer efficiency. Differential barcoding success rates have the potential to introduce spurious results. However, routine preservation methods can largely be used without adverse effects on DNA integrity.
Stein, Eric D.; White, Bryan P.; Mazor, Raphael D.; Miller, Peter E.; Pilgrim, Erik M.
2013-01-01
Molecular methods, such as DNA barcoding, have the potential to enhance biomonitoring programs worldwide. Altering routinely used sample preservation methods to protect DNA from degradation may pose a potential impediment to application of DNA barcoding and metagenomics for biomonitoring using benthic macroinvertebrates. Using higher volumes or concentrations of ethanol, requirements for shorter holding times, or the need to include additional filtering may increase cost and logistical constraints to existing biomonitoring programs. To address this issue we evaluated the efficacy of various ethanol-based sample preservation methods at maintaining DNA integrity. We evaluated a series of methods that were minimally modified from typical field protocols in order to identify an approach that can be readily incorporated into existing monitoring programs. Benthic macroinvertebrates were collected from a minimally disturbed stream in southern California, USA and subjected to one of six preservation treatments. Ten individuals from five taxa were selected from each treatment and processed to produce DNA barcodes from the mitochondrial gene cytochrome c oxidase I (COI). On average, we obtained successful COI sequences (i.e. either full or partial barcodes) for between 93–99% of all specimens across all six treatments. As long as samples were initially preserved in 95% ethanol, successful sequencing of COI barcodes was not affected by a low dilution ratio of 2∶1, transfer to 70% ethanol, presence of abundant organic matter, or holding times of up to six months. Barcoding success varied by taxa, with Leptohyphidae (Ephemeroptera) producing the lowest barcode success rate, most likely due to poor PCR primer efficiency. Differential barcoding success rates have the potential to introduce spurious results. However, routine preservation methods can largely be used without adverse effects on DNA integrity. PMID:23308097
Market-oriented ethanol and corn-trade policies can reduce climate-induced US corn price volatility
NASA Astrophysics Data System (ADS)
Verma, Monika; Hertel, Thomas; Diffenbaugh, Noah
2014-05-01
Agriculture is closely affected by climate. Over the past decade, biofuels have emerged as another important factor shaping the agricultural sector. We ask whether the presence of the US ethanol sector can play a role in moderating increases in US corn price variability, projected to occur in response to near-term global warming. Our findings suggest that the answer to this question depends heavily on the underlying forces shaping the ethanol industry. If mandate-driven, there is little doubt that the presence of the corn-ethanol sector will exacerbate price volatility. However, if market-driven, then the emergence of the corn-ethanol sector can be a double-edged sword for corn price volatility, possibly cushioning the impact of increased climate driven supply volatility, but also inheriting volatility from the newly integrated energy markets via crude oil price fluctuations. We find that empirically the former effect dominates, reducing price volatility by 27%. In contrast, mandates on ethanol production increase future price volatility by 54% in under future climate after 2020. We also consider the potential for liberalized international corn trade to cushion corn price volatility in the US. Our results suggest that allowing corn to move freely internationally serves to reduce the impact of near-term climate change on US corn price volatility by 8%.
Further In-vitro Characterization of an Implantable Biosensor for Ethanol Monitoring in the Brain
Secchi, Ottavio; Zinellu, Manuel; Spissu, Ylenia; Pirisinu, Marco; Bazzu, Gianfranco; Migheli, Rossana; Desole, Maria Speranza; O′Neill, Robert D.; Serra, Pier Andrea; Rocchitta, Gaia
2013-01-01
Ethyl alcohol may be considered one of the most widespread central nervous system (CNS) depressants in Western countries. Because of its toxicological and neurobiological implications, the detection of ethanol in brain extracellular fluid (ECF) is of great importance. In a previous study, we described the development and characterization of an implantable biosensor successfully used for the real-time detection of ethanol in the brain of freely-moving rats. The implanted biosensor, integrated in a low-cost telemetry system, was demonstrated to be a reliable device for the short-time monitoring of exogenous ethanol in brain ECF. In this paper we describe a further in-vitro characterization of the above-mentioned biosensor in terms of oxygen, pH and temperature dependence in order to complete its validation. With the aim of enhancing ethanol biosensor performance, different enzyme loadings were investigated in terms of apparent ethanol Michaelis-Menten kinetic parameters, viz. IMAX, KM and linear region slope, as well as ascorbic acid interference shielding. The responses of biosensors were studied over a period of 28 days. The overall findings of the present study confirm the original biosensor configuration to be the best of those investigated for in-vivo applications up to one week after implantation. PMID:23881145
Wang, Jianjun; Ma, Yuanyuan; Zhang, Kun; Yang, Huajun; Liu, Cheng; Zou, Shaolan; Hong, Jiefang; Zhang, Minhua
2016-08-10
In order to investigate the effect of mating type and ploidy on enzymatic activity and fermentation performance in yeast with multiple δ-integrated foreign genes, eight ploidy series strains were constructed. The initial haploid strain BGL-a was shown to contain about 19 copies of the bgl1 gene. In rich media containing 2% (w/v) sugar the specific activities of BGL-aα were lower than those of BGL-aa or BGL-αα, which indicates the existence of mating type effects. While the maximum OD660 decreased with rising ploidy, the biomass yield showed no significant difference between the eight strains and the specific activities (expressed as U/mL or U/mg DCW) showed little to no variation. When cellobiose was used as the carbon source and β-glucosidase substrate, β-glucosidase was expressed more quickly and at higher levels than in glucose-containing media. The maximum specific activitiy values obtained were 19.07U/mL and 19.39U/mL for BGL-αα and BGL-aa, repsectively. The anaerobic biomass and ethanol-producing performance in rich media containing 10% cellobiose showed no significant difference among the eight strains. Their maximal ethanol concentrations and corresponding yields ranged from 40.27 to 43.46g/L and 77.56 to 83.71%, respectively. When the acid- and alkali-pretreated corncob (10% solids content) was used, the diploid BGL-aα fermented the best. When urea was used as the only supplemented nutrient, the ethanol titer and yield were 35.65g/L and 83.69%, respectively, while a control experiment using industrial Angel yeast with exogenous β-glucosidase addition gave values of 37.93g/L and 89.04%. The combined effects of δ-integration of bgl1, ploidy and mating type result in BGL-aa or BGL-αα being the optimal choice for enzyme production and BGL-aα being more suitable for cellulosic ethanol fermentation. These results provide valuable information for future yeast breeding and utilization efforts. Copyright © 2016 Elsevier B.V. All rights reserved.
Koirala, Gyan Raj; Dhakal, Rajendra; Kim, Eun-Seong; Yao, Zhao; Kim, Nam-Young
2018-04-03
We present a microfabricated spiral-coupled passive resonator sensor realized through integrated passive device (IPD) technology for the sensitive detection and characterization of water-ethanol solutions. In order to validate the performance of the proposed device, we explicitly measured and analyzed the radio frequency (RF) characteristics of various water-ethanol solution compositions. The measured results showed a drift in the resonance frequency from 1.16 GHz for deionized (DI) water to 1.68 GHz for the solution containing 50% ethanol, whereas the rejection level given by the reflection coefficient decreased from -29.74 dB to -14.81 dB. The obtained limit of detection was 3.82% volume composition of ethanol in solution. The derived loaded capacitance was 21.76 pF for DI water, which gradually decreased to 8.70 pF for the 50% ethanol solution, and the corresponding relative permittivity of the solution decreased from 80.14 to 47.79. The dissipation factor increased with the concentration of ethanol in the solution. We demonstrated the reproducibility of the proposed sensor through iterative measures of the samples and the study of surface morphology. Successive measurement of different samples had no overlapping and had very minimum bias between RF characteristics for each measured sample. The surface profile for bare sensors was retained after the sample test, resulting a root mean square (RMS) value of 11.416 nm as compared to 10.902 nm for the bare test. The proposed sensor was shown to be a viable alternative to existing sensors for highly sensitive water-ethanol concentration detection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hellwinckel, C.M.; West, Tristram O.; De La Torre Ugarte, D. G.
An integrated, socioeconomic biogeophysical model is used to analyze the interactions of cap-and-trade legislation and the Renewable Fuels Standard. Five alternative policy scenarios were considered with the purpose of identifying policies that act in a synergistic manner to reduce carbon emissions, increase economic returns to agriculture, and adequately meet ethanol mandates.We conclude that climate and energy policies can best be implemented together by offering carbon offset payments to conservation tillage, herbaceous grasses for biomass, and by constraining crop residue removal for ethanol feedstocks to carbon neutral level.
Cache Energy Optimization Techniques For Modern Processors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mittal, Sparsh
2013-01-01
Modern multicore processors are employing large last-level caches, for example Intel's E7-8800 processor uses 24MB L3 cache. Further, with each CMOS technology generation, leakage energy has been dramatically increasing and hence, leakage energy is expected to become a major source of energy dissipation, especially in last-level caches (LLCs). The conventional schemes of cache energy saving either aim at saving dynamic energy or are based on properties specific to first-level caches, and thus these schemes have limited utility for last-level caches. Further, several other techniques require offline profiling or per-application tuning and hence are not suitable for product systems. In thismore » book, we present novel cache leakage energy saving schemes for single-core and multicore systems; desktop, QoS, real-time and server systems. Also, we present cache energy saving techniques for caches designed with both conventional SRAM devices and emerging non-volatile devices such as STT-RAM (spin-torque transfer RAM). We present software-controlled, hardware-assisted techniques which use dynamic cache reconfiguration to configure the cache to the most energy efficient configuration while keeping the performance loss bounded. To profile and test a large number of potential configurations, we utilize low-overhead, micro-architecture components, which can be easily integrated into modern processor chips. We adopt a system-wide approach to save energy to ensure that cache reconfiguration does not increase energy consumption of other components of the processor. We have compared our techniques with state-of-the-art techniques and have found that our techniques outperform them in terms of energy efficiency and other relevant metrics. The techniques presented in this book have important applications in improving energy-efficiency of higher-end embedded, desktop, QoS, real-time, server processors and multitasking systems. This book is intended to be a valuable guide for both newcomers and veterans in the field of cache power management. It will help graduate students, CAD tool developers and designers in understanding the need of energy efficiency in modern computing systems. Further, it will be useful for researchers in gaining insights into algorithms and techniques for micro-architectural and system-level energy optimization using dynamic cache reconfiguration. We sincerely believe that the ``food for thought'' presented in this book will inspire the readers to develop even better ideas for designing ``green'' processors of tomorrow.« less
NASA Astrophysics Data System (ADS)
Bittencourt, Tulio N.; Barry, Ahmabou; Ingraffea, Anthony R.
This paper presents a comparison among stress-intensity factors for mixed-mode two-dimensional problems obtained through three different approaches: displacement correlation, J-integral, and modified crack-closure integral. All mentioned procedures involve only one analysis step and are incorporated in the post-processor page of a finite element computer code for fracture mechanics analysis (FRANC). Results are presented for a closed-form solution problem under mixed-mode conditions. The accuracy of these described methods then is discussed and analyzed in the framework of their numerical results. The influence of the differences among the three methods on the predicted crack trajectory of general problems is also discussed.
A generic multibody simulation
NASA Technical Reports Server (NTRS)
Hopping, K. A.; Kohn, W.
1986-01-01
Described is a dynamic simulation package which can be configured for orbital test scenarios involving multiple bodies. The rotational and translational state integration methods are selectable for each individual body and may be changed during a run if necessary. Characteristics of the bodies are determined by assigning components consisting of mass properties, forces, and moments, which are the outputs of user-defined environmental models. Generic model implementation is facilitated by a transformation processor which performs coordinate frame inversions. Transformations are defined in the initialization file as part of the simulation configuration. The simulation package includes an initialization processor, which consists of a command line preprocessor, a general purpose grammar, and a syntax scanner. These permit specifications of the bodies, their interrelationships, and their initial states in a format that is not dependent on a particular test scenario.
NASA Technical Reports Server (NTRS)
Bagdigian, Robert M.; Cloud, Dale
2005-01-01
NASA is developing three racks containing regenerative water recovery and oxygen generation systems (WRS and OGS) for deployment on the International Space Station (ISS). The major assemblies included in these racks are the Water Processor Assembly (WPA), Urine Processor Assembly (UPA), Oxygen Generation Assembly (OGA), and the Power Supply Module (PSM) supporting the OGA. The WPA and OGA are provided by Hamilton Sundstrand Space Systems International (HSSSI), Inc., while the UPA and PSM are developed in- house by the Marshall Space Flight Center (MSFC). The assemblies have completed the manufacturing phase and are in various stages of testing and integration into the flight racks. This paper summarizes the status as of April 2005 and describes some of the technical challenges encountered and lessons learned over the past year.
Periodic Application of Concurrent Error Detection in Processor Array Architectures. PhD. Thesis -
NASA Technical Reports Server (NTRS)
Chen, Paul Peichuan
1993-01-01
Processor arrays can provide an attractive architecture for some applications. Featuring modularity, regular interconnection and high parallelism, such arrays are well-suited for VLSI/WSI implementations, and applications with high computational requirements, such as real-time signal processing. Preserving the integrity of results can be of paramount importance for certain applications. In these cases, fault tolerance should be used to ensure reliable delivery of a system's service. One aspect of fault tolerance is the detection of errors caused by faults. Concurrent error detection (CED) techniques offer the advantage that transient and intermittent faults may be detected with greater probability than with off-line diagnostic tests. Applying time-redundant CED techniques can reduce hardware redundancy costs. However, most time-redundant CED techniques degrade a system's performance.
Water Processor and Oxygen Generation Assembly
NASA Technical Reports Server (NTRS)
Bedard, John
1997-01-01
This report documents the results of the tasks which initiated efforts on design issues relating to the Water Processor (WP) and the Oxygen Generation Assembly (OGA) Flight Hardware for the International Space Station. This report fulfills the Statement of Work deliverables requirement for contract H-29387D. The following lists the tasks required by contract H-29387D: (1) HSSSI shall coordinate a detailed review of WP/OGA Flight Hardware program requirements with personnel from MSFC to identify requirements that can be eliminated without affecting the technical integrity of the WP/OGA Hardware; (2) HSSSI shall conduct the technical interchanges with personnel from MSFC to resolve design issues related to WP/OGA Flight Hardware; (3) HSSSI will initiate discussions with Zellwegger Analytics, Inc. to address design issues related to WP and PCWQM interfaces.
A scalable SIMD digital signal processor for high-quality multifunctional printer systems
NASA Astrophysics Data System (ADS)
Kang, Hyeong-Ju; Choi, Yongwoo; Kim, Kimo; Park, In-Cheol; Kim, Jung-Wook; Lee, Eul-Hwan; Gahang, Goo-Soo
2005-01-01
This paper describes a high-performance scalable SIMD digital signal processor (DSP) developed for multifunctional printer systems. The DSP supports a variable number of datapaths to cover a wide range of performance and maintain a RISC-like pipeline structure. Many special instructions suitable for image processing algorithms are included in the DSP. Quad/dual instructions are introduced for 8-bit or 16-bit data, and bit-field extraction/insertion instructions are supported to process various data types. Conditional instructions are supported to deal with complex relative conditions efficiently. In addition, an intelligent DMA block is integrated to align data in the course of data reading. Experimental results show that the proposed DSP outperforms a high-end printer-system DSP by at least two times.
Lawford, Hugh G; Rousseau, Joyce D
2002-01-01
IOGEN Corporation of Ottawa, Canada, has recently built a 40t/d biomass-to-ethanol demonstration plant adjacent to its enzyme production facility. It has partnered with the University of Toronto to test the C6/C5 cofermenta-tion performance characteristics of the National Renewable Energy Labora-tory's metabolically engineered Zymomonas mobilis using various biomass hydrolysates. IOGEN's feedstocks are primarily agricultural wastes such as corn stover and wheat straw. Integrated recombinant Z. mobilis strain AX101 grows on D-xylose and/or L-arabinose as the sole carbon/energy sources and ferments these pentose sugars to ethanol in high yield. Strain AX101 lacks the tetracycline resistance gene that was a common feature of other recombinant Zm constructs. Genomic integration provides reliable cofermentation performance in the absence of antibiotics, another characteristic making strain AX101 attractive for industrial cellulosic ethanol production. In this work, IOGEN's biomass hydrolysate was simulated by a pure sugar medium containing 6% (w/v) glucose, 3% xylose, and 0.35% arabinose. At a level of 3 g/L (dry solids), corn steep liquor with inorganic nitrogen (0.8 g/L of ammonium chloride or 1.2 g/L of diammonium phosphate) was a cost-effective nutritional supplement. In the absence of acetic acid, the maximum volumetric ethanol productivity of a continuous fermentation at pH 5.0 was 3.54 g/L x h. During prolonged continuous fermentation, the efficiency of sugar-to-ethanol conversion (based on total sugar load) was maintained at >85%. At a level of 0.25% (w/v) acetic acid, the productivity decreased to 1.17 g/L x h at pH 5.5. Unlike integrated, xylose-utilizing rec Zm strain C25, strain AX101 produces less lactic acid as byproduct, owing to the fact that the Escherichia coli arabinose genes are inserted into a region of the host chromosome tentatively assigned to the gene for D-lactic acid dehydrogenase. In pH-controlled batch fermentations with sugar mixtures, the order of sugar exhaustion from the medium was glucose followed by xylose and arabinose. Both the total sugar load and the sugar ratio were shown to be important determinants for efficient cofermentation. Ethanol at a level of 3% (w/v) was implicated as both inhibitory to pentose fermentation and as a potentiator of acetic acid inhibition of pentose fermentation at pH 5.5. The effect of ethanol may have been underestimated in other assessments of acetic acid sensitivity. This work underscores the importance of employing similar assay conditions in making comparative assessments of biocatalyst fermentation performance.
Integrated circuit for SAW and MEMS sensors
NASA Astrophysics Data System (ADS)
Fischer, Wolf-Joachim; Koenig, Peter; Ploetner, Matthias; Hermann, Rudiger; Stab, Helmut
2001-11-01
The sensor processor circuit has been developed for hand-held devices used in industrial and environmental applications, such as on-line process monitoring. Thereby devices with SAW sensors or MEMS resonators will benefit from this processor especially. Up to 8 sensors can be connected to the circuit as multisensors or sensor arrays. Two sensor processors SP1 and SP2 for different applications are presented in this paper. The SP-1 chip has a PCMCIA interface which can be used for the program and data transfer. SAW sensors which are working in the frequency range from 80 MHz to 160 MHz can be connected to the processor directly. It is possible to use the new SP-2 chip fabricated in a 0.5(mu) CMOS process for SAW devices with a maximum frequency of 600 MHz. An on-chip analog-digital-converter (ADC) and 6 PWM modules support the development of high-miniaturized intelligent sensor systems We have developed a multi-SAW sensor system with this ASIC that manages the requirements on control as well as signal generation and storage and provides an interface to the PC and electronic devices on the board. Its low power consumption and its PCMCIA plug fulfil the requirements of small size and mobility. For this application sensors have been developed to detect hazardous gases in ambient air. Sensors with differently modified copper-phthalocyanine films are capable of detecting NO2 and O3, whereas those with a hyperbranched polyester film respond to NH3.
Krityakierne, Tipaluck; Akhtar, Taimoor; Shoemaker, Christine A.
2016-02-02
This paper presents a parallel surrogate-based global optimization method for computationally expensive objective functions that is more effective for larger numbers of processors. To reach this goal, we integrated concepts from multi-objective optimization and tabu search into, single objective, surrogate optimization. Our proposed derivative-free algorithm, called SOP, uses non-dominated sorting of points for which the expensive function has been previously evaluated. The two objectives are the expensive function value of the point and the minimum distance of the point to previously evaluated points. Based on the results of non-dominated sorting, P points from the sorted fronts are selected as centersmore » from which many candidate points are generated by random perturbations. Based on surrogate approximation, the best candidate point is subsequently selected for expensive evaluation for each of the P centers, with simultaneous computation on P processors. Centers that previously did not generate good solutions are tabu with a given tenure. We show almost sure convergence of this algorithm under some conditions. The performance of SOP is compared with two RBF based methods. The test results show that SOP is an efficient method that can reduce time required to find a good near optimal solution. In a number of cases the efficiency of SOP is so good that SOP with 8 processors found an accurate answer in less wall-clock time than the other algorithms did with 32 processors.« less
2012-01-01
Background Historically, acid pretreatment technology for the production of bio-ethanol from corn stover has required severe conditions to overcome biomass recalcitrance. However, the high usage of acid and steam at severe pretreatment conditions hinders the economic feasibility of the ethanol production from biomass. In addition, the amount of acetate and furfural produced during harsh pretreatment is in the range that strongly inhibits cell growth and impedes ethanol fermentation. The current work addresses these issues through pretreatment with lower acid concentrations and temperatures incorporated with deacetylation and mechanical refining. Results The results showed that deacetylation with 0.1 M NaOH before acid pretreatment improved the monomeric xylose yield in pretreatment by up to 20% while keeping the furfural yield under 2%. Deacetylation also improved the glucose yield by 10% and the xylose yield by 20% during low solids enzymatic hydrolysis. Mechanical refining using a PFI mill further improved sugar yields during both low- and high-solids enzymatic hydrolysis. Mechanical refining also allowed enzyme loadings to be reduced while maintaining high yields. Deacetylation and mechanical refining are shown to assist in achieving 90% cellulose yield in high-solids (20%) enzymatic hydrolysis. When fermentations were performed under pH control to evaluate the effect of deacetylation and mechanical refining on the ethanol yields, glucose and xylose utilizations over 90% and ethanol yields over 90% were achieved. Overall ethanol yields were calculated based on experimental results for the base case and modified cases. One modified case that integrated deacetylation, mechanical refining, and washing was estimated to produce 88 gallons of ethanol per ton of biomass. Conclusion The current work developed a novel bio-ethanol process that features pretreatment with lower acid concentrations and temperatures incorporated with deacetylation and mechanical refining. The new process shows improved overall ethanol yields compared to traditional dilute acid pretreatment. The experimental results from this work support the techno-economic analysis and calculation of Minimum Ethanol Selling Price (MESP) detailed in our companion paper. PMID:22888758
VASP-4096: a very high performance programmable device for digital media processing applications
NASA Astrophysics Data System (ADS)
Krikelis, Argy
2001-03-01
Over the past few years, technology drivers for microprocessors have changed significantly. Media data delivery and processing--such as telecommunications, networking, video processing, speech recognition and 3D graphics--is increasing in importance and will soon dominate the processing cycles consumed in computer-based systems. This paper presents the architecture of the VASP-4096 processor. VASP-4096 provides high media performance with low energy consumption by integrating associative SIMD parallel processing with embedded microprocessor technology. The major innovations in the VASP-4096 is the integration of thousands of processing units in a single chip that are capable of support software programmable high-performance mathematical functions as well as abstract data processing. In addition to 4096 processing units, VASP-4096 integrates on a single chip a RISC controller that is an implementation of the SPARC architecture, 128 Kbytes of Data Memory, and I/O interfaces. The SIMD processing in VASP-4096 implements the ASProCore architecture, which is a proprietary implementation of SIMD processing, operates at 266 MHz with program instructions issued by the RISC controller. The device also integrates a 64-bit synchronous main memory interface operating at 133 MHz (double-data rate), and a 64- bit 66 MHz PCI interface. VASP-4096, compared with other processors architectures that support media processing, offers true performance scalability, support for deterministic and non-deterministic data processing on a single device, and software programmability that can be re- used in future chip generations.
NASA Astrophysics Data System (ADS)
Xie, Yiwei; Zhuang, Leimeng; Boller, Klaus-Jochen; Lowery, Arthur James
2017-06-01
Optical delay lines implemented in photonic integrated circuits (PICs) are essential for creating robust and low-cost optical signal processors on miniaturized chips. In particular, tunable delay lines enable a key feature of programmability for the on-chip processing functions. However, the previously investigated tunable delay lines are plagued by a severe drawback of delay-dependent loss due to the propagation loss in the constituent waveguides. In principle, a serial-connected amplifier can be used to compensate such losses or perform additional amplitude manipulation. However, this solution is generally unpractical as it introduces additional burden on chip area and power consumption, particularly for large-scale integrated PICs. Here, we report an integrated tunable delay line that overcomes the delay-dependent loss, and simultaneously allows for independent manipulation of group delay and amplitude responses. It uses a ring resonator with a tunable coupler and a semiconductor optical amplifier in the feedback path. A proof-of-concept device with a free spectral range of 11.5 GHz and a delay bandwidth in the order of 200 MHz is discussed in the context of microwave photonics and is experimentally demonstrated to be able to provide a lossless delay up to 1.1 to a 5 ns Gaussian pulse. The proposed device can be designed for different frequency scales with potential for applications across many other areas such as telecommunications, LIDAR, and spectroscopy, serving as a novel building block for creating chip-scale programmable optical signal processors.
NASA Technical Reports Server (NTRS)
Perry, Bruce; Anderson, Molly
2015-01-01
The Cascade Distillation Subsystem (CDS) is a rotary multistage distiller being developed to serve as the primary processor for wastewater recovery during long-duration space missions. The CDS could be integrated with a system similar to the International Space Station (ISS) Water Processor Assembly (WPA) to form a complete Water Recovery System (WRS) for future missions. Independent chemical process simulations with varying levels of detail have previously been developed using Aspen Custom Modeler (ACM) to aid in the analysis of the CDS and several WPA components. The existing CDS simulation could not model behavior during thermal startup and lacked detailed analysis of several key internal processes, including heat transfer between stages. The first part of this paper describes modifications to the ACM model of the CDS that improve its capabilities and the accuracy of its predictions. Notably, the modified version of the model can accurately predict behavior during thermal startup for both NaCl solution and pretreated urine feeds. The model is used to predict how changing operating parameters and design features of the CDS affects its performance, and conclusions from these predictions are discussed. The second part of this paper describes the integration of the modified CDS model and the existing WPA component models into a single WRS model. The integrated model is used to demonstrate the effects that changes to one component can have on the dynamic behavior of the system as a whole.
Semkiv, Marta V; Dmytruk, Kostyantyn V; Abbas, Charles A; Sibirny, Andriy A
2014-05-15
The production of ethyl alcohol by fermentation represents the largest scale application of Saccharomyces cerevisiae in industrial biotechnology. Increased worldwide demand for fuel bioethanol is anticipated over the next decade and will exceed 200 billion liters from further expansions. Our working hypothesis was that the drop in ATP level in S. cerevisiae cells during alcoholic fermentation should lead to an increase in ethanol production (yield and productivity) with a greater amount of the utilized glucose converted to ethanol. Our approach to achieve this goal is to decrease the intracellular ATP level via increasing the unspecific alkaline phosphatase activity. Intact and truncated versions of the S. cerevisiae PHO8 gene coding for vacuolar or cytosolic forms of alkaline phosphatase were fused with the alcohol dehydrogenase gene (ADH1) promoter. The constructed expression cassettes used for transformation vectors also contained the dominant selective marker kanMX4 and S. cerevisiae δ-sequence to facilitate multicopy integration to the genome. Laboratory and industrial ethanol producing strains BY4742 and AS400 overexpressing vacuolar form of alkaline phosphatase were characterized by a slightly lowered intracellular ATP level and biomass accumulation and by an increase in ethanol productivity (13% and 7%) when compared to the parental strains. The strains expressing truncated cytosolic form of alkaline phosphatase showed a prolonged lag-phase, reduced biomass accumulation and a strong defect in ethanol production. Overexpression of vacuolar alkaline phosphatase leads to an increased ethanol yield in S. cerevisiae.