Li, Yan
2017-05-25
The efficiency evaluation model of integrated energy system, involving many influencing factors, and the attribute values are heterogeneous and non-deterministic, usually cannot give specific numerical or accurate probability distribution characteristics, making the final evaluation result deviation. According to the characteristics of the integrated energy system, a hybrid multi-attribute decision-making model is constructed. The evaluation model considers the decision maker's risk preference. In the evaluation of the efficiency of the integrated energy system, the evaluation value of some evaluation indexes is linguistic value, or the evaluation value of the evaluation experts is not consistent. These reasons lead to ambiguity in the decision information, usually in the form of uncertain linguistic values and numerical interval values. In this paper, the risk preference of decision maker is considered when constructing the evaluation model. Interval-valued multiple-attribute decision-making method and fuzzy linguistic multiple-attribute decision-making model are proposed. Finally, the mathematical model of efficiency evaluation of integrated energy system is constructed.
Liu, Peigui; Elshall, Ahmed S.; Ye, Ming; ...
2016-02-05
Evaluating marginal likelihood is the most critical and computationally expensive task, when conducting Bayesian model averaging to quantify parametric and model uncertainties. The evaluation is commonly done by using Laplace approximations to evaluate semianalytical expressions of the marginal likelihood or by using Monte Carlo (MC) methods to evaluate arithmetic or harmonic mean of a joint likelihood function. This study introduces a new MC method, i.e., thermodynamic integration, which has not been attempted in environmental modeling. Instead of using samples only from prior parameter space (as in arithmetic mean evaluation) or posterior parameter space (as in harmonic mean evaluation), the thermodynamicmore » integration method uses samples generated gradually from the prior to posterior parameter space. This is done through a path sampling that conducts Markov chain Monte Carlo simulation with different power coefficient values applied to the joint likelihood function. The thermodynamic integration method is evaluated using three analytical functions by comparing the method with two variants of the Laplace approximation method and three MC methods, including the nested sampling method that is recently introduced into environmental modeling. The thermodynamic integration method outperforms the other methods in terms of their accuracy, convergence, and consistency. The thermodynamic integration method is also applied to a synthetic case of groundwater modeling with four alternative models. The application shows that model probabilities obtained using the thermodynamic integration method improves predictive performance of Bayesian model averaging. As a result, the thermodynamic integration method is mathematically rigorous, and its MC implementation is computationally general for a wide range of environmental problems.« less
NASA Technical Reports Server (NTRS)
Kubat, Greg; Vandrei, Don
2006-01-01
Project Objectives include: a) CNS Model Development; b Design/Integration of baseline set of CNS Models into ACES; c) Implement Enhanced Simulation Capabilities in ACES; d) Design and Integration of Enhanced (2nd set) CNS Models; and e) Continue with CNS Model Integration/Concept evaluations.
Biological Modeling As A Method for Data Evaluation and ...
Biological Models, evaluating consistency of data and integrating diverse data, examples of pharmacokinetics and response and pharmacodynamics Biological Models, evaluating consistency of data and integrating diverse data, examples of pharmacokinetics and response and pharmacodynamics
The bottom-up approach to integrative validity: a new perspective for program evaluation.
Chen, Huey T
2010-08-01
The Campbellian validity model and the traditional top-down approach to validity have had a profound influence on research and evaluation. That model includes the concepts of internal and external validity and within that model, the preeminence of internal validity as demonstrated in the top-down approach. Evaluators and researchers have, however, increasingly recognized that in an evaluation, the over-emphasis on internal validity reduces that evaluation's usefulness and contributes to the gulf between academic and practical communities regarding interventions. This article examines the limitations of the Campbellian validity model and the top-down approach and provides a comprehensive, alternative model, known as the integrative validity model for program evaluation. The integrative validity model includes the concept of viable validity, which is predicated on a bottom-up approach to validity. This approach better reflects stakeholders' evaluation views and concerns, makes external validity workable, and becomes therefore a preferable alternative for evaluation of health promotion/social betterment programs. The integrative validity model and the bottom-up approach enable evaluators to meet scientific and practical requirements, facilitate in advancing external validity, and gain a new perspective on methods. The new perspective also furnishes a balanced view of credible evidence, and offers an alternative perspective for funding. Copyright (c) 2009 Elsevier Ltd. All rights reserved.
EPA EXPOSURE MODELS LIBRARY AND INTEGRATED MODEL EVALUATION SYSTEM
The third edition of the U.S. Environmental Protection Agencys (EPA) EML/IMES (Exposure Models Library and Integrated Model Evaluation System) on CD-ROM is now available. The purpose of the disc is to provide a compact and efficient means to distribute exposure models, documentat...
Evaluating Uncertainty in Integrated Environmental Models: A Review of Concepts and Tools
This paper reviews concepts for evaluating integrated environmental models and discusses a list of relevant software-based tools. A simplified taxonomy for sources of uncertainty and a glossary of key terms with standard definitions are provided in the context of integrated appro...
Models of Evaluation Utilization: A Meta-Modeling Synthesis of the Literature.
ERIC Educational Resources Information Center
Johnson, R. Burke
An integrative causal process model of evaluation utilization variables is presented. The model was developed through a traditional approach to literature review that lists results from published studies and relates these to the research topic, and through an approach that tries to integrate the models found in the literature search. Meta-modeling…
DOT National Transportation Integrated Search
2001-09-01
The objective of this study was to use an advanced integrated land use and transportation model to evaluate transit and supportive land use and pricing policies; the Sacramento MEPLAN model was to used to simulate these policies. The model represents...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pietzcker, Robert C.; Ueckerdt, Falko; Carrara, Samuel
Mitigation-Process Integrated Assessment Models (MP-IAMs) are used to analyze long-term transformation pathways of the energy system required to achieve stringent climate change mitigation targets. Due to their substantial temporal and spatial aggregation, IAMs cannot explicitly represent all detailed challenges of integrating the variable renewable energies (VRE) wind and solar in power systems, but rather rely on parameterized modeling approaches. In the ADVANCE project, six international modeling teams have developed new approaches to improve the representation of power sector dynamics and VRE integration in IAMs. In this study, we qualitatively and quantitatively evaluate the last years' modeling progress and study themore » impact of VRE integration modeling on VRE deployment in IAM scenarios. For a comprehensive and transparent qualitative evaluation, we first develop a framework of 18 features of power sector dynamics and VRE integration. We then apply this framework to the newly-developed modeling approaches to derive a detailed map of strengths and limitations of the different approaches. For the quantitative evaluation, we compare the IAMs to the detailed hourly-resolution power sector model REMIX. We find that the new modeling approaches manage to represent a large number of features of the power sector, and the numerical results are in reasonable agreement with those derived from the detailed power sector model. Updating the power sector representation and the cost and resources of wind and solar substantially increased wind and solar shares across models: Under a carbon price of 30$/tCO2 in 2020 (increasing by 5% per year), the model-average cost-minimizing VRE share over the period 2050-2100 is 62% of electricity generation, 24%-points higher than with the old model version.« less
ERIC Educational Resources Information Center
Smith, Clare; Gibbard, Deborah; Higgins, Louise
2017-01-01
Speech and language therapists (SLT) frequently operate in an integrated manner, working with other professionals in the delivery of services to children. Since the end of the 1990s within the UK SLTs have developed integrated services within the field of public health. This study reports an evaluation of an integrated model of service delivery…
DOT National Transportation Integrated Search
2001-09-01
In this study, the authors apply an integrated land use and transportation model, the Sacramento MEPLAN model, to evaluate transit investment alternatives combines with supportive land use policies and pricing policies in the Sacramento region. The c...
ERIC Educational Resources Information Center
Patton, Michael Quinn
2016-01-01
Fidelity concerns the extent to which a specific evaluation sufficiently incorporates the core characteristics of the overall approach to justify labeling that evaluation by its designated name. Fidelity has traditionally meant implementing a model in exactly the same way each time following the prescribed steps and procedures. The essential…
ERIC Educational Resources Information Center
Kimmons, Royce; Hall, Cassidy
2018-01-01
We report on a survey of K-12 teachers and teacher candidates wherein participants evaluated known models (e.g., TPACK, SAMR, RAT, TIP) and provided insight on what makes a model valuable for them in the classroom. Results indicated that: (1) technology integration should be coupled with good theory to be effective, (2) classroom experience did…
A merged model of quality improvement and evaluation: maximizing return on investment.
Woodhouse, Lynn D; Toal, Russ; Nguyen, Trang; Keene, DeAnna; Gunn, Laura; Kellum, Andrea; Nelson, Gary; Charles, Simone; Tedders, Stuart; Williams, Natalie; Livingood, William C
2013-11-01
Quality improvement (QI) and evaluation are frequently considered to be alternative approaches for monitoring and assessing program implementation and impact. The emphasis on third-party evaluation, particularly associated with summative evaluation, and the grounding of evaluation in the social and behavioral science contrast with an emphasis on the integration of QI process within programs or organizations and its origins in management science and industrial engineering. Working with a major philanthropic organization in Georgia, we illustrate how a QI model is integrated with evaluation for five asthma prevention and control sites serving poor and underserved communities in rural and urban Georgia. A primary foundation of this merged model of QI and evaluation is a refocusing of the evaluation from an intimidating report card summative evaluation by external evaluators to an internally engaged program focus on developmental evaluation. The benefits of the merged model to both QI and evaluation are discussed. The use of evaluation based logic models can help anchor a QI program in evidence-based practice and provide linkage between process and outputs with the longer term distal outcomes. Merging the QI approach with evaluation has major advantages, particularly related to enhancing the funder's return on investment. We illustrate how a Plan-Do-Study-Act model of QI can (a) be integrated with evaluation based logic models, (b) help refocus emphasis from summative to developmental evaluation, (c) enhance program ownership and engagement in evaluation activities, and (d) increase the role of evaluators in providing technical assistance and support.
GLIMPSE: An integrated assessment model-based tool for coordinated energy and environmental planning
Dan Loughlin will describe the GCAM-USA integrated assessment model and how that model is being improved and integrated into the GLIMPSE decision support system. He will also demonstrate the application of the model to evaluate the emissions and health implications of hypothetica...
Mayhew, Susannah H; Ploubidis, George B; Sloggett, Andy; Church, Kathryn; Obure, Carol D; Birdthistle, Isolde; Sweeney, Sedona; Warren, Charlotte E; Watts, Charlotte; Vassall, Anna
2016-01-01
The body of knowledge on evaluating complex interventions for integrated healthcare lacks both common definitions of 'integrated service delivery' and standard measures of impact. Using multiple data sources in combination with statistical modelling the aim of this study is to develop a measure of HIV-reproductive health (HIV-RH) service integration that can be used to assess the degree of service integration, and the degree to which integration may have health benefits to clients, or reduce service costs. Data were drawn from the Integra Initiative's client flow (8,263 clients in Swaziland and 25,539 in Kenya) and costing tools implemented between 2008-2012 in 40 clinics providing RH services in Kenya and Swaziland. We used latent variable measurement models to derive dimensions of HIV-RH integration using these data, which quantified the extent and type of integration between HIV and RH services in Kenya and Swaziland. The modelling produced two clear and uncorrelated dimensions of integration at facility level leading to the development of two sub-indexes: a Structural Integration Index (integrated physical and human resource infrastructure) and a Functional Integration Index (integrated delivery of services to clients). The findings highlight the importance of multi-dimensional assessments of integration, suggesting that structural integration is not sufficient to achieve the integrated delivery of care to clients--i.e. "functional integration". These Indexes are an important methodological contribution for evaluating complex multi-service interventions. They help address the need to broaden traditional evaluations of integrated HIV-RH care through the incorporation of a functional integration measure, to avoid misleading conclusions on its 'impact' on health outcomes. This is particularly important for decision-makers seeking to promote integration in resource constrained environments.
Mayhew, Susannah H.; Ploubidis, George B.; Sloggett, Andy; Church, Kathryn; Obure, Carol D.; Birdthistle, Isolde; Sweeney, Sedona; Warren, Charlotte E.; Watts, Charlotte; Vassall, Anna
2016-01-01
Background The body of knowledge on evaluating complex interventions for integrated healthcare lacks both common definitions of ‘integrated service delivery’ and standard measures of impact. Using multiple data sources in combination with statistical modelling the aim of this study is to develop a measure of HIV-reproductive health (HIV-RH) service integration that can be used to assess the degree of service integration, and the degree to which integration may have health benefits to clients, or reduce service costs. Methods and Findings Data were drawn from the Integra Initiative’s client flow (8,263 clients in Swaziland and 25,539 in Kenya) and costing tools implemented between 2008–2012 in 40 clinics providing RH services in Kenya and Swaziland. We used latent variable measurement models to derive dimensions of HIV-RH integration using these data, which quantified the extent and type of integration between HIV and RH services in Kenya and Swaziland. The modelling produced two clear and uncorrelated dimensions of integration at facility level leading to the development of two sub-indexes: a Structural Integration Index (integrated physical and human resource infrastructure) and a Functional Integration Index (integrated delivery of services to clients). The findings highlight the importance of multi-dimensional assessments of integration, suggesting that structural integration is not sufficient to achieve the integrated delivery of care to clients—i.e. “functional integration”. Conclusions These Indexes are an important methodological contribution for evaluating complex multi-service interventions. They help address the need to broaden traditional evaluations of integrated HIV-RH care through the incorporation of a functional integration measure, to avoid misleading conclusions on its ‘impact’ on health outcomes. This is particularly important for decision-makers seeking to promote integration in resource constrained environments. PMID:26800517
Computer-aided operations engineering with integrated models of systems and operations
NASA Technical Reports Server (NTRS)
Malin, Jane T.; Ryan, Dan; Fleming, Land
1994-01-01
CONFIG 3 is a prototype software tool that supports integrated conceptual design evaluation from early in the product life cycle, by supporting isolated or integrated modeling, simulation, and analysis of the function, structure, behavior, failures and operation of system designs. Integration and reuse of models is supported in an object-oriented environment providing capabilities for graph analysis and discrete event simulation. Integration is supported among diverse modeling approaches (component view, configuration or flow path view, and procedure view) and diverse simulation and analysis approaches. Support is provided for integrated engineering in diverse design domains, including mechanical and electro-mechanical systems, distributed computer systems, and chemical processing and transport systems. CONFIG supports abstracted qualitative and symbolic modeling, for early conceptual design. System models are component structure models with operating modes, with embedded time-related behavior models. CONFIG supports failure modeling and modeling of state or configuration changes that result in dynamic changes in dependencies among components. Operations and procedure models are activity structure models that interact with system models. CONFIG is designed to support evaluation of system operability, diagnosability and fault tolerance, and analysis of the development of system effects of problems over time, including faults, failures, and procedural or environmental difficulties.
USDA-ARS?s Scientific Manuscript database
Representing the performance of cattle finished on an all forage diet in process-based whole farm system models has presented a challenge. To address this challenge, a study was done to evaluate average daily gain (ADG) predictions of the Integrated Farm System Model (IFSM) for steers consuming all-...
Piloted Evaluation of an Integrated Methodology for Propulsion and Airframe Control Design
NASA Technical Reports Server (NTRS)
Bright, Michelle M.; Simon, Donald L.; Garg, Sanjay; Mattern, Duane L.; Ranaudo, Richard J.; Odonoghue, Dennis P.
1994-01-01
An integrated methodology for propulsion and airframe control has been developed and evaluated for a Short Take-Off Vertical Landing (STOVL) aircraft using a fixed base flight simulator at NASA Lewis Research Center. For this evaluation the flight simulator is configured for transition flight using a STOVL aircraft model, a full nonlinear turbofan engine model, simulated cockpit and displays, and pilot effectors. The paper provides a brief description of the simulation models, the flight simulation environment, the displays and symbology, the integrated control design, and the piloted tasks used for control design evaluation. In the simulation, the pilots successfully completed typical transition phase tasks such as combined constant deceleration with flight path tracking, and constant acceleration wave-off maneuvers. The pilot comments of the integrated system performance and the display symbology are discussed and analyzed to identify potential areas of improvement.
Kononowicz, Andrzej A; Narracott, Andrew J; Manini, Simone; Bayley, Martin J; Lawford, Patricia V; McCormack, Keith; Zary, Nabil
2014-01-23
Virtual patients are increasingly common tools used in health care education to foster learning of clinical reasoning skills. One potential way to expand their functionality is to augment virtual patients' interactivity by enriching them with computational models of physiological and pathological processes. The primary goal of this paper was to propose a conceptual framework for the integration of computational models within virtual patients, with particular focus on (1) characteristics to be addressed while preparing the integration, (2) the extent of the integration, (3) strategies to achieve integration, and (4) methods for evaluating the feasibility of integration. An additional goal was to pilot the first investigation of changing framework variables on altering perceptions of integration. The framework was constructed using an iterative process informed by Soft System Methodology. The Virtual Physiological Human (VPH) initiative has been used as a source of new computational models. The technical challenges associated with development of virtual patients enhanced by computational models are discussed from the perspectives of a number of different stakeholders. Concrete design and evaluation steps are discussed in the context of an exemplar virtual patient employing the results of the VPH ARCH project, as well as improvements for future iterations. The proposed framework consists of four main elements. The first element is a list of feasibility features characterizing the integration process from three perspectives: the computational modelling researcher, the health care educationalist, and the virtual patient system developer. The second element included three integration levels: basic, where a single set of simulation outcomes is generated for specific nodes in the activity graph; intermediate, involving pre-generation of simulation datasets over a range of input parameters; advanced, including dynamic solution of the model. The third element is the description of four integration strategies, and the last element consisted of evaluation profiles specifying the relevant feasibility features and acceptance thresholds for specific purposes. The group of experts who evaluated the virtual patient exemplar found higher integration more interesting, but at the same time they were more concerned with the validity of the result. The observed differences were not statistically significant. This paper outlines a framework for the integration of computational models into virtual patients. The opportunities and challenges of model exploitation are discussed from a number of user perspectives, considering different levels of model integration. The long-term aim for future research is to isolate the most crucial factors in the framework and to determine their influence on the integration outcome.
Narracott, Andrew J; Manini, Simone; Bayley, Martin J; Lawford, Patricia V; McCormack, Keith; Zary, Nabil
2014-01-01
Background Virtual patients are increasingly common tools used in health care education to foster learning of clinical reasoning skills. One potential way to expand their functionality is to augment virtual patients’ interactivity by enriching them with computational models of physiological and pathological processes. Objective The primary goal of this paper was to propose a conceptual framework for the integration of computational models within virtual patients, with particular focus on (1) characteristics to be addressed while preparing the integration, (2) the extent of the integration, (3) strategies to achieve integration, and (4) methods for evaluating the feasibility of integration. An additional goal was to pilot the first investigation of changing framework variables on altering perceptions of integration. Methods The framework was constructed using an iterative process informed by Soft System Methodology. The Virtual Physiological Human (VPH) initiative has been used as a source of new computational models. The technical challenges associated with development of virtual patients enhanced by computational models are discussed from the perspectives of a number of different stakeholders. Concrete design and evaluation steps are discussed in the context of an exemplar virtual patient employing the results of the VPH ARCH project, as well as improvements for future iterations. Results The proposed framework consists of four main elements. The first element is a list of feasibility features characterizing the integration process from three perspectives: the computational modelling researcher, the health care educationalist, and the virtual patient system developer. The second element included three integration levels: basic, where a single set of simulation outcomes is generated for specific nodes in the activity graph; intermediate, involving pre-generation of simulation datasets over a range of input parameters; advanced, including dynamic solution of the model. The third element is the description of four integration strategies, and the last element consisted of evaluation profiles specifying the relevant feasibility features and acceptance thresholds for specific purposes. The group of experts who evaluated the virtual patient exemplar found higher integration more interesting, but at the same time they were more concerned with the validity of the result. The observed differences were not statistically significant. Conclusions This paper outlines a framework for the integration of computational models into virtual patients. The opportunities and challenges of model exploitation are discussed from a number of user perspectives, considering different levels of model integration. The long-term aim for future research is to isolate the most crucial factors in the framework and to determine their influence on the integration outcome. PMID:24463466
ERIC Educational Resources Information Center
Ramineni, Chaitanya; Trapani, Catherine S.; Williamson, David M.; Davey, Tim; Bridgeman, Brent
2012-01-01
Scoring models for the "e-rater"® system were built and evaluated for the "TOEFL"® exam's independent and integrated writing prompts. Prompt-specific and generic scoring models were built, and evaluation statistics, such as weighted kappas, Pearson correlations, standardized differences in mean scores, and correlations with…
Integrated Meteorology and Chemistry Modeling: Evaluation and Research Needs
Over the past decade several online integrated atmospheric chemical-transport and meteorology modeling systems with varying levels of interactions among different atmospheric processes have been developed. A variety of approaches to meteorology-chemistry integration with differe...
Watershed and Economic Data InterOperability (WEDO) is a system of information technologies designed to publish watershed modeling studies for reuse. WEDO facilitates three aspects of interoperability: discovery, evaluation and integration of data. This increased level of interop...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanfilippo, Antonio P.
2010-05-23
The increasing asymmetric nature of threats to the security, health and sustainable growth of our society requires that anticipatory reasoning become an everyday activity. Currently, the use of anticipatory reasoning is hindered by the lack of systematic methods for combining knowledge- and evidence-based models, integrating modeling algorithms, and assessing model validity, accuracy and utility. The workshop addresses these gaps with the intent of fostering the creation of a community of interest on model integration and evaluation that may serve as an aggregation point for existing efforts and a launch pad for new approaches.
NASA Astrophysics Data System (ADS)
Nadi, S.; Samiei, M.; Salari, H. R.; Karami, N.
2017-09-01
This paper proposes a new model for multi-criteria evaluation under uncertain condition. In this model we consider the interaction between criteria as one of the most challenging issues especially in the presence of uncertainty. In this case usual pairwise comparisons and weighted sum cannot be used to calculate the importance of criteria and to aggregate them. Our model is based on the combination of non-additive fuzzy linguistic preference relation AHP (FLPRAHP), Choquet integral and Sugeno λ-measure. The proposed model capture fuzzy preferences of users and fuzzy values of criteria and uses Sugeno λ -measure to determine the importance of criteria and their interaction. Then, integrating Choquet integral and FLPRAHP, all the interaction between criteria are taken in to account with least number of comparison and the final score for each alternative is determined. So we would model a comprehensive set of interactions between criteria that can lead us to more reliable result. An illustrative example presents the effectiveness and capability of the proposed model to evaluate different alternatives in a multi-criteria decision problem.
Modeling integrated biomass gasification business concepts
Peter J. Ince; Ted Bilek; Mark A. Dietenberger
2011-01-01
Biomass gasification is an approach to producing energy and/or biofuels that could be integrated into existing forest product production facilities, particularly at pulp mills. Existing process heat and power loads tend to favor integration at existing pulp mills. This paper describes a generic modeling system for evaluating integrated biomass gasification business...
Integrative structure modeling with the Integrative Modeling Platform.
Webb, Benjamin; Viswanath, Shruthi; Bonomi, Massimiliano; Pellarin, Riccardo; Greenberg, Charles H; Saltzberg, Daniel; Sali, Andrej
2018-01-01
Building models of a biological system that are consistent with the myriad data available is one of the key challenges in biology. Modeling the structure and dynamics of macromolecular assemblies, for example, can give insights into how biological systems work, evolved, might be controlled, and even designed. Integrative structure modeling casts the building of structural models as a computational optimization problem, for which information about the assembly is encoded into a scoring function that evaluates candidate models. Here, we describe our open source software suite for integrative structure modeling, Integrative Modeling Platform (https://integrativemodeling.org), and demonstrate its use. © 2017 The Protein Society.
An Analysis of Information Integration Using Free Response Data.
ERIC Educational Resources Information Center
Lindell, Michael K.; Southwick, Lillian
A number of laboratory studies have addressed the question of how people integrate different pieces of information to form an overall evaluative judgment. Models of information integration, i.e., the adding model and the averaging model, were tested by gathering questionnaire data from 233 respondents in 17 groups who were expected to vary in…
Integrated urban water cycle management: the UrbanCycle model.
Hardy, M J; Kuczera, G; Coombes, P J
2005-01-01
Integrated urban water cycle management presents a new framework in which solutions to the provision of urban water services can be sought. It enables new and innovative solutions currently constrained by the existing urban water paradigm to be implemented. This paper introduces the UrbanCycle model. The model is being developed in response to the growing and changing needs of the water management sector and in light of the need for tools to evaluate integrated watercycle management approaches. The key concepts underpinning the UrbanCycle model are the adoption of continuous simulation, hierarchical network modelling, and the careful management of computational complexity. The paper reports on the integration of modelling capabilities across the allotment, and subdivision scales, enabling the interactions between these scales to be explored. A case study illustrates the impacts of various mitigation measures possible under an integrated water management framework. The temporal distribution of runoff into ephemeral streams from a residential allotment in Western Sydney is evaluated and linked to the geomorphic and ecological regimes in receiving waters.
California Integrated Service Delivery Evaluation Report. Phase I
ERIC Educational Resources Information Center
Moore, Richard W.; Rossy, Gerard; Roberts, William; Chapman, Kenneth; Sanchez, Urte; Hanley, Chris
2010-01-01
This study is a formative evaluation of the OneStop Career Center Integrated Service Delivery (ISD) Model within the California Workforce System. The study was sponsored by the California Workforce Investment Board. The study completed four in-depth case studies of California OneStops to describe how they implemented the ISD model which brings…
A web-enabled system for integrated assessment of watershed development
Dymond, R.; Lohani, V.; Regmi, B.; Dietz, R.
2004-01-01
Researchers at Virginia Tech have put together the primary structure of a web enabled integrated modeling system that has potential to be a planning tool to help decision makers and stakeholders in making appropriate watershed management decisions. This paper describes the integrated system, including data sources, collection, analysis methods, system software and design, and issues of integrating the various component models. The integrated system has three modeling components, namely hydrology, economics, and fish health, and is accompanied by descriptive 'help files.' Since all three components have a related spatial aspect, GIS technology provides the integration platform. When completed, a user will access the integrated system over the web to choose pre-selected land development patterns to create a 'what if' scenario using an easy-to-follow interface. The hydrologic model simulates effects of the scenario on annual runoff volume, flood peaks of various return periods, and ground water recharge. The economics model evaluates tax revenue and fiscal costs as a result of a new land development scenario. The fish health model evaluates effects of new land uses in zones of influence to the health of fish populations in those areas. Copyright ASCE 2004.
Information technology model for evaluating emergency medicine teaching
NASA Astrophysics Data System (ADS)
Vorbach, James; Ryan, James
1996-02-01
This paper describes work in progress to develop an Information Technology (IT) model and supporting information system for the evaluation of clinical teaching in the Emergency Medicine (EM) Department of North Shore University Hospital. In the academic hospital setting student physicians, i.e. residents, and faculty function daily in their dual roles as teachers and students respectively, and as health care providers. Databases exist that are used to evaluate both groups in either academic or clinical performance, but rarely has this information been integrated to analyze the relationship between academic performance and the ability to care for patients. The goal of the IT model is to improve the quality of teaching of EM physicians by enabling the development of integrable metrics for faculty and resident evaluation. The IT model will include (1) methods for tracking residents in order to develop experimental databases; (2) methods to integrate lecture evaluation, clinical performance, resident evaluation, and quality assurance databases; and (3) a patient flow system to monitor patient rooms and the waiting area in the Emergency Medicine Department, to record and display status of medical orders, and to collect data for analyses.
Model Identification of Integrated ARMA Processes
ERIC Educational Resources Information Center
Stadnytska, Tetiana; Braun, Simone; Werner, Joachim
2008-01-01
This article evaluates the Smallest Canonical Correlation Method (SCAN) and the Extended Sample Autocorrelation Function (ESACF), automated methods for the Autoregressive Integrated Moving-Average (ARIMA) model selection commonly available in current versions of SAS for Windows, as identification tools for integrated processes. SCAN and ESACF can…
ERIC Educational Resources Information Center
Collado-Rivera, Maria; Branscum, Paul; Larson, Daniel; Gao, Haijuan
2018-01-01
Objective: The objective of this study was to evaluate the determinants of sugary drink consumption among overweight and obese adults attempting to lose weight using the Integrative Model of Behavioural Prediction (IMB). Design: Cross-sectional design. Method: Determinants of behavioural intentions (attitudes, perceived norms and perceived…
An Evaluation Model To Select an Integrated Learning System in a Large, Suburban School District.
ERIC Educational Resources Information Center
Curlette, William L.; And Others
The systematic evaluation process used in Georgia's DeKalb County School System to purchase comprehensive instructional software--an integrated learning system (ILS)--is described, and the decision-making model for selection is presented. Selection and implementation of an ILS were part of an instructional technology plan for the DeKalb schools…
A Bayesian Framework of Uncertainties Integration in 3D Geological Model
NASA Astrophysics Data System (ADS)
Liang, D.; Liu, X.
2017-12-01
3D geological model can describe complicated geological phenomena in an intuitive way while its application may be limited by uncertain factors. Great progress has been made over the years, lots of studies decompose the uncertainties of geological model to analyze separately, while ignored the comprehensive impacts of multi-source uncertainties. Great progress has been made over the years, while lots of studies ignored the comprehensive impacts of multi-source uncertainties when analyzed them item by item from each source. To evaluate the synthetical uncertainty, we choose probability distribution to quantify uncertainty, and propose a bayesian framework of uncertainties integration. With this framework, we integrated data errors, spatial randomness, and cognitive information into posterior distribution to evaluate synthetical uncertainty of geological model. Uncertainties propagate and cumulate in modeling process, the gradual integration of multi-source uncertainty is a kind of simulation of the uncertainty propagation. Bayesian inference accomplishes uncertainty updating in modeling process. Maximum entropy principle makes a good effect on estimating prior probability distribution, which ensures the prior probability distribution subjecting to constraints supplied by the given information with minimum prejudice. In the end, we obtained a posterior distribution to evaluate synthetical uncertainty of geological model. This posterior distribution represents the synthetical impact of all the uncertain factors on the spatial structure of geological model. The framework provides a solution to evaluate synthetical impact on geological model of multi-source uncertainties and a thought to study uncertainty propagation mechanism in geological modeling.
THE EPA MULTIMEDIA INTEGRATED MODELING SYSTEM SOFTWARE SUITE
The U.S. EPA is developing a Multimedia Integrated Modeling System (MIMS) framework that will provide a software infrastructure or environment to support constructing, composing, executing, and evaluating complex modeling studies. The framework will include (1) common software ...
Integrated Noise Model (INM) Version 6.0 User's Guide.
DOT National Transportation Integrated Search
1999-09-01
The FAA Office of Environment and Energy supports the assessment of aircraft noise impacts by developing and maintaining noise-evaluation models and methodologies. In particular, the FAA's Integrated Noise Model (INM) is widely used by the civilian a...
To bridge the gaps between traditional mesoscale modelling and microscale modelling, the National Center for Atmospheric Research, in collaboration with other agencies and research groups, has developed an integrated urban modelling system coupled to the weather research and fore...
Research on the performance evaluation of agricultural products supply chain integrated operation
NASA Astrophysics Data System (ADS)
Jiang, Jiake; Wang, Xifu; Liu, Yang
2017-04-01
The agricultural product supply chain integrated operation can ensure the quality and efficiency of agricultural products, and achieve the optimal goal of low cost and high service. This paper establishes a performance evaluation index system of agricultural products supply chain integration operation based on the development status of agricultural products and SCOR, BSC and KPI model. And then, we constructing rough set theory and BP neural network comprehensive evaluation model with the aid of Rosetta and MATLAB tools and the case study is about the development of agricultural products integrated supply chain in Jing-Jin-Ji region. And finally, we obtain the corresponding performance results, and give some improvement measures and management recommendations to the managers.
The NASA Lewis integrated propulsion and flight control simulator
NASA Technical Reports Server (NTRS)
Bright, Michelle M.; Simon, Donald L.
1991-01-01
A new flight simulation facility was developed at NASA-Lewis. The purpose of this flight simulator is to allow integrated propulsion control and flight control algorithm development and evaluation in real time. As a preliminary check of the simulator facility capabilities and correct integration of its components, the control design and physics models for a short take-off and vertical landing fighter aircraft model were shown, with their associated system integration and architecture, pilot vehicle interfaces, and display symbology. The initial testing and evaluation results show that this fixed based flight simulator can provide real time feedback and display of both airframe and propulsion variables for validation of integrated flight and propulsion control systems. Additionally, through the use of this flight simulator, various control design methodologies and cockpit mechanizations can be tested and evaluated in a real time environment.
ERIC Educational Resources Information Center
Harwood, Henrick; Bazron, Barbara; Fountain, Douglas
This paper presents state-of-the-art models addressing issues related to coordination of treatment and evaluation activities, and integration of clinical, performance, and evaluation information. Specifically, this concept paper contains a discussion of the need for and types of cost analyses for CSAT treatment evaluation and knowledge-generating…
Arts Integration and Students' Reading Achievement: A Formative Evaluation Study
ERIC Educational Resources Information Center
Hosfelt, Patricia D.
2017-01-01
The purpose of this dissertation was to evaluate essential components of an arts-integration program that may contribute to improved student achievement in elementary reading at the school of study through a formative evaluation. Stufflebeam's CIPP model of program evaluation served as the conceptual framework for the study's findings. Creative…
The U.S. Environmental Protection Agency (EPA) has developed a model for the pulp and paper sector that provides an integrated approach for investigating, developing, and evaluating strategies for reducing the emissions of interest. The Universal Industrial Sectors Integrated Sol...
Integrated Model for E-Learning Acceptance
NASA Astrophysics Data System (ADS)
Ramadiani; Rodziah, A.; Hasan, S. M.; Rusli, A.; Noraini, C.
2016-01-01
E-learning is not going to work if the system is not used in accordance with user needs. User Interface is very important to encourage using the application. Many theories had discuss about user interface usability evaluation and technology acceptance separately, actually why we do not make it correlation between interface usability evaluation and user acceptance to enhance e-learning process. Therefore, the evaluation model for e-learning interface acceptance is considered important to investigate. The aim of this study is to propose the integrated e-learning user interface acceptance evaluation model. This model was combined some theories of e-learning interface measurement such as, user learning style, usability evaluation, and the user benefit. We formulated in constructive questionnaires which were shared at 125 English Language School (ELS) students. This research statistics used Structural Equation Model using LISREL v8.80 and MANOVA analysis.
Haarbrandt, Birger; Wilschko, Andreas; Marschollek, Michael
2016-01-01
In order to integrate operative report documents from two operating room management systems into a data warehouse, we investigated the application of the two-level modelling approach of openEHR to create a shared data model. Based on the systems' analyses, a template consisting of 13 archetypes has been developed. Of these 13 archetypes, 3 have been obtained from the international archetype repository of the openEHR foundation. The remaining 10 archetypes have been newly created. The template was evaluated by an application system expert and through conducting a first test mapping of real-world data from one of the systems. The evaluation showed that by using the two-level modelling approach of openEHR, we succeeded to represent an integrated and shared information model for operative report documents. More research is needed to learn about the limitations of this approach in other data integration scenarios.
Piloted evaluation of an integrated propulsion and flight control simulator
NASA Technical Reports Server (NTRS)
Bright, Michelle M.; Simon, Donald L.
1992-01-01
A piloted evaluation of the integrated flight and propulsion control simulator for advanced integrated propulsion and airframe control design is described. The evaluation will cover control effector gains and deadbands, control effectiveness and control authority, and heads up display functionality. For this evaluation the flight simulator is configured for transition flight using an advanced Short Take-Off and Vertical Landing fighter aircraft model, a simplified high-bypass turbofan engine model, fighter cockpit displays, and pilot effectors. The piloted tasks used for rating displays and control effector gains are described. Pilot comments and simulation results confirm that the display symbology and control gains are very adequate for the transition flight task. Additionally, it is demonstrated that this small-scale, fixed base flight simulator facility can adequately perform a real time, piloted control evaluation.
A System for Integrated Reliability and Safety Analyses
NASA Technical Reports Server (NTRS)
Kostiuk, Peter; Shapiro, Gerald; Hanson, Dave; Kolitz, Stephan; Leong, Frank; Rosch, Gene; Coumeri, Marc; Scheidler, Peter, Jr.; Bonesteel, Charles
1999-01-01
We present an integrated reliability and aviation safety analysis tool. The reliability models for selected infrastructure components of the air traffic control system are described. The results of this model are used to evaluate the likelihood of seeing outcomes predicted by simulations with failures injected. We discuss the design of the simulation model, and the user interface to the integrated toolset.
ROOHOLAMINI, AZADEH; AMINI, MITRA; BAZRAFKAN, LEILA; DEHGHANI, MOHAMMAD REZA; ESMAEILZADEH, ZOHREH; NABEIEI, PARISA; REZAEE, RITA; KOJURI, JAVAD
2017-01-01
Introduction: In recent years curriculum reform and integration was done in many medical schools. The integrated curriculum is a popular concept all over the world. In Shiraz medical school, the reform was initiated by stablishing the horizontal basic science integration model and Early Clinical Exposure (ECE) for undergraduate medical education. The purpose of this study was to provide the required data for the program evaluation of this curriculum for undergraduate medical students, using CIPP program evaluation model. Methods: This study is an analytic descriptive and triangulation mixed method study which was carried out in Shiraz Medical School in 2012, based on the views of professors of basic sciences courses and first and second year medical students. The study evaluated the quality of the relationship between basic sciences and clinical courses and the method of presenting such courses based on the Context, Input, Process and Product (CIPP) model. The tools for collecting data, both quantitatively and qualitatively, were some questionnaires, content analysis of portfolios, semi- structured interview and brain storming sessions. For quantitative data analysis, SPSS software, version 14, was used. Results: In the context evaluation by modified DREEM questionnaire, 77.75%of the students believed that this educational system encourages them to actively participate in classes. Course schedule and atmosphere of class were reported suitable by 87.81% and 83.86% of students. In input domain that was measured by a researcher made questionnaire, the facilities for education were acceptable except for shortage of cadavers. In process evaluation, the quality of integrated modules presentation and Early Clinical Exposure (ECE) was good from the students’ viewpoint. In product evaluation, students’ brain storming, students’ portfolio and semi-structured interview with faculties were done, showing some positive aspects of integration and some areas that need improvement. Conclusion: The main advantage of assessing an educational program based on CIPP evaluation model is that the context, input, process and product of the program are viewed and evaluated systematically. This will help the educational authorities to make proper decisions based on the weaknesses and strengths of the program on its continuation, cessation and revision. Based on the results of this study, the integrated basic sciences course for undergraduate medical students in Shiraz Medical School is at a desirable level. However, attempts to improve or reform some sections and continual evaluation of the program and its accreditation seem to be necessary. PMID:28761888
Research environments that promote integrity.
Jeffers, Brenda Recchia; Whittemore, Robin
2005-01-01
The body of empirical knowledge about research integrity and the factors that promote research integrity in nursing research environments remains small. To propose an internal control model as an innovative framework for the design and structure of nursing research environments that promote integrity. An internal control model is adapted to illustrate its use for conceptualizing and designing research environments that promote integrity. The internal control model integrates both the organizational elements necessary to promote research integrity and the processes needed to assess research environments. The model provides five interrelated process components within which any number of research integrity variables and processes may be used and studied: internal control environment, risk assessment, internal control activities, monitoring, and information and communication. The components of the proposed research integrity internal control model proposed comprise an integrated conceptualization of the processes that provide reasonable assurance that research integrity will be promoted within the nursing research environment. Schools of nursing can use the model to design, implement, and evaluate systems that promote research integrity. The model process components need further exploration to substantiate the use of the model in nursing research environments.
Valentine, Julie L
2014-01-01
An evaluation of the Integrated Practice Model for Forensic Nursing Science () is presented utilizing methods outlined by . A brief review of nursing theory basics and evaluation methods by Meleis is provided to enhance understanding of the ensuing theoretical evaluation and critique. The Integrated Practice Model for Forensic Nursing Science, created by forensic nursing pioneer Virginia Lynch, captures the theories, assumptions, concepts, and propositions inherent in forensic nursing practice and science. The historical background of the theory is explored as Lynch's model launched the role development of forensic nursing practice as both a nursing and forensic science specialty. It is derived from a combination of nursing, sociological, and philosophical theories to reflect the grounding of forensic nursing in the nursing, legal, psychological, and scientific communities. As Lynch's model is the first inception of forensic nursing theory, it is representative of a conceptual framework although the title implies a practice theory. The clarity and consistency displayed in the theory's structural components of assumptions, concepts, and propositions are analyzed. The model is described and evaluated. A summary of the strengths and limitations of the model is compiled followed by application to practice, education, and research with suggestions for ongoing theory development.
The School Implementation Scale: Measuring Implementation in Response to Intervention Models
ERIC Educational Resources Information Center
Erickson, Amy Gaumer; Noonan, Pattie M.; Jenson, Ronda
2012-01-01
Models of response to intervention (RTI) have been widely developed and implemented and have expanded to include integrated academic/behavior RTI models. Until recently, evaluation of model effectiveness has focused primarily on student-level data, but additional measures of treatment integrity within these multi-tiered models are emerging to…
ERIC Educational Resources Information Center
Reinhard, Karin; Pogrzeba, Anna
2016-01-01
The role of industry in the higher education system is becoming more prevalent, as universities integrate a practical element into their curricula. However, the level of development of cooperative education and work-integrated learning varies from country to country. In Germany, cooperative education and work-integrated learning has a long…
DOT National Transportation Integrated Search
2000-10-01
The Phoenix, Arizona Metropolitan Model Deployment was one of four cities included in the Metropolitan Model Deployment Initiative (MMDI). The initiative was set forth in 1996 to serve as model deployments of ITS infrastructure and integration. One o...
GLIMPSE: An integrated assessment model-based tool for ...
Dan Loughlin will describe the GCAM-USA integrated assessment model and how that model is being improved and integrated into the GLIMPSE decision support system. He will also demonstrate the application of the model to evaluate the emissions and health implications of hypothetical state-level renewable electricity standards. Introduce the GLIMPSE project to state and regional environmental modelers and analysts. Presented as part of the State Energy and Air Quality Group Webinar Series, which is organized by NESCAUM.
NASA Astrophysics Data System (ADS)
de Saint Jean, C.; Habert, B.; Archier, P.; Noguere, G.; Bernard, D.; Tommasi, J.; Blaise, P.
2010-10-01
In the [eV;MeV] energy range, modelling of the neutron induced reactions are based on nuclear reaction models having parameters. Estimation of co-variances on cross sections or on nuclear reaction model parameters is a recurrent puzzle in nuclear data evaluation. Major breakthroughs were asked by nuclear reactor physicists to assess proper uncertainties to be used in applications. In this paper, mathematical methods developped in the CONRAD code[2] will be presented to explain the treatment of all type of uncertainties, including experimental ones (statistical and systematic) and propagate them to nuclear reaction model parameters or cross sections. Marginalization procedure will thus be exposed using analytical or Monte-Carlo solutions. Furthermore, one major drawback found by reactor physicist is the fact that integral or analytical experiments (reactor mock-up or simple integral experiment, e.g. ICSBEP, …) were not taken into account sufficiently soon in the evaluation process to remove discrepancies. In this paper, we will describe a mathematical framework to take into account properly this kind of information.
Hilton, Lara; Elfenbaum, Pamela; Jain, Shamini; Sprengel, Meredith; Jonas, Wayne B
2018-03-01
The evaluation of freestanding integrative cancer clinical programs is challenging and is rarely done. We have developed an approach called the Claim Assessment Profile (CAP) to identify whether evaluation of a practice is justified, feasible, and likely to provide useful information. A CAP was performed in order to (1) clarify the healing claims at InspireHealth, an integrative oncology treatment program, by defining the most important impacts on its clients; (2) gather information about current research capacity at the clinic; and (3) create a program theory and path model for use in prospective research. This case study design incorporates methods from a variety of rapid assessment approaches. Procedures included site visits to observe the program, structured qualitative interviews with 26 providers and staff, surveys to capture descriptive data about the program, and observational data on program implementation. The InspireHealth program is a well-established, multi-site, thriving integrative oncology clinical practice that focuses on patient support, motivation, and health behavior engagement. It delivers patient-centered care via a standardized treatment protocol. There arehigh levels of research interest from staff and resources by which to conduct research. This analysis provides the primary descriptive and claims clarification of an integrative oncology treatment program, an evaluation readiness report, a detailed logic model explicating program theory, and a clinical outcomes path model for conducting prospective research. Prospective evaluation of this program would be feasible and valuable, adding to our knowledge base of integrative cancer therapies.
We developed a numerical model to predict chemical concentrations in indoor environments resulting from soil vapor intrusion and volatilization from groundwater. The model, which integrates new and existing algorithms for chemical fate and transport, was originally...
Piloted evaluation of an integrated propulsion and flight control simulator
NASA Technical Reports Server (NTRS)
Bright, Michelle M.; Simon, Donald L.
1992-01-01
This paper describes a piloted evaluation of the integrated flight and propulsion control simulator at NASA Lewis Research Center. The purpose of this evaluation is to demonstrate the suitability and effectiveness of this fixed based simulator for advanced integrated propulsion and airframe control design. The evaluation will cover control effector gains and deadbands, control effectiveness and control authority, and heads up display functionality. For this evaluation the flight simulator is configured for transition flight using an advanced Short Take-Off and vertical Landing fighter aircraft model, a simplified high-bypass turbofan engine model, fighter cockpit, displays, and pilot effectors. The paper describes the piloted tasks used for rating displays and control effector gains. Pilot comments and simulation results confirm that the display symbology and control gains are very adequate for the transition flight task. Additionally, it is demonstrated that this small-scale, fixed base flight simulator facility can adequately perform a real time, piloted control evaluation.
Student Perceptions of Integrative Field Seminar: A Comparison of Three Models
ERIC Educational Resources Information Center
Harris, Helen; Myers, Dennis
2013-01-01
Student perceptions of 63 concentration year MSW students, grades, and faculty perceptions were examined to evaluate differences in educational outcomes and in learning experiences among a traditional classroom model, a mixed or hybrid model, and a webinar online model for delivery of integrative field seminars. No significant differences were…
The effective integration of analysis, modeling, and simulation tools.
DOT National Transportation Integrated Search
2013-08-01
The need for model integration arises from the recognition that both transportation decisionmaking and the tools supporting it continue to increase in complexity. Many strategies that agencies evaluate require using tools that are sensitive to supply...
Combat Identification Systems COMO Integrated Air Defense Model Evaluation (CISE) Study
1989-02-01
use K or IR , whichever one applies) E-6 CAA-SR-89- 3 Subroutine PDECLR 1/21/88 Before label 1000 Insert: IF (IR.GT.10) IR a 10 These changes were made...Internal Distribution: Unclassified Library 2 F-2 CAA-SR-89- 3 GLOSSARY 1. ABBREVIATIONS, ACRONYMS, AND SHORT TERMS ADM2 Air Defense Models Modification...STUDY REPORT ’ , CAA-Sn-89- 3 i , .- CD o COMBAT IDENTIFICATION SYSTEMS N COMO INTEGRATED AIR DEFENSE MODEL EVALUATION (CISE) STUDY FEBRUARY 1989
NASA Technical Reports Server (NTRS)
Litt, Jonathan S.; Sowers, T Shane; Liu, Yuan; Owen, A. Karl; Guo, Ten-Huei
2015-01-01
The National Aeronautics and Space Administration (NASA) has developed independent airframe and engine models that have been integrated into a single real-time aircraft simulation for piloted evaluation of propulsion control algorithms. In order to have confidence in the results of these evaluations, the integrated simulation must be validated to demonstrate that its behavior is realistic and that it meets the appropriate Federal Aviation Administration (FAA) certification requirements for aircraft. The paper describes the test procedures and results, demonstrating that the integrated simulation generally meets the FAA requirements and is thus a valid testbed for evaluation of propulsion control modes.
Integrated modeling for parametric evaluation of smart x-ray optics
NASA Astrophysics Data System (ADS)
Dell'Agostino, S.; Riva, M.; Spiga, D.; Basso, S.; Civitani, Marta
2014-08-01
This work is developed in the framework of AXYOM project, which proposes to study the application of a system of piezoelectric actuators to grazing-incidence X-ray telescope optic prototypes: thin glass or plastic foils, in order to increase their angular resolution. An integrated optomechanical model has been set up to evaluate the performances of X-ray optics under deformation induced by Piezo Actuators. Parametric evaluation has been done looking at different number and position of actuators to optimize the outcome. Different evaluations have also been done over the actuator types, considering Flexible Piezoceramic, Multi Fiber Composites piezo actuators, and PVDF.
A flexible importance sampling method for integrating subgrid processes
Raut, E. K.; Larson, V. E.
2016-01-29
Numerical models of weather and climate need to compute grid-box-averaged rates of physical processes such as microphysics. These averages are computed by integrating subgrid variability over a grid box. For this reason, an important aspect of atmospheric modeling is spatial integration over subgrid scales. The needed integrals can be estimated by Monte Carlo integration. Monte Carlo integration is simple and general but requires many evaluations of the physical process rate. To reduce the number of function evaluations, this paper describes a new, flexible method of importance sampling. It divides the domain of integration into eight categories, such as the portion that containsmore » both precipitation and cloud, or the portion that contains precipitation but no cloud. It then allows the modeler to prescribe the density of sample points within each of the eight categories. The new method is incorporated into the Subgrid Importance Latin Hypercube Sampler (SILHS). Here, the resulting method is tested on drizzling cumulus and stratocumulus cases. In the cumulus case, the sampling error can be considerably reduced by drawing more sample points from the region of rain evaporation.« less
Beyond the buildingcentric approach: A vision for an integrated evaluation of sustainable buildings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conte, Emilia, E-mail: conte@poliba.it; Monno, Valeria, E-mail: vmonno@poliba.it
2012-04-15
The available sustainable building evaluation systems have produced a new environmental design paradigm. However, there is an increasing need to overcome the buildingcentric approach of these systems, in order to further exploit their innovate potential for sustainable building practices. The paper takes this challenge by developing a cross-scale evaluation approach focusing on the reliability of sustainable building design solutions for the context in which the building is situated. An integrated building-urban evaluation model is proposed based on the urban matrix, which is a conceptualisation of the built environment as a social-ecological system. The model aims at evaluating the sustainability ofmore » a building considering it as an active entity contributing to the resilience of the urban matrix. Few holistic performance indicators are used for evaluating such contribution, so expressing the building reliability. The discussion on the efficacy of the model shows that it works as a heuristic tool, supporting the acquisition of a better insight into the complexity which characterises the relationships between the building and the built environment sustainability. Shading new lights on the meaning of sustainable buildings, the model can play a positive role in innovating sustainable building design practices, thus complementing current evaluation systems. - Highlights: Black-Right-Pointing-Pointer We model an integrated building-urban evaluation approach. Black-Right-Pointing-Pointer The urban matrix represents the social-ecological functioning of the urban context. Black-Right-Pointing-Pointer We introduce the concept of reliability to evaluate sustainable buildings. Black-Right-Pointing-Pointer Holistic indicators express the building reliability. Black-Right-Pointing-Pointer The evaluation model works as heuristic tool and complements other tools.« less
Hilton, Lara; Elfenbaum, Pamela; Jain, Shamini; Sprengel, Meredith; Jonas, Wayne B.
2016-01-01
Background: The evaluation of freestanding integrative cancer clinical programs is challenging and is rarely done. We have developed an approach called the Claim Assessment Profile (CAP) to identify whether evaluation of a practice is justified, feasible, and likely to provide useful information. Objectives: A CAP was performed in order to (1) clarify the healing claims at InspireHealth, an integrative oncology treatment program, by defining the most important impacts on its clients; (2) gather information about current research capacity at the clinic; and (3) create a program theory and path model for use in prospective research. Study Design/Methods: This case study design incorporates methods from a variety of rapid assessment approaches. Procedures included site visits to observe the program, structured qualitative interviews with 26 providers and staff, surveys to capture descriptive data about the program, and observational data on program implementation. Results: The InspireHealth program is a well-established, multi-site, thriving integrative oncology clinical practice that focuses on patient support, motivation, and health behavior engagement. It delivers patient-centered care via a standardized treatment protocol. There arehigh levels of research interest from staff and resources by which to conduct research. Conclusions: This analysis provides the primary descriptive and claims clarification of an integrative oncology treatment program, an evaluation readiness report, a detailed logic model explicating program theory, and a clinical outcomes path model for conducting prospective research. Prospective evaluation of this program would be feasible and valuable, adding to our knowledge base of integrative cancer therapies. PMID:29444602
[An integrated model for examination of aphasic patients and evaluation of treatment results].
Ansink, B J; Vanneste, J A; Endtz, L J
1980-02-01
This article is an overview of the literature on integrated, multidisciplinar examination of aphasic patients, its consequences for treatment and the evaluation of the results thereof; the need of virtually standardized methods of investigation for each language is stressed.
Hausen, A; Glaeske, G
2015-05-01
Aim of this contribution is to illustrate the imp-ortance of an early accompanying evaluation of new care forms for the development of indicators. The illustration uses the experience of the accompanying evaluation of the integrated care model for optimisation of outpatient psychiatric care. For the integrated care model we could develop potential indicators by using medical-psychiatric and insured-related routine data, but all potential indicators need further development to enable reliable statements about achieved quality targets. It is shown that the development of indicators in the outpatient psychiatric integrated care is affected by many different factors such as vague target agreements in the contract and missing contractual agreements for the data. As a result it is illustrated that in this project the evaluation was introduced after implementation of this new form of care and the already established contract and the data management impeded the development of indicators. © Georg Thieme Verlag KG Stuttgart · New York.
Multilevel Evaluation Systems Project. Final Report.
ERIC Educational Resources Information Center
Herman, Joan L.
Several studies were conducted in 1987 by the Multilevel Evaluation Systems Project, which focuses on developing a model for a multi-purpose, multi-user evaluation system to facilitate educational decision making and evaluation. The project model emphasizes on-going integrated assessment of individuals, classes, and programs using a variety of…
A Holistic Approach to Evaluating Vocational Education: Traditional Chinese Physicians (TCP) Model.
ERIC Educational Resources Information Center
Lee, Lung-Sheng; Chang, Liang-Te
Conventional approaches to evaluating vocational education have often been criticized for failing to deal holistically with the institution or program being evaluated. Integrated quantitative and qualitative evaluation methods have documented benefits; therefore, it would be useful to consider possibility of developing a model for evaluating…
Integrated Main Propulsion System Performance Reconstruction Process/Models
NASA Technical Reports Server (NTRS)
Lopez, Eduardo; Elliott, Katie; Snell, Steven; Evans, Michael
2013-01-01
The Integrated Main Propulsion System (MPS) Performance Reconstruction process provides the MPS post-flight data files needed for postflight reporting to the project integration management and key customers to verify flight performance. This process/model was used as the baseline for the currently ongoing Space Launch System (SLS) work. The process utilizes several methodologies, including multiple software programs, to model integrated propulsion system performance through space shuttle ascent. It is used to evaluate integrated propulsion systems, including propellant tanks, feed systems, rocket engine, and pressurization systems performance throughout ascent based on flight pressure and temperature data. The latest revision incorporates new methods based on main engine power balance model updates to model higher mixture ratio operation at lower engine power levels.
Wang, Mo; Ling, Jie; Chen, Ying; Song, Jie; Sun, E; Shi, Zi-Qi; Feng, Liang; Jia, Xiao-Bin; Wei, Ying-Jie
2017-11-01
The increasingly apparent liver injury problems of bone strengthening Chinese medicines have brought challenges for clinical application, and it is necessary to consider both effectiveness and safety in screening anti-osteoporosis Chinese medicines. Metabolic transformation is closely related to drug efficacy and toxicity, so it is significant to comprehensively consider metabolism-action/toxicity(M-Act/Tox) for screening anti-osteoporosis Chinese medicines. The current evaluation models and the number of compounds(including metabolites) severely restrict efficient screening in vivo. By referring to previous relevant research and domestic and abroad literature, zebrafish M-Act/Tox integrative method was put forward for efficiently screening anti-osteoporosis herb medicines, which has organically integrated zebrafish metabolism model, osteoporosis model and toxicity evaluation method. This method can break through the bottleneck and blind spots that trace compositions can't achieve efficient and integrated in vivo evaluation, and realize both efficient and comprehensive screening on anti-osteoporosis traditional medicines based on in vivo process taking both safety and effectiveness into account, which is significant to accelerate discovery of effective and safe innovative traditional Chinese medicines for osteoporosis. Copyright© by the Chinese Pharmaceutical Association.
Modeling Face Identification Processing in Children and Adults.
ERIC Educational Resources Information Center
Schwarzer, Gudrun; Massaro, Dominic W.
2001-01-01
Two experiments studied whether and how 5-year-olds integrate single facial features to identify faces. Results indicated that children could evaluate and integrate information from eye and mouth features to identify a face when salience of features was varied. A weighted Fuzzy Logical Model of Perception fit better than a Single Channel Model,…
Nguyen, Huu-Tho; Dawal, Siti Zawiah Md; Nukman, Yusoff; Rifai, Achmad P; Aoyama, Hideki
2016-01-01
The conveyor system plays a vital role in improving the performance of flexible manufacturing cells (FMCs). The conveyor selection problem involves the evaluation of a set of potential alternatives based on qualitative and quantitative criteria. This paper presents an integrated multi-criteria decision making (MCDM) model of a fuzzy AHP (analytic hierarchy process) and fuzzy ARAS (additive ratio assessment) for conveyor evaluation and selection. In this model, linguistic terms represented as triangular fuzzy numbers are used to quantify experts' uncertain assessments of alternatives with respect to the criteria. The fuzzy set is then integrated into the AHP to determine the weights of the criteria. Finally, a fuzzy ARAS is used to calculate the weights of the alternatives. To demonstrate the effectiveness of the proposed model, a case study is performed of a practical example, and the results obtained demonstrate practical potential for the implementation of FMCs.
Nguyen, Huu-Tho; Md Dawal, Siti Zawiah; Nukman, Yusoff; P. Rifai, Achmad; Aoyama, Hideki
2016-01-01
The conveyor system plays a vital role in improving the performance of flexible manufacturing cells (FMCs). The conveyor selection problem involves the evaluation of a set of potential alternatives based on qualitative and quantitative criteria. This paper presents an integrated multi-criteria decision making (MCDM) model of a fuzzy AHP (analytic hierarchy process) and fuzzy ARAS (additive ratio assessment) for conveyor evaluation and selection. In this model, linguistic terms represented as triangular fuzzy numbers are used to quantify experts’ uncertain assessments of alternatives with respect to the criteria. The fuzzy set is then integrated into the AHP to determine the weights of the criteria. Finally, a fuzzy ARAS is used to calculate the weights of the alternatives. To demonstrate the effectiveness of the proposed model, a case study is performed of a practical example, and the results obtained demonstrate practical potential for the implementation of FMCs. PMID:27070543
ERIC Educational Resources Information Center
Somers, Marie-Andrée; Haider, Zeest
2017-01-01
The Communities In Schools (CIS) Model of Integrated Student Supports aims to reduce dropout rates by providing students with integrated and tiered support services based on their levels of need. The model includes preventive services that are available to all students (Level 1 services) as well as intensive, targeted, and sustained services…
ERIC Educational Resources Information Center
Somers, Marie-Andrée; Haider, Zeest
2017-01-01
The Communities In Schools (CIS) Model of Integrated Student Supports aims to reduce dropout rates by providing students with integrated and tiered support services based on their levels of need. The model includes preventive services that are available to all students (Level 1 services) as well as intensive, targeted, and sustained services…
[Indicators of communication and degree of professional integration in healthcare].
Mola, Ernesto; Maggio, Anna; Vantaggiato, Lucia
2009-01-01
According to the chronic care model, improving the management of chronic illness requires efficient communication between health care professionals and the creation of a web of integrated healthcare The aim of this study was to identify an efficient methodology for evaluating the degree of professional integration through indicators related to communication between healthcare professionals. The following types of indicators were identified:-structure indicators to evaluate the presence of prerequisites necessary for implementing the procedures -functional indicators to quantitatively evaluate the use of communications instruments-performance indicators Defining specific indicators may be an appropriate methodology for evaluating the degree of integration and communication between health professionals, available for a bargaining system of incentives.
Thermal Integration of a Liquid Acquisition Device into a Cryogenic Feed System
NASA Technical Reports Server (NTRS)
Hastings, L. J.; Bolshinskiy, L. G.; Schunk, R. G.; Martin, A. K.; Eskridge, R. H.; Frenkel, A.; Grayson, G.; Pendleton, M. L.
2011-01-01
Primary objectives of this effort were to define the following: (1) Approaches for quantification of the accumulation of thermal energy within a capillary screen liquid acquisition device (LAD) for a lunar lander upper stage during periods of up to 210 days on the lunar surface, (2) techniques for mitigating heat entrapment, and (3) perform initial testing, data evaluation. The technical effort was divided into the following categories: (1) Detailed thermal modeling of the LAD/feed system interactions using both COMSOL computational fluid device and standard codes, (2) FLOW-3D modeling of bulk liquid to provide interfacing conditions for the LAD thermal modeling, (3) condensation conditioning of capillary screens to stabilize surface tension retention capability, and (4) subscale testing of an integrated LAD/feed system. Substantial progress was achieved in the following technical areas: (1) Thermal modeling and experimental approaches for evaluating integrated cryogen LAD/feed systems, at both the system and component levels, (2) reduced gravity pressure control analyses, (3) analytical modeling and testing for capillary screen conditioning using condensation and wicking, and (4) development of rapid turnaround testing techniques for evaluating LAD/feed system thermal and fluid integration. A comprehensive effort, participants included a diverse cross section of representatives from academia, contractors, and multiple Marshall Space Flight Center organizations.
USE OF PHARMACOKINETIC MODELING TO DESIGN STUDIES FOR PATHWAY-SPECIFIC EXPOSURE MODEL EVALUATION
Validating an exposure pathway model is difficult because the biomarker, which is often used to evaluate the model prediction, is an integrated measure for exposures from all the exposure routes/pathways. The purpose of this paper is to demonstrate a method to use pharmacokeneti...
CONFIG: Integrated engineering of systems and their operation
NASA Technical Reports Server (NTRS)
Malin, Jane T.; Ryan, Dan; Fleming, Land
1994-01-01
This article discusses CONFIG 3, a prototype software tool that supports integrated conceptual design evaluation from early in the product life cycle, by supporting isolated or integrated modeling, simulation, and analysis of the function, structure, behavior, failures and operations of system designs. Integration and reuse of models is supported in an object-oriented environment providing capabilities for graph analysis and discrete event simulation. CONFIG supports integration among diverse modeling approaches (component view, configuration or flow path view, and procedure view) and diverse simulation and analysis approaches. CONFIG is designed to support integrated engineering in diverse design domains, including mechanical and electro-mechanical systems, distributed computer systems, and chemical processing and transport systems.
Ansari, Mozafar; Othman, Faridah; Abunama, Taher; El-Shafie, Ahmed
2018-04-01
The function of a sewage treatment plant is to treat the sewage to acceptable standards before being discharged into the receiving waters. To design and operate such plants, it is necessary to measure and predict the influent flow rate. In this research, the influent flow rate of a sewage treatment plant (STP) was modelled and predicted by autoregressive integrated moving average (ARIMA), nonlinear autoregressive network (NAR) and support vector machine (SVM) regression time series algorithms. To evaluate the models' accuracy, the root mean square error (RMSE) and coefficient of determination (R 2 ) were calculated as initial assessment measures, while relative error (RE), peak flow criterion (PFC) and low flow criterion (LFC) were calculated as final evaluation measures to demonstrate the detailed accuracy of the selected models. An integrated model was developed based on the individual models' prediction ability for low, average and peak flow. An initial assessment of the results showed that the ARIMA model was the least accurate and the NAR model was the most accurate. The RE results also prove that the SVM model's frequency of errors above 10% or below - 10% was greater than the NAR model's. The influent was also forecasted up to 44 weeks ahead by both models. The graphical results indicate that the NAR model made better predictions than the SVM model. The final evaluation of NAR and SVM demonstrated that SVM made better predictions at peak flow and NAR fit well for low and average inflow ranges. The integrated model developed includes the NAR model for low and average influent and the SVM model for peak inflow.
MacAdam, Margaret
2015-01-01
The Program of Research to Integrate the Services for the Maintenance of Autonomy (PRISMA) began in Quebec in 1999. Evaluation results indicated that the PRISMA Project improved the system of care for the frail elderly at no additional cost. In 2001, the Quebec Ministry of Health and Social Services made implementing the six features of the PRISMA approach a province-wide goal in the programme now known as RSIPA (French acronym). Extensive Province-wide progress has been made since then, but ongoing challenges include reducing unmet need for case management and home care services, creating incentives for increased physician participation in care planning and improving the computerized client chart, among others. PRISMA is the only evaluated international model of a coordination approach to integration and one of the few, if not the only, integration model to have been adopted at the system level by policy-makers. PMID:26417212
NASA Astrophysics Data System (ADS)
Bezawada, Rajesh; Uijt de Haag, Maarten
2010-04-01
This paper discusses the results of an initial evaluation study of hazard and integrity monitor functions for use with integrated alerting and notification. The Hazard and Integrity Monitor (HIM) (i) allocates information sources within the Integrated Intelligent Flight Deck (IIFD) to required functionality (like conflict detection and avoidance) and determines required performance of these information sources as part of that function; (ii) monitors or evaluates the required performance of the individual information sources and performs consistency checks among various information sources; (iii) integrates the information to establish tracks of potential hazards that can be used for the conflict probes or conflict prediction for various time horizons including the 10, 5, 3, and <3 minutes used in our scenario; (iv) detects and assesses the class of the hazard and provide possible resolutions. The HIM monitors the operation-dependent performance parameters related to the potential hazards in a manner similar to the Required Navigation Performance (RNP). Various HIM concepts have been implemented and evaluated using a previously developed sensor simulator/synthesizer. Within the simulation framework, various inputs to the IIFD and its subsystems are simulated, synthesized from actual collected data, or played back from actual flight test sensor data. The framework and HIM functions are implemented in SimulinkR, a modeling language developed by The MathworksTM. This modeling language allows for test and evaluation of various sensor and communication link configurations as well as the inclusion of feedback from the pilot on the performance of the aircraft.
Interventions and approaches to integrating HIV and mental health services: a systematic review
Chuah, Fiona Leh Hoon; Haldane, Victoria Elizabeth; Cervero-Liceras, Francisco; Ong, Suan Ee; Sigfrid, Louise A; Murphy, Georgina; Watt, Nicola; Balabanova, Dina; Hogarth, Sue; Maimaris, Will; Otero, Laura; Buse, Kent; McKee, Martin; Piot, Peter; Perel, Pablo; Legido-Quigley, Helena
2017-01-01
Abstract Background The frequency in which HIV and AIDS and mental health problems co-exist, and the complex bi-directional relationship between them, highlights the need for effective care models combining services for HIV and mental health. Here, we present a systematic review that synthesizes the literature on interventions and approaches integrating these services. Methods This review was part of a larger systematic review on integration of services for HIV and non-communicable diseases. Eligible studies included those that described or evaluated an intervention or approach aimed at integrating HIV and mental health care. We searched multiple databases from inception until October 2015, independently screened articles identified for inclusion, conducted data extraction, and assessed evaluative papers for risk of bias. Results Forty-five articles were eligible for this review. We identified three models of integration at the meso and micro levels: single-facility integration, multi-facility integration, and integrated care coordinated by a non-physician case manager. Single-site integration enhances multidisciplinary coordination and reduces access barriers for patients. However, the practicality and cost-effectiveness of providing a full continuum of specialized care on-site for patients with complex needs is arguable. Integration based on a collaborative network of specialized agencies may serve those with multiple co-morbidities but fragmented and poorly coordinated care can pose barriers. Integrated care coordinated by a single case manager can enable continuity of care for patients but requires appropriate training and support for case managers. Involving patients as key actors in facilitating integration within their own treatment plan is a promising approach. Conclusion This review identified much diversity in integration models combining HIV and mental health services, which are shown to have potential in yielding positive patient and service delivery outcomes when implemented within appropriate contexts. Our review revealed a lack of research in low- and middle- income countries, and was limited to most studies being descriptive. Overall, studies that seek to evaluate and compare integration models in terms of long-term outcomes and cost-effectiveness are needed, particularly at the health system level and in regions with high HIV and AIDS burden. PMID:29106512
A Model for Integrating Low Vision Services into Educational Programs.
ERIC Educational Resources Information Center
Jose, Randall T.; And Others
1988-01-01
A project integrating low-vision services into children's educational programs comprised four components: teacher training, functional vision evaluations for each child, a clinical examination by an optometrist, and follow-up visits with the optometrist to evaluate the prescribed low-vision aids. Educational implications of the project and project…
Evaluation of complex integrated care programmes: the approach in North West London
Greaves, Felix; Pappas, Yannis; Bardsley, Martin; Harris, Matthew; Curry, Natasha; Holder, Holly; Blunt, Ian; Soljak, Michael; Gunn, Laura; Majeed, Azeem; Car, Josip
2013-01-01
Background Several local attempts to introduce integrated care in the English National Health Service have been tried, with limited success. The Northwest London Integrated Care Pilot attempts to improve the quality of care of the elderly and people with diabetes by providing a novel integration process across primary, secondary and social care organisations. It involves predictive risk modelling, care planning, multidisciplinary management of complex cases and an information technology tool to support information sharing. This paper sets out the evaluation approach adopted to measure its effect. Study design We present a mixed methods evaluation methodology. It includes a quantitative approach measuring changes in service utilization, costs, clinical outcomes and quality of care using routine primary and secondary data sources. It also contains a qualitative component, involving observations, interviews and focus groups with patients and professionals, to understand participant experiences and to understand the pilot within the national policy context. Theory and discussion This study considers the complexity of evaluating a large, multi-organisational intervention in a changing healthcare economy. We locate the evaluation within the theory of evaluation of complex interventions. We present the specific challenges faced by evaluating an intervention of this sort, and the responses made to mitigate against them. Conclusions We hope this broad, dynamic and responsive evaluation will allow us to clarify the contribution of the pilot, and provide a potential model for evaluation of other similar interventions. Because of the priority given to the integrated agenda by governments internationally, the need to develop and improve strong evaluation methodologies remains strikingly important. PMID:23687478
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kung, F.; Deru, M.; Bonnema, E.
2013-10-01
Few third-party guidance documents or tools are available for evaluating thermal energy storage (TES) integrated with packaged air conditioning (AC), as this type of TES is relatively new compared to TES integrated with chillers or hot water systems. To address this gap, researchers at the National Renewable Energy Laboratory conducted a project to improve the ability of potential technology adopters to evaluate TES technologies. Major project outcomes included: development of an evaluation framework to describe key metrics, methodologies, and issues to consider when assessing the performance of TES systems integrated with packaged AC; application of multiple concepts from the evaluationmore » framework to analyze performance data from four demonstration sites; and production of a new simulation capability that enables modeling of TES integrated with packaged AC in EnergyPlus. This report includes the evaluation framework and analysis results from the project.« less
NASA Astrophysics Data System (ADS)
Cheong, Chin Wen
2008-02-01
This article investigated the influences of structural breaks on the fractionally integrated time-varying volatility model in the Malaysian stock markets which included the Kuala Lumpur composite index and four major sectoral indices. A fractionally integrated time-varying volatility model combined with sudden changes is developed to study the possibility of structural change in the empirical data sets. Our empirical results showed substantial reduction in fractional differencing parameters after the inclusion of structural change during the Asian financial and currency crises. Moreover, the fractionally integrated model with sudden change in volatility performed better in the estimation and specification evaluations.
Han, Lin Wei; Fu, Xiao; Yan, Yan; Wang, Chen Xing; Wu, Gang
2017-05-18
In order to determine the cumulative eco-environmental effect of coal-electricity integration, we selected 29 eco-environmental factors including different development and construction activities of coal-electricity integration, soil, water, atmospheric conditions, biology, landscape, and ecology. Literature survey, expert questionnaire and interview were conducted to analyze the interactive relationships between different factors. The structure and correlations between the eco-environmental factors influenced by coal-electricity integration activities were analyzed using interpretive structural modeling (ISM) and the cumulative eco-environment effect of development and construction activities was determined. A research and evaluation framework for the cumulative eco-environmental effect was introduced in addition to specific evaluation and management needs. The results of this study would provide a theoretical and technical basis for planning and management of coal-electricity integration development activities.
Brink-Huis, Anita; van Achterberg, Theo; Schoonhoven, Lisette
2008-08-01
This paper reports a review of the literature conducted to identify organisation models in cancer pain management that contain integrated care processes and describe their effectiveness. Pain is experienced by 30-50% of cancer patients receiving treatment and by 70-90% of those with advanced disease. Efforts to improve pain management have been made through the development and dissemination of clinical guidelines. Early improvements in pain management were focussed on just one or two single processes such as pain assessment and patient education. Little is known about organisational models with multiple integrated processes throughout the course of the disease trajectory and concerning all stages of the care process. Systematic review. The review involved a systematic search of the literature, published between 1986-2006. Subject-specific keywords used to describe patients, disease, pain management interventions and integrated care processes, relevant for this review were selected using the thesaurus of the databases. Institutional models, clinical pathways and consultation services are three alternative models for the integration of care processes in cancer pain management. A clinical pathway is a comprehensive institutionalisation model, whereas a pain consultation service is a 'stand-alone' model that can be integrated in a clinical pathway. Positive patient and process outcomes have been described for all three models, although the level of evidence is generally low. Evaluation of the quality of pain management must involve standardised measurements of both patient and process outcomes. We recommend the development of policies for referrals to a pain consultation service. These policies can be integrated within a clinical pathway. To evaluate the effectiveness of pain management models standardised outcome measures are needed.
Integrate Data into Scientific Workflows for Terrestrial Biosphere Model Evaluation through Brokers
NASA Astrophysics Data System (ADS)
Wei, Y.; Cook, R. B.; Du, F.; Dasgupta, A.; Poco, J.; Huntzinger, D. N.; Schwalm, C. R.; Boldrini, E.; Santoro, M.; Pearlman, J.; Pearlman, F.; Nativi, S.; Khalsa, S.
2013-12-01
Terrestrial biosphere models (TBMs) have become integral tools for extrapolating local observations and process-level understanding of land-atmosphere carbon exchange to larger regions. Model-model and model-observation intercomparisons are critical to understand the uncertainties within model outputs, to improve model skill, and to improve our understanding of land-atmosphere carbon exchange. The DataONE Exploration, Visualization, and Analysis (EVA) working group is evaluating TBMs using scientific workflows in UV-CDAT/VisTrails. This workflow-based approach promotes collaboration and improved tracking of evaluation provenance. But challenges still remain. The multi-scale and multi-discipline nature of TBMs makes it necessary to include diverse and distributed data resources in model evaluation. These include, among others, remote sensing data from NASA, flux tower observations from various organizations including DOE, and inventory data from US Forest Service. A key challenge is to make heterogeneous data from different organizations and disciplines discoverable and readily integrated for use in scientific workflows. This presentation introduces the brokering approach taken by the DataONE EVA to fill the gap between TBMs' evaluation scientific workflows and cross-organization and cross-discipline data resources. The DataONE EVA started the development of an Integrated Model Intercomparison Framework (IMIF) that leverages standards-based discovery and access brokers to dynamically discover, access, and transform (e.g. subset and resampling) diverse data products from DataONE, Earth System Grid (ESG), and other data repositories into a format that can be readily used by scientific workflows in UV-CDAT/VisTrails. The discovery and access brokers serve as an independent middleware that bridge existing data repositories and TBMs evaluation scientific workflows but introduce little overhead to either component. In the initial work, an OpenSearch-based discovery broker is leveraged to provide a consistent mechanism for data discovery. Standards-based data services, including Open Geospatial Consortium (OGC) Web Coverage Service (WCS) and THREDDS are leveraged to provide on-demand data access and transformations through the data access broker. To ease the adoption of broker services, a package of broker client VisTrails modules have been developed to be easily plugged into scientific workflows. The initial IMIF has been successfully tested in selected model evaluation scenarios involved in the NASA-funded Multi-scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP).
NASA Astrophysics Data System (ADS)
McGuire, A. D.
2016-12-01
The Model Integration Group of the Permafrost Carbon Network (see http://www.permafrostcarbon.org/) has conducted studies to evaluate the sensitivity of offline terrestrial permafrost and carbon models to both historical and projected climate change. These studies indicate that there is a wide range of (1) initial states permafrost extend and carbon stocks simulated by these models and (2) responses of permafrost extent and carbon stocks to both historical and projected climate change. In this study, we synthesize what has been learned about the variability in initial states among models and the driving factors that contribute to variability in the sensitivity of responses. We conclude the talk with a discussion of efforts needed by (1) the modeling community to standardize structural representation of permafrost and carbon dynamics among models that are used to evaluate the permafrost carbon feedback and (2) the modeling and observational communities to jointly develop data sets and methodologies to more effectively benchmark models.
NASA Astrophysics Data System (ADS)
Zhang, Y. Y.; Shao, Q. X.; Ye, A. Z.; Xing, H. T.; Xia, J.
2016-02-01
Integrated water system modeling is a feasible approach to understanding severe water crises in the world and promoting the implementation of integrated river basin management. In this study, a classic hydrological model (the time variant gain model: TVGM) was extended to an integrated water system model by coupling multiple water-related processes in hydrology, biogeochemistry, water quality, and ecology, and considering the interference of human activities. A parameter analysis tool, which included sensitivity analysis, autocalibration and model performance evaluation, was developed to improve modeling efficiency. To demonstrate the model performances, the Shaying River catchment, which is the largest highly regulated and heavily polluted tributary of the Huai River basin in China, was selected as the case study area. The model performances were evaluated on the key water-related components including runoff, water quality, diffuse pollution load (or nonpoint sources) and crop yield. Results showed that our proposed model simulated most components reasonably well. The simulated daily runoff at most regulated and less-regulated stations matched well with the observations. The average correlation coefficient and Nash-Sutcliffe efficiency were 0.85 and 0.70, respectively. Both the simulated low and high flows at most stations were improved when the dam regulation was considered. The daily ammonium-nitrogen (NH4-N) concentration was also well captured with the average correlation coefficient of 0.67. Furthermore, the diffuse source load of NH4-N and the corn yield were reasonably simulated at the administrative region scale. This integrated water system model is expected to improve the simulation performances with extension to more model functionalities, and to provide a scientific basis for the implementation in integrated river basin managements.
NASA Astrophysics Data System (ADS)
Yeo, I. Y.; Lang, M.; Lee, S.; Huang, C.; Jin, H.; McCarty, G.; Sadeghi, A.
2017-12-01
The wetland ecosystem plays crucial roles in improving hydrological function and ecological integrity for the downstream water and the surrounding landscape. However, changing behaviours and functioning of wetland ecosystems are poorly understood and extremely difficult to characterize. Improved understanding on hydrological behaviours of wetlands, considering their interaction with surrounding landscapes and impacts on downstream waters, is an essential first step toward closing the knowledge gap. We present an integrated wetland-catchment modelling study that capitalizes on recently developed inundation maps and other geospatial data. The aim of the data-model integration is to improve spatial prediction of wetland inundation and evaluate cumulative hydrological benefits at the catchment scale. In this paper, we highlight problems arising from data preparation, parameterization, and process representation in simulating wetlands within a distributed catchment model, and report the recent progress on mapping of wetland dynamics (i.e., inundation) using multiple remotely sensed data. We demonstrate the value of spatially explicit inundation information to develop site-specific wetland parameters and to evaluate model prediction at multi-spatial and temporal scales. This spatial data-model integrated framework is tested using Soil and Water Assessment Tool (SWAT) with improved wetland extension, and applied for an agricultural watershed in the Mid-Atlantic Coastal Plain, USA. This study illustrates necessity of spatially distributed information and a data integrated modelling approach to predict inundation of wetlands and hydrologic function at the local landscape scale, where monitoring and conservation decision making take place.
Proposal for an integrated evaluation model for the study of whole systems health care in cancer.
Jonas, Wayne B; Beckner, William; Coulter, Ian
2006-12-01
For more than 200 years, biomedicine has approached the treatment of disease by studying disease processes (patho-genesis), inferring causal connections and developing specific approaches for therapeutically interfering with those processes. This pathogenic approach has been highly successful in acute and traumatic disease but less successful in chronic disease, primarily because of the complex, multi-factorial nature of most chronic disease, which does not allow for simple causal inference or for simple therapeutic interventions. This article suggests that chronic disease is best approached by enhancing healing processes (salutogenesis) as a whole system. Because of the nature of complex systems in chronic disease, an evaluation model based on integrative medicine is felt to be more appropriate than a disease model. The authors propose and describe an integrated model for the evaluation of healing (IMEH) that collects multilevel "thick case" observational data in assessing complex practices for chronic disease. If successful, this approach could become a blueprint for studying healing capacity in whole medical systems, including complementary medicine, traditional medicine, and conventional primary care. In addition, streamlining data collection and applying rapid informatics management might allow for such data to be used in guiding clinical practice. The IMEH involves collection, integration, and potentially feedback of relevant variables in the following areas: (1) sociocultural, (2) psychological and behavioral, (3) clinical (diagnosis based), and (4) biological. Evaluation and integration of these components would involve specialized research teams that feed their data into a single data management and information analysis center. These data can then be subjected to descriptive and pathway analysis providing "bench and bedside" information.
NASA Technical Reports Server (NTRS)
Campbell, Stefan F.; Kaneshige, John T.; Nguyen, Nhan T.; Krishakumar, Kalmanje S.
2010-01-01
Presented here is the evaluation of multiple adaptive control technologies for a generic transport aircraft simulation. For this study, seven model reference adaptive control (MRAC) based technologies were considered. Each technology was integrated into an identical dynamic-inversion control architecture and tuned using a methodology based on metrics and specific design requirements. Simulation tests were then performed to evaluate each technology s sensitivity to time-delay, flight condition, model uncertainty, and artificially induced cross-coupling. The resulting robustness and performance characteristics were used to identify potential strengths, weaknesses, and integration challenges of the individual adaptive control technologies
2017-10-01
Through analysis of data obtained in the Molecular Signatures of Chronic Pain Subtypes study termed Veterans Integrated Pain Evaluation Research...immune cells (macrophages) to chronic pain while also evaluating novel analgesics in relevant animal models. The current proposal also attempts to...analysis of data obtained in the Molecular Signatures of Chronic Pain Subtypes study termed Veterans Integrated Pain Evaluation Research (VIPER
DOT National Transportation Integrated Search
1982-03-01
The Systems Analysis Research Unit at the Civil Aeromedical Institute (CAMI) has developed a generic model for Federal Aviation Administration (FAA) Academy training program evaluation. The model will serve as a basis for integrating the total data b...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xiaodong, E-mail: eastdawn@tsinghua.edu.cn; Su, Shu, E-mail: sushuqh@163.com; Zhang, Zhihui, E-mail: zhzhg@tsinghua.edu.cn
To comprehensively pre-evaluate the damages to both the environment and human health due to construction activities in China, this paper presents an integrated building environmental and health performance (EHP) assessment model based on the Building Environmental Performance Analysis System (BEPAS) and the Building Health Impact Analysis System (BHIAS) models and offers a new inventory data estimation method. The new model follows the life cycle assessment (LCA) framework and the inventory analysis step involves bill of quantity (BOQ) data collection, consumption data formation, and environmental profile transformation. The consumption data are derived from engineering drawings and quotas to conduct the assessmentmore » before construction for pre-evaluation. The new model classifies building impacts into three safeguard areas: ecosystems, natural resources and human health. Thus, this model considers environmental impacts as well as damage to human wellbeing. The monetization approach, distance-to-target method and panel method are considered as optional weighting approaches. Finally, nine residential buildings of different structural types are taken as case studies to test the operability of the integrated model through application. The results indicate that the new model can effectively pre-evaluate building EHP and the structure type significantly affects the performance of residential buildings.« less
System Dynamics Modeling of Transboundary Systems: The Bear River Basin Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerald Sehlke; Jake Jacobson
2005-09-01
System dynamics is a computer-aided approach to evaluating the interrelationships of different components and activities within complex systems. Recently, system dynamics models have been developed in areas such as policy design, biological and medical modeling, energy and the environmental analysis, and in various other areas in the natural and social sciences. The Idaho National Engineering and Environmental Laboratory, a multi-purpose national laboratory managed by the Department of Energy, has developed a systems dynamics model in order to evaluate its utility for modeling large complex hydrological systems. We modeled the Bear River Basin, a transboundary basin that includes portions of Idaho,more » Utah and Wyoming. We found that system dynamics modeling is very useful for integrating surface water and groundwater data and for simulating the interactions between these sources within a given basin. In addition, we also found system dynamics modeling is useful for integrating complex hydrologic data with other information (e.g., policy, regulatory and management criteria) to produce a decision support system. Such decision support systems can allow managers and stakeholders to better visualize the key hydrologic elements and management constraints in the basin, which enables them to better understand the system via the simulation of multiple “what-if” scenarios. Although system dynamics models can be developed to conduct traditional hydraulic/hydrologic surface water or groundwater modeling, we believe that their strength lies in their ability to quickly evaluate trends and cause–effect relationships in large-scale hydrological systems; for integrating disparate data; for incorporating output from traditional hydraulic/hydrologic models; and for integration of interdisciplinary data, information and criteria to support better management decisions.« less
System Dynamics Modeling of Transboundary Systems: the Bear River Basin Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerald Sehlke; Jacob J. Jacobson
2005-09-01
System dynamics is a computer-aided approach to evaluating the interrelationships of different components and activities within complex systems. Recently, system dynamics models have been developed in areas such as policy design, biological and medical modeling, energy and the environmental analysis, and in various other areas in the natural and social sciences. The Idaho National Engineering and Environmental Laboratory, a multi-purpose national laboratory managed by the Department of Energy, has developed a systems dynamics model in order to evaluate its utility for modeling large complex hydrological systems. We modeled the Bear River Basin, a transboundary basin that includes portions of Idaho,more » Utah and Wyoming. We found that system dynamics modeling is very useful for integrating surface water and ground water data and for simulating the interactions between these sources within a given basin. In addition, we also found system dynamics modeling is useful for integrating complex hydrologic data with other information (e.g., policy, regulatory and management criteria) to produce a decision support system. Such decision support systems can allow managers and stakeholders to better visualize the key hydrologic elements and management constraints in the basin, which enables them to better understand the system via the simulation of multiple “what-if” scenarios. Although system dynamics models can be developed to conduct traditional hydraulic/hydrologic surface water or ground water modeling, we believe that their strength lies in their ability to quickly evaluate trends and cause–effect relationships in large-scale hydrological systems; for integrating disparate data; for incorporating output from traditional hydraulic/hydrologic models; and for integration of interdisciplinary data, information and criteria to support better management decisions.« less
This will be a student-led research project that incorporates chemical monitoring, integrated modeling, social surveys of residents and qualitative data collection from two sites in the Ventura River, California watershed. The design will define and identify potential pollutan...
ERIC Educational Resources Information Center
Noell, George H.; Volz, Jennifer R.; Henderson, Marie Y.; Williams, Kashunda L.
2017-01-01
This study examined the percentage of steps implemented from treatment plans following consultation with teachers. Interventions were implemented for 39 elementary school students referred for consultation and treatment for challenging behavior or academic deficits. An integrated support model that included antecedent social influence and planning…
NASA Technical Reports Server (NTRS)
1978-01-01
Alternate level 4 integration approaches were synthesized and evaluated to establish the most cost effective experiment integration approach. Program baseline system trade studies are described, as well as Spacelab equipment utilization. Programmatic analysis of the baseline program was evaluated; the 2/3 and 1/3 traffic models were also considered.
A Research Synthesis of the Evaluation Capacity Building Literature
ERIC Educational Resources Information Center
Labin, Susan N.; Duffy, Jennifer L.; Meyers, Duncan C.; Wandersman, Abraham; Lesesne, Catherine A.
2012-01-01
The continuously growing demand for program results has produced an increased need for evaluation capacity building (ECB). The "Integrative ECB Model" was developed to integrate concepts from existing ECB theory literature and to structure a synthesis of the empirical ECB literature. The study used a broad-based research synthesis method with…
To facilitate evaluation of existing site characterization data, ORD has developed on-line tools and models that integrate data and models into innovative applications. Forty calculators have been developed in four groups: parameter estimators, models, scientific demos and unit ...
NASA Technical Reports Server (NTRS)
Foyle, David C.
1993-01-01
Based on existing integration models in the psychological literature, an evaluation framework is developed to assess sensor fusion displays as might be implemented in an enhanced/synthetic vision system. The proposed evaluation framework for evaluating the operator's ability to use such systems is a normative approach: The pilot's performance with the sensor fusion image is compared to models' predictions based on the pilot's performance when viewing the original component sensor images prior to fusion. This allows for the determination as to when a sensor fusion system leads to: poorer performance than one of the original sensor displays, clearly an undesirable system in which the fused sensor system causes some distortion or interference; better performance than with either single sensor system alone, but at a sub-optimal level compared to model predictions; optimal performance compared to model predictions; or, super-optimal performance, which may occur if the operator were able to use some highly diagnostic 'emergent features' in the sensor fusion display, which were unavailable in the original sensor displays.
Jordan Water Project: an interdisciplinary evaluation of freshwater vulnerability and security
NASA Astrophysics Data System (ADS)
Gorelick, S.; Yoon, J.; Rajsekhar, D.; Muller, M. F.; Zhang, H.; Gawel, E.; Klauer, B.; Klassert, C. J. A.; Sigel, K.; Thilmant, A.; Avisse, N.; Lachaut, T.; Harou, J. J.; Knox, S.; Selby, P. D.; Mustafa, D.; Talozi, S.; Haddad, Y.; Shamekh, M.
2016-12-01
The Jordan Water Project, part of the Belmont Forum projects, is an interdisciplinary, international research effort focused on evaluation of freshwater security in Jordan, one of the most water-vulnerable countries in the world. The team covers hydrology, water resources systems analysis, economics, policy evaluation, geography, risk and remote sensing analyses, and model platform development. The entire project team communally engaged in construction of an integrated hydroeconomic model for water supply policy evaluation. To represent water demand and allocation behavior at multiple levels of decision making,the model integrates biophysical modules that simulate natural and engineered hydrologic phenomena with human behavioral modules. Hydrologic modules include spatially-distributed groundwater and surface-water models for the major aquifers and watersheds throughout Jordan. For the human modules, we adopt a multi-agent modeling approach to represent decision-making processes. The integrated model was developed in Pynsim, a new open-source, object-oriented platform in Python for network-based water resource systems. We continue to explore the impacts of future scenarios and interventions.This project had tremendous encouragement and data support from Jordan's Ministry of Water and Irrigation. Modeling technology is being transferred through a companion NSF/USAID PEER project awarded toJordan University of Science and Technology. Individual teams have also conducted a range of studies aimed at evaluating Jordanian and transboundary surface water and groundwater systems. Surveys, interviews, and econometric analyses enabled us to better understandthe behavior of urban households, farmers, private water resellers, water use pattern of the commercial sector and irrigation water user associations. We analyzed nationwide spatial and temporal statistical trends in rainfall, developed urban and national comparative metrics to quantify water supply vulnerability, improved remote sensing methods to estimate crop-water use, and evaluated the impacts of climate change on future drought severity.
Non-communicable diseases and HIV care and treatment: models of integrated service delivery.
Duffy, Malia; Ojikutu, Bisola; Andrian, Soa; Sohng, Elaine; Minior, Thomas; Hirschhorn, Lisa R
2017-08-01
Non-communicable diseases (NCD) are a growing cause of morbidity in low-income countries including in people living with human immunodeficiency virus (HIV). Integration of NCD and HIV services can build upon experience with chronic care models from HIV programmes. We describe models of NCD and HIV integration, challenges and lessons learned. A literature review of published articles on integrated NCD and HIV programs in low-income countries and key informant interviews were conducted with leaders of identified integrated NCD and HIV programs. Information was synthesised to identify models of NCD and HIV service delivery integration. Three models of integration were identified as follows: NCD services integrated into centres originally providing HIV care; HIV care integrated into primary health care (PHC) already offering NCD services; and simultaneous introduction of integrated HIV and NCD services. Major challenges identified included NCD supply chain, human resources, referral systems, patient education, stigma, patient records and monitoring and evaluation. The range of HIV and NCD services varied widely within and across models. Regardless of model of integration, leveraging experience from HIV care models and adapting existing systems and tools is a feasible method to provide efficient care and treatment for the growing numbers of patients with NCDs. Operational research should be conducted to further study how successful models of HIV and NCD integration can be expanded in scope and scaled-up by managers and policymakers seeking to address all the chronic care needs of their patients. © 2017 John Wiley & Sons Ltd.
Use of Knowledge Base Systems (EMDS) in Strategic and Tactical Forest Planning
NASA Astrophysics Data System (ADS)
Jensen, M. E.; Reynolds, K.; Stockmann, K.
2008-12-01
The USDA Forest Service 2008 Planning Rule requires Forest plans to provide a strategic vision for maintaining the sustainability of ecological, economic, and social systems across USFS lands through the identification of desired conditions and objectives. In this paper we show how knowledge-based systems can be efficiently used to evaluate disparate natural resource information to assess desired conditions and related objectives in Forest planning. We use the Ecosystem Management Decision Support (EMDS) system (http://www.institute.redlands.edu/emds/), which facilitates development of both logic-based models for evaluating ecosystem sustainability (desired conditions) and decision models to identify priority areas for integrated landscape restoration (objectives). The study area for our analysis spans 1,057 subwatersheds within western Montana and northern Idaho. Results of our study suggest that knowledge-based systems such as EMDS are well suited to both strategic and tactical planning and that the following points merit consideration in future National Forest (and other land management) planning efforts: 1) Logic models provide a consistent, transparent, and reproducible method for evaluating broad propositions about ecosystem sustainability such as: are watershed integrity, ecosystem and species diversity, social opportunities, and economic integrity in good shape across a planning area? The ability to evaluate such propositions in a formal logic framework also allows users the opportunity to evaluate statistical changes in outcomes over time, which could be very useful for regional and national reporting purposes and for addressing litigation; 2) The use of logic and decision models in strategic and tactical Forest planning provides a repository for expert knowledge (corporate memory) that is critical to the evaluation and management of ecosystem sustainability over time. This is especially true for the USFS and other federal resource agencies, which are likely to experience rapid turnover in tenured resource specialist positions within the next five years due to retirements; 3) Use of logic model output in decision models is an efficient method for synthesizing the typically large amounts of information needed to support integrated landscape restoration. Moreover, use of logic and decision models to design customized scenarios for integrated landscape restoration, as we have demonstrated with EMDS, offers substantial improvements to traditional GIS-based procedures such as suitability analysis. To our knowledge, this study represents the first attempt to link evaluations of desired conditions for ecosystem sustainability in strategic planning to tactical planning regarding the location of subwatersheds that best meet the objectives of integrated landscape restoration. The basic knowledge-based approach implemented in EMDS, with its logic (NetWeaver) and decision (Criterion Decision Plus) engines, is well suited both to multi-scale strategic planning and to multi-resource tactical planning.
The Modular Modeling System (MMS): A toolbox for water- and environmental-resources management
Leavesley, G.H.; Markstrom, S.L.; Viger, R.J.; Hay, L.E.; ,
2005-01-01
The increasing complexity of water- and environmental-resource problems require modeling approaches that incorporate knowledge from a broad range of scientific and software disciplines. To address this need, the U.S. Geological Survey (USGS) has developed the Modular Modeling System (MMS). MMS is an integrated system of computer software for model development, integration, and application. Its modular design allows a high level of flexibility and adaptability to enable modelers to incorporate their own software into a rich array of built-in models and modeling tools. These include individual process models, tightly coupled models, loosely coupled models, and fully- integrated decision support systems. A geographic information system (GIS) interface, the USGS GIS Weasel, has been integrated with MMS to enable spatial delineation and characterization of basin and ecosystem features, and to provide objective parameter-estimation methods for models using available digital data. MMS provides optimization and sensitivity-analysis tools to analyze model parameters and evaluate the extent to which uncertainty in model parameters affects uncertainty in simulation results. MMS has been coupled with the Bureau of Reclamation object-oriented reservoir and river-system modeling framework, RiverWare, to develop models to evaluate and apply optimal resource-allocation and management strategies to complex, operational decisions on multipurpose reservoir systems and watersheds. This decision support system approach has been developed, tested, and implemented in the Gunnison, Yakima, San Joaquin, Rio Grande, and Truckee River basins of the western United States. MMS is currently being coupled with the U.S. Forest Service model SIMulating Patterns and Processes at Landscape Scales (SIMPPLLE) to assess the effects of alternative vegetation-management strategies on a variety of hydrological and ecological responses. Initial development and testing of the MMS-SIMPPLLE integration is being conducted on the Colorado Plateau region of the western United Sates.
Liu, Zhiquan; Ma, Jianfeng; Jiang, Zhongyuan; Miao, Yinbin; Gao, Cong
2016-01-01
With the prevalence of Social Networks (SNs) and services, plenty of trust models for Trustworthy Service Recommendation (TSR) in Service-oriented SNs (S-SNs) have been proposed. The reputation-based schemes usually do not contain user preferences and are vulnerable to unfair rating attacks. Meanwhile, the local trust-based schemes generally have low reliability or even fail to work when the trust path is too long or does not exist. Thus it is beneficial to integrate them for TSR in S-SNs. This work improves the state-of-the-art Combining Global and Local Trust (CGLT) scheme and proposes a novel Integrating Reputation and Local Trust (IRLT) model which mainly includes four modules, namely Service Recommendation Interface (SRI) module, Local Trust-based Trust Evaluation (LTTE) module, Reputation-based Trust Evaluation (RTE) module and Aggregation Trust Evaluation (ATE) module. Besides, a synthetic S-SN based on the famous Advogato dataset is deployed and the well-known Discount Cumulative Gain (DCG) metric is employed to measure the service recommendation performance of our IRLT model with comparing to that of the excellent CGLT model. The results illustrate that our IRLT model is slightly superior to the CGLT model in honest environment and significantly outperforms the CGLT model in terms of the robustness against unfair rating attacks. PMID:26963089
Liu, Zhiquan; Ma, Jianfeng; Jiang, Zhongyuan; Miao, Yinbin; Gao, Cong
2016-01-01
With the prevalence of Social Networks (SNs) and services, plenty of trust models for Trustworthy Service Recommendation (TSR) in Service-oriented SNs (S-SNs) have been proposed. The reputation-based schemes usually do not contain user preferences and are vulnerable to unfair rating attacks. Meanwhile, the local trust-based schemes generally have low reliability or even fail to work when the trust path is too long or does not exist. Thus it is beneficial to integrate them for TSR in S-SNs. This work improves the state-of-the-art Combining Global and Local Trust (CGLT) scheme and proposes a novel Integrating Reputation and Local Trust (IRLT) model which mainly includes four modules, namely Service Recommendation Interface (SRI) module, Local Trust-based Trust Evaluation (LTTE) module, Reputation-based Trust Evaluation (RTE) module and Aggregation Trust Evaluation (ATE) module. Besides, a synthetic S-SN based on the famous Advogato dataset is deployed and the well-known Discount Cumulative Gain (DCG) metric is employed to measure the service recommendation performance of our IRLT model with comparing to that of the excellent CGLT model. The results illustrate that our IRLT model is slightly superior to the CGLT model in honest environment and significantly outperforms the CGLT model in terms of the robustness against unfair rating attacks.
Evaluating Model Fit for Growth Curve Models: Integration of Fit Indices from SEM and MLM Frameworks
ERIC Educational Resources Information Center
Wu, Wei; West, Stephen G.; Taylor, Aaron B.
2009-01-01
Evaluating overall model fit for growth curve models involves 3 challenging issues. (a) Three types of longitudinal data with different implications for model fit may be distinguished: balanced on time with complete data, balanced on time with data missing at random, and unbalanced on time. (b) Traditional work on fit from the structural equation…
As part of the northern spotted owl recovery planning effort, we evaluated a series of alternative critical habitat scenarios using a species-distribution model (MaxEnt), a conservation-planning model (Zonation), and an individual-based population model (HexSim). With this suite ...
Bhattacharyya, Onil; Schull, Michael; Shojania, Kaveh; Stergiopoulos, Vicky; Naglie, Gary; Webster, Fiona; Brandao, Ricardo; Mohammed, Tamara; Christian, Jennifer; Hawker, Gillian; Wilson, Lynn; Levinson, Wendy
2016-01-01
Integrating care for people with complex needs is challenging. Indeed, evidence of solutions is mixed, and therefore, well-designed, shared evaluation approaches are needed to create cumulative learning. The Toronto-based Building Bridges to Integrate Care (BRIDGES) collaborative provided resources to refine and test nine new models linking primary, hospital and community care. It used mixed methods, a cross-project meta-evaluation and shared outcome measures. Given the range of skills required to develop effective interventions, a novel incubator was used to test and spread opportunities for system integration that included operational expertise and support for evaluation and process improvement.
NASA Astrophysics Data System (ADS)
Hardyanto, W.; Purwinarko, A.; Adhi, M. A.
2018-03-01
The library which is the gate of the University should be supported by the existence of an adequate information system, to provide excellent service and optimal to every user. Library management system that has been in existence since 2009 needs to be re-evaluated so that the system can meet the needs of both operator and Unnes user in particular, and users from outside Unnes in general. This study aims to evaluate and improve the existing library management system to produce a system that is accountable and able to meet the needs of end users, as well as produce a library management system that is integrated Unnes. Research is directed to produce evaluation report with Technology Acceptance Model (TAM) approach and library management system integrated with the national standard.
NASA Technical Reports Server (NTRS)
Talbot, Bryan; Zhou, Shu-Jia; Higgins, Glenn; Zukor, Dorothy (Technical Monitor)
2002-01-01
One of the most significant challenges in large-scale climate modeling, as well as in high-performance computing in other scientific fields, is that of effectively integrating many software models from multiple contributors. A software framework facilitates the integration task, both in the development and runtime stages of the simulation. Effective software frameworks reduce the programming burden for the investigators, freeing them to focus more on the science and less on the parallel communication implementation. while maintaining high performance across numerous supercomputer and workstation architectures. This document surveys numerous software frameworks for potential use in Earth science modeling. Several frameworks are evaluated in depth, including Parallel Object-Oriented Methods and Applications (POOMA), Cactus (from (he relativistic physics community), Overture, Goddard Earth Modeling System (GEMS), the National Center for Atmospheric Research Flux Coupler, and UCLA/UCB Distributed Data Broker (DDB). Frameworks evaluated in less detail include ROOT, Parallel Application Workspace (PAWS), and Advanced Large-Scale Integrated Computational Environment (ALICE). A host of other frameworks and related tools are referenced in this context. The frameworks are evaluated individually and also compared with each other.
Reducing the two-loop large-scale structure power spectrum to low-dimensional, radial integrals
Schmittfull, Marcel; Vlah, Zvonimir
2016-11-28
Modeling the large-scale structure of the universe on nonlinear scales has the potential to substantially increase the science return of upcoming surveys by increasing the number of modes available for model comparisons. One way to achieve this is to model nonlinear scales perturbatively. Unfortunately, this involves high-dimensional loop integrals that are cumbersome to evaluate. Here, trying to simplify this, we show how two-loop (next-to-next-to-leading order) corrections to the density power spectrum can be reduced to low-dimensional, radial integrals. Many of those can be evaluated with a one-dimensional fast Fourier transform, which is significantly faster than the five-dimensional Monte-Carlo integrals thatmore » are needed otherwise. The general idea of this fast fourier transform perturbation theory method is to switch between Fourier and position space to avoid convolutions and integrate over orientations, leaving only radial integrals. This reformulation is independent of the underlying shape of the initial linear density power spectrum and should easily accommodate features such as those from baryonic acoustic oscillations. We also discuss how to account for halo bias and redshift space distortions.« less
The Ambulatory Integration of the Medical and Social (AIMS) model: A retrospective evaluation.
Rowe, Jeannine M; Rizzo, Victoria M; Shier Kricke, Gayle; Krajci, Kate; Rodriguez-Morales, Grisel; Newman, Michelle; Golden, Robyn
2016-01-01
An exploratory, retrospective evaluation of Ambulatory Integration of the Medical and Social (AIMS), a care coordination model designed to integrate medical and non-medical needs of patients and delivered exclusively by social workers was conducted to examine mean utilization of costly health care services for older adult patients. Results reveal mean utilization of 30-day hospital readmissions, emergency department (ED) visits, and hospital admissions are significantly lower for the study sample compared to the larger patient population. Comparisons with national population statistics reveal significantly lower mean utilization of 30-day admissions and ED visits for the study sample. The findings offer preliminary support regarding the value of AIMS.
NASA Astrophysics Data System (ADS)
Rakkapao, S.; Pengpan, T.; Srikeaw, S.; Prasitpong, S.
2014-01-01
This study aims to investigate the use of the predict-observe-explain (POE) approach integrated into large lecture classes on forces and motion. It is compared to the instructor-led problem-solving method using model analysis. The samples are science (SC, N = 420) and engineering (EN, N = 434) freshmen, from Prince of Songkla University, Thailand. Research findings from the force and motion conceptual evaluation indicate that the multimedia-supported POE method promotes students’ learning better than the problem-solving method, in particular for the velocity and acceleration concepts. There is a small shift of the students’ model states after the problem-solving instruction. Moreover, by using model analysis instructors are able to investigate students’ misconceptions and evaluate teaching methods. It benefits instructors in organizing subsequent instructional materials.
ERIC Educational Resources Information Center
Smith, Calvin
2008-01-01
This paper describes the development of a model for integrating student evaluation of teaching results with academic development opportunities, in new ways that take into account theoretical and practical developments in both fields. The model is described in terms of five phases or components: (1) the basic student evaluation system; (2) an…
NASA Astrophysics Data System (ADS)
Ran, L.; Cooter, E. J.; Gilliam, R. C.; Foroutan, H.; Kang, D.; Appel, W.; Wong, D. C.; Pleim, J. E.; Benson, V.; Pouliot, G.
2017-12-01
The combined meteorology and air quality modeling system composed of the Weather Research and Forecast (WRF) model and Community Multiscale Air Quality (CMAQ) model is an important decision support tool that is used in research and regulatory decisions related to emissions, meteorology, climate, and chemical transport. The Environmental Policy Integrated Climate (EPIC) is a cropping model which has long been used in a range of applications related to soil erosion, crop productivity, climate change, and water quality around the world. We have integrated WRF/CMAQ with EPIC using the Fertilizer Emission Scenario Tool for CMAQ (FEST-C) to estimate daily soil N information with fertilization for CMAQ bi-directional ammonia flux modeling. Driven by the weather and N deposition from WRF/CMAQ, FEST-C EPIC simulations are conducted on 22 different agricultural production systems ranging from managed grass lands (e.g. hay and alfalfa) to crop lands (e.g. corn grain and soybean) with rainfed and irrigated information across any defined conterminous United States (U.S.) CMAQ domain and grid resolution. In recent years, this integrated system has been enhanced and applied in many different air quality and ecosystem assessment projects related to land-water-atmosphere interactions. These enhancements have advanced this system to become a valuable tool for integrated assessments of air, land and water quality in light of social drivers and human and ecological outcomes. This presentation will focus on evaluating the sensitivity of precipitation and N deposition in the integrated system to MODIS vegetation input and lightning assimilation and their impacts on agricultural production and fertilization. We will describe the integrated modeling system and evaluate simulated precipitation and N deposition along with other weather information (e.g. temperature, humidity) for 2011 over the conterminous U.S. at 12 km grids from a coupled WRF/CMAQ with MODIS and lightning assimilation. Simulated agricultural production and fertilization from FEST-C EPIC driven by the changed meteorology and N deposition from MODIS and lightning assimilations will be evaluated and analyzed.
Evaluation of using digital gravity field models for zoning map creation
NASA Astrophysics Data System (ADS)
Loginov, Dmitry
2018-05-01
At the present time the digital cartographic models of geophysical fields are taking a special significance into geo-physical mapping. One of the important directions to their application is the creation of zoning maps, which allow taking into account the morphology of geophysical field in the implementation automated choice of contour intervals. The purpose of this work is the comparative evaluation of various digital models in the creation of integrated gravity field zoning map. For comparison were chosen the digital model of gravity field of Russia, created by the analog map with scale of 1 : 2 500 000, and the open global model of gravity field of the Earth - WGM2012. As a result of experimental works the four integrated gravity field zoning maps were obtained with using raw and processed data on each gravity field model. The study demonstrates the possibility of open data use to create integrated zoning maps with the condition to eliminate noise component of model by processing in specialized software systems. In this case, for solving problem of contour intervals automated choice the open digital models aren't inferior to regional models of gravity field, created for individual countries. This fact allows asserting about universality and independence of integrated zoning maps creation regardless of detail of a digital cartographic model of geo-physical fields.
NASA Astrophysics Data System (ADS)
Wi, S.; Freeman, S.; Brown, C.
2017-12-01
This study presents a general approach to developing computational models of human-hydrologic systems where human modification of hydrologic surface processes are significant or dominant. A river basin system is represented by a network of human-hydrologic response units (HHRUs) identified based on locations where river regulations happen (e.g., reservoir operation and diversions). Natural and human processes in HHRUs are simulated in a holistic framework that integrates component models representing rainfall-runoff, river routing, reservoir operation, flow diversion and water use processes. We illustrate the approach in a case study of the Cutzamala water system (CWS) in Mexico, a complex inter-basin water transfer system supplying the Mexico City Metropolitan Area (MCMA). The human-hydrologic system model for CWS (CUTZSIM) is evaluated in terms of streamflow and reservoir storages measured across the CWS and to water supplied for MCMA. The CUTZSIM improves the representation of hydrology and river-operation interaction and, in so doing, advances evaluation of system-wide water management consequences under altered climatic and demand regimes. The integrated modeling framework enables evaluation and simulation of model errors throughout the river basin, including errors in representation of the human component processes. Heretofore, model error evaluation, predictive error intervals and the resultant improved understanding have been limited to hydrologic processes. The general framework represents an initial step towards fuller understanding and prediction of the many and varied processes that determine the hydrologic fluxes and state variables in real river basins.
Implementation of an Integrated On-Board Aircraft Engine Diagnostic Architecture
NASA Technical Reports Server (NTRS)
Armstrong, Jeffrey B.; Simon, Donald L.
2012-01-01
An on-board diagnostic architecture for aircraft turbofan engine performance trending, parameter estimation, and gas-path fault detection and isolation has been developed and evaluated in a simulation environment. The architecture incorporates two independent models: a realtime self-tuning performance model providing parameter estimates and a performance baseline model for diagnostic purposes reflecting long-term engine degradation trends. This architecture was evaluated using flight profiles generated from a nonlinear model with realistic fleet engine health degradation distributions and sensor noise. The architecture was found to produce acceptable estimates of engine health and unmeasured parameters, and the integrated diagnostic algorithms were able to perform correct fault isolation in approximately 70 percent of the tested cases
Classroom Strategies Coaching Model: Integration of Formative Assessment and Instructional Coaching
ERIC Educational Resources Information Center
Reddy, Linda A.; Dudek, Christopher M.; Lekwa, Adam
2017-01-01
This article describes the theory, key components, and empirical support for the Classroom Strategies Coaching (CSC) Model, a data-driven coaching approach that systematically integrates data from multiple observations to identify teacher practice needs and goals, design practice plans, and evaluate progress towards goals. The primary aim of the…
Models for Integrating Human Services into the School.
ERIC Educational Resources Information Center
Dolan, Lawrence J.
This report examines five models of school-based integrated human service programs to evaluate the effects of the programs in light of the growing support for and implementation of these programs. The study examined the following programs: (1) school-based health clinics in Baltimore (Maryland); (2) Success for All (an elementary school-level…
ERIC Educational Resources Information Center
Argüelles, Carlos
2016-01-01
This article describes a strategy to integrate information literacy into the curriculum of a nursing program in a community college. The model is articulated in four explained phases: preparatory, planning, implementation, and evaluation. It describes a collaborative process encouraging librarians to work with nursing faculty, driving students to…
A Landscape Model (LEEMATH) to Evaluate Effects of Management Impacts on Timber and Wildlife Habitat
Harbin Li; David L. Gartner; Pu Mou; Carl C. Trettin
2000-01-01
Managing forest resources for sustainability requires the successful integration of economic and ecological goals. To attain such integration, land managers need decision support tools that incorporate science, land-use strategies, and policy options to assess resources sustainability at large scales. Landscape Evaluation of Effects of Management Activities on Timber...
NASA Astrophysics Data System (ADS)
Schmidt, J. B.
1985-09-01
This thesis investigates ways of improving the real-time performance of the Stockpoint Logistics Integrated Communication Environment (SPLICE). Performance evaluation through continuous monitoring activities and performance studies are the principle vehicles discussed. The method for implementing this performance evaluation process is the measurement of predefined performance indexes. Performance indexes for SPLICE are offered that would measure these areas. Existing SPLICE capability to carry out performance evaluation is explored, and recommendations are made to enhance that capability.
An integrated environment for tactical guidance research and evaluation
NASA Technical Reports Server (NTRS)
Goodrich, Kenneth H.; Mcmanus, John W.
1990-01-01
NASA-Langley's Tactical Guidance Research and Evaluation System (TGRES) constitutes an integrated environment for the development of tactical guidance algorithms and evaluating the effects of novel technologies; the modularity of the system allows easy modification or replacement of system elements in order to conduct evaluations of alternative technologies. TGRES differs from existing systems in its capitalization on AI programming techniques for guidance-logic implementation. Its ability to encompass high-fidelity, six-DOF simulation models will facilitate the analysis of complete aircraft dynamics.
Reid, Allecia E.; Aiken, Leona S.
2011-01-01
The purpose of this research was to select from the health belief model (HBM), theories of reasoned action (TRA) and planned behaviour (TPB), information-motivation-behavioural skills model (IMB), and social cognitive theory (SCT) the strongest longitudinal predictors of women’s condom use and to combine these constructs into a single integrated model of condom use. The integrated model was evaluated for prediction of condom use among young women who had steady versus casual partners. At Time 1, all constructs of the five models and condom use were assessed in an initial and a replication sample (n= 193, n= 161). Condom use reassessed 8 weeks later (Time 2) served as the main outcome. Information from IMB, perceived susceptibility, benefits, and barriers from HBM, self-efficacy and self-evaluative expectancies from SCT, and partner norm and attitudes from TPB served as indirect or direct predictors of condom use. All paths replicated across samples. Direct predictors of behaviour varied with relationship status: self-efficacy significantly predicted condom use for women with casual partners, while attitude and partner norm predicted for those with steady partners. Integrated psychosocial models, rich in constructs and relationships drawn from multiple theories of behaviour, may provide a more complete characterization of health protective behaviour. PMID:21678166
ERIC Educational Resources Information Center
Powell, Brent; Conrad, Eric
2015-01-01
Purpose: To examine the enhancement of a university health course through the utilization of the CIPP Model as a means to develop an integrated service-learning component. Methods: The CIPP model was utilized in two concurrent semesters of an undergraduate health course in order to design and evaluate the implementation of a drug and alcohol…
Integrated Assessment Model Evaluation
NASA Astrophysics Data System (ADS)
Smith, S. J.; Clarke, L.; Edmonds, J. A.; Weyant, J. P.
2012-12-01
Integrated assessment models of climate change (IAMs) are widely used to provide insights into the dynamics of the coupled human and socio-economic system, including emission mitigation analysis and the generation of future emission scenarios. Similar to the climate modeling community, the integrated assessment community has a two decade history of model inter-comparison, which has served as one of the primary venues for model evaluation and confirmation. While analysis of historical trends in the socio-economic system has long played a key role in diagnostics of future scenarios from IAMs, formal hindcast experiments are just now being contemplated as evaluation exercises. Some initial thoughts on setting up such IAM evaluation experiments are discussed. Socio-economic systems do not follow strict physical laws, which means that evaluation needs to take place in a context, unlike that of physical system models, in which there are few fixed, unchanging relationships. Of course strict validation of even earth system models is not possible (Oreskes etal 2004), a fact borne out by the inability of models to constrain the climate sensitivity. Energy-system models have also been grappling with some of the same questions over the last quarter century. For example, one of "the many questions in the energy field that are waiting for answers in the next 20 years" identified by Hans Landsberg in 1985 was "Will the price of oil resume its upward movement?" Of course we are still asking this question today. While, arguably, even fewer constraints apply to socio-economic systems, numerous historical trends and patterns have been identified, although often only in broad terms, that are used to guide the development of model components, parameter ranges, and scenario assumptions. IAM evaluation exercises are expected to provide useful information for interpreting model results and improving model behavior. A key step is the recognition of model boundaries, that is, what is inside and outside the IAM. All IAM projections to date are conditional on assumed inputs such as population dynamics and economic growth. A key part of evaluation exercises will be the substantial effort needed to develop the necessary historical datasets. Given the fundamentally uncertain characteristics of the socio-economic system, alternative formulations of the evaluation question may turn out to be useful. For example, is is likely useful to ask: how much needs to be specified on order to be able to reproduce historical trends to within a given accuracy? There is also a close, and fundamental, link between evaluation and diagnostic exercises that aim to evaluate the characteristics of future scenarios (rates of growth, technology diffusion, etc.) against historical behavior. These exercises are currently being conducted by individual groups due, in part, due to the large diversity if IAM designs and goals. While all climate models are, to first order, modeling the same system, boundary conditions, and physical laws, this is not true for IAMs. The structure, and even feasibility, of a hindcast-style evaluation exercise can be very different depending on the structure of each specific integrated assessment model.
Interventions and approaches to integrating HIV and mental health services: a systematic review.
Chuah, Fiona Leh Hoon; Haldane, Victoria Elizabeth; Cervero-Liceras, Francisco; Ong, Suan Ee; Sigfrid, Louise A; Murphy, Georgina; Watt, Nicola; Balabanova, Dina; Hogarth, Sue; Maimaris, Will; Otero, Laura; Buse, Kent; McKee, Martin; Piot, Peter; Perel, Pablo; Legido-Quigley, Helena
2017-11-01
The frequency in which HIV and AIDS and mental health problems co-exist, and the complex bi-directional relationship between them, highlights the need for effective care models combining services for HIV and mental health. Here, we present a systematic review that synthesizes the literature on interventions and approaches integrating these services. This review was part of a larger systematic review on integration of services for HIV and non-communicable diseases. Eligible studies included those that described or evaluated an intervention or approach aimed at integrating HIV and mental health care. We searched multiple databases from inception until October 2015, independently screened articles identified for inclusion, conducted data extraction, and assessed evaluative papers for risk of bias. Forty-five articles were eligible for this review. We identified three models of integration at the meso and micro levels: single-facility integration, multi-facility integration, and integrated care coordinated by a non-physician case manager. Single-site integration enhances multidisciplinary coordination and reduces access barriers for patients. However, the practicality and cost-effectiveness of providing a full continuum of specialized care on-site for patients with complex needs is arguable. Integration based on a collaborative network of specialized agencies may serve those with multiple co-morbidities but fragmented and poorly coordinated care can pose barriers. Integrated care coordinated by a single case manager can enable continuity of care for patients but requires appropriate training and support for case managers. Involving patients as key actors in facilitating integration within their own treatment plan is a promising approach. This review identified much diversity in integration models combining HIV and mental health services, which are shown to have potential in yielding positive patient and service delivery outcomes when implemented within appropriate contexts. Our review revealed a lack of research in low- and middle- income countries, and was limited to most studies being descriptive. Overall, studies that seek to evaluate and compare integration models in terms of long-term outcomes and cost-effectiveness are needed, particularly at the health system level and in regions with high HIV and AIDS burden. © The Author 2017. Published by Oxford University Press in association with The London School of Hygiene and Tropical Medicine.
Background / Question / Methods As part of the ongoing northern spotted owl recovery planning effort, we evaluated a series of alternative potential critical habitat scenarios using a species-distribution model (MaxEnt), a conservation-planning model (Zonation), and an individua...
The Integration of Evaluation Paradigms Through Metaphor.
ERIC Educational Resources Information Center
Felker, Roberta M.
The point of view is presented that evaluation projects can be enriched by not using either an exclusively quantitative model or an exclusively qualitative model but by combining both models in one project. The concept of metaphor is used to clarify the usefulness of the combination. Iconic or holistic metaphors describe an object or event as…
Simulating forage crop production in a northern climate with the Integrated Farm System Model
USDA-ARS?s Scientific Manuscript database
Whole-farm simulation models are useful tools for evaluating the effect of management practices and climate variability on the agro-environmental and economic performance of farms. A few process-based farm-scale models have been developed, but none have been evaluated in a northern region with a sho...
A Model for Integrating Program Development and Evaluation.
ERIC Educational Resources Information Center
Brown, J. Lynne; Kiernan, Nancy Ellen
1998-01-01
A communication model consisting of input from target audience, program delivery, and outcomes (receivers' perception of message) was applied to an osteoporosis-prevention program for working mothers ages 21 to 45. Due to poor completion rate on evaluation instruments and failure of participants to learn key concepts, the model was used to improve…
PARAGON: A Systematic, Integrated Approach to Aerosol Observation and Modeling
NASA Technical Reports Server (NTRS)
Diner, David J.; Kahn, Ralph A.; Braverman, Amy J.; Davies, Roger; Martonchik, John V.; Menzies, Robert T.; Ackerman, Thomas P.; Seinfeld, John H.; Anderson, Theodore L.; Charlson, Robert J.;
2004-01-01
Aerosols are generated and transformed by myriad processes operating across many spatial and temporal scales. Evaluation of climate models and their sensitivity to changes, such as in greenhouse gas abundances, requires quantifying natural and anthropogenic aerosol forcings and accounting for other critical factors, such as cloud feedbacks. High accuracy is required to provide sufficient sensitivity to perturbations, separate anthropogenic from natural influences, and develop confidence in inputs used to support policy decisions. Although many relevant data sources exist, the aerosol research community does not currently have the means to combine these diverse inputs into an integrated data set for maximum scientific benefit. Bridging observational gaps, adapting to evolving measurements, and establishing rigorous protocols for evaluating models are necessary, while simultaneously maintaining consistent, well understood accuracies. The Progressive Aerosol Retrieval and Assimilation Global Observing Network (PARAGON) concept represents a systematic, integrated approach to global aerosol Characterization, bringing together modern measurement and modeling techniques, geospatial statistics methodologies, and high-performance information technologies to provide the machinery necessary for achieving a comprehensive understanding of how aerosol physical, chemical, and radiative processes impact the Earth system. We outline a framework for integrating and interpreting observations and models and establishing an accurate, consistent and cohesive long-term data record.
Integrating the human element into the systems engineering process and MBSE methodology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tadros, Michael Samir
In response to the challenges related to the increasing size and complexity of systems, organizations have recognized the need to integrate human considerations in the beginning stages of systems development. Human Systems Integration (HSI) seeks to accomplish this objective by incorporating human factors within systems engineering (SE) processes and methodologies, which is the focus of this paper. A representative set of HSI methods from multiple sources are organized, analyzed, and mapped to the systems engineering Vee-model. These methods are then consolidated and evaluated against the SE process and Models-Based Systems Engineering (MBSE) methodology to determine where and how they couldmore » integrate within systems development activities in the form of specific enhancements. Overall conclusions based on these evaluations are presented and future research areas are proposed.« less
Comprehensive system models: Strategies for evaluation
NASA Technical Reports Server (NTRS)
Field, Christopher; Kutzbach, John E.; Ramanathan, V.; Maccracken, Michael C.
1992-01-01
The task of evaluating comprehensive earth system models is vast involving validations of every model component at every scale of organization, as well as tests of all the individual linkages. Even the most detailed evaluation of each of the component processes and the individual links among them should not, however, engender confidence in the performance of the whole. The integrated earth system is so rich with complex feedback loops, often involving components of the atmosphere, oceans, biosphere, and cryosphere, that it is certain to exhibit emergent properties very difficult to predict from the perspective of a narrow focus on any individual component of the system. Therefore, a substantial share of the task of evaluating comprehensive earth system models must reside at the level of whole system evaluations. Since complete, integrated atmosphere/ ocean/ biosphere/ hydrology models are not yet operational, questions of evaluation must be addressed at the level of the kinds of earth system processes that the models should be competent to simulate, rather than at the level of specific performance criteria. Here, we have tried to identify examples of earth system processes that are difficult to simulate with existing models and that involve a rich enough suite of feedbacks that they are unlikely to be satisfactorily described by highly simplified or toy models. Our purpose is not to specify a checklist of evaluation criteria but to introduce characteristics of the earth system that may present useful opportunities for model testing and, of course, improvement.
An integrated soil-crop system model for water and nitrogen management in North China
Liang, Hao; Hu, Kelin; Batchelor, William D.; Qi, Zhiming; Li, Baoguo
2016-01-01
An integrated model WHCNS (soil Water Heat Carbon Nitrogen Simulator) was developed to assess water and nitrogen (N) management in North China. It included five main modules: soil water, soil temperature, soil carbon (C), soil N, and crop growth. The model integrated some features of several widely used crop and soil models, and some modifications were made in order to apply the WHCNS model under the complex conditions of intensive cropping systems in North China. The WHCNS model was evaluated using an open access dataset from the European International Conference on Modeling Soil Water and N Dynamics. WHCNS gave better estimations of soil water and N dynamics, dry matter accumulation and N uptake than 14 other models. The model was tested against data from four experimental sites in North China under various soil, crop, climate, and management practices. Simulated soil water content, soil nitrate concentrations, crop dry matter, leaf area index and grain yields all agreed well with measured values. This study indicates that the WHCNS model can be used to analyze and evaluate the effects of various field management practices on crop yield, fate of N, and water and N use efficiencies in North China. PMID:27181364
Comparison of across-frequency integration strategies in a binaural detection model.
Breebaart, Jeroen
2013-11-01
Breebaart et al. [J. Acoust. Soc. Am. 110, 1089-1104 (2001)] reported that the masker bandwidth dependence of detection thresholds for an out-of-phase signal and an in-phase noise masker (N0Sπ) can be explained by principles of integration of information across critical bands. In this paper, different methods for such across-frequency integration process are evaluated as a function of the bandwidth and notch width of the masker. The results indicate that an "optimal detector" model assuming independent internal noise in each critical band provides a better fit to experimental data than a best filter or a simple across-frequency integrator model. Furthermore, the exponent used to model peripheral compression influences the accuracy of predictions in notched conditions.
Haregu, Tilahun Nigatu; Setswe, Geoffrey; Elliott, Julian; Oldenburg, Brian
2014-01-01
Introduction: Although there are several models of integrated architecture, we still lack models and theories about the integration process of health system responses to HIV/AIDS and NCDs. Objective: The overall purpose of this study is to design an action model, a systematic approach, for the integration of health system responses to HIV/AIDS and NCDs in developing countries. Methods: An iterative and progressive approach of model development using inductive qualitative evidence synthesis techniques was applied. As evidence about integration is spread across different fields, synthesis of evidence from a broad range of disciplines was conducted. Results: An action model of integration having 5 underlying principles, 4 action fields, and a 9-step action cycle is developed. The INTEGRATE model is an acronym of the 9 steps of the integration process: 1) Interrelate the magnitude and distribution of the problems, 2) Navigate the linkage between the problems, 3) Testify individual level co-occurrence of the problems, 4) Examine the similarities and understand the differences between the response functions, 5) Glance over the health system’s environment for integration, 6) Repackage and share evidence in a useable form, 7) Ascertain the plan for integration, 8) Translate the plan in to action, 9) Evaluate and Monitor the integration. Conclusion: Our model provides a basis for integration of health system responses to HIV/AIDS and NCDs in the context of developing countries. We propose that future empirical work is needed to refine the validity and applicability of the model. PMID:24373260
Wandersman, Abraham; Alia, Kassandra Ann; Cook, Brittany; Ramaswamy, Rohit
2015-01-01
While the body of evidence-based healthcare interventions grows, the ability of health systems to deliver these interventions effectively and efficiently lags behind. Quality improvement approaches, such as the model for improvement, have demonstrated some success in healthcare but their impact has been lessened by implementation challenges. To help address these challenges, we describe the empowerment evaluation approach that has been developed by programme evaluators and a method for its application (Getting To Outcomes (GTO)). We then describe how GTO can be used to implement healthcare interventions. An illustrative healthcare quality improvement example that compares the model for improvement and the GTO method for reducing hospital admissions through improved diabetes care is described. We conclude with suggestions for integrating GTO and the model for improvement. PMID:26178332
ERIC Educational Resources Information Center
Cooper, Jeff
2009-01-01
This dissertation addresses theory and practice of evaluation and assessment in university student affairs, by applying logic modeling/program theory to a case study. I intend to add knowledge to ongoing dialogue among evaluation scholars and practitioners on student affairs program planning and improvement as integral considerations that serve…
Eyre, Laura; George, Bethan; Marshall, Martin
2015-01-01
Introduction The integration of health and social care in England is widely accepted as the answer to fragmentation, financial concerns and system inefficiencies, in the context of growing and ageing populations with increasingly complex needs. Despite an expanding body of literature, there is little evidence yet to suggest that integrated care can achieve the benefits that its advocates claim for it. Researchers have often adopted rationalist and technocratic approaches to evaluation, treating integration as an intervention rather than a process. Results have usually been of limited use to practitioners responsible for health and social care integration. There is, therefore, a need to broaden the evidence base, exploring not only what works but also how integrated care can most successfully be implemented and delivered. For this reason, we are carrying out a formative evaluation of the Waltham Forest and East London Collaborative (WELC) integrated care pioneer programme. Our expectation is that this will add value to the literature by focusing on the processes by which the vision and objectives of integrated care are translated through phases of development, implementation and delivery from a central to a local perspective, and from a strategic to an operational perspective. Methods and analysis The qualitative and process-oriented evaluation uses an innovative participative approach—the Researcher-in-Residence model. The evaluation is underpinned by a critical ontology, an interpretive epistemology and a critical discourse analysis methodology. Data will be generated using interviews, observations and documentary gathering. Ethics and dissemination Emerging findings will be interpreted and disseminated collaboratively with stakeholders, to enable the research to influence and optimise the effective implementation of integrated care across WELC. Presentations and publications will ensure that learning is shared as widely as possible. The study has received ethical approval from University College London's Research Ethics Committee and has all appropriate NHS governance clearances. PMID:26546147
NASA Astrophysics Data System (ADS)
Calvin, K. V.; Wise, M.; Kyle, P.; Janetos, A. C.; Zhou, Y.
2012-12-01
Integrated Assessment Models (IAMs) are often used as science-based decision-support tools for evaluating the consequences of climate and energy policies, and their use in this framework is likely to increase in the future. However, quantitative evaluation of these models has been somewhat limited for a variety of reasons, including data availability, data quality, and the inherent challenges in projections of societal values and decision-making. In this analysis, we identify and confront methodological challenges involved in evaluating the agriculture and land use component of the Global Change Assessment Model (GCAM). GCAM is a global integrated assessment model, linking submodules of the regionally disaggregated global economy, energy system, agriculture and land-use, terrestrial carbon cycle, oceans and climate. GCAM simulates supply, demand, and prices for energy and agricultural goods from 2005 to 2100 in 5-year increments. In each time period, the model computes the allocation of land across a variety of land cover types in 151 different regions, assuming that farmers maximize profits and that food demand is relatively inelastic. GCAM then calculates both emissions from land-use practices, and long-term changes in carbon stocks in different land uses, thus providing simulation information that can be compared to observed historical data. In this work, we compare GCAM results, both in recent historic and future time periods, to historical data sets. We focus on land use, land cover, land-use change emissions, and albedo.
Technical Reliability Studies. EOS/ESD Technology Abstracts
1982-01-01
RESISTANT BIPOLAR TRANSISTOR DESIGN AND ITS APPLICATIONS TO LINEAR INTEGRATED CIRCUITS 16145 MODULE ELECTROSTATIC DISCHARGE SIMULATOR 15786 SOME...T.M. 16476 STATIC DISCHARGE MODELING TECHNIQUES FOR EVALUATION OF INTEGRATED (FET) CIRCUIT DESTRUCTION 16145 MODULE ELECTAOSTATIC DISCHARGE SIMULATOR...PLASTIC LSI CIRCUITS PRklE, L.A., II 16145 MODULE ELECTROSTATIC DISCHARGE SIMULATOR PRICE, R.D. 13455 EVALUATION OF PLASTIC LSI CIRCUITS PSHAENICH, A
Design of a National Skills Market Model for Air Force Enlisted Personnel
1979-09-01
specific occupations, rather than merely by industrial sector, labor market behavior could be more clearly related to specific Air Force specialties. The ...distinguishable but related purposes. First, it is desired as an adjunct to the Integrated Simulation Evaluation Model (ISEM) currently being...corn- puter simulation model of the Air Force Manpower and Personnel System (AFM&PS) that integrates the behavioral relationships deter- mining the
Vandenplas, J; Janssens, S; Buys, N; Gengler, N
2013-06-01
The aim of this study was to test the integration of external information, i.e. foreign estimated breeding values (EBV) and the associated reliabilities (REL), for stallions into the Belgian genetic evaluation for jumping horses. The Belgian model is a bivariate repeatability Best Linear Unbiased Prediction animal model only based on Belgian performances, while Belgian breeders import horses from neighbouring countries. Hence, use of external information is needed as prior to achieve more accurate EBV. Pedigree and performance data contained 101382 horses and 712212 performances, respectively. After conversion to the Belgian trait, external information of 98 French and 67 Dutch stallions was integrated into the Belgian evaluation. Resulting Belgian rankings of the foreign stallions were more similar to foreign rankings according to the increase of the rank correlations of at least 12%. REL of their EBV were improved of at least 2% on average. External information was partially to totally equivalent to 4 years of contemporary horses' performances or to all the stallions' own performances. All these results showed the interest to integrate external information into the Belgian evaluation. © 2012 Blackwell Verlag GmbH.
Unified framework to evaluate panmixia and migration direction among multiple sampling locations.
Beerli, Peter; Palczewski, Michal
2010-05-01
For many biological investigations, groups of individuals are genetically sampled from several geographic locations. These sampling locations often do not reflect the genetic population structure. We describe a framework using marginal likelihoods to compare and order structured population models, such as testing whether the sampling locations belong to the same randomly mating population or comparing unidirectional and multidirectional gene flow models. In the context of inferences employing Markov chain Monte Carlo methods, the accuracy of the marginal likelihoods depends heavily on the approximation method used to calculate the marginal likelihood. Two methods, modified thermodynamic integration and a stabilized harmonic mean estimator, are compared. With finite Markov chain Monte Carlo run lengths, the harmonic mean estimator may not be consistent. Thermodynamic integration, in contrast, delivers considerably better estimates of the marginal likelihood. The choice of prior distributions does not influence the order and choice of the better models when the marginal likelihood is estimated using thermodynamic integration, whereas with the harmonic mean estimator the influence of the prior is pronounced and the order of the models changes. The approximation of marginal likelihood using thermodynamic integration in MIGRATE allows the evaluation of complex population genetic models, not only of whether sampling locations belong to a single panmictic population, but also of competing complex structured population models.
Wang, Chia-Nan; Nguyen, Nhu-Ty; Tran, Thanh-Tuyen
2015-01-01
The growth of economy and population together with the higher demand in energy has created many concerns for the Indian electricity industry whose capacity is at 211 gigawatts mostly in coal-fired plants. Due to insufficient fuel supply, India suffers from a shortage of electricity generation, leading to rolling blackouts; thus, performance evaluation and ranking the industry turn into significant issues. By this study, we expect to evaluate the rankings of these companies under control of the Ministry of Power. Also, this research would like to test if there are any significant differences between the two DEA models: Malmquist nonradial and Malmquist radial. Then, one advance model of MPI would be chosen to see these companies' performance in recent years and next few years by using forecasting results of Grey system theory. Totally, the realistic data 14 are considered to be in this evaluation after the strict selection from the whole industry. The results found that all companies have not shown many abrupt changes on their scores, and it is always not consistently good or consistently standing out, which demonstrated the high applicable usability of the integrated methods. This integrated numerical research gives a better "past-present-future" insights into performance evaluation in Indian electricity industry.
Wang, Chia-Nan; Tran, Thanh-Tuyen
2015-01-01
The growth of economy and population together with the higher demand in energy has created many concerns for the Indian electricity industry whose capacity is at 211 gigawatts mostly in coal-fired plants. Due to insufficient fuel supply, India suffers from a shortage of electricity generation, leading to rolling blackouts; thus, performance evaluation and ranking the industry turn into significant issues. By this study, we expect to evaluate the rankings of these companies under control of the Ministry of Power. Also, this research would like to test if there are any significant differences between the two DEA models: Malmquist nonradial and Malmquist radial. Then, one advance model of MPI would be chosen to see these companies' performance in recent years and next few years by using forecasting results of Grey system theory. Totally, the realistic data 14 are considered to be in this evaluation after the strict selection from the whole industry. The results found that all companies have not shown many abrupt changes on their scores, and it is always not consistently good or consistently standing out, which demonstrated the high applicable usability of the integrated methods. This integrated numerical research gives a better “past-present-future” insights into performance evaluation in Indian electricity industry. PMID:25821854
Pimperl, A; Schreyögg, J; Rothgang, H; Busse, R; Glaeske, G; Hildebrandt, H
2015-12-01
Transparency of economic performance of integrated care systems (IV) is a basic requirement for the acceptance and further development of integrated care. Diverse evaluation methods are used but are seldom openly discussed because of the proprietary nature of the different business models. The aim of this article is to develop a generic model for measuring economic performance of IV interventions. A catalogue of five quality criteria is used to discuss different evaluation methods -(uncontrolled before-after-studies, control group-based approaches, regression models). On this -basis a best practice model is proposed. A regression model based on the German morbidity-based risk structure equalisation scheme (MorbiRSA) has some benefits in comparison to the other methods mentioned. In particular it requires less resources to be implemented and offers advantages concerning the relia-bility and the transparency of the method (=important for acceptance). Also validity is sound. Although RCTs and - also to a lesser -extent - complex difference-in-difference matching approaches can lead to a higher validity of the results, their feasibility in real life settings is limited due to economic and practical reasons. That is why central criticisms of a MorbiRSA-based model were addressed, adaptions proposed and incorporated in a best practice model: Population-oriented morbidity adjusted margin improvement model (P-DBV(MRSA)). The P-DBV(MRSA) approach may be used as a standardised best practice model for the economic evaluation of IV. Parallel to the proposed approach for measuring economic performance a balanced, quality-oriented performance measurement system should be introduced. This should prevent incentivising IV-players to undertake short-term cost cutting at the expense of quality. © Georg Thieme Verlag KG Stuttgart · New York.
NASA Astrophysics Data System (ADS)
Uijt de Haag, Maarten; Venable, Kyle; Bezawada, Rajesh; Adami, Tony; Vadlamani, Ananth K.
2009-05-01
This paper discusses a sensor simulator/synthesizer framework that can be used to test and evaluate various sensor integration strategies for the implementation of an External Hazard Monitor (EHM) and Integrated Alerting and Notification (IAN) function as part of NASA's Integrated Intelligent Flight Deck (IIFD) project. The IIFD project under the NASA's Aviation Safety program "pursues technologies related to the flight deck that ensure crew workload and situational awareness are both safely optimized and adapted to the future operational environment as envisioned by NextGen." Within the simulation framework, various inputs to the IIFD and its subsystems, the EHM and IAN, are simulated, synthesized from actual collected data, or played back from actual flight test sensor data. Sensors and avionics included in this framework are TCAS, ADS-B, Forward-Looking Infrared, Vision cameras, GPS, Inertial navigators, EGPWS, Laser Detection and Ranging sensors, altimeters, communication links with ATC, and weather radar. The framework is implemented in Simulink, a modeling language developed by The Mathworks. This modeling language allows for test and evaluation of various sensor and communication link configurations as well as the inclusion of feedback from the pilot on the performance of the aircraft. Specifically, this paper addresses the architecture of the simulator, the sensor model interfaces, the timing and database (environment) aspects of the sensor models, the user interface of the modeling environment, and the various avionics implementations.
Balistrieri, Laurie S.; Nimick, David A.; Mebane, Christopher A.
2012-01-01
Evaluating water quality and the health of aquatic organisms is challenging in systems with systematic diel (24 hour) or less predictable runoff-induced changes in water composition. To advance our understanding of how to evaluate environmental health in these dynamic systems, field studies of diel cycling were conducted in two streams (Silver Bow Creek and High Ore Creek) affected by historical mining activities in southwestern Montana. A combination of sampling and modeling tools were used to assess the toxicity of metals in these systems. Diffusive Gradients in Thin Films (DGT) samplers were deployed at multiple time intervals during diel sampling to confirm that DGT integrates time-varying concentrations of dissolved metals. Thermodynamic speciation calculations using site specific water compositions, including time-integrated dissolved metal concentrations determined from DGT, and a competitive, multiple-metal biotic ligand model incorporated into the Windemere Humic Aqueous Model Version 6.0 (WHAM VI) were used to determine the chemical speciation of dissolved metals and biotic ligands. The model results were combined with previously collected toxicity data on cutthroat trout to derive a relationship that predicts the relative survivability of these fish at a given site. This integrative approach may prove useful for assessing water quality and toxicity of metals to aquatic organisms in dynamic systems and evaluating whether potential changes in environmental health of aquatic systems are due to anthropogenic activities or natural variability.
Luyckx, Kim; Luyten, Léon; Daelemans, Walter; Van den Bulcke, Tim
2016-01-01
Objective Enormous amounts of healthcare data are becoming increasingly accessible through the large-scale adoption of electronic health records. In this work, structured and unstructured (textual) data are combined to assign clinical diagnostic and procedural codes (specifically ICD-9-CM) to patient stays. We investigate whether integrating these heterogeneous data types improves prediction strength compared to using the data types in isolation. Methods Two separate data integration approaches were evaluated. Early data integration combines features of several sources within a single model, and late data integration learns a separate model per data source and combines these predictions with a meta-learner. This is evaluated on data sources and clinical codes from a broad set of medical specialties. Results When compared with the best individual prediction source, late data integration leads to improvements in predictive power (eg, overall F-measure increased from 30.6% to 38.3% for International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) diagnostic codes), while early data integration is less consistent. The predictive strength strongly differs between medical specialties, both for ICD-9-CM diagnostic and procedural codes. Discussion Structured data provides complementary information to unstructured data (and vice versa) for predicting ICD-9-CM codes. This can be captured most effectively by the proposed late data integration approach. Conclusions We demonstrated that models using multiple electronic health record data sources systematically outperform models using data sources in isolation in the task of predicting ICD-9-CM codes over a broad range of medical specialties. PMID:26316458
Iterative integral parameter identification of a respiratory mechanics model.
Schranz, Christoph; Docherty, Paul D; Chiew, Yeong Shiong; Möller, Knut; Chase, J Geoffrey
2012-07-18
Patient-specific respiratory mechanics models can support the evaluation of optimal lung protective ventilator settings during ventilation therapy. Clinical application requires that the individual's model parameter values must be identified with information available at the bedside. Multiple linear regression or gradient-based parameter identification methods are highly sensitive to noise and initial parameter estimates. Thus, they are difficult to apply at the bedside to support therapeutic decisions. An iterative integral parameter identification method is applied to a second order respiratory mechanics model. The method is compared to the commonly used regression methods and error-mapping approaches using simulated and clinical data. The clinical potential of the method was evaluated on data from 13 Acute Respiratory Distress Syndrome (ARDS) patients. The iterative integral method converged to error minima 350 times faster than the Simplex Search Method using simulation data sets and 50 times faster using clinical data sets. Established regression methods reported erroneous results due to sensitivity to noise. In contrast, the iterative integral method was effective independent of initial parameter estimations, and converged successfully in each case tested. These investigations reveal that the iterative integral method is beneficial with respect to computing time, operator independence and robustness, and thus applicable at the bedside for this clinical application.
The NASA Lewis integrated propulsion and flight control simulator
NASA Technical Reports Server (NTRS)
Bright, Michelle M.; Simon, Donald L.
1991-01-01
A new flight simulation facility has been developed at NASA Lewis to allow integrated propulsion-control and flight-control algorithm development and evaluation in real time. As a preliminary check of the simulator facility and the correct integration of its components, the control design and physics models for an STOVL fighter aircraft model have been demonstrated, with their associated system integration and architecture, pilot vehicle interfaces, and display symbology. The results show that this fixed-based flight simulator can provide real-time feedback and display of both airframe and propulsion variables for validation of integrated systems and testing of control design methodologies and cockpit mechanizations.
Wang, Yan; Lin, Bo
2012-01-01
It is unclear whether the new anti-catabolic agent denosumab represents a viable alternative to the widely used anti-catabolic agent pamidronate in the treatment of Multiple Myeloma (MM)-induced bone disease. This lack of clarity primarily stems from the lack of sufficient clinical investigations, which are costly and time consuming. However, in silico investigations require less time and expense, suggesting that they may be a useful complement to traditional clinical investigations. In this paper, we aim to (i) develop integrated computational models that are suitable for investigating the effects of pamidronate and denosumab on MM-induced bone disease and (ii) evaluate the responses to pamidronate and denosumab treatments using these integrated models. To achieve these goals, pharmacokinetic models of pamidronate and denosumab are first developed and then calibrated and validated using different clinical datasets. Next, the integrated computational models are developed by incorporating the simulated transient concentrations of pamidronate and denosumab and simulations of their actions on the MM-bone compartment into the previously proposed MM-bone model. These integrated models are further calibrated and validated by different clinical datasets so that they are suitable to be applied to investigate the responses to the pamidronate and denosumab treatments. Finally, these responses are evaluated by quantifying the bone volume, bone turnover, and MM-cell density. This evaluation identifies four denosumab regimes that potentially produce an overall improved bone-related response compared with the recommended pamidronate regime. This in silico investigation supports the idea that denosumab represents an appropriate alternative to pamidronate in the treatment of MM-induced bone disease. PMID:23028650
A Comprehensive Theory of Integration.
Singer, Sara J; Kerrissey, Michaela; Friedberg, Mark; Phillips, Russell
2018-03-01
Efforts to transform health care delivery to improve care have increasingly focused on care integration. However, variation in how integration is defined has complicated efforts to design, synthesize, and compare studies of integration in health care. Evaluations of integration initiatives would be enhanced by describing them according to clear definitions of integration and specifying which empirical relationships they seek to test-whether among types of integration or between integration and outcomes of care. Drawing on previous work, we present a comprehensive theoretical model of relationships between types of integration and propose how to measure them.
Urban-Water Harmony model to evaluate the urban water management.
Ding, Yifan; Tang, Deshan; Wei, Yuhang; Yin, Sun
2014-01-01
Water resources in many urban areas are under enormous stress due to large-scale urban expansion and population explosion. The decision-makers are often faced with the dilemma of either maintaining high economic growth or protecting water resources and the environment. Simple criteria of water supply and drainage do not reflect the requirement of integrated urban water management. The Urban-Water Harmony (UWH) model is based on the concept of harmony and offers a more integrated approach to urban water management. This model calculates four dimensions, namely urban development, urban water services, water-society coordination, and water environment coordination. And the Analytic Hierarchy Process has been used to determine the indices weights. We applied the UWH model to Beijing, China for an 11-year assessment. Our findings show that, despite the severe stress inherent in rapid development and water shortage, the urban water relationship of Beijing is generally evolving in a positive way. The social-economic factors such as the water recycling technologies contribute a lot to this change. The UWH evaluation can provide a reasonable analysis approach to combine various urban and water indices to produce an integrated and comparable evaluation index. This, in turn, enables more effective water management in decision-making processes.
Schöniger, Anneli; Wöhling, Thomas; Samaniego, Luis; Nowak, Wolfgang
2014-01-01
Bayesian model selection or averaging objectively ranks a number of plausible, competing conceptual models based on Bayes' theorem. It implicitly performs an optimal trade-off between performance in fitting available data and minimum model complexity. The procedure requires determining Bayesian model evidence (BME), which is the likelihood of the observed data integrated over each model's parameter space. The computation of this integral is highly challenging because it is as high-dimensional as the number of model parameters. Three classes of techniques to compute BME are available, each with its own challenges and limitations: (1) Exact and fast analytical solutions are limited by strong assumptions. (2) Numerical evaluation quickly becomes unfeasible for expensive models. (3) Approximations known as information criteria (ICs) such as the AIC, BIC, or KIC (Akaike, Bayesian, or Kashyap information criterion, respectively) yield contradicting results with regard to model ranking. Our study features a theory-based intercomparison of these techniques. We further assess their accuracy in a simplistic synthetic example where for some scenarios an exact analytical solution exists. In more challenging scenarios, we use a brute-force Monte Carlo integration method as reference. We continue this analysis with a real-world application of hydrological model selection. This is a first-time benchmarking of the various methods for BME evaluation against true solutions. Results show that BME values from ICs are often heavily biased and that the choice of approximation method substantially influences the accuracy of model ranking. For reliable model selection, bias-free numerical methods should be preferred over ICs whenever computationally feasible. PMID:25745272
Grau, P; Vanrolleghem, P; Ayesa, E
2007-01-01
In this paper, a new methodology for integrated modelling of the WWTP has been used for the construction of the Benchmark Simulation Model N degrees 2 (BSM2). The transformations-approach proposed in this methodology does not require the development of specific transformers to interface unit process models and allows the construction of tailored models for a particular WWTP guaranteeing the mass and charge continuity for the whole model. The BSM2 PWM constructed as case study, is evaluated by means of simulations under different scenarios and its validity in reproducing water and sludge lines in WWTP is demonstrated. Furthermore the advantages that this methodology presents compared to other approaches for integrated modelling are verified in terms of flexibility and coherence.
A four phase development model for integrated care services in the Netherlands
Minkman, Mirella MN; Ahaus, Kees TB; Huijsman, Robbert
2009-01-01
Background Multidisciplinary and interorganizational arrangements for the delivery of coherent integrated care are being developed in a large number of countries. Although there are many integrated care programs worldwide, the process of developing these programs and interorganizational collaboration is described in the literature only to a limited extent. The purpose of this study is to explore how local integrated care services are developed in the Netherlands, and to conceptualize and operationalize a development model of integrated care. Methods The research is based on an expert panel study followed by a two-part questionnaire, designed to identify the development process of integrated care. Essential elements of integrated care, which were developed in a previous Delphi and Concept Mapping Study, were analyzed in relation to development process of integrated care. Results Integrated care development can be characterized by four developmental phases: the initiative and design phase; the experimental and execution phase; the expansion and monitoring phase; and the consolidation and transformation phase. Different elements of integrated care have been identified in the various developmental phases. Conclusion The findings provide a descriptive model of the development process that integrated care services can undergo in the Netherlands. The findings have important implications for integrated care services, which can use the model as an instrument to reflect on their current practices. The model can be used to help to identify improvement areas in practice. The model provides a framework for developing evaluation designs for integrated care arrangements. Further research is recommended to test the developed model in practice and to add international experiences. PMID:19261176
Performance analysis of different tuning rules for an isothermal CSTR using integrated EPC and SPC
NASA Astrophysics Data System (ADS)
Roslan, A. H.; Karim, S. F. Abd; Hamzah, N.
2018-03-01
This paper demonstrates the integration of Engineering Process Control (EPC) and Statistical Process Control (SPC) for the control of product concentration of an isothermal CSTR. The objectives of this study are to evaluate the performance of Ziegler-Nichols (Z-N), Direct Synthesis, (DS) and Internal Model Control (IMC) tuning methods and determine the most effective method for this process. The simulation model was obtained from past literature and re-constructed using SIMULINK MATLAB to evaluate the process response. Additionally, the process stability, capability and normality were analyzed using Process Capability Sixpack reports in Minitab. Based on the results, DS displays the best response for having the smallest rise time, settling time, overshoot, undershoot, Integral Time Absolute Error (ITAE) and Integral Square Error (ISE). Also, based on statistical analysis, DS yields as the best tuning method as it exhibits the highest process stability and capability.
Cumulative risk assessment (CRA) methods promote the use of a conceptual site model (CSM) to apportion exposures and integrate risk from relevant stressors across different species. Integration is important to provide a more complete assessment of risk, but evaluating endpoints a...
Supporting Theory Building in Integrated Services Research
ERIC Educational Resources Information Center
Robinson, Mark; Atkinson, Mary; Downing, Dick
2008-01-01
This literature review was commissioned by the National Foundation for Educational Research (NFER) to draw together current and recent studies of integrated working, in order to build an overview of the theories and models of such working. The review is important for current work on evaluating the early impact of integrated children's services and…
UAS Integration in the NAS Project: Integrated Test and LVC Infrastructure
NASA Technical Reports Server (NTRS)
Murphy, Jim; Hoang, Ty
2015-01-01
Overview presentation of the Integrated Test and Evaluation sub-project of the Unmanned Aircraft System (UAS) in the National Airspace System (NAS). The emphasis of the presentation is the Live, Virtual, and Constructive (LVC) system (a broadly used name for classifying modeling and simulation) infrastructure and use of external assets and connection.
Evaluation of blocking performance in ensemble seasonal integrations
NASA Astrophysics Data System (ADS)
Casado, M. J.; Doblas-Reyes, F. J.; Pastor, M. A.
2003-04-01
EVALUATION OF BLOCKING PERFOMANCE IN ENSEMBLE SEASONAL INTEGRATIONS M. J. Casado (1), F. J. Doblas-Reyes (2), A. Pastor (1) (1) I Instituto Nacional de Meteorología, c/Leonardo Prieto Castro,8,28071 ,Madrid,Spain, mjcasado@inm.es (2) ECMWF, Shinfield Park,RG2 9AX, Reading, UK, f.doblas-reyes@ecmwf.int Climate models have shown a robust inability to reliably predict blocking onset and frequency. This systematic error has been evaluated using multi-model ensemble seasonal integrations carried out in the framework of the Prediction Of climate Variations On Seasonal and interanual Timescales (PROVOST) project and compared to a blocking features assessment of the NCEP re-analyses. The PROVOST GCMs are able to adequately reproduce the spatial NCEP teleconnection patterns over the Northern Hemisphere, being notorious the great spatial correlation coefficient with some of the corresponding NCEP patterns. In spite of that, the different models show a consistent underestimation of blocking frequency which may impact on the ability to predict the seasonal amplitude of the leading modes of variability over the Northern Hemisphere.
Optimizing Cubature for Efficient Integration of Subspace Deformations
An, Steven S.; Kim, Theodore; James, Doug L.
2009-01-01
We propose an efficient scheme for evaluating nonlinear subspace forces (and Jacobians) associated with subspace deformations. The core problem we address is efficient integration of the subspace force density over the 3D spatial domain. Similar to Gaussian quadrature schemes that efficiently integrate functions that lie in particular polynomial subspaces, we propose cubature schemes (multi-dimensional quadrature) optimized for efficient integration of force densities associated with particular subspace deformations, particular materials, and particular geometric domains. We support generic subspace deformation kinematics, and nonlinear hyperelastic materials. For an r-dimensional deformation subspace with O(r) cubature points, our method is able to evaluate subspace forces at O(r2) cost. We also describe composite cubature rules for runtime error estimation. Results are provided for various subspace deformation models, several hyperelastic materials (St.Venant-Kirchhoff, Mooney-Rivlin, Arruda-Boyce), and multimodal (graphics, haptics, sound) applications. We show dramatically better efficiency than traditional Monte Carlo integration. CR Categories: I.6.8 [Simulation and Modeling]: Types of Simulation—Animation, I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling—Physically based modeling G.1.4 [Mathematics of Computing]: Numerical Analysis—Quadrature and Numerical Differentiation PMID:19956777
An integrated approach to system design, reliability, and diagnosis
NASA Technical Reports Server (NTRS)
Patterson-Hine, F. A.; Iverson, David L.
1990-01-01
The requirement for ultradependability of computer systems in future avionics and space applications necessitates a top-down, integrated systems engineering approach for design, implementation, testing, and operation. The functional analyses of hardware and software systems must be combined by models that are flexible enough to represent their interactions and behavior. The information contained in these models must be accessible throughout all phases of the system life cycle in order to maintain consistency and accuracy in design and operational decisions. One approach being taken by researchers at Ames Research Center is the creation of an object-oriented environment that integrates information about system components required in the reliability evaluation with behavioral information useful for diagnostic algorithms. Procedures have been developed at Ames that perform reliability evaluations during design and failure diagnoses during system operation. These procedures utilize information from a central source, structured as object-oriented fault trees. Fault trees were selected because they are a flexible model widely used in aerospace applications and because they give a concise, structured representation of system behavior. The utility of this integrated environment for aerospace applications in light of our experiences during its development and use is described. The techniques for reliability evaluation and failure diagnosis are discussed, and current extensions of the environment and areas requiring further development are summarized.
Integrating fisheries approaches and household utility models for improved resource management.
Milner-Gulland, E J
2011-01-25
Natural resource management is littered with cases of overexploitation and ineffectual management, leading to loss of both biodiversity and human welfare. Disciplinary boundaries stifle the search for solutions to these issues. Here, I combine the approach of management strategy evaluation, widely applied in fisheries, with household utility models from the conservation and development literature, to produce an integrated framework for evaluating the effectiveness of competing management strategies for harvested resources against a range of performance metrics. I demonstrate the strengths of this approach with a simple model, and use it to examine the effect of manager ignorance of household decisions on resource management effectiveness, and an allocation tradeoff between monitoring resource stocks to reduce observation uncertainty and monitoring users to improve compliance. I show that this integrated framework enables management assessments to consider household utility as a direct metric for system performance, and that although utility and resource stock conservation metrics are well aligned, harvest yield is a poor proxy for both, because it is a product of household allocation decisions between alternate livelihood options, rather than an end in itself. This approach has potential far beyond single-species harvesting in situations where managers are in full control; I show that the integrated approach enables a range of management intervention options to be evaluated within the same framework.
An integrated approach to system design, reliability, and diagnosis
NASA Astrophysics Data System (ADS)
Patterson-Hine, F. A.; Iverson, David L.
1990-12-01
The requirement for ultradependability of computer systems in future avionics and space applications necessitates a top-down, integrated systems engineering approach for design, implementation, testing, and operation. The functional analyses of hardware and software systems must be combined by models that are flexible enough to represent their interactions and behavior. The information contained in these models must be accessible throughout all phases of the system life cycle in order to maintain consistency and accuracy in design and operational decisions. One approach being taken by researchers at Ames Research Center is the creation of an object-oriented environment that integrates information about system components required in the reliability evaluation with behavioral information useful for diagnostic algorithms. Procedures have been developed at Ames that perform reliability evaluations during design and failure diagnoses during system operation. These procedures utilize information from a central source, structured as object-oriented fault trees. Fault trees were selected because they are a flexible model widely used in aerospace applications and because they give a concise, structured representation of system behavior. The utility of this integrated environment for aerospace applications in light of our experiences during its development and use is described. The techniques for reliability evaluation and failure diagnosis are discussed, and current extensions of the environment and areas requiring further development are summarized.
Hung, V; Nguyen, S T; Tieu, V T T; Nguyen, T T T; Duong, T H; Lyss, S; Oeltmann, J E
2016-12-21
Setting: Ho Chi Minh City (HCMC), Viet Nam. Objective: To evaluate a new integrated service model for human immunodeficiency virus/acquired immune-deficiency syndrome (HIV/AIDS) care. Design: In HCMC, co-located services, including voluntary HIV counseling and testing (VCT), HIV treatment at out-patient clinics (OPC), and methadone maintenance therapy (MMT) for persons who inject drugs, have operated under different administrative structures. In the context of decreasing international financial support, integration of these services into one administrative structure with reduced staff occurred in seven districts in HCMC between October 2013 and June 2014. We used a pre-post study design to compare service-related outcomes from routinely collected data at health facilities 6 months before and 6 months after integration. Results: The proportion of HIV-infected persons linked from VCT to OPCs was unchanged or increased following integration. A higher percentage of patients eligible for antiretroviral therapy (ART) were started on ART. The proportion of ART patients lost to follow-up remained unchanged. The proportions of MMT patients who tested positive for heroin or other substances decreased or were unchanged. Conclusions: VCT, OPC and MMT service delivery quality remained the same or improved during the 6 months following the integration. Expansion of the integrated model should be considered for HIV-related services.
Using Bayesian Networks to Improve Knowledge Assessment
ERIC Educational Resources Information Center
Millan, Eva; Descalco, Luis; Castillo, Gladys; Oliveira, Paula; Diogo, Sandra
2013-01-01
In this paper, we describe the integration and evaluation of an existing generic Bayesian student model (GBSM) into an existing computerized testing system within the Mathematics Education Project (PmatE--Projecto Matematica Ensino) of the University of Aveiro. This generic Bayesian student model had been previously evaluated with simulated…
Evaluating the mitigation of greenhouse gas emissions and adaptation in dairy production.
USDA-ARS?s Scientific Manuscript database
Process-level modeling at the farm scale provides a tool for evaluating strategies for both mitigating greenhouse gas emissions and adapting to climate change. The Integrated Farm System Model (IFSM) simulates representative crop, beef or dairy farms over many years of weather to predict performance...
Edge gradients evaluation for 2D hybrid finite volume method model
USDA-ARS?s Scientific Manuscript database
In this study, a two-dimensional depth-integrated hydrodynamic model was developed using FVM on a hybrid unstructured collocated mesh system. To alleviate the negative effects of mesh irregularity and non-uniformity, a conservative evaluation method for edge gradients based on the second-order Tayl...
DOT National Transportation Integrated Search
2014-01-01
The main objective of this study was to collect and evaluate climatic and soil data pertaining to Oklahoma for the climatic model (EICM) in the mechanistic-empirical design guide for pavements. The EICM climatic input files were updated and extended ...
An integrative contextual developmental model of male stalking.
White, J; Kowalski, R M; Lyndon, A; Valentine, S
2000-01-01
This article evaluates current research and theory on stalking as a form of male violence against women. The integrative contextual developmental model (White & Kowalski, 1998) suggests that stalking, as legally defined, is best understood as a multiply determined form of violence, with variables identifiable at several levels, the sociocultural, interpersonal, dyadic, situational and intrapersonal. The model also serves as a framework for identifying gaps in current research and suggests directions for further work.
NASA Astrophysics Data System (ADS)
Tinio, Pablo P. L.
2017-07-01
The Vienna Integrated Model of Art Perception (VIMAP; [5]) is the most comprehensive model of the art experience today. The model incorporates bottom-up and top-down cognitive processes and accounts for different outcomes of the art experience, such as aesthetic evaluations, emotions, and physiological and neurological responses to art. In their presentation of the model, Pelowski et al. also present hypotheses that are amenable to empirical testing. These features make the VIMAP an ambitious model that attempts to explain how meaningful, complex, and profound aspects of the art experience come about, which is a significant extension of previous models of the art experience (e.g., [1-3,10]), and which gives the VIMAP good explanatory power.
ERIC Educational Resources Information Center
Gökoglu, Seyfullah; Çakiroglu, Ünal
2017-01-01
The aim of this case study is to evaluate the effect of mentors on teachers' technology integration process into their classrooms. In integration process, interactions between the mentors and the teachers are implemented in terms of Systems-Based Mentoring Model (SBMM). Mentors' leadership roles were determined and changes in teachers' technology…
Vezzaro, L; Sharma, A K; Ledin, A; Mikkelsen, P S
2015-03-15
The estimation of micropollutant (MP) fluxes in stormwater systems is a fundamental prerequisite when preparing strategies to reduce stormwater MP discharges to natural waters. Dynamic integrated models can be important tools in this step, as they can be used to integrate the limited data provided by monitoring campaigns and to evaluate the performance of different strategies based on model simulation results. This study presents an example where six different control strategies, including both source-control and end-of-pipe treatment, were compared. The comparison focused on fluxes of heavy metals (copper, zinc) and organic compounds (fluoranthene). MP fluxes were estimated by using an integrated dynamic model, in combination with stormwater quality measurements. MP sources were identified by using GIS land usage data, runoff quality was simulated by using a conceptual accumulation/washoff model, and a stormwater retention pond was simulated by using a dynamic treatment model based on MP inherent properties. Uncertainty in the results was estimated with a pseudo-Bayesian method. Despite the great uncertainty in the MP fluxes estimated by the runoff quality model, it was possible to compare the six scenarios in terms of discharged MP fluxes, compliance with water quality criteria, and sediment accumulation. Source-control strategies obtained better results in terms of reduction of MP emissions, but all the simulated strategies failed in fulfilling the criteria based on emission limit values. The results presented in this study shows how the efficiency of MP pollution control strategies can be quantified by combining advanced modeling tools (integrated stormwater quality model, uncertainty calibration). Copyright © 2014 Elsevier Ltd. All rights reserved.
SUSTAIN:Urban Modeling Systems Integrating Optimization and Economics
The System for Urban Stormwater Treatment and Analysis INtegration (SUSTAIN) was developed by the U.S. Environmental Protection Agency to support practitioners in developing cost-effective management plans for municipal storm water programs and evaluating and selecting Best Manag...
NASA Technical Reports Server (NTRS)
Ray, R. J.; Myers, L. P.
1986-01-01
The highly integrated digital electronic control (HIDEC) program will demonstrate and evaluate the improvements in performance and mission effectiveness that result from integrated engine-airframe control systems. Performance improvements will result from an adaptive engine stall margin mode, a highly integrated mode that uses the airplane flight conditions and the resulting inlet distortion to continuously compute engine stall margin. When there is excessive stall margin, the engine is uptrimmed for more thrust by increasing engine pressure ratio (EPR). The EPR uptrim logic has been evaluated and implemente into computer simulations. Thrust improvements over 10 percent are predicted for subsonic flight conditions. The EPR uptrim was successfully demonstrated during engine ground tests. Test results verify model predictions at the conditions tested.
Lee, Haerin; Jung, Moonki; Lee, Ki-Kwang; Lee, Sang Hun
2017-02-06
In this paper, we propose a three-dimensional design and evaluation framework and process based on a probabilistic-based motion synthesis algorithm and biomechanical analysis system for the design of the Smith machine and squat training programs. Moreover, we implemented a prototype system to validate the proposed framework. The framework consists of an integrated human-machine-environment model as well as a squat motion synthesis system and biomechanical analysis system. In the design and evaluation process, we created an integrated model in which interactions between a human body and machine or the ground are modeled as joints with constraints at contact points. Next, we generated Smith squat motion using the motion synthesis program based on a Gaussian process regression algorithm with a set of given values for independent variables. Then, using the biomechanical analysis system, we simulated joint moments and muscle activities from the input of the integrated model and squat motion. We validated the model and algorithm through physical experiments measuring the electromyography (EMG) signals, ground forces, and squat motions as well as through a biomechanical simulation of muscle forces. The proposed approach enables the incorporation of biomechanics in the design process and reduces the need for physical experiments and prototypes in the development of training programs and new Smith machines.
A 3D Human-Machine Integrated Design and Analysis Framework for Squat Exercises with a Smith Machine
Lee, Haerin; Jung, Moonki; Lee, Ki-Kwang; Lee, Sang Hun
2017-01-01
In this paper, we propose a three-dimensional design and evaluation framework and process based on a probabilistic-based motion synthesis algorithm and biomechanical analysis system for the design of the Smith machine and squat training programs. Moreover, we implemented a prototype system to validate the proposed framework. The framework consists of an integrated human–machine–environment model as well as a squat motion synthesis system and biomechanical analysis system. In the design and evaluation process, we created an integrated model in which interactions between a human body and machine or the ground are modeled as joints with constraints at contact points. Next, we generated Smith squat motion using the motion synthesis program based on a Gaussian process regression algorithm with a set of given values for independent variables. Then, using the biomechanical analysis system, we simulated joint moments and muscle activities from the input of the integrated model and squat motion. We validated the model and algorithm through physical experiments measuring the electromyography (EMG) signals, ground forces, and squat motions as well as through a biomechanical simulation of muscle forces. The proposed approach enables the incorporation of biomechanics in the design process and reduces the need for physical experiments and prototypes in the development of training programs and new Smith machines. PMID:28178184
NASA Astrophysics Data System (ADS)
Asgharzadeh, M. F.; Hashemi, H.; von Frese, R. RB
2018-01-01
Forward modeling is the basis of gravitational anomaly inversion that is widely applied to map subsurface mass variations. This study uses numerical least-squares Gauss-Legendre quadrature (GLQ) integration to evaluate the gravitational potential, anomaly and gradient components of the vertical cylindrical prism element. These results, in turn, may be integrated to accurately model the complete gravitational effects of fluid bearing rock formations and other vertical cylinder-like geological bodies with arbitrary variations in shape and density. Comparing the GLQ gravitational effects of uniform density, vertical circular cylinders against the effects calculated by a number of other methods illustrates the veracity of the GLQ modeling method and the accuracy limitations of the other methods. Geological examples include modeling the gravitational effects of a formation washout to help map azimuthal variations of the formation's bulk densities around the borehole wall. As another application, the gravitational effects of a seismically and gravimetrically imaged salt dome within the Laurentian Basin are evaluated for the velocity, density and geometric properties of the Basin's sedimentary formations.
NASA GPM GV Science Implementation
NASA Technical Reports Server (NTRS)
Petersen, W. A.
2009-01-01
Pre-launch algorithm development & post-launch product evaluation: The GPM GV paradigm moves beyond traditional direct validation/comparison activities by incorporating improved algorithm physics & model applications (end-to-end validation) in the validation process. Three approaches: 1) National Network (surface): Operational networks to identify and resolve first order discrepancies (e.g., bias) between satellite and ground-based precipitation estimates. 2) Physical Process (vertical column): Cloud system and microphysical studies geared toward testing and refinement of physically-based retrieval algorithms. 3) Integrated (4-dimensional): Integration of satellite precipitation products into coupled prediction models to evaluate strengths/limitations of satellite precipitation producers.
Integrated Model Reduction and Control of Aircraft with Flexible Wings
NASA Technical Reports Server (NTRS)
Swei, Sean Shan-Min; Zhu, Guoming G.; Nguyen, Nhan T.
2013-01-01
This paper presents an integrated approach to the modeling and control of aircraft with exible wings. The coupled aircraft rigid body dynamics with a high-order elastic wing model can be represented in a nite dimensional state-space form. Given a set of desired output covariance, a model reduction process is performed by using the weighted Modal Cost Analysis (MCA). A dynamic output feedback controller, which is designed based on the reduced-order model, is developed by utilizing output covariance constraint (OCC) algorithm, and the resulting OCC design weighting matrix is used for the next iteration of the weighted cost analysis. This controller is then validated for full-order evaluation model to ensure that the aircraft's handling qualities are met and the uttering motion of the wings suppressed. An iterative algorithm is developed in CONDUIT environment to realize the integration of model reduction and controller design. The proposed integrated approach is applied to NASA Generic Transport Model (GTM) for demonstration.
Numerical modeling of subsurface communication
NASA Astrophysics Data System (ADS)
Burke, G. J.; Dease, C. G.; Didwall, E. M.; Lytle, R. J.
1985-02-01
Techniques are described for numerical modeling of through-the-Earth communication. The basic problem considered is evaluation of the field at a surface or airborne station due to an antenna buried in the Earth. Equations are given for the field of a point source in a homogeneous or stratified earth. These expressions involve infinite integrals over wave number, sometimes known as Sommerfield integrals. Numerical techniques used for evaluating these integrals are outlined. The problem of determining the current on a real antenna in the Earth, including the effect of insulation, is considered. Results are included for the fields of a point source in homogeneous and stratified earths and the field of a finite insulated dipole. The results are for electromagnetic propagation in the ELF-VLF range, but the codes also can address propagation problems at higher frequencies.
NASA Astrophysics Data System (ADS)
Leong, W. K.; Lai, S. H.
2017-06-01
Due to the effects of climate change and the increasing demand on water, sustainable development in term of water resources management has become a major challenge. In this context, the application of simulation models is useful to duel with the uncertainty and complexity of water system by providing stakeholders with the best solution. This paper outlines an integrated management planning network is developed based on Water Evaluation and Planning (WEAP) to evaluate current and future water management system of Langat River Basin, Malaysia under various scenarios. The WEAP model is known as an integrated decision support system investigate major stresses on demand and supply in terms of water availability in catchment scale. In fact, WEAP is applicable to simulate complex systems including various sectors within a single catchment or transboundary river system. To construct the model, by taking account of the Langat catchment and the corresponding demand points, we defined the hydrological model into 10 sub-hydrological catchments and 17 demand points included the export of treated water to the major cities outside the catchment. The model is calibrated and verified by several quantitative statistics (coefficient of determination, R2; Nash-Sutcliffe efficiency, NSE and Percent bias, PBIAS). The trend of supply and demand in the catchment is evaluated under three scenarios to 2050, 1: Population growth rate, 2: Demand side management (DSM) and 3: Combination of DSM and reduce non-revenue water (NRW). Results show that by reducing NRW and proper DSM, unmet demand able to reduce significantly.
EMDS 3.0: A modeling framework for coping with complexity in environmental assessment and planning.
K.M. Reynolds
2006-01-01
EMDS 3.0 is implemented as an ArcMap® extension and integrates the logic engine of NetWeaver® to perform landscape evaluations, and the decision modeling engine of Criterium DecisionPlus® for evaluating management priorities. Key features of the system's evaluation component include abilities to (1) reason about large, abstract, multifaceted ecosystem management...
Unmanned aircraft system sense and avoid integrity and continuity
NASA Astrophysics Data System (ADS)
Jamoom, Michael B.
This thesis describes new methods to guarantee safety of sense and avoid (SAA) functions for Unmanned Aircraft Systems (UAS) by evaluating integrity and continuity risks. Previous SAA efforts focused on relative safety metrics, such as risk ratios, comparing the risk of using an SAA system versus not using it. The methods in this thesis evaluate integrity and continuity risks as absolute measures of safety, as is the established practice in commercial aircraft terminal area navigation applications. The main contribution of this thesis is a derivation of a new method, based on a standard intruder relative constant velocity assumption, that uses hazard state estimates and estimate error covariances to establish (1) the integrity risk of the SAA system not detecting imminent loss of '"well clear," which is the time and distance required to maintain safe separation from intruder aircraft, and (2) the probability of false alert, the continuity risk. Another contribution is applying these integrity and continuity risk evaluation methods to set quantifiable and certifiable safety requirements on sensors. A sensitivity analysis uses this methodology to evaluate the impact of sensor errors on integrity and continuity risks. The penultimate contribution is an integrity and continuity risk evaluation where the estimation model is refined to address realistic intruder relative linear accelerations, which goes beyond the current constant velocity standard. The final contribution is an integrity and continuity risk evaluation addressing multiple intruders. This evaluation is a new innovation-based method to determine the risk of mis-associating intruder measurements. A mis-association occurs when the SAA system incorrectly associates a measurement to the wrong intruder, causing large errors in the estimated intruder trajectories. The new methods described in this thesis can help ensure safe encounters between aircraft and enable SAA sensor certification for UAS integration into the National Airspace System.
Integrating Human Factors into Crew Exploration Vehicle (CEV) Design
NASA Technical Reports Server (NTRS)
Whitmore, Mihriban; Holden, Kritina; Baggerman, Susan; Campbell, Paul
2007-01-01
The purpose of this design process is to apply Human Engineering (HE) requirements and guidelines to hardware/software and to provide HE design, analysis and evaluation of crew interfaces. The topics include: 1) Background/Purpose; 2) HE Activities; 3) CASE STUDY: Net Habitable Volume (NHV) Study; 4) CASE STUDY: Human Modeling Approach; 5) CASE STUDY: Human Modeling Results; 6) CASE STUDY: Human Modeling Conclusions; 7) CASE STUDY: Human-in-the-Loop Evaluation Approach; 8) CASE STUDY: Unsuited Evaluation Results; 9) CASE STUDY: Suited Evaluation Results; 10) CASE STUDY: Human-in-the-Loop Evaluation Conclusions; 11) Near-Term Plan; and 12) In Conclusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Y.J.; Sohn, G.H.; Kim, Y.J.
Typical LBB (Leak-Before-Break) analysis is performed for the highest stress location for each different type of material in the high energy pipe line. In most cases, the highest stress occurs at the nozzle and pipe interface location at the terminal end. The standard finite element analysis approach to calculate J-Integral values at the crack tip utilizes symmetry conditions when modeling near the nozzle as well as away from the nozzle region to minimize the model size and simplify the calculation of J-integral values at the crack tip. A factor of two is typically applied to the J-integral value to accountmore » for symmetric conditions. This simplified analysis can lead to conservative results especially for small diameter pipes where the asymmetry of the nozzle-pipe interface is ignored. The stiffness of the residual piping system and non-symmetries of geometry along with different material for the nozzle, safe end and pipe are usually omitted in current LBB methodology. In this paper, the effects of non-symmetries due to geometry and material at the pipe-nozzle interface are presented. Various LBB analyses are performed for a small diameter piping system to evaluate the effect a nozzle has on the J-integral calculation, crack opening area and crack stability. In addition, material differences between the nozzle and pipe are evaluated. Comparison is made between a pipe model and a nozzle-pipe interface model, and a LBB PED (Piping Evaluation Diagram) curve is developed to summarize the results for use by piping designers.« less
NASA Technical Reports Server (NTRS)
Gore, Brian F.
2011-01-01
As automation and advanced technologies are introduced into transport systems ranging from the Next Generation Air Transportation System termed NextGen, to the advanced surface transportation systems as exemplified by the Intelligent Transportations Systems, to future systems designed for space exploration, there is an increased need to validly predict how the future systems will be vulnerable to error given the demands imposed by the assistive technologies. One formalized approach to study the impact of assistive technologies on the human operator in a safe and non-obtrusive manner is through the use of human performance models (HPMs). HPMs play an integral role when complex human-system designs are proposed, developed, and tested. One HPM tool termed the Man-machine Integration Design and Analysis System (MIDAS) is a NASA Ames Research Center HPM software tool that has been applied to predict human-system performance in various domains since 1986. MIDAS is a dynamic, integrated HPM and simulation environment that facilitates the design, visualization, and computational evaluation of complex man-machine system concepts in simulated operational environments. The paper will discuss a range of aviation specific applications including an approach used to model human error for NASA s Aviation Safety Program, and what-if analyses to evaluate flight deck technologies for NextGen operations. This chapter will culminate by raising two challenges for the field of predictive HPMs for complex human-system designs that evaluate assistive technologies: that of (1) model transparency and (2) model validation.
Usability Prediction & Ranking of SDLC Models Using Fuzzy Hierarchical Usability Model
NASA Astrophysics Data System (ADS)
Gupta, Deepak; Ahlawat, Anil K.; Sagar, Kalpna
2017-06-01
Evaluation of software quality is an important aspect for controlling and managing the software. By such evaluation, improvements in software process can be made. The software quality is significantly dependent on software usability. Many researchers have proposed numbers of usability models. Each model considers a set of usability factors but do not cover all the usability aspects. Practical implementation of these models is still missing, as there is a lack of precise definition of usability. Also, it is very difficult to integrate these models into current software engineering practices. In order to overcome these challenges, this paper aims to define the term `usability' using the proposed hierarchical usability model with its detailed taxonomy. The taxonomy considers generic evaluation criteria for identifying the quality components, which brings together factors, attributes and characteristics defined in various HCI and software models. For the first time, the usability model is also implemented to predict more accurate usability values. The proposed system is named as fuzzy hierarchical usability model that can be easily integrated into the current software engineering practices. In order to validate the work, a dataset of six software development life cycle models is created and employed. These models are ranked according to their predicted usability values. This research also focuses on the detailed comparison of proposed model with the existing usability models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snyder, Abigail C.; Link, Robert P.; Calvin, Katherine V.
Hindcasting experiments (conducting a model forecast for a time period in which observational data are available) are being undertaken increasingly often by the integrated assessment model (IAM) community, across many scales of models. When they are undertaken, the results are often evaluated using global aggregates or otherwise highly aggregated skill scores that mask deficiencies. We select a set of deviation-based measures that can be applied on different spatial scales (regional versus global) to make evaluating the large number of variable–region combinations in IAMs more tractable. We also identify performance benchmarks for these measures, based on the statistics of the observationalmore » dataset, that allow a model to be evaluated in absolute terms rather than relative to the performance of other models at similar tasks. An ideal evaluation method for hindcast experiments in IAMs would feature both absolute measures for evaluation of a single experiment for a single model and relative measures to compare the results of multiple experiments for a single model or the same experiment repeated across multiple models, such as in community intercomparison studies. The performance benchmarks highlight the use of this scheme for model evaluation in absolute terms, providing information about the reasons a model may perform poorly on a given measure and therefore identifying opportunities for improvement. To demonstrate the use of and types of results possible with the evaluation method, the measures are applied to the results of a past hindcast experiment focusing on land allocation in the Global Change Assessment Model (GCAM) version 3.0. The question of how to more holistically evaluate models as complex as IAMs is an area for future research. We find quantitative evidence that global aggregates alone are not sufficient for evaluating IAMs that require global supply to equal global demand at each time period, such as GCAM. The results of this work indicate it is unlikely that a single evaluation measure for all variables in an IAM exists, and therefore sector-by-sector evaluation may be necessary.« less
Snyder, Abigail C.; Link, Robert P.; Calvin, Katherine V.
2017-11-29
Hindcasting experiments (conducting a model forecast for a time period in which observational data are available) are being undertaken increasingly often by the integrated assessment model (IAM) community, across many scales of models. When they are undertaken, the results are often evaluated using global aggregates or otherwise highly aggregated skill scores that mask deficiencies. We select a set of deviation-based measures that can be applied on different spatial scales (regional versus global) to make evaluating the large number of variable–region combinations in IAMs more tractable. We also identify performance benchmarks for these measures, based on the statistics of the observationalmore » dataset, that allow a model to be evaluated in absolute terms rather than relative to the performance of other models at similar tasks. An ideal evaluation method for hindcast experiments in IAMs would feature both absolute measures for evaluation of a single experiment for a single model and relative measures to compare the results of multiple experiments for a single model or the same experiment repeated across multiple models, such as in community intercomparison studies. The performance benchmarks highlight the use of this scheme for model evaluation in absolute terms, providing information about the reasons a model may perform poorly on a given measure and therefore identifying opportunities for improvement. To demonstrate the use of and types of results possible with the evaluation method, the measures are applied to the results of a past hindcast experiment focusing on land allocation in the Global Change Assessment Model (GCAM) version 3.0. The question of how to more holistically evaluate models as complex as IAMs is an area for future research. We find quantitative evidence that global aggregates alone are not sufficient for evaluating IAMs that require global supply to equal global demand at each time period, such as GCAM. The results of this work indicate it is unlikely that a single evaluation measure for all variables in an IAM exists, and therefore sector-by-sector evaluation may be necessary.« less
NASA Astrophysics Data System (ADS)
Snyder, Abigail C.; Link, Robert P.; Calvin, Katherine V.
2017-11-01
Hindcasting experiments (conducting a model forecast for a time period in which observational data are available) are being undertaken increasingly often by the integrated assessment model (IAM) community, across many scales of models. When they are undertaken, the results are often evaluated using global aggregates or otherwise highly aggregated skill scores that mask deficiencies. We select a set of deviation-based measures that can be applied on different spatial scales (regional versus global) to make evaluating the large number of variable-region combinations in IAMs more tractable. We also identify performance benchmarks for these measures, based on the statistics of the observational dataset, that allow a model to be evaluated in absolute terms rather than relative to the performance of other models at similar tasks. An ideal evaluation method for hindcast experiments in IAMs would feature both absolute measures for evaluation of a single experiment for a single model and relative measures to compare the results of multiple experiments for a single model or the same experiment repeated across multiple models, such as in community intercomparison studies. The performance benchmarks highlight the use of this scheme for model evaluation in absolute terms, providing information about the reasons a model may perform poorly on a given measure and therefore identifying opportunities for improvement. To demonstrate the use of and types of results possible with the evaluation method, the measures are applied to the results of a past hindcast experiment focusing on land allocation in the Global Change Assessment Model (GCAM) version 3.0. The question of how to more holistically evaluate models as complex as IAMs is an area for future research. We find quantitative evidence that global aggregates alone are not sufficient for evaluating IAMs that require global supply to equal global demand at each time period, such as GCAM. The results of this work indicate it is unlikely that a single evaluation measure for all variables in an IAM exists, and therefore sector-by-sector evaluation may be necessary.
ERIC Educational Resources Information Center
Chow, Meyrick; Chan, Lawrence
2010-01-01
Information technology (IT) has the potential to improve the clinical learning environment. The extent to which IT enhances or detracts from healthcare professionals' role performance can be expected to affect both student learning and patient outcomes. This study evaluated nursing students' satisfaction with a novel compartmental Picture…
ERIC Educational Resources Information Center
Ernst, Kelly; Hiebert, Bryan
2002-01-01
Presents a model of comprehensive guidance and counseling integrated within a business context. Concludes that using program evaluation to position counseling as a business with effective service products may enhance the long-term viability of comprehensive guidance and counseling programs. (Contains 48 references.) (GCP)
ERIC Educational Resources Information Center
Caro, Daniel H.; Sandoval-Hernández, Andrés; Lüdtke, Oliver
2014-01-01
The article employs exploratory structural equation modeling (ESEM) to evaluate constructs of economic, cultural, and social capital in international large-scale assessment (LSA) data from the Progress in International Reading Literacy Study (PIRLS) 2006 and the Programme for International Student Assessment (PISA) 2009. ESEM integrates the…
An integrated approach to evaluate policies for controlling traffic law violations.
Mehmood, Arif
2010-03-01
Modeling dynamics of the driver behavior is a complex problem. In this paper a system approach is introduced to model and to analyze the driver behavior related to traffic law violations in the Emirate of Abu Dhabi. This paper demonstrates how the theoretical relationships between different factors can be expressed formally, and how the resulting model can assist in evaluating potential benefits of various policies to control the traffic law violations Using system approach, an integrated dynamic simulation model is developed, and model is tested to simulate the driver behavior for violating traffic laws during 2002-2007 in the Emirate of Abu Dhabi. The dynamic simulation model attempts to address the questions: (1) "what" interventions should be implemented to reduce and eventually control traffic violations which will lead to improving road safety and (2) "how" to justify those interventions will be effective or ineffective to control the violations in different transportation conditions. The simulation results reveal promising capability of applying system approach in the policy evaluation studies. Copyright 2009 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Antle, John M.; Basso, Bruno; Conant, Richard T.; Godfray, H. Charles J.; Jones, James W.; Herrero, Mario; Howitt, Richard E.; Keating, Brian A.; Munoz-Carpena, Rafael; Rosenzweig, Cynthia
2016-01-01
This paper presents ideas for a new generation of agricultural system models that could meet the needs of a growing community of end-users exemplified by a set of Use Cases. We envision new data, models and knowledge products that could accelerate the innovation process that is needed to achieve the goal of achieving sustainable local, regional and global food security. We identify desirable features for models, and describe some of the potential advances that we envisage for model components and their integration. We propose an implementation strategy that would link a "pre-competitive" space for model development to a "competitive space" for knowledge product development and through private-public partnerships for new data infrastructure. Specific model improvements would be based on further testing and evaluation of existing models, the development and testing of modular model components and integration, and linkages of model integration platforms to new data management and visualization tools.
Antle, John M; Basso, Bruno; Conant, Richard T; Godfray, H Charles J; Jones, James W; Herrero, Mario; Howitt, Richard E; Keating, Brian A; Munoz-Carpena, Rafael; Rosenzweig, Cynthia; Tittonell, Pablo; Wheeler, Tim R
2017-07-01
This paper presents ideas for a new generation of agricultural system models that could meet the needs of a growing community of end-users exemplified by a set of Use Cases. We envision new data, models and knowledge products that could accelerate the innovation process that is needed to achieve the goal of achieving sustainable local, regional and global food security. We identify desirable features for models, and describe some of the potential advances that we envisage for model components and their integration. We propose an implementation strategy that would link a "pre-competitive" space for model development to a "competitive space" for knowledge product development and through private-public partnerships for new data infrastructure. Specific model improvements would be based on further testing and evaluation of existing models, the development and testing of modular model components and integration, and linkages of model integration platforms to new data management and visualization tools.
Toward a consistent modeling framework to assess multi-sectoral climate impacts.
Monier, Erwan; Paltsev, Sergey; Sokolov, Andrei; Chen, Y-H Henry; Gao, Xiang; Ejaz, Qudsia; Couzo, Evan; Schlosser, C Adam; Dutkiewicz, Stephanie; Fant, Charles; Scott, Jeffery; Kicklighter, David; Morris, Jennifer; Jacoby, Henry; Prinn, Ronald; Haigh, Martin
2018-02-13
Efforts to estimate the physical and economic impacts of future climate change face substantial challenges. To enrich the currently popular approaches to impact analysis-which involve evaluation of a damage function or multi-model comparisons based on a limited number of standardized scenarios-we propose integrating a geospatially resolved physical representation of impacts into a coupled human-Earth system modeling framework. Large internationally coordinated exercises cannot easily respond to new policy targets and the implementation of standard scenarios across models, institutions and research communities can yield inconsistent estimates. Here, we argue for a shift toward the use of a self-consistent integrated modeling framework to assess climate impacts, and discuss ways the integrated assessment modeling community can move in this direction. We then demonstrate the capabilities of such a modeling framework by conducting a multi-sectoral assessment of climate impacts under a range of consistent and integrated economic and climate scenarios that are responsive to new policies and business expectations.
Using structural equation modeling to link human activities to wetland ecological integrity
Schweiger, E. William; Grace, James B.; Cooper, David; Bobowski, Ben; Britten, Mike
2016-01-01
The integrity of wetlands is of global concern. A common approach to evaluating ecological integrity involves bioassessment procedures that quantify the degree to which communities deviate from historical norms. While helpful, bioassessment provides little information about how altered conditions connect to community response. More detailed information is needed for conservation and restoration. We have illustrated an approach to addressing this challenge using structural equation modeling (SEM) and long-term monitoring data from Rocky Mountain National Park (RMNP). Wetlands in RMNP are threatened by a complex history of anthropogenic disturbance including direct alteration of hydrologic regimes; elimination of elk, wolves, and grizzly bears; reintroduction of elk (absent their primary predators); and the extirpation of beaver. More recently, nonnative moose were introduced to the region and have expanded into the park. Bioassessment suggests that up to half of the park's wetlands are not in reference condition. We developed and evaluated a general hypothesis about how human alterations influence wetland integrity and then develop a specific model using RMNP wetlands. Bioassessment revealed three bioindicators that appear to be highly sensitive to human disturbance (HD): (1) conservatism, (2) degree of invasion, and (3) cover of native forbs. SEM analyses suggest several ways human activities have impacted wetland integrity and the landscape of RMNP. First, degradation is highest where the combined effects of all types of direct HD have been the greatest (i.e., there is a general, overall effect). Second, specific HDs appear to create a “mixed-bag” of complex indirect effects, including reduced invasion and increased conservatism, but also reduced native forb cover. Some of these effects are associated with alterations to hydrologic regimes, while others are associated with altered shrub production. Third, landscape features created by historical beaver activity continue to influence wetland integrity years after beavers have abandoned sites via persistent landforms and reduced biomass of tall shrubs. Our model provides a system-level perspective on wetland integrity and provides a context for future evaluations and investigations. It also suggests scientifically supported natural resource management strategies that can assist in the National Park Service mission of maintaining or, when indicated, restoring ecological integrity “unimpaired for future generations.”
Human performance cognitive-behavioral modeling: a benefit for occupational safety.
Gore, Brian F
2002-01-01
Human Performance Modeling (HPM) is a computer-aided job analysis software methodology used to generate predictions of complex human-automation integration and system flow patterns with the goal of improving operator and system safety. The use of HPM tools has recently been increasing due to reductions in computational cost, augmentations in the tools' fidelity, and usefulness in the generated output. An examination of an Air Man-machine Integration Design and Analysis System (Air MIDAS) model evaluating complex human-automation integration currently underway at NASA Ames Research Center will highlight the importance to occupational safety of considering both cognitive and physical aspects of performance when researching human error.
Human performance cognitive-behavioral modeling: a benefit for occupational safety
NASA Technical Reports Server (NTRS)
Gore, Brian F.
2002-01-01
Human Performance Modeling (HPM) is a computer-aided job analysis software methodology used to generate predictions of complex human-automation integration and system flow patterns with the goal of improving operator and system safety. The use of HPM tools has recently been increasing due to reductions in computational cost, augmentations in the tools' fidelity, and usefulness in the generated output. An examination of an Air Man-machine Integration Design and Analysis System (Air MIDAS) model evaluating complex human-automation integration currently underway at NASA Ames Research Center will highlight the importance to occupational safety of considering both cognitive and physical aspects of performance when researching human error.
Thompson, Carla J; Podemski, Richard; Brown, H Quincy
2012-01-01
The need for institutions of higher education to advance research and scholarly integrity across graduate degree programs involves a strong commitment from each institution to develop a comprehensive approach for promoting responsible conduct of research (RCR). In response to this need, one master's-intensive regional university implemented a three-tier model project (focusing, developing, and evaluating/sustaining) for infusing research integrity principles and practices while promoting RCR. Components of the model and implementation strategies are presented as a case study analysis. Implications of the model for promoting the RCR are projected relative to graduate programs focused on applied research.
Hansen, James W
2005-01-01
Interest in integrating crop simulation models with dynamic seasonal climate forecast models is expanding in response to a perceived opportunity to add value to seasonal climate forecasts for agriculture. Integrated modelling may help to address some obstacles to effective agricultural use of climate information. First, modelling can address the mismatch between farmers' needs and available operational forecasts. Probabilistic crop yield forecasts are directly relevant to farmers' livelihood decisions and, at a different scale, to early warning and market applications. Second, credible ex ante evidence of livelihood benefits, using integrated climate–crop–economic modelling in a value-of-information framework, may assist in the challenge of obtaining institutional, financial and political support; and inform targeting for greatest benefit. Third, integrated modelling can reduce the risk and learning time associated with adaptation and adoption, and related uncertainty on the part of advisors and advocates. It can provide insights to advisors, and enhance site-specific interpretation of recommendations when driven by spatial data. Model-based ‘discussion support systems’ contribute to learning and farmer–researcher dialogue. Integrated climate–crop modelling may play a genuine, but limited role in efforts to support climate risk management in agriculture, but only if they are used appropriately, with understanding of their capabilities and limitations, and with cautious evaluation of model predictions and of the insights that arises from model-based decision analysis. PMID:16433092
NASA Astrophysics Data System (ADS)
Riley, W. J.; Dwivedi, D.; Ghimire, B.; Hoffman, F. M.; Pau, G. S. H.; Randerson, J. T.; Shen, C.; Tang, J.; Zhu, Q.
2015-12-01
Numerical model representations of decadal- to centennial-scale soil-carbon dynamics are a dominant cause of uncertainty in climate change predictions. Recent attempts by some Earth System Model (ESM) teams to integrate previously unrepresented soil processes (e.g., explicit microbial processes, abiotic interactions with mineral surfaces, vertical transport), poor performance of many ESM land models against large-scale and experimental manipulation observations, and complexities associated with spatial heterogeneity highlight the nascent nature of our community's ability to accurately predict future soil carbon dynamics. I will present recent work from our group to develop a modeling framework to integrate pore-, column-, watershed-, and global-scale soil process representations into an ESM (ACME), and apply the International Land Model Benchmarking (ILAMB) package for evaluation. At the column scale and across a wide range of sites, observed depth-resolved carbon stocks and their 14C derived turnover times can be explained by a model with explicit representation of two microbial populations, a simple representation of mineralogy, and vertical transport. Integrating soil and plant dynamics requires a 'process-scaling' approach, since all aspects of the multi-nutrient system cannot be explicitly resolved at ESM scales. I will show that one approach, the Equilibrium Chemistry Approximation, improves predictions of forest nitrogen and phosphorus experimental manipulations and leads to very different global soil carbon predictions. Translating model representations from the site- to ESM-scale requires a spatial scaling approach that either explicitly resolves the relevant processes, or more practically, accounts for fine-resolution dynamics at coarser scales. To that end, I will present recent watershed-scale modeling work that applies reduced order model methods to accurately scale fine-resolution soil carbon dynamics to coarse-resolution simulations. Finally, we contend that creating believable soil carbon predictions requires a robust, transparent, and community-available benchmarking framework. I will present an ILAMB evaluation of several of the above-mentioned approaches in ACME, and attempt to motivate community adoption of this evaluation approach.
Wandersman, Abraham; Alia, Kassandra Ann; Cook, Brittany; Ramaswamy, Rohit
2015-10-01
While the body of evidence-based healthcare interventions grows, the ability of health systems to deliver these interventions effectively and efficiently lags behind. Quality improvement approaches, such as the model for improvement, have demonstrated some success in healthcare but their impact has been lessened by implementation challenges. To help address these challenges, we describe the empowerment evaluation approach that has been developed by programme evaluators and a method for its application (Getting To Outcomes (GTO)). We then describe how GTO can be used to implement healthcare interventions. An illustrative healthcare quality improvement example that compares the model for improvement and the GTO method for reducing hospital admissions through improved diabetes care is described. We conclude with suggestions for integrating GTO and the model for improvement. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
NASA Technical Reports Server (NTRS)
Poole, L. R.; Huckins, E. K., III
1972-01-01
A general theory on mathematical modeling of elastic parachute suspension lines during the unfurling process was developed. Massless-spring modeling of suspension-line elasticity was evaluated in detail. For this simple model, equations which govern the motion were developed and numerically integrated. The results were compared with flight test data. In most regions, agreement was satisfactory. However, poor agreement was obtained during periods of rapid fluctuations in line tension.
INTEGRATING MESO-AND MICRO-SIMULATION MODELS TO EVALUATE TRAFFIC MANAGEMENT STRATEGIES, YEAR 2
DOT National Transportation Integrated Search
2017-07-04
In the Year 1 Report, the Arizona State University (ASU) Project Team described the development of a hierarchical multi-resolution simulation platform to test proactive traffic management strategies. The scope was to integrate an easily available mic...
DOT National Transportation Integrated Search
2016-06-01
In this project the researchers developed a hierarchical multi-resolution traffic simulation system for metropolitan areas, referred to as MetroSim. Categorically, the focus is on integrating two types of simulation: microscopic simulation in which i...
Signature project 1B-integrated land-use, transportation and environmental modeling.
DOT National Transportation Integrated Search
2014-05-01
Land use and transportation are inextricably linked. Models that capture the dynamics and interactions of both systems are indispensable for evaluating alternative courses of action in policy and investment. These models must be spatially disaggregat...
Improved system integration for integrated gasification combined cycle (IGCC) systems.
Frey, H Christopher; Zhu, Yunhua
2006-03-01
Integrated gasification combined cycle (IGCC) systems are a promising technology for power generation. They include an air separation unit (ASU), a gasification system, and a gas turbine combined cycle power block, and feature competitive efficiency and lower emissions compared to conventional power generation technology. IGCC systems are not yet in widespread commercial use and opportunities remain to improve system feasibility via improved process integration. A process simulation model was developed for IGCC systems with alternative types of ASU and gas turbine integration. The model is applied to evaluate integration schemes involving nitrogen injection, air extraction, and combinations of both, as well as different ASU pressure levels. The optimal nitrogen injection only case in combination with an elevated pressure ASU had the highest efficiency and power output and approximately the lowest emissions per unit output of all cases considered, and thus is a recommended design option. The optimal combination of air extraction coupled with nitrogen injection had slightly worse efficiency, power output, and emissions than the optimal nitrogen injection only case. Air extraction alone typically produced lower efficiency, lower power output, and higher emissions than all other cases. The recommended nitrogen injection only case is estimated to provide annualized cost savings compared to a nonintegrated design. Process simulation modeling is shown to be a useful tool for evaluation and screening of technology options.
NASA Astrophysics Data System (ADS)
Fekete, Tamás
2018-05-01
Structural integrity calculations play a crucial role in designing large-scale pressure vessels. Used in the electric power generation industry, these kinds of vessels undergo extensive safety analyses and certification procedures before deemed feasible for future long-term operation. The calculations are nowadays directed and supported by international standards and guides based on state-of-the-art results of applied research and technical development. However, their ability to predict a vessel's behavior under accidental circumstances after long-term operation is largely limited by the strong dependence of the analysis methodology on empirical models that are correlated to the behavior of structural materials and their changes during material aging. Recently a new scientific engineering paradigm, structural integrity has been developing that is essentially a synergistic collaboration between a number of scientific and engineering disciplines, modeling, experiments and numerics. Although the application of the structural integrity paradigm highly contributed to improving the accuracy of safety evaluations of large-scale pressure vessels, the predictive power of the analysis methodology has not yet improved significantly. This is due to the fact that already existing structural integrity calculation methodologies are based on the widespread and commonly accepted 'traditional' engineering thermal stress approach, which is essentially based on the weakly coupled model of thermomechanics and fracture mechanics. Recently, a research has been initiated in MTA EK with the aim to review and evaluate current methodologies and models applied in structural integrity calculations, including their scope of validity. The research intends to come to a better understanding of the physical problems that are inherently present in the pool of structural integrity problems of reactor pressure vessels, and to ultimately find a theoretical framework that could serve as a well-grounded theoretical foundation for a new modeling framework of structural integrity. This paper presents the first findings of the research project.
NASA Astrophysics Data System (ADS)
Saam, Julie Reinhardt
The National Science Education Standards, the National Council of Teachers of Mathematics Curriculum Standards, the Interdisciplinary Team Organization structure and the Middle School movement collectively suggest to teachers to make connections between their subject areas. This case study of a middle school mathematics teacher and science teacher utilizes the framework of teacher wisdom to bring a unique perspective to the process of developing and implementing integrated curriculum. Data collection consisted of interviews with the teachers, students, and their principal; documents such lesson plans, team meeting minutes and teacher journal entries; and field notes acquired within team meetings and classroom instruction. The interpretations of this study reveal that teacher development of integrated curriculum occurs in two ways: naturally and intentionally. The natural label used to describe when teachers comfortably share information that could serve as connections between subjects. The intentional label used to describe when the teachers purposely plan integrated lessons and units. These findings also provide an image of middle school integration. This image exhibits more than connections between subject area content; it also shows connections with away-from-school skills and events, lifeskills, and lifelong guidelines. Although these teachers found it frustrating and overwhelming to meet the many views of integration, they assembled integration curriculum that followed their philosophy of education, coincided with their personal characteristics and met the needs of their students. The interpretations of this study reveal a new model of middle school integration. Teachers can use this model as a collection of integration examples. Integration researchers can use this model as a conceptual framework to analyze the integration efforts of middle level teachers. Additional research needs to focus on: developing new modeling and evaluation tools for teachers, evaluating middle school professional development programs, investigating middle school teachers' characteristics, and continuing the study of integration's worth. The results of this study and additional research may help: (a) administrators to target specific teachers for middle school positions, (b) educators to plan and implement new programs for inservice and preservice middle school teachers, and (c) teachers to experiment with new and innovative strategies for middle school integration.
Integrated research in constitutive modelling at elevated temperatures, part 2
NASA Technical Reports Server (NTRS)
Haisler, W. E.; Allen, D. H.
1986-01-01
Four current viscoplastic models are compared experimentally with Inconel 718 at 1100 F. A series of tests were performed to create a sufficient data base from which to evaluate material constants. The models used include Bodner's anisotropic model; Krieg, Swearengen, and Rhode's model; Schmidt and Miller's model; and Walker's exponential model.
Van Dijk-de Vries, Anneke N; Duimel-Peeters, Inge G P; Muris, Jean W; Wesseling, Geertjan J; Beusmans, George H M I; Vrijhoef, Hubertus J M
2016-04-08
Teamwork between healthcare providers is conditional for the delivery of integrated care. This study aimed to assess the usefulness of the conceptual framework Integrated Team Effectiveness Model for developing and testing of the Integrated Team Effectiveness Instrument. Focus groups with healthcare providers in an integrated care setting for people with chronic obstructive pulmonary disease (COPD) were conducted to examine the recognisability of the conceptual framework and to explore critical success factors for collaborative COPD practice out of this framework. The resulting items were transposed into a pilot instrument. This was reviewed by expert opinion and completed 153 times by healthcare providers. The underlying structure and internal consistency of the instrument were verified by factor analysis and Cronbach's alpha. The conceptual framework turned out to be comprehensible for discussing teamwork effectiveness. The pilot instrument measures 25 relevant aspects of teamwork in integrated COPD care. Factor analysis suggested three reliable components: teamwork effectiveness, team processes and team psychosocial traits (Cronbach's alpha between 0.76 and 0.81). The conceptual framework Integrated Team Effectiveness Model is relevant in developing a practical full-spectrum instrument to facilitate discussing teamwork effectiveness. The Integrated Team Effectiveness Instrument provides a well-founded basis to self-evaluate teamwork effectiveness in integrated COPD care by healthcare providers. Recommendations are provided for the improvement of the instrument.
STOVL Control Integration Program
NASA Technical Reports Server (NTRS)
Weiss, C.; Mcdowell, P.; Watts, S.
1994-01-01
An integrated flight/propulsion control for an advanced vector thrust supersonic STOVL aircraft, was developed by Pratt & Whitney and McDonnell Douglas Aerospace East. The IFPC design was based upon the partitioning of the global requirements into flight control and propulsion control requirements. To validate the design, aircraft and engine models were also developed for use on a NASA Ames piloted simulator. Different flight control implementations, evaluated for their handling qualities, are documented in the report along with the propulsion control, engine model, and aircraft model.
Phoenix metropolitan model deployment initiative : evaluation report
DOT National Transportation Integrated Search
2013-11-01
Analysis Modeling and Simulation (AMS)Testbeds can make significant contributions in identifying the benefits of more effective, more active systems management, resulting from integrating transformative applications enabled by new data from wirelessl...
Study of Shallow Low-Enthalpy Geothermal Resources Using Integrated Geophysical Methods
NASA Astrophysics Data System (ADS)
De Giorgi, Lara; Leucci, Giovanni
2015-02-01
The paper is focused on low enthalpy geothermal exploration performed in south Italy and provides an integrated presentation of geological, hydrogeological, and geophysical surveys carried out in the area of municipality of Lecce. Geological and hydrogeological models were performed using the stratigraphical data from 51 wells. A ground-water flow (direction and velocity) model was obtained. Using the same wells data, the ground-water annual temperature was modeled. Furthermore, the ground surface temperature records from ten meteorological stations were studied. This allowed us to obtain a model related to the variations of the temperature at different depths in the subsoil. Integrated geophysical surveys were carried out in order to explore the low-enthalpy geothermal fluids and to evaluate the results of the model. Electrical resistivity tomography (ERT) and self-potential (SP) methods were used. The results obtained upon integrating the geophysical data with the models show a low-enthalpy geothermal resource constituted by a shallow ground-water system.
Beyond positivist ecology: toward an integrated ecological ethics.
Norton, Bryan G
2008-12-01
A post-positivist understanding of ecological science and the call for an "ecological ethic" indicate the need for a radically new approach to evaluating environmental change. The positivist view of science cannot capture the essence of environmental sciences because the recent work of "reflexive" ecological modelers shows that this requires a reconceptualization of the way in which values and ecological models interact in scientific process. Reflexive modelers are ecological modelers who believe it is appropriate for ecologists to examine the motives for their choices in developing models; this self-reflexive approach opens the door to a new way of integrating values into public discourse and to a more comprehensive approach to evaluating ecological change. This reflexive building of ecological models is introduced through the transformative simile of Aldo Leopold, which shows that learning to "think like a mountain" involves a shift in both ecological modeling and in values and responsibility. An adequate, interdisciplinary approach to ecological valuation, requires a re-framing of the evaluation questions in entirely new ways, i.e., a review of the current status of interdisciplinary value theory with respect to ecological values reveals that neither of the widely accepted theories of environmental value-neither economic utilitarianism nor intrinsic value theory (environmental ethics)-provides a foundation for an ecologically sensitive evaluation process. Thus, a new, ecologically sensitive, and more comprehensive approach to evaluating ecological change would include an examination of the metaphors that motivate the models used to describe environmental change.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, Austin; Prabakar, Kumaraguru; Nagarajan, Adarsh
As more grid-connected photovoltaic (PV) inverters become compliant with evolving interconnections requirements, there is increased interest from utilities in understanding how to best deploy advanced grid-support functions (GSF) in the field. One efficient and cost-effective method to examine such deployment options is to leverage power hardware-in-the-loop (PHIL) testing methods. Two Hawaiian Electric feeder models were converted to real-time models in the OPAL-RT real-time digital testing platform, and integrated with models of GSF capable PV inverters that were modeled from characterization test data. The integrated model was subsequently used in PHIL testing to evaluate the effects of different fixed power factormore » and volt-watt control settings on voltage regulation of the selected feeders. The results of this study were provided as inputs for field deployment and technical interconnection requirements for grid-connected PV inverters on the Hawaiian Islands.« less
NASA Technical Reports Server (NTRS)
Strutzenberg, L. L.; Dougherty, N. S.; Liever, P. A.; West, J. S.; Smith, S. D.
2007-01-01
This paper details advances being made in the development of Reynolds-Averaged Navier-Stokes numerical simulation tools, models, and methods for the integrated Space Shuttle Vehicle at launch. The conceptual model and modeling approach described includes the development of multiple computational models to appropriately analyze the potential debris transport for critical debris sources at Lift-Off. The conceptual model described herein involves the integration of propulsion analysis for the nozzle/plume flow with the overall 3D vehicle flowfield at Lift-Off. Debris Transport Analyses are being performed using the Shuttle Lift-Off models to assess the risk to the vehicle from Lift-Off debris and appropriately prioritized mitigation of potential debris sources to continue to reduce vehicle risk. These integrated simulations are being used to evaluate plume-induced debris environments where the multi-plume interactions with the launch facility can potentially accelerate debris particles toward the vehicle.
An Evidence Roadmap for Implementation of Integrated Behavioral Health under the Affordable Care Act
Kwan, Bethany M.; Valeras, Aimee B.; Levey, Shandra Brown; Nease, Donald E.; Talen, Mary E.
2015-01-01
The Affordable Care Act (ACA) created incentives and opportunities to redesign health care to better address mental and behavioral health needs. The integration of behavioral health and primary care is increasingly viewed as an answer to address such needs, and it is advisable that evidence-based models and interventions be implemented whenever possible with fidelity. At the same time, there are few evidence-based models, especially beyond depression and anxiety, and thus further research and evaluation is needed. Resources being allocated to adoption of models of integrated behavioral health care (IBHC) should include quality improvement, evaluation, and translational research efforts using mixed methodology to enhance the evidence base for IBHC in the context of health care reform. This paper covers six key aspects of the evidence for IBHC, consistent with mental and behavioral health elements of the ACA related to infrastructure, payments, and workforce. The evidence for major IBHC models is summarized, as well as evidence for targeted populations and conditions, education and training, information technology, implementation, and cost and sustainability. PMID:29546130
Combining Mechanistic Approaches for Studying Eco-Hydro-Geomorphic Coupling
NASA Astrophysics Data System (ADS)
Francipane, A.; Ivanov, V.; Akutina, Y.; Noto, V.; Istanbullouglu, E.
2008-12-01
Vegetation interacts with hydrology and geomorphic form and processes of a river basin in profound ways. Despite recent advances in hydrological modeling, the dynamic coupling between these processes is yet to be adequately captured at the basin scale to elucidate key features of process interaction and their role in the organization of vegetation and landscape morphology. In this study, we present a blueprint for integrating a geomorphic component into the physically-based, spatially distributed ecohydrological model, tRIBS- VEGGIE, which reproduces essential water and energy processes over the complex topography of a river basin and links them to the basic plant life regulatory processes. We present a preliminary design of the integrated modeling framework in which hillslope and channel erosion processes at the catchment scale, will be coupled with vegetation-hydrology dynamics. We evaluate the developed framework by applying the integrated model to Lucky Hills basin, a sub-catchment of the Walnut Gulch Experimental Watershed (Arizona). The evaluation is carried out by comparing sediment yields at the basin outlet, that follows a detailed verification of simulated land-surface energy partition, biomass dynamics, and soil moisture states.
Modeling methodology for supply chain synthesis and disruption analysis
NASA Astrophysics Data System (ADS)
Wu, Teresa; Blackhurst, Jennifer
2004-11-01
The concept of an integrated or synthesized supply chain is a strategy for managing today's globalized and customer driven supply chains in order to better meet customer demands. Synthesizing individual entities into an integrated supply chain can be a challenging task due to a variety of factors including conflicting objectives, mismatched incentives and constraints of the individual entities. Furthermore, understanding the effects of disruptions occurring at any point in the system is difficult when working toward synthesizing supply chain operations. Therefore, the goal of this research is to present a modeling methodology to manage the synthesis of a supply chain by linking hierarchical levels of the system and to model and analyze disruptions in the integrated supply chain. The contribution of this research is threefold: (1) supply chain systems can be modeled hierarchically (2) the performance of synthesized supply chain system can be evaluated quantitatively (3) reachability analysis is used to evaluate the system performance and verify whether a specific state is reachable, allowing the user to understand the extent of effects of a disruption.
Integrated Evaluation of Closed Loop Air Revitalization System Components
NASA Technical Reports Server (NTRS)
Murdock, K.
2010-01-01
NASA s vision and mission statements include an emphasis on human exploration of space, which requires environmental control and life support technologies. This Contractor Report (CR) describes the development and evaluation of an Air Revitalization System, modeling and simulation of the components, and integrated hardware testing with the goal of better understanding the inherent capabilities and limitations of this closed loop system. Major components integrated and tested included a 4-Bed Modular Sieve, Mechanical Compressor Engineering Development Unit, Temperature Swing Adsorption Compressor, and a Sabatier Engineering and Development Unit. The requisite methodolgy and technical results are contained in this CR.
Numerical modeling of subsurface communication, revision 1
NASA Astrophysics Data System (ADS)
Burke, G. J.; Dease, C. G.; Didwall, E. M.; Lytle, R. J.
1985-08-01
Techniques are described for numerical modeling of through-the-Earth communication. The basic problem considered is evaluation of the field at a surface or airborne station due to an antenna buried in the earth. Equations are given for the field of a point source in a homogeneous or stratified Earth. These expressions involve infinite integrals over wave number, sometimes known as Sommerfeld integrals. Numerical techniques used for evaluating these integrals are outlined. The problem of determining the current on a real antenna in the Earth, including the effect of insulation, is considered. Results are included for the fields of a point source in homogeneous and stratified earths and the field of a finite insulated dipole. The results are for electromagnetic propagation in the ELF-VLF range, but the codes also can address propagation problems at higher frequencies.
Train integrity detection risk analysis based on PRISM
NASA Astrophysics Data System (ADS)
Wen, Yuan
2018-04-01
GNSS based Train Integrity Monitoring System (TIMS) is an effective and low-cost detection scheme for train integrity detection. However, as an external auxiliary system of CTCS, GNSS may be influenced by external environments, such as uncertainty of wireless communication channels, which may lead to the failure of communication and positioning. In order to guarantee the reliability and safety of train operation, a risk analysis method of train integrity detection based on PRISM is proposed in this article. First, we analyze the risk factors (in GNSS communication process and the on-board communication process) and model them. Then, we evaluate the performance of the model in PRISM based on the field data. Finally, we discuss how these risk factors influence the train integrity detection process.
NASA Technical Reports Server (NTRS)
Annett, Martin S.; Polanco, Michael A.
2010-01-01
A full-scale crash test of an MD-500 helicopter was conducted in December 2009 at NASA Langley's Landing and Impact Research facility (LandIR). The MD-500 helicopter was fitted with a composite honeycomb Deployable Energy Absorber (DEA) and tested under vertical and horizontal impact velocities of 26-ft/sec and 40-ft/sec, respectively. The objectives of the test were to evaluate the performance of the DEA concept under realistic crash conditions and to generate test data for validation of a system integrated finite element model. In preparation for the full-scale crash test, a series of sub-scale and MD-500 mass simulator tests was conducted to evaluate the impact performances of various components, including a new crush tube and the DEA blocks. Parameters defined within the system integrated finite element model were determined from these tests. The objective of this paper is to summarize the finite element models developed and analyses performed, beginning with pre-test predictions and continuing through post-test validation.
Hypersonic research engine project. Phase 2: Aerothermodynamic Integration Model (AIM) test report
NASA Technical Reports Server (NTRS)
Andersen, W. L.; Kado, L.
1975-01-01
The Hypersonic Research Engine-Aerothermodynamic Integration Model (HRE-AIM) was designed, fabricated, and tested in the Hypersonic Tunnel Facility. The HRE-AIM is described along with its installation in the wind tunnel facility. Test conditions to which the HRE-AIM was subjected and observations made during the tests are discussed. The overall engine performance, component interaction, and ignition limits for the design are evaluated.
Supporting the Use of CERT (registered trademark) Secure Coding Standards in DoD Acquisitions
2012-07-01
Capability Maturity Model IntegrationSM (CMMI®) [Davis 2009]. SM Team Software Process, TSP, and Capability Maturity Model Integration are service...STP Software Test Plan TEP Test and Evaluation Plan TSP Team Software Process V & V verification and validation CMU/SEI-2012-TN-016 | 47...Supporting the Use of CERT® Secure Coding Standards in DoD Acquisitions Tim Morrow ( Software Engineering Institute) Robert Seacord ( Software
An e-consent-based shared EHR system architecture for integrated healthcare networks.
Bergmann, Joachim; Bott, Oliver J; Pretschner, Dietrich P; Haux, Reinhold
2007-01-01
Virtual integration of distributed patient data promises advantages over a consolidated health record, but raises questions mainly about practicability and authorization concepts. Our work aims on specification and development of a virtual shared health record architecture using a patient-centred integration and authorization model. A literature survey summarizes considerations of current architectural approaches. Complemented by a methodical analysis in two regional settings, a formal architecture model was specified and implemented. Results presented in this paper are a survey of architectural approaches for shared health records and an architecture model for a virtual shared EHR, which combines a patient-centred integration policy with provider-oriented document management. An electronic consent system assures, that access to the shared record remains under control of the patient. A corresponding system prototype has been developed and is currently being introduced and evaluated in a regional setting. The proposed architecture is capable of partly replacing message-based communications. Operating highly available provider repositories for the virtual shared EHR requires advanced technology and probably means additional costs for care providers. Acceptance of the proposed architecture depends on transparently embedding document validation and digital signature into the work processes. The paradigm shift from paper-based messaging to a "pull model" needs further evaluation.
USDA-ARS?s Scientific Manuscript database
Process-level modeling at the farm scale provides a tool for evaluating both strategies for mitigating greenhouse gas emissions and strategies for adapting to climate change. The Integrated Farm System Model (IFSM) simulates representative crop, beef or dairy farms over many years of weather to pred...
ERIC Educational Resources Information Center
Moore, Corey L.; Manyibe, Edward O.; Sanders, Perry; Aref, Fariborz; Washington, Andre L.; Robertson, Cherjuan Y.
2017-01-01
Purpose: The purpose of this multimethod study was to evaluate the institutional research capacity building and infrastructure model (IRCBIM), an emerging innovative and integrated approach designed to build, strengthen, and sustain adequate disability and health research capacity (i.e., research infrastructure and investigators' research skills)…
The early maximum likelihood estimation model of audiovisual integration in speech perception.
Andersen, Tobias S
2015-05-01
Speech perception is facilitated by seeing the articulatory mouth movements of the talker. This is due to perceptual audiovisual integration, which also causes the McGurk-MacDonald illusion, and for which a comprehensive computational account is still lacking. Decades of research have largely focused on the fuzzy logical model of perception (FLMP), which provides excellent fits to experimental observations but also has been criticized for being too flexible, post hoc and difficult to interpret. The current study introduces the early maximum likelihood estimation (MLE) model of audiovisual integration to speech perception along with three model variations. In early MLE, integration is based on a continuous internal representation before categorization, which can make the model more parsimonious by imposing constraints that reflect experimental designs. The study also shows that cross-validation can evaluate models of audiovisual integration based on typical data sets taking both goodness-of-fit and model flexibility into account. All models were tested on a published data set previously used for testing the FLMP. Cross-validation favored the early MLE while more conventional error measures favored more complex models. This difference between conventional error measures and cross-validation was found to be indicative of over-fitting in more complex models such as the FLMP.
Business intelligence modeling in launch operations
NASA Astrophysics Data System (ADS)
Bardina, Jorge E.; Thirumalainambi, Rajkumar; Davis, Rodney D.
2005-05-01
The future of business intelligence in space exploration will focus on the intelligent system-of-systems real-time enterprise. In present business intelligence, a number of technologies that are most relevant to space exploration are experiencing the greatest change. Emerging patterns of set of processes rather than organizational units leading to end-to-end automation is becoming a major objective of enterprise information technology. The cost element is a leading factor of future exploration systems. This technology project is to advance an integrated Planning and Management Simulation Model for evaluation of risks, costs, and reliability of launch systems from Earth to Orbit for Space Exploration. The approach builds on research done in the NASA ARC/KSC developed Virtual Test Bed (VTB) to integrate architectural, operations process, and mission simulations for the purpose of evaluating enterprise level strategies to reduce cost, improve systems operability, and reduce mission risks. The objectives are to understand the interdependency of architecture and process on recurring launch cost of operations, provide management a tool for assessing systems safety and dependability versus cost, and leverage lessons learned and empirical models from Shuttle and International Space Station to validate models applied to Exploration. The systems-of-systems concept is built to balance the conflicting objectives of safety, reliability, and process strategy in order to achieve long term sustainability. A planning and analysis test bed is needed for evaluation of enterprise level options and strategies for transit and launch systems as well as surface and orbital systems. This environment can also support agency simulation based acquisition process objectives. The technology development approach is based on the collaborative effort set forth in the VTB's integrating operations, process models, systems and environment models, and cost models as a comprehensive disciplined enterprise analysis environment. Significant emphasis is being placed on adapting root cause from existing Shuttle operations to exploration. Technical challenges include cost model validation, integration of parametric models with discrete event process and systems simulations, and large-scale simulation integration. The enterprise architecture is required for coherent integration of systems models. It will also require a plan for evolution over the life of the program. The proposed technology will produce long-term benefits in support of the NASA objectives for simulation based acquisition, will improve the ability to assess architectural options verses safety/risk for future exploration systems, and will facilitate incorporation of operability as a systems design consideration, reducing overall life cycle cost for future systems.
Business Intelligence Modeling in Launch Operations
NASA Technical Reports Server (NTRS)
Bardina, Jorge E.; Thirumalainambi, Rajkumar; Davis, Rodney D.
2005-01-01
This technology project is to advance an integrated Planning and Management Simulation Model for evaluation of risks, costs, and reliability of launch systems from Earth to Orbit for Space Exploration. The approach builds on research done in the NASA ARC/KSC developed Virtual Test Bed (VTB) to integrate architectural, operations process, and mission simulations for the purpose of evaluating enterprise level strategies to reduce cost, improve systems operability, and reduce mission risks. The objectives are to understand the interdependency of architecture and process on recurring launch cost of operations, provide management a tool for assessing systems safety and dependability versus cost, and leverage lessons learned and empirical models from Shuttle and International Space Station to validate models applied to Exploration. The systems-of-systems concept is built to balance the conflicting objectives of safety, reliability, and process strategy in order to achieve long term sustainability. A planning and analysis test bed is needed for evaluation of enterprise level options and strategies for transit and launch systems as well as surface and orbital systems. This environment can also support agency simulation .based acquisition process objectives. The technology development approach is based on the collaborative effort set forth in the VTB's integrating operations. process models, systems and environment models, and cost models as a comprehensive disciplined enterprise analysis environment. Significant emphasis is being placed on adapting root cause from existing Shuttle operations to exploration. Technical challenges include cost model validation, integration of parametric models with discrete event process and systems simulations. and large-scale simulation integration. The enterprise architecture is required for coherent integration of systems models. It will also require a plan for evolution over the life of the program. The proposed technology will produce long-term benefits in support of the NASA objectives for simulation based acquisition, will improve the ability to assess architectural options verses safety/risk for future exploration systems, and will facilitate incorporation of operability as a systems design consideration, reducing overall life cycle cost for future systems. The future of business intelligence of space exploration will focus on the intelligent system-of-systems real-time enterprise. In present business intelligence, a number of technologies that are most relevant to space exploration are experiencing the greatest change. Emerging patterns of set of processes rather than organizational units leading to end-to-end automation is becoming a major objective of enterprise information technology. The cost element is a leading factor of future exploration systems.
Dynamic Modeling, Controls, and Testing for Electrified Aircraft
NASA Technical Reports Server (NTRS)
Connolly, Joseph; Stalcup, Erik
2017-01-01
Electrified aircraft have the potential to provide significant benefits for efficiency and emissions reductions. To assess these potential benefits, modeling tools are needed to provide rapid evaluation of diverse concepts and to ensure safe operability and peak performance over the mission. The modeling challenge for these vehicles is the ability to show significant benefits over the current highly refined aircraft systems. The STARC-ABL (single-aisle turbo-electric aircraft with an aft boundary layer propulsor) is a new test proposal that builds upon previous N3-X team hybrid designs. This presentation describes the STARC-ABL concept, the NASA Electric Aircraft Testbed (NEAT) which will allow testing of the STARC-ABL powertrain, and the related modeling and simulation efforts to date. Modeling and simulation includes a turbofan simulation, Numeric Propulsion System Simulation (NPSS), which has been integrated with NEAT; and a power systems and control model for predicting testbed performance and evaluating control schemes. Model predictions provide good comparisons with testbed data for an NPSS-integrated test of the single-string configuration of NEAT.
Parker, Stephen; Dark, Frances; Newman, Ellie; Korman, Nicole; Meurk, Carla; Siskind, Dan; Harris, Meredith
2016-06-02
A novel staffing model integrating peer support workers and clinical staff within a unified team is being trialled at community based residential rehabilitation units in Australia. A mixed-methods protocol for the longitudinal evaluation of the outcomes, expectations and experiences of care by consumers and staff under this staffing model in two units will be compared to one unit operating a traditional clinical staffing. The study is unique with regards to the context, the longitudinal approach and consideration of multiple stakeholder perspectives. The longitudinal mixed methods design integrates a quantitative evaluation of the outcomes of care for consumers at three residential rehabilitation units with an applied qualitative research methodology. The quantitative component utilizes a prospective cohort design to explore whether equivalent outcomes are achieved through engagement at residential rehabilitation units operating integrated and clinical staffing models. Comparative data will be available from the time of admission, discharge and 12-month period post-discharge from the units. Additionally, retrospective data for the 12-month period prior to admission will be utilized to consider changes in functioning pre and post engagement with residential rehabilitation care. The primary outcome will be change in psychosocial functioning, assessed using the total score on the Health of the Nation Outcome Scales (HoNOS). Planned secondary outcomes will include changes in symptomatology, disability, recovery orientation, carer quality of life, emergency department presentations, psychiatric inpatient bed days, and psychological distress and wellbeing. Planned analyses will include: cohort description; hierarchical linear regression modelling of the predictors of change in HoNOS following CCU care; and descriptive comparisons of the costs associated with the two staffing models. The qualitative component utilizes a pragmatic approach to grounded theory, with collection of data from consumers and staff at multiple time points exploring their expectations, experiences and reflections on the care provided by these services. It is expected that the new knowledge gained through this study will guide the adaptation of these and similar services. For example, if differential outcomes are achieved for consumers under the integrated and clinical staffing models this may inform staffing guidelines.
Conceptualizing Programme Evaluation
ERIC Educational Resources Information Center
Hassan, Salochana
2013-01-01
The main thrust of this paper deals with the conceptualization of theory-driven evaluation pertaining to a tutor training programme. Conceptualization of evaluation, in this case, is an integration between a conceptualization model as well as a theoretical framework in the form of activity theory. Existing examples of frameworks of programme…
Test and evaluation of the HIDEC engine uptrim algorithm
NASA Technical Reports Server (NTRS)
Ray, R. J.; Myers, L. P.
1986-01-01
The highly integrated digital electronic control (HIDEC) program will demonstrate and evaluate the improvements in performance and mission effectiveness that result from integrated engine-airframe control systems. Performance improvements will result from an adaptive engine stall margin mode, a highly integrated mode that uses the airplane flight conditions and the resulting inlet distortion to continuously compute engine stall margin. When there is excessive stall margin, the engine is uptrimmed for more thrust by increasing engine pressure ratio (EPR). The EPR uptrim logic has been evaluated and implemented into computer simulations. Thrust improvements over 10 percent are predicted for subsonic flight conditions. The EPR uptrim was successfully demonstrated during engine ground tests. Test results verify model predictions at the conditions tested.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tim, U.S.; Jolly, R.
1994-01-01
Considerable progress has been made in developing physically based, distributed parameter, hydrologic/water quality (HIWQ) models for planning and control of nonpoint-source pollution. The widespread use of these models is often constrained by the excessive and time-consuming input data demands and the lack of computing efficiencies necessary for iterative simulation of alternative management strategies. Recent developments in geographic information systems (GIS) provide techniques for handling large amounts of spatial data for modeling nonpoint-source pollution problems. Because a GIS can be used to combine information from several sources to form an array of model input data and to examine any combinations ofmore » spatial input/output data, it represents a highly effective tool for HiWQ modeling. This paper describes the integration of a distributed-parameter model (AGNPS) with a GIS (ARC/INFO) to examine nonpoint sources of pollution in an agricultural watershed. The ARC/INFO GIS provided the tools to generate and spatially organize the disparate data to support modeling, while the AGNPS model was used to predict several water quality variables including soil erosion and sedimentation within a watershed. The integrated system was used to evaluate the effectiveness of several alternative management strategies in reducing sediment pollution in a 417-ha watershed located in southern Iowa. The implementation of vegetative filter strips and contour buffer (grass) strips resulted in a 41 and 47% reduction in sediment yield at the watershed outlet, respectively. In addition, when the integrated system was used, the combination of the above management strategies resulted in a 71% reduction in sediment yield. In general, the study demonstrated the utility of integrating a simulation model with GIS for nonpoini-source pollution control and planning. Such techniques can help characterize the diffuse sources of pollution at the landscape level. 52 refs., 6 figs., 1 tab.« less
Integrated Evaluation of Reliability and Power Consumption of Wireless Sensor Networks.
Dâmaso, Antônio; Rosa, Nelson; Maciel, Paulo
2017-11-05
Power consumption is a primary interest in Wireless Sensor Networks (WSNs), and a large number of strategies have been proposed to evaluate it. However, those approaches usually neither consider reliability issues nor the power consumption of applications executing in the network. A central concern is the lack of consolidated solutions that enable us to evaluate the power consumption of applications and the network stack also considering their reliabilities. To solve this problem, we introduce a fully automatic solution to design power consumption aware WSN applications and communication protocols. The solution presented in this paper comprises a methodology to evaluate the power consumption based on the integration of formal models, a set of power consumption and reliability models, a sensitivity analysis strategy to select WSN configurations and a toolbox named EDEN to fully support the proposed methodology. This solution allows accurately estimating the power consumption of WSN applications and the network stack in an automated way.
The early intervention safeguarding nurse pilot: an integrated model of working.
Fifield, Lucille; Blake, Susan
2011-11-01
Some of the most vulnerable children will need co-ordinated help from health, children's services and other agencies. Co-ordinated and joint working hinges on effective communication at all levels. Evidence shows that direct verbal communication is a more effective way to share concerns and that this should be followed up by written information. Yet barriers persist that prevent this from happening. Integrated health and social care teams are purported to break down professional and communication barriers. This paper reports on the evaluation of a pilot integrated model of health and social care in the North West of England. Such models can work and produce positive outcomes for children and families, but require full commitment from all parties. There are principles that need to be in place for this integrated model to achieve its aims and objectives, such as a robust governance framework that specifies the roles and responsibilities of each agency, managers and practitioners. Despite the model achieving its aim, the project was not as efficient as it could have been due to the lack of an integrated information technology system.
Evaluating performances of simplified physically based landslide susceptibility models.
NASA Astrophysics Data System (ADS)
Capparelli, Giovanna; Formetta, Giuseppe; Versace, Pasquale
2015-04-01
Rainfall induced shallow landslides cause significant damages involving loss of life and properties. Prediction of shallow landslides susceptible locations is a complex task that involves many disciplines: hydrology, geotechnical science, geomorphology, and statistics. Usually to accomplish this task two main approaches are used: statistical or physically based model. This paper presents a package of GIS based models for landslide susceptibility analysis. It was integrated in the NewAge-JGrass hydrological model using the Object Modeling System (OMS) modeling framework. The package includes three simplified physically based models for landslides susceptibility analysis (M1, M2, and M3) and a component for models verifications. It computes eight goodness of fit indices (GOF) by comparing pixel-by-pixel model results and measurements data. Moreover, the package integration in NewAge-JGrass allows the use of other components such as geographic information system tools to manage inputs-output processes, and automatic calibration algorithms to estimate model parameters. The system offers the possibility to investigate and fairly compare the quality and the robustness of models and models parameters, according a procedure that includes: i) model parameters estimation by optimizing each of the GOF index separately, ii) models evaluation in the ROC plane by using each of the optimal parameter set, and iii) GOF robustness evaluation by assessing their sensitivity to the input parameter variation. This procedure was repeated for all three models. The system was applied for a case study in Calabria (Italy) along the Salerno-Reggio Calabria highway, between Cosenza and Altilia municipality. The analysis provided that among all the optimized indices and all the three models, Average Index (AI) optimization coupled with model M3 is the best modeling solution for our test case. This research was funded by PON Project No. 01_01503 "Integrated Systems for Hydrogeological Risk Monitoring, Early Warning and Mitigation Along the Main Lifelines", CUP B31H11000370005, in the framework of the National Operational Program for "Research and Competitiveness" 2007-2013.
ERIC Educational Resources Information Center
Baxa, Julie; Christ, Tanya
2018-01-01
Selecting and integrating the use of digital texts/tools in literacy lessons are complex tasks. The DigiLit framework provides a succinct model to guide planning, reflection, coaching, and formative evaluation of teachers' successful digital text/tool selection and integration for literacy lessons. For digital text/tool selection, teachers need to…
An Implementation Model for Integrated Learning Systems.
ERIC Educational Resources Information Center
Mills, Steven C.; Ragan, Tillman R.
This paper describes the development, validation, and research application of the Computer-Delivered Instruction Configuration Matrix (CDICM), an instrument for evaluating the implementation of Integrated Learning Systems (ILS). The CDICM consists of a 15-item checklist, describing the major components of implementation of ILS technology, to be…
Electric Sector Integration | Energy Analysis | NREL
investigates the potential impacts of expanding renewable technology deployment on grid operations and Electric System Flexibility and Storage Impacts on Conventional Generators Transmission Infrastructure Generation Our grid integration studies use state-of-the-art modeling and analysis to evaluate the impacts of
Integrating the Curriculum: Quality and Relevance for Special Needs Children.
ERIC Educational Resources Information Center
Wessel, Janet A.
A comprehensive, integrated physical education system that has quality and relevance for handicapped students and their nonhandicapped peers is proposed. The Achievement Based Curriculum (ABC) Model is a systematic decision-making process for an instructional system that incorporates curriculum, instruction, assessment, and evaluation in one…
Decision-making for ecosystem protection and resource management requires an integrative science and technology applied with a sufficiently comprehensive systems approach. Single media (e.g., air, soil and water) approaches that evaluate aspects of an ecosystem in a stressor-by-...
From Modelling to Execution of Enterprise Integration Scenarios: The GENIUS Tool
NASA Astrophysics Data System (ADS)
Scheibler, Thorsten; Leymann, Frank
One of the predominant problems IT companies are facing today is Enterprise Application Integration (EAI). Most of the infrastructures built to tackle integration issues are proprietary because no standards exist for how to model, develop, and actually execute integration scenarios. EAI patterns gain importance for non-technical business users to ease and harmonize the development of EAI scenarios. These patterns describe recurring EAI challenges and propose possible solutions in an abstract way. Therefore, one can use those patterns to describe enterprise architectures in a technology neutral manner. However, patterns are documentation only used by developers and systems architects to decide how to implement an integration scenario manually. Thus, patterns are not theoretical thought to stand for artefacts that will immediately be executed. This paper presents a tool supporting a method how EAI patterns can be used to generate executable artefacts for various target platforms automatically using a model-driven development approach, hence turning patterns into something executable. Therefore, we introduce a continuous tool chain beginning at the design phase and ending in executing an integration solution in a completely automatically manner. For evaluation purposes we introduce a scenario demonstrating how the tool is utilized for modelling and actually executing an integration scenario.
Sadique, Z; Grieve, R; Harrison, D A; Jit, M; Allen, E; Rowan, K M
2013-12-01
This article proposes an integrated approach to the development, validation, and evaluation of new risk prediction models illustrated with the Fungal Infection Risk Evaluation study, which developed risk models to identify non-neutropenic, critically ill adult patients at high risk of invasive fungal disease (IFD). Our decision-analytical model compared alternative strategies for preventing IFD at up to three clinical decision time points (critical care admission, after 24 hours, and end of day 3), followed with antifungal prophylaxis for those judged "high" risk versus "no formal risk assessment." We developed prognostic models to predict the risk of IFD before critical care unit discharge, with data from 35,455 admissions to 70 UK adult, critical care units, and validated the models externally. The decision model was populated with positive predictive values and negative predictive values from the best-fitting risk models. We projected lifetime cost-effectiveness and expected value of partial perfect information for groups of parameters. The risk prediction models performed well in internal and external validation. Risk assessment and prophylaxis at the end of day 3 was the most cost-effective strategy at the 2% and 1% risk threshold. Risk assessment at each time point was the most cost-effective strategy at a 0.5% risk threshold. Expected values of partial perfect information were high for positive predictive values or negative predictive values (£11 million-£13 million) and quality-adjusted life-years (£11 million). It is cost-effective to formally assess the risk of IFD for non-neutropenic, critically ill adult patients. This integrated approach to developing and evaluating risk models is useful for informing clinical practice and future research investment. © 2013 International Society for Pharmacoeconomics and Outcomes Research (ISPOR) Published by International Society for Pharmacoeconomics and Outcomes Research (ISPOR) All rights reserved.
ERIC Educational Resources Information Center
Goldschmidt, Pete; Jung, Hyekyung
2011-01-01
This evaluation focuses on the Seeds of Science/Roots of Reading: Effective Tools for Developing Literacy through Science in the Early Grades ("Seeds/Roots") model of science-literacy integration. The evaluation is based on a cluster randomized design of 100 teachers, half of which were in the treatment group. Multi-level models are employed to…
PC-BASED SUPERCOMPUTING FOR UNCERTAINTY AND SENSITIVITY ANALYSIS OF MODELS
Evaluating uncertainty and sensitivity of multimedia environmental models that integrate assessments of air, soil, sediments, groundwater, and surface water is a difficult task. It can be an enormous undertaking even for simple, single-medium models (i.e. groundwater only) descr...
DOT National Transportation Integrated Search
2014-05-01
Land use and transportation are inextricably linked. Models that capture the dynamics and interactions : of both systems are indispensable for evaluating alternative courses of action in policy and investment. : These models must be spatially disaggr...
Modeling greenhouse gas emissions from dairy farms
USDA-ARS?s Scientific Manuscript database
Evaluation and mitigation of greenhouse gas emissions from dairy farms requires a comprehensive approach that integrates the impacts and interactions of all important sources and sinks. This approach requires some form of modeling. Types of models commonly used include empirical emission factors, pr...
A New Integrated Weighted Model in SNOW-V10: Verification of Categorical Variables
NASA Astrophysics Data System (ADS)
Huang, Laura X.; Isaac, George A.; Sheng, Grant
2014-01-01
This paper presents the verification results for nowcasts of seven categorical variables from an integrated weighted model (INTW) and the underlying numerical weather prediction (NWP) models. Nowcasting, or short range forecasting (0-6 h), over complex terrain with sufficient accuracy is highly desirable but a very challenging task. A weighting, evaluation, bias correction and integration system (WEBIS) for generating nowcasts by integrating NWP forecasts and high frequency observations was used during the Vancouver 2010 Olympic and Paralympic Winter Games as part of the Science of Nowcasting Olympic Weather for Vancouver 2010 (SNOW-V10) project. Forecast data from Canadian high-resolution deterministic NWP system with three nested grids (at 15-, 2.5- and 1-km horizontal grid-spacing) were selected as background gridded data for generating the integrated nowcasts. Seven forecast variables of temperature, relative humidity, wind speed, wind gust, visibility, ceiling and precipitation rate are treated as categorical variables for verifying the integrated weighted forecasts. By analyzing the verification of forecasts from INTW and the NWP models among 15 sites, the integrated weighted model was found to produce more accurate forecasts for the 7 selected forecast variables, regardless of location. This is based on the multi-categorical Heidke skill scores for the test period 12 February to 21 March 2010.
NASA Astrophysics Data System (ADS)
Yoon, J.; Klassert, C. J. A.; Lachaut, T.; Selby, P. D.; Knox, S.; Gorelick, S.; Rajsekhar, D.; Tilmant, A.; Avisse, N.; Harou, J. J.; Medellin-Azuara, J.; Gawel, E.; Klauer, B.; Mustafa, D.; Talozi, S.; Sigel, K.; Zhang, H.
2016-12-01
Our work focuses on development of a multi-agent, hydroeconomic model for water policy evaluation in Jordan. Jordan ranks among the most water-scarce countries in the world, a situation exacerbated due to a recent influx of refugees escaping the ongoing civil war in neighboring Syria. The modular, multi-agent model is used to evaluate interventions for enhancing Jordan's water security, integrating biophysical modules that simulate natural and engineered phenomena with human modules that represent behavior at multiple levels of decision making. The hydrologic modules are developed using spatially-distributed groundwater and surface water models, which are translated into compact simulators for efficient integration into the multi-agent model. For the multi-agent model, we explicitly account for human agency at multiple levels of decision making, with agents representing riparian, management, supplier, and water user groups. Human agents are implemented as autonomous entities in the model that make decisions in relation to one another and in response to hydrologic and socioeconomic conditions. The integrated model is programmed in Python using Pynsim, a generalizable, open-source object-oriented software framework for modeling network-based water resource systems. The modeling time periods include historical (2006-2014) and future (present-2050) time spans. For the historical runs, the model performance is validated against historical data for several observations that reflect the interacting dynamics of both the hydrologic and human components of the system. A historical counterfactual scenario is also constructed to isolate and identify the impacts of the recent Syrian civil war and refugee crisis on Jordan's water system. For the future period, model runs are conducted to evaluate potential supply, demand, and institutional interventions over a wide range of plausible climate and socioeconomic scenarios. In addition, model sensitivity analysis is conducted revealing the hydrologic and human aspects of the system that most strongly influence water security outcomes, providing insight into coupled human-water system dynamics as well as priority areas of focus for continued model improvement.
GUIDELINES TO ASSESSING REGIONAL VULNERABILITIES
Decision-makers today face increasingly complex environmental problems that require integrative and innovative approaches for analyzing, modeling, and interpreting various types of information. ReVA acknowledges this need and is designed to evaluate methods and models for synthe...
Spin coherent-state path integrals and the instanton calculus
NASA Astrophysics Data System (ADS)
Garg, Anupam; Kochetov, Evgueny; Park, Kee-Su; Stone, Michael
2003-01-01
We use an instanton approximation to the continuous-time spin coherent-state path integral to obtain the tunnel splitting of classically degenerate ground states. We show that provided the fluctuation determinant is carefully evaluated, the path integral expression is accurate to order O(1/j). We apply the method to the LMG model and to the molecular magnet Fe8 in a transverse field.
Tao, Qian; Milles, Julien; VAN Huls VAN Taxis, Carine; Lamb, Hildo J; Reiber, Johan H C; Zeppenfeld, Katja; VAN DER Geest, Rob J
2012-01-01
Integration of preprocedural delayed enhanced magnetic resonance imaging (DE-MRI) with electroanatomical voltage mapping (EAVM) may provide additional high-resolution substrate information for catheter ablation of scar-related ventricular tachycardias (VT). Accurate and fast image integration of DE-MRI with EAVM is desirable for MR-guided ablation. Twenty-six VT patients with large transmural scar underwent catheter ablation and preprocedural DE-MRI. With different registration models and EAVM input, 3 image integration methods were evaluated and compared to the commercial registration module CartoMerge. The performance was evaluated both in terms of distance measure that describes surface matching, and correlation measure that describes actual scar correspondence. Compared to CartoMerge, the method that uses the translation-and-rotation model and high-density EAVM input resulted in a registration error of 4.32±0.69 mm as compared to 4.84 ± 1.07 (P <0.05); the method that uses the translation model and high-density EAVM input resulted in a registration error of 4.60 ± 0.65 mm (P = NS); and the method that uses the translation model and a single anatomical landmark input resulted in a registration error of 6.58 ± 1.63 mm (P < 0.05). No significant difference in scar correlation was observed between all 3 methods and CartoMerge (P = NS). During VT ablation procedures, accurate integration of EAVM and DE-MRI can be achieved using a translation registration model and a single anatomical landmark. This model allows for image integration in minimal mapping time and is likely to reduce fluoroscopy time and increase procedure efficacy. © 2011 Wiley Periodicals, Inc.
System Dynamics (SD) models are useful for holistic integration of data to evaluate indirect and cumulative effects and inform decisions. Complex SD models can provide key insights into how decisions affect the three interconnected pillars of sustainability. However, the complexi...
USDA-ARS?s Scientific Manuscript database
This paper provides an overview of the Model Optimization, Uncertainty, and SEnsitivity Analysis (MOUSE) software application, an open-source, Java-based toolbox of visual and numerical analysis components for the evaluation of environmental models. MOUSE is based on the OPTAS model calibration syst...
NASA Astrophysics Data System (ADS)
Razumnikov, S.; Kurmanbay, A.
2016-04-01
The present paper suggests a system approach to evaluation of the effectiveness and risks resulted from the integration of cloud-based services in a machine-building enterprise. This approach makes it possible to estimate a set of enterprise IT applications and choose the applications to be migrated to the cloud with regard to specific business requirements, a technological strategy and willingness to risk.
Star clusters: age, metallicity and extinction from integrated spectra
NASA Astrophysics Data System (ADS)
González Delgado, Rosa M.; Cid Fernandes, Roberto
2010-01-01
Integrated optical spectra of star clusters in the Magellanic Clouds and a few Galactic globular clusters are fitted using high-resolution spectral models for single stellar populations. The goal is to estimate the age, metallicity and extinction of the clusters, and evaluate the degeneracies among these parameters. Several sets of evolutionary models that were computed with recent high-spectral-resolution stellar libraries (MILES, GRANADA, STELIB), are used as inputs to the starlight code to perform the fits. The comparison of the results derived from this method and previous estimates available in the literature allow us to evaluate the pros and cons of each set of models to determine star cluster properties. In addition, we quantify the uncertainties associated with the age, metallicity and extinction determinations resulting from variance in the ingredients for the analysis.
Communications, Navigation, and Surveillance Models in ACES: Design Implementation and Capabilities
NASA Technical Reports Server (NTRS)
Kubat, Greg; Vandrei, Don; Satapathy, Goutam; Kumar, Anil; Khanna, Manu
2006-01-01
Presentation objectives include: a) Overview of the ACES/CNS System Models Design and Integration; b) Configuration Capabilities available for Models and Simulations using ACES with CNS Modeling; c) Descriptions of recently added, Enhanced CNS Simulation Capabilities; and d) General Concepts Ideas that Utilize CNS Modeling to Enhance Concept Evaluations.
Microstructure Engineering in Hot Strip Mills, Part 1 of 2: Integrated mathematical Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
J.K. Brimacombe; I.V. Samaraseker; E.B. Hawbolt
1998-09-30
This report describes the work of developing an integrated model used to predict the thermal history, deformation, roll forces, microstructural evaluation and mechanical properties of steel strip in a hot-strip mill. This achievement results from a join research effort that is part of the American Iron and Steel Institute's (AISI) Advanced Process Control Program, a collaboration between the U.S. DOE and fifteen North American steel makers.
Kepner, William G.; Semmens, Darius J.; Hernandez, Mariano; Goodrich, David C.
2009-01-01
Envisioning and evaluating future scenarios has emerged as a critical component of both science and social decision-making. The ability to assess, report, map, and forecast the life support functions of ecosystems is absolutely critical to our capacity to make informed decisions to maintain the sustainable nature of our ecosystem services now and into the future. During the past two decades, important advances in the integration of remote imagery, computer processing, and spatial-analysis technologies have been used to develop landscape information that can be integrated with hydrologic models to determine long-term change and make predictive inferences about the future. Two diverse case studies in northwest Oregon (Willamette River basin) and southeastern Arizona (San Pedro River) were examined in regard to future land use scenarios relative to their impact on surface water conditions (e.g., sediment yield and surface runoff) using hydrologic models associated with the Automated Geospatial Watershed Assessment (AGWA) tool. The base reference grid for land cover was modified in both study locations to reflect stakeholder preferences 20 to 60 yrs into the future, and the consequences of landscape change were evaluated relative to the selected future scenarios. The two studies provide examples of integrating hydrologic modeling with a scenario analysis framework to evaluate plausible future forecasts and to understand the potential impact of landscape change on ecosystem services.
Santaeugènia, Sebastià J; García-Lázaro, Manuela; Alventosa, Ana María; Gutiérrez-Benito, Alícia; Monterde, Albert; Cunill, Joan
To evaluate the clinical effectiveness of an intermediate care model based on a system of care focused on integrated care pathways compared to the traditional model of geriatric care (usual care) in Catalonia. The design is a quasi-experimental pre-post non-randomised study with non-synchronous control group. The intervention consists of the development and implementation of integrated care pathways and the creation of specialised interdisciplinary teams in each of the processes. The two groups will be compared for demographic, clinical variables on admission and discharge, geriatric syndromes, and use of resources. This quasi-experimental study, aims to assess the clinical impact of the transformation of a traditional model of geriatric care to an intermediate care model in an integrated healthcare organisation. It is believed that the results of this study may be useful for future randomised controlled studies. Copyright © 2016 SEGG. Publicado por Elsevier España, S.L.U. All rights reserved.
Operational integration in primary health care: patient encounters and workflows.
Sifaki-Pistolla, Dimitra; Chatzea, Vasiliki-Eirini; Markaki, Adelais; Kritikos, Kyriakos; Petelos, Elena; Lionis, Christos
2017-11-29
Despite several countrywide attempts to strengthen and standardise the primary healthcare (PHC) system, Greece is still lacking a sustainable, policy-based model of integrated services. The aim of our study was to identify operational integration levels through existing patient care pathways and to recommend an alternative PHC model for optimum integration. The study was part of a large state-funded project, which included 22 randomly selected PHC units located across two health regions of Greece. Dimensions of operational integration in PHC were selected based on the work of Kringos and colleagues. A five-point Likert-type scale, coupled with an algorithm, was used to capture and transform theoretical framework features into measurable attributes. PHC services were grouped under the main categories of chronic care, urgent/acute care, preventive care, and home care. A web-based platform was used to assess patient pathways, evaluate integration levels and propose improvement actions. Analysis relied on a comparison of actual pathways versus optimal, the latter ones having been identified through literature review. Overall integration varied among units. The majority (57%) of units corresponded to a basic level. Integration by type of PHC service ranged as follows: basic (86%) or poor (14%) for chronic care units, poor (78%) or basic (22%) for urgent/acute care units, basic (50%) for preventive care units, and partial or basic (50%) for home care units. The actual pathways across all four categories of PHC services differed from those captured in the optimum integration model. Certain similarities were observed in the operational flows between chronic care management and urgent/acute care management. Such similarities were present at the highest level of abstraction, but also in common steps along the operational flows. Existing patient care pathways were mapped and analysed, and recommendations for an optimum integration PHC model were made. The developed web platform, based on a strong theoretical framework, can serve as a robust integration evaluation tool. This could be a first step towards restructuring and improving PHC services within a financially restrained environment.
NASA Astrophysics Data System (ADS)
O'Neill, B. C.; Kauffman, B.; Lawrence, P.
2016-12-01
Integrated analysis of questions regarding land, water, and energy resources often requires integration of models of different types. One type of integration is between human and earth system models, since both societal and physical processes influence these resources. For example, human processes such as changes in population, economic conditions, and policies govern the demand for land, water and energy, while the interactions of these resources with physical systems determine their availability and environmental consequences. We have begun to develop and use a toolkit for linking human and earth system models called the Toolbox for Human-Earth System Integration and Scaling (THESIS). THESIS consists of models and software tools to translate, scale, and synthesize information from and between human system models and earth system models (ESMs), with initial application to linking the NCAR integrated assessment model, iPETS, with the NCAR earth system model, CESM. Initial development is focused on urban areas and agriculture, sectors that are both explicitly represented in both CESM and iPETS. Tools are being made available to the community as they are completed (see https://www2.cgd.ucar.edu/sections/tss/iam/THESIS_tools). We discuss four general types of functions that THESIS tools serve (Spatial Distribution, Spatial Properties, Consistency, and Outcome Evaluation). Tools are designed to be modular and can be combined in order to carry out more complex analyses. We illustrate their application to both the exposure of population to climate extremes and to the evaluation of climate impacts on the agriculture sector. For example, projecting exposure to climate extremes involves use of THESIS tools for spatial population, spatial urban land cover, the characteristics of both, and a tool to bring urban climate information together with spatial population information. Development of THESIS tools is continuing and open to the research community.
NASA Technical Reports Server (NTRS)
Kemp, Victoria R.
1992-01-01
A fluid-dynamic, digital-transient computer model of an integrated, parallel propulsion system was developed for the CDC mainframe and the SUN workstation computers. Since all STME component designs were used for the integrated system, computer subroutines were written characterizing the performance and geometry of all the components used in the system, including the manifolds. Three transient analysis reports were completed. The first report evaluated the feasibility of integrated engine systems in regards to the start and cutoff transient behavior. The second report evaluated turbopump out and combined thrust chamber/turbopump out conditions. The third report presented sensitivity study results in staggered gas generator spin start and in pump performance characteristics.
ERIC Educational Resources Information Center
Ainsworth, Larry; Christinson, Jan
The assessment model described in this guide was initially developed by a team of fifth-grade teachers who wrote objectives of integrating social studies and language arts. It helps the teacher guide students to create a task-specific rubric that they use to evaluate their own and peers' work. Teachers review the student evaluations, determine the…
ERIC Educational Resources Information Center
Wagner Cica, LeeAnn
2017-01-01
This research study investigates the use of the Self-Determined Learning Model of Instruction as a strategy to improve self-determination skills and workforce readiness skills for students' with Asperger syndrome and high-functioning autism spectrum disorder. This study evaluates the effectiveness of integrating SDLMI into classroom instruction to…
NUCare: Advancing research on technological integration for self-management in the aging population.
Lees, Kristin E; Guthrie, Barbara J; Henderson, Elizabeth L; Jimison, Holly B; Sceppa, Carmen; Pavel, Misha; Gordon, Christine; Fulmer, Terry
The Center for Technology in Support of Self-Management and Health (NUCare) is an exploratory research center funded by the National Institute of Nursing Research's P20 mechanism positioned to conduct rigorous research on the integration of technology in the self-management of the older adult population. The purpose of this paper is to describe the development and application of an evaluation plan and preliminary evaluation results from the first year of implementation. This evaluation plan is derived from and is consistent with Dorsey et al.'s (2014) logic model. Dorsey's model provided guidelines for evaluating sustainability, leveraging of resources, and interdisciplinary collaboration within the center. Preliminary results and strategies for addressing findings from the first year of evaluation are discussed. A secondary aim of this paper is to showcase the relevance of this center to the advancement and maintenance of health in the aging population. Copyright © 2017 Elsevier Inc. All rights reserved.
A Perspective on Computational Human Performance Models as Design Tools
NASA Technical Reports Server (NTRS)
Jones, Patricia M.
2010-01-01
The design of interactive systems, including levels of automation, displays, and controls, is usually based on design guidelines and iterative empirical prototyping. A complementary approach is to use computational human performance models to evaluate designs. An integrated strategy of model-based and empirical test and evaluation activities is particularly attractive as a methodology for verification and validation of human-rated systems for commercial space. This talk will review several computational human performance modeling approaches and their applicability to design of display and control requirements.
21st century environmental problems are wicked and require holistic systems thinking and solutions that integrate social and economic knowledge with knowledge of the environment. Computer-based technologies are fundamental to our ability to research and understand the relevant sy...
Conducting an integrated analysis to evaluate the societal and ecological consequences of environmental management actions requires decisions about data collection, theory development, modeling and valuation. Approaching these decisions in coordinated fashion necessitates a syste...
ERIC Educational Resources Information Center
Macht, Konrad
1978-01-01
Discusses a "rational concept" of integration of audiovisual teaching aids into the foreign language teaching process that would be based on a positive evaluation of teacher-centered instruction. Offers a model for integration of human and technical media. (IFS/WGA)
DOT National Transportation Integrated Search
2010-07-01
Land use and transportation are inextricably linked. Models that capture the dynamics and interactions of both systems are indispensable for evaluating alternative courses of action in policy and investment. These models must be spatially disaggregat...
NASA Astrophysics Data System (ADS)
Voisin, Nathalie; Hejazi, Mohamad I.; Leung, L. Ruby; Liu, Lu; Huang, Maoyi; Li, Hong-Yi; Tesfa, Teklu
2017-05-01
Realistic representations of sectoral water withdrawals and consumptive demands and their allocation to surface and groundwater sources are important for improving modeling of the integrated water cycle. To inform future model development, we enhance the representation of water management in a regional Earth system (ES) model with a spatially distributed allocation of sectoral water demands simulated by a regional integrated assessment (IA) model to surface and groundwater systems. The integrated modeling framework (IA-ES) is evaluated by analyzing the simulated regulated flow and sectoral supply deficit in major hydrologic regions of the conterminous U.S, which differ from ES studies looking at water storage variations. Decreases in historical supply deficit are used as metrics to evaluate IA-ES model improvement in representating the complex sectoral human activities for assessing future adaptation and mitigation strategies. We also assess the spatial changes in both regulated flow and unmet demands, for irrigation and nonirrigation sectors, resulting from the individual and combined additions of groundwater and return flow modules. Results show that groundwater use has a pronounced regional and sectoral effect by reducing water supply deficit. The effects of sectoral return flow exhibit a clear east-west contrast in the hydrologic patterns, so the return flow component combined with the IA sectoral demands is a major driver for spatial redistribution of water resources and water deficits in the US. Our analysis highlights the need for spatially distributed sectoral representation of water management to capture the regional differences in interbasin redistribution of water resources and deficits.
Integrated Modelling in CRUCIAL Science Education
NASA Astrophysics Data System (ADS)
Mahura, Alexander; Nuterman, Roman; Mukhamedzhanova, Elena; Nerobelov, Georgiy; Sedeeva, Margarita; Suhodskiy, Alexander; Mostamandy, Suleiman; Smyshlyaev, Sergey
2017-04-01
The NordForsk CRUCIAL project (2016-2017) "Critical steps in understanding land surface - atmosphere interactions: from improved knowledge to socioeconomic solutions" as a part of the Pan-Eurasian EXperiment (PEEX; https://www.atm.helsinki.fi/peex) programme activities, is looking for a deeper collaboration between Nordic-Russian science communities. In particular, following collaboration between Danish and Russian partners, several topics were selected for joint research and are focused on evaluation of: (1) urbanization processes impact on changes in urban weather and climate on urban-subregional-regional scales and at contribution to assessment studies for population and environment; (2) effects of various feedback mechanisms on aerosol and cloud formation and radiative forcing on urban-regional scales for better predicting extreme weather events and at contribution to early warning systems, (3) environmental contamination from continues emissions and industrial accidents for better assessment and decision making for sustainable social and economic development, and (4) climatology of atmospheric boundary layer in northern latitudes to improve understanding of processes, revising parameterizations, and better weather forecasting. These research topics are realized employing the online integrated Enviro-HIRLAM (Environment - High Resolution Limited Area Model) model within students' research projects: (1) "Online integrated high-resolution modelling of Saint-Petersburg metropolitan area influence on weather and air pollution forecasting"; (2) "Modeling of aerosol impact on regional-urban scales: case study of Saint-Petersburg metropolitan area"; (3) "Regional modeling and GIS evaluation of environmental pollution from Kola Peninsula sources"; and (4) "Climatology of the High-Latitude Planetary Boundary Layer". The students' projects achieved results and planned young scientists research training on online integrated modelling (Jun 2017) will be presented and discussed.
A two-dimensional model of disrupted body integrity: initial evaluation in head and neck cancer.
Mah, Kenneth; Lebel, Sophie; Irish, Jonathan; Bezjak, Andrea; Payne, Ada Y M; Devins, Gerald M
2018-04-13
This cross-sectional study presents an initial psychometric evaluation of a two-dimensional (perceptual and evaluative) conceptualization and measure of disrupted body integrity (DBI)-illness-related disruption of the sense of the body as an integrated, smoothly functioning whole. Male and female head and neck cancer (HNC) outpatients (N = 98) completed a questionnaire package prior to outpatient visits. The Disrupted Body Integrity Scale (DBIS) was developed to measure the perceptual and evaluative facets of DBI. Self-report measures of disfigurement, stigma, depressive symptoms, and negative affect were also completed. Almost all DBIS subscales demonstrated good internal consistency. Results largely supported the DBIS's construct validity. The majority of subscales correlated within the predicted range of r's = .40-.70. Almost all DBIS constructs were positively linked with either depressive symptoms or disfigurement. None correlated with positive affect, and only two subscales, abnormal sensations (perceptual) and physical vulnerability (evaluative), correlated with negative affect. DBIS constructs showed little relation with stigma, once disfigurement effects were controlled for. Findings offer preliminary evidence for the DBIS and the relevance of DBI in HNC. Further evaluation of DBI in disease adaptation and the DBIS's factor structure is warranted.
NASA Astrophysics Data System (ADS)
Leuchter, S.; Reinert, F.; Müller, W.
2014-06-01
Procurement and design of system architectures capable of network centric operations demand for an assessment scheme in order to compare different alternative realizations. In this contribution an assessment method for system architectures targeted at the C4ISR domain is presented. The method addresses the integration capability of software systems from a complex and distributed software system perspective focusing communication, interfaces and software. The aim is to evaluate the capability to integrate a system or its functions within a system-of-systems network. This method uses approaches from software architecture quality assessment and applies them on the system architecture level. It features a specific goal tree of several dimensions that are relevant for enterprise integration. These dimensions have to be weighed against each other and totalized using methods from the normative decision theory in order to reflect the intention of the particular enterprise integration effort. The indicators and measurements for many of the considered quality features rely on a model based view on systems, networks, and the enterprise. That means it is applicable to System-of-System specifications based on enterprise architectural frameworks relying on defined meta-models or domain ontologies for defining views and viewpoints. In the defense context we use the NATO Architecture Framework (NAF) to ground respective system models. The proposed assessment method allows evaluating and comparing competing system designs regarding their future integration potential. It is a contribution to the system-of-systems engineering methodology.
Integrated methods for teaching population health.
Sistrom, Maria Gilson; Zeigen, Laura; Jones, Melissa; Durham, Korana Fiol; Boudrot, Thomas
2011-01-01
The Institute of Medicine recommends reforms to public health education to better prepare the public health workforce. This study addresses the application of two of the recommended reforms in the population health nursing curriculum at one university: use of an ecological model and distance learning methods. Using interdisciplinary faculty, integrated teaching and learning methods, and a multimedia curriculum, this study examined the following question: can distance learning be designed to support learning goals and outcomes specific to an ecological approach and population health concepts in general? Course content was evaluated using students' perception of practice utility and understanding of population health concepts. Integrated teaching methods were evaluated using a scale as well as comparison to other student distance learning experiences within the university. Findings demonstrated that both the ecological model and distance learning methods were successfully used to teach population health to a large nursing student cohort. 2011, SLACK Incorporated.
Performance evaluation of radiant cooling system application on a university building in Indonesia
NASA Astrophysics Data System (ADS)
Satrio, Pujo; Sholahudin, S.; Nasruddin
2017-03-01
The paper describes a study developed to estimate the energy savings potential of a radiant cooling system installed in an institutional building in Indonesia. The simulations were carried out using IESVE to evaluate thermal performance and energy consumption The building model was calibrated using the measured data for the installed radiant system. Then this calibrated model was used to simulate the energy consumption and temperature distribution to determine the proportional energy savings and occupant comfort under different systems. The result was radiant cooling which integrated with a Dedicated Outside Air System (DOAS) could make 41,84% energy savings compared to the installed cooling system. The Computational Fluid Dynamics (CFD) simulation showed that a radiant system integrated with DOAS provides superior human comfort than a radiant system integrated with Variable Air Volume (VAV). Percentage People Dissatisfied was kept below 10% using the proposed system.
Oxley, Tim; Dore, Anthony J; ApSimon, Helen; Hall, Jane; Kryza, Maciej
2013-11-01
Integrated assessment modelling has evolved to support policy development in relation to air pollutants and greenhouse gases by providing integrated simulation tools able to produce quick and realistic representations of emission scenarios and their environmental impacts without the need to re-run complex atmospheric dispersion models. The UK Integrated Assessment Model (UKIAM) has been developed to investigate strategies for reducing UK emissions by bringing together information on projected UK emissions of SO2, NOx, NH3, PM10 and PM2.5, atmospheric dispersion, criteria for protection of ecosystems, urban air quality and human health, and data on potential abatement measures to reduce emissions, which may subsequently be linked to associated analyses of costs and benefits. We describe the multi-scale model structure ranging from continental to roadside, UK emission sources, atmospheric dispersion of emissions, implementation of abatement measures, integration with European-scale modelling, and environmental impacts. The model generates outputs from a national perspective which are used to evaluate alternative strategies in relation to emissions, deposition patterns, air quality metrics and ecosystem critical load exceedance. We present a selection of scenarios in relation to the 2020 Business-As-Usual projections and identify potential further reductions beyond those currently being planned. © 2013.
Integrating Data Mining in Program Evaluation of K-12 Online Education
ERIC Educational Resources Information Center
Hung, Jui-Long; Hsu, Yu-Chang; Rice, Kerry
2012-01-01
This study investigated an innovative approach of program evaluation through analyses of student learning logs, demographic data, and end-of-course evaluation surveys in an online K-12 supplemental program. The results support the development of a program evaluation model for decision making on teaching and learning at the K-12 level. A case study…
TAMPA BAY MODEL EVALUATION AND ASSESSMENT
A long term goal of multimedia environmental management is to achieve sustainable ecological resources. Progress towards this goal rests on a foundation of science-based methods and data integrated into predictive multimedia, multi-stressor open architecture modeling systems. The...
Chinese medicine and biomodulation in cancer patients—Part one
Sagar, S.M.; Wong, R.K.
2008-01-01
Traditional Chinese Medicine (tcm) may be integrated with conventional Western medicine to enhance the care of patients with cancer. Although tcm is normally implemented as a whole system, recent reductionist research suggests mechanisms for the effects of acupuncture, herbs, and nutrition within the scientific model of biomedicine. The health model of Chinese medicine accommodates physical and pharmacologic interventions within the framework of a body–mind network. A Cartesian split does not occur within this model, but to allow for scientific exploration within the restrictions of positivism, reductionism, and controls for confounding factors, the components must necessarily be separated. Still, whole-systems research is important to evaluate effectiveness when applying the full model in clinical practice. Scientific analysis provides a mechanistic understanding of the processes that will improve the design of clinical studies and enhance safety. Enough preliminary evidence is available to encourage quality clinical trials to evaluate the efficacy of integrating tcm into Western cancer care. PMID:18317584
NASA Astrophysics Data System (ADS)
Brook, Anna; Wittenberg, Lea
2015-04-01
Long-term environmental monitoring is addressed to identify physical and biological changes and progresses taking place in the ecosystem. This basic action of landscape monitoring is an essential part of the systematic long-term surveillance, aiming to evaluate, assess and predict the spatial change and progresses. Indeed, it provides a context for wide range of diverse studies and research frameworks from regional or global scale. Spatial-temporal trends and changes at various scales (massive to less certain) require establishing consistent baseline data over time. One of the spatial cases of landscape monitoring is dedicated to soil formation and pedological progresses. It is previously acknowledged that changes in soil affect the functionality of the environment, so monitoring changes recently become important cause considerable resources in areas such as environmental management, sustainability services, and protecting the environment healthy. Given the above, it can be concluded that monitoring changes in the base for sustainable development. The hydrological response of bare soils and watersheds in semiarid regions to intense rainfall events is known to be complex due to multiply physical and structural impacts and feedbacks. As a result, the comprehensive evaluations of mathematical models including detailed consideration of uncertainties in the modeling of hydrological and environmental systems are of increasing importance. The presented method incorporates means of remote sensing data, hydrological and climate data and implementing dedicated and integrative Monte Carlo Analysis Toolbox (MCAT) model for semiarid region. Complexity of practical models to represent spatial systems requires an extensive understanding of the spatial phenomena, while providing realistic balance of sensitivity and corresponding uncertainty levels. Nowadays a large number of dedicated mathematical models applied to assess environmental hydrological process. Among the most promising models is the MCAT, which is a MATLAB library of visual and numerical analysis tools for the evaluation of hydrological and environmental models. The model applied in this paper presents an innovative infrastructural system for predicting soil stability and erosion impacts. This integrated model is applicable to mixed areas with spatially varying soil properties, landscape, and land-cover characteristics. Data from a semiarid site in southern Israel was used to evaluate the model and analyze fundamental erosion mechanisms. The findings estimate the sensitivity of the suggested model to the physical parameters and encourage the use of hyperspectral remote sensing imagery (HSI). The proposed model is integrated according to the following stages: 1. The soil texture, aggregation, soil moisture estimated via airborne HSI data, including soil surface clay and calcium carbonate erosions; 2. The mechanical stability of soil assessed via pedo-transfer function corresponding to load dependent changes in soil physical properties due to pre-compression stress (set of equations study shear strength parameters take into account soil texture, aggregation, soil moisture and ecological soil variables); 3. The precipitation-related runoff model program (RMP) satisfactorily reproduces the observed seasonal mean and variation of surface runoff for the current climate simulation; 4. The Monte Carlo Analysis Toolbox (MCAT), a library of visual and numerical analysis tools for the evaluation of hydrological and environmental models, is proposed as a tool for integrate all the approaches to an applicable model. The presented model overcomes the limitations of existing modeling methods by integrating physical data produced via HSI and yet stays generic in terms of space and time independency.
Van Dijk-de Vries, Anneke N.; Duimel-Peeters, Inge G. P.; Muris, Jean W.; Wesseling, Geertjan J.; Beusmans, George H. M. I.
2016-01-01
Introduction: Teamwork between healthcare providers is conditional for the delivery of integrated care. This study aimed to assess the usefulness of the conceptual framework Integrated Team Effectiveness Model for developing and testing of the Integrated Team Effectiveness Instrument. Theory and methods: Focus groups with healthcare providers in an integrated care setting for people with chronic obstructive pulmonary disease (COPD) were conducted to examine the recognisability of the conceptual framework and to explore critical success factors for collaborative COPD practice out of this framework. The resulting items were transposed into a pilot instrument. This was reviewed by expert opinion and completed 153 times by healthcare providers. The underlying structure and internal consistency of the instrument were verified by factor analysis and Cronbach’s alpha. Results: The conceptual framework turned out to be comprehensible for discussing teamwork effectiveness. The pilot instrument measures 25 relevant aspects of teamwork in integrated COPD care. Factor analysis suggested three reliable components: teamwork effectiveness, team processes and team psychosocial traits (Cronbach’s alpha between 0.76 and 0.81). Conclusions and discussion: The conceptual framework Integrated Team Effectiveness Model is relevant in developing a practical full-spectrum instrument to facilitate discussing teamwork effectiveness. The Integrated Team Effectiveness Instrument provides a well-founded basis to self-evaluate teamwork effectiveness in integrated COPD care by healthcare providers. Recommendations are provided for the improvement of the instrument. PMID:27616953
Mine safety assessment using gray relational analysis and bow tie model
2018-01-01
Mine safety assessment is a precondition for ensuring orderly and safety in production. The main purpose of this study was to prevent mine accidents more effectively by proposing a composite risk analysis model. First, the weights of the assessment indicators were determined by the revised integrated weight method, in which the objective weights were determined by a variation coefficient method and the subjective weights determined by the Delphi method. A new formula was then adopted to calculate the integrated weights based on the subjective and objective weights. Second, after the assessment indicator weights were determined, gray relational analysis was used to evaluate the safety of mine enterprises. Mine enterprise safety was ranked according to the gray relational degree, and weak links of mine safety practices identified based on gray relational analysis. Third, to validate the revised integrated weight method adopted in the process of gray relational analysis, the fuzzy evaluation method was used to the safety assessment of mine enterprises. Fourth, for first time, bow tie model was adopted to identify the causes and consequences of weak links and allow corresponding safety measures to be taken to guarantee the mine’s safe production. A case study of mine safety assessment was presented to demonstrate the effectiveness and rationality of the proposed composite risk analysis model, which can be applied to other related industries for safety evaluation. PMID:29561875
DOE Office of Scientific and Technical Information (OSTI.GOV)
West, Tristram O.; Le Page, Yannick LB; Huang, Maoyi
2014-06-05
Projections of land cover change generated from Integrated Assessment Models (IAM) and other economic-based models can be applied for analyses of environmental impacts at subregional and landscape scales. For those IAM and economic models that project land use at the sub-continental or regional scale, these projections must be downscaled and spatially distributed prior to use in climate or ecosystem models. Downscaling efforts to date have been conducted at the national extent with relatively high spatial resolution (30m) and at the global extent with relatively coarse spatial resolution (0.5 degree).
NASA Technical Reports Server (NTRS)
Arnold, William R.
2015-01-01
Since last year, a number of expanded capabilities have been added to the modeler. The support the integration with thermal modeling, the program can now produce simplified thermal models with the same geometric parameters as the more detailed dynamic and even more refined stress models. The local mesh refinement and mesh improvement tools have been expanded and more user friendly. The goal is to provide a means of evaluating both monolithic and segmented mirrors to the same level of fidelity and loading conditions at reasonable man-power efforts. The paper will demonstrate most of these new capabilities.
NASA Technical Reports Server (NTRS)
Arnold, William R., Sr.
2015-01-01
Since last year, a number of expanded capabilities have been added to the modeler. The support the integration with thermal modeling, the program can now produce simplified thermal models with the same geometric parameters as the more detailed dynamic and even more refined stress models. The local mesh refinement and mesh improvement tools have been expanded and more user friendly. The goal is to provide a means of evaluating both monolithic and segmented mirrors to the same level of fidelity and loading conditions at reasonable man-power efforts. The paper will demonstrate most of these new capabilities.
Systems Analysis Of Advanced Coal-Based Power Plants
NASA Technical Reports Server (NTRS)
Ferrall, Joseph F.; Jennings, Charles N.; Pappano, Alfred W.
1988-01-01
Report presents appraisal of integrated coal-gasification/fuel-cell power plants. Based on study comparing fuel-cell technologies with each other and with coal-based alternatives and recommends most promising ones for research and development. Evaluates capital cost, cost of electricity, fuel consumption, and conformance with environmental standards. Analyzes sensitivity of cost of electricity to changes in fuel cost, to economic assumptions, and to level of technology. Recommends further evaluation of integrated coal-gasification/fuel-cell integrated coal-gasification/combined-cycle, and pulverized-coal-fired plants. Concludes with appendixes detailing plant-performance models, subsystem-performance parameters, performance goals, cost bases, plant-cost data sheets, and plant sensitivity to fuel-cell performance.
DEPEND: A simulation-based environment for system level dependability analysis
NASA Technical Reports Server (NTRS)
Goswami, Kumar; Iyer, Ravishankar K.
1992-01-01
The design and evaluation of highly reliable computer systems is a complex issue. Designers mostly develop such systems based on prior knowledge and experience and occasionally from analytical evaluations of simplified designs. A simulation-based environment called DEPEND which is especially geared for the design and evaluation of fault-tolerant architectures is presented. DEPEND is unique in that it exploits the properties of object-oriented programming to provide a flexible framework with which a user can rapidly model and evaluate various fault-tolerant systems. The key features of the DEPEND environment are described, and its capabilities are illustrated with a detailed analysis of a real design. In particular, DEPEND is used to simulate the Unix based Tandem Integrity fault-tolerance and evaluate how well it handles near-coincident errors caused by correlated and latent faults. Issues such as memory scrubbing, re-integration policies, and workload dependent repair times which affect how the system handles near-coincident errors are also evaluated. Issues such as the method used by DEPEND to simulate error latency and the time acceleration technique that provides enormous simulation speed up are also discussed. Unlike any other simulation-based dependability studies, the use of these approaches and the accuracy of the simulation model are validated by comparing the results of the simulations, with measurements obtained from fault injection experiments conducted on a production Tandem Integrity machine.
Integrated flexible handheld probe for imaging and evaluation of iridocorneal angle
NASA Astrophysics Data System (ADS)
Shinoj, Vengalathunadakal K.; Murukeshan, Vadakke Matham; Baskaran, Mani; Aung, Tin
2015-01-01
An imaging probe is designed and developed by integrating a miniaturized charge-coupled diode camera and light-emitting diode light source, which enables evaluation of the iridocorneal region inside the eye. The efficiency of the prototype probe instrument is illustrated initially by using not only eye models, but also samples such as pig eye. The proposed methodology and developed scheme are expected to find potential application in iridocorneal angle documentation, glaucoma diagnosis, and follow-up management procedures.
First-principles X-ray absorption dose calculation for time-dependent mass and optical density.
Berejnov, Viatcheslav; Rubinstein, Boris; Melo, Lis G A; Hitchcock, Adam P
2018-05-01
A dose integral of time-dependent X-ray absorption under conditions of variable photon energy and changing sample mass is derived from first principles starting with the Beer-Lambert (BL) absorption model. For a given photon energy the BL dose integral D(e, t) reduces to the product of an effective time integral T(t) and a dose rate R(e). Two approximations of the time-dependent optical density, i.e. exponential A(t) = c + aexp(-bt) for first-order kinetics and hyperbolic A(t) = c + a/(b + t) for second-order kinetics, were considered for BL dose evaluation. For both models three methods of evaluating the effective time integral are considered: analytical integration, approximation by a function, and calculation of the asymptotic behaviour at large times. Data for poly(methyl methacrylate) and perfluorosulfonic acid polymers measured by scanning transmission soft X-ray microscopy were used to test the BL dose calculation. It was found that a previous method to calculate time-dependent dose underestimates the dose in mass loss situations, depending on the applied exposure time. All these methods here show that the BL dose is proportional to the exposure time D(e, t) ≃ K(e)t.
A Field-Based Curriculum Model for Earth Science Teacher-Preparation Programs.
ERIC Educational Resources Information Center
Dubois, David D.
1979-01-01
This study proposed a model set of cognitive-behavioral objectives for field-based teacher education programs for earth science teachers. It describes field experience integration into teacher education programs. The model is also applicable for evaluation of earth science teacher education programs. (RE)
Learning Generation: Fostering Innovation with Tomorrow's Teachers and Technology
ERIC Educational Resources Information Center
Aust, Ronald; Newberry, Brian; O'Brien, Joseph; Thomas, Jennifer
2005-01-01
We discuss the context, conception, implementation, and research used to refine and evaluate a systemic model for fostering technology integration in teacher education. The Learning Generation model identifies conditions where innovations for using technology emerge in small group dialogues. The model uses a multifaceted implementation with…
Detecting GNSS spoofing attacks using INS coupling
NASA Astrophysics Data System (ADS)
Tanil, Cagatay
Vulnerability of Global Navigation Satellite Systems (GNSS) users to signal spoofing is a critical threat to positioning integrity, especially in aviation applications, where the consequences are potentially catastrophic. In response, this research describes and evaluates a new approach to directly detect spoofing using integrated Inertial Navigation Systems (INS) and fault detection concepts based on integrity monitoring. The monitors developed here can be implemented into positioning systems using INS/GNSS integration via 1) tightly-coupled, 2) loosely-coupled, and 3) uncoupled schemes. New evaluation methods enable the statistical computation of integrity risk resulting from a worst-case spoofing attack - without needing to simulate an unmanageably large number of individual aircraft approaches. Integrity risk is an absolute measure of safety and a well-established metric in aircraft navigation. A novel closed-form solution to the worst-case time sequence of GNSS signals is derived to maximize the integrity risk for each monitor and used in the covariance analyses. This methodology tests the performance of the monitors against the most sophisticated spoofers, capable of tracking the aircraft position - for example, by means of remote tracking or onboard sensing. Another contribution is a comprehensive closed-loop model that encapsulates the vehicle and compensator (estimator and controller) dynamics. A sensitivity analysis uses this model to quantify the leveraging impact of the vehicle's dynamic responses (e.g., to wind gusts, or to autopilot's acceleration commands) on the monitor's detection capability. The performance of the monitors is evaluated for two safety-critical terminal area navigation applications: 1) autonomous shipboard landing and 2) Boeing 747 (B747) landing assisted with Ground Based Augmentation Systems (GBAS). It is demonstrated that for both systems, the monitors are capable of meeting the most stringent precision approach and landing integrity requirements of the International Civil Aviation Organization (ICAO). The statistical evaluation methods developed here can be used as a baseline procedure in the Federal Aviation Administration's (FAA) certification of spoof-free navigation systems. The final contribution is an investigation of INS sensor quality on detection performance. This determines the minimum sensor requirements to perform standalone GNSS positioning in general en route applications with guaranteed spoofing detection integrity.
Documenting Models for Interoperability and Reusability ...
Many modeling frameworks compartmentalize science via individual models that link sets of small components to create larger modeling workflows. Developing integrated watershed models increasingly requires coupling multidisciplinary, independent models, as well as collaboration between scientific communities, since component-based modeling can integrate models from different disciplines. Integrated Environmental Modeling (IEM) systems focus on transferring information between components by capturing a conceptual site model; establishing local metadata standards for input/output of models and databases; managing data flow between models and throughout the system; facilitating quality control of data exchanges (e.g., checking units, unit conversions, transfers between software languages); warning and error handling; and coordinating sensitivity/uncertainty analyses. Although many computational software systems facilitate communication between, and execution of, components, there are no common approaches, protocols, or standards for turn-key linkages between software systems and models, especially if modifying components is not the intent. Using a standard ontology, this paper reviews how models can be described for discovery, understanding, evaluation, access, and implementation to facilitate interoperability and reusability. In the proceedings of the International Environmental Modelling and Software Society (iEMSs), 8th International Congress on Environmental Mod
NASA Astrophysics Data System (ADS)
Bachmann-Machnik, Anna; Meyer, Daniel; Waldhoff, Axel; Fuchs, Stephan; Dittmer, Ulrich
2018-04-01
Retention Soil Filters (RSFs), a form of vertical flow constructed wetlands specifically designed for combined sewer overflow (CSO) treatment, have proven to be an effective tool to mitigate negative impacts of CSOs on receiving water bodies. Long-term hydrologic simulations are used to predict the emissions from urban drainage systems during planning of stormwater management measures. So far no universally accepted model for RSF simulation exists. When simulating hydraulics and water quality in RSFs, an appropriate level of detail must be chosen for reasonable balancing between model complexity and model handling, considering the model input's level of uncertainty. The most crucial parameters determining the resultant uncertainties of the integrated sewer system and filter bed model were identified by evaluating a virtual drainage system with a Retention Soil Filter for CSO treatment. To determine reasonable parameter ranges for RSF simulations, data of 207 events from six full-scale RSF plants in Germany were analyzed. Data evaluation shows that even though different plants with varying loading and operation modes were examined, a simple model is sufficient to assess relevant suspended solids (SS), chemical oxygen demand (COD) and NH4 emissions from RSFs. Two conceptual RSF models with different degrees of complexity were assessed. These models were developed based on evaluation of data from full scale RSF plants and column experiments. Incorporated model processes are ammonium adsorption in the filter layer and degradation during subsequent dry weather period, filtration of SS and particulate COD (XCOD) to a constant background concentration and removal of solute COD (SCOD) by a constant removal rate during filter passage as well as sedimentation of SS and XCOD in the filter overflow. XCOD, SS and ammonium loads as well as ammonium concentration peaks are discharged primarily via RSF overflow not passing through the filter bed. Uncertainties of the integrated simulation of the sewer system and RSF model mainly originate from the model parameters of the hydrologic sewer system model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Yi; Errichello, Robert
2013-08-29
An analytical model is developed to evaluate the design of a spline coupling. For a given torque and shaft misalignment, the model calculates the number of teeth in contact, tooth loads, stiffnesses, stresses, and safety factors. The analytic model provides essential spline coupling design and modeling information and could be easily integrated into gearbox design and simulation tools.
Evaluation of Enhanced Risk Monitors for Use on Advanced Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramuhalli, Pradeep; Veeramany, Arun; Bonebrake, Christopher A.
This study provides an overview of the methodology for integrating time-dependent failure probabilities into nuclear power reactor risk monitors. This prototypic enhanced risk monitor (ERM) methodology was evaluated using a hypothetical probabilistic risk assessment (PRA) model, generated using a simplified design of a liquid-metal-cooled advanced reactor (AR). Component failure data from industry compilation of failures of components similar to those in the simplified AR model were used to initialize the PRA model. Core damage frequency (CDF) over time were computed and analyzed. In addition, a study on alternative risk metrics for ARs was conducted. Risk metrics that quantify the normalizedmore » cost of repairs, replacements, or other operations and management (O&M) actions were defined and used, along with an economic model, to compute the likely economic risk of future actions such as deferred maintenance based on the anticipated change in CDF due to current component condition and future anticipated degradation. Such integration of conventional-risk metrics with alternate-risk metrics provides a convenient mechanism for assessing the impact of O&M decisions on safety and economics of the plant. It is expected that, when integrated with supervisory control algorithms, such integrated-risk monitors will provide a mechanism for real-time control decision-making that ensure safety margins are maintained while operating the plant in an economically viable manner.« less
Archer, Ray; Elder, William; Hustedde, Carol; Milam, Andrea; Joyce, Jennifer
2008-08-01
Teaching and evaluating professionalism remain important issues in medical education. However, two factors hinder attempts to integrate curricular elements addressing professionalism into medical school training: there is no common definition of medical professionalism used across medical education, and there is no commonly accepted theoretical model upon which to integrate professionalism into the curriculum. This paper proposes a definition of professionalism, examines this definition in the context of some of the previous definitions of professionalism and connects this definition to the attitudinal roots of professionalism. The problems described above bring uncertainty about the best content and methods with which to teach professionalism in medical education. Although various aspects of professionalism have been incorporated into medical school curricula, content, teaching and evaluation remain controversial. We suggest that intervening variables, which may augment or interfere with medical students' implementation of professionalism knowledge, skills and, therefore, attitudes, may go unaddressed. We offer a model based on the theory of planned behaviour (TPB), which describes the relationships of attitudes, social norms and perceived behavioural control with behaviour. It has been used to predict a wide range of behaviours, including doctor professional behaviours. Therefore, we propose an educational model that expands the TPB as an organisational framework that can integrate professionalism training into medical education. We conclude with a discussion about the implications of using this model to transform medical school curricula to develop positive professionalism attitudes, alter the professionalism social norms of the medical school and increase students' perceived control over their behaviours.
Using multi-criteria analysis of simulation models to understand complex biological systems
Maureen C. Kennedy; E. David Ford
2011-01-01
Scientists frequently use computer-simulation models to help solve complex biological problems. Typically, such models are highly integrated, they produce multiple outputs, and standard methods of model analysis are ill suited for evaluating them. We show how multi-criteria optimization with Pareto optimality allows for model outputs to be compared to multiple system...
Semi-Markov adjunction to the Computer-Aided Markov Evaluator (CAME)
NASA Technical Reports Server (NTRS)
Rosch, Gene; Hutchins, Monica A.; Leong, Frank J.; Babcock, Philip S., IV
1988-01-01
The rule-based Computer-Aided Markov Evaluator (CAME) program was expanded in its ability to incorporate the effect of fault-handling processes into the construction of a reliability model. The fault-handling processes are modeled as semi-Markov events and CAME constructs and appropriate semi-Markov model. To solve the model, the program outputs it in a form which can be directly solved with the Semi-Markov Unreliability Range Evaluator (SURE) program. As a means of evaluating the alterations made to the CAME program, the program is used to model the reliability of portions of the Integrated Airframe/Propulsion Control System Architecture (IAPSA 2) reference configuration. The reliability predictions are compared with a previous analysis. The results bear out the feasibility of utilizing CAME to generate appropriate semi-Markov models to model fault-handling processes.
An integrated conceptual framework for evaluating and improving 'understanding' in informed consent.
Bossert, Sabine; Strech, Daniel
2017-10-17
The development of understandable informed consent (IC) documents has proven to be one of the most important challenges in research with humans as well as in healthcare settings. Therefore, evaluating and improving understanding has been of increasing interest for empirical research on IC. However, several conceptual and practical challenges for the development of understandable IC documents remain unresolved. In this paper, we will outline and systematize some of these challenges. On the basis of our own experiences in empirical user testing of IC documents as well as the relevant literature on understanding in IC, we propose an integrated conceptual model for the development of understandable IC documents. The proposed conceptual model integrates different methods for the participatory improvement of written information, including IC, as well as quantitative methods for measuring understanding in IC. In most IC processes, understandable written information is an important prerequisite for valid IC. To improve the quality of IC documents, a conceptual model for participatory procedures of testing, revising, and retesting can be applied. However, the model presented in this paper needs further theoretical and empirical elaboration and clarification of several conceptual and practical challenges.
NASA Technical Reports Server (NTRS)
Leonard, J. I.; White, R. J.; Rummel, J. A.
1980-01-01
An approach was developed to aid in the integration of many of the biomedical findings of space flight, using systems analysis. The mathematical tools used in accomplishing this task include an automated data base, a biostatistical and data analysis system, and a wide variety of mathematical simulation models of physiological systems. A keystone of this effort was the evaluation of physiological hypotheses using the simulation models and the prediction of the consequences of these hypotheses on many physiological quantities, some of which were not amenable to direct measurement. This approach led to improvements in the model, refinements of the hypotheses, a tentative integrated hypothesis for adaptation to weightlessness, and specific recommendations for new flight experiments.
Ehret, Phillip J; Monroe, Brian M; Read, Stephen J
2015-05-01
We present a neural network implementation of central components of the iterative reprocessing (IR) model. The IR model argues that the evaluation of social stimuli (attitudes, stereotypes) is the result of the IR of stimuli in a hierarchy of neural systems: The evaluation of social stimuli develops and changes over processing. The network has a multilevel, bidirectional feedback evaluation system that integrates initial perceptual processing and later developing semantic processing. The network processes stimuli (e.g., an individual's appearance) over repeated iterations, with increasingly higher levels of semantic processing over time. As a result, the network's evaluations of stimuli evolve. We discuss the implications of the network for a number of different issues involved in attitudes and social evaluation. The success of the network supports the IR model framework and provides new insights into attitude theory. © 2014 by the Society for Personality and Social Psychology, Inc.
A multiphysical ensemble system of numerical snow modelling
NASA Astrophysics Data System (ADS)
Lafaysse, Matthieu; Cluzet, Bertrand; Dumont, Marie; Lejeune, Yves; Vionnet, Vincent; Morin, Samuel
2017-05-01
Physically based multilayer snowpack models suffer from various modelling errors. To represent these errors, we built the new multiphysical ensemble system ESCROC (Ensemble System Crocus) by implementing new representations of different physical processes in the deterministic coupled multilayer ground/snowpack model SURFEX/ISBA/Crocus. This ensemble was driven and evaluated at Col de Porte (1325 m a.s.l., French alps) over 18 years with a high-quality meteorological and snow data set. A total number of 7776 simulations were evaluated separately, accounting for the uncertainties of evaluation data. The ability of the ensemble to capture the uncertainty associated to modelling errors is assessed for snow depth, snow water equivalent, bulk density, albedo and surface temperature. Different sub-ensembles of the ESCROC system were studied with probabilistic tools to compare their performance. Results show that optimal members of the ESCROC system are able to explain more than half of the total simulation errors. Integrating members with biases exceeding the range corresponding to observational uncertainty is necessary to obtain an optimal dispersion, but this issue can also be a consequence of the fact that meteorological forcing uncertainties were not accounted for. The ESCROC system promises the integration of numerical snow-modelling errors in ensemble forecasting and ensemble assimilation systems in support of avalanche hazard forecasting and other snowpack-modelling applications.
Evaluation of CAMEL - comprehensive areal model of earthquake-induced landslides
Miles, S.B.; Keefer, D.K.
2009-01-01
A new comprehensive areal model of earthquake-induced landslides (CAMEL) has been developed to assist in planning decisions related to disaster risk reduction. CAMEL provides an integrated framework for modeling all types of earthquake-induced landslides using fuzzy logic systems and geographic information systems. CAMEL is designed to facilitate quantitative and qualitative representation of terrain conditions and knowledge about these conditions on the likely areal concentration of each landslide type. CAMEL has been empirically evaluated with respect to disrupted landslides (Category I) using a case study of the 1989 M = 6.9 Loma Prieta, CA earthquake. In this case, CAMEL performs best in comparison to disrupted slides and falls in soil. For disrupted rock fall and slides, CAMEL's performance was slightly poorer. The model predicted a low occurrence of rock avalanches, when none in fact occurred. A similar comparison with the Loma Prieta case study was also conducted using a simplified Newmark displacement model. The area under the curve method of evaluation was used in order to draw comparisons between both models, revealing improved performance with CAMEL. CAMEL should not however be viewed as a strict alternative to Newmark displacement models. CAMEL can be used to integrate Newmark displacements with other, previously incompatible, types of knowledge. ?? 2008 Elsevier B.V.
NASA Astrophysics Data System (ADS)
Zhu, Linqi; Zhang, Chong; Zhang, Chaomo; Wei, Yang; Zhou, Xueqing; Cheng, Yuan; Huang, Yuyang; Zhang, Le
2018-06-01
There is increasing interest in shale gas reservoirs due to their abundant reserves. As a key evaluation criterion, the total organic carbon content (TOC) of the reservoirs can reflect its hydrocarbon generation potential. The existing TOC calculation model is not very accurate and there is still the possibility for improvement. In this paper, an integrated hybrid neural network (IHNN) model is proposed for predicting the TOC. This is based on the fact that the TOC information on the low TOC reservoir, where the TOC is easy to evaluate, comes from a prediction problem, which is the inherent problem of the existing algorithm. By comparing the prediction models established in 132 rock samples in the shale gas reservoir within the Jiaoshiba area, it can be seen that the accuracy of the proposed IHNN model is much higher than that of the other prediction models. The mean square error of the samples, which were not joined to the established models, was reduced from 0.586 to 0.442. The results show that TOC prediction is easier after logging prediction has been improved. Furthermore, this paper puts forward the next research direction of the prediction model. The IHNN algorithm can help evaluate the TOC of a shale gas reservoir.
NASA Astrophysics Data System (ADS)
Chen, Huili; Liang, Zhongyao; Liu, Yong; Liang, Qiuhua; Xie, Shuguang
2017-10-01
The projected frequent occurrences of extreme flood events will cause significant losses to crops and will threaten food security. To reduce the potential risk and provide support for agricultural flood management, prevention, and mitigation, it is important to account for flood damage to crop production and to understand the relationship between flood characteristics and crop losses. A quantitative and effective evaluation tool is therefore essential to explore what and how flood characteristics will affect the associated crop loss, based on accurately understanding the spatiotemporal dynamics of flood evolution and crop growth. Current evaluation methods are generally integrally or qualitatively based on statistic data or ex-post survey with less diagnosis into the process and dynamics of historical flood events. Therefore, a quantitative and spatial evaluation framework is presented in this study that integrates remote sensing imagery and hydraulic model simulation to facilitate the identification of historical flood characteristics that influence crop losses. Remote sensing imagery can capture the spatial variation of crop yields and yield losses from floods on a grid scale over large areas; however, it is incapable of providing spatial information regarding flood progress. Two-dimensional hydraulic model can simulate the dynamics of surface runoff and accomplish spatial and temporal quantification of flood characteristics on a grid scale over watersheds, i.e., flow velocity and flood duration. The methodological framework developed herein includes the following: (a) Vegetation indices for the critical period of crop growth from mid-high temporal and spatial remote sensing imagery in association with agricultural statistics data were used to develop empirical models to monitor the crop yield and evaluate yield losses from flood; (b) The two-dimensional hydraulic model coupled with the SCS-CN hydrologic model was employed to simulate the flood evolution process, with the SCS-CN model as a rainfall-runoff generator and the two-dimensional hydraulic model implementing the routing scheme for surface runoff; and (c) The spatial combination between crop yield losses and flood dynamics on a grid scale can be used to investigate the relationship between the intensity of flood characteristics and associated loss extent. The modeling framework was applied for a 50-year return period flood that occurred in Jilin province, Northeast China, which caused large agricultural losses in August 2013. The modeling results indicated that (a) the flow velocity was the most influential factor that caused spring corn, rice and soybean yield losses from extreme storm event in the mountainous regions; (b) the power function archived the best results that fit the velocity-loss relationship for mountainous areas; and (c) integrated remote sensing imagery and two-dimensional hydraulic modeling approach are helpful for evaluating the influence of historical flood event on crop production and investigating the relationship between flood characteristics and crop yield losses.
Dynamic model of a micro-tubular solid oxide fuel cell stack including an integrated cooling system
NASA Astrophysics Data System (ADS)
Hering, Martin; Brouwer, Jacob; Winkler, Wolfgang
2017-02-01
A novel dynamic micro-tubular solid oxide fuel cell (MT-SOFC) and stack model including an integrated cooling system is developed using a quasi three-dimensional, spatially resolved, transient thermodynamic, physical and electrochemical model that accounts for the complex geometrical relations between the cells and cooling-tubes. The modeling approach includes a simplified tubular geometry and stack design including an integrated cooling structure, detailed pressure drop and gas property calculations, the electrical and physical constraints of the stack design that determine the current, as well as control strategies for the temperature. Moreover, an advanced heat transfer balance with detailed radiative heat transfer between the cells and the integrated cooling-tubes, convective heat transfer between the gas flows and the surrounding structures and conductive heat transfer between the solid structures inside of the stack, is included. The detailed model can be used as a design basis for the novel MT-SOFC stack assembly including an integrated cooling system, as well as for the development of a dynamic system control strategy. The evaluated best-case design achieves very high electrical efficiency between around 75 and 55% in the entire power density range between 50 and 550 mW /cm2 due to the novel stack design comprising an integrated cooling structure.
A Conceptual Framework for SAHRA Integrated Multi-resolution Modeling in the Rio Grande Basin
NASA Astrophysics Data System (ADS)
Liu, Y.; Gupta, H.; Springer, E.; Wagener, T.; Brookshire, D.; Duffy, C.
2004-12-01
The sustainable management of water resources in a river basin requires an integrated analysis of the social, economic, environmental and institutional dimensions of the problem. Numerical models are commonly used for integration of these dimensions and for communication of the analysis results to stakeholders and policy makers. The National Science Foundation Science and Technology Center for Sustainability of semi-Arid Hydrology and Riparian Areas (SAHRA) has been developing integrated multi-resolution models to assess impacts of climate variability and land use change on water resources in the Rio Grande Basin. These models not only couple natural systems such as surface and ground waters, but will also include engineering, economic and social components that may be involved in water resources decision-making processes. This presentation will describe the conceptual framework being developed by SAHRA to guide and focus the multiple modeling efforts and to assist the modeling team in planning, data collection and interpretation, communication, evaluation, etc. One of the major components of this conceptual framework is a Conceptual Site Model (CSM), which describes the basin and its environment based on existing knowledge and identifies what additional information must be collected to develop technically sound models at various resolutions. The initial CSM is based on analyses of basin profile information that has been collected, including a physical profile (e.g., topographic and vegetative features), a man-made facility profile (e.g., dams, diversions, and pumping stations), and a land use and ecological profile (e.g., demographics, natural habitats, and endangered species). Based on the initial CSM, a Conceptual Physical Model (CPM) is developed to guide and evaluate the selection of a model code (or numerical model) for each resolution to conduct simulations and predictions. A CPM identifies, conceptually, all the physical processes and engineering and socio-economic activities occurring (or to occur) in the real system that the corresponding numerical models are required to address, such as riparian evapotranspiration responses to vegetation change and groundwater pumping impacts on soil moisture contents. Simulation results from different resolution models and observations of the real system will then be compared to evaluate the consistency among the CSM, the CPMs, and the numerical models, and feedbacks will be used to update the models. In a broad sense, the evaluation of the models (conceptual or numerical), as well as the linkages between them, can be viewed as a part of the overall conceptual framework. As new data are generated and understanding improves, the models will evolve, and the overall conceptual framework is refined. The development of the conceptual framework becomes an on-going process. We will describe the current state of this framework and the open questions that have to be addressed in the future.
Logistics Enterprise Evaluation Model Based On Fuzzy Clustering Analysis
NASA Astrophysics Data System (ADS)
Fu, Pei-hua; Yin, Hong-bo
In this thesis, we introduced an evaluation model based on fuzzy cluster algorithm of logistics enterprises. First of all,we present the evaluation index system which contains basic information, management level, technical strength, transport capacity,informatization level, market competition and customer service. We decided the index weight according to the grades, and evaluated integrate ability of the logistics enterprises using fuzzy cluster analysis method. In this thesis, we introduced the system evaluation module and cluster analysis module in detail and described how we achieved these two modules. At last, we gave the result of the system.
Tabatabaie, Seyed Mohammad Hossein; Bolte, John P; Murthy, Ganti S
2018-06-01
The goal of this study was to integrate a crop model, DNDC (DeNitrification-DeComposition), with life cycle assessment (LCA) and economic analysis models using a GIS-based integrated platform, ENVISION. The integrated model enables LCA practitioners to conduct integrated economic analysis and LCA on a regional scale while capturing the variability of soil emissions due to variation in regional factors during production of crops and biofuel feedstocks. In order to evaluate the integrated model, the corn-soybean cropping system in Eagle Creek Watershed, Indiana was studied and the integrated model was used to first model the soil emissions and then conduct the LCA as well as economic analysis. The results showed that the variation in soil emissions due to variation in weather is high causing some locations to be carbon sink in some years and source of CO 2 in other years. In order to test the model under different scenarios, two tillage scenarios were defined: 1) conventional tillage (CT) and 2) no tillage (NT) and analyzed with the model. The overall GHG emissions for the corn-soybean cropping system was simulated and results showed that the NT scenario resulted in lower soil GHG emissions compared to CT scenario. Moreover, global warming potential (GWP) of corn ethanol from well to pump varied between 57 and 92gCO 2 -eq./MJ while GWP under the NT system was lower than that of the CT system. The cost break-even point was calculated as $3612.5/ha in a two year corn-soybean cropping system and the results showed that under low and medium prices for corn and soybean most of the farms did not meet the break-even point. Copyright © 2017 Elsevier B.V. All rights reserved.
Martinez, A D; Dimova, R; Marks, K M; Beeder, A B; Zeremski, M; Kreek, M J; Talal, A H
2012-01-01
Despite a high prevalence of hepatitis C virus (HCV) among drug users, HCV evaluation and treatment acceptance are extremely low among these patients when referred from drug treatment facilities for HCV management. We sought to increase HCV treatment effectiveness among patients from a methadone maintenance treatment program (MMTP) by maintaining continuity of care. We developed, instituted and retrospectively assessed the effectiveness of an integrated, co-localized care model in which an internist-addiction medicine specialist from MMTP was embedded in the hepatitis clinic. Methadone maintenance treatment program patients were referred, evaluated by the internist and hepatologist in hepatitis clinic and provided HCV treatment with integration between both sites. Of 401 evaluated patients, anti-HCV antibody was detected in 257, 86% of whom were older than 40 years. Hepatitis C virus RNA levels were measured in 222 patients, 65 of whom were aviremic. Of 157 patients with detectable HCV RNA, 125 were eligible for referral to the hepatitis clinic, 76 (61%) of whom accepted and adhered with the referral. Men engaged in MMTP <36 months were significantly less likely to be seen in hepatitis clinic than men in MMTP more than 36 months (odds ratio = 7.7; 95% confidence interval 2.6-22.9) or women. We evaluated liver histology in 63 patients, and 83% had moderate to advanced liver disease. Twenty-four patients initiated treatment with 19 completing and 13 (54%) achieving sustained response. In conclusion, integrated care between the MMTP and the hepatitis clinic improves adherence with HCV evaluation and treatment compared to standard referral practices. © 2010 Blackwell Publishing Ltd.
The Crabapple Experience: Insights from Program Evaluations.
ERIC Educational Resources Information Center
Elmore, Randy; Wisenbaker, Joe
2000-01-01
An evaluation of a Georgia middle school's multi-age grouping program revealed significant progress regarding student self-esteem, achievement, community building, and teacher collaboration. The Crabapple experience illustrates how one model of student-centered, developmentally appropriate, and integrated learning can benefit middle-level…
A Model of Information Integration for Jury Deliberation.
ERIC Educational Resources Information Center
Kaplan, Martin F.
Several factors are included in judgment formation by a juror during a trial, including evaluating each piece of information received with respect to the judgment in question, weighting each piece of information according to its validity for the particular judgment and its reliability, and integrating the weighted scale values into a single…
ERIC Educational Resources Information Center
Dörrenbächer, Laura; Perels, Franziska
2015-01-01
Most self-regulated learning theories are imbedded within a social-cognitive framework and comprise cognitive, metacognitive and motivational components. Nevertheless, these theories partly neglect volition, which is necessary for implementing learning intentions. Therefore, the present study is frontline as it aimed to integrate volition within a…
ERIC Educational Resources Information Center
Stremel, Kathleen; Wilson, Rebecca
This final report describes a federally funded 3-year project for integrating related services within educational objectives for children (ages 3-10) with dual vision and hearing impairments. A Training-Utilization model of inservice training and technical assistance was developed, implemented, and evaluated to address the communication needs of…
ERIC Educational Resources Information Center
Mills, Rosemary S. L.; Hastings, Paul D.; Helm, Jonathan; Serbin, Lisa A.; Etezadi, Jamshid; Stack, Dale M.; Schwartzman, Alex E.; Li, Hai Hong
2012-01-01
This study evaluated a comprehensive model of factors associated with internalizing problems (IP) in early childhood, hypothesizing direct, mediated, and moderated pathways linking child temperamental inhibition, maternal overcontrol and rejection, and contextual stressors to IP. In a novel approach, three samples were integrated to form a large…
Learning Science by Engaging Religion: A Novel Two-Course Approach for Biology Majors
ERIC Educational Resources Information Center
Eisen, Arri; Huang, Junjian
2014-01-01
Many issues in science create individual and societal tensions with important implications outside the classroom. We describe one model that directly addresses such tensions by integrating science and religion in two parallel, integrated courses for science majors. Evaluation of the goals of the project--(1) providing students with strategies to…
R. James Barbour; Ryan Singleton; Douglas A. Maguire
2007-01-01
As landscape-scale assessments and modeling become a more common method for evaluating alternatives in integrated resource management, new techniques are needed to display and evaluate outcomes for large numbers of stands over long periods. In this proof of concept, we evaluate the potential to provide financial support for silvicultural treatments by selling timber...
Evaluation of Contamination Inspection and Analysis Methods through Modeling System Performance
NASA Technical Reports Server (NTRS)
Seasly, Elaine; Dever, Jason; Stuban, Steven M. F.
2016-01-01
Contamination is usually identified as a risk on the risk register for sensitive space systems hardware. Despite detailed, time-consuming, and costly contamination control efforts during assembly, integration, and test of space systems, contaminants are still found during visual inspections of hardware. Improved methods are needed to gather information during systems integration to catch potential contamination issues earlier and manage contamination risks better. This research explores evaluation of contamination inspection and analysis methods to determine optical system sensitivity to minimum detectable molecular contamination levels based on IEST-STD-CC1246E non-volatile residue (NVR) cleanliness levels. Potential future degradation of the system is modeled given chosen modules representative of optical elements in an optical system, minimum detectable molecular contamination levels for a chosen inspection and analysis method, and determining the effect of contamination on the system. By modeling system performance based on when molecular contamination is detected during systems integration and at what cleanliness level, the decision maker can perform trades amongst different inspection and analysis methods and determine if a planned method is adequate to meet system requirements and manage contamination risk.
Integrating DXplain into a clinical information system using the World Wide Web.
Elhanan, G; Socratous, S A; Cimino, J J
1996-01-01
The World Wide Web(WWW) offers a cross-platform environment and standard protocols that enable integration of various applications available on the Internet. The authors use the Web to facilitate interaction between their Web-based Clinical Information System and a decision-support system-DXplain, at the Massachusetts General Hospital-using local architecture and Common Gateway Interface programs. The current application translates patients laboratory test results into DXplain's terms to generate diagnostic hypotheses. Two different access methods are utilized for this model; Hypertext Transfer Protocol (HTTP) and TCP/IP function calls. While clinical aspects cannot be evaluated as yet, the model demonstrates the potential of Web-based applications for interaction and integration and how local architecture, with a controlled vocabulary server, can further facilitate such integration. This model serves to demonstrate some of the limitations of the current WWW technology and identifies issues such as control over Web resources and their utilization and liability issues as possible obstacles for further integration.
Relating Adler's Life Tasks to Schutz's Interpersonal Model and the FIRO-B.
ERIC Educational Resources Information Center
Prendergast, Kathleen; Stone, Mark
This paper integrates the interpersonal model of Schutz (1966) and Schutz's (1978) instrument for evaluating interpersonal relationships, FIRO-B (Fundamental Interpersonal Relationship Orientation-Behavior), with Adler's life tasks and typology. The paper begins with a description of Schutz's Interpersonal model in which Schutz, like Adler, views…
This paper presents the formulation and evaluation of a mechanistic mathematical model of fathead minnow ovarian steroidogenesis. The model presented in the present study was adpated from other models developed as part of an integrated, multi-disciplinary computational toxicolog...
Fletcher, Adam; Jamal, Farah; Moore, Graham; Evans, Rhiannon E.; Murphy, Simon; Bonell, Chris
2016-01-01
The integration of realist evaluation principles within randomised controlled trials (‘realist RCTs’) enables evaluations of complex interventions to answer questions about what works, for whom and under what circumstances. This allows evaluators to better develop and refine mid-level programme theories. However, this is only one phase in the process of developing and evaluating complex interventions. We describe and exemplify how social scientists can integrate realist principles across all phases of the Medical Research Council framework. Intervention development, modelling, and feasibility and pilot studies need to theorise the contextual conditions necessary for intervention mechanisms to be activated. Where interventions are scaled up and translated into routine practice, realist principles also have much to offer in facilitating knowledge about longer-term sustainability, benefits and harms. Integrating a realist approach across all phases of complex intervention science is vital for considering the feasibility and likely effects of interventions for different localities and population subgroups. PMID:27478401
Model reduction in integrated controls-structures design
NASA Technical Reports Server (NTRS)
Maghami, Peiman G.
1993-01-01
It is the objective of this paper to present a model reduction technique developed for the integrated controls-structures design of flexible structures. Integrated controls-structures design problems are typically posed as nonlinear mathematical programming problems, where the design variables consist of both structural and control parameters. In the solution process, both structural and control design variables are constantly changing; therefore, the dynamic characteristics of the structure are also changing. This presents a problem in obtaining a reduced-order model for active control design and analysis which will be valid for all design points within the design space. In other words, the frequency and number of the significant modes of the structure (modes that should be included) may vary considerably throughout the design process. This is also true as the locations and/or masses of the sensors and actuators change. Moreover, since the number of design evaluations in the integrated design process could easily run into thousands, any feasible order-reduction method should not require model reduction analysis at every design iteration. In this paper a novel and efficient technique for model reduction in the integrated controls-structures design process, which addresses these issues, is presented.
Kim, Hongsoo; Park, Yeon-Hwan; Jung, Young-Il; Choi, Hyoungshim; Lee, Seyune; Kim, Gi-Soo; Yang, Dong-Wook; Paik, Myunghee Cho; Lee, Tae-Jin
2017-04-18
Limited evidence exists on the effectiveness of the chronic care model for people with multimorbidity. This study aims to evaluate the effectiveness of an information and communication technology- (ICT-)enhanced integrated care model, called Systems for Person-centered Elder Care (SPEC), for frail older adults at nursing homes. SPEC is a prospective stepped-wedge cluster randomized trial conducted at 10 nursing homes in South Korea. Residents aged 65 or older meeting the inclusion/exclusion criteria in all the homes are eligible to participate. The multifaceted SPEC intervention, a geriatric care model guided by the chronic care model, consists of five components: comprehensive geriatric assessment for need/risk profiling, individual need-based care planning, interdisciplinary case conferences, person-centered care coordination, and a cloud-based information and communications technology (ICT) tool supporting the intervention process. The primary outcome is quality of care for older residents using a composite measure of quality indicators from the interRAI LTCF assessment system. Outcome assessors and data analysts will be blinded to group assignment. Secondary outcomes include quality of life, healthcare utilization, and cost. Process evaluation will be also conducted. This study is expected to provide important new evidence on the effectiveness, cost-effectiveness, and implementation process of an ICT-supported chronic care model for older persons with multiple chronic illnesses. The SPEC intervention is also unique as the first registered trial implementing an integrated care model using technology to promote person-centered care for frail older nursing home residents in South Korea, where formal LTC was recently introduced. ISRCTN11972147.
Fusion yield: Guderley model and Tsallis statistics
NASA Astrophysics Data System (ADS)
Haubold, H. J.; Kumar, D.
2011-02-01
The reaction rate probability integral is extended from Maxwell-Boltzmann approach to a more general approach by using the pathway model introduced by Mathai in 2005 (A pathway to matrix-variate gamma and normal densities. Linear Algebr. Appl. 396, 317-328). The extended thermonuclear reaction rate is obtained in the closed form via a Meijer's G-function and the so-obtained G-function is represented as a solution of a homogeneous linear differential equation. A physical model for the hydrodynamical process in a fusion plasma-compressed and laser-driven spherical shock wave is used for evaluating the fusion energy integral by integrating the extended thermonuclear reaction rate integral over the temperature. The result obtained is compared with the standard fusion yield obtained by Haubold and John in 1981 (Analytical representation of the thermonuclear reaction rate and fusion energy production in a spherical plasma shock wave. Plasma Phys. 23, 399-411). An interpretation for the pathway parameter is also given.
NASA Astrophysics Data System (ADS)
Zhang, Xiaodong; Huang, Guo H.
2011-12-01
Groundwater pollution has gathered more and more attention in the past decades. Conducting an assessment of groundwater contamination risk is desired to provide sound bases for supporting risk-based management decisions. Therefore, the objective of this study is to develop an integrated fuzzy stochastic approach to evaluate risks of BTEX-contaminated groundwater under multiple uncertainties. It consists of an integrated interval fuzzy subsurface modeling system (IIFMS) and an integrated fuzzy second-order stochastic risk assessment (IFSOSRA) model. The IIFMS is developed based on factorial design, interval analysis, and fuzzy sets approach to predict contaminant concentrations under hybrid uncertainties. Two input parameters (longitudinal dispersivity and porosity) are considered to be uncertain with known fuzzy membership functions, and intrinsic permeability is considered to be an interval number with unknown distribution information. A factorial design is conducted to evaluate interactive effects of the three uncertain factors on the modeling outputs through the developed IIFMS. The IFSOSRA model can systematically quantify variability and uncertainty, as well as their hybrids, presented as fuzzy, stochastic and second-order stochastic parameters in health risk assessment. The developed approach haw been applied to the management of a real-world petroleum-contaminated site within a western Canada context. The results indicate that multiple uncertainties, under a combination of information with various data-quality levels, can be effectively addressed to provide supports in identifying proper remedial efforts. A unique contribution of this research is the development of an integrated fuzzy stochastic approach for handling various forms of uncertainties associated with simulation and risk assessment efforts.
Application of the critical pathway and integrated case teaching method to nursing orientation.
Goodman, D
1997-01-01
Nursing staff development programs must be responsive to current changes in healthcare. New nursing staff must be prepared to manage continuous change and to function competently in clinical practice. The orientation pathway, based on a case management model, is used as a structure for the orientation phase of staff development. The integrated case is incorporated as a teaching strategy in orientation. The integrated case method is based on discussion and analysis of patient situations with emphasis on role modeling and integration of theory and skill. The orientation pathway and integrated case teaching method provide a useful framework for orientation of new staff. Educators, preceptors and orientees find the structure provided by the orientation pathway very useful. Orientation that is developed, implemented and evaluated based on a case management model with the use of an orientation pathway and incorporation of an integrated case teaching method provides a standardized structure for orientation of new staff. This approach is designed for the adult learner, promotes conceptual reasoning, and encourages the social and contextual basis for continued learning.
Phillips-Salimi, Celeste R; Donovan Stickler, Molly A; Stegenga, Kristin; Lee, Melissa; Haase, Joan E
2011-08-01
Although treatment fidelity strategies for enhancing the integrity of behavioral interventions have been well described, little has been written about monitoring data collection integrity. This article describes the principles and strategies developed to monitor data collection integrity of the "Stories and Music for Adolescent/Young Adult Resilience During Transplant" study (R01NR008583, U10CA098543, and U10CA095861)-a multi-site Children's Oncology Group randomized clinical trial of a music therapy intervention for adolescents and young adults undergoing stem cell transplant. The principles and strategies outlined in this article provide one model for development and evaluation of a data collection integrity monitoring plan for behavioral interventions that may be adapted by investigators and may be useful to funding agencies and grant application reviewers in evaluating proposals. Copyright © 2011 Wiley Periodicals, Inc.
Acidity in DMSO from the embedded cluster integral equation quantum solvation model.
Heil, Jochen; Tomazic, Daniel; Egbers, Simon; Kast, Stefan M
2014-04-01
The embedded cluster reference interaction site model (EC-RISM) is applied to the prediction of acidity constants of organic molecules in dimethyl sulfoxide (DMSO) solution. EC-RISM is based on a self-consistent treatment of the solute's electronic structure and the solvent's structure by coupling quantum-chemical calculations with three-dimensional (3D) RISM integral equation theory. We compare available DMSO force fields with reference calculations obtained using the polarizable continuum model (PCM). The results are evaluated statistically using two different approaches to eliminating the proton contribution: a linear regression model and an analysis of pK(a) shifts for compound pairs. Suitable levels of theory for the integral equation methodology are benchmarked. The results are further analyzed and illustrated by visualizing solvent site distribution functions and comparing them with an aqueous environment.
Valve, explosive actuated, normally open, pyronetics model 1399
NASA Technical Reports Server (NTRS)
Avalos, E.
1971-01-01
Results of the tests to evaluate open valve, Model 1399 are reported for the the following tests: proof pressure leakage, actuation, disassembly, and burst pressure. It is concluded that the tests demonstrate the soundness of the structural integrity of the valve.
Addressable-Matrix Integrated-Circuit Test Structure
NASA Technical Reports Server (NTRS)
Sayah, Hoshyar R.; Buehler, Martin G.
1991-01-01
Method of quality control based on use of row- and column-addressable test structure speeds collection of data on widths of resistor lines and coverage of steps in integrated circuits. By use of straightforward mathematical model, line widths and step coverages deduced from measurements of electrical resistances in each of various combinations of lines, steps, and bridges addressable in test structure. Intended for use in evaluating processes and equipment used in manufacture of application-specific integrated circuits.
Bornhorst, Ellen R; Tang, Juming; Sablani, Shyam S; Barbosa-Cánovas, Gustavo V; Liu, Fang
2017-07-01
Development and selection of model foods is a critical part of microwave thermal process development, simulation validation, and optimization. Previously developed model foods for pasteurization process evaluation utilized Maillard reaction products as the time-temperature integrators, which resulted in similar temperature sensitivity among the models. The aim of this research was to develop additional model foods based on different time-temperature integrators, determine their dielectric properties and color change kinetics, and validate the optimal model food in hot water and microwave-assisted pasteurization processes. Color, quantified using a * value, was selected as the time-temperature indicator for green pea and garlic puree model foods. Results showed 915 MHz microwaves had a greater penetration depth into the green pea model food than the garlic. a * value reaction rates for the green pea model were approximately 4 times slower than in the garlic model food; slower reaction rates were preferred for the application of model food in this study, that is quality evaluation for a target process of 90 °C for 10 min at the cold spot. Pasteurization validation used the green pea model food and results showed that there were quantifiable differences between the color of the unheated control, hot water pasteurization, and microwave-assisted thermal pasteurization system. Both model foods developed in this research could be utilized for quality assessment and optimization of various thermal pasteurization processes. © 2017 Institute of Food Technologists®.
NASA Astrophysics Data System (ADS)
Tironi, Antonio; Marin, Víctor H.; Campuzano, Francisco J.
2010-05-01
This article introduces a management tool for salmon farming, with a scope in the local sustainability of salmon aquaculture of the Aysen Fjord, Chilean Patagonia. Based on Integrated Coastal Zone Management (ICZM) principles, the tool combines a large 3-level nested hydrodynamic model, a particle tracking module and a GIS application into an assessment tool for particulate waste dispersal of salmon farming activities. The model offers an open source alternative to particulate waste modeling and evaluation, contributing with valuable information for local decision makers in the process of locating new facilities and monitoring stations.
Active lifestyles in older adults: an integrated predictive model of physical activity and exercise
Galli, Federica; Chirico, Andrea; Mallia, Luca; Girelli, Laura; De Laurentiis, Michelino; Lucidi, Fabio; Giordano, Antonio; Botti, Gerardo
2018-01-01
Physical activity and exercise have been identified as behaviors to preserve physical and mental health in older adults. The aim of the present study was to test the Integrated Behavior Change model in exercise and physical activity behaviors. The study evaluated two different samples of older adults: the first engaged in exercise class, the second doing spontaneous physical activity. The key analyses relied on Variance-Based Structural Modeling, which were performed by means of WARP PLS 6.0 statistical software. The analyses estimated the Integrated Behavior Change model in predicting exercise and physical activity, in a longitudinal design across two months of assessment. The tested models exhibited a good fit with the observed data derived from the model focusing on exercise, as well as with those derived from the model focusing on physical activity. Results showed, also, some effects and relations specific to each behavioral context. Results may form a starting point for future experimental and intervention research. PMID:29875997
Integrated multidisciplinary analysis of segmented reflector telescopes
NASA Technical Reports Server (NTRS)
Briggs, Hugh C.; Needels, Laura
1992-01-01
The present multidisciplinary telescope-analysis approach, which encompasses thermal, structural, control and optical considerations, is illustrated for the case of an IR telescope in LEO; attention is given to end-to-end evaluations of the effects of mechanical disturbances and thermal gradients in measures of optical performance. Both geometric ray-tracing and surface-to-surface diffraction approximations are used in the telescope's optical model. Also noted is the role played by NASA-JPL's Integrated Modeling of Advanced Optical Systems computation tool, in view of numerical samples.
2014-10-01
Porosity from gas entrapment & shrinkage 4 Continuous Fiber Ti Metal Matrix Composites (Aircraft panels and rotor components) [14...process models for casting, forging, and welding , and software capability to integrate various independent models with design, thermal, and structural...Applications, Ph.D. Thesis, Queen’s College, University of Oxford, (2007). 14. S.A. Singerman and J.J. Jackson, Titanium Metal Matrix Composites for
Vandament, Lyndsey; Chintu, Naminga; Yano, Nanako; Mugurungi, Owen; Tambatamba, Bushimbwa; Ncube, Gertrude; Xaba, Sinokuthemba; Mpasela, Felton; Muguza, Edward; Mangono, Tichakunda; Madidi, Ngonidzashe; Samona, Alick; Tagar, Elva; Hatzold, Karin
2016-06-01
Results from recent costing studies have put into question potential Voluntary Medical Male Circumcision (VMMC) cost savings with the introduction of the PrePex device. We evaluated the cost drivers and the overall unit cost of VMMC for a variety of service delivery models providing either surgical VMMC or both PrePex and surgery using current program data in Zimbabwe and Zambia. In Zimbabwe, 3 hypothetical PrePex only models were also included. For all models, clients aged 18 years and older were assumed to be medically eligible for PrePex and uptake was based on current program data from sites providing both methods. Direct costs included costs for consumables, including surgical VMMC kits for the forceps-guided method, device (US $12), human resources, demand creation, supply chain, waste management, training, and transport. Results for both countries suggest limited potential for PrePex to generate cost savings when adding the device to current surgical service delivery models. However, results for the hypothetical rural Integrated PrePex model in Zimbabwe suggest the potential for material unit cost savings (US $35 per VMMC vs. US $65-69 for existing surgical models). This analysis illustrates that models designed to leverage PrePex's advantages, namely the potential for integrating services in rural clinics and less stringent infrastructure requirements, may present opportunities for improved cost efficiency and service integration. Countries seeking to scale up VMMC in rural settings might consider integrating PrePex only MC services at the primary health care level to reduce costs while also increasing VMMC access and coverage.
Bayesian functional integral method for inferring continuous data from discrete measurements.
Heuett, William J; Miller, Bernard V; Racette, Susan B; Holloszy, John O; Chow, Carson C; Periwal, Vipul
2012-02-08
Inference of the insulin secretion rate (ISR) from C-peptide measurements as a quantification of pancreatic β-cell function is clinically important in diseases related to reduced insulin sensitivity and insulin action. ISR derived from C-peptide concentration is an example of nonparametric Bayesian model selection where a proposed ISR time-course is considered to be a "model". An inferred value of inaccessible continuous variables from discrete observable data is often problematic in biology and medicine, because it is a priori unclear how robust the inference is to the deletion of data points, and a closely related question, how much smoothness or continuity the data actually support. Predictions weighted by the posterior distribution can be cast as functional integrals as used in statistical field theory. Functional integrals are generally difficult to evaluate, especially for nonanalytic constraints such as positivity of the estimated parameters. We propose a computationally tractable method that uses the exact solution of an associated likelihood function as a prior probability distribution for a Markov-chain Monte Carlo evaluation of the posterior for the full model. As a concrete application of our method, we calculate the ISR from actual clinical C-peptide measurements in human subjects with varying degrees of insulin sensitivity. Our method demonstrates the feasibility of functional integral Bayesian model selection as a practical method for such data-driven inference, allowing the data to determine the smoothing timescale and the width of the prior probability distribution on the space of models. In particular, our model comparison method determines the discrete time-step for interpolation of the unobservable continuous variable that is supported by the data. Attempts to go to finer discrete time-steps lead to less likely models. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.
An empirical investigation of the efficiency effects of integrated care models in Switzerland
Reich, Oliver; Rapold, Roland; Flatscher-Thöni, Magdalena
2012-01-01
Introduction This study investigates the efficiency gains of integrated care models in Switzerland, since these models are regarded as cost containment options in national social health insurance. These plans generate much lower average health care expenditure than the basic insurance plan. The question is, however, to what extent these total savings are due to the effects of selection and efficiency. Methods The empirical analysis is based on data from 399,274 Swiss residents that constantly had compulsory health insurance with the Helsana Group, the largest health insurer in Switzerland, covering the years 2006–2009. In order to evaluate the efficiency of the different integrated care models, we apply an econometric approach with a mixed-effects model. Results Our estimations indicate that the efficiency effects of integrated care models on health care expenditure are significant. However, the different insurance plans vary, revealing the following efficiency gains per model: contracted capitated model 21.2%, contracted non-capitated model 15.5% and telemedicine model 3.7%. The remaining 8.5%, 5.6% and 22.5%, respectively, of the variation in total health care expenditure can be attributed to the effects of selection. Conclusions Integrated care models have the potential to improve care for patients with chronic diseases and concurrently have a positive impact on health care expenditure. We suggest policy-makers improve the incentives for patients with chronic diseases within the existing regulations providing further potential for cost-efficiency of medical care. PMID:22371691
Integrated Evaluation of Reliability and Power Consumption of Wireless Sensor Networks
Dâmaso, Antônio; Maciel, Paulo
2017-01-01
Power consumption is a primary interest in Wireless Sensor Networks (WSNs), and a large number of strategies have been proposed to evaluate it. However, those approaches usually neither consider reliability issues nor the power consumption of applications executing in the network. A central concern is the lack of consolidated solutions that enable us to evaluate the power consumption of applications and the network stack also considering their reliabilities. To solve this problem, we introduce a fully automatic solution to design power consumption aware WSN applications and communication protocols. The solution presented in this paper comprises a methodology to evaluate the power consumption based on the integration of formal models, a set of power consumption and reliability models, a sensitivity analysis strategy to select WSN configurations and a toolbox named EDEN to fully support the proposed methodology. This solution allows accurately estimating the power consumption of WSN applications and the network stack in an automated way. PMID:29113078
NASA Astrophysics Data System (ADS)
Spanò, A.; Chiabrando, F.; Sammartano, G.; Teppati Losè, L.
2018-05-01
The paper focuses on the exploration of the suitability and the discretization of applicability issues about advanced surveying integrated techniques, mainly based on image-based approaches compared and integrated to range-based ones that have been developed with the use of the cutting-edge solutions tested on field. The investigated techniques integrate both technological devices for 3D data acquisition and thus editing and management systems to handle metric models and multi-dimensional data in a geospatial perspective, in order to innovate and speed up the extraction of information during the archaeological excavation activities. These factors, have been experienced in the outstanding site of the Hierapolis of Phrygia ancient city (Turkey), downstream the 2017 surveying missions, in order to produce high-scale metric deliverables in terms of high-detailed Digital Surface Models (DSM), 3D continuous surface models and high-resolution orthoimages products. In particular, the potentialities in the use of UAV platforms for low altitude acquisitions in aerial photogrammetric approach, together with terrestrial panoramic acquisitions (Trimble V10 imaging rover), have been investigated with a comparison toward consolidated Terrestrial Laser Scanning (TLS) measurements. One of the main purposes of the paper is to evaluate the results offered by the technologies used independently and using integrated approaches. A section of the study in fact, is specifically dedicated to experimenting the union of different sensor dense clouds: both dense clouds derived from UAV have been integrated with terrestrial Lidar clouds, to evaluate their fusion. Different test cases have been considered, representing typical situations that can be encountered in archaeological sites.
Modeling and forecasting of KLCI weekly return using WT-ANN integrated model
NASA Astrophysics Data System (ADS)
Liew, Wei-Thong; Liong, Choong-Yeun; Hussain, Saiful Izzuan; Isa, Zaidi
2013-04-01
The forecasting of weekly return is one of the most challenging tasks in investment since the time series are volatile and non-stationary. In this study, an integrated model of wavelet transform and artificial neural network, WT-ANN is studied for modeling and forecasting of KLCI weekly return. First, the WT is applied to decompose the weekly return time series in order to eliminate noise. Then, a mathematical model of the time series is constructed using the ANN. The performance of the suggested model will be evaluated by root mean squared error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE). The result shows that the WT-ANN model can be considered as a feasible and powerful model for time series modeling and prediction.
Integrating language models into classifiers for BCI communication: a review
NASA Astrophysics Data System (ADS)
Speier, W.; Arnold, C.; Pouratian, N.
2016-06-01
Objective. The present review systematically examines the integration of language models to improve classifier performance in brain-computer interface (BCI) communication systems. Approach. The domain of natural language has been studied extensively in linguistics and has been used in the natural language processing field in applications including information extraction, machine translation, and speech recognition. While these methods have been used for years in traditional augmentative and assistive communication devices, information about the output domain has largely been ignored in BCI communication systems. Over the last few years, BCI communication systems have started to leverage this information through the inclusion of language models. Main results. Although this movement began only recently, studies have already shown the potential of language integration in BCI communication and it has become a growing field in BCI research. BCI communication systems using language models in their classifiers have progressed down several parallel paths, including: word completion; signal classification; integration of process models; dynamic stopping; unsupervised learning; error correction; and evaluation. Significance. Each of these methods have shown significant progress, but have largely been addressed separately. Combining these methods could use the full potential of language model, yielding further performance improvements. This integration should be a priority as the field works to create a BCI system that meets the needs of the amyotrophic lateral sclerosis population.
Integrating language models into classifiers for BCI communication: a review.
Speier, W; Arnold, C; Pouratian, N
2016-06-01
The present review systematically examines the integration of language models to improve classifier performance in brain-computer interface (BCI) communication systems. The domain of natural language has been studied extensively in linguistics and has been used in the natural language processing field in applications including information extraction, machine translation, and speech recognition. While these methods have been used for years in traditional augmentative and assistive communication devices, information about the output domain has largely been ignored in BCI communication systems. Over the last few years, BCI communication systems have started to leverage this information through the inclusion of language models. Although this movement began only recently, studies have already shown the potential of language integration in BCI communication and it has become a growing field in BCI research. BCI communication systems using language models in their classifiers have progressed down several parallel paths, including: word completion; signal classification; integration of process models; dynamic stopping; unsupervised learning; error correction; and evaluation. Each of these methods have shown significant progress, but have largely been addressed separately. Combining these methods could use the full potential of language model, yielding further performance improvements. This integration should be a priority as the field works to create a BCI system that meets the needs of the amyotrophic lateral sclerosis population.
Understanding Water-Energy-Ecology Nexus from an Integrated Earth-Human System Perspective
NASA Astrophysics Data System (ADS)
Li, H. Y.; Zhang, X.; Wan, W.; Zhuang, Y.; Hejazi, M. I.; Leung, L. R.
2017-12-01
Both Earth and human systems exert notable controls on streamflow and stream temperature that influence energy production and ecosystem health. An integrated water model representing river processes and reservoir regulations has been developed and coupled to a land surface model and an integrated assessment model of energy, land, water, and socioeconomics to investigate the energy-water-ecology nexus in the context of climate change and water management. Simulations driven by two climate change projections following the RCP 4.5 and RCP 8.5 radiative forcing scenarios, with and without water management, are analyzed to evaluate the individual and combined effects of climate change and water management on streamflow and stream temperature in the U.S. The simulations revealed important impacts of climate change and water management on hydrological droughts. The simulations also revealed the dynamics of competition between changes in water demand and water availability in the RCP 4.5 and RCP 8.5 scenarios that influence streamflow and stream temperature, with important consequences to thermoelectricity production and future survival of juvenile Salmon. The integrated water model is being implemented to the Accelerated Climate Modeling for Energy (ACME), a coupled Earth System Model, to enable future investigations of the energy-water-ecology nexus in the integrated Earth-Human system.
NASA Astrophysics Data System (ADS)
Schafbuch, Paul Jay
The boundary element method (BEM) is used to numerically simulate the interaction of ultrasonic waves with material defects such as voids, inclusions, and open cracks. The time harmonic formulation is in 3D and therefore allows flaws of arbitrary shape to be modeled. The BEM makes such problems feasible because the underlying boundary integral equation only requires a surface (2D) integration and difficulties associated with the seemingly infinite extent of the host domain are not encountered. The computer code utilized in this work is built upon recent advances in elastodynamic boundary element theory such as a scheme for self adjusting integration order and singular integration regularization. Incident fields may be taken as compressional or shear plane waves or predicted by an approximate Gauss -Hermite beam model. The code is highly optimized for voids and has been coupled with computer aided engineering packages for automated flaw shape definition and mesh generation. Subsequent graphical display of intermediate results supports model refinement and physical interpretation. Final results are typically cast in a nondestructive evaluation (NDE) context as either scattering amplitudes or flaw signals (via a measurement model based on a reciprocity integral). The near field is also predicted which allows for improved physical insight into the scattering process and the evaluation of certain modeling approximations. The accuracy of the BEM approach is first examined by comparing its predictions to those of other models for single, isolated scatterers. The comparisons are with the predictions of analytical solutions for spherical defects and with MOOT and T-matrix calculations for axisymmetric flaws. Experimental comparisons are also made for volumetric shapes with different characteristic dimensions in all three directions, since no other numerical approach has yet produced results of this type. Theoretical findings regarding the fictitious eigenfrequency difficulty are substantiated through the analytical solution of a fundamental elastodynamics problem and corresponding BEM studies. Given the confidence in the BEM technique engendered by these comparisons, it is then used to investigate the modeling of "open", cracklike defects amenable to a volumetric formulation. The limits of applicability of approximate theories (e.g., quasistatic, Kirchhoff, and geometric theory of diffraction) are explored for elliptical cracks, from this basis. The problem of two interacting scatterers is then considered. Results from a fully implicit approach and from a more efficient hybrid scheme are compared with generalized Born and farfield approximate interaction theories.
NASA Astrophysics Data System (ADS)
Schafbuch, Paul Jay
1991-02-01
The boundary element method (BEM) is used to numerically simulate the interaction of ultrasonic waves with material defects such as voids, inclusions, and open cracks. The time harmonic formulation is in 3D and therefore allows flaws of arbitrary shape to be modeled. The BEM makes such problems feasible because the underlying boundary integral equation only requires a surface (2D) integration and difficulties associated with the seemingly infinite extent of the host domain are not encountered. The computer code utilized in this work is built upon recent advances in elastodynamic boundary element theory such as a scheme for self adjusting integration order and singular integration regularization. Incident fields may be taken as compressional or shear plane waves or predicted by an approximate Gauss-Hermite beam model. The code is highly optimized for voids and has been coupled with computer aided engineering packages for automated flaw shape definition and mesh generation. Subsequent graphical display of intermediate results supports model refinement and physical interpretation. Final results are typically cast in a nondestructive evaluation (NDE) context as either scattering amplitudes or flaw signals (via a measurement model based on a reciprocity integral). The near field is also predicted which allows for improved physical insight into the scattering process and the evaluation of certain modeling approximations. The accuracy of the BEM approach is first examined by comparing its predictions to those of other models for single, isolated scatters. The comparisons are with the predictions of analytical solutions for spherical defects and with MOOT and T-matrix calculations for axisymmetric flaws. Experimental comparisons are also made for volumetric shapes with different characteristic dimensions in all three directions, since no other numerical approach has yet produced results of this type. Theoretical findings regarding the fictitious eigenfrequency difficulty are substantiated through the analytical solution of a fundamental elastodynamics problem and corresponding BEM studies. Given the confidence in the BEM technique engendered by these comparisons, it is then used to investigate the modeling of 'open', cracklike defects amenable to a volumetric formulation. The limits of applicability of approximate theories (e.g., quasistatic, Kirchhoff, and geometric theory of diffraction) are explored for elliptical cracks, from this basis. The problem of two interacting scatterers is then considered. Results from a fully implicit approach and from a more efficient hybrid scheme are compared with generalized Born and farfield approximate interaction theories.
ERIC Educational Resources Information Center
Yang, Allen H. J.; Dimiduk, Kathryn; Daniel, Susan
2011-01-01
We present a simplified human alcohol metabolism model for a mass balance team project. Students explore aspects of engineering in biotechnology: designing/modeling biological systems, testing the design/model, evaluating new conditions, and exploring cutting-edge "lab-on-a-chip" research. This project highlights chemical engineering's impact on…
USDA-ARS?s Scientific Manuscript database
AgroEcoSystem-Watershed (AgES-W) is a modular, Java-based spatially distributed model which implements hydrologic/water quality simulation components. The AgES-W model was previously evaluated for streamflow and recently has been enhanced with the addition of nitrogen (N) and sediment modeling compo...
Integrating Cellular Metabolism into a Multiscale Whole-Body Model
Krauss, Markus; Schaller, Stephan; Borchers, Steffen; Findeisen, Rolf; Lippert, Jörg; Kuepfer, Lars
2012-01-01
Cellular metabolism continuously processes an enormous range of external compounds into endogenous metabolites and is as such a key element in human physiology. The multifaceted physiological role of the metabolic network fulfilling the catalytic conversions can only be fully understood from a whole-body perspective where the causal interplay of the metabolic states of individual cells, the surrounding tissue and the whole organism are simultaneously considered. We here present an approach relying on dynamic flux balance analysis that allows the integration of metabolic networks at the cellular scale into standardized physiologically-based pharmacokinetic models at the whole-body level. To evaluate our approach we integrated a genome-scale network reconstruction of a human hepatocyte into the liver tissue of a physiologically-based pharmacokinetic model of a human adult. The resulting multiscale model was used to investigate hyperuricemia therapy, ammonia detoxification and paracetamol-induced toxication at a systems level. The specific models simultaneously integrate multiple layers of biological organization and offer mechanistic insights into pathology and medication. The approach presented may in future support a mechanistic understanding in diagnostics and drug development. PMID:23133351
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kraucunas, Ian P.; Clarke, Leon E.; Dirks, James A.
2015-04-01
The Platform for Regional Integrated Modeling and Analysis (PRIMA) is an innovative modeling system developed at Pacific Northwest National Laboratory (PNNL) to simulate interactions among natural and human systems at scales relevant to regional decision making. PRIMA brings together state-of-the-art models of regional climate, hydrology, agriculture, socioeconomics, and energy systems using a flexible coupling approach. The platform can be customized to inform a variety of complex questions and decisions, such as the integrated evaluation of mitigation and adaptation options across a range of sectors. Research into stakeholder decision support needs underpins the platform's application to regional issues, including uncertainty characterization.more » Ongoing numerical experiments are yielding new insights into the interactions among human and natural systems on regional scales with an initial focus on the energy-land-water nexus in the upper U.S. Midwest. This paper focuses on PRIMA’s functional capabilities and describes some lessons learned to date about integrated regional modeling.« less
NASA Technical Reports Server (NTRS)
Stephan, Amy; Erikson, Carol A.
1991-01-01
As an initial attempt to introduce expert system technology into an onboard environment, a model based diagnostic system using the TRW MARPLE software tool was integrated with prototype flight hardware and its corresponding control software. Because this experiment was designed primarily to test the effectiveness of the model based reasoning technique used, the expert system ran on a separate hardware platform, and interactions between the control software and the model based diagnostics were limited. While this project met its objective of showing that model based reasoning can effectively isolate failures in flight hardware, it also identified the need for an integrated development path for expert system and control software for onboard applications. In developing expert systems that are ready for flight, artificial intelligence techniques must be evaluated to determine whether they offer a real advantage onboard, identify which diagnostic functions should be performed by the expert systems and which are better left to the procedural software, and work closely with both the hardware and the software developers from the beginning of a project to produce a well designed and thoroughly integrated application.
In Pursuit of Social Betterment: A Proposal to Evaluate the Da Vinci Learning Model
ERIC Educational Resources Information Center
Henry, Gary T.
2005-01-01
The author presents a proposal that is roughly based on a contingency-based theory of evaluation developed in his book, "Evaluation: An Integrated Framework for Understanding, Guiding, and Improving Policies and Programs" (Mark, Henry, and Julnes, 2000). He and his coauthors stated in this book that social betterment was the ultimate goal of…
NASA Technical Reports Server (NTRS)
Annett, Martin S.; Horta, Lucas G.; Jackson, Karen E.; Polanco, Michael A.; Littell, Justin D.
2012-01-01
Two full-scale crash tests of an MD-500 helicopter were conducted in 2009 and 2010 at NASA Langley's Landing and Impact Research Facility in support of NASA s Subsonic Rotary Wing Crashworthiness Project. The first crash test was conducted to evaluate the performance of an externally mounted composite deployable energy absorber (DEA) under combined impact conditions. In the second crash test, the energy absorber was removed to establish baseline loads that are regarded as severe but survivable. The presence of this energy absorbing device reduced the peak impact acceleration levels by a factor of three. Accelerations and kinematic data collected from the crash tests were compared to a system-integrated finite element model of the test article developed in parallel with the test program. In preparation for the full-scale crash test, a series of sub-scale and MD-500 mass simulator tests were conducted to evaluate the impact performances of various components and subsystems, including new crush tubes and the DEA blocks. Parameters defined for the system-integrated finite element model were determined from these tests. Results from 19 accelerometers placed throughout the airframe were compared to finite element model responses. The model developed for the purposes of predicting acceleration responses from the first crash test was inadequate when evaluating more severe conditions seen in the second crash test. A newly developed model calibration approach that includes uncertainty estimation, parameter sensitivity, impact shape orthogonality, and numerical optimization was used to calibrate model results for the full-scale crash test without the DEA. This combination of heuristic and quantitative methods identified modeling deficiencies, evaluated parameter importance, and proposed required model changes. The multidimensional calibration techniques presented here are particularly effective in identifying model adequacy. Acceleration results for the calibrated model were compared to test results and the original model results. There was a noticeable improvement in the pilot and copilot region, a slight improvement in the occupant model response, and an over-stiffening effect in the passenger region. One lesson learned was that this approach should be adopted early on, in combination with the building-block approaches that are customarily used, for model development and pretest predictions. Complete crash simulations with validated finite element models can be used to satisfy crash certification requirements, potentially reducing overall development costs.
Functional integration of automated system databases by means of artificial intelligence
NASA Astrophysics Data System (ADS)
Dubovoi, Volodymyr M.; Nikitenko, Olena D.; Kalimoldayev, Maksat; Kotyra, Andrzej; Gromaszek, Konrad; Iskakova, Aigul
2017-08-01
The paper presents approaches for functional integration of automated system databases by means of artificial intelligence. The peculiarities of turning to account the database in the systems with the usage of a fuzzy implementation of functions were analyzed. Requirements for the normalization of such databases were defined. The question of data equivalence in conditions of uncertainty and collisions in the presence of the databases functional integration is considered and the model to reveal their possible occurrence is devised. The paper also presents evaluation method of standardization of integrated database normalization.
NASA Astrophysics Data System (ADS)
Dumitrache, Rodica Claudia; Iriza, Amalia; Maco, Bogdan Alexandru; Barbu, Cosmin Danut; Hirtl, Marcus; Mantovani, Simone; Nicola, Oana; Irimescu, Anisoara; Craciunescu, Vasile; Ristea, Alina; Diamandi, Andrei
2016-10-01
The numerical forecast of particulate matter concentrations in general, and PM10 in particular is a theme of high socio-economic relevance. The aim of this study was to investigate the impact of ground and satellite data assimilation of PM10 observations into the Weather Research and Forecasting model coupled with Chemistry (WRF-CHEM) numerical air quality model for Romanian territory. This is the first initiative of the kind for this domain of interest. Assimilation of satellite information - e.g. AOT's in air quality models is of interest due to the vast spatial coverage of the observations. Support Vector Regression (SVR) techniques are used to estimate the PM content from heterogeneous data sources, including EO products (Aerosol Optical Thickness), ground measurements and numerical model data (temperature, humidity, wind, etc.). In this study we describe the modeling framework employed and present the evaluation of the impact from the data assimilation of PM10 observations on the forecast of the WRF-CHEM model. Integrations of the WRF-CHEM model in data assimilation enabled/disabled configurations allowed the evaluation of satellite and ground data assimilation impact on the PM10 forecast performance for the Romanian territory. The model integration and evaluation were performed for two months, one in winter conditions (January 2013) and one in summer conditions (June 2013).
Multi-Hypothesis Modelling Capabilities for Robust Data-Model Integration
NASA Astrophysics Data System (ADS)
Walker, A. P.; De Kauwe, M. G.; Lu, D.; Medlyn, B.; Norby, R. J.; Ricciuto, D. M.; Rogers, A.; Serbin, S.; Weston, D. J.; Ye, M.; Zaehle, S.
2017-12-01
Large uncertainty is often inherent in model predictions due to imperfect knowledge of how to describe the mechanistic processes (hypotheses) that a model is intended to represent. Yet this model hypothesis uncertainty (MHU) is often overlooked or informally evaluated, as methods to quantify and evaluate MHU are limited. MHU is increased as models become more complex because each additional processes added to a model comes with inherent MHU as well as parametric unceratinty. With the current trend of adding more processes to Earth System Models (ESMs), we are adding uncertainty, which can be quantified for parameters but not MHU. Model inter-comparison projects do allow for some consideration of hypothesis uncertainty but in an ad hoc and non-independent fashion. This has stymied efforts to evaluate ecosystem models against data and intepret the results mechanistically because it is not simple to interpret exactly why a model is producing the results it does and identify which model assumptions are key as they combine models of many sub-systems and processes, each of which may be conceptualised and represented mathematically in various ways. We present a novel modelling framework—the multi-assumption architecture and testbed (MAAT)—that automates the combination, generation, and execution of a model ensemble built with different representations of process. We will present the argument that multi-hypothesis modelling needs to be considered in conjunction with other capabilities (e.g. the Predictive Ecosystem Analyser; PecAn) and statistical methods (e.g. sensitivity anaylsis, data assimilation) to aid efforts in robust data model integration to enhance our predictive understanding of biological systems.
ERIC Educational Resources Information Center
Saraswat, Satya Prakash; Anderson, Dennis M.; Chircu, Alina M.
2014-01-01
This paper describes the development and evaluation of a graduate level Business Process Management (BPM) course with process modeling and simulation as its integral component, being offered at an accredited business university in the Northeastern U.S. Our approach is similar to that found in other Information Systems (IS) education papers, and…
2011-02-01
Command CASE Computer Aided Software Engineering CASEVAC Casualty Evacuation CASTFOREM Combined Arms And Support Task Force Evaluation Model CAT Center For...Advanced Technologies CAT Civil Affairs Team CAT Combined Arms Training CAT Crew Integration CAT Crisis Action Team CATIA Computer-Aided Three...Dimensional Interactive Application CATOX Catalytic Oxidation CATS Combined Arms Training Strategy CATT Combined Arms Tactical Trainer CATT Computer
Extensions of criteria for evaluating risk prediction models for public health applications.
Pfeiffer, Ruth M
2013-04-01
We recently proposed two novel criteria to assess the usefulness of risk prediction models for public health applications. The proportion of cases followed, PCF(p), is the proportion of individuals who will develop disease who are included in the proportion p of individuals in the population at highest risk. The proportion needed to follow-up, PNF(q), is the proportion of the general population at highest risk that one needs to follow in order that a proportion q of those destined to become cases will be followed (Pfeiffer, R.M. and Gail, M.H., 2011. Two criteria for evaluating risk prediction models. Biometrics 67, 1057-1065). Here, we extend these criteria in two ways. First, we introduce two new criteria by integrating PCF and PNF over a range of values of q or p to obtain iPCF, the integrated PCF, and iPNF, the integrated PNF. A key assumption in the previous work was that the risk model is well calibrated. This assumption also underlies novel estimates of iPCF and iPNF based on observed risks in a population alone. The second extension is to propose and study estimates of PCF, PNF, iPCF, and iPNF that are consistent even if the risk models are not well calibrated. These new estimates are obtained from case-control data when the outcome prevalence in the population is known, and from cohort data, with baseline covariates and observed health outcomes. We study the efficiency of the various estimates and propose and compare tests for comparing two risk models, both of which were evaluated in the same validation data.
Regional-scale air quality models are being used to demonstrate attainment of the ozone air quality standard. In current regulatory applications, a regional-scale air quality model is applied for a base year and a future year with reduced emissions using the same meteorological ...
Sharpening a District's Leadership Model
ERIC Educational Resources Information Center
Namit, Chuck
2008-01-01
To create an integrated board self-assessment and superintendent evaluation process, district leaders must develop a school leadership model by adopting a coherent governance model. At the same time, they must also develop goals at the appropriate level that ensure quality governance of a school system. In the second of a two-part series, the…
Integration agent-based models and GIS as a virtual urban dynamic laboratory
NASA Astrophysics Data System (ADS)
Chen, Peng; Liu, Miaolong
2007-06-01
Based on the Agent-based Model and spatial data model, a tight-coupling integrating method of GIS and Agent-based Model (ABM) is to be discussed in this paper. The use of object-orientation for both spatial data and spatial process models facilitates their integration, which can allow exploration and explanation of spatial-temporal phenomena such as urban dynamic. In order to better understand how tight coupling might proceed and to evaluate the possible functional and efficiency gains from such a tight coupling, the agent-based model and spatial data model are discussed, and then the relationships affecting spatial data model and agent-based process models interaction. After that, a realistic crowd flow simulation experiment is presented. Using some tools provided by general GIS systems and a few specific programming languages, a new software system integrating GIS and MAS as a virtual laboratory applicable for simulating pedestrian flows in a crowd activity centre has been developed successfully. Under the environment supported by the software system, as an applicable case, a dynamic evolution process of the pedestrian's flows (dispersed process for the spectators) in a crowds' activity center - The Shanghai Stadium has been simulated successfully. At the end of the paper, some new research problems have been pointed out for the future.
An Application of Fuzzy AHP for Evaluating Course Website Quality
ERIC Educational Resources Information Center
Lin, Hsiu-Fen
2010-01-01
Although previous studies have identified various influences on course website effectiveness, the evaluation of the relative importance of these factors across different online learning experience groups has not been empirically determined. This study develops an evolution model that integrates triangular fuzzy numbers and analytic hierarchy…
Designing automation for human use: empirical studies and quantitative models.
Parasuraman, R
2000-07-01
An emerging knowledge base of human performance research can provide guidelines for designing automation that can be used effectively by human operators of complex systems. Which functions should be automated and to what extent in a given system? A model for types and levels of automation that provides a framework and an objective basis for making such choices is described. The human performance consequences of particular types and levels of automation constitute primary evaluative criteria for automation design when using the model. Four human performance areas are considered--mental workload, situation awareness, complacency and skill degradation. Secondary evaluative criteria include such factors as automation reliability, the risks of decision/action consequences and the ease of systems integration. In addition to this qualitative approach, quantitative models can inform design. Several computational and formal models of human interaction with automation that have been proposed by various researchers are reviewed. An important future research need is the integration of qualitative and quantitative approaches. Application of these models provides an objective basis for designing automation for effective human use.
Childhood Obesity Research Demonstration Project: Cross-Site Evaluation Methods
Lee, Rebecca E.; Mehta, Paras; Thompson, Debbe; Bhargava, Alok; Carlson, Coleen; Kao, Dennis; Layne, Charles S.; Ledoux, Tracey; O'Connor, Teresia; Rifai, Hanadi; Gulley, Lauren; Hallett, Allen M.; Kudia, Ousswa; Joseph, Sitara; Modelska, Maria; Ortega, Dana; Parker, Nathan; Stevens, Andria
2015-01-01
Abstract Introduction: The Childhood Obesity Research Demonstration (CORD) project links public health and primary care interventions in three projects described in detail in accompanying articles in this issue of Childhood Obesity. This article describes a comprehensive evaluation plan to determine the extent to which the CORD model is associated with changes in behavior, body weight, BMI, quality of life, and healthcare satisfaction in children 2–12 years of age. Design/Methods: The CORD Evaluation Center (EC-CORD) will analyze the pooled data from three independent demonstration projects that each integrate public health and primary care childhood obesity interventions. An extensive set of common measures at the family, facility, and community levels were defined by consensus among the CORD projects and EC-CORD. Process evaluation will assess reach, dose delivered, and fidelity of intervention components. Impact evaluation will use a mixed linear models approach to account for heterogeneity among project-site populations and interventions. Sustainability evaluation will assess the potential for replicability, continuation of benefits beyond the funding period, institutionalization of the intervention activities, and community capacity to support ongoing program delivery. Finally, cost analyses will assess how much benefit can potentially be gained per dollar invested in programs based on the CORD model. Conclusions: The keys to combining and analyzing data across multiple projects include the CORD model framework and common measures for the behavioral and health outcomes along with important covariates at the individual, setting, and community levels. The overall objective of the comprehensive evaluation will develop evidence-based recommendations for replicating and disseminating community-wide, integrated public health and primary care programs based on the CORD model. PMID:25679060
Integrated Assessment and the Relation Between Land-Use Change and Climate Change
DOE R&D Accomplishments Database
Dale, V. H.
1994-10-07
Integrated assessment is an approach that is useful in evaluating the consequences of global climate change. Understanding the consequences requires knowledge of the relationship between land-use change and climate change. Methodologies for assessing the contribution of land-use change to atmospheric CO{sub 2} concentrations are considered with reference to a particular case study area: south and southeast Asia. The use of models to evaluate the consequences of climate change on forests must also consider an assessment approach. Each of these points is discussed in the following four sections.
Tsai, Sang-Bing; Chen, Kuan-Yu; Zhao, Hongrui; Wei, Yu-Min; Wang, Cheng-Kuang; Zheng, Yuxiang; Chang, Li-Chung; Wang, Jiangtao
2016-01-01
Financial supervision means that monetary authorities have the power to supervise and manage financial institutions according to laws. Monetary authorities have this power because of the requirements of improving financial services, protecting the rights of depositors, adapting to industrial development, ensuring financial fair trade, and maintaining stable financial order. To establish evaluation criteria for bank supervision in China, this study integrated fuzzy theory and the decision making trial and evaluation laboratory (DEMATEL) and proposes a fuzzy-DEMATEL model. First, fuzzy theory was applied to examine bank supervision criteria and analyze fuzzy semantics. Second, the fuzzy-DEMATEL model was used to calculate the degree to which financial supervision criteria mutually influenced one another and their causal relationship. Finally, an evaluation criteria model for evaluating bank and financial supervision was established. PMID:27992449
Tsai, Sang-Bing; Chen, Kuan-Yu; Zhao, Hongrui; Wei, Yu-Min; Wang, Cheng-Kuang; Zheng, Yuxiang; Chang, Li-Chung; Wang, Jiangtao
2016-01-01
Financial supervision means that monetary authorities have the power to supervise and manage financial institutions according to laws. Monetary authorities have this power because of the requirements of improving financial services, protecting the rights of depositors, adapting to industrial development, ensuring financial fair trade, and maintaining stable financial order. To establish evaluation criteria for bank supervision in China, this study integrated fuzzy theory and the decision making trial and evaluation laboratory (DEMATEL) and proposes a fuzzy-DEMATEL model. First, fuzzy theory was applied to examine bank supervision criteria and analyze fuzzy semantics. Second, the fuzzy-DEMATEL model was used to calculate the degree to which financial supervision criteria mutually influenced one another and their causal relationship. Finally, an evaluation criteria model for evaluating bank and financial supervision was established.
The Requirements and Design of the Rapid Prototyping Capabilities System
NASA Astrophysics Data System (ADS)
Haupt, T. A.; Moorhead, R.; O'Hara, C.; Anantharaj, V.
2006-12-01
The Rapid Prototyping Capabilities (RPC) system will provide the capability to rapidly evaluate innovative methods of linking science observations. To this end, the RPC will provide the capability to integrate the software components and tools needed to evaluate the use of a wide variety of current and future NASA sensors, numerical models, and research results, model outputs, and knowledge, collectively referred to as "resources". It is assumed that the resources are geographically distributed, and thus RPC will provide the support for the location transparency of the resources. The RPC system requires providing support for: (1) discovery, semantic understanding, secure access and transport mechanisms for data products available from the known data provides; (2) data assimilation and geo- processing tools for all data transformations needed to match given data products to the model input requirements; (3) model management including catalogs of models and model metadata, and mechanisms for creation environments for model execution; and (4) tools for model output analysis and model benchmarking. The challenge involves developing a cyberinfrastructure for a coordinated aggregate of software, hardware and other technologies, necessary to facilitate RPC experiments, as well as human expertise to provide an integrated, "end-to-end" platform to support the RPC objectives. Such aggregation is to be achieved through a horizontal integration of loosely coupled services. The cyberinfrastructure comprises several software layers. At the bottom, the Grid fabric encompasses network protocols, optical networks, computational resources, storage devices, and sensors. At the top, applications use workload managers to coordinate their access to physical resources. Applications are not tightly bounded to a single physical resource. Instead, they bind dynamically to resources (i.e., they are provisioned) via a common grid infrastructure layer. For the RPC system, the cyberinfrastructure must support organizing computations (or "data transformations" in general) into complex workflows with resource discovery, automatic resource allocation, monitoring, preserving provenance as well as to aggregate heterogeneous, distributed data into knowledge databases. Such service orchestration is the responsibility of the "collective services" layer. For RPC, this layer will be based on Java Business Integration (JBI, [JSR-208]) specification which is a standards-based integration platform that combines messaging, web services, data transformation, and intelligent routing to reliably connect and coordinate the interaction of significant numbers of diverse applications (plug-in components) across organizational boundaries. JBI concept is a new approach to integration that can provide the underpinnings for loosely coupled, highly distributed integration network that can scale beyond the limits of currently used hub-and-spoke brokers. This presentation discusses the requirements, design and early prototype of the NASA-sponsored RPC system under development at Mississippi State University, demonstrating the integration of data provisioning mechanisms, data transformation tools and computational models into a single interoperable system enabling rapid execution of RPC experiments.
NASA Astrophysics Data System (ADS)
Kato, E.; Kawamiya, M.
2011-12-01
In CMIP5 experiments, new emissions scenarios for GCMs and Earth System Models (ESMs) have been constructed as Representative Concentration Pathways (RCPs) by a community effort of Integrated Assessment Modeling (IAM) groups. In RCP scenarios, regional land-use scenarios have been depicted based on the socio-economic assumption of IAMs, and also downscaled spatially explicit land-use maps from the regional scenarios are prepared. In the land-use harmonization project, integrated gridded land-use transition data for the past and future time period has been developed from the reconstruction based on HYDE 3 agricultural data and FAO wood harvest data, and the future land-use scenarios from IAMs. These gridded land-use dataset are used as a forcing of some ESMs participating to the CMIP5 experiments, to assess the biogeochemical and biogeophysical effects of land-use and land cover change in the climate change simulation. In this study, global net CO2 emissions from land-use change for RCP scenarios are evaluated with an offline terrestrial biogeochemical model, VISIT (Vegetation Integrative SImulation Tool). Also the emissions are evaluated with coupled ESM, MIROC-ESM following the LUCID-CMIP5 protocol to see the effect of land-use and land cover change on climate response. Using the model output, consistency of the land-use change CO2 emission scenarios provided by RCPs are evaluated in terms of effect of CO2 fertilization, climate change, and land-use transition itself including the effect of biomass crops production with CCS. We find that a land-use scenario with decreased agricultural land-use intensity such as RCP 6.0 shows possibility of further absorption of CO2 through the climate-carbon feedback, and cooling effect through both biogeochemical and biogeophysical effects.
A Hyperbolic Ontology Visualization Tool for Model Application Programming Interface Documentation
NASA Technical Reports Server (NTRS)
Hyman, Cody
2011-01-01
Spacecraft modeling, a critically important portion in validating planned spacecraft activities, is currently carried out using a time consuming method of mission to mission model implementations and integration. A current project in early development, Integrated Spacecraft Analysis (ISCA), aims to remedy this hindrance by providing reusable architectures and reducing time spent integrating models with planning and sequencing tools. The principle objective of this internship was to develop a user interface for an experimental ontology-based structure visualization of navigation and attitude control system modeling software. To satisfy this, a number of tree and graph visualization tools were researched and a Java based hyperbolic graph viewer was selected for experimental adaptation. Early results show promise in the ability to organize and display large amounts of spacecraft model documentation efficiently and effectively through a web browser. This viewer serves as a conceptual implementation for future development but trials with both ISCA developers and end users should be performed to truly evaluate the effectiveness of continued development of such visualizations.
Grohn, Yrjo T; Carson, Carolee; Lanzas, Cristina; Pullum, Laura; Stanhope, Michael; Volkova, Victoriya
2017-06-01
Antimicrobial use (AMU) is increasingly threatened by antimicrobial resistance (AMR). The FDA is implementing risk mitigation measures promoting prudent AMU in food animals. Their evaluation is crucial: the AMU/AMR relationship is complex; a suitable framework to analyze interventions is unavailable. Systems science analysis, depicting variables and their associations, would help integrate mathematics/epidemiology to evaluate the relationship. This would identify informative data and models to evaluate interventions. This National Institute for Mathematical and Biological Synthesis AMR Working Group's report proposes a system framework to address the methodological gap linking livestock AMU and AMR in foodborne bacteria. It could evaluate how AMU (and interventions) impact AMR. We will evaluate pharmacokinetic/dynamic modeling techniques for projecting AMR selection pressure on enteric bacteria. We study two methods to model phenotypic AMR changes in bacteria in the food supply and evolutionary genotypic analyses determining molecular changes in phenotypic AMR. Systems science analysis integrates the methods, showing how resistance in the food supply is explained by AMU and concurrent factors influencing the whole system. This process is updated with data and techniques to improve prediction and inform improvements for AMU/AMR surveillance. Our proposed framework reflects both the AMR system's complexity, and desire for simple, reliable conclusions.
What can a participatory approach to evaluation contribute to the field of integrated care?
Eyre, Laura; Farrelly, Michael; Marshall, Martin
2017-07-01
Better integration of care within the health sector and between health and social care is seen in many countries as an essential way of addressing the enduring problems of dwindling resources, changing demographics and unacceptable variation in quality of care. Current research evidence about the effectiveness of integration efforts supports neither the enthusiasm of those promoting and designing integrated care programmes nor the growing efforts of practitioners attempting to integrate care on the ground. In this paper we present a methodological approach, based on the principles of participatory research, that attempts to address this challenge. Participatory approaches are characterised by a desire to use social science methods to solve practical problems and a commitment on the part of researchers to substantive and sustained collaboration with relevant stakeholders. We describe how we applied an emerging practical model of participatory research, the researcher-in-residence model, to evaluate a large-scale integrated care programme in the UK. We propose that the approach added value to the programme in a number of ways: by engaging stakeholders in using established evidence and with the benefits of rigorously evaluating their work, by providing insights for local stakeholders that they were either not familiar with or had not fully considered in relation to the development and implementation of the programme and by challenging established mindsets and norms. While there is still much to learn about the benefits and challenges of applying participatory approaches in the health sector, we demonstrate how using such approaches have the potential to help practitioners integrate care more effectively in their daily practice and help progress the academic study of integrated care. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Evaluation of hierarchical models for integrative genomic analyses.
Denis, Marie; Tadesse, Mahlet G
2016-03-01
Advances in high-throughput technologies have led to the acquisition of various types of -omic data on the same biological samples. Each data type gives independent and complementary information that can explain the biological mechanisms of interest. While several studies performing independent analyses of each dataset have led to significant results, a better understanding of complex biological mechanisms requires an integrative analysis of different sources of data. Flexible modeling approaches, based on penalized likelihood methods and expectation-maximization (EM) algorithms, are studied and tested under various biological relationship scenarios between the different molecular features and their effects on a clinical outcome. The models are applied to genomic datasets from two cancer types in the Cancer Genome Atlas project: glioblastoma multiforme and ovarian serous cystadenocarcinoma. The integrative models lead to improved model fit and predictive performance. They also provide a better understanding of the biological mechanisms underlying patients' survival. Source code implementing the integrative models is freely available at https://github.com/mgt000/IntegrativeAnalysis along with example datasets and sample R script applying the models to these data. The TCGA datasets used for analysis are publicly available at https://tcga-data.nci.nih.gov/tcga/tcgaDownload.jsp marie.denis@cirad.fr or mgt26@georgetown.edu Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Koshkina, Vira; Wang, Yang; Gordon, Ascelin; Dorazio, Robert; White, Matthew; Stone, Lewi
2017-01-01
Two main sources of data for species distribution models (SDMs) are site-occupancy (SO) data from planned surveys, and presence-background (PB) data from opportunistic surveys and other sources. SO surveys give high quality data about presences and absences of the species in a particular area. However, due to their high cost, they often cover a smaller area relative to PB data, and are usually not representative of the geographic range of a species. In contrast, PB data is plentiful, covers a larger area, but is less reliable due to the lack of information on species absences, and is usually characterised by biased sampling. Here we present a new approach for species distribution modelling that integrates these two data types.We have used an inhomogeneous Poisson point process as the basis for constructing an integrated SDM that fits both PB and SO data simultaneously. It is the first implementation of an Integrated SO–PB Model which uses repeated survey occupancy data and also incorporates detection probability.The Integrated Model's performance was evaluated, using simulated data and compared to approaches using PB or SO data alone. It was found to be superior, improving the predictions of species spatial distributions, even when SO data is sparse and collected in a limited area. The Integrated Model was also found effective when environmental covariates were significantly correlated. Our method was demonstrated with real SO and PB data for the Yellow-bellied glider (Petaurus australis) in south-eastern Australia, with the predictive performance of the Integrated Model again found to be superior.PB models are known to produce biased estimates of species occupancy or abundance. The small sample size of SO datasets often results in poor out-of-sample predictions. Integrated models combine data from these two sources, providing superior predictions of species abundance compared to using either data source alone. Unlike conventional SDMs which have restrictive scale-dependence in their predictions, our Integrated Model is based on a point process model and has no such scale-dependency. It may be used for predictions of abundance at any spatial-scale while still maintaining the underlying relationship between abundance and area.
Integrating WEPP into the WEPS infrastructure
USDA-ARS?s Scientific Manuscript database
The Wind Erosion Prediction System (WEPS) and the Water Erosion Prediction Project (WEPP) share a common modeling philosophy, that of moving away from primarily empirically based models based on indices or "average conditions", and toward a more process based approach which can be evaluated using ac...
USDA-ARS?s Scientific Manuscript database
Agricultural research increasingly is expected to provide precise, quantitative information with an explicit geographic coverage. Limited availability of continuous daily meteorological records often constrains efforts to provide such information through integrated use of simulation models, spatial ...
Unanticipated Learning Outcomes Associated with Commitment to Change in Continuing Medical Education
ERIC Educational Resources Information Center
Dolcourt, Jack L.; Zuckerman, Grace
2003-01-01
Introduction: Educator-derived, predetermined instructional objectives are integral to the traditional instructional model and form the linkage between instructional design and postinstruction evaluation. The traditional model does not consider unanticipated learning outcomes. We explored the contribution of learner-identified desired outcomes…
Equity analysis of land use and transport plans using an integrated spatial model.
DOT National Transportation Integrated Search
2010-02-01
This paper describes a study to investigate how a spatial economic model can be used to evaluate the equity effects of land use and transport policies intended to reduce greenhouse gas emissions. The Activity Allocation Module of the PECAS (Productio...
Clinical Assessment of Family Caregivers in Dementia.
ERIC Educational Resources Information Center
Rankin, Eric D.; And Others
1992-01-01
Evaluated development of integrated family assessment inventory based on Double ABCX and Circumplex models of family functioning and its clinical utility with 121 primary family caregivers from cognitive disorders program. Proposed model predicted significant proportion of variance associated with caregiver stress and strain. Several aspects of…
Implementation and evaluation of PM2.5 source contribution analysis in a photochemical model
Source culpability assessments are useful for developing effective emissions control programs. The Integrated Source Apportionment Method (ISAM) has been implemented in the Community Multiscale Air Quality (CMAQ) model to track contributions from source groups and regions to ambi...
Developing an Experimental Model of Vascular Toxicity in Embryonic Zebrafish
Developing an Experimental Model of Vascular Toxicity in Embryonic Zebrafish Tamara Tal, Integrated Systems Toxicology Division, U.S. EPA Background: There are tens of thousands of chemicals that have yet to be fully evaluated for their toxicity by validated in vivo testing ...
Integrated Model to Assess Cloud Deployment Effectiveness When Developing an IT-strategy
NASA Astrophysics Data System (ADS)
Razumnikov, S.; Prankevich, D.
2016-04-01
Developing an IT-strategy of cloud deployment is a complex issue since even the stage of its formation necessitates revealing what applications will be the best possible to meet the requirements of a company business-strategy, evaluate reliability and safety of cloud providers and analyze staff satisfaction. A system of criteria, as well an integrated model to assess cloud deployment effectiveness is offered. The model makes it possible to identify what applications being at the disposal of a company, as well as new tools to be deployed are reliable and safe enough for implementation in the cloud environment. The data on practical use of the procedure to assess cloud deployment effectiveness by a provider of telecommunication services is presented. The model was used to calculate values of integral indexes of services to be assessed, then, ones, meeting the criteria and answering the business-strategy of a company, were selected.
Zhang, Wei; Zhang, Gengxin; Dong, Feihong; Xie, Zhidong; Bian, Dongming
2015-01-01
This article investigates the capacity problem of an integrated remote wireless sensor and satellite network (IWSSN) in emergency scenarios. We formulate a general model to evaluate the remote sensor and satellite network capacity. Compared to most existing works for ground networks, the proposed model is time varying and space oriented. To capture the characteristics of a practical network, we sift through major capacity-impacting constraints and analyze the influence of these constraints. Specifically, we combine the geometric satellite orbit model and satellite tool kit (STK) engineering software to quantify the trends of the capacity constraints. Our objective in analyzing these trends is to provide insights and design guidelines for optimizing the integrated remote wireless sensor and satellite network schedules. Simulation results validate the theoretical analysis of capacity trends and show the optimization opportunities of the IWSSN. PMID:26593919
Zhang, Wei; Zhang, Gengxin; Dong, Feihong; Xie, Zhidong; Bian, Dongming
2015-11-17
This article investigates the capacity problem of an integrated remote wireless sensor and satellite network (IWSSN) in emergency scenarios. We formulate a general model to evaluate the remote sensor and satellite network capacity. Compared to most existing works for ground networks, the proposed model is time varying and space oriented. To capture the characteristics of a practical network, we sift through major capacity-impacting constraints and analyze the influence of these constraints. Specifically, we combine the geometric satellite orbit model and satellite tool kit (STK) engineering software to quantify the trends of the capacity constraints. Our objective in analyzing these trends is to provide insights and design guidelines for optimizing the integrated remote wireless sensor and satellite network schedules. Simulation results validate the theoretical analysis of capacity trends and show the optimization opportunities of the IWSSN.
Marrying Hydrological Modelling and Integrated Assessment for the needs of Water Resource Management
NASA Astrophysics Data System (ADS)
Croke, B. F. W.; Blakers, R. S.; El Sawah, S.; Fu, B.; Guillaume, J. H. A.; Kelly, R. A.; Patrick, M. J.; Ross, A.; Ticehurst, J.; Barthel, R.; Jakeman, A. J.
2014-09-01
This paper discusses the integration of hydrology with other disciplines using an Integrated Assessment (IA) and modelling approach to the management and allocation of water resources. Recent developments in the field of socio-hydrology aim to develop stronger relationships between hydrology and the human dimensions of Water Resource Management (WRM). This should build on an existing wealth of knowledge and experience of coupled human-water systems. To further strengthen this relationship and contribute to this broad body of knowledge, we propose a strong and durable "marriage" between IA and hydrology. The foundation of this marriage requires engagement with appropriate concepts, model structures, scales of analyses, performance evaluation and communication - and the associated tools and models that are needed for pragmatic deployment or operation. To gain insight into how this can be achieved, an IA case study in water allocation in the Lower Namoi catchment, NSW, Australia is presented.
Towards systematic evaluation of crop model outputs for global land-use models
NASA Astrophysics Data System (ADS)
Leclere, David; Azevedo, Ligia B.; Skalský, Rastislav; Balkovič, Juraj; Havlík, Petr
2016-04-01
Land provides vital socioeconomic resources to the society, however at the cost of large environmental degradations. Global integrated models combining high resolution global gridded crop models (GGCMs) and global economic models (GEMs) are increasingly being used to inform sustainable solution for agricultural land-use. However, little effort has yet been done to evaluate and compare the accuracy of GGCM outputs. In addition, GGCM datasets require a large amount of parameters whose values and their variability across space are weakly constrained: increasing the accuracy of such dataset has a very high computing cost. Innovative evaluation methods are required both to ground credibility to the global integrated models, and to allow efficient parameter specification of GGCMs. We propose an evaluation strategy for GGCM datasets in the perspective of use in GEMs, illustrated with preliminary results from a novel dataset (the Hypercube) generated by the EPIC GGCM and used in the GLOBIOM land use GEM to inform on present-day crop yield, water and nutrient input needs for 16 crops x 15 management intensities, at a spatial resolution of 5 arc-minutes. We adopt the following principle: evaluation should provide a transparent diagnosis of model adequacy for its intended use. We briefly describe how the Hypercube data is generated and how it articulates with GLOBIOM in order to transparently identify the performances to be evaluated, as well as the main assumptions and data processing involved. Expected performances include adequately representing the sub-national heterogeneity in crop yield and input needs: i) in space, ii) across crop species, and iii) across management intensities. We will present and discuss measures of these expected performances and weight the relative contribution of crop model, input data and data processing steps in performances. We will also compare obtained yield gaps and main yield-limiting factors against the M3 dataset. Next steps include iterative improvement of parameter assumptions and evaluation of implications of GGCM performances for intended use in the IIASA EPIC-GLOBIOM model cluster. Our approach helps targeting future efforts at improving GGCM accuracy and would achieve highest efficiency if combined with traditional field-scale evaluation and sensitivity analysis.
Cryo-EM Data Are Superior to Contact and Interface Information in Integrative Modeling.
de Vries, Sjoerd J; Chauvot de Beauchêne, Isaure; Schindler, Christina E M; Zacharias, Martin
2016-02-23
Protein-protein interactions carry out a large variety of essential cellular processes. Cryo-electron microscopy (cryo-EM) is a powerful technique for the modeling of protein-protein interactions at a wide range of resolutions, and recent developments have caused a revolution in the field. At low resolution, cryo-EM maps can drive integrative modeling of the interaction, assembling existing structures into the map. Other experimental techniques can provide information on the interface or on the contacts between the monomers in the complex. This inevitably raises the question regarding which type of data is best suited to drive integrative modeling approaches. Systematic comparison of the prediction accuracy and specificity of the different integrative modeling paradigms is unavailable to date. Here, we compare EM-driven, interface-driven, and contact-driven integrative modeling paradigms. Models were generated for the protein docking benchmark using the ATTRACT docking engine and evaluated using the CAPRI two-star criterion. At 20 Å resolution, EM-driven modeling achieved a success rate of 100%, outperforming the other paradigms even with perfect interface and contact information. Therefore, even very low resolution cryo-EM data is superior in predicting heterodimeric and heterotrimeric protein assemblies. Our study demonstrates that a force field is not necessary, cryo-EM data alone is sufficient to accurately guide the monomers into place. The resulting rigid models successfully identify regions of conformational change, opening up perspectives for targeted flexible remodeling. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Cryo-EM Data Are Superior to Contact and Interface Information in Integrative Modeling
de Vries, Sjoerd J.; Chauvot de Beauchêne, Isaure; Schindler, Christina E.M.; Zacharias, Martin
2016-01-01
Protein-protein interactions carry out a large variety of essential cellular processes. Cryo-electron microscopy (cryo-EM) is a powerful technique for the modeling of protein-protein interactions at a wide range of resolutions, and recent developments have caused a revolution in the field. At low resolution, cryo-EM maps can drive integrative modeling of the interaction, assembling existing structures into the map. Other experimental techniques can provide information on the interface or on the contacts between the monomers in the complex. This inevitably raises the question regarding which type of data is best suited to drive integrative modeling approaches. Systematic comparison of the prediction accuracy and specificity of the different integrative modeling paradigms is unavailable to date. Here, we compare EM-driven, interface-driven, and contact-driven integrative modeling paradigms. Models were generated for the protein docking benchmark using the ATTRACT docking engine and evaluated using the CAPRI two-star criterion. At 20 Å resolution, EM-driven modeling achieved a success rate of 100%, outperforming the other paradigms even with perfect interface and contact information. Therefore, even very low resolution cryo-EM data is superior in predicting heterodimeric and heterotrimeric protein assemblies. Our study demonstrates that a force field is not necessary, cryo-EM data alone is sufficient to accurately guide the monomers into place. The resulting rigid models successfully identify regions of conformational change, opening up perspectives for targeted flexible remodeling. PMID:26846888
Model-data integration for developing the Cropland Carbon Monitoring System (CCMS)
NASA Astrophysics Data System (ADS)
Jones, C. D.; Bandaru, V.; Pnvr, K.; Jin, H.; Reddy, A.; Sahajpal, R.; Sedano, F.; Skakun, S.; Wagle, P.; Gowda, P. H.; Hurtt, G. C.; Izaurralde, R. C.
2017-12-01
The Cropland Carbon Monitoring System (CCMS) has been initiated to improve regional estimates of carbon fluxes from croplands in the conterminous United States through integration of terrestrial ecosystem modeling, use of remote-sensing products and publically available datasets, and development of improved landscape and management databases. In order to develop these improved carbon flux estimates, experimental datasets are essential for evaluating the skill of estimates, characterizing the uncertainty of these estimates, characterizing parameter sensitivities, and calibrating specific modeling components. Experiments were sought that included flux tower measurement of CO2 fluxes under production of major agronomic crops. Currently data has been collected from 17 experiments comprising 117 site-years from 12 unique locations. Calibration of terrestrial ecosystem model parameters using available crop productivity and net ecosystem exchange (NEE) measurements resulted in improvements in RMSE of NEE predictions of between 3.78% to 7.67%, while improvements in RMSE for yield ranged from -1.85% to 14.79%. Model sensitivities were dominated by parameters related to leaf area index (LAI) and spring growth, demonstrating considerable capacity for model improvement through development and integration of remote-sensing products. Subsequent analyses will assess the impact of such integrated approaches on skill of cropland carbon flux estimates.
Integrated assessment of water-power grid systems under changing climate
NASA Astrophysics Data System (ADS)
Yan, E.; Zhou, Z.; Betrie, G.
2017-12-01
Energy and water systems are intrinsically interconnected. Due to an increase in climate variability and extreme weather events, interdependency between these two systems has been recently intensified resulting significant impacts on both systems and energy output. To address this challenge, an Integrated Water-Energy Systems Assessment Framework (IWESAF) is being developed to integrate multiple existing or developed models from various sectors. In this presentation, we are focusing on recent improvement in model development of thermoelectric power plant water use simulator, power grid operation and cost optimization model, and model integration that facilitate interaction among water and electricity generation under extreme climate events. A process based thermoelectric power water use simulator includes heat-balance, climate, and cooling system modules that account for power plant characteristics, fuel types, and cooling technology. The model is validated with more than 800 power plants of fossil-fired, nuclear and gas-turbine power plants with different cooling systems. The power grid operation and cost optimization model was implemented for a selected regional in the Midwest. The case study will be demonstrated to evaluate the sensitivity and resilience of thermoelectricity generation and power grid under various climate and hydrologic extremes and potential economic consequences.
Monetary and affective judgments of consumer goods: modes of evaluation matter.
Seta, John J; Seta, Catherine E; McCormick, Michael; Gallagher, Ashleigh H
2014-01-01
Participants who evaluated 2 positively valued items separately reported more positive attraction (using affective and monetary measures) than those who evaluated the same two items as a unit. In Experiments 1-3, this separate/unitary evaluation effect was obtained when participants evaluated products that they were purchasing for a friend. Similar findings were obtained in Experiments 4 and 5 when we considered the amount participants were willing to spend to purchase insurance for items that they currently owned. The averaging/summation model was contrasted with several theoretical perspectives and implicated averaging and summation integration processes in how items are evaluated. The procedural and theoretical similarities and differences between this work and related research on unpacking, comparison processes, public goods, and price bundling are discussed. Overall, the results support the operation of integration processes and contribute to an understanding of how these processes influence the evaluation and valuation of private goods.
The use of an integrated variable fuzzy sets in water resources management
NASA Astrophysics Data System (ADS)
Qiu, Qingtai; Liu, Jia; Li, Chuanzhe; Yu, Xinzhe; Wang, Yang
2018-06-01
Based on the evaluation of the present situation of water resources and the development of water conservancy projects and social economy, optimal allocation of regional water resources presents an increasing need in the water resources management. Meanwhile it is also the most effective way to promote the harmonic relationship between human and water. In view of the own limitations of the traditional evaluations of which always choose a single index model using in optimal allocation of regional water resources, on the basis of the theory of variable fuzzy sets (VFS) and system dynamics (SD), an integrated variable fuzzy sets model (IVFS) is proposed to address dynamically complex problems in regional water resources management in this paper. The model is applied to evaluate the level of the optimal allocation of regional water resources of Zoucheng in China. Results show that the level of allocation schemes of water resources ranging from 2.5 to 3.5, generally showing a trend of lower level. To achieve optimal regional management of water resources, this model conveys a certain degree of accessing water resources management, which prominently improve the authentic assessment of water resources management by using the eigenvector of level H.
NASA Technical Reports Server (NTRS)
Hicks, Raymond M.; Cliff, Susan E.
1991-01-01
Full-potential, Euler, and Navier-Stokes computational fluid dynamics (CFD) codes were evaluated for use in analyzing the flow field about airfoils sections operating at Mach numbers from 0.20 to 0.60 and Reynolds numbers from 500,000 to 2,000,000. The potential code (LBAUER) includes weakly coupled integral boundary layer equations for laminar and turbulent flow with simple transition and separation models. The Navier-Stokes code (ARC2D) uses the thin-layer formulation of the Reynolds-averaged equations with an algebraic turbulence model. The Euler code (ISES) includes strongly coupled integral boundary layer equations and advanced transition and separation calculations with the capability to model laminar separation bubbles and limited zones of turbulent separation. The best experiment/CFD correlation was obtained with the Euler code because its boundary layer equations model the physics of the flow better than the other two codes. An unusual reversal of boundary layer separation with increasing angle of attack, following initial shock formation on the upper surface of the airfoil, was found in the experiment data. This phenomenon was not predicted by the CFD codes evaluated.
Lymph node segmentation on CT images by a shape model guided deformable surface methodh
NASA Astrophysics Data System (ADS)
Maleike, Daniel; Fabel, Michael; Tetzlaff, Ralf; von Tengg-Kobligk, Hendrik; Heimann, Tobias; Meinzer, Hans-Peter; Wolf, Ivo
2008-03-01
With many tumor entities, quantitative assessment of lymph node growth over time is important to make therapy choices or to evaluate new therapies. The clinical standard is to document diameters on transversal slices, which is not the best measure for a volume. We present a new algorithm to segment (metastatic) lymph nodes and evaluate the algorithm with 29 lymph nodes in clinical CT images. The algorithm is based on a deformable surface search, which uses statistical shape models to restrict free deformation. To model lymph nodes, we construct an ellipsoid shape model, which strives for a surface with strong gradients and user-defined gray values. The algorithm is integrated into an application, which also allows interactive correction of the segmentation results. The evaluation shows that the algorithm gives good results in the majority of cases and is comparable to time-consuming manual segmentation. The median volume error was 10.1% of the reference volume before and 6.1% after manual correction. Integrated into an application, it is possible to perform lymph node volumetry for a whole patient within the 10 to 15 minutes time limit imposed by clinical routine.
Design and implementation of the GLIF3 guideline execution engine.
Wang, Dongwen; Peleg, Mor; Tu, Samson W; Boxwala, Aziz A; Ogunyemi, Omolola; Zeng, Qing; Greenes, Robert A; Patel, Vimla L; Shortliffe, Edward H
2004-10-01
We have developed the GLIF3 Guideline Execution Engine (GLEE) as a tool for executing guidelines encoded in the GLIF3 format. In addition to serving as an interface to the GLIF3 guideline representation model to support the specified functions, GLEE provides defined interfaces to electronic medical records (EMRs) and other clinical applications to facilitate its integration with the clinical information system at a local institution. The execution model of GLEE takes the "system suggests, user controls" approach. A tracing system is used to record an individual patient's state when a guideline is applied to that patient. GLEE can also support an event-driven execution model once it is linked to the clinical event monitor in a local environment. Evaluation has shown that GLEE can be used effectively for proper execution of guidelines encoded in the GLIF3 format. When using it to execute each guideline in the evaluation, GLEE's performance duplicated that of the reference systems implementing the same guideline but taking different approaches. The execution flexibility and generality provided by GLEE, and its integration with a local environment, need to be further evaluated in clinical settings. Integration of GLEE with a specific event-monitoring and order-entry environment is the next step of our work to demonstrate its use for clinical decision support. Potential uses of GLEE also include quality assurance, guideline development, and medical education.
Evaluating Data Clustering Approach for Life-Cycle Facility Control
2013-04-01
produce 90% matching accuracy with noise/variations up to 55%. KEYWORDS: Building Information Modelling ( BIM ), machine learning, pattern detection...reconciled to building information model elements and ultimately to an expected resource utilization schedule. The motivation for this integration is to...by interoperable data sources and building information models . Building performance modelling and simulation efforts such as those by Maile et al
Zhang, Wenli; Muck-Hausl, Martin; Wang, Jichang; Sun, Chuanbo; Gebbing, Maren; Miskey, Csaba; Ivics, Zoltan; Izsvak, Zsuzsanna; Ehrhardt, Anja
2013-01-01
We recently developed adenovirus/transposase hybrid-vectors utilizing the previously described hyperactive Sleeping Beauty (SB) transposase HSB5 for somatic integration and we could show stabilized transgene expression in mice and a canine model for hemophilia B. However, the safety profile of these hybrid-vectors with respect to vector dose and genotoxicity remains to be investigated. Herein, we evaluated this hybrid-vector system in C57Bl/6 mice with escalating vector dose settings. We found that in all mice which received the hyperactive SB transposase, transgene expression levels were stabilized in a dose-dependent manner and that the highest vector dose was accompanied by fatalities in mice. To analyze potential genotoxic side-effects due to somatic integration into host chromosomes, we performed a genome-wide integration site analysis using linker-mediated PCR (LM-PCR) and linear amplification-mediated PCR (LAM-PCR). Analysis of genomic DNA samples obtained from HSB5 treated female and male mice revealed a total of 1327 unique transposition events. Overall the chromosomal distribution pattern was close-to-random and we observed a random integration profile with respect to integration into gene and non-gene areas. Notably, when using the LM-PCR protocol, 27 extra-chromosomal integration events were identified, most likely caused by transposon excision and subsequent transposition into the delivered adenoviral vector genome. In total, this study provides a careful evaluation of the safety profile of adenovirus/Sleeping Beauty transposase hybrid-vectors. The obtained information will be useful when designing future preclinical studies utilizing hybrid-vectors in small and large animal models. PMID:24124483
Integrated management of timber-elk-cattle: interior forests of western North America.
J.W. Thomas; D.A. Leckenby; L. Jack [and others]. Lyon
1988-01-01
The need for and the evaluation of elk-habitat evaluation models are reviewed, and a state-of-the-art example is presented that incorporates distribution of elk-habitat use related to distance from cover/forage edges, distance from roads, cover quality, and forage quantity and quality.
Application of an Elastic-Plastic Methodology to Structural Integrity Evaluation,
The elastic plastic fracture mechanics ( EPFM ) technology has advanced to the point where it can be used to make a realistic assessment of the...concepts of EPFM into a structural stability evaluation. The structure is modeled as a cracked test specimen either in series or parallel with a spring
An integrated approach to system design, reliability, and diagnosis
NASA Technical Reports Server (NTRS)
Patterson-Hine, F. A.; Iverson, David L.
1990-01-01
The requirement for ultradependability of computer systems in future avionics and space applications necessitates a top-down, integrated systems ingeneering approach for design, implementation, testing, and operation. The functional analyses of hardware and software systems must be combined by models that are flexible enough to represent their interactions and behavior. The information contained in these models must be accessible throughout all phases of the system life cycle in order to maintain consistency and accuracy in design and operational decisions. One approach being taken by researchers at Ames Research Center is the creation of an object-oriented environment that integrates information about system components required in the reliability evaluation with behavioral information useful for diagnostic algorithms.
Clusternomics: Integrative context-dependent clustering for heterogeneous datasets
Wernisch, Lorenz
2017-01-01
Integrative clustering is used to identify groups of samples by jointly analysing multiple datasets describing the same set of biological samples, such as gene expression, copy number, methylation etc. Most existing algorithms for integrative clustering assume that there is a shared consistent set of clusters across all datasets, and most of the data samples follow this structure. However in practice, the structure across heterogeneous datasets can be more varied, with clusters being joined in some datasets and separated in others. In this paper, we present a probabilistic clustering method to identify groups across datasets that do not share the same cluster structure. The proposed algorithm, Clusternomics, identifies groups of samples that share their global behaviour across heterogeneous datasets. The algorithm models clusters on the level of individual datasets, while also extracting global structure that arises from the local cluster assignments. Clusters on both the local and the global level are modelled using a hierarchical Dirichlet mixture model to identify structure on both levels. We evaluated the model both on simulated and on real-world datasets. The simulated data exemplifies datasets with varying degrees of common structure. In such a setting Clusternomics outperforms existing algorithms for integrative and consensus clustering. In a real-world application, we used the algorithm for cancer subtyping, identifying subtypes of cancer from heterogeneous datasets. We applied the algorithm to TCGA breast cancer dataset, integrating gene expression, miRNA expression, DNA methylation and proteomics. The algorithm extracted clinically meaningful clusters with significantly different survival probabilities. We also evaluated the algorithm on lung and kidney cancer TCGA datasets with high dimensionality, again showing clinically significant results and scalability of the algorithm. PMID:29036190
Clusternomics: Integrative context-dependent clustering for heterogeneous datasets.
Gabasova, Evelina; Reid, John; Wernisch, Lorenz
2017-10-01
Integrative clustering is used to identify groups of samples by jointly analysing multiple datasets describing the same set of biological samples, such as gene expression, copy number, methylation etc. Most existing algorithms for integrative clustering assume that there is a shared consistent set of clusters across all datasets, and most of the data samples follow this structure. However in practice, the structure across heterogeneous datasets can be more varied, with clusters being joined in some datasets and separated in others. In this paper, we present a probabilistic clustering method to identify groups across datasets that do not share the same cluster structure. The proposed algorithm, Clusternomics, identifies groups of samples that share their global behaviour across heterogeneous datasets. The algorithm models clusters on the level of individual datasets, while also extracting global structure that arises from the local cluster assignments. Clusters on both the local and the global level are modelled using a hierarchical Dirichlet mixture model to identify structure on both levels. We evaluated the model both on simulated and on real-world datasets. The simulated data exemplifies datasets with varying degrees of common structure. In such a setting Clusternomics outperforms existing algorithms for integrative and consensus clustering. In a real-world application, we used the algorithm for cancer subtyping, identifying subtypes of cancer from heterogeneous datasets. We applied the algorithm to TCGA breast cancer dataset, integrating gene expression, miRNA expression, DNA methylation and proteomics. The algorithm extracted clinically meaningful clusters with significantly different survival probabilities. We also evaluated the algorithm on lung and kidney cancer TCGA datasets with high dimensionality, again showing clinically significant results and scalability of the algorithm.
Wu, Hao; Rodriguez, Ana R; Spur, Bernd W; Venkataraman, Venkat
2016-09-13
A low-cost, easy-to-use and powerful model system is established to evaluate potential treatments that could ameliorate blood retinal barrier breach. An inflammatory factor, histamine, is demonstrated to compromise vessel integrity in the cultured retina through positive staining of IgG outside of the blood vessels. The effects of histamine itself and those of candidate drugs for potential treatments, such as lipoxin A4, are assessed using three parameters: blood vessel leakage via IgG immunostaining, activation of Müller cells via GFAP staining and change in neuronal dendrites through staining for MAP2. Furthermore, the layered organization of the retina allows a detailed analysis of the processes of Müller and ganglion cells, such as changes in width and continuity. While the data presented is with swine retinal culture, the system is applicable to multiple species. Thus, the model provides a reliable tool to investigate the early effects of compromised retinal vessel integrity on different cell types and also to evaluate potential drug candidates for treatment.
NASA Astrophysics Data System (ADS)
Zoraghi, Nima; Amiri, Maghsoud; Talebi, Golnaz; Zowghi, Mahdi
2013-12-01
This paper presents a fuzzy multi-criteria decision-making (FMCDM) model by integrating both subjective and objective weights for ranking and evaluating the service quality in hotels. The objective method selects weights of criteria through mathematical calculation, while the subjective method uses judgments of decision makers. In this paper, we use a combination of weights obtained by both approaches in evaluating service quality in hotel industries. A real case study that considered ranking five hotels is illustrated. Examples are shown to indicate capabilities of the proposed method.
Kirsch, Florian
2015-01-01
Diabetes is the most expensive chronic disease; therefore, disease management programs (DMPs) were introduced. The aim of this review is to determine whether Markov models are adequate to evaluate the cost-effectiveness of complex interventions such as DMPs. Additionally, the quality of the models was evaluated using Philips and Caro quality appraisals. The five reviewed models incorporated the DMP into the model differently: two models integrated effectiveness rates derived from one clinical trial/meta-analysis and three models combined interventions from different sources into a DMP. The results range from cost savings and a QALY gain to costs of US$85,087 per QALY. The Spearman's rank coefficient assesses no correlation between the quality appraisals. With restrictions to the data selection process, Markov models are adequate to determine the cost-effectiveness of DMPs; however, to allow prioritization of medical services, more flexibility in the models is necessary to enable the evaluation of single additional interventions.
Calvo, Roque; D’Amato, Roberto; Gómez, Emilio; Domingo, Rosario
2016-01-01
The development of an error compensation model for coordinate measuring machines (CMMs) and its integration into feature measurement is presented. CMMs are widespread and dependable instruments in industry and laboratories for dimensional measurement. From the tip probe sensor to the machine display, there is a complex transformation of probed point coordinates through the geometrical feature model that makes the assessment of accuracy and uncertainty measurement results difficult. Therefore, error compensation is not standardized, conversely to other simpler instruments. Detailed coordinate error compensation models are generally based on CMM as a rigid-body and it requires a detailed mapping of the CMM’s behavior. In this paper a new model type of error compensation is proposed. It evaluates the error from the vectorial composition of length error by axis and its integration into the geometrical measurement model. The non-explained variability by the model is incorporated into the uncertainty budget. Model parameters are analyzed and linked to the geometrical errors and uncertainty of CMM response. Next, the outstanding measurement models of flatness, angle, and roundness are developed. The proposed models are useful for measurement improvement with easy integration into CMM signal processing, in particular in industrial environments where built-in solutions are sought. A battery of implementation tests are presented in Part II, where the experimental endorsement of the model is included. PMID:27690052
The medical home and integrated behavioral health: advancing the policy agenda.
Ader, Jeremy; Stille, Christopher J; Keller, David; Miller, Benjamin F; Barr, Michael S; Perrin, James M
2015-05-01
There has been a considerable expansion of the patient-centered medical home model of primary care delivery, in an effort to reduce health care costs and to improve patient experience and population health. To attain these goals, it is essential to integrate behavioral health services into the patient-centered medical home, because behavioral health problems often first present in the primary care setting, and they significantly affect physical health. At the 2013 Patient-Centered Medical Home Research Conference, an expert workgroup convened to determine policy recommendations to promote the integration of primary care and behavioral health. In this article we present these recommendations: Build demonstration projects to test existing approaches of integration, develop interdisciplinary training programs to support members of the integrated care team, implement population-based strategies to improve behavioral health, eliminate behavioral health carve-outs and test innovative payment models, and develop population-based measures to evaluate integration. Copyright © 2015 by the American Academy of Pediatrics.
Developing R&D portfolio business validity simulation model and system.
Yeo, Hyun Jin; Im, Kwang Hyuk
2015-01-01
The R&D has been recognized as critical method to take competitiveness by not only companies but also nations with its value creation such as patent value and new product. Therefore, R&D has been a decision maker's burden in that it is hard to decide how much money to invest, how long time one should spend, and what technology to develop which means it accompanies resources such as budget, time, and manpower. Although there are diverse researches about R&D evaluation, business factors are not concerned enough because almost all previous studies are technology oriented evaluation with one R&D technology based. In that, we early proposed R&D business aspect evaluation model which consists of nine business model components. In this research, we develop a simulation model and system evaluating a company or industry's R&D portfolio with business model point of view and clarify default and control parameters to facilitate evaluator's business validity work in each evaluation module by integrate to one screen.
Developing R&D Portfolio Business Validity Simulation Model and System
2015-01-01
The R&D has been recognized as critical method to take competitiveness by not only companies but also nations with its value creation such as patent value and new product. Therefore, R&D has been a decision maker's burden in that it is hard to decide how much money to invest, how long time one should spend, and what technology to develop which means it accompanies resources such as budget, time, and manpower. Although there are diverse researches about R&D evaluation, business factors are not concerned enough because almost all previous studies are technology oriented evaluation with one R&D technology based. In that, we early proposed R&D business aspect evaluation model which consists of nine business model components. In this research, we develop a simulation model and system evaluating a company or industry's R&D portfolio with business model point of view and clarify default and control parameters to facilitate evaluator's business validity work in each evaluation module by integrate to one screen. PMID:25893209
Senay, Gabriel B.
2008-01-01
The main objective of this study is to present an improved modeling technique called Vegetation ET (VegET) that integrates commonly used water balance algorithms with remotely sensed Land Surface Phenology (LSP) parameter to conduct operational vegetation water balance modeling of rainfed systems at the LSP’s spatial scale using readily available global data sets. Evaluation of the VegET model was conducted using Flux Tower data and two-year simulation for the conterminous US. The VegET model is capable of estimating actual evapotranspiration (ETa) of rainfed crops and other vegetation types at the spatial resolution of the LSP on a daily basis, replacing the need to estimate crop- and region-specific crop coefficients.
The Use of a Block Diagram Simulation Language for Rapid Model Prototyping
NASA Technical Reports Server (NTRS)
Whitlow, Johnathan E.; Engrand, Peter
1996-01-01
The research performed this summer was a continuation of work performed during the 1995 NASA/ASEE Summer Fellowship. The focus of the work was to expand previously generated predictive models for liquid oxygen (LOX) loading into the external fuel tank of the shuttle. The models which were developed using a block diagram simulation language known as VisSim, were evaluated on numerous shuttle flights and found to well in most cases. Once the models were refined and validated, the predictive methods were integrated into the existing Rockwell software propulsion advisory tool (PAT). Although time was not sufficient to completely integrate the models developed into PAT, the ability to predict flows and pressures in the orbiter section and graphically display the results was accomplished.
NASA Astrophysics Data System (ADS)
Kato, E.; Kawamiya, M.
2010-12-01
For CMIP5 experiments, emissions scenarios data sets for climate models are prepared as Representative Concentration Pathways (RCPs) by the Integrated Assessment Models (IAMs). IAMs also have depicted regional land-use scenarios based on the socioeconomic assumption of the future scenarios of RCPs. In the land-use harmonization project, gridded land-use transition data has been constructed from the regional IAMs future land-use scenarios which smoothly connects historical reconstructions of land-use based on HYDE 3 data and FAO wood harvest data. In this study, using the gridded transition land-use scenario data, global net CO2 emission from land-use change for each RCPs scenarios is evaluated with a offline version of terrestrial biogeochemical model, VISIT (Vegetation Integrative SImulation Tool), utilizing a protocol to estimate carbon emission from deforested biomass considering delayed decomposition of product pools, and regrowth absorption from the secondary lands with abandoned agricultural lands. From the model output, effect of CO2 fertilization and land-use scenario itself on the emission is assessed to see the consistency of the scenarios. In addition, to see the effect of climate change and the climate-carbon feedback on terrestrial ecosystems, net land-use change CO2 emission is also evaluated with an earth system model, MIROC-ESM incorporating a DGVM with land-use change component. In the simulations with earth system model, RCP 6.0 scenario has been evaluated by model runs with and without land-use change forcing.
Interactive design and analysis of future large spacecraft concepts
NASA Technical Reports Server (NTRS)
Garrett, L. B.
1981-01-01
An interactive computer aided design program used to perform systems level design and analysis of large spacecraft concepts is presented. Emphasis is on rapid design, analysis of integrated spacecraft, and automatic spacecraft modeling for lattice structures. Capabilities and performance of multidiscipline applications modules, the executive and data management software, and graphics display features are reviewed. A single user at an interactive terminal create, design, analyze, and conduct parametric studies of Earth orbiting spacecraft with relative ease. Data generated in the design, analysis, and performance evaluation of an Earth-orbiting large diameter antenna satellite are used to illustrate current capabilities. Computer run time statistics for the individual modules quantify the speed at which modeling, analysis, and design evaluation of integrated spacecraft concepts is accomplished in a user interactive computing environment.
NASA Astrophysics Data System (ADS)
Sui, Haigang; Xiao, Jinghuan; Wang, Qi; Li, Qian
2007-06-01
PDA (Personal Digital Assistant) is a useful tool for navigation which has many advantages such as its smallness and portability. In the meantime, digital charts have been found a wide application in past ten years, and many users are hoping for giving up the paper chart entirely and using ENC by the law. However, traditional paper chart is a nonreplaced tool for people in hydrographical survey and other application fields, and would coexist with ENC for a long time. How to manage and display integrated chart for traditional paper chart and ENC together in PDA for navigating is still an unsolved problem. Aiming at this, a new integrated spatial data model and display techniques for ENC and paper chart are presented. The core idea of the new algorithm is to build an integrated spatial data model, structure and display environment for both paper chart and ENC. Based on the above algorithms and strategies, an Integrated Electronic Chart Pocket Navigator System named PNS based on PDA was developed. It has been applied in Tianjin Marine Safety Administration Bureau and obtained a good evaluation.
Controlling Release of Integral Lipid Nanoparticles Based on Osmotic Pump Technology.
Tian, Zhiqiang; Yu, Qin; Xie, Yunchang; Li, Fengqian; Lu, Yi; Dong, Xiaochun; Zhao, Weili; Qi, Jianping; Wu, Wei
2016-08-01
To achieve controlled release of integral nanoparticles by the osmotic pump strategy using nanostructured lipid carriers (NLCs) as model nanoparticles. NLCs was prepared by a hot-homogenization method, transformed into powder by lyophilization, and formulated into osmotic pump tablets (OPTs). Release of integral NLCs was visualized by live imaging after labeling with a water-quenching fluorescent probe. Effects of formulation variables on in vitro release characteristics were evaluated by measuring the model drug fenofibrate. Pharmacokinetics were studied in beagle dogs using the core tablet and a micronized fenofibrate formulation as references. NLCs are released through the release orifices of the OPTs as integral nanoparticles. Near zero-order kinetics can be achieved by optimizing the influencing variables. After oral administration, decreased C max and steady drug levels for as long as over 24 h are observed. NLC-OPTs show an oral bioavailability of the model drug fenofibrate similar to that of the core tablets, which is about 1.75 folds that of a fast-release formulation. Controlled release of integral NLCs is achieved by the osmotic pump strategy.
United States Environmental Protection Agency (USEPA) researchers are developing a strategy for highthroughput (HT) exposure-based prioritization of chemicals under the ExpoCast program. These novel modeling approaches for evaluating chemicals based on their potential for biologi...
Evaluating the Psychometric Characteristics of Generated Multiple-Choice Test Items
ERIC Educational Resources Information Center
Gierl, Mark J.; Lai, Hollis; Pugh, Debra; Touchie, Claire; Boulais, André-Philippe; De Champlain, André
2016-01-01
Item development is a time- and resource-intensive process. Automatic item generation integrates cognitive modeling with computer technology to systematically generate test items. To date, however, items generated using cognitive modeling procedures have received limited use in operational testing situations. As a result, the psychometric…
USDA-ARS?s Scientific Manuscript database
Nonpoint source pollution from agriculture and the impacts of mitigating best management practices are commonly evaluated based on hydrologic boundaries using watershed models. However, management practice effectiveness is impacted by which of the feasible practices are actually selected, implemente...
Teaching Evidence-Based Medicine: A Regional Dissemination Model.
ERIC Educational Resources Information Center
Leipzig, Rosanne M.; Wallace, Eleanor Z.; Smith, Lawrence G.; Sullivant, Jean; Dunn, Kathel; McGinn, Thomas
2003-01-01
Described and evaluated an interactive course designed to create a cadre of medical school faculty in New York who could integrate evidence-based medicine into their training programs. Findings for representatives of 30 internal medicine residency programs show the usefulness of the regional dissemination model used. (SLD)
Cumulative risk assessment (CRA) methods, which evaluate the risk of multiple adverse outcomes (AOs) from multiple chemicals, promote the use of a conceptual site model (CSM) to integrate risk from relevant stressors. The Adverse Outcome Pathway (AOP) framework can inform these r...
ERIC Educational Resources Information Center
Oner, Diler; Adadan, Emine
2016-01-01
This study investigated the effectiveness of an integrated web-based portfolio system, namely the BOUNCE System, which primarily focuses on improving preservice teachers' reflective thinking skills. BOUNCE©, the software component of the system, was designed and developed to support a teaching practice model including a cycle of activities to be…
ERIC Educational Resources Information Center
Gülpinar, Mehmet Ali; Isoglu-Alkaç, Ümmühan; Yegen, Berrak Çaglayan
2015-01-01
Recently, integrated and contextual learning models such as problem-based learning (PBL) and brain/mind learning (BML) have become prominent. The present study aimed to develop and evaluate a PBL program enriched with BML principles. In this study, participants were 295 first-year medical students. The study used both quantitative and qualitative…
Francisco Rodríguez y Silva; Juan Ramón Molina Martínez; Miguel Ángel Herrera Machuca; Jesús Mª Rodríguez Leal
2013-01-01
Progress made in recent years in fire science, particularly as applied to forest fire protection, coupled with the increased power offered by mathematical processors integrated into computers, has led to important developments in the field of dynamic and static simulation of forest fires. Furthermore, and similarly, econometric models applied to economic...
Assessing natural hazards in forestry for risk management: a review
Marc Hanewinkel; Susan Hummel; Axel Albrecht
2011-01-01
We address the problem of how to integrate risk assessment into forest management and therefore provide a comprehensive review of recent and past literature on risk analysis and modeling and, moreover, an evaluation and summary on these papers. We provide a general scheme on how to integrate concepts of risk into forest management decisions. After an overview of the...
Duan, J; Kesisoglou, F; Novakovic, J; Amidon, GL; Jamei, M; Lukacova, V; Eissing, T; Tsakalozou, E; Zhao, L; Lionberger, R
2017-01-01
On May 19, 2016, the US Food and Drug Administration (FDA) hosted a public workshop, entitled “Mechanistic Oral Absorption Modeling and Simulation for Formulation Development and Bioequivalence Evaluation.”1 The topic of mechanistic oral absorption modeling, which is one of the major applications of physiologically based pharmacokinetic (PBPK) modeling and simulation, focuses on predicting oral absorption by mechanistically integrating gastrointestinal transit, dissolution, and permeation processes, incorporating systems, active pharmaceutical ingredient (API), and the drug product information, into a systemic mathematical whole‐body framework.2 PMID:28571121
Models and techniques for evaluating the effectiveness of aircraft computing systems
NASA Technical Reports Server (NTRS)
Meyer, J. F.
1982-01-01
Models, measures, and techniques for evaluating the effectiveness of aircraft computing systems were developed. By "effectiveness" in this context we mean the extent to which the user, i.e., a commercial air carrier, may expect to benefit from the computational tasks accomplished by a computing system in the environment of an advanced commercial aircraft. Thus, the concept of effectiveness involves aspects of system performance, reliability, and worth (value, benefit) which are appropriately integrated in the process of evaluating system effectiveness. Specifically, the primary objectives are: the development of system models that provide a basis for the formulation and evaluation of aircraft computer system effectiveness, the formulation of quantitative measures of system effectiveness, and the development of analytic and simulation techniques for evaluating the effectiveness of a proposed or existing aircraft computer.
NASA Astrophysics Data System (ADS)
Raymond, Neil; Iouchtchenko, Dmitri; Roy, Pierre-Nicholas; Nooijen, Marcel
2018-05-01
We introduce a new path integral Monte Carlo method for investigating nonadiabatic systems in thermal equilibrium and demonstrate an approach to reducing stochastic error. We derive a general path integral expression for the partition function in a product basis of continuous nuclear and discrete electronic degrees of freedom without the use of any mapping schemes. We separate our Hamiltonian into a harmonic portion and a coupling portion; the partition function can then be calculated as the product of a Monte Carlo estimator (of the coupling contribution to the partition function) and a normalization factor (that is evaluated analytically). A Gaussian mixture model is used to evaluate the Monte Carlo estimator in a computationally efficient manner. Using two model systems, we demonstrate our approach to reduce the stochastic error associated with the Monte Carlo estimator. We show that the selection of the harmonic oscillators comprising the sampling distribution directly affects the efficiency of the method. Our results demonstrate that our path integral Monte Carlo method's deviation from exact Trotter calculations is dominated by the choice of the sampling distribution. By improving the sampling distribution, we can drastically reduce the stochastic error leading to lower computational cost.
Integration of Irma tactical scene generator into directed-energy weapon system simulation
NASA Astrophysics Data System (ADS)
Owens, Monte A.; Cole, Madison B., III; Laine, Mark R.
2003-08-01
Integrated high-fidelity physics-based simulations that include engagement models, image generation, electro-optical hardware models and control system algorithms have previously been developed by Boeing-SVS for various tracking and pointing systems. These simulations, however, had always used images with featureless or random backgrounds and simple target geometries. With the requirement to engage tactical ground targets in the presence of cluttered backgrounds, a new type of scene generation tool was required to fully evaluate system performance in this challenging environment. To answer this need, Irma was integrated into the existing suite of Boeing-SVS simulation tools, allowing scene generation capabilities with unprecedented realism. Irma is a US Air Force research tool used for high-resolution rendering and prediction of target and background signatures. The MATLAB/Simulink-based simulation achieves closed-loop tracking by running track algorithms on the Irma-generated images, processing the track errors through optical control algorithms, and moving simulated electro-optical elements. The geometry of these elements determines the sensor orientation with respect to the Irma database containing the three-dimensional background and target models. This orientation is dynamically passed to Irma through a Simulink S-function to generate the next image. This integrated simulation provides a test-bed for development and evaluation of tracking and control algorithms against representative images including complex background environments and realistic targets calibrated using field measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayes, Birchard P; Michel, Kelly D; Few, Douglas A
From stereophonic, positional sound to high-definition imagery that is crisp and clean, high fidelity computer graphics enhance our view, insight, and intuition regarding our environments and conditions. Contemporary 3-D modeling tools offer an open architecture framework that enables integration with other technologically innovative arenas. One innovation of great interest is Augmented Reality, the merging of virtual, digital environments with physical, real-world environments creating a mixed reality where relevant data and information augments the real or actual experience in real-time by spatial or semantic context. Pairing 3-D virtual immersive models with a dynamic platform such as semi-autonomous robotics or personnel odometrymore » systems to create a mixed reality offers a new and innovative design information verification inspection capability, evaluation accuracy, and information gathering capability for nuclear facilities. Our paper discusses the integration of two innovative technologies, 3-D visualizations with inertial positioning systems, and the resulting augmented reality offered to the human inspector. The discussion in the paper includes an exploration of human and non-human (surrogate) inspections of a nuclear facility, integrated safeguards knowledge within a synchronized virtual model operated, or worn, by a human inspector, and the anticipated benefits to safeguards evaluations of facility operations.« less
NASA Astrophysics Data System (ADS)
Anderson, Gustave
2014-05-01
Unfortunately, there is no metric, nor set of metrics, that are both general enough to encompass all possible types of applications yet specific enough to capture the application and attack specific details. As a result we are left with ad-hoc methods for generating evaluations of the security of our systems. Current state of the art methods for evaluating the security of systems include penetration testing and cyber evaluation tests. For these evaluations, security professionals simulate an attack from malicious outsiders and malicious insiders. These evaluations are very productive and are able to discover potential vulnerabilities resulting from improper system configuration, hardware and software flaws, or operational weaknesses. We therefore propose the index of cyber integrity (ICI), which is modeled after the index of biological integrity (IBI) to provide a holistic measure of the health of a system under test in a cyber-environment. The ICI provides a broad base measure through a collection of application and system specific metrics. In this paper, following the example of the IBI, we demonstrate how a multi-metric index may be used as a holistic measure of the health of a system under test in a cyber-environment.
Evaluating uncertainty and parameter sensitivity in environmental models can be a difficult task, even for low-order, single-media constructs driven by a unique set of site-specific data. The challenge of examining ever more complex, integrated, higher-order models is a formidab...
Lazarus's BASIC ID: Making Initial Client Assessments Using Q-Sorts.
ERIC Educational Resources Information Center
Miller, Mark J.
1987-01-01
Presents overview of Lazarus's multimodal therapy model and the Q-sort, an observer-evaluation scoring instrument. Outlines feasibility of integrating Q-sort within multimodal model. Describes both a preliminary attempt using expert raters to categorize Q-sort cards within the model and a case study on how to assess client by incorporating Q-sort…
We examine the effects of internal variability and model response in projections of climate impacts on U.S. ground-level ozone across the 21st century using integrated global system modeling and global atmospheric chemistry simulations. The impact of climate change on air polluti...
ERIC Educational Resources Information Center
Reeb, Roger N.; Snow-Hill, Nyssa L.; Folger, Susan F.; Steel, Anne L.; Stayton, Laura; Hunt, Charles A.; O'Koon, Bernadette; Glendening, Zachary
2017-01-01
This article presents the Psycho-Ecological Systems Model (PESM)--an integrative conceptual model rooted in General Systems Theory (GST). PESM was developed to inform and guide the development, implementation, and evaluation of transdisciplinary (and multilevel) community-engaged scholarship (e.g., a participatory community action research project…
Integrated (one-stop shop) youth health care: best available evidence and future directions.
Hetrick, Sarah E; Bailey, Alan P; Smith, Kirsten E; Malla, Ashok; Mathias, Steve; Singh, Swaran P; O'Reilly, Aileen; Verma, Swapna K; Benoit, Laelia; Fleming, Theresa M; Moro, Marie Rose; Rickwood, Debra J; Duffy, Joseph; Eriksen, Trissel; Illback, Robert; Fisher, Caroline A; McGorry, Patrick D
2017-11-20
Although mental health problems represent the largest burden of disease in young people, access to mental health care has been poor for this group. Integrated youth health care services have been proposed as an innovative solution. Integrated care joins up physical health, mental health and social care services, ideally in one location, so that a young person receives holistic care in a coordinated way. It can be implemented in a range of ways. A review of the available literature identified a range of studies reporting the results of evaluation research into integrated care services. The best available data indicate that many young people who may not otherwise have sought help are accessing these mental health services, and there are promising outcomes for most in terms of symptomatic and functional recovery. Where evaluated, young people report having benefited from and being highly satisfied with these services. Some young people, such as those with more severe presenting symptoms and those who received fewer treatment sessions, have failed to benefit, indicating a need for further integration with more specialist care. Efforts are underway to articulate the standards and core features to which integrated care services should adhere, as well as to further evaluate outcomes. This will guide the ongoing development of best practice models of service delivery.
Maurer, Max; Lienert, Judit
2017-01-01
We compare the use of multi-criteria decision analysis (MCDA)–or more precisely, models used in multi-attribute value theory (MAVT)–to integrated assessment (IA) models for supporting long-term water supply planning in a small town case study in Switzerland. They are used to evaluate thirteen system scale water supply alternatives in four future scenarios regarding forty-four objectives, covering technical, social, environmental, and economic aspects. The alternatives encompass both conventional and unconventional solutions and differ regarding technical, spatial and organizational characteristics. This paper focuses on the impact assessment and final evaluation step of the structured MCDA decision support process. We analyze the performance of the alternatives for ten stakeholders. We demonstrate the implications of model assumptions by comparing two IA and three MAVT evaluation model layouts of different complexity. For this comparison, we focus on the validity (ranking stability), desirability (value), and distinguishability (value range) of the alternatives given the five model layouts. These layouts exclude or include stakeholder preferences and uncertainties. Even though all five led us to identify the same best alternatives, they did not produce identical rankings. We found that the MAVT-type models provide higher distinguishability and a more robust basis for discussion than the IA-type models. The needed complexity of the model, however, should be determined based on the intended use of the model within the decision support process. The best-performing alternatives had consistently strong performance for all stakeholders and future scenarios, whereas the current water supply system was outperformed in all evaluation layouts. The best-performing alternatives comprise proactive pipe rehabilitation, adapted firefighting provisions, and decentralized water storage and/or treatment. We present recommendations for possible ways of improving water supply planning in the case study and beyond. PMID:28481881
Cao, Renzhi; Bhattacharya, Debswapna; Adhikari, Badri; Li, Jilong; Cheng, Jianlin
2015-01-01
Model evaluation and selection is an important step and a big challenge in template-based protein structure prediction. Individual model quality assessment methods designed for recognizing some specific properties of protein structures often fail to consistently select good models from a model pool because of their limitations. Therefore, combining multiple complimentary quality assessment methods is useful for improving model ranking and consequently tertiary structure prediction. Here, we report the performance and analysis of our human tertiary structure predictor (MULTICOM) based on the massive integration of 14 diverse complementary quality assessment methods that was successfully benchmarked in the 11th Critical Assessment of Techniques of Protein Structure prediction (CASP11). The predictions of MULTICOM for 39 template-based domains were rigorously assessed by six scoring metrics covering global topology of Cα trace, local all-atom fitness, side chain quality, and physical reasonableness of the model. The results show that the massive integration of complementary, diverse single-model and multi-model quality assessment methods can effectively leverage the strength of single-model methods in distinguishing quality variation among similar good models and the advantage of multi-model quality assessment methods of identifying reasonable average-quality models. The overall excellent performance of the MULTICOM predictor demonstrates that integrating a large number of model quality assessment methods in conjunction with model clustering is a useful approach to improve the accuracy, diversity, and consequently robustness of template-based protein structure prediction. PMID:26369671
Risk assessment of climate systems for national security.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Backus, George A.; Boslough, Mark Bruce Elrick; Brown, Theresa Jean
2012-10-01
Climate change, through drought, flooding, storms, heat waves, and melting Arctic ice, affects the production and flow of resource within and among geographical regions. The interactions among governments, populations, and sectors of the economy require integrated assessment based on risk, through uncertainty quantification (UQ). This project evaluated the capabilities with Sandia National Laboratories to perform such integrated analyses, as they relate to (inter)national security. The combining of the UQ results from climate models with hydrological and economic/infrastructure impact modeling appears to offer the best capability for national security risk assessments.
NASA Astrophysics Data System (ADS)
Zheng, Y.; Wu, B.; Wu, X.
2015-12-01
Integrated hydrological models (IHMs) consider surface water and subsurface water as a unified system, and have been widely adopted in basin-scale water resources studies. However, due to IHMs' mathematical complexity and high computational cost, it is difficult to implement them in an iterative model evaluation process (e.g., Monte Carlo Simulation, simulation-optimization analysis, etc.), which diminishes their applicability for supporting decision-making in real-world situations. Our studies investigated how to effectively use complex IHMs to address real-world water issues via surrogate modeling. Three surrogate modeling approaches were considered, including 1) DYCORS (DYnamic COordinate search using Response Surface models), a well-established response surface-based optimization algorithm; 2) SOIM (Surrogate-based Optimization for Integrated surface water-groundwater Modeling), a response surface-based optimization algorithm that we developed specifically for IHMs; and 3) Probabilistic Collocation Method (PCM), a stochastic response surface approach. Our investigation was based on a modeling case study in the Heihe River Basin (HRB), China's second largest endorheic river basin. The GSFLOW (Coupled Ground-Water and Surface-Water Flow Model) model was employed. Two decision problems were discussed. One is to optimize, both in time and in space, the conjunctive use of surface water and groundwater for agricultural irrigation in the middle HRB region; and the other is to cost-effectively collect hydrological data based on a data-worth evaluation. Overall, our study results highlight the value of incorporating an IHM in making decisions of water resources management and hydrological data collection. An IHM like GSFLOW can provide great flexibility to formulating proper objective functions and constraints for various optimization problems. On the other hand, it has been demonstrated that surrogate modeling approaches can pave the path for such incorporation in real-world situations, since they can dramatically reduce the computational cost of using IHMs in an iterative model evaluation process. In addition, our studies generated insights into the human-nature water conflicts in the specific study area and suggested potential solutions to address them.
Parmodel: a web server for automated comparative modeling of proteins.
Uchôa, Hugo Brandão; Jorge, Guilherme Eberhart; Freitas Da Silveira, Nelson José; Camera, João Carlos; Canduri, Fernanda; De Azevedo, Walter Filgueira
2004-12-24
Parmodel is a web server for automated comparative modeling and evaluation of protein structures. The aim of this tool is to help inexperienced users to perform modeling, assessment, visualization, and optimization of protein models as well as crystallographers to evaluate structures solved experimentally. It is subdivided in four modules: Parmodel Modeling, Parmodel Assessment, Parmodel Visualization, and Parmodel Optimization. The main module is the Parmodel Modeling that allows the building of several models for a same protein in a reduced time, through the distribution of modeling processes on a Beowulf cluster. Parmodel automates and integrates the main softwares used in comparative modeling as MODELLER, Whatcheck, Procheck, Raster3D, Molscript, and Gromacs. This web server is freely accessible at .
[Cultural anthropology of traditional Chinese medicine].
Wan, Xia; Liu, Jian-ping; Ai, Yan-ke; Li, Liu-ji
2008-07-01
Biological, psychological and sociological model of medicine substantializes the old model lacking the social humane attributes. The new medical model makes people take medical anthropology into research and highly evaluate traditional medical system. Cultural anthropology of traditional Chinese medicine (TCM) is part of medical anthropology with three major characteristics: wide research scope, specificity, and integration. It has developed its own research methods, such as field investigation, comprehensive inspection and comparison study. Cultural anthropology provides an efficient research method for TCM, and its application would further develop TCM theory and form comprehensive evaluation on TCM effects.
Yiu, Sean; Tom, Brian Dm
2017-01-01
Several researchers have described two-part models with patient-specific stochastic processes for analysing longitudinal semicontinuous data. In theory, such models can offer greater flexibility than the standard two-part model with patient-specific random effects. However, in practice, the high dimensional integrations involved in the marginal likelihood (i.e. integrated over the stochastic processes) significantly complicates model fitting. Thus, non-standard computationally intensive procedures based on simulating the marginal likelihood have so far only been proposed. In this paper, we describe an efficient method of implementation by demonstrating how the high dimensional integrations involved in the marginal likelihood can be computed efficiently. Specifically, by using a property of the multivariate normal distribution and the standard marginal cumulative distribution function identity, we transform the marginal likelihood so that the high dimensional integrations are contained in the cumulative distribution function of a multivariate normal distribution, which can then be efficiently evaluated. Hence, maximum likelihood estimation can be used to obtain parameter estimates and asymptotic standard errors (from the observed information matrix) of model parameters. We describe our proposed efficient implementation procedure for the standard two-part model parameterisation and when it is of interest to directly model the overall marginal mean. The methodology is applied on a psoriatic arthritis data set concerning functional disability.
A Hybrid Numerical Analysis Method for Structural Health Monitoring
NASA Technical Reports Server (NTRS)
Forth, Scott C.; Staroselsky, Alexander
2001-01-01
A new hybrid surface-integral-finite-element numerical scheme has been developed to model a three-dimensional crack propagating through a thin, multi-layered coating. The finite element method was used to model the physical state of the coating (far field), and the surface integral method was used to model the fatigue crack growth. The two formulations are coupled through the need to satisfy boundary conditions on the crack surface and the external boundary. The coupling is sufficiently weak that the surface integral mesh of the crack surface and the finite element mesh of the uncracked volume can be set up independently. Thus when modeling crack growth, the finite element mesh can remain fixed for the duration of the simulation as the crack mesh is advanced. This method was implemented to evaluate the feasibility of fabricating a structural health monitoring system for real-time detection of surface cracks propagating in engine components. In this work, the authors formulate the hybrid surface-integral-finite-element method and discuss the mechanical issues of implementing a structural health monitoring system in an aircraft engine environment.
Integrated modeling of advanced optical systems
NASA Astrophysics Data System (ADS)
Briggs, Hugh C.; Needels, Laura; Levine, B. Martin
1993-02-01
This poster session paper describes an integrated modeling and analysis capability being developed at JPL under funding provided by the JPL Director's Discretionary Fund and the JPL Control/Structure Interaction Program (CSI). The posters briefly summarize the program capabilities and illustrate them with an example problem. The computer programs developed under this effort will provide an unprecedented capability for integrated modeling and design of high performance optical spacecraft. The engineering disciplines supported include structural dynamics, controls, optics and thermodynamics. Such tools are needed in order to evaluate the end-to-end system performance of spacecraft such as OSI, POINTS, and SMMM. This paper illustrates the proof-of-concept tools that have been developed to establish the technology requirements and demonstrate the new features of integrated modeling and design. The current program also includes implementation of a prototype tool based upon the CAESY environment being developed under the NASA Guidance and Control Research and Technology Computational Controls Program. This prototype will be available late in FY-92. The development plan proposes a major software production effort to fabricate, deliver, support and maintain a national-class tool from FY-93 through FY-95.
NASA Astrophysics Data System (ADS)
Taruffi, Liila; Koelsch, Stefan
2017-07-01
Pelowski et al. present a holistic framework within which the multiple processes underlying art viewing can be systematically organized [1]. The proposed model integrates a broad range of dynamic mechanisms, which can effectively account for empirical as well as humanistic perspectives on art perception. Particularly challenging is the final section of the article, where the authors draw a correspondence between behavioral and cognitive components and brain structures (as well as networks). Here, we comment on the implications of the Vienna Integrated Model of Art Perception for art therapy in clinical populations, particularly focusing on (1) expanding Pelowski et al.'s considerations of the Default Mode Network (DMN) into discussion of its relevance to mental diseases, and (2) elaborating on empathic resonance in aesthetic contexts and the capacity of art to build up empathic skills.
Smith, Claire F; Tollemache, Nicholas; Covill, Derek; Johnston, Malcolm
2018-01-01
Understanding the three-dimensional (3D) nature of the human form is imperative for effective medical practice and the emergence of 3D printing creates numerous opportunities to enhance aspects of medical and healthcare training. A recently deceased, un-embalmed donor was scanned through high-resolution computed tomography. The scan data underwent segmentation and post-processing and a range of 3D-printed anatomical models were produced. A four-stage mixed-methods study was conducted to evaluate the educational value of the models in a medical program. (1) A quantitative pre/post-test to assess change in learner knowledge following 3D-printed model usage in a small group tutorial; (2) student focus group (3) a qualitative student questionnaire regarding personal student model usage (4) teaching faculty evaluation. The use of 3D-printed models in small-group anatomy teaching session resulted in a significant increase in knowledge (P = 0.0001) when compared to didactic 2D-image based teaching methods. Student focus groups yielded six key themes regarding the use of 3D-printed anatomical models: model properties, teaching integration, resource integration, assessment, clinical imaging, and pathology and anatomical variation. Questionnaires detailed how students used the models in the home environment and integrated them with anatomical learning resources such as textbooks and anatomy lectures. In conclusion, 3D-printed anatomical models can be successfully produced from the CT data set of a recently deceased donor. These models can be used in anatomy education as a teaching tool in their own right, as well as a method for augmenting the curriculum and complementing established learning modalities, such as dissection-based teaching. Anat Sci Educ 11: 44-53. © 2017 American Association of Anatomists. © 2017 American Association of Anatomists.
Berge, Jerica M; Adamek, Margaret; Caspi, Caitlin; Loth, Katie A; Shanafelt, Amy; Stovitz, Steven D; Trofholz, Amanda; Grannon, Katherine Y; Nanney, Marilyn S
2017-08-01
Despite intense nationwide efforts to improve healthy eating and physical activity across the lifespan, progress has plateaued. Moreover, health inequities remain. Frameworks that integrate research, clinical practice, policy, and community resources to address weight-related behaviors are needed. Implementation and evaluation of integration efforts also remain a challenge. The purpose of this paper is to: (1) Describe the planning and development process of an integrator entity, HEAL (Healthy Eating and Activity across the Lifespan); (2) present outcomes of the HEAL development process including the HEAL vision, mission, and values statements; (3) define the planned integrator functions of HEAL; and (4) describe the ongoing evaluation of the integration process. HEAL team members used a theoretically-driven, evidence-based, systemic, twelve-month planning process to guide the development of HEAL and to lay the foundation for short- and long-term integration initiatives. Key development activities included a review of the literature and case studies, identifying guiding principles and infrastructure needs, conducting stakeholder/key informant interviews, and continuous capacity building among team members. Outcomes/deliverables of the first year of HEAL included a mission, vision, and values statements; definitions of integration and integrator functions and roles; a set of long-range plans; and an integration evaluation plan. Application of the HEAL integration model is currently underway through community solicited initiatives. Overall, HEAL aims to lead real world integrative work that coalesce across research, clinical practice, and policy with community resources to inspire a culture of health equity aimed at improving healthy eating and physical activity across the lifespan. Copyright © 2017 Elsevier Inc. All rights reserved.
Boltz, Joshua P; Johnson, Bruce R; Daigger, Glen T; Sandino, Julian; Elenter, Deborah
2009-06-01
A steady-state model presented by Boltz, Johnson, Daigger, and Sandino (2009) describing integrated fixed-film activated sludge (IFAS) and moving-bed biofilm reactor (MBBR) systems has been demonstrated to simulate, with reasonable accuracy, four wastewater treatment configurations with published operational data. Conditions simulated include combined carbon oxidation and nitrification (both IFAS and MBBR), tertiary nitrification MBBR, and post denitrification IFAS with methanol addition as the external carbon source. Simulation results illustrate that the IFAS/MBBR model is sufficiently accurate for describing ammonia-nitrogen reduction, nitrate/nitrite-nitrogen reduction and production, biofilm and suspended biomass distribution, and sludge production.
Human Centered Hardware Modeling and Collaboration
NASA Technical Reports Server (NTRS)
Stambolian Damon; Lawrence, Brad; Stelges, Katrine; Henderson, Gena
2013-01-01
In order to collaborate engineering designs among NASA Centers and customers, to in clude hardware and human activities from multiple remote locations, live human-centered modeling and collaboration across several sites has been successfully facilitated by Kennedy Space Center. The focus of this paper includes innovative a pproaches to engineering design analyses and training, along with research being conducted to apply new technologies for tracking, immersing, and evaluating humans as well as rocket, vehic le, component, or faci lity hardware utilizing high resolution cameras, motion tracking, ergonomic analysis, biomedical monitoring, wor k instruction integration, head-mounted displays, and other innovative human-system integration modeling, simulation, and collaboration applications.
Integration of Linear Dynamic Emission and Climate Models with Air Traffic Simulations
NASA Technical Reports Server (NTRS)
Sridhar, Banavar; Ng, Hok K.; Chen, Neil Y.
2012-01-01
Future air traffic management systems are required to balance the conflicting objectives of maximizing safety and efficiency of traffic flows while minimizing the climate impact of aviation emissions and contrails. Integrating emission and climate models together with air traffic simulations improve the understanding of the complex interaction between the physical climate system, carbon and other greenhouse gas emissions and aviation activity. This paper integrates a national-level air traffic simulation and optimization capability with simple climate models and carbon cycle models, and climate metrics to assess the impact of aviation on climate. The capability can be used to make trade-offs between extra fuel cost and reduction in global surface temperature change. The parameters in the simulation can be used to evaluate the effect of various uncertainties in emission models and contrails and the impact of different decision horizons. Alternatively, the optimization results from the simulation can be used as inputs to other tools that monetize global climate impacts like the FAA s Aviation Environmental Portfolio Management Tool for Impacts.
The Modular Modeling System (MMS): User's Manual
Leavesley, G.H.; Restrepo, Pedro J.; Markstrom, S.L.; Dixon, M.; Stannard, L.G.
1996-01-01
The Modular Modeling System (MMS) is an integrated system of computer software that has been developed to provide the research and operational framework needed to support development, testing, and evaluation of physical-process algorithms and to facilitate integration of user-selected sets of algorithms into operational physical-process models. MMS uses a module library that contains modules for simulating a variety of water, energy, and biogeochemical processes. A model is created by selectively coupling the most appropriate modules from the library to create a 'suitable' model for the desired application. Where existing modules do not provide appropriate process algorithms, new modules can be developed. The MMS user's manual provides installation instructions and a detailed discussion of system concepts, module development, and model development and application using the MMS graphical user interface.
Validation of Fatigue Modeling Predictions in Aviation Operations
NASA Technical Reports Server (NTRS)
Gregory, Kevin; Martinez, Siera; Flynn-Evans, Erin
2017-01-01
Bio-mathematical fatigue models that predict levels of alertness and performance are one potential tool for use within integrated fatigue risk management approaches. A number of models have been developed that provide predictions based on acute and chronic sleep loss, circadian desynchronization, and sleep inertia. Some are publicly available and gaining traction in settings such as commercial aviation as a means of evaluating flight crew schedules for potential fatigue-related risks. Yet, most models have not been rigorously evaluated and independently validated for the operations to which they are being applied and many users are not fully aware of the limitations in which model results should be interpreted and applied.
Solving the hypersingular boundary integral equation for the Burton and Miller formulation.
Langrenne, Christophe; Garcia, Alexandre; Bonnet, Marc
2015-11-01
This paper presents an easy numerical implementation of the Burton and Miller (BM) formulation, where the hypersingular Helmholtz integral is regularized by identities from the associated Laplace equation and thus needing only the evaluation of weakly singular integrals. The Helmholtz equation and its normal derivative are combined directly with combinations at edge or corner collocation nodes not used when the surface is not smooth. The hypersingular operators arising in this process are regularized and then evaluated by an indirect procedure based on discretized versions of the Calderón identities linking the integral operators for associated Laplace problems. The method is valid for acoustic radiation and scattering problems involving arbitrarily shaped three-dimensional bodies. Unlike other approaches using direct evaluation of hypersingular integrals, collocation points still coincide with mesh nodes, as is usual when using conforming elements. Using higher-order shape functions (with the boundary element method model size kept fixed) reduces the overall numerical integration effort while increasing the solution accuracy. To reduce the condition number of the resulting BM formulation at low frequencies, a regularized version α = ik/(k(2 )+ λ) of the classical BM coupling factor α = i/k is proposed. Comparisons with the combined Helmholtz integral equation Formulation method of Schenck are made for four example configurations, two of them featuring non-smooth surfaces.
2008-11-01
103 2.3.6 Use of Model 4 for MANPRINT Evaluation of the M1A2 in the IOTE ..........103 iv 3. Conclusions...System (ASAS) Block II Initial Operational Test and Evaluation ( IOTE ) 203 Appendix I. Noise and Temperature Measurements in and Around the HETS...Test and Evaluation (LUTE), Initial Operational Test and Evaluation ( IOTE ) or a Follow-on Test and Evaluation (FOTE)—was being planned, our Field
Establishment of the Northeast Coastal Watershed Geospatial Data Network (NECWGDN)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hannigan, Robyn
The goals of NECWGDN were to establish integrated geospatial databases that interfaced with existing open-source (water.html) environmental data server technologies (e.g., HydroDesktop) and included ecological and human data to enable evaluation, prediction, and adaptation in coastal environments to climate- and human-induced threats to the coastal marine resources within the Gulf of Maine. We have completed the development and testing of a "test bed" architecture that is compatible with HydroDesktop and have identified key metadata structures that will enable seamless integration and delivery of environmental, ecological, and human data as well as models to predict threats to end-users. Uniquely this databasemore » integrates point as well as model data and so offers capacities to end-users that are unique among databases. Future efforts will focus on the development of integrated environmental-human dimension models that can serve, in near real time, visualizations of threats to coastal resources and habitats.« less
A Life Cycle Assessment of integrated dairy farm-greenhouse systems in British Columbia.
Zhang, Siduo; Bi, Xiaotao Tony; Clift, Roland
2013-12-01
The purpose of this study was to evaluate the anticipated environmental benefits from integrating a dairy farm and a greenhouse; the integration is based on anaerobic digestion of manures to produce biogas energy, biogenic CO2, and digested slurry. A full Life Cycle Assessment (LCA) has been conducted on six modeled cases applicable in British Columbia, to evaluate non-renewable energy consumption, climate change, acidification, eutrophication, respiratory effects and human toxicity. Compared to conventional practice, an integrated system has the potential to nearly halve eutrophication and respiratory effects caused by inorganic emissions and to reduce non-renewable energy consumption, climate change, and acidification by 65-90%, while respiratory effects caused by organic emissions become negative as co-products substitute for other materials. Co-digestion of other livestock manures, greenhouse plant waste, or food and food processing waste with dairy manure can further improve the performance of the integrated system. Copyright © 2013 Elsevier Ltd. All rights reserved.
Mental models: an alternative evaluation of a sensemaking approach to ethics instruction.
Brock, Meagan E; Vert, Andrew; Kligyte, Vykinta; Waples, Ethan P; Sevier, Sydney T; Mumford, Michael D
2008-09-01
In spite of the wide variety of approaches to ethics training it is still debatable which approach has the highest potential to enhance professionals' integrity. The current effort assesses a novel curriculum that focuses on metacognitive reasoning strategies researchers use when making sense of day-to-day professional practices that have ethical implications. The evaluated trainings effectiveness was assessed by examining five key sensemaking processes, such as framing, emotion regulation, forecasting, self-reflection, and information integration that experts and novices apply in ethical decision-making. Mental models of trained and untrained graduate students, as well as faculty, working in the field of physical sciences were compared using a think-aloud protocol 6 months following the ethics training. Evaluation and comparison of the mental models of participants provided further validation evidence for sensemaking training. Specifically, it was found that trained students applied metacognitive reasoning strategies learned during training in their ethical decision-making that resulted in complex mental models focused on the objective assessment of the situation. Mental models of faculty and untrained students were externally-driven with a heavy focus on autobiographical processes. The study shows that sensemaking training has a potential to induce shifts in researchers' mental models by making them more cognitively complex via the use of metacognitive reasoning strategies. Furthermore, field experts may benefit from sensemaking training to improve their ethical decision-making framework in highly complex, novel, and ambiguous situations.
Evaluating the Ocean Component of the US Navy Earth System Model
NASA Astrophysics Data System (ADS)
Zamudio, L.
2017-12-01
Ocean currents, temperature, and salinity observations are used to evaluate the ocean component of the US Navy Earth System Model. The ocean and atmosphere components of the system are an eddy-resolving (1/12.5° equatorial resolution) version of the HYbrid Coordinate Ocean Model (HYCOM), and a T359L50 version of the NAVy Global Environmental Model (NAVGEM), respectively. The system was integrated in hindcast mode and the ocean results are compared against unassimilated observations, a stand-alone version of HYCOM, and the Generalized Digital Environment Model ocean climatology. The different observation types used in the system evaluation are: drifting buoys, temperature profiles, salinity profiles, and acoustical proxies (mixed layer depth, sonic layer depth, below layer gradient, and acoustical trapping). To evaluate the system's performance in each different metric, a scorecard is used to translate the system's errors into scores, which provide an indication of the system's skill in both space and time.
2009-12-01
SWISS CHEESE ” MODEL........................................... 16 1. Errors and Violations...16 Figure 5. Reason’s Swiss Cheese Model (After: Reason, 1990, p. 208) ........... 20 Figure 6. The HFACS Swiss Cheese Model of...become more complex. E. REASON’S “ SWISS CHEESE ” MODEL Reason’s (1990) book, Human Error, is generally regarded as the seminal work on the subject
ERIC Educational Resources Information Center
Wang, Qiu; Diemer, Matthew A.; Maier, Kimberly S.
2013-01-01
This study integrated Bayesian hierarchical modeling and receiver operating characteristic analysis (BROCA) to evaluate how interest strength (IS) and interest differentiation (ID) predicted low–socioeconomic status (SES) youth's interest-major congruence (IMC). Using large-scale Kuder Career Search online-assessment data, this study fit three…
HIGH TIME-RESOLVED COMPARISONS FOR IN-DEPTH PROBING OF CMAQ FINE-PARTICLES AND GAS PREDICTIONS
Model evaluation is important to develop confidence in models and develop an understanding of their predictions. Most comparisons in the U.S. involve time-integrated measurements of 24-hours or longer. Comparisons against continuous or semi-continuous particle and gaseous measur...
Aerospace System Unified Life Cycle Engineering Producibility Measurement Issues
1989-05-01
Control .................................................................. 11-9 5 . C o st...in the development process; these computer -aided models offer clarity approaching that of a prototype model. Once a part geometry is represented...of part geometry , allowing manufacturability evaluation and possibly other computer -integrated manufacturing (CIM) tasks. (Other papers that discuss
Misleading prioritizations from modelling range shifts under climate change
Helen R. Sofaer; Catherine S. Jarnevich; Curtis H. Flather
2018-01-01
Conservation planning requires the prioritization of a subset of taxa and geographical locations to focus monitoring and management efforts. Integration of the threats and opportunities posed by climate change often relies on predictions from species distribution models, particularly for assessments of vulnerability or invasion risk for multiple taxa. We evaluated...
Online Discussion and College Student Learning: Toward a Model of Influence
ERIC Educational Resources Information Center
Johnson, Genevieve M.; Howell, Andrew J.; Code, Jillianne R.
2005-01-01
As technology revolutionizes instruction, conceptual models of influence are necessary to guide implementation and evaluation of specific applications such as online peer discussion. Students in an educational psychology course analyzed five case studies that applied and integrated course content. Some students (n= 42) used "WebCT…
Evaluation of Fast-Time Wake Vortex Models using Wake Encounter Flight Test Data
NASA Technical Reports Server (NTRS)
Ahmad, Nashat N.; VanValkenburg, Randal L.; Bowles, Roland L.; Limon Duparcmeur, Fanny M.; Gloudesman, Thijs; van Lochem, Sander; Ras, Eelco
2014-01-01
This paper describes a methodology for the integration and evaluation of fast-time wake models with flight data. The National Aeronautics and Space Administration conducted detailed flight tests in 1995 and 1997 under the Aircraft Vortex Spacing System Program to characterize wake vortex decay and wake encounter dynamics. In this study, data collected during Flight 705 were used to evaluate NASA's fast-time wake transport and decay models. Deterministic and Monte-Carlo simulations were conducted to define wake hazard bounds behind the wake generator. The methodology described in this paper can be used for further validation of fast-time wake models using en-route flight data, and for determining wake turbulence constraints in the design of air traffic management concepts.
NASA Technical Reports Server (NTRS)
O'Connor, Brian; Hernandez, Deborah; Hornsby, Linda; Brown, Maria; Horton-Mullins, Kathryn
2017-01-01
Outline: Background of ISS (International Space Station) Material Science Research Rack; NASA SCA (Sample Cartridge Assembly) Design; GEDS (Gravitational Effects in Distortion in Sintering) Experiment Ampoule Design; Development Testing Summary; Thermal Modeling and Analysis. Summary: GEDS design development challenging (GEDS Ampoule design developed through MUGS (Microgravity) testing; Short duration transient sample processing; Unable to measure sample temperatures); MUGS Development testing used to gather data (Actual LGF (Low Gradient Furnace)-like furnace response; Provided sample for sintering evaluation); Transient thermal model integral to successful GEDS experiment (Development testing provided furnace response; PI (Performance Indicator) evaluation of sintering anchored model evaluation of processing durations; Thermal transient model used to determine flight SCA sample processing profiles).
Evaluation of performance of distributed delay model for chemotherapy-induced myelosuppression.
Krzyzanski, Wojciech; Hu, Shuhua; Dunlavey, Michael
2018-04-01
The distributed delay model has been introduced that replaces the transit compartments in the classic model of chemotherapy-induced myelosuppression with a convolution integral. The maturation of granulocyte precursors in the bone marrow is described by the gamma probability density function with the shape parameter (ν). If ν is a positive integer, the distributed delay model coincides with the classic model with ν transit compartments. The purpose of this work was to evaluate performance of the distributed delay model with particular focus on model deterministic identifiability in the presence of the shape parameter. The classic model served as a reference for comparison. Previously published white blood cell (WBC) count data in rats receiving bolus doses of 5-fluorouracil were fitted by both models. The negative two log-likelihood objective function (-2LL) and running times were used as major markers of performance. Local sensitivity analysis was done to evaluate the impact of ν on the pharmacodynamics response WBC. The ν estimate was 1.46 with 16.1% CV% compared to ν = 3 for the classic model. The difference of 6.78 in - 2LL between classic model and the distributed delay model implied that the latter performed significantly better than former according to the log-likelihood ratio test (P = 0.009), although the overall performance was modestly better. The running times were 1 s and 66.2 min, respectively. The long running time of the distributed delay model was attributed to computationally intensive evaluation of the convolution integral. The sensitivity analysis revealed that ν strongly influences the WBC response by controlling cell proliferation and elimination of WBCs from the circulation. In conclusion, the distributed delay model was deterministically identifiable from typical cytotoxic data. Its performance was modestly better than the classic model with significantly longer running time.
ERIC Educational Resources Information Center
Ludwig, Meredith; Song, Mengli
2015-01-01
In 2010, the Wolf Trap Foundation for the Performing Arts, Institute for Early Learning Through the Arts (Wolf Trap), was awarded a U.S. Department of Education Arts in Education Model Development and Dissemination (AEMDD) grant. The purpose of the AEMDD grant was to develop, implement, and disseminate a research-based program of professional…
van der Wilt, Gert Jan; Gerhardus, Ansgar; Oortwijn, Wija
2017-01-01
A comprehensive health technology assessment (HTA) enables a patient-centered assessment of the effectiveness, economic, ethical, socio-cultural, and legal issues of health technologies that takes context and implementation into account. A question is whether these various pieces of evidence need to be integrated, and if so, how that might be achieved. The objective of our study is to discuss the meaning of integration in the context of HTA and suggest how it may be achieved in a more structured way. An analysis of the concept of integration in the context of HTA and a review of approaches that were adopted in the INTEGRATE-HTA project that may support integration. Current approaches to integration in HTA are mainly methods of commensuration, which are not optimally geared to support public deliberation. In contrast, articulating evaluative frameworks could be an important means of integration which allows for exploring how facts and values can be brought to bear on each other. Integration is not something that only needs to be addressed at the end, but rather throughout an HTA, right from the start. Integration can be conceived as a matter of accounting for the relevance of empirical evidence in view of a commitment to a set of potentially conflicting values. Various elements of the INTEGRATE-HTA project, such as scoping and the development of logic models, can help to achieve integration in HTA.
... for hereditary breast and ovarian cancer or for Lynch syndrome, a form of hereditary colorectal cancer, are not ... the effective integration of genomics into health practice—Lynch syndrome ACCE Model for Evaluating Genetic Tests Recommendations by ...